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I N T R O D U C T I O N

The study of deformations of geometric structures driven by systems of nonlinear partial differen-
tial equations became very relevant in differential geometry and mathematical physics in recent
decades. Concrete examples are, for instance, the analysis of the behavior in time of the interfaces
surfaces in phase changes of materials or in the flows of immiscible fluids. From a mathematical
point of view, the great success of this topic was the application of such deformation techniques
in solving some famous long–standing open problems in geometry, notably among them, the
Poincaré conjecture by Perelman, by means of the Ricci flow.

In this thesis, we deal with hypersurfaces and we study one of the most known among their
geometric flows, namely the surface diffusion flow. We will consider the evolution in time of smooth
sets Et in the n–dimensional flat torus Tn ≈ Rn/Zn, for every t in a time interval [0,T ), such that
their boundaries ∂Et, which are smooth hypersurfaces, move with “outer” normal velocity Vt
given by

Vt = ∆tHt on ∂Et, (0.1)

where ∆t and Ht are respectively the Laplacian and the mean curvature of the hypersurface ∂Et,
for all t ∈ [0,T ). Choosing as ambient space the flat torus Tn, described as the quotient of Rn by a
discrete group of translations generated by some n linearly independent vectors, is equivalent to
consider the flow of “periodic” hypersurfaces in the Euclidean space, invariant by such group
of translations. Then, it is clear that our analysis also applies to compact hypersurfaces in Rn or,
more in general, in any (generalized) “cylinder” S1 × · · · × S1 × R × · · · × R of dimension n, with
a flat metric.

Such flow was first proposed by Mullins in [52] to study thermal grooving in material sciences
(see also [26] for a nice presentation). Indeed, in the physically relevant case of three–dimensional
space, it describes the evolution of interfaces between solid phases of a system, which are studied
in a variety of physical settings including phase transitions, epitaxial deposition and grain growth
(see for instance [39] and the references therein).

A very important property of this geometric flow is that it is the gradient flow of a functional,
which clearly gives a natural “energy”, decreasing in time during the evolution (the velocity Vt
is minus the gradient, that is, the Euler–Lagrange equation of a functional). Precisely, the surface
diffusion flow is the H−1–gradient flow of the following Area functional

A(∂E) =

ˆ
∂E

dµ

that gives the area of the (n− 1)–dimensional smooth boundary of any sets E, under a volume
constraint (here µ is the “canonical” measure associated to the Riemannian metric on ∂E induced
by the metric of Tn coming from the scalar product of Rn, which coincides with the (n− 1)–
dimensional Hausdorff measure Hn−1).

Parametrizing the moving smooth surfaces ∂Et by a family of embeddings φt : M → Tn

such that φt(M ) = ∂Et, where M is a fixed smooth, compact (n− 1)–dimensional differentiable
manifold and νt is the outer unit normal vector to ∂Et as above, the evolution law (0.1) can be
expressed as

∂φt
∂t

= (∆tHt)νt . (0.2)

Then, by the general equality ∆φ = −Hν (equation (1.8) below), relation (0.2) can be rewritten as

∂φt
∂t

= −∆∆φt + lower order terms (0.3)
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INTRODUCTION 2

hence, we have to deal with a fourth order, quasilinear and degenerate, parabolic system of PDEs.
More precisely, it is quasilinear, as the coefficients (as second order partial differential operator) of
the Laplacian associated to the induced metrics on the evolving hypersurfaces, depend on the first
order derivatives of φt (and the coefficient of ∆∆ on the third order derivatives) and the operator at
the right hand side of system (0.3) is degenerate, as its symbol (that is, the symbol of its linearized
operator) admits zero eigenvalues, due to the invariance of the Laplacian by diffeomorphisms.

From the evolution law (0.1), it follows easily that the volume Vol(Et) of the moving sets is
constant in time. However, the lack of the maximum principle, as the flow is of fourth order, implies
that it does not preserve convexity (see [42]), nor the embeddedness (see [33]), indeed it also does
not have a “comparison principle”, while it is invariant by isometries of Tn, reparametrizations
and tangential perturbations of the velocity of the motion.

Due to the parabolic nature of this system of PDEs, it is known that for every smooth initial set
E0 in Tn, with boundary described by φ0 : M → Tn, the flow with such initial data exists unique
and is smooth in some positive time interval [0,T ). The original result, proved by Escher, Mayer
and Simonett in [26], deals with the evolution in the whole space Rn of a generic hypersurface
even only immersed, hence possibly with self–intersections. It is anyway straightforward to adapt
the same arguments to our case, when the ambient is a flat torus Tn and the hypersurfaces are
boundaries of sets.

Theorem. Let φ0 : M → Rn be a smooth and compact, immersed hypersurface. Then, there exists a
unique smooth φ : [0,T )×M → Rn such that φt = φ(t, ·) is the surface diffusion flow of φ0, that is, a
solution of system (0.3), for some maximal time of existence T > 0. Moreover, such flow and the maximal
time of existence depend continuously on the C2,α–norm of the initial hypersurface φ0.

Actually, it is very likely, as in many geometric evolution equations, that this flow could develop
singularities in finite time, even if a rigorous example is not present in literature (up to our
knowledge). In [26], Escher et al. exhibited an immersed curve with a loop within a loop (namely,
a limaçon) and showed that during a numerical simulation of its evolution by surface diffusion,
the inner loop tightens and then contracts to a point developing a singularity. Analogously, in [25]
the same authors gave numerical evidence that for an evolving dumbbell with a thin neck, a
pinching–off should occur. We mention that these two situations have been instead analyzed
rigorously for the mean curvature flows by Angenent in [5] and by Grayson in [35], respectively
(see also [48] and [6] for alternative proofs).

Anyway, in some particular cases one can show that singularities do not appear, i.e. the flow
exists smooth for all positive times. For instance, in [26] the authors showed that if the initial
hypersurface is C2,α–close enough to a sphere with the same enclosed volume, then the flow exists
for every time and smoothly converges to a translate of such sphere. The analogous result was
obtained by Escher and Mucha in [27] for compact surfaces in Rn+1 with a Besov–type condition
and then by Wheeler in [62] for surfaces and in [63] for closed plane curves (see also the work
of Elliott and Garcke [24]) with a weaker initial W 2,2–closedness condition. Furthermore, in [64]
Wheeler showed that any surface diffusion flow of curves that exists for all time, must converge
smoothly, exponentially fast to a multiply–covered circle. We also mention a work by Miura e
Okabe [50] where the authors proved a global existence result provided that the initial curve is
W 2,2–close to a multiply covered circle.

Later on, Acerbi, Fusco, Julin and Morini in [1] extended these results, to any two and three–
dimensional hypersurface sufficiently “close” to the boundary of a smooth strictly stable critical set E
for the volume constrained Area functional (as it is every ball, actually), showing that the flow
exists for all positive times and asymptotically converges (in a suitable sense) to a translate of E.
Our aim in this thesis is to generalize such stability conclusion to any dimension, following the
lines presented by the author in [23] (in collaboration with Nicola Fusco and Carlo Mantegazza)
and in [16] (in collaboration with Daniele De Gennaro, Andrea Kubin and Anna Kubin).
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The notions of criticality and stability are as usual defined in terms of first and second variations
of A. We say that a smooth subset E ⊆ Tn is critical for A under a volume constraint, if for any
smooth one–parameter family of diffeomorphisms Φt : Tn → Tn, such that Vol(Φt(E)) = Vol(E),
for t ∈ (−ε, ε) and Φ0 = Id (Et = Φt(E) will be called volume–preserving variation of E), it follows

d

dt
A(∂Et)

∣∣∣
t=0

= 0 .

It is easy to see that this condition is equivalent to the existence of a constant λ ∈ R such that

H = λ on ∂E,

where H is the mean curvature of ∂E, that is, ∂E is a hypersurface with constant mean curvature.
The second variation of A at a critical set E, leading to the central notion of stability, is more
involved and, differently by other authors, we will compute it in detail with the tools of the
differential/Riemannian geometry (like for the first variation). We will then see that at a critical
set E, the second variation of A along a volume–preserving variation Et = Φt(E) only depends
on the normal component ψ on ∂E of the infinitesimal generator field X = ∂Φt

∂t

∣∣
t=0

of the variation.
The volume constraint on the admissible deformations of E implies that the functions ψ must have
zero integral on ∂E, hence it is natural to define a quadratic form ΠE on such space of functions
which is related to the second variation of A by the following equality,

ΠE(ψ) =
d2

dt2
A(∂Et)

∣∣∣
t=0

, (0.4)

where Et = Φt(E) is a volume–preserving variation of E such that〈
νE

∣∣∣∂Φt

∂t

∣∣∣
t=0

〉
= ψ

on ∂E, with νE the outer unit normal vector of ∂E.
Because of the obvious translation invariance of the functional A, it is easy to see (by means of
the formula (0.4)) that the form ΠE vanishes on the finite dimensional vector space given by the
functions φ = ⟨νE |η⟩, for every vector η ∈ Rn. We underline that the presence of such “natural”
degenerate subspace of the quadratic form ΠE (or, equivalently, the translation invariance of A) is
the main reason of several technical difficulties.
We then say that a smooth critical set E ⊆ Tn is strictly stable if

ΠE(ψ) > 0

for all non–zero functions ψ : ∂E → R, with zero integral and L2–orthogonal to every function
φ = ⟨νE |η⟩.

The heuristic idea behind the whole thesis is that in a region around a strictly stable critical
set E, we have a “potential well” for the “energy” A (and the set E is a local minimum) and,
defining a suitable notion of “closedness”, if a set starts “close enough” to E, during its evolution
by (minus) the gradient of such energy, it cannot “escape” the well and eventually asymptotically
converges to a set of (local) minimal energy, which must be a translate of E. This can be clearly
interpreted as a kind of “dynamical stability” in a neighborhood of E (and its translates or “up to
translations”).
To be more precise, we will prove the following results:

Theorem (Theorem 3.3.14). Let E ⊆ Tn, for n ⩾ 3, be a strictly stable critical set for the Area functional
under a volume constraint. Then, there exists δ > 0 such that, if E0 is a smooth set, C1–close to E,
satisfying Vol(E0) = Vol(E) and

Vol(E0△E) ⩽ δ and
ˆ
∂E0

|∇n−2H|2 dµ0 +
ˆ
∂E0

|∇H|2 dµ0 ⩽ δ ,
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the unique smooth surface diffusion flow Et starting from E0 is defined for all t ⩾ 0 and converges smoothly
to E′ = E + η exponentially fast as t→ +∞, for some η ∈ Rn.

Theorem (Theorem 3.4.8). Let E ⊆ Tn, for n ⩾ 3, be a strictly stable set for the Area functional under a
volume constraint. Then, there exists δ > 0 such that, if E0 is a smooth set δ–close in C1,1 to E, satisfying
Vol(E0) = Vol(E), then the surface diffusion flow Et starting from E0 exists smooth for all times t ⩾ 0

and Et → E + τ as t→ +∞, for some τ ∈ Tn, in Ck for every k ∈ N exponentially fast.

In showing the first theorem we will follow the line of the proof in [1], revisited in [18] and
extended to any dimension in [23], based on suitable energy estimates and compactness argu-
ments. We underline that this was actually a completely new approach to manage the translation
invariance of the functional A, in previous literature only dealt with by means of semigroup
techniques. More in detail, setting

F(t) =

ˆ
∂Et

|∇n−2H|2 dµt +
ˆ
∂Et

|∇H|2 dµt

and fixed δ0 > 0, we consider the surface diffusion flow starting from a set E0 which is δ0–close to
E, such that Vol(E0△E) ⩽ δ0 and F(0) ⩽ δ0. By means of energy estimates, we show that if δ0 is
chosen small enough, there exists δ > 0 (as in the statement of the theorem) such that the maximal
time of existence of Et is actually +∞. Once global–in–time existence has been established, a
compactness argument yields the existence of a sequence ti → +∞ and of a set E′, critical for A,
such that Eti → E′ (in a suitable sense). Since necessarily E′ is close to E and Vol(E) = Vol(E′),
we conclude that E′ is a translate of E, then, the exponential convergence of the flow to E′ follows
from suitable elliptic estimates.

The proof of the second theorem is based on the gradient flow structure of the evolution, in
particular, the main tool is the Alexandrov–type inequality in [17, Theorem 1.3], combined with the
quantitative isoperimetric inequality in [2]. By means of an iterative procedure and higher order
estimates, we extend the flow for all times. In order to do so, we need to show that the solution
coming from the short–time existence and regularity result depends only on the bounds of the
initial datum, which is not a priori clear from the existence result in [26]. More precisely, instead of
using an approach by scaling (as it is done in [43]), we rely on Schauder estimates on the linearized
problem solved by the flow, which is a quasilinear perturbation of the biharmonic heat equation,
in spirit of [41]. After establishing global existence, we obtain the exponential convergence up to
translations via a Gronwall–type argument. Finally, we prove the convergence of the flow to (a
translate of) the strictly stable set, by exploiting the decay of the geometric quantities in time, as
in [1, 18, 23]. We stress that this line of proof works in any dimension, without energy estimates
for the high derivatives of the curvature, which is one of the main bottlenecks of the previous
method.

The thesis is organized as follows:

• In Chapter 1 we first collect the necessary definitions and preliminaries about hypersur-
faces. Then, we show that families of smooth hypersurfaces of Rn which are all C1–close
enough to a fixed compact, embedded one, have uniformly bounded constants in some rele-
vant inequalities, like Sobolev, Gagliardo–Nirenberg and “geometric” Calderón–Zygmund
inequalities.

• In Chapter 2 we introduce the Area functional and study its basic properties. In particular,
we compute its first and second variations and we discuss the notions of criticality, stability
and local minimality of a set and their mutual relations, in this context.

• In Chapter 3 we finally consider the surface diffusion flow and we analyze its analytic and
geometric features. We prove a short–time existence result and then we show the stability of
the flow along the two different lines that we described above.
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1
S O M E G E O M E T R I C P R E L I M I N A R I E S

1.1 G E O M E T R Y O F H Y P E R S U R F A C E S

We introduce the basic notations and facts about hypersurfaces that we need in the thesis, possible
references are [31] or the first part of [53].

We will consider closed smooth hypersurfaces in Rn (or in the n–dimensional torus Tn ≈
Rn/Zn), given by smooth immersions φ : M → Rn of a smooth, (n− 1)–dimensional, compact
manifold M , representing a hypersurface φ(M ) of Rn. Taking local coordinates around any
p ∈M , we have local bases of the tangent space TpM , which can be identified with the (n− 1)–
dimensional hyperplane dφp(TpM ) of Rn ≈ Tφ(p)R

n which is tangent to φ(M ) at φ(p) and of the
cotangent space T ∗

pM , respectively given by vectors
{
∂
∂xi

}
and 1–forms {dxj}. So, we will denote

vectors on M by X = Xi, which means X = Xi ∂
∂xi

, covectors by Y = Yj , that is, Y = Yjdxj and

a general mixed tensor with T = T i1...ikj1...jl
.

In the whole paper the convention to sum over repeated indices will be adopted.
Sometimes we will also need to consider tensors along M , viewing it as a submanifold of Rn

(or Tn) via the map φ, in that case we will use the Greek indices to denote the components of
such tensors in the canonical basis {eα} of Rn, for instance, given a vector field X along M , not
necessarily tangent, we will have X = Xαeα.

The manifold M gets in a natural way a metric tensor g, pull–back via the map φ of the
metric tensor of Rn, coming from the standard scalar product ⟨· | ·⟩ of Rn, hence, turning it into a
Riemannian manifold (M , g). Then, the components of g in a local chart are

gij =

〈
∂φ

∂xi

∣∣∣ ∂φ
∂xj

〉
and the “canonical” measure µ, induced on M by the metric g is then locally described by
µ =

√
det gij L n−1, where L n−1 is the standard Lebesgue measure on Rn−1.

Thus, supposing that M has a global coordinate chart, we can write the Area functional on the
hypersurface φ(M ) in the following way,

A(φ(M )) =

ˆ
M
dµ =

ˆ
M

√
det gij(x) dx . (1.1)

When this is not the case (as it is usual), we need several local charts (Uk,φk) and a subordinated
partitions of unity fk : M → [0, 1] (that is, the compact support of fk : M → [0, 1] is contained in
the open set Uk ⊆M , for every k ∈ I), then

A(φ(M )) =

ˆ
M
dµ =

∑
k∈I

ˆ
M
fk dµ =

∑
k∈I

ˆ
Uk

fk(x)
√

det gkij(x) dx ,

where gkij are the coefficients of the metric g in the local chart (Uk,φk).
In order to work with coordinates, in the computations with integrals in this section we will assume that

all the hypersurfaces have a global coordinate chart, by simplicity. All the results actually hold also in the
general case by using partitions of unity as above.

The inner product on M , extended to tensors, is given by

g(T ,S) = gi1s1 . . . gikskg
j1z1 . . . gjlzlT i1...ikj1...jl

Ss1...skz1...zl

6



1.1 G E O M E T R Y O F H Y P E R S U R F A C E S 7

where gij is the matrix of the coefficients of the metric tensor in the local coordinates and gij is its
inverse. Clearly, the norm of a tensor is then

|T | =
√
g(T ,T ) .

The induced Levi–Civita covariant derivative on (M , g) of a vector field X and of a 1–form ω

are respectively given by

∇jX
i =

∂Xi

∂xj
+ ΓijkX

k , ∇jωi =
∂ωi
∂xj

− Γkjiωk ,

where Γijk are the Christoffel symbols of the connection ∇, expressed by the formula

Γijk =
1

2
gil
( ∂

∂xj
gkl +

∂

∂xk
gjl −

∂

∂xl
gjk

)
. (1.2)

The covariant derivative ∇T of a tensor T = T i1...ikj1...jl
will be denoted by ∇sT

i1...ik
j1...jl

= (∇T )i1...iksj1...jl
and with ∇mT we will mean the m–th iterated covariant derivative of a tensor T .

The gradient ∇f of a function, the divergence divX of a tangent vector field and the Laplacian
∆f at a point p ∈M , are defined respectively by

g(∇f(p), v) = dfp(v) ∀v ∈ TpM ,

divX = tr∇X = ∇iX
i =

∂Xi

∂xi
+ ΓiikX

k

(in a local chart) and ∆f = div∇f . The Laplacian ∆T of a tensor T is ∆T = gij∇i∇jT . We then
recall that by the divergence theorem for compact manifolds (without boundary), there holds

ˆ
M

divX dµ = 0 , (1.3)

for every tangent vector field X on M , which in particular implies
ˆ
M

∆f dµ = 0 ,

for every smooth function f : M → R.

Assuming that we have a globally defined unit normal vector field ν : M → Rn to φ(M ) (this
will hold in our situation where the hypersurfaces are embedded or are boundaries of sets E ⊆ Tn,
hence we will always consider ν to be the outer unit normal vector at every point of ∂E), we define
the second fundamental form B which is a symmetric bilinear form given, in local charts, by its
components

hij = −
〈

∂2φ

∂xi∂xj

∣∣∣∣ ν〉
and whose trace is the mean curvature H = gijhij of the hypersurface (with these choices, the
standard sphere of Rn has positive mean curvature).

Remark 1.1.1. If the hypersurface M ⊆ Rn is the graph of a function f : U → R with U an open
subset of Rn−1, that is, φ(x) = (x, f(x)), then we have

gij = δij +
∂f

∂xi

∂f

∂xj
, ν = − (∇f ,−1)√

1+ |∇f |2
(1.4)

hij = −
Hessijf√
1+ |∇f |2

(1.5)
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H = − ∆f√
1+ |∇f |2

+
Hessf(∇f ,∇f)(√

1+ |∇f |2
)3 = −div

(
∇f√

1+ |∇f |2

)
(1.6)

where Hessf is the Hessian of the function f .

Then, the following Gauss–Weingarten relations hold,

∂2φ

∂xi∂xj
= Γkij

∂φ

∂xk
− hijν

∂ν

∂xj
= hjlg

ls ∂φ

∂xs
, (1.7)

which easily imply |∇ν| = |B| and the identity

∆φ = gij
( ∂2φ

∂xi∂xj
− Γkij

∂φ

∂xk

)
= −gijhijν = −Hν . (1.8)

The symmetry properties of the covariant derivative of B are given by the following Codazzi
equations,

∇ihjk = ∇jhik = ∇khij (1.9)

which imply the following Simons’ identity (see [60]),

∆hij = ∇i∇jH+Hhilg
lshsj − |B|2hij . (1.10)

By means of Codazzi equations (1.9), using the normal coordinates at a point p ∈M (and recalling
that Γkij and ∂

∂xi
gjk vanish in p ∈M ), we have

∆ν = gij
( ∂2ν

∂xi∂xj
− Γkij

∂ν

∂xk

)
= gij

∂

∂xi

(
hjlg

ls ∂φ

∂xs

)
= gij∇ihjlg

ls ∂φ

∂xs
+ gijhjlg

ls ∂2φ

∂xi∂xs

= gij∇lhijg
ls ∂φ

∂xs
− gijhjlg

lshisν

=∇H− |B|2ν , (1.11)

Finally, the Riemann tensor is expressed via the second fundamental form as follows (Gauss
equations),

Rijkl = hikhjl − hilhjk (1.12)

hence, the formulas for the interchange of covariant derivatives, which involve the Riemann
tensor, become

∇i∇jX
s −∇j∇iX

s =Rijklg
ksX l = RsijlX

l =
(
hikhjl − hilhjk

)
gksX l

∇i∇jωk −∇j∇iωk =Rijklg
lsωs = Rsijkωs =

(
hikhjl − hilhjk

)
glsωs

for every vector field X and 1–form ω.

1.2 U N I F O R M I N E Q U A L I T I E S

In this section, following the line of [19], we aim to show that families of smooth hypersurfaces of
Rn which are all C1–close enough to a fixed compact, embedded one, have uniformly bounded
constants in some relevant inequalities for the mathematical analysis, like Sobolev, Gagliardo–
Nirenberg, “geometric” Calderón–Zygmund, trace and extension inequalities.
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These technical results will be applied to study the behavior of the hypersurfaces close (in some
norm, for instance in C1–norm) to critical ones (possibly “stable”) and the asymptotic limits of
the flows existing for all times. Moreover, they are used repeatedly more or less explicitly in the
works [1, 2, 18, 23], where uniform controls on the constants are necessary.

For the time being, we fix M0 a smooth, compact, embedded hypersurface of Rn (or Tn). So, it
is well known (by its compactness and smoothness) that, for ε > 0 small enough, M0 has a tubular
neighborhood

Nε =
{
x ∈ Rn : d(x,M0) < ε

}
(1.13)

(where d is the Euclidean distance on Rn) such that the orthogonal projection map π : Nε → M0

giving the (unique) closest point on M0, is well defined and smooth.
Then, if E is “the interior” of M0, the signed distance function dE : Nε → R from M0

dE(x) =

{
d(x,M0) if x /∈ E

−d(x,M0) if x ∈ E
(1.14)

is well defined and smooth in Nε (for a proof of the existence of such tubular neighborhood and
of all the subsequent properties, see [49] for instance). Moreover, for every x ∈ Nε, the projection
map π is given explicitly by

πE(x) = x−∇d2E(x)/2 = x− dE(x)∇dE(x) (1.15)

and the unit vector ∇dE(x) is orthogonal to M0 at the point πE(x), indeed actually

∇dE(x) = ∇dE(πE(x)) = ν(πE(x)) . (1.16)

This implies that, every smooth hypersurfaceM which is C1–close enough toM0, can be written
(possibly after reparametrization) as

M =
{
x+ ψ(x)ν(x) : x ∈M0

}
, (1.17)

for a smooth function ψ : M0 → R with ∥ψ∥C1(M0) < ε. Indeed, if φ0 : M̃ → Rn and φ : M̃ → Rn

are two smooth immersions such that at least one of them is an embedding (φ0, for instance)
of a differentiable manifold M̃ , describing respectively M0 and M , close in C1, then the map
π ◦ φ ◦ φ−1

0 : M0 → M0 is a diffeomorphism, which implies that π|M : M → M0 is also a
diffeomorphism. Then, the map ψ above in expression (1.17), is uniquely given by ψ(x) =
dE(π|−1

M (x)), which has small C1–norm, as π|M gets C1–closer and closer to the identity, as φ is
C1–close to φ0.

Hence, from now on, we will consider families of hypersurfaces (clearly all containing M0)

C1
δ(M0) =

{
M =

{
x+ ψ(x)ν(x) : x ∈M0

}
for a smooth ψ : M0 → R with ∥ψ∥C1(M0) < δ

}
where δ ∈ (0, ε). We are going to see that the constants in Sobolev, Gagliardo–Nirenberg, some ge-
ometric Calderón–Zygmund inequalities, trace and extension inequalities are uniformly bounded,
depending only on M0 and δ.

Before starting discussing that, we introduce another technical construction. We notice that,
possibly choosing a smaller ε > 0, the tubular neighborhood Nε of M0 defined above, can be
covered by a finite number of open hypercubes Q1, . . . ,Qk ⊆ Rn respectively centered at some
points p1, . . . , pk ∈M0, such that, for every i ∈ {1, . . . , k} and every M ∈ C1

δ(M0), with δ ∈ (0, ε),
the “pieces” of hypersurfaces M ∩Qi can be written as orthogonal graphs on the affine hyperplanes
ΠpiM0 = pi + TpiM0, parallel to the tangent hyperplanes to M0 at the points pi ∈M0 and passing
through them, as in the following figure.
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M
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i

Π M0

M0

Q
i

Then, we let ρi : Rn → [0, 1] a smooth partition of unity (with compact support) for Nε, associated
to the open covering Qi, hence, if M ∈ C1

δ(M0) and u : M → R, there holds

u(y) =
k∑
i=1

u(y)ρi(y)

with the compact support of uρi : M → R contained in the piece M ∩Qi of the hypersurface M ,
which is described as the graph of a smooth function θi : ΠpiM0 → R, that is, M ∩Qi is the image
of the map x 7→ Θ(x) = x+ θi(x)ν(pi) on ΠpiM0 ∩Qi. Moreover, it is easy to see that, possibly
choosing an even smaller ε > 0, we have ∥θi∥C1(ΠpiM0) ⩽ 2δ, for every i ∈ {1, . . . , k}, since also
M0 can be locally written as an orthogonal graph on ΠpiM0.

We notice and underline that the family (and the number) of the hypercubes Qi, as well as the
width ε > 0 of the tubular neighborhood Nε that we considered for this construction, only depend
on M0, precisely on its local and global geometry (in particular, on its second fundamental form
B0 – see [10] for more details).

We highlight to the reader that in the following, we will often denote with C a constant which may vary
from a line to another.
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1.2.1 Sobolev, Poincaré and Gagliardo–Nirenberg interpolation inequalities

We start discussing the Sobolev constants CS(M , p) of any compact (n− 1)–dimensional hyper-
surface M , for every p ∈ [1,n− 1), entering in the following inequalities (which are known to
hold, see [7, Chapter 2], for instance),

∥u∥Lp∗ (M) =
(ˆ

M
|u|p∗ dµ

)1/p∗

⩽CS(M , p)
(ˆ

M
|∇u|p + |u|p dµ

)1/p

=CS(M , p)∥u∥W 1,p(M)

for every C1–function u : M → R (or u ∈ W 1,p(M )), where p∗ = (n−1)p
n−p−1 is the Sobolev conjugate

exponent of p. It is well known that a bound on CS(M , 1) implies a bound on CS(M , p), for every
p ∈ [1,n− 1) (see [7, Chapter 2, Section 5], for instance), hence we concentrate on the case p = 1,
where 1∗ = n−1

n−2 .
We first want to argue localizing things by means of the construction of the previous section.

We then have a finite family of hypercubes Qi centered at pi ∈ M0, the partition of unity ρi
and a parametrization x 7→ Θ(x) = x + θi(x)νi on ΠpiM0 ∩Qi of each piece M ∩Qi of any
smooth hypersurface M ∈ C1

δ(M0), where νi = ν(pi) and the functions θi : ΠpiM0 → R satisfy
∥θi∥C1(ΠpiM0) ⩽ 2δ, for every i ∈ {1, . . . , k}. Moreover, in dealing with any piece M ∩Qi, we
will assume (without clearly losing generality) that ΠpiM0 = Rn−1 ⊆ Rn and we observe that
in such parametrization, by formula (1.4), the Riemannian measure µ associated to the (induced)
metric g on M is given by µ = JΘ L n−1, with L n−1 the Lebesgue measure on ΠpiM0 = Rn−1

and JΘ =
√

1+ |∇Rn−1
θi|2 , which clearly satisfies 1 ⩽ JΘ ⩽ 1+ 2δ.

For every C1–function u : M → R, we can write

(ˆ
M

|u|
n−1
n−2 dµ

)n−2
n−1

=
(ˆ

M

∣∣∣ k∑
i=1

uρi

∣∣∣n−1
n−2

dµ
)n−2
n−1

⩽
k∑
i=1

(ˆ
M∩Qi

|uρi|
n−1
n−2 dµ

)n−2
n−1

as the compact support of uρi is contained in M ∩Qi.
Then, for every C1 function v : M → R with compact support in M ∩Qi, there holds(ˆ

M∩Qi
|v(y)|

n−1
n−2 dµ(y)

)n−2
n−1

=
(ˆ

Rn−1
|v(x+ θi(x)νi)|

n−1
n−2 JΘ(x) dx

)n−2
n−1

⩽C(δ)
(ˆ

Rn−1
|v(x+ θi(x)νi)|

n−1
n−2 dx

)n−2
n−1

,
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as JΘ ⩽ 1+ 2δ and applying the Sobolev inequality for functions with compact support in Rn−1,
we have (ˆ

Rn−1
|v(x+ θi(x)νi)|

n−1
n−2 dx

)n−2
n−1

⩽ C

ˆ
Rn−1

|∇Rn−1
[v(x+ θi(x)νi)]| dx

= C

ˆ
Rn−1

∣∣∇v(x+ θi(x)νi) ◦
(
Id+∇Rn−1

θi(x)⊗ νi
)∣∣ dx

⩽ C

ˆ
Rn−1

|∇v(x+ θi(x)νi)|
∣∣Id+∇Rn−1

θi(x)⊗ νi
∣∣ dx

= C

ˆ
Rn−1

|∇v(x+ θi(x)νi)|
√

1+ |∇Rn−1
θi|2 dx

= C

ˆ
M

|∇v(y)| dµ(y) , (1.18)

as
√

1+ |∇Rn−1
θi|2 = JΘ. Hence,

(ˆ
M∩Qi

|v|
n−1
n−2 dµ

)n−2
n−1

⩽ C(δ)

ˆ
M

|∇v| dµ

and setting vi = uρi, after summing on i ∈ {1, . . . , k}, we conclude

(ˆ
M

|u|
n−1
n−2 dµ

)n−2
n−1

⩽
k∑
i=1

(ˆ
M∩Qi

|vi|
n−1
n−2 dµ

)n−2
n−1

⩽C(δ)
k∑
i=1

ˆ
M

|∇vi| dµ

=C(δ)
k∑
i=1

ˆ
M

|∇u|ρi + |u| |∇ρi| dµ

⩽C(δ)

ˆ
M

|∇u| dµ+C(M0, δ)

ˆ
M

|u| dµ , (1.19)

as |∇ρi| ⩽ C(M0, δ), for every i ∈ {1, . . . , k}. This clearly gives a uniform bound on CS(M , 1) for
all the hypersurfaces in C1

δ(M0), depending only on M0 (in particular, on its second fundamental
form B0, as we said in the previous section) and δ > 0.

Let now see an alternate line, based on the “global” graph representation of the hypersurfaces
M ∈ C1

δ(M0) over M0.
For every C1 function u : M → R, we have(ˆ

M
|u(y)|

n−1
n−2 dµ(y)

)n−2
n−1

=
(ˆ

M0

|u(x+ ψ(x)ν(x))|
n−1
n−2 JΨ(x) dµ0(x)

)n−2
n−1

where JΨ is the Jacobian of the map Ψ : M0 → M and it is an easy check that, at every point
x ∈M0, there holds

1

C(B0, δ)
⩽ JΨ ⩽ C(B0, δ) , (1.20)

for some constant C(B0, δ) > 0, where B0 is the second fundamental form of M0. Moreover,
C(B0, δ) goes to 1 as δ → 0. Notice that the fact that B0 appears here can be seen from the
expression of dΨ, that is

dΨx = IdTxM0 + dψx ⊗ ν(x) + ψ(x)dνx ,
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as, by the Gauss–Weingarten relations (1.7), dνx is related to B0(x).
Then, by applying the Sobolev inequality holding for M0, we have(ˆ

M0

|u(x+ ψ(x)ν(x))|
n−1
n−2 dµ0(x)

)n−2
n−1

⩽CS(M0, 1)

ˆ
M0

∣∣∇0[u(x+ ψ(x)ν(x))]
∣∣ dµ0(x)

+CS(M0, 1)

ˆ
M0

|u(x+ ψ(x)ν(x))| dµ0(x)

⩽CS(M0, 1)

ˆ
M0

|∇u(x+ ψ(x)ν(x))| |dΨ(x)| dµ0(x)

+CS(M0, 1)

ˆ
M0

|u(x+ ψ(x)ν(x))| dµ0(x)

⩽C(M0, δ)

ˆ
M

|∇u(y)| JΨ−1(y) dµ(y)

+C(M0, δ)

ˆ
M

|u(y)| JΨ−1(y) dµ(y)

⩽C(M0, δ)
(ˆ

M
|∇u(y)| dµ(y) +

ˆ
M

|u(y)| dµ(y)
)
.

Hence, (ˆ
M

|u|
n−1
n−2 dµ

)n−2
n−1

⩽ C(M0, δ)
(ˆ

M
|∇u| dµ+

ˆ
M

|u| dµ
)
.

As before, this means that the constant C(M0, δ) is a uniform bound on CS(M , 1) for all the
hypersurfaces in C1

δ(M0), moreover, since C(M0, δ) → 1, as δ → 0, it also shows the continuous
dependence of CS(M , 1) under the C1–convergence of the hypersurfaces.

Theorem 1.2.1. Let M0 ⊆ Rn be a smooth, compact hypersurface, embedded in Rn. Then, there exist
uniform bounds, depending only on M0 and δ (more precisely, on the “C1– structure” of the immersion of
M0 in Rn, its dimension and its second fundamental form), for all the hypersurfaces M ∈ C1

δ(M0) on:

(i) the volume of M from above and below away from zero,

(ii) the Sobolev constants for p ∈ [1,n− 1) of the embeddings W 1,p(M) ↪→ Lp
∗
(M),

(iii) the Sobolev constants for p ∈ (n− 1,+∞] of the embeddings W 1,p(M ) ↪→ C0,1−(n−1)/p(M ),

(iv) the constants in the Poincaré–Wirtinger inequalities on M for p ∈ [1,+∞],

(v) the constants in the embeddings of the fractional Sobolev spaces W s,p(M ),

(vi) the constants in the Gagliardo–Nirenberg interpolation inequalities on M .

Moreover, all these bounds go to the corresponding constants for M0, as δ → 0.

Proof.
(i) This is trivial due to the C1–closedness of M to M0.
(ii) As explained at the beginning of the section, we can estimate the constant in the Sobolev

inequality for p ∈ [1,n − 1), by means of CS(M , 1), which is uniformly bounded for all the
hypersurfaces M ∈ C1

δ(M0), by the above discussion.
(iii) If p > n− 1, we show that there exists a uniform constant C(M0, p, δ) such that

∥u∥C0,α(M) ⩽ C(M0, p, δ)∥u∥W 1,p(M) (1.21)
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with α = 1− (n− 1)/p and

∥u∥C0,α = sup
y∈M

|u(y)|+ sup
y,y∗∈M , y ̸=y∗

|u(y)− u(y∗)|
|y− y∗|α

,

for all M ∈ C1
δ(M0) and every C1 function u : M → R.

In the same setting and notation at the beginning of this section, it is easy to see that we can
choose a special family of hypercubes Qi such that enlarging their edges of a small value σ > 0,
we have hypercubes Q̃i with the further property that M ∩ Q̃i can be still written as an orthogonal
graph on ΠpiM0 = Rn−1 ⊆ Rn.

The following holds

sup
y∈M

|u(y)| ⩽
k∑
i=1

sup
y∈M∩Qi

|u(y)ρi(y)|

and for every C1 function v : M → R with compact support in M ∩Qi, by applying the Sobolev
inequality for p > n− 1 in Rn−1 and arguing as in obtaining estimate (1.18), we have

sup
y∈M∩Qi

|v(y)| = sup
x∈Rn−1

|v(x+ θi(x)νi)|

⩽C
(ˆ

Rn−1

∣∣∇v(x+ θi(x)νi) ◦
(
Id+∇Rn−1

θi(x)⊗ νi
)∣∣p dx)1/p

⩽C(δ)
(ˆ

Rn−1
|∇v(x+ θi(x)νi)|p dx

)1/p

⩽C(δ)
(ˆ

Rn−1
|∇v(x+ θi(x)νi)|pJΘ dx

)1/p

=C(δ)
(ˆ

M
|∇v(y)|p dµ(y)

)1/p
, (1.22)

as JΘ ⩾ 1. Setting vi = uρi and estimating as in getting inequality (1.19), we conclude

sup
M

|u| ⩽ C(M0, p, δ)
( ˆ

M
|∇u|p + |u|p dµ

)1/p
. (1.23)

Regarding the seminorm [u]C0,α = supy,y∗∈M , y ̸=y∗
|u(y)−u(y∗)|

|y−y∗|α , given two points y, y∗ ∈ M , we
have

|u(y)− u(y∗)| =
∣∣∣ k∑
i=1

vi(y)− vi(y
∗)
∣∣∣ ⩽ k∑

i=1

|vi(y)− vi(y
∗)| . (1.24)

Then, for any C1 function v : M → R with compact support in M ∩Qi, if y and y∗ both belong
to the intersection of M with the “enlarged” hypercube Q̃i, we can write y = x+ θi(x)νi and
y∗ = x∗ + θi(x∗)νi for some x,x∗ ∈ Q̃i ∩ ΠpiM0 (by our initial choice of the family Qi) and there
holds

|v(y)− v(y∗)| = |v(x+ θi(x)νi)− v(x∗ + θi(x
∗)νi)|

⩽C(M0, p) |x− x∗|α ∥∇Rn−1
(v ◦ Θ)∥Lp(Rn−1)

⩽C(M0, p, δ) |y− y∗|α ∥∇Rn−1
(v ◦ Θ)∥Lp(Rn−1)

⩽C(M0, p, δ) |y− y∗|α ∥∇v∥Lp(M) ,

where the first inequality follows as in the proof of Theorem 4 in Section 5.6.2 of [28], the second
one holds since |x− x∗| ⩽ |y− y∗| and the third one is obtained arguing like in estimate (1.22).
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If both y∗ and y do not belong to M ∩ Q̃i clearly |v(y)− v(y∗)| = 0, while if y ∈ M ∩ Q̃i with
v(y) ̸= 0 but y∗ ̸∈M ∩ Q̃i, then y ∈M ∩Qi, hence |y− y∗| ⩾ σ and

|v(y)− v(y∗)|
|y− y∗|α

⩽
|v(y)|
σα

⩽ C(M0, p, δ)
∥∇v∥Lp(M)

σα
,

by estimate (1.22).
It follows that, for every y and y∗ in M , we have

|v(y)− v(y∗)|
|y− y∗|α

⩽ C(M0, p, δ)(1+ σ−α)∥∇v∥Lp(M) .

Then, putting together this and inequality (1.24), we conclude, for every y and y∗ in M ,

|u(y)− u(y∗)| ⩽
k∑
i=1

|vi(y)− vi(y
∗)| ⩽ C(M0, p, δ) |y− y∗|α ∥∇u∥W 1,p(M)

which, with inequality (1.23) gives the desired estimate (1.21).
(iv) In order to obtain the conclusion for the Poincaré–Wirtinger inequality, for any p ∈ [1,+∞]

and all M ∈ C1
δ(M0),

∥u− ũ∥Lp(M) ⩽ C(M0, p, δ)∥∇u∥Lp(M) ,

where ũ =
ffl
M u dµ, we argue by contradiction assuming this uniform estimate is false. Then, for

each k ∈ N, there would exist a graph hypersurface Mk ∈ C1
δ(M0) and a function uk ∈W 1,p(Mk)

such that
∥uk − ũk∥Lp(Mk) ⩾ k∥∇uk∥Lp(Mk).

where ũk =
ffl
Mk

uk dµk. We renormalize these function as

vk =
uk − ũk

∥uk − ũk∥Lp(Mk)
,

then,
´
Mk

vk dµk = 0, ∥vk∥Lp(Mk) = 1 and ∥∇vk∥Lp(Mk) ⩽ 1/k.
If we consider the functions wk = vk ◦ Ψk : M0 → R, where Ψk : M0 → Mk is given by

Ψk(x) = x+ ψk(x)ν(x) (as in the second way to deal with CS(M , 1), at the beginning of this
section), we have

0 < C ′(M0, p, δ) ⩽ ∥wk∥Lp(M0) ⩽ C(M0, p, δ) (1.25)

and
∥∇wk∥Lp(M0) ⩽ C(M0, p, δ)/k . (1.26)

In particular, the functions wk are equibounded in W 1,p(M0), hence by the Rellich–Kondrachov
embedding theorem and the estimate (1.26), there exists a subsequence (not relabeled) converging
in Lp(M0) to a constant function equal to some λ ∈ R which cannot be zero, by the estimate (1.25).
Moreover, there holds

ˆ
M0

wk(x) JΨk(x) dµ0(x) =

ˆ
Mk

wk ◦ Ψ−1
k (y) dµk(y) =

ˆ
Mk

vk(y) dµk(y) = 0 ,

hence, since JΨk are equibounded (formula (1.20)) and assuming, possibly passing again to a
subsequence, that Vol(Mk) → V > 0, by means of point (i), we conclude

0 =

ˆ
M0

(wk(x)− λ) JΨk(x) dµ0(x) + λ

ˆ
M0

JΨk(x) dµ0(x) → λV ,

as k → ∞, being
´
M0

JΨk(x) dµ0(x) = Vol(Mk). This is clearly a contradiction, as λ,V ̸= 0 and
we are done.
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The case p = +∞ is analogous.
(v) As for the “usual” (with integer order) Sobolev spaces, all the constants in the embeddings

of the fractional Sobolev spaces are also uniform for the family C1
δ(M0). The proof is along the

same line, localizing with a partition of unity and using the inequalities holding in Rn−1 (see [22]
and [57]).

(vi) Finally, we want to show that for any q, r real numbers 1 ⩽ q ⩽ +∞, 1 ⩽ r ⩽ +∞ and j,m
integers 0 ⩽ j < m, there exists a constant C depending on j,m, r, q, θ,M0 and δ such that the
following interpolation inequalities hold

∥∇ju∥Lp(M) ⩽ C
(
∥∇mu∥Lr(M) + ∥u∥Lr(M)

)θ∥u∥1−θ
Lq(M)

, (1.27)

for all M ∈ C1
δ(M0), where

1

p
=

j

n− 1
+ θ
(1
r
− m

n− 1

)
+

1− θ

q

for every θ ∈ [j/m, 1] such that p is nonnegative, with the exception of the case r = n−1
m−j ̸= 1 for

which the inequality is not valid for θ = 1.
Moreover, if u : M → R is a smooth function with

ffl
M u dµ = 0, inequality (1.27) simplifies to

∥∇ju∥Lp(M) ⩽ C∥∇mu∥θLr(M)∥u∥
1−θ
Lq(M)

. (1.28)

We can obtain inequality (1.27) arguing as in Proposition 5.1 of [47], essentially following the
line of the proof of Theorem 3.70 in [7], but substituting the Sobolev–Poincarè inequality (41) in
the argument there with its version where the constant is uniform for all M ∈ C1

δ(M0). Indeed,
the other “ingredients” in such proof are a bound on the volume (uniform, by point (i)) and
some “universal” inequalities in which the constants do not depend on the hypersurfaces at all [7,
Theorem 3.69].

Such Sobolev–Poincarè inequality (41) in Theorem 3.70 of [7] reads

∥u∥Lp∗ (M) ⩽ CSP (M , p)∥∇u∥Lp(M) , (1.29)

for every C1–function u : M → R (or u ∈ W 1,p(M )) with
´
M u dµ = 0, (here, as before, p∗ =

(n−1)p
n−p−1 is the Sobolev conjugate exponent) and we actually need it with a uniform constant, in
order to get inequality (1.28), by the very same proof of such theorem.

This inequality actually follows by points (ii) and (iv). Indeed, for every u ∈ W 1,p(M), by
Sobolev inequality, we have

∥u∥Lp∗ (M) ⩽ C(M0, p, δ)
(
∥∇u∥Lp(M) + ∥u∥Lp(M)

)
and, by Poincarè–Wirtinger inequality, as ũ =

´
M u dµ = 0,

∥u∥Lp(M) ⩽ C(M0, p, δ)∥∇u∥Lp(M)

hence, we obtain inequality (1.29) with CSP (M , p) bounded by a uniform constant C(M0, p, δ),
for every M ∈ C1

δ(M0).

Remark 1.2.2 (The fractional Sobolev spaces W s,p(M )).
At point (v) of the theorem above we considered the fractional Sobolev space W s,p on the hy-
persurfaces M ∈ C1

δ(M0), which are usually defined via local charts for M and partitions of
unity, that is, getting back to the definition with the Gagliardo W s,p–seminorms in Rn−1 (we refer
to [3, 21, 22, 57], for details). They can be also defined equivalently by considering directly on M
the Gagliardo W s,p–seminorm of a function f ∈ Lp(M ), for s ∈ (0, 1), as follows

[f ]p
W s,p(M)

=

ˆ
M

ˆ
M

|f(x)− f(y)|p

|x− y|2+sp
dµ(x)dµ(y)
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and setting ∥f∥W s,p(M) = ∥f∥Lp(M) + [f ]W s,p(M). Moreover, the constants giving the equiva-
lence of the two norms obtained by localization or by this direct definition are uniform for all
M ∈ C1

δ(M0). Indeed, the localization method is “uniform” for all M ∈ C1
δ(M0), meaning that

the number of necessary local charts is fixed and the diffeomorphisms between Rn−1 and “corre-
sponding” (associated to correlated local charts, that is, being a graph on the same piece of M0,
as in our construction) local “pieces” of any different hypersurfaces M ∈ C1

δ(M0), are uniformly
close each other in C1–norm.

1.2.2 Geometric Calderón–Zygmund inequalities

Theorem 1.2.3. Let M0 ⊆ Rn be a smooth, compact hypersurface, embedded in Rn and p ∈ (1,+∞).
Then, if δ > 0 is small enough, there exists a constant C(M0, p, δ) such that the following geometric
Calderón–Zygmund inequality holds,

∥B∥Lp(M) ⩽ C(M0, p, δ)
(
1+ ∥H∥Lp(M)

)
for every M ∈ C1

δ(M0).

Proof. We recall the local representation as graphs of the hypersurfaces M ∈ C1
δ(M0) over M0, as

at the beginning of the previous section. We have a finite family of hypercubes Qi centered at
pi ∈M0, the partition of unity ρi and a parametrization x 7→ Θ(x) = x+ θi(x)νi on ΠpiM0 ∩Qi of
each piece M ∩Qi of any smooth hypersurface M ∈ C1

δ(M0), where νi = ν(pi) and the functions
θi : ΠpiM0 → R satisfy ∥θi∥C1(ΠpiM0) ⩽ 2δ, for every i ∈ {1, . . . , k}. Moreover, in dealing with
any piece M ∩Qi, we will assume (clearly without losing generality) that ΠpiM0 = Rn−1 ⊆ Rn

and that Qi ∩ ΠpiM0 is the hypercube Q2R ⊆ ΠpiM0 = Rn−1 with edges of length 2R > 0,
centered at the origin. Finally, we can also ask that the family of hypercubes Q′

i ⊆ Rn−1 with
edges parallel to the ones of Qi and of length R (half of the one of Qi), centered at pi, covers any
hypersurface M ∈ C1

δ(M0).
By formulas (1.5) and (1.6), in the parametrization ofM ∩Qi given by Θ, the second fundamental

form B and mean curvature H of M are then expressed by

B ◦ Θ = − HessRn−1
θi√

1+ |∇Rn−1
θi|2

(1.30)

and

H ◦ Θ = − ∆Rn−1
θi√

1+ |∇Rn−1
θi|2

+
HessRn−1

θi(∇Rn−1
θi,∇Rn−1

θi)(√
1+ |∇Rn−1

θi|2
)3 .

Letting and ρ : Rn−1 → [0, 1] a cut–off function with compact support in Q2R and equal to 1 on
QR = Q′

i ∩ ΠpiM0 and setting AR = {(x, θi(x)) : x ∈ QR}, A2R = {(x, θi(x)) : x ∈ Q2R}, we
have

∥B∥p
Lp(AR)

=

ˆ
QR

|B ◦ Θ|pJΘ dx ⩽
ˆ
QR

ρp|HessRn−1
θi|p dx =

ˆ
Rn−1

|ρHessRn−1
θi|p dx , (1.31)

as µ = JΘ L n−1 and JΘ =
√

1+ |∇Rn−1
θi|2 . Then, we estimate

ˆ
Rn−1

|ρHessRn−1
θi|p dx ⩽C

ˆ
Rn−1

|HessRn−1
(ρθi)|p dx+C

ˆ
Rn−1

|2∇Rn−1
ρ⊗∇Rn−1

θi|p dx

+C

ˆ
Rn−1

|θiHessRn−1
ρ|p dx

⩽C

ˆ
Rn−1

|HessRn−1
(ρθi)|p dx+C ,
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where C = C(M0, p, δ), as the last two integrals in the first line are clearly bounded by a constant
C = C(M0, p, δ).

Hence, applying the standard Calderón–Zygmund estimates in Rn−1 (see [34], for instance) to
the last term above, we get

ˆ
Rn−1

|ρHessRn−1
θi|p dx

⩽ C

ˆ
Rn−1

|∆Rn−1
(ρθi)|p dx+C

⩽ C

ˆ
Rn−1

|ρ∆Rn−1
θi|p dx+C

ˆ
Rn−1

|2⟨∇Rn−1
ρ | ∇Rn−1

θi⟩|p dx+C

ˆ
Rn−1

|θi∆Rn−1
ρ|p dx

⩽ C

ˆ
Rn−1

∣∣∣−ρ(H ◦ Θ)
√

1+ |∇Rn−1
θi|2 +

ρHessRn−1
θi(∇Rn−1

θi,∇Rn−1
θi)

1+ |∇Rn−1
θi|2

∣∣∣p dx+C

⩽ C

ˆ
Rn−1

|ρ(H ◦ Θ)|p dx+C

ˆ
Rn−1

|ρHessRn−1
θi(∇Rn−1

θi,∇Rn−1
θi)|p dx+C

⩽ C

ˆ
Rn−1

|ρ(H ◦ Θ)|p dx+C

ˆ
Rn−1

|∇Rn−1
θi|2p|ρHessRn−1

θi|p dx+C

where the constant C depends only on M0, p and δ (we estimated the last two integrals in the
second line with such a constant, as we did above for the Hessian).

If δ > 0 is small enough, then C|∇Rn−1
θi|2p < 1/2 and we get

ˆ
Rn−1

|ρHessRn−1
θi|p dx ⩽ 2C

ˆ
Rn−1

|ρ(H ◦ Θ)|p dx+ 2C ⩽ 2C

ˆ
Q2R

|(H ◦ Θ)|p dx+ 2C

which clearly implies, by formula (1.31),

∥B∥Lp(AR) ⩽C
ˆ
Q2R

|(H ◦ Θ)|p dx+C ⩽ C

ˆ
Q2R

|(H ◦ Θ)|pJΘ dx+C

⩽C
(
1+ ∥H∥p

Lp(A2R)

)
,

with C = C(M0, p, δ).
Hence, by construction and invariance by isometry,

∥B∥Lp(M∩Q′
i)
⩽ C

(
1+ ∥H∥p

Lp(M∩Qi)
)
⩽ C

(
1+ ∥H∥p

Lp(M)

)
.

Since the number of hypercubes Q′
i covering M is fixed and C = C(M0, p, δ), we obtain the thesis

of the theorem.

We have an analogous theorem for Schauder estimates, after defining appropriately the Hölder
C0,α–norm of a tensor T on M , that is,

∥T∥C0,α(M) = sup
M

|T |+ [T ]C0,α(M)

where we need to give a meaning to the seminorm [T ]C0,α(M).
If T is an m–form (hence, a covariant m–tensor), one possibility is to “extend the action” of the

tensor T from the bundle ⊕mTM of covariant m-–tensors on M to the one of the whole “ambient”
Rn by means of the orthogonal projection on the tangent bundle TM (as we identify TxM with
a vector subspace of TxRn ≈ Rn, for every x ∈ M ). To give an example, if T = B, letting
πx : Rn → TxM be the orthogonal projection on the tangent space of M , for every x ∈ M , we
can define the “extension” of B (without relabeling it) by considering at every x ∈M the bilinear
form Bx : ⊕2TxRn ≈ Rn × Rn → R as Bx(v,w) = Bx(πx(v),πx(w)). Extending analogously a
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general m–form T from operating on ⊕mTM to ⊕mTRn, its norm as a multilinear functional is
unchanged at every point x ∈M and we can then consider its components Tj1...jm in the canonical
basis of Rn to define

[T ]C0,α(M) =
n∑

j1,...,jm=1

[Tj1...jm ]C0,α(M)

=
n∑

j1,...,jm=1

sup
x,y∈M
x̸=y

|Tj1...jm(x)− Tj1...jm(y)|
|x− y|α

.

Finally, if the tensor is of general type (it has also contravariant components), we “transform” it in
a covariant one by means of the musical isomorphisms (see [31], for instance) and then proceed as
above. Anyway, in the following all the tensors will be covariant.

Remark 1.2.4. This “global”, partially coordinate–free definition (only the canonical coordinates of
Rn are involved, not any coordinate chart for M ) is useful in general, but in our special case of
families of hypersurfaces which are representable as graphs on a fixed one, we can also consider
an equivalent Hölder seminorm by means of the local description of M with the hypercubes Qi,
which is more convenient for our computations. For any m–form T on M , we set (in the notation
of the proof of Theorem 1.2.3)

[T ]C0,α(V ) =
n−1∑

j1,...,jm=1

[Tj1...jm ◦ Θ]C0,α(Θ−1(V ))

=
n−1∑

j1,...,jm=1

sup
x,y∈Θ−1(V )

x̸=y

|Tj1...jm(Θ(x))− Tj1...jm(Θ(y))|
|x− y|α

,

for every open set V ⊆ M ∩Qi, where Tj1...jm are the components of T in the parametrization
x 7→ Θ(x) = x+ θi(x)en+1. Then, we define

[T ]C0,α(M) =
k∑
i=1

[T ]C0,α(AR),

by means of the finite family of sets AR (whose number is fixed) covering M ∈ C1
δ(M0).

Theorem 1.2.5. Let M0 ⊆ Rn be a smooth, compact hypersurface, embedded in Rn and α ∈ (0, 1]. Then,
if δ > 0 is small enough, there exists a constant C(M0,α, δ) such that the following geometric Schauder
estimate holds,

∥B∥C0,α(M) ⩽ C(M0,α, δ)
(
1+ ∥H∥C0,α(M)

)
for every M ∈ C1,α

δ (M0).

Proof. In the same setting and notation of the proof of Theorem 1.2.3, for every hypercube Qi,
the function θi belongs to C1,α(Q2R), with ∥θi∥C1,α(Q2R) ⩽ 2δ. Then, keeping into account
Remark 1.2.4, we deal with ∥B∥C0,α(AR), which satisfies

∥B∥C0,α(AR) = ∥B ◦ Θ∥C0,α(QR) =

∥∥∥∥ HessRn−1
θi√

1+ |∇Rn−1
θi|2

∥∥∥∥
C0,α(QR)

⩽ C ∥θi∥C2,α(QR) , (1.32)

by equality (1.30) and since QR = Θ−1(AR), by construction.
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Hence, by the standard Schauder estimates in Q2R = Θ−1(A2R) (see [34], for instance), we get

∥θi∥C2,α(QR)

⩽ C ∥∆Rn−1
θi∥C0,α(Q2R) +C∥θi∥C1,α(Q2R)

⩽ C

∥∥∥∥−(H ◦ Θ)
√
1+ |∇Rn−1

θi|2 +
HessRn−1

θi(∇Rn−1
θi,∇Rn−1

θi)

1+ |∇Rn−1
θi|2

∥∥∥∥
C0,α(Q2R)

+C

⩽ C ∥H ◦ Θ∥C0,α(Q2R) +C ∥∇Rn−1
θi∥2C0,α(Q2R)

∥HessRn−1
θi∥C0,α(Q2R) +C

⩽ C ∥H ◦ Θ∥C0,α(Q2R) +Cδ2∥θi∥C2,α(Q2R) +C ,

where the constant C depends only on M0, α and δ, as ∥θi∥C1,α(Q2R) ⩽ 2δ. This estimate clearly
implies, by formula (1.32) and equality (1.30),

∥B∥C0,α(AR) ⩽ C ∥H∥C0,α(M) +Cδ2∥B∥C0,α(M) +C

and since the family of setsAR coveringM ∈ C1
δ(M0) is finite and its number is fixed, we conclude

∥B∥C0,α(M) ⩽ C ∥H∥C0,α(M) +Cδ2∥B∥C0,α(M) +C ,

with a constantC depending only onM0, α and δ (and we can clearly chooseC to be monotonically
increasing with δ).

Then, if δ > 0 is small enough, we have Cδ2 ∥B∥2
C0,α(M) < ∥B∥2

C0,α(M)/2, hence we get

∥B∥C0,α(M) ⩽ 2C ∥H∥C0,α(M) + 2C ,

that is,
∥B∥C0,α(M) ⩽ C

(
1+ ∥H∥C0,α(M)

)
,

where the constant C depends only on M0, α and δ, which is the thesis of the theorem.

We now consider families of (n− 1)–dimensional graph hypersurfaces in M ∈ C1
δ(M0) over M0

as above, with a uniform bound ∥H∥Lp(M) ⩽ CH with p ⩾ n− 1, for every M in such family (by
Theorem 1.2.3, if δ > 0 is small enough, this implies ∥B∥Lp(M) ⩽ CB) or ∥B∥L∞(M) ⩽ CB.

Arguing again in the same setting and notation of the proof of Theorem 1.2.3, for p ∈ (1,+∞)
and any C2–function u : M → R (or u ∈W 2,p(M )), we have

∥∇2u∥Lp(M) ⩽ C

k∑
i=1

∥∇2(uρi)∥Lp(M∩Qi) (1.33)

(here ∇ is the Levi–Civita connection of M ) and, for every C2 function v : M → R, with compact
support in M ∩Qi, there holds

ˆ
M∩Qi

|∇2v(y)|p dµ(y) =
ˆ

Rn−1

∣∣(∇2v)(x+ θi(x)νi)
∣∣pJΘ(x) dx

⩽C(δ)

ˆ
Rn−1

∣∣(∇2v)(x+ θi(x)νi)
∣∣p dx , (1.34)

as JΘ =
√
1+ |∇Rn−1

θi|2 ⩽ 1+ 2δ.
In the coordinates given by the parametrization Θ, the coefficients of the metric g of M (induced

by Rn) in M ∩Qi are

gℓm(Θ(x)) = δℓm +
∂θi
∂xℓ

(x)
∂θi
∂xm

(x) ,



1.2 U N I F O R M I N E Q U A L I T I E S 21

hence, they and the ones of the inverse matrix are bounded by a constant depending only on M0

and δ. By formula (1.2), the Christoffel symbols of the Levi–Civita connection ∇ satisfy

|Γsℓm(Θ(x))| ⩽ C

n−1∑
p,q,r=1

∣∣∣∂(gpq ◦ Θ)

∂xr
(x)
∣∣∣ = C

n−1∑
p,q,r=1

∣∣∣ ∂2θi
∂xr∂xp

(x)
∂θi
∂xq

(x)
∣∣∣ . (1.35)

Then, recalling the first formula (1.7),∣∣∣ ∂2θi
∂xℓ∂xm

(x)
∣∣∣ = ∣∣∣ ∂2Θ

∂xℓ∂xm
(x)
∣∣∣

=
∣∣∣Γsℓm(Θ(x))

∂Θ
∂xs

(x)−Bℓm(Θ(x))ν(Θ(x))
∣∣∣

⩽C|Γsℓm(Θ(x))|
∣∣∣ ∂Θ
∂xs

(x)
∣∣∣+ |Bℓm(Θ(x))|

⩽C|HessRn−1
θi(x)| |∇Rn−1

θi(x)| (1+ |∇Rn−1
θi(x)|) + |B(Θ(x))| ,

where in the last passage we estimated the Christoffel symbols by means of inequality (1.35). As
|∇Rn−1

θi| ⩽ 2δ, we conclude

|HessRn−1
θi(x)| ⩽C|HessRn−1

θi(x)| |∇Rn−1
θi(x)|+C|B(Θ(x))|

⩽C|HessRn−1
θi(x)|δ +C|B(Θ(x))|

with a constant C depending only on δ, which implies, if δ is smaller than 1/2C, the estimate

|HessRn−1
θi(x)| ⩽ 2C(M0, δ)|B(Θ(x))| ,

for every x ∈ Qi ∩ ΠpiM ⊆ Rn−1.
By the first formula (1.35), it follows

|Γsℓm(Θ(x))| ⩽ C|HessRn−1
θi(x)| |∇Rn−1

θi| ⩽ Cδ|B(Θ(x))|

with C = C(δ), then computing schematically, we have

(∇2v)(Θ(x)) = HessRn−1
(v ◦ Θ)(x)− Γ(Θ(x)) ∗∇Rn−1

(v ◦ Θ)(x) , (1.36)

hence,

|(∇2v)(Θ(x))| ⩽ C|HessRn−1
(v ◦ Θ)(x)|+Cδ|B(Θ(x))| |∇Rn−1

(v ◦ Θ)(x)| .

Applying the Calderón–Zygmund inequality in Rn−1, we get
ˆ

Rn−1

∣∣(∇2v)(x+ θi(x)νi)
∣∣p dx ⩽C

ˆ
Rn−1

|HessRn−1
[v(x+ θi(x)νi)]|p dx

+Cδ

ˆ
Rn−1

|B(Θ(x))|p |∇Rn−1
[v(x+ θi(x)νi])|p dx

⩽C

ˆ
Rn−1

|∆Rn−1
[v(x+ θi(x)νi)]|p dx

+C(δ)

ˆ
Rn−1

|B(Θ(x))|p |∇v(Θ(x))|p dx .

⩽C

ˆ
Rn−1

|∆Rn−1
[v(x+ θi(x)νi)]|p dx

+C(δ)

ˆ
M∩Qi

|B(y)|p|∇v(y)|p dµ(y) , (1.37)
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arguing as in estimate (1.22) to get the last inequality.
Contracting equation (1.36) with the inverse of the metric and estimating, we have

|∆Rn−1
(v ◦ Θ)(x)| ⩽ C|(∆v)(Θ(x))|+Cδ|(B ◦ Θ)(x)| |∇Rn−1

(v ◦ Θ)(x)|

thus, by inequalities (1.34) and (1.37), we obtain
ˆ
M∩Qi

|∇2v(y)|p dµ(y) ⩽C

ˆ
Rn−1

|(∆v)(x+ θi(x)νi)|p dx

+C

ˆ
M∩Qi

|B(y)|p|∇v(y)|p dµ(y)

⩽C

ˆ
M∩Qi

|∆v(y)|p dµ(y)

+C

ˆ
M∩Qi

|B(y)|p|∇v(y)|p dµ(y) ,

with C = C(M0, p, δ), arguing again as above.
Getting back to inequality (1.33), we conclude

∥∇2u∥p
Lp(M)

⩽C

k∑
i=1

∥∇2(uρi)∥pLp(M∩Qi)

⩽C

k∑
i=1

ˆ
M∩Qi

|∆(uρi)|p dµ+C

ˆ
M∩Qi

|B|p|∇(uρi)|p dµ

⩽C

k∑
i=1

ˆ
M∩Qi

|∆u|p dµ+C

ˆ
M∩Qi

(
|u|p + |∇u|p

)
dµ

⩽C

ˆ
M

|∆u|p dµ+C

ˆ
M

(
|u|p + |∇u|p

)
dµ , (1.38)

with C = C(M0, p, δ, ∥B∥L∞(M)). Interpolating the integral of |∇u|p between ∥∇2u∥Lp(M) and
∥u∥Lp(M) by means of the uniform Gagliardo–Nirenberg inequalities of the previous section, we
obtain the following theorem.

Theorem 1.2.6. Let M0 ⊆ Rn be a smooth, compact hypersurface, embedded in Rn and p ∈ (1,+∞).
Then, if δ > 0 is small enough, there exists a constant C which depends only on M0, p, δ and ∥B∥L∞(M)

such that the following Calderón–Zygmund inequality holds,

∥∇2u∥Lp(M) ⩽ C∥∆u∥Lp(M) +C∥u∥Lp(M) (1.39)

hence,
∥u∥W 2,p(M) ⩽ C∥∆u∥Lp(M) +C∥u∥Lp(M) , (1.40)

for every hypersurface M ∈ C1
δ(M0) and u ∈W 2,p(M).
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Remark 1.2.7. Notice that if p < n− 1, we can modify the chain of inequalities (1.38) as follows:

∥∇2u∥p
Lp(M)

⩽C

k∑
i=1

∥∇2(uρi)∥pLp(M∩Qi)

⩽C

k∑
i=1

ˆ
M∩Qi

|∆(uρi)|p dµ+C

ˆ
M∩Qi

|B|p|∇(uρi)|p dµ

⩽C

k∑
i=1

ˆ
M∩Qi

|∆(uρi)|p dµ

+C
(ˆ

M∩Qi
|B|n−1 dµ

) p
(n−1)

(ˆ
M∩Qi

|∇(uρi)|
(n−1)p
(n−p−1) dµ

) (n−p−1)
(n−1)

⩽C

k∑
i=1

ˆ
M∩Qi

|∆(uρi)|p dµ+C∥B∥p
Ln−1(M∩Qi)

∥∇2(uρi)∥pLp(M∩Qi)
.

Hence, arguing as before, it is easy to conclude that inequalities (1.39) and (1.40) hold with a
constant C = C(M0, p, δ, ∥B∥Ln−1(M)), if δ > 0 is small enough. Moreover, since we have seen in
Theorem 1.2.3 that a control on ∥H∥Ln−1(M) implies a control on ∥B∥Ln−1(M), we have uniform
Calderón–Zygmund inequalities for families of (n− 1)–dimensional graph hypersurfaces over
M0, with mean curvature uniformly bounded in Ln−1(M ).

With a similar argument, computing as in Theorem 1.2.5, we have analogous Schauder estimates
for C2,α functions u : M → R, with M ∈ C1,α

δ (M0) and δ > 0 small enough,

∥u∥C2,α(M) ⩽ C∥∆u∥C0,α(M) +C∥u∥C0,α(M) , (1.41)

where the constant C depends only on M0, α ∈ (0, 1], δ and ∥B∥C0,α(M) (or ∥H∥C0,α(M), by
Theorem 1.2.5).

Remark 1.2.8. Localizing and computing in coordinates (see Remark 1.2.4), it is easy to generalize
estimates (1.39), (1.40) and (1.41) also to tensors, under the same hypotheses. The same holds also
for all the estimates of the previous section (see [47] for an example of how this can be done).

1.2.3 Geometric higher order Calderón–Zygmund estimates

We letM0 as above and p > 1, we want to deal with ∥∇kB∥Lp(M), assuming that we have a uniform
bound ∥H∥Lq(M) ⩽ CH with q > n− 1, where M is an (n− 1)–dimensional graph hypersurfaces
over M0 in C1

δ(M0) as above, if δ > 0 is small enough, which implies ∥B∥Lq(M) ⩽ CB, by
Theorem (1.2.3).

Theorem 1.2.9. Let M0 ⊆ Rn be a smooth, compact hypersurface, embedded in Rn. Then, for any
q > n − 1, if δ > 0 is small enough, there exists a constant C which depends only on M0, p, q, δ
and ∥H∥Lq(M), such that the following geometric higher order Calderón–Zygmund inequality holds, for
p ∈ (1,n− 1),

∥∇kB∥Lp(M) ⩽ C
(
1+ ∥∇kH∥Lp(M)

)
hence,

∥B∥Wk,p(M) ⩽ C
(
1+ ∥H∥Wk,p(M)

)
, (1.42)

for any hypersurface M ∈ C1
δ(M0) and k ∈ N.

Moreover, the same inequalities hold for any p ∈ (1,+∞) with a constant C depending only on M0, p, δ
and ∥B∥L∞(M).
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Proof. We first deal with the case p ∈ (1,n− 1). Fixed k ∈ N, by means of inequality (1.39), which
holds with a constant C = C(M0, p, δ, ∥B∥Ln−1(M)), by Remark 1.2.7 and taking into account
Remark 1.2.8, we have

∥∇kB∥Lp(M) = ∥∇i1∇i2(∇i3 · · · ∇ikB)∥Lp(M)

⩽C∥∆(∇i3 · · · ∇ikB)∥Lp(M) +C∥∇i3 · · · ∇ikB∥Lp(M)

=C∥gℓm∇ℓ∇m∇i3 · · · ∇ikB∥Lp(M) +C∥∇k−2B∥Lp(M)

⩽C∥gℓm∇ℓ∇i3∇m · · · ∇ikB∥Lp(M) +C∥∇k−2B∥Lp(M)

+C∥Riem ∗∇k−2B∥Lp(M) +C∥∇Riem ∗∇k−3B∥Lp(M)

⩽C∥gℓm∇ℓ∇i3∇i4∇m · · · ∇ikB∥Lp(M) +C∥∇k−2B∥Lp(M)

+C∥Riem ∗∇k−2B∥Lp(M) +C∥∇Riem ∗∇k−3B∥Lp(M)

+C∥∇2Riem ∗∇k−4B∥Lp(M)

· · ·

⩽C∥gℓm∇ℓ∇i3∇i4 · · · ∇ik∇mB∥Lp(M) +C∥∇k−2B∥Lp(M)

+C

k−2∑
s=0

∥∇sRiem ∗∇k−2−sB∥Lp(M)

⩽C∥gℓm∇i3∇ℓ∇i4 · · · ∇ik∇mB∥Lp(M) +C∥∇k−2B∥Lp(M)

+C

k−2∑
s=0

∥∇sRiem ∗∇k−2−sB∥Lp(M)

· · ·

⩽C∥gℓm∇i3∇i4 · · · ∇ik∇ℓ∇mB∥Lp(M) +C∥∇k−2B∥Lp(M)

+C

k−2∑
s=0

∥∇sRiem ∗∇k−2−sB∥Lp(M)

=C∥∇k−2∆B∥Lp(M) +C∥∇k−2B∥Lp(M)

+C

k−2∑
s=0

∥∇sRiem ∗∇k−2−sB∥Lp(M)

where the symbol T ∗ S (following Hamilton [40]) denotes a tensor formed by a sum of terms each
one given by some contraction of the pair T , S with the inverse of the metric gij . A very useful
property of such ∗ product is that |T ∗ S| ⩽ C|T ||S| where the constant C depends only on the
“algebraic structure” of T ∗ S, moreover, it clearly holds ∇T ∗ S = ∇T ∗ S + T ∗∇S.

By formula (1.12) for the Riemann tensor, we can then write Riem = B ∗B, hence

∥∇kB∥Lp(M) ⩽C∥∇k−2∆B∥Lp(M) +C∥∇k−2B∥Lp(M)

+C

k−2∑
s=0

∥∇s(B ∗B) ∗∇k−2−sB∥Lp(M)

⩽C∥∇k−2∆B∥Lp(M) +C∥∇k−2B∥Lp(M)

+C
∑

s,r,t∈N
s+r+t=k−2

∥∇sB ∗∇rB ∗∇tB∥Lp(M) . (1.43)

Now, by Simons’ identity (1.10), we have

∇k−2∆B = ∇kH+∇k−2(HB2)−∇k−2(|B|2B) ,
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hence,
∥∇k−2∆B∥Lp(M) ⩽ ∥∇kH∥Lp(M) +C

∑
s,r,t∈N

s+r+t=k−2

∥∇sB ∗∇rB ∗∇tB∥Lp(M) .

Using this estimate in inequality (1.43), we conclude

∥∇kB∥Lp(M) ⩽C∥∇kH∥Lp(M) +C∥∇k−2B∥Lp(M)

+C
∑

s,r,t∈N
s+r+t=k−2

∥∇sB ∗∇rB ∗∇tB∥Lp(M) .

We now estimate any of the terms in the last sum as follows: we have

∥∇sB ∗∇rB ∗∇tB∥Lp(M) ⩽ C∥∇sB∥Lαp(M)∥∇rB∥Lβp(M)∥∇
tB∥Lγp(M) , (1.44)

with
α =

k+ 1

s+ 1
, β =

k+ 1

r+ 1
, γ =

k+ 1

t+ 1
,

hence, 1/α + 1/β + 1/γ = 1, as s + r + t = k − 2. Moreover, using the interpolation esti-
mates (1.27) (extended to tensors – see Remark 1.2.8), there hold

∥∇sB∥Lpα(M) ⩽C
(
∥∇kB∥Lp(M) + ∥B∥Lp(M)

)θα∥B∥1−θα
Ln−1(M)

∥∇rB∥Lpβ(M) ⩽C
(
∥∇kB∥Lp(M) + ∥B∥Lp(M)

)θβ∥B∥1−θβ
Ln−1(M)

∥∇tB∥Lpγ (M) ⩽C
(
∥∇kB∥Lp(M) + ∥B∥Lp(M)

)θγ∥B∥1−θγ
Ln−1(M)

with θα = s+1
k+1 , θβ = r+1

k+1 and θγ = t+1
k+1 , determined by

1

pα
=

s

n− 1
+ θα

(1
p
− k

n− 1

)
+

1− θα
n− 1

1

pβ
=

r

n− 1
+ θβ

(1
p
− k

n− 1

)
+

1− θβ
n− 1

1

pγ
=

t

n− 1
+ θγ

(1
p
− k

n− 1

)
+

1− θγ
n− 1

.

Noticing that θα ∈ (s/k, 1), θβ ∈ (r/k, 1) and θγ ∈ (t/k, 1), if we choose θα, θβ and θγ such that

s

k
< θα < θα =

s+ 1

k+ 1
,

r

k
< θβ < θβ =

r+ 1

k+ 1
and

t

k
< θγ < θγ =

t+ 1

k+ 1
,

respectively close to θα, θβ and θγ , the uniquely determined values qα, qβ and qγ satisfying

1

pα
=

s

n− 1
+ θα

(1
p
− k

n− 1

)
+

1− θα
qα

1

pβ
=

r

n− 1
+ θβ

(1
p
− k

n− 1

)
+

1− θβ
qβ

1

pγ
=

t

n− 1
+ θγ

(1
p
− k

n− 1

)
+

1− θγ
qγ

must be close to n, thus properly choosing θα, θβ and θγ , as above, we have that qα, qβ and qγ are
smaller than q > n− 1. Hence, by the interpolation estimates again, we have

∥∇sB∥Lpα(M) ⩽C
(
∥∇kB∥Lp(M) + ∥B∥Lp(M)

)θα∥B∥1−θα
Lqγ (M)

∥∇rB∥Lpβ(M) ⩽C
(
∥∇kB∥Lp(M) + ∥B∥Lp(M)

)θβ∥B∥1−θβ
L
qβ (M)

∥∇tB∥Lpγ (M) ⩽C
(
∥∇kB∥Lp(M) + ∥B∥Lp(M)

)θγ∥B∥1−θγ
Lqγ (M)

.
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Then, since ∥B∥Lqα (M), ∥B∥Lqβ (M) and ∥B∥Lqγ (M) are bounded by C∥B∥Lq(M), being the three
exponents smaller that q (the volumes are equibounded for all M ∈ C1

δ(M0)), we get

∥∇sB∥Lpα(M) ⩽C
(
∥∇kB∥Lp(M) + ∥B∥Lp(M)

)θα∥B∥1−θα
Lq(M)

∥∇rB∥Lpβ(M) ⩽C
(
∥∇kB∥Lp(M) + ∥B∥Lp(M)

)θβ∥B∥1−θβ
Lq(M)

∥∇tB∥Lpγ (M) ⩽C
(
∥∇kB∥Lp(M) + ∥B∥Lp(M)

)θγ∥B∥1−θγ
Lq(M)

,

Letting

Θ = (θα + θβ + θγ) <
s+ 1

k+ 1
+
r+ 1

k+ 1
+
t+ 1

k+ 1
= 1 ,

as s+ r+ t = k− 2, putting these estimates in inequality (1.44) and recalling Theorem 1.2.3, we
conclude

∥∇sB ∗∇rB ∗∇tB∥Lp(M)⩽C
(
∥∇kB∥Lp(M)+ ∥B∥Lp(M)

)Θ ∥B∥3−Θ
Lq(M)

⩽C
(
∥∇kB∥Lp(M)+ ∥B∥Lp(M)

)Θ(
1+ ∥H∥Lq(M)

)3−Θ

⩽C
(
∥∇kB∥Lp(M)+ ∥B∥Lp(M)

)Θ
, (1.45)

with C = C(M0, p, δ, ∥H∥Ln−1(M), ∥H∥Lq(M)) = C(M0, p, δ, ∥H∥Lq(M)), as q > n− 1.
Hence, by means of Young inequality, as Θ < 1, we estimate

∥∇kB∥Lp(M) ⩽C∥∇kH∥Lp(M)

+C∥∇k−2B∥Lp(M) +C
(
∥∇kB∥Lp(M) + ∥B∥Lp(M)

)Θ

⩽C∥∇kH∥Lp(M)

+C∥∇k−2B∥Lp(M) +Cε∥∇kB∥Lp(M) +C∥B∥Lp(M) +C ,

then choosing ε > 0 such that Cε < 1/2, after “absorbing” in the left hand side the term
Cε∥∇kB∥Lp(M) and estimating ∥B∥Lp(M) with C(1+ ∥H∥Lp(M)), we obtain

∥∇kB∥Lp(M) ⩽ C∥∇kH∥Lp(M) +C∥∇k−2B∥Lp(M) +C∥H∥Lp(M) +C .

The term ∥∇k−2B∥Lp(M) can be treated analogously, by interpolation between ∥∇kB∥Lp(M) and
∥B∥Lp(M) (it is actually easier to deal with it) and ∥H∥Lp(M) ⩽ C(M0, p, q, δ)∥H∥Lq(M), hence we
finally have the desired estimate

∥∇kB∥Lp(M) ⩽ C∥∇kH∥Lp(M) +C ,

with C = C(M0, p, q, δ, ∥H∥Lq(M)), for any M ∈ C1
δ(M0) with δ > 0 small enough.

If p ∈ (1,+∞), we can argue as before, but using directly inequality (1.39), which holds
with a constant C = C(M0, p, δ, ∥B∥L∞(M)) and getting inequality (1.45) with a constant C =
C(M0, p, δ, ∥B∥L∞(M)), by simply choosing a suitably large q > n− 1 and estimating ∥B∥Lq(M)

with C∥B∥L∞(M). The rest of the proof goes in the same way, estimating all the terms ∥B∥Lq(M)

and ∥H∥Lq(M) with C∥B∥L∞(M).

1.2.4 Other inequalities

For the sake of completeness, we recall some other inequalities that hold uniformly in our setting,
even if we will not use them in the sequel.
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Let M0 be a smooth and compact hypersurface embedded in Rn−1, bounding a domain E0 and
ε > 0 the width of a tubular neighborhood Nε of M0. For any δ ∈ (0, ε), we consider the family
C1δ (E0), defined as{

E = Ψ(E0) :
Ψ : E0 → E is a diffeomorphism with ∥Ψ − Id∥C1(E0) < δ

Ψ(x) = x+ ψ(x)ν0(x) for every x ∈M0 and ∥ψ∥C1(M0) < δ

}

where ν0 is the unit normal vector field pointing outward of M0.
Then, the Jacobian of the map Ψ : E0 → E (and also the tangential one of its restriction to M0) is

bounded from above and from below by some constants which depend only on δ and the second
fundamental form of M0 (see Section 1.2.1 for details).

It clearly follows that if E ∈ C1δ (E0), then M = ∂E = Ψ(M0) ∈ C1
δ(M0). Moreover, if M ∈

C1
δ′(M0), then there exists a smooth function ψ : M0 → R with ∥ψ∥C1(M0) < δ′, such that
M =

{
x+ ψ(x)ν(x) : x ∈M0

}
, then we can construct a smooth diffeomorphism Ψ : E0 → E as

follows (E is the domain bounded by M ):

Ψ(x) =

{
x if x ∈ E0 \Nε
x+ ζ(d0(x)/ε)ψ(π0(x))∇Rn−1

d0(x) if x ∈ E0 ∩Nε

where d0 is the signed distance function from M0 (which is negative in E0) and t 7→ ζ(t) is a
smooth monotone non–decreasing function, defined on R, such that it is equal to 1 if t ⩾ 0 and to
0 if t ⩽ −1/2, with |ζ ′(t)| ⩽ 3, for every t ∈ R. So, it follows

∥Ψ − Id∥C1(E0) = ∥ζ(d0(·)/ε)ψ(π0(·))∇Rn−1
d0(·)∥C1(E0∩Nε)

⩽C(M0, ε)∥ψ∥C1(M0) .

Hence, fixed any δ ∈ (0, ε), depending the constant C only on M0 and ε, possibly choosing δ′

small enough, the set E belongs to C1δ (E0).
We now discuss some uniform inequalities involving also the domains which are bounded by

the hypersurfaces.

Trace inequalities

Letting E0, M0, ε > 0 and δ > 0 as above and any E ∈ C1δ (E0) (with associated smooth
diffeomorphism Ψ : E0 → E), it is well known that the trace of any function u ∈ H1(E) (a real
function on M = ∂E, which we still simply denote by u, that coincides with the restriction of u to
M , if u ∈ C0(E)) is well defined and that the following trace inequality holds (see [61, Chapter 4,
Proposition 4.5]),

∥u∥2
H1/2(M)

⩽ CE

ˆ
E
u2 + |∇u|2 dx , (1.46)

which implies

∥u− ũ∥2
H1/2(M)

⩽ CE

ˆ
E
|∇u|2 dx ,

where ũ =
ffl
E u dx (see also [28, 46]). We want to show that these inequalities hold with uniform

constants C(M0, δ), for every E ∈ C1δ (E0).
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Expressing ∥u∥2
H1/2(M)

by means of the Gagliardo W 1/2,2–seminorm of a function u ∈ L2(M )

and setting Φ = Ψ|M0 : M0 →M , we have

∥u∥2
H1/2(M)

= ∥u∥L2(M) + [u]2
W 1/2,2(M)

= ∥u∥L2(M) +

ˆ
M

ˆ
M

|u(y)− u(y∗)|2

|y− y∗|n
dµ(y) dµ(y∗)

⩽ C∥u ◦ Φ∥L2(M0)

+

ˆ
M0

ˆ
M0

|u(Φ(x))− u(Φ(x∗))|2

|Φ(x)− Φ(x∗)|n
JΦ(x)JΦ(x∗) dµ0(x)dµ0(x

∗)

⩽ C∥u ◦ Ψ∥L2(M0)

+C

ˆ
M0

ˆ
M0

|u(Ψ(x))− u(Ψ(x∗))|2

|x− x∗|n
dµ0(x)dµ0(x

∗)

⩽ CE0

ˆ
E0

|u(Ψ(x))|2 + |∇0(u ◦ Ψ(x))|2 dx

⩽ C

ˆ
E
u2 + |∇u|2 dx = C∥u∥2H1(E) , (1.47)

where the constant C depends only on E0 (we applied inequality (1.46) for E0 in passing from the
fourth to the fifth line) and δ (in bounding |dΨ|, |dΦ|, JΨ and JΦ above and below away from
zero).

Remark 1.2.10. With a similar argument, we can show the following generalization of this inequality,
with a uniform constant

∥u∥Hs−1/2(M) ⩽ C(E0, s, δ)∥u∥Hs(E)

(see again [61, Chapter 4, Proposition 4.5]), for s ∈ (1/2, 3/2).

Inequalities for harmonic extensions

We let E0, M0, ε > 0 and δ > 0 as above and E ∈ C1δ (E0) (with associated smooth diffeomor-
phism Ψ : E0 → E), with M = ∂E ∈ C1

δ(M0).
We denote by u : E → R the harmonic extension of a function f : M → R in H1/2(M ) to E. We

aim to show that the following inequality (see [61, Chapter 5, Proposition 1.7])

∥u∥H1(E) ⩽ CE∥f∥H1/2(M) , (1.48)

which implies ˆ
E
|∇u|2 dx ⩽ CE∥f∥2H1/2(M)

,

for every E ∈ C1δ (E0), with uniform constants C = (E0, δ).
Arguing as above, in formula (1.47), we end up with the following inequalities:

∥u∥H1(E) ⩽C(E0, δ)∥u ◦ Ψ∥H1(E0)

∥u ◦ Ψ∥H1(E0) ⩽CE0∥f ◦ Ψ∥H1/2(M0)
= CE0∥f ◦ Φ∥H1/2(M0)

∥f ◦ Φ∥H1/2(M0)
⩽C(M0, δ)∥f∥H1/2(M)

where the second estimate is given by inequality (1.48) for E0. Putting them together, we have the
conclusion.

Remark 1.2.11. As above, we also have the following generalization, for s ∈ [1/2, 3/2),

∥u∥Hs+1/2(E) ⩽ C(E0, s, δ)∥f∥Hs(M)

(see again [61, Chapter 5, Proposition 1.7]).
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1.2.5 Some remarks

• All the previous uniform constants depend on the geometric properties of M0, in particular
on the maximal width of a tubular neighborhood, its volume and its second fundamental
form. Hence, uniformly controlling such quantities gives uniform estimates for larger
families of hypersurfaces, see [8, 9, 10, 20, 45] for a deeper and detailed discussion).

• Notice that for Sobolev, Poincaré, interpolation, trace and “harmonic extension” inequalities,
we do not ask δ > 0 to be small, but just δ < ε, while for the Calderón–Zygmund–type
inequalities, that we worked out in Section 1.2.2, a smallness condition on δ is necessary for
the conclusions.

• All the inequalities hold uniformly also for families of immersed–only hypersurfaces (non
necessarily embedded), if they can be expressed as graphs on a fixed compact, smooth
hypersurface, possibly immersed–only too.

• It is easy to see that everything we did still works also if the ambient is a flat, complete
Riemannian manifold, in particular in any flat torus Tn (as it is in the rest of this thesis).
With some effort, the results can be generalized to graph hypersurfaces in any complete
Riemannian manifold, then the constants also depend on the geometry (in particular, on the
curvature) of such an ambient space.

1.3 H Y P E R S U R F A C E S I N T H E n– D I M E N S I O N A L F L AT T O R U S

In all the following Tn ≈ Rn/Zn is a flat n–dimensional torus, quotient of Rn by a discrete group of
translations generated by some n linearly independent vectors.

Since, in the next chapters, we will deal with embedded smooth hypersurfaces which are bound-
aries of smooth sets, we give the following definitions.

We say that a set E ⊆ Tn is a smooth set if it is the closure of an open subset of Tn and its
boundary ∂E is a smooth embedded hypersurface (unless otherwise stated all the sets we are
going to consider will be smooth). Then, for a smooth set E ⊆ Tn and ε > 0 small enough, we
define the tubular neighborhood Nε of ∂E, the orthogonal projection map πE and the signed
distance function dE from ∂E, as in (1.13), (1.15) and (1.14), respectively, replacing M0 with ∂E.

This clearly implies that the map

∂E × (−ε, ε) ∋ (y, t) 7→ L(y, t) = y+ t∇dE(y) = y+ tν(y) ∈ Nε (1.49)

is a smooth diffeomorphism with inverse

Nε ∋ x 7→ L−1(x) = (πE(x), dE(x)) ∈ ∂E × (−ε, ε) .

Moreover, denoting with JL its Jacobian (relative to the hypersurface ∂E), there holds

0 < C1 ⩽ JL(y, t) ⩽ C2

on ∂E × (−ε, ε), for a couple of constants C1,C2, depending on E and ε.

From now on, in all the rest of the work, with Nε we will always denote a suitable tubular neighborhood
of a smooth set, with the above properties.

By means of such tubular neighborhoods of smooth sets E ⊆ Tn, we can speak of “W k,p–
closedness” (or of “Ck–closedness” and “Ck,α–closedness”) of sets. Indeed, fixed a smooth set
E, we say that F ,F ′ ⊆ Tn are δ–close in W k,p (or in Ck), for some δ > 0 “small enough”, if we
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have Vol(F△F ′) < δ and that ∂F , ∂F ′ are contained in a tubular neighborhood Nε of E as above,
described by

∂F = {y+ ψ(y)νE(y) : y ∈ ∂E} and ∂F ′ = {y+ ψ′(y)νE(y) : y ∈ ∂E},

for two functions ψ : ∂E → R with ∥ψ − ψ′∥Wk,p(∂E) < δ (respectively, ∥ψ − ψ′∥Ck(∂E) < δ and
∥ψ − ψ′∥Ck,α(∂E) < δ). That is, we are asking that the two sets F and F ′ differ by a set of small
Lebesgue measure and that their boundaries are “close” in W k,p (or Ck and Ck,α) as graphs on
∂E.

Definition 1.3.1. Given a smooth set E ⊆ Tn and a smooth function ψ : ∂E → R such that
∥ψ∥C0(∂E) is sufficiently small, we define the normal deformation of E induced by ψ to be the set Eψ
having as boundary

∂Eψ = {x+ ψ(x)νE(x) : x ∈ ∂E} .

Definition 1.3.2. Given a smooth set E ⊆ Tn and a tubular neighborhood Nε of ∂E, for any
M < ε, we denote by C1

M (E), the class of all sets F ⊆ E ∪Nε such that Vol(F△E) ⩽M and F is
a normal deformation of E induced by some function ψF ∈ C1(∂E), that is

∂F = {y+ ψF (y)νE(y) : y ∈ ∂E} ,

with ∥ψF ∥C1(∂E) ⩽M (hence, ∂F ⊆ Nε).
Analogously, we define C1,1

M (E) to be the class of all sets F as above, with the associate function
ψF belongings to C1,1(∂E) and ∥ψF ∥C1,1(∂E) ⩽M .

Definition 1.3.3. Given a sequence of smooth sets Fi ∈ C1
M (E), for some smooth set E ⊆ Tn, we

will write Fi → F in W k,p if there exists F ∈ C1
M (E) such that for every δ > 0, if i ∈ N is large

enough there holds Vol(Fi△F ) < δ and, describing the boundaries of Fi,F as

∂Fi = {y+ ψi(y)νE(y) : y ∈ ∂E} and ∂F = {y+ ψ(y)νE(y) : y ∈ ∂E},

for some smooth function ψi,ψ : ∂E → R, we have ∥ψi −ψ∥Wk,p(∂E) < δ.



2
T H E A R E A F U N C T I O N A L

In this sections we discuss the Area functional and its basic properties.

Definition 2.0.1 (Area functional). For every smooth set E ⊆ Tn we define the Area functional

A(∂E) =

ˆ
∂E

dµ ,

where µ is the “canonical” measure associated to the Riemannian metric on ∂E induced by the
metric tensor of Tn, coming from the scalar product of Rn (it is easy to see that µ coincides with
the (n− 1)–dimensional Hausdorff measure restricted to ∂E).

2.1 F I R S T A N D S E C O N D VA R I AT I O N

We start by computing the first variation of the functional A.

Definition 2.1.1. Let E ⊆ Tn be a smooth set. Given a smooth map Φ : (−ε, ε) × Tn → Tn,
for ε > 0, such that Φt = Φ(t, ·) : Tn → Tn is a one–parameter family of diffeomorphism with
Φ0 = Id, we say that Et = Φt(E) is the variation of E associated to Φ (or to Φt). If moreover there
holds Vol(Et) = Vol(E) for every t ∈ (−ε, ε), we call Et a volume–preserving variation of E.
The vector field X ∈ C∞(Tn;Rn) defined as X = ∂Φt

∂t

∣∣
t=0

, is called the infinitesimal generator of
the variation Et.

Remark 2.1.2. As we are going to consider only smooth sets E, it is easy to see that this definition
of variation is equivalent to have a family of diffeomorphisms Φt of E only, indeed these latter
can always be extended to the whole Tn.

Moreover, as the relevant objects are actually the boundaries of the sets E and in view of the
sequel, we could even consider only smooth “deformations” of ∂E. We then give the following
definition since it is easier and more convenient for the computations.

Definition 2.1.3. Given a smooth one parameter family of immersions φt : ∂E → Tn, with t ∈
(−ε, ε) , we say that φt is the “deformation” of ∂E induced by the variationEt in Definition 2.1.1, if
φ0 = Id, φt(∂E) = ∂Et and ∂φt

∂t

∣∣
t=0

= X along ∂E, where the field X is the infinitesimal generator
of the variation Et.

Definition 2.1.4. Given a variation Et of E, coming from the one–parameter family of diffeomor-
phism Φt, the first variation of A at E with respect to Φt is given by

d

dt
A(∂Et)

∣∣∣
t=0

.

We say that E is a critical set for A, if all the first variations relative to variations Et of E are zero.
We say that E is a critical set for A under a volume constraint, if all the first variations relative to
volume–preserving variations Et of E are zero.

It is clear that if E is a minimum for A (under a volume constraint), then it is a critical set for A
(under a volume constraint). We are now going to compute the first variation of A and see that it
depends only on the restriction to ∂E of the infinitesimal generator X of the variation Et of E.

31
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Theorem 2.1.5 (First variation of the functional A). Let E ⊆ Tn a smooth set and Φ : (−ε, ε)×Tn →
Tn a smooth map giving a variation Et = Φt(E) with infinitesimal generator X ∈ C∞(Tn;Rn). Then,

d

dt
A(∂Et)

∣∣∣
t=0

=

ˆ
∂E

H⟨X|νE⟩ dµ

where νE is the outer unit normal vector and H the mean curvature of ∂E.
In particular, the first variation of the functional A depends only on the normal component of the restriction
of the infinitesimal generator X to ∂E.

Proof. Let φt be the deformation of ∂E induced by the variation Et, as in Definition 2.1.3.
Denoting by gij = gij(t) the induced metrics (via φt, as above) on the smooth hypersurfaces ∂Et
and setting φ = φ0, in a local chart we have

∂

∂t
gij

∣∣∣
t=0

=
∂

∂t

〈
∂φt
∂xi

∣∣∣∣ ∂φt∂xj

〉∣∣∣∣
t=0

=

〈
∂X

∂xi

∣∣∣∣ ∂φ∂xj
〉
+

〈
∂X

∂xj

∣∣∣∣ ∂φ∂xi
〉

=
∂

∂xi

〈
X

∣∣∣∣ ∂φ∂xj
〉

+
∂

∂xj

〈
X

∣∣∣∣ ∂φ∂xi
〉

− 2

〈
X

∣∣∣∣ ∂2φ

∂xi∂xj

〉
=

∂

∂xi

〈
Xτ

∣∣∣∣ ∂φ∂xj
〉

+
∂

∂xj

〈
Xτ

∣∣∣∣ ∂φ∂xi
〉

− 2Γkij

〈
Xτ

∣∣∣∣ ∂φ∂xk
〉

+ 2hij⟨X | νE⟩ ,

where we used the Gauss–Weingarten relations (1.7) in the last step and we denoted with Xτ =
X − ⟨X|νE⟩νE the “tangential part” of the vector field X along the hypersurface ∂E (seeing Tx∂E
as a hyperplane of Rn ≈ TxTn).
Letting ω be the 1–form defined by ω(Y ) = g(Xτ ,Y ), this formula can be rewritten as

∂

∂t
gij

∣∣∣
t=0

=
∂ωj
∂xi

+
∂ωi
∂xj

− 2Γkijωk + 2hij⟨X|νE⟩ = ∇iωj +∇jωi + 2hij⟨X|νE⟩ . (2.1)

Hence, by the formula
d

dt
detA(t) = detA(t) tr [A−1(t) ◦A′(t)] , (2.2)

holding for any n× n squared matrix A(t) dependent on t, we get

∂

∂t

√
det gij

∣∣∣
t=0

=

√
det gij g

ij ∂
∂tgij

∣∣∣
t=0

2

=

√
det gij g

ij
(
∇iωj +∇jωi + 2hij⟨X | νE⟩

)
2

=
√
det gij

(
divXτ +H⟨X | νE⟩

)
, (2.3)
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where the divergence is the (Riemannian) one relative to the hypersurface ∂E. Then, we conclude
(recalling the discussion after formula (1.1))

∂

∂t
A(∂Et)

∣∣∣
t=0

=
∂

∂t
A(φt(∂E))

∣∣∣
t=0

=
∂

∂t

ˆ
∂E

dµt

∣∣∣
t=0

=
∂

∂t

ˆ
∂E

√
det gij dx

∣∣∣
t=0

=

ˆ
∂E

∂

∂t

√
det gij

∣∣∣
t=0

dx

=

ˆ
∂E

(
divXτ+H⟨X | νE⟩

)√
det gij dx

=

ˆ
∂E

(
divXτ+H⟨X | νE⟩

)
dµ

=

ˆ
∂E

H⟨X | νE⟩ dµ

where in the last step we applied the divergence theorem, that is, formula (1.3), on ∂E.

Given a smooth set E and any vector field X ∈ C∞(Tn;Rn), considering the associated smooth
flow Φ : (−ε, ε)× Tn → Tn, defined by the system{

∂Φ
∂t (t,x) = X(Φ(t,x)),

Φ(0,x) = x
(2.4)

for every x ∈ Tn and t ∈ (−ε, ε), for some ε > 0, we have a variation Et = Φt(E) with
infinitesimal generator X . We call this variation the special variation associated to X . Moreover,
given any smooth vector field X ∈ C∞(∂E;Rn), it can be extended easily to a smooth vector field
X ∈ C∞(Tn;Rn) with X|∂E = X .

Hence, if E is a critical set for A there holdsˆ
∂E

H⟨X|νE⟩ dµ = 0 ,

for every X ∈ C∞(Tn;Rn). Choosing a smooth vector field X ∈ C∞(Tn;Rn) with X|∂E = HνE ,
we then obtain the following corollary.

Corollary 2.1.6. A smooth set E ⊆ Tn is a critical set for A if and only if H = 0 on ∂E, that is the
condition of a minimal surface holds.

It is less easy to characterize the infinitesimal generators of the volume–preserving variations
of E, in order to find an analogous criticality condition on a set E, for the functional A under a
volume constraint.
Given Φ : (−ε, ε)× Tn → Tn such that Vol(Φt(E)) = Vol(Et) = Vol(E) for all t ∈ (−ε, ε), we let
Xt ∈ C∞(Tn;Rn) be the family of the vector fields (well) defined by the formula

Xt(Φ(t, z)) =
∂Φ
∂t

(t, z),

for every t ∈ (−ε, ε) and z ∈ Tn, hence, if t = 0, the vector field X = X0 is the infinitesimal
generator of the volume–preserving variation Et. Then, by changing variables, we have

0 =
d

dt
Vol(Et) =

d

dt

ˆ
Et

dx =
d

dt

ˆ
E
JΦ(t, z) dz =

ˆ
E

∂

∂t
JΦ(t, z) dz . (2.5)

As JΦ(t, z) = det[dΦ(t, z)], by means of formula (2.2), we obtain

∂

∂t
JΦ(t, z) = JΦ(t, z) tr [dΦ(t, z)−1 ◦ dXt(Φ(t, z)) ◦ dΦ(t, z)],
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since, by the definition of Xt above,

∂

∂t
dΦ(t, z) = d

∂Φ
∂t

(t, z) = d[Xt(Φ(t, z))] = dXt(Φ(t, z)) ◦ dΦ(t, z).

Being the trace of a matrix invariant by conjugation, we conclude

∂

∂t
JΦ(t, z) = JΦ(t, z) tr [dXt(Φ(t, z))] = JΦ(t, z) divXt(Φ(t, z)),

hence, by equality (2.5) and the divergence theorem (in Tn), it follows

0 =

ˆ
E
divXt(Φ(t, z))JΦ(t, z) dz =

ˆ
Et

divXt(x) dx =

ˆ
∂E

⟨Xt ◦ Φt|νEt⟩ dµt , (2.6)

where νEt is the outer unit normal vector and µt the canonical Riemannian measure of the smooth
hypersurface ∂Et, given by the embedding φt = Φt : ∂E → Tn. Thus, letting t = 0,

d

dt
Vol(Et)

∣∣∣
t=0

=

ˆ
∂E

⟨X|νE⟩ dµ = 0 (2.7)

and we conclude that if X ∈ C∞(Tn;Rn) is the infinitesimal generator of a volume–preserving
variation for E, its normal component ψ = ⟨X|νE⟩ on ∂E has zero integral (with respect to the
measure µ).
Conversely, we have the following lemma whose proof is postponed after Lemma 2.2.13, since the
arguments in the two proofs are very similar.

Lemma 2.1.7. Let ψ : ∂E → R a smooth function with zero integral with respect to the measure µ on
∂E. Then, there exists a smooth vector field X ∈ C∞(Tn;Rn) such that ψ = ⟨X|νE⟩, divX = 0 in a
neighborhood of ∂E and the flow Φ defined by system (2.4) having X as infinitesimal generator, gives a
volume–preserving variation Et = Φt(E) of E.

Hence, with this characterization of the infinitesimal generators of the volume–preserving
variations for E, by Theorem 2.1.5 we have that E is a critical set for the functional A under a
volume constraint if and only if ˆ

∂E
H⟨X|νE⟩ dµ = 0 ,

for every X ∈ C∞(Tn;Rn) such that ⟨X|νE⟩ has zero integral on ∂E. By Lemma 2.1.7, this is
similarly to say that ˆ

∂E
Hψ dµ = 0 ,

for all ψ ∈ C∞(∂E) such that
´
∂E ψ dµ = 0, which is equivalent to the existence of a constant

λ ∈ R such that
H = λ on ∂E.

That is, ∂E is a smooth hypersurface with constant mean curvature.
This motivates the following proposition.

Proposition 2.1.8. A smooth set E ⊆ Tn is a critical set for the Area functional A under a volume
constraint, if there exists a constant λ ∈ R such that

H = λ on ∂E.

Remark 2.1.9. Clearly, the critical sets for the unconstrained Area functional must satisfy
ˆ
∂E

H⟨X, νE⟩ dµ = 0

for every X ∈ C∞(Tn,Rn), which easily implies the minimal surface equation H = 0 on ∂E.
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Now we deal with the second variation of the functional A.

Definition 2.1.10. Given a variation Et of E, coming from the one–parameter family of diffeomor-
phism Φt, the second variation of A at E with respect to Φt is given by

d2

dt2
A(∂Et)

∣∣∣
t=0

.

In the following proposition we compute the second variation of the Area functional.

Proposition 2.1.11. Let E ⊆ Tn a smooth set and Φ : (−ε, ε)× Tn → Tn a smooth map giving a
variation Et = Φt(E) with infinitesimal generator X ∈ C∞(Tn;Rn). Then,

d2

dt2
A(∂Et)

∣∣∣
t=0

=

ˆ
∂E

(
|∇⟨X|νE⟩|2 − ⟨X|νE⟩2|B|2

)
dµ

+

ˆ
∂E

H
(
H⟨X|νE⟩2 + ⟨Z|νE⟩ − 2⟨Xτ |∇⟨X|νE⟩⟩+B(Xτ ,Xτ )

)
dµ , (2.8)

where Xτ = X − ⟨X|νE⟩νE is the tangential part of X on ∂E, B and H are respectively the second
fundamental form and the mean curvature of ∂E and

Z =
∂2Φ
∂t2

(0, ·) = ∂

∂t
[Xt(Φ(t, ·))]

∣∣∣
t=0

=
∂Xt

∂t

∣∣∣
t=0

+ dX(X) , (2.9)

where, for every t ∈ (−ε, ε), the vector field Xt ∈ C∞(Tn;Rn) is defined by the formula

Xt(Φ(t, z)) =
∂Φ
∂t

(t, z),

for every z ∈ Tn, hence, X0 = X .

Proof. Let φt be the deformation of ∂E induced by the variation Et, as in Definition 2.1.3.
By arguing as in the first part of the proof of Theorem 2.1.5 (without taking t = 0), we have

d

dt
A(∂Et) =

ˆ
∂E

Ht⟨Xt ◦ Φt|νEt⟩ dµt,

where Ht is the mean curvature of ∂Et. Consequently, we have

d2

dt2
A(∂Et)

∣∣∣
t=0

=
d

dt

ˆ
∂E

Ht⟨Xt ◦ Φt|νEt⟩
√
det gij dx

∣∣∣
t=0

where gij = gij(t).
In order to simplify the notation in the following computations, we drop the subscripts, that is, we
let H(t, ·) = Ht, ν(t, ·) = νEt , ψ(t, ·) = ⟨Xt ◦ Φt|νEt⟩, φ(t, ·) = φt and X(t, ·) = Xt ◦ Φt (by a little
abuse of notation, since X is already the infinitesimal generator of the variation).
We then need to compute the derivatives

∂H

∂t

∣∣∣
t=0

and
∂

∂t
⟨X|ν⟩

∣∣∣
t=0

(2.10)

since we already know, by formula (2.3), that

∂

∂t

√
det gij

∣∣∣
t=0

=
(
divXτ +Hψ

)√
det gij

∣∣∣
t=0

,

hence, this derivative gives the following contribution to the second variation,
ˆ
∂E

(ψHdivXτ + ψ2H2) dµ .
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Then, we compute (recalling formula (2.9))

∂⟨X|ν⟩
∂t

∣∣∣∣
t=0

=

〈
∂X

∂t

∣∣∣∣ν〉∣∣∣∣
t=0

+

〈
X

∣∣∣∣∂ν∂t
〉∣∣∣∣

t=0

= ⟨Z|ν⟩+
〈
X

∣∣∣∣∂ν∂t
〉∣∣∣∣

t=0

and using the fact that ∂ν∂t
∣∣
t=0

is tangent to ∂E, in a local coordinate chart we obtain〈
X

∣∣∣∣∂ν∂t
〉∣∣∣∣

t=0

= Xp
τ

〈
∂φ

∂xp

∣∣∣∣∂ν∂t
〉∣∣∣∣

t=0

,

where in the last inequality we used the notation Xτ = Xp
τ
∂φ
∂xp

. Notice that,
〈 ∂φ
∂xp

∣∣ν〉 = 0 for every
p ∈ {1, . . . ,n− 1} and t ∈ (−ε, ε), hence, using the Gauss–Weingarten relations (1.7),

0 =
∂

∂t

〈
∂φ

∂xp

∣∣∣∣ν〉∣∣∣∣
t=0

=

〈
∂X

∂xp

∣∣∣∣ν〉+

〈
∂φ

∂xp

∣∣∣∣∂ν∂t
〉∣∣∣∣

t=0

=
∂

∂xp
⟨X|ν⟩ −

〈
X

∣∣∣∣ ∂ν∂xp
〉
+

〈
∂φ

∂xp

∣∣∣∣∂ν∂t
〉∣∣∣∣

t=0

=
∂ψ

∂xp
−
〈
Xτ

∣∣∣∣ ∂ν∂xp
〉
+

〈
∂φ

∂xp

∣∣∣∣∂ν∂t
〉∣∣∣∣

t=0

=
∂ψ

∂xp
−Xq

τ

〈
∂φ

∂xq

∣∣∣∣ ∂ν∂xp
〉
+

〈
∂φ

∂xp

∣∣∣∣∂ν∂t
〉∣∣∣∣

t=0

=
∂ψ

∂xp
−Xq

τ

〈
∂φ

∂xq

∣∣∣∣hplgli ∂φ∂xi
〉
+

〈
∂φ

∂xp

∣∣∣∣∂ν∂t
〉∣∣∣∣

t=0

=
∂ψ

∂xp
−Xq

τhplg
ligqi +

〈
∂φ

∂xp

∣∣∣∣∂ν∂t
〉∣∣∣∣

t=0

and we can conclude that 〈
∂φ

∂xp

∣∣∣∣∂ν∂t
〉∣∣∣∣

t=0

= − ∂ψ

∂xp
+Xq

τhpq , (2.11)

where hpq are the components of the second fundamental form B of ∂E in the local chart. Thus,
we obtain the following identity

∂

∂t
⟨X|ν⟩

∣∣∣
t=0

= ⟨Z|ν⟩+Xp
τ

〈
∂φ

∂xp

∣∣∣∣∂ν∂t
〉∣∣∣∣

t=0

= ⟨Z|ν⟩ − ∂ψ

∂xp
Xp
τ +Xp

τX
q
τhpq

= ⟨Z|ν⟩ − ⟨Xτ |∇⟨X|ν⟩⟩+B(Xτ ,Xτ ) (2.12)

and the relative contribution to the second variation is given by
ˆ
∂E

H
(
⟨Z|ν⟩ − ⟨Xτ |∇⟨X|ν⟩⟩+B(Xτ ,Xτ )

)
dµ .

Now we conclude by computing the first derivative in (2.10). To this aim, we note that

H = −
〈

∂2φ

∂xi∂xj

∣∣∣∣ν〉 gij
hence, we need the following terms

∂gij

∂t

∣∣∣
t=0

(2.13)
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〈
∂2φ

∂xi∂xj

∣∣∣∣∂ν∂t
〉∣∣∣∣

t=0

(2.14)

〈
∂

∂t

∂2φ

∂xi∂xj

∣∣∣∣ν〉∣∣∣∣
t=0

. (2.15)

We start with the term (2.13), recalling that

∂gij
∂t

∣∣∣
t=0

= ∇iωj +∇jωi + 2hij⟨X|ν⟩

by equation (2.1), where ω is the 1–form defined by ω(Y ) = g(Xτ ,Y ).
Using the fact that gijgjk = 0, we obtain

0 =
∂gij
∂t

∣∣∣
t=0

gjk + gij
∂gjk

∂t

∣∣∣
t=0

= gjk
(
∇iωj +∇jωi + 2hij⟨X|ν⟩

)
+gij

∂gjk

∂t

∣∣∣
t=0

then,
∂gpk

∂t

∣∣∣
t=0

= −gjpgik
(
∇iωj +∇jωi + 2hij⟨X|ν⟩

)
= −∇pXk

τ −∇kXp
τ − 2hpkψ .

We then proceed with the computation of the term (2.14), by means of equation (2.11),〈
∂2φ

∂xi∂xj

∣∣∣∣∂ν∂t
〉∣∣∣∣

t=0

= Γkij

〈
∂φ

∂xk

∣∣∣∣∂ν∂t
〉∣∣∣∣

t=0

= Γkij
(
− ∂ψ

∂xk
+Xq

τhqk
)

and finally we compute the term (2.15),〈
∂

∂t

∂2φ

∂xi∂xj

∣∣∣∣ν〉 =

〈
∂2X

∂xi∂xj

∣∣∣∣ν〉∣∣∣∣
t=0

=

〈
∂2(ψν)

∂xi∂xj

∣∣∣∣ν〉+

〈
∂2Xτ

∂xi∂xj

∣∣∣∣ν〉 .

We have 〈
∂2(ψν)

∂xi∂xj

∣∣∣∣ν〉 =
∂2ψ

∂xi∂xj
+

〈
∂2ν

∂xi∂xj

∣∣∣∣ν〉ψ
=

∂2ψ

∂xi∂xj
+

〈
∂

∂xi

(
hjlg

lp ∂φ

∂xp

)∣∣∣∣ν〉ψ
=

∂2ψ

∂xi∂xj
+ hjlg

lp

〈
∂2φ

∂xi∂xj

∣∣∣∣ν〉ψ
=

∂2ψ

∂xi∂xj
+ ψhjlg

lphip
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and 〈
∂2Xτ

∂xi∂xj

∣∣∣∣ν〉 =
∂

∂xi

〈
∂Xτ

∂xj

∣∣∣∣ν〉−
〈
∂Xτ

∂xj

∣∣∣∣ ∂ν∂xi
〉

=
∂

∂xi

〈
∂

∂xj

(
Xp
τ
∂φ

∂xp

)∣∣∣∣ν〉−
〈
∂Xτ

∂xj

∣∣∣∣ ∂ν∂xi
〉

=
∂

∂xi

[
Xp
τ

〈
∂2φ

∂xj∂xp

∣∣∣∣ν〉]−〈∂Xτ

∂xj

∣∣∣∣ ∂ν∂xi
〉

= − ∂

∂xi

(
Xp
τ hpj

)
−
〈
∂Xτ

∂xj

∣∣∣∣ ∂ν∂xi
〉

= − ∂

∂xi

(
Xp
τ hpj

)
−
〈

∂

∂xj

(
Xp
τ
∂φ

∂xp

)∣∣∣∣ ∂ν∂xi
〉

= − ∂

∂xi

(
Xp
τ hpj

)
−Xp

τ

〈
∂2φ

∂xj∂xp

∣∣∣∣ ∂ν∂xi
〉
− ∂Xp

τ

∂xj

〈
∂φ

∂xp

∣∣∣∣ ∂ν∂xi
〉

= − ∂

∂xi

(
Xp
τ hpj

)
−Xp

τ Γkjp

〈
∂φ

∂xk

∣∣∣∣ ∂ν∂xi
〉
− ∂Xp

τ

∂xj

〈
∂φ

∂xp

∣∣∣∣ ∂ν∂xi
〉

= − ∂

∂xi

(
Xp
τ hpj

)
−Xp

τ Γkjphilg
lqgkq −

∂Xp

∂xj
hilg

lqgpq

= − ∂

∂xi

(
Xp
τ hpj

)
−Xp

τ Γkjphik −
∂Xk

∂xj
hik.

Hence, we finally get

∂H

∂t

∣∣∣
t=0

= − 2hij∇iXj
τ − 2⟨X|ν⟩|B|2 − gij

∂2ψ

∂xi∂xj
+ gijΓkij

∂ψ

∂xk

+ |B|2⟨X|ν⟩ − gijΓkijhkqX
q
τ + gij

∂

∂xi
(Xp

τ hpj) + hij∇iXj
j

= − |B|2⟨X|ν⟩ − hij∇iXj
τ − ∆ψ

+ gij
[ ∂

∂xi

(
Xp
τ hpj

)
−Γkij

(
Xp
τ hpk

)]
= −ψ|B|2 − ∆ψ− hij∇iXj

τ + gij∇i(X
p
τ hpj)

= −ψ|B|2 − ∆ψ− hij∇iXj
τ + div(Xp

τ hpj)

= −ψ|B|2 − ∆ψ+ ⟨Xτ |divB⟩
= −ψ|B|2 − ∆ψ+ ⟨Xτ |∇H⟩ ,

where in the last equality we used the Codazzi–Mainardi equations (see [48]). We conclude that
the contribution of the first term in (2.10) is thenˆ

∂E
ψ
(
−ψ|B|2 − ∆ψ+ ⟨Xτ |∇H⟩

)
dµ.

Putting all these contributions together, we obtain the second variation of the Area functional,

d2

dt2
A(∂Et)

∣∣∣
t=0

=

ˆ
∂E

[
−ψ∆ψ−ψ2|B|2 + ψ⟨Xτ |∇H⟩+ ψHdivXτ + ψ2H2

+H
(
⟨Z|ν⟩ − ⟨Xτ |∇ψ⟩+B(Xτ ,Xτ )

)]
dµ .

Integrating by parts, we have
ˆ
∂E

ψ⟨Xτ |∇H⟩ dµ = −
ˆ
∂E

[
H⟨Xτ |∇ψ⟩+Hψ divXτ

]
dµ
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and we can conclude

d2

dt2
A(∂Et)

∣∣∣
t=0

=

ˆ
∂E

[
|∇ψ|2 −ψ2|B|2 + ψ2H2 +H(⟨Z|ν⟩ − 2⟨Xτ |∇ψ⟩+B(Xτ ,Xτ ))

]
dµ ,

which is the formula we wanted.

In the following proposition we rewrite explicitly formula (2.8) and we notice that the second
variation of A only depends on the normal component of X on ∂E, that is, on ⟨X, νE⟩.

Theorem 2.1.12 (Second variation of A). Let E ⊆ Tn a smooth set and Φ : (−ε, ε)× Tn → Tn a
smooth map giving a variation Et with infinitesimal generator X ∈ C∞(Tn;Rn). Then,

d2

dt2
A(∂Et)

∣∣∣
t=0

=

ˆ
∂E

(
|∇⟨X|νE⟩|2 − ⟨X|νE⟩2|B|2

)
dµ

+

ˆ
∂E

H
[
⟨X|νE⟩divTnX − div

(
⟨X|νE⟩Xτ

)
+
〈∂Xt

∂t

∣∣∣
t=0

∣∣∣νE〉 ] dµ (2.16)

where νE is the outer unit normal vector to ∂E, Xτ = X − ⟨X|νE⟩νE is the tangential part of X on
∂E, B and H are respectively the second fundamental form and the mean curvature of ∂E, the vector field
Xt ∈ C∞(Tn;Rn) is defined by the formula Xt(Φ(t, z)) = ∂Φ

∂t (t, z) for every t ∈ (−ε, ε) and z ∈ Tn.

Proof. We claim that

H⟨X| νE⟩2 + ⟨Z|νE⟩ − 2⟨Xτ |∇⟨X|νE⟩⟩+B(Xτ ,Xτ )

= ⟨X|νE⟩divTnX − div(⟨X|νE⟩Xτ ) +
〈∂Xt

∂t

∣∣∣
t=0

∣∣∣νE〉 . (2.17)

In order to show the claim in (3.62) we notice that, being every derivative of νE a tangent vector
field,

⟨Xτ |∇⟨X|νE⟩⟩ = ⟨νE |dX(Xτ )⟩+ ⟨X|⟨Xτ |∇νE⟩⟩
= ⟨νE |dX(Xτ )⟩+ ⟨Xτ |⟨Xτ |∇νE⟩⟩
= ⟨νE |dX(Xτ )⟩+B(Xτ ,Xτ ) ,

by the Gauss–Weingarten relations (1.7).
Therefore, since Z − ∂Xt

∂t

∣∣
t=0

= dX(X), we have

H⟨X|νE⟩2 + ⟨Z|νE⟩ − 2⟨Xτ |∇⟨X|νE⟩⟩+B(Xτ ,Xτ )−
〈∂Xt

∂t

∣∣∣
t=0

∣∣∣νE〉
= H⟨X|νE⟩2 + ⟨νE |dX(X)⟩ − ⟨Xτ |∇⟨X|νE⟩⟩ − ⟨νE |dX(Xτ )⟩
= H⟨X|νE⟩2 + ⟨νE |dX(⟨X|νE⟩νE)⟩ − ⟨Xτ |∇⟨X|νE⟩⟩
= H⟨X|νE⟩2 + ⟨X|νE⟩⟨νE |dX(νE)⟩+ ⟨X|νE⟩divXτ − div(⟨X|νE⟩Xτ ) . (2.18)

We also notice that, choosing an orthonormal basis e1, . . . , en−1, en = νE of Rn at a point p ∈ ∂E

and letting X = Xiei, we have

⟨ei|∇⊤Xi⟩ =
〈
ei
∣∣∇TnXi − ⟨∇TnXi|νE⟩νE

〉
= divTnX − ⟨νE |dX(νE)⟩ ,

where the symbol ∇⊤f denotes the projection on the tangent space to ∂E of the gradient ∇Tnf of a
function, called tangential gradient of f and coincident with the gradient operator of ∂E applied to
the restriction of f to the hypersurface, while ⟨ei|∇⊤Xi⟩ is called tangential divergence of X , usually
denoted with div⊤X and coincident with the (Riemannian) divergence of ∂E if X is a tangent



2.1 F I R S T A N D S E C O N D VA R I AT I O N 40

vector field, as we will see below (see [59]). Moreover, if we choose a local parametrization of ∂E
such that ∂φ

∂xi
(p) = ei, for i ∈ {1, . . . ,n− 1}, we have eji =

∂φj

∂xi
= gij = δij at p and

⟨ei|∇⊤Xi⟩ = div⊤X = ⟨ei|∇⊤Xi
τ ⟩+ ⟨ei|∇⊤(⟨X|νE⟩νiE)⟩

= ⟨ei|∇Xi
τ ⟩+ ⟨X|νE⟩⟨ei|∇TnνiE⟩

= ⟨ei|∇Xi
τ ⟩+ ⟨X|νE⟩

∂φj

∂xi
hjlg

ls ∂φ
i

∂xs

=∇eiX
i
τ + ⟨X|νE⟩hii

= divXτ + ⟨X|νE⟩H ,

where we used again the Gauss–Weingarten relations (1.7) and the fact that the covariant derivative
of a tangent vector field along a hypersurface of Rn can be obtained by differentiating in Rn (a local
extension of) the vector field and projecting the result on the tangent space to the hypersurface
(see [31], for instance). Hence, we get

⟨νE |dX(νE)⟩ = divTnX − ⟨ei|∇⊤Xi⟩ = divTnX − divXτ − ⟨X|νE⟩H

and claim (2.17) follows by substituting this left term in formula (2.18).

Remark 2.1.13. We are not aware of the presence in literature of this “geometric” line in deriving
the (first and) second variation of A, moreover, in [14, Theorem 2.6, Step 3, equation 2.67], this
latter is obtained only at a critical set, while in [11, Theorem 3.6] the methods are strongly “analytic”
and in our opinion less straightforward. These two papers are actually the ones on which is based
the computation in [2, Theorem 3.1] of the second variation of the (nonlocal) Area functional at a
general smooth set E ⊆ Tn. Anyway, in this last paper, the variations of E are all special variations,
that is, they are given by the flows in system (2.4), indeed, the term with the time derivative of Xt

is missing (see formulas 3.1 and 7.2 in [2]).
Notice that the second variation in general does not depend only on the normal component

⟨X|νE⟩ of the restriction to ∂E of the infinitesimal generatorX of a variation Φ (this will anyway be
true at a critical set E, see below), due to the presence of the Z–term and of B(Xτ ,Xτ ) depending
also on the tangential component of X and of its behavior around ∂E. Even if we restrict ourselves
to the special variations coming from system (2.4), with a normal infinitesimal generator X , which
imply that all the vector fields Xt are the same and coinciding with X , hence Z = dX(X) and
Xτ = 0, the second variation still depends also on the behavior of X in a neighborhood of ∂E
(as Z). However, there are very particular case in which it depend only on ⟨X|νE⟩, for instance
when the variation is special and X is normal with zero divergence (of Tn) on ∂E (in particular,
if divTnX = 0 in a neighborhood of ∂E or in the whole Tn), as it can be seen easily in the above
theorem.

It follows that if we have a critical set E for the unconstrained Area functional, hence H = 0 on
∂E (see Remark 2.1.9), the second variation of A is simply given by

d2

dt2
A(∂Et)

∣∣∣
t=0

=

ˆ
∂E

(
|∇⟨X, νE⟩|2 − ⟨X, νE⟩2|B|2

)
dµ .

However, we see that the second variation has the same form also for A under a volume constraint,
at a critical set.

Proposition 2.1.14. If E ⊆ Tn is a critical set for A under a volume constraint, there holds

d2

dt2
A(∂Et)

∣∣∣
t=0

=

ˆ
∂E

(
|∇⟨X|νE⟩|2 − ⟨X|νE⟩2|B|2

)
dµ

for every volume–preserving variation Et of E.
Hence, the second variation of A at E depends only on the normal component of the restriction of the
infinitesimal generator X to ∂E, that is, on ⟨X|νE⟩.
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Proof. Computing the second derivative of the (constant) volume of Et, by equations (2.5)–(2.6)
we have (recalling formulas (2.3), (2.12) and using the divergence theorem)

0 =
d2

dt2
Vol(Et)

∣∣∣
t=0

=
d

dt

ˆ
Et

divXt(x) dx
∣∣∣
t=0

=
d

dt

ˆ
∂E

⟨X|νEt⟩ dµt
∣∣∣
t=0

=

ˆ
∂E

[
divXτ ⟨X | νE⟩+H⟨X | νE⟩2 + ⟨Z|νE⟩ − ⟨Xτ |∇⟨X|νE⟩⟩+B(Xτ ,Xτ )

]
dµ

=

ˆ
∂E

[
H⟨X | νE⟩2 + ⟨Z|νE⟩ − 2⟨Xτ |∇⟨X|νE⟩⟩+B(Xτ ,Xτ )

]
dµ , (2.19)

hence, being H constant on ∂E, we are done.

Remark 2.1.15. Notice that by the previous computation and relation (2.17), it follows

d2

dt2
Vol(Et)

∣∣∣
t=0

=

ˆ
∂E

[
⟨X|νE⟩divTnX +

〈∂Xt

∂t

∣∣∣
t=0

∣∣∣ν〉 ] dµ = 0 , (2.20)

for every volume–preserving variation Et of E. Hence, if we restrict ourselves to the special
(volume–preserving) variations coming from system (2.4), as in [2], we have

d2

dt2
Vol(Et)

∣∣∣
t=0

=

ˆ
∂E

⟨X|νE⟩divTnX dµ = 0 ,

indeed, for such variations we have Xt = X , for every t ∈ (−ε, ε). Thus, one can clearly use
equality (2.20) to show the above proposition.
Moreover, we see that if we have a special variation generated by a vector field X such that
divTnX = 0 on ∂E, then d2

dt2
Vol(Et)

∣∣
t=0

= 0 and if E is a critical set, the second integral in
formula (2.16) vanishes. This is then true for the special volume–preserving variations coming
from Lemma 2.1.7 and when X is a constant vector field, hence the associated special variation
Et is simply a translation of E (clearly, in this case A(∂Et) is constant and the first and second
variations are zero).

2.2 S TA B I L I T Y A N D W 2,p– L O C A L M I N I M A L I T Y

By Proposition 2.1.14, the second variation of the Area functional under a volume constraint at
a smooth critical set E is a quadratic form in the normal component on ∂E of the infinitesimal
generator X ∈ C∞(Tn;Rn) of a volume–preserving variation, that is, on ψ = ⟨X|νE⟩. This and
the fact that the infinitesimal generators of the volume–preserving variations are “characterized”
by having zero integral of such normal component on ∂E, by Lemma 2.1.7 and the discussion
immediately before, motivate the following definition.

Definition 2.2.1. Given any smooth open set E ⊆ Tn we define the space of (Sobolev) functions
(see [7])

H̃1(∂E) =
{
ψ : ∂E → R : ψ ∈ H1(∂E) and

ˆ
∂E

ψ dµ = 0
}
,

and the quadratic form ΠE : H̃1(∂E) → R as

ΠE(ψ) =

ˆ
∂E

(
|∇ψ|2 −ψ2|B|2

)
dµ (2.21)

with the notations of Theorem 2.1.12.

Definition 2.2.2. Given any smooth open set E ⊆ Tn, we say that a smooth vector field X ∈
C∞(Tn;Rn) is admissible for E if the function ψ : ∂E → R given by ψ = ⟨X|νE⟩ belongs to
H̃1(∂E), that is, has zero integral on ∂E.



2.2 S TA B I L I T Y A N D W 2,p – L O C A L M I N I M A L I T Y 42

Remark 2.2.3. Clearly, if X ∈ C∞(Tn;Rn) is the infinitesimal generator of a volume–preserving
variation for E, then X is admissible, by the discussion after Corollary 2.1.6.

Remark 2.2.4. By what we said above, if E is a smooth critical set for A under a volume constraint,
we can from now on consider only the special variations Et = Φt(E) associated to admissible
vector fields X , given by the flow Φ defined by system (2.4), hence

d

dt
A(∂Et)

∣∣∣
t=0

=

ˆ
∂E

⟨X|νE⟩ dµ = 0

and
d2

dt2
A(∂Et)

∣∣∣
t=0

= ΠE(⟨X|νE⟩)

where ΠE is the quadratic form defined by formula (2.21).

We notice that every constant vector field X = η ∈ Rn is clearly admissible, as
ˆ
∂E

⟨η |νE⟩ dµ =

ˆ
E
div η dx = 0

and the associated flow is given by Φ(t,x) = x+ tη, then, by the translation invariance of the
functional A, we have A(∂Et) = A(∂E) and

0 =
d2

dt2
A(∂Et)

∣∣∣
t=0

= ΠE(⟨η |νE⟩) ,

that is, the form ΠE is zero on the vector subspace

T (∂E) =
{
⟨η |νE⟩ : η ∈ Rn

}
⊆ H̃1(∂E)

of dimension clearly less than or equal to n. We split

H̃1(∂E) = T (∂E)⊕ T⊥(∂E) ,

where T⊥(∂E) ⊆ H̃1(∂E) is the vector subspace L2–orthogonal to T (∂E) (with respect to the
measure µ on ∂E), that is,

T⊥(∂E) =
{
ψ ∈ H̃1(∂E) :

ˆ
∂E

ψνE dµ = 0
}

=
{
ψ ∈ H1(∂E) :

ˆ
∂E

ψ dµ = 0 and
ˆ
∂E

ψνE dµ = 0
}

and we give the following “stability” conditions.

Definition 2.2.5 (Stability). We say that a critical set E ⊆ Tn for A under a volume constraint is
stable if

ΠE(ψ) ⩾ 0 for all ψ ∈ H̃1(∂E)

and strictly stable if moreover

ΠE(ψ) > 0 for all ψ ∈ T⊥(∂E) \ {0}.

We postpone a quite detailed discussion about the classification of stable and strictly stable
critical sets for the volume constrained Area functional (see Section 3.5).
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Remark 2.2.6. Introducing the symmetric bilinear form associated (by polarization) to ΠE on
H̃1(∂E),

bE(ψ,φ) =
ΠE(ψ+ φ)− ΠE(ψ−φ)

4

at a critical set E ⊆ Tn, it can be seen that actually T (∂E) is a degenerate vector subspace
of H̃1(∂E) for bE , that is, bE(ψ,φ) = 0 for every ψ ∈ H̃1(∂E) and φ ∈ T (∂E). By means of
formula (1.11), since E (being critical) satisfies H = λ for some constant λ ∈ R, we have

−∆νE − |B|2νE = 0

on ∂E. This equation can be written as L(νi) = 0, for every i ∈ {1, . . . ,n}, where L is the
self–adjoint, linear operator defined as

L(ψ) = −∆ψ− |B|2ψ ,

which clearly satisfies

bE(ψ,φ) =

ˆ
∂E

⟨L(ψ)|φ⟩ dµ and ΠE(ψ) =

ˆ
∂E

⟨L(ψ)|ψ⟩ dµ .

Then, if we “decompose” a smooth function ψ ∈ H̃1(∂E) as ψ = φ+ ⟨η|νE⟩, for some η ∈ Rn and
φ ∈ T⊥(∂E), we have (recalling formula (2.21))

ΠE(ψ) =

ˆ
∂E

⟨L(ψ)|ψ⟩ dµ

=

ˆ
∂E

⟨L(φ)|φ⟩ dµ+ 2

ˆ
∂E

⟨L(⟨η|νE⟩)|φ⟩ dµ+
ˆ
∂E

⟨L(⟨η|νE⟩)|⟨η|νE⟩⟩ dµ

=ΠE(φ) .

By approximation with smooth functions, we conclude that this equality holds for every function
in H̃1(∂E).
The initial claim about the form bE then easily follows by its definition. Moreover, if E is a strictly
stable critical set there holds

ΠE(ψ) > 0 for everyψ ∈ H̃1(∂E) \ T (∂E). (2.22)

Remark 2.2.7. We observe that there exists an orthonormal frame {e1, . . . , en} of Rn such thatˆ
∂E

⟨νE |ei⟩⟨νE |ej⟩ dµ = 0, (2.23)

for all i ̸= j, indeed, considering the symmetric n × n–matrix A = (aij) with components
aij =

´
∂E ν

i
Eν

j
E dµ, where νiE = ⟨νE |εi⟩ for some basis {ε1, . . . , εn} of Rn, we haveˆ

∂E
(OνE)i(OνE)j dµ = (OAO−1)ij ,

for every O ∈ SO(n). Choosing O such that OAO−1 is diagonal and setting ei = O−1εi, rela-
tions (2.23) are clearly satisfied.
Hence, the functions ⟨νE |ei⟩ which are not identically zero are an orthogonal basis of T (∂E). We
set

IE =
{
i ∈ {1, . . . ,n} : ⟨νE |ei⟩ is not identically zero

}
(2.24)

and
OE = Span{ei : i ∈ IE}, (2.25)

then, given any ψ ∈ H̃1(∂E), its projection on T⊥(∂E) is

π(ψ) = ψ−
∑
i∈IE

´
∂E ψ⟨νE |ei⟩ dµ
∥⟨νE |ei⟩∥2L2(∂E)

⟨νE |ei⟩ . (2.26)
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From now on we will extensively use Sobolev spaces on smooth hypersurfaces. Most of their properties
hold as in Rn, standard references are [3] in the Euclidean space and [7] when the ambient is a manifold.

Definition 2.2.8. We say that a smooth set E ⊆ Tn is a local minimizer for the Area functional A if
there exists δ > 0 such that

A(∂F ) ⩾ A(∂E)

for all smooth sets F ⊆ Tn with Vol(F ) = Vol(E) and Vol(E△F ) < δ.
We say that a smooth set E ⊆ Tn is a W 2,p–local minimizer if there exists δ > 0 and a tubular

neighborhood Nε of E, such that
A(∂F ) ⩾ A(∂E)

for all smooth sets F ⊆ Tn with Vol(F ) = Vol(E), Vol(E△F ) < δ and ∂F contained in Nε,
described by

∂F = {y+ ψ(y)νE(y) : y ∈ ∂E},

for a smooth function ψ : ∂E → R with ∥ψ∥W 2,p(∂E) < δ.
Clearly, any local minimizer is a W 2,p–local minimizer.

We immediately show a necessary condition for W 2,p–local minimizers.

Proposition 2.2.9. Let the smooth set E ⊆ Tn be a W 2,p–local minimizer of A, then E is a critical set and

ΠE(ψ) ⩾ 0 for all ψ ∈ H̃1(∂E),

in particular, E is stable.

Proof. If E is a W 2,p–local minimizer of A, given any ψ ∈ C∞(∂E) ∩ H̃1(∂E), we consider the
admissible vector field X ∈ C∞(Tn;Rn) given by Lemma 2.1.7 and the associated flow Φ. Then,
the variation Et = Φt(E) of E is volume–preserving, that is, Vol(Et) = Vol(E) and for every
δ > 0, there clearly exists a tubular neighborhood Nε of E and ε > 0 such that for t ∈ (−ε, ε) we
have

Vol(E△Et) < δ

and
∂Et = {y+ ψEt(y)νE(y) : y ∈ ∂E} ⊆ Nε

for a smooth function ψEt : ∂E → R with ∥ψEt∥W 2,p(∂E) < δ. Hence, the W 2,p–local minimality
of E implies

A(∂E) ⩽ A(∂Et),

for every t ∈ (−ε, ε). It follows

0 =
d

dt
A(∂Et)

∣∣∣
t=0

=

ˆ
∂E

Hψ dµ,

by Theorem 2.1.5, which implies that E is a critical set, by the subsequent discussion and

0 ⩽
d2

dt2
A(∂Et)

∣∣∣
t=0

= ΠE(ψ),

by Proposition 2.1.14 and Remark 2.2.4.
Then, the thesis easily follows by the density ofC∞(∂E)∩ H̃1(∂E) in H̃1(∂E) (see [7], for instance)
and the definition of ΠE , formula (2.21).

The rest of this section will be devoted to showing that the strict stability (see Definition 2.2.5) is
a sufficient condition for the W 2,p–local minimality. Precisely, we will prove the following theorem,
which is [2, Theorem 3.9].
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Theorem 2.2.10. Let p > max{2,n− 1} and E ⊆ Tn a smooth strictly stable critical set for the Area
functional A (under a volume constraint), with Nε a tubular neighborhood of ∂E. Then, there exist
constants δ,C > 0 such that

A(∂F ) ⩾ A(∂E) +C[α(E,F )]2,

for all smooth sets F ⊆ Tn such that Vol(F ) = Vol(E), Vol(F△E) < δ, ∂F ⊆ Nε and

∂F = {y+ ψF (y)νE(y) : y ∈ ∂E},

for a smooth function ψF with ∥ψF ∥W 2,p(∂E) < δ, where the “distance” α(E,F ) is defined as

α(E,F ) = min
η∈Rn

Vol(E△(F + η)).

As a consequence, E is a W 2,p–local minimizer of A. Moreover, if F is W 2,p–close enough to E and
A(∂F ) = A(∂E), then F is a translate of E, that is, E is locally the unique W 2,p–local minimizer, up to
translations.

Remark 2.2.11. We could have introduced the definitions of strict local minimizer or strict W 2,p–
local minimizer for the Area functional, by asking that the inequalities A(∂F ) ⩽ A(∂E) in
Definition 2.2.8 are equalities if and only if F is a translate of E. With such notion, the conclusion
of this theorem is that E is actually a strict W 2,p–local minimizer (with a “quantitative” estimate
of its minimality).

Remark 2.2.12. With a non trivial extra effort, by using some fine results from the regularity theory
for minimal surfaces, it can be proved that in the same hypotheses of this theorem, the set E is
actually a local minimizer (see [2]).

For the proof, we need some technical lemmas. We underline that most of the difficulties are
due to the presence of the degenerate subspace T (∂E) of the form ΠE (where it is zero), related to
the translation invariance of the Area functional (recall the discussion after Remark 2.2.4).

In the next key lemma we are going to show how to construct volume–preserving variations
(hence, admissible smooth vector fields) “deforming” a set E to any other smooth set with the
same volume, which is W 2,p–close enough. By the same technique we will also prove Lemma 2.1.7
immediately after, whose proof was postponed.

Lemma 2.2.13. Let E ⊆ Tn be a smooth set and Nε a tubular neighborhood of ∂E. For all p > n− 1,
there exist constants δ,C > 0 such that if ψ ∈ C∞(∂E) and ∥ψ∥W 2,p(∂E) ⩽ δ, then there exists a vector
field X ∈ C∞(Tn;Rn) with divX = 0 in Nε and the associated flow Φ, defined by system (2.4), satisfies

Φ(1, y) = y+ ψ(y)νE(y) , for all y ∈ ∂E. (2.27)

Moreover, for every t ∈ [0, 1]

∥Φ(t, ·)− Id∥W 2,p(∂E) ⩽ C∥ψ∥W 2,p(∂E) . (2.28)

Finally, if Vol(E1) = Vol(E), then the variation Et = Φt(E) is volume–preserving, that is, Vol(Et) =
Vol(E) for all t ∈ [−1, 1] and the vector field X is admissible.

Proof. We start considering the vector field X̃ ∈ C∞(Nε;Rn) defined as

X̃(x) = ξ(x)∇dE(x) (2.29)

for every x ∈ Nε, where dE : Nε → R is the signed distance function from E and ξ : Nε → R is
the function defined as follows: for all y ∈ ∂E, we let fy : (−ε, ε) → R to be the unique solution of
the ODE {

f ′y(t) + fy(t)∆dE(y+ tνE(y)) = 0

fy(0) = 1
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and we set

ξ(x) = ξ(y+ tνE(y)) = fy(t) = exp
(
−
ˆ t

0
∆dE(y+ sνE(y)) ds

)
,

recalling that the map (y, t) 7→ x = y+ tνE(y) is a smooth diffeomorphism between ∂E × (−ε, ε)
and Nε (with inverse x 7→ (πE(x), dE(x)), where πE is the orthogonal projection map on E,
defined by formula (1.15)). Notice that the function f is always positive, thus the same holds for ξ
and ξ = 1, ∇dE = νE , hence X̃ = νE on ∂E.

Our aim is then to prove that the smooth vector field X defined by

X(x) =

ˆ ψ(πE(x))

0

ds

ξ(πE(x) + sνE(πE(x)))
X̃(x) (2.30)

for every x ∈ Nε and extended smoothly to all Tn, satisfies all the properties of the statement of
the lemma.

Step 1. We saw that X̃|∂E = νE , now we show that divX̃ = 0 and analogously divX = 0 in Nε.
Given any x = y+ tνE(y) ∈ Nε, with y ∈ ∂E, we have

divX̃(x) = div[ξ(x)∇dE(x)]
= ⟨∇ξ(x)|∇dE(x)⟩+ ξ(x)∆dE(x)

=
∂

∂t
[ξ(y+ tνE(y))] + ξ(y+ tνE(y))∆dE(y+ tνE(y))

= f ′y(t) + fy(t)∆dE(y+ tνE(y))

= 0,

where we used the fact that f ′y(t) = ⟨∇ξ(y + tνE(y))|νE(y)⟩ and ∇dE(y + tνE(y)) = νE(y), by
formula (1.16).
Since the function

x 7→ θ(x) =

ˆ ψ(πE(x))

0

ds

ξ(πE(x) + sν(πE(x))

is clearly constant along the segments t 7→ x+ t∇dE(x), for every x ∈ Nε, it follows that

0 =
∂

∂t

[
θ(x+ t∇dE(x))

] ∣∣∣
t=0

= ⟨∇θ(x)|∇dE(x)⟩,

hence,
divX = ⟨∇θ|∇dE⟩ξ + θ divX̃ = 0.

Step 2. Recalling that ψ ∈ C∞(∂E) and p > n− 1, we have

∥ψ∥L∞(∂E) ⩽ ∥ψ∥C1(∂E) ⩽ CE∥ψ∥W 2,p(∂E),

by Sobolev embeddings (see [7]). Then, we can choose δ < ε/CE such that for all x ∈ ∂E we have
that x±ψ(x)νE(x) ∈ Nε.
To check that equation (2.27) holds, we observe that

θ(x) =

ˆ ψ(πE(x))

0

ds

ξ(πE(x) + sνE(πE(x)))

represents the time needed to go from πE(x) to πE(x) + ψ(πE(x))νE(πE(x)) along the trajectory
of the vector field X̃ , which is the segment connecting πE(x) and πE(x) + ψ(πE(x))νE(πE(x)),
of length ψ(πE(x)), parametrized as

s 7→ πE(x) + sψ(πE(x))νE(πE(x)),
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for s ∈ [0, 1] and which is traveled with velocity ξ(πE(x) + sνE(πE(x))) = fπE(x)(s). Therefore,
by the above definition of X = θX̃ and the fact that the function θ is constant along such segments,
we conclude that

Φ(1, y)− Φ(0, y) = ψ(y)νE(y) ,

that is, Φ(1, y) = y+ ψ(y)νE(y), for all y ∈ ∂E.

Step 3. To establish inequality (2.28), we first show that

∥X∥W 2,p(Nε) ⩽ C∥ψ∥W 2,p(∂E) (2.31)

for a constant C > 0 depending only on E and ε. This estimate will follow from the definition of
X in equation (2.30) and the definition of W 2,p–norm, that is,

∥X∥W 2,p(Nε) = ∥X∥Lp(Nε) + ∥∇X∥Lp(Nε) + ∥∇2X∥Lp(Nε) .

As |∇dE | = 1 everywhere and the positive function ξ satisfies 0 < C1 ⩽ ξ ⩽ C2 in Nε, for a pair of
constants C1 and C2, we have

∥X∥p
Lp(Nε)

=

ˆ
Nε

∣∣∣∣ˆ ψ(πE(x))

0

ds

ξ(πE(x) + sνE(πE(x)))
ξ(x)∇dE(x)

∣∣∣∣p dx
⩽ ∥ξ∥p

L∞(Nε)

ˆ
Nε

∣∣∣∣ˆ ψ(πE(x))

0

ds

ξ(πE(x) + sνE(πE(x)))

∣∣∣∣p dx
⩽
Cp2
Cp1

ˆ
Nε

|ψ(πE(x))|p dx

=
Cp2
Cp1

ˆ
∂E

ˆ ε

−ε
|ψ(πE(y+ tνE(y)))|pJL(y, t) dt dµ(y)

=
Cp2
Cp1

ˆ
∂E

|ψ(y)|p
ˆ ε

−ε
JL(y, t) dt dµ(y)

⩽ C

ˆ
∂E

|ψ(y)|p dµ(y)

= C∥ψ∥p
Lp(∂E)

,

where L : ∂E × (−ε, ε) → Nε the smooth diffeomorphism defined in formula (1.49) and JL its
Jacobian. Notice that the constant C depends only on E and ε.

Now we estimate the Lp–norm of ∇X . We compute

∇X =
∇ψ(πE(x))dπE(x)

ξ(πE(x) + ψ(πE(x))νE(πE(x)))
ξ(x)∇dE(x)

−
[ˆ ψ(πE(x))

0

∇ξ(πE(x) + sνE(πE(x)))

ξ2(πE(x) + sνE(πE(x)))
dπE(x) Id ds

]
ξ(x)∇dE(x)

−
[ˆ ψ(πE(x))

0

∇ξ(πE(x) + sνE(πE(x)))

ξ2(πE(x) + sνE(πE(x)))
dπE(x)s dνE(πE(x)) ds

]
ξ(x)∇dE(x)

+

ˆ ψ(πE(x))

0

ds

ξ(πE(x) + sνE(πE(x)))

(
∇ξ(x)∇dE(x) + ξ(x)∇2dE(x)

)
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and we deal with the integrals in the three terms as before, changing variable by means of the
function L. That is, since all the functions dπE , dνE , ∇2dE , ξ, 1/ξ, ∇ξ are bounded by some
constants depending only on E and ε, we easily get (the constant C could vary from line to line)

∥∇X∥p
Lp(Nε)

⩽C

ˆ
Nε

|∇ψ(πE(x))|p dx+C

ˆ
Nε

|ψ(πE(x))|p dx

=C

ˆ
∂E

ˆ ε

−ε
|∇ψ(πE(y+ tνE(y)))|p JL(y, t) dt dµ(y)

+C

ˆ
∂E

ˆ ε

−ε
|ψ(πE(y+ tνE(y)))|p JL(y, t) dt dµ(y)

=C

ˆ
∂E

(
|ψ(y)|p + |∇ψ(y)|p

) ˆ ε

−ε
JL(y, t) dt dµ(y)

⩽ C∥ψ∥p
Lp(∂E)

+C∥∇ψ∥p
Lp(∂E)

⩽ C∥ψ∥p
W 1,p(∂E)

.

A very analogous estimate works for ∥∇2X∥p
Lp(Nε)

and we obtain also

∥∇2X∥p
Lp(Nε)

⩽ C∥ψ∥p
W 2,p(∂E)

,

hence, inequality (2.31) follows with C = C(E, ε).
Applying now Lagrange theorem to every component of Φ(·, y) for any y ∈ ∂E and t ∈ [0, 1],

we have
Φi(t, y)− yi = Φi(t, y)− Φi(0, y) = tXi(Φ(s, y)) ,

for every i ∈ {1, . . . ,n}, where s = s(y, t) is a suitable value in (0, 1). Then, it clearly follows

∥Φ(t, ·)− Id∥L∞(∂E) ⩽ C∥X∥L∞(Nε) ⩽ C∥X∥W 2,p(Nε) ⩽ C∥ψ∥W 2,p(∂E) (2.32)

by estimate (2.31), with C = C(E, ε) (notice that we used Sobolev embeddings, being p > n− 1,
the dimension of ∂E).
Differentiating the equations in system (2.4), we have (recall that we use the convention of
summing over the repeated indices){

∂
∂t∇

iΦj(t, y) = ∇kXj(Φ(t, y))∇iΦk(t, y)

∇iΦj(0, y) = δij
(2.33)

for every i, j ∈ {1, . . . ,n}. It follows,

∂

∂t

∣∣∇iΦj(t, y)− δij
∣∣2⩽ 2

∣∣(∇iΦj(t, y)− δij)∇kXj(Φ(t, y))∇iΦk(t, y)
∣∣

⩽ 2∥∇X∥L∞(Nε)

∣∣∇iΦj(t, y)− δij
∣∣2+2∥∇X∥L∞(Nε)

∣∣∇iΦj(t, y)− δij
∣∣

hence, for almost every t ∈ [0, 1], where the following derivative exists,

∂

∂t

∣∣∇iΦj(t, y)− δij
∣∣⩽ C∥∇X∥L∞(Nε)

(∣∣∇iΦj(t, y)− δij
∣∣+1

)
.

Integrating this differential inequality, we get∣∣∇iΦj(t, y)− δij
∣∣⩽ etC∥∇X∥L∞(Nε) − 1 ⩽ e

C∥X∥W2,p(Nε) − 1,

as t ∈ [0, 1], where we used Sobolev embeddings again. Then, by inequality (2.31), we estimate∑
1⩽i,j⩽n

∥∇iΦj(t, ·)− δij∥L∞(∂E) ⩽ C
(
e
C∥ψ∥W2,p(∂E) − 1

)
⩽ C∥ψ∥W 2,p(∂E), (2.34)
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as ∥ψ∥W 2,p(∂E) ⩽ δ, for any t ∈ [0, 1] and y ∈ ∂E, with C = C(E, ε, δ).
Differentiating equations (2.33), we obtain

∂
∂t∇

ℓ∇iΦj(t, y) = ∇s∇kXj(Φ(t, y))∇iΦk(t, y)∇ℓΦs(t, y)

+∇kXj(Φ(t, y))∇ℓ∇iΦk(t, y)

∇ℓ∇iΦ(0, y) = 0

(where we sum over s and k), for every t ∈ [0, 1], y ∈ ∂E and i, j, ℓ ∈ {1, . . . ,n}.
This is a linear non–homogeneous system of ODEs such that, if we control C∥ψ∥W 2,p(∂E), the smooth
coefficients in the right hand side multiplying the solutions ∇ℓ∇iΦj(·, y) are uniformly bounded
(as in estimate (2.34), the Sobolev embeddings imply that ∇X is bounded in L∞ by C∥ψ∥W 2,p(∂E)).
Hence, arguing as before, for almost every t ∈ [0, 1] where the following derivative exists, there
holds

∂

∂t

∣∣∇2Φ(t, y)
∣∣⩽C∥∇X∥L∞(Nε)

∣∣∇2Φ(t, y)
∣∣+C|∇2X(Φ(t, y))|

⩽Cδ
∣∣∇2Φ(t, y)

∣∣+C|∇2X(Φ(t, y))| ,

by inequality (2.31) (notice that inequality (2.34) gives an L∞–bound on ∇Φ, not only in Lp, which
is crucial). Thus, by means of Gronwall’s lemma (see [54], for instance), we obtain the estimate

∣∣∇2Φ(t, y)
∣∣⩽ C

ˆ t

0
|∇2X(Φ(s, y))|eCδ(t−s) ds ⩽ C

ˆ t

0
|∇2X(Φ(s, y))| ds ,

hence,

∥∇2Φ(t, ·)∥p
Lp(∂E)

⩽C

ˆ
∂E

(ˆ t

0
|∇2X(Φ(s, y))| ds

)p
dµ(y)

⩽C

ˆ t

0

ˆ
∂E

|∇2X(Φ(s, y))|p dµ(y)ds

=C

ˆ
Nε

|∇2X(x)|pJL−1(x) dx

⩽C∥∇2X∥p
Lp(Nε)

⩽C∥X∥p
W 2,p(Nε)

⩽C∥ψ∥p
W 2,p(∂E)

, (2.35)

by estimate (2.31), for every t ∈ [0, 1], with C = C(E, ε, δ).
Clearly, putting together inequalities (2.32), (2.34) and (2.35), we get the estimate (2.28) in the
statement of the lemma.

Step 4. Finally, computing as in formula (2.19) and Remark 2.1.15, we have

d2

dt2
Vol(Et) =

ˆ
∂E

⟨X|νEt⟩divTnX dµt,

for every t ∈ [−1, 1], hence, since by Step 1 we know that divTnX = 0 in Nε (which contains each
∂Et), we conclude that d2

dt2
Vol(Et) = 0 for all t ∈ [−1, 1], that is, the function t 7→ Vol(Et) is linear.

If then Vol(E1) = Vol(E) = Vol(E0), it follows that Vol(Et) = Vol(E), for all t ∈ [−1, 1] which
implies that X is admissible, by Remark 2.2.3.

With an argument similar to the one of this proof, we now prove Lemma 2.1.7.
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Proof of Lemma 2.1.7. Let ψ : ∂E → R a C∞ function with zero integral, then we define the
following smooth vector field in Nε,

X(x) = ψ(πE(x))X̃(x),

where X̃ is the smooth vector field defined by formula (2.29) and we extend it to a smooth vector
field X ∈ C∞(Tn;Rn) on the whole Tn. Clearly, by the properties of X̃ seen above,

⟨X(y)|νE(y)⟩ = ψ(y)⟨X̃(y)|νE(y)⟩ = ψ(y)

for every y ∈ ∂E.
As the function x 7→ ψ(πE(x)) is constant along the segments t 7→ x + t∇dE(x), for every
x ∈ Nε, it follows, as in Step 1 of the previous proof, that divX = 0 in Nε. Then, arguing as in
Step 4, the flow Φ defined by system (2.4) having X as infinitesimal generator, gives a variation
Et = Φt(E) of E such that the function t 7→ Vol(Et) is linear, for t in some interval (−δ, δ). Since,
by equation (2.7), there holds

d

dt
Vol(Et)

∣∣∣
t=0

=

ˆ
∂E

⟨X|νE⟩ dµ =

ˆ
∂E

ψ dµ = 0,

such function t 7→ Vol(Et) must actually be constant.
Hence, Vol(Et) = Vol(E), for all t ∈ (−δ, δ) and the variation Et is volume–preserving.

Lemma 2.2.14. Let p > max{2,n− 1} and E ⊆ Tn a strictly stable critical set for the Area functional A
(under a volume constraint). Then, in the hypotheses and notation of Lemma 2.2.13, there exist constants
δ,C > 0 such that if ∥ψ∥W 2,p(∂E) ⩽ δ then |X| ⩽ C|⟨X|νEt⟩| on ∂Et and

∥∇X∥L2(∂Et) ⩽ C∥⟨X|νEt⟩∥H1(∂Et) (2.36)

(here ∇ is the covariant derivative along Et), for all t ∈ [0, 1], where X ∈ C∞(Tn;Rn) is the smooth
vector field defined in formula (2.30).

Proof. Fixed ε > 0, from inequality (2.28) it follows that there exist δ > 0 such that if ∥ψ∥W 2,p(∂E) ⩽
δ there holds

|νEt(Φ(t, y))− νE(y)| ⩽ ε

for every y ∈ ∂E, hence, as ∇dE = νE on ∂E, we have

|∇dE(Φ−1(t,x))− νEt(x)| = |νE(Φ−1(t,x))− νEt(x)| ⩽ ε

for every x ∈ ∂Et. Then, if ∥ψ∥W 2,p(∂E) is small enough, Φ−1(t, ·) is close to the identity, thus

|∇dE(Φ−1(t,x))−∇dE(x)| ⩽ ε

on ∂Et and we conclude
∥∇dE − νEt∥L∞(∂Et) ⩽ 2ε .

Moreover, using again the inequality (2.28) and following the same argument above, we also
obtain

∥∇2dE −∇νEt∥L∞(∂Et) ⩽ 2ε . (2.37)

We estimate Xτt = X − ⟨X|νEt⟩νEt (recall that X = ⟨X|∇dE⟩∇dE),

|Xτt | = |X − ⟨X|νEt⟩νEt |
= |⟨X|∇dE⟩∇dE − ⟨X|νEt⟩νEt |
= |⟨X|∇dE⟩∇dE − ⟨X|νEt⟩∇dE + ⟨X|νEt⟩∇dE − ⟨X|νEt⟩νEt |
⩽ |⟨X|(∇dE − νEt)⟩∇dE |+ |⟨X|νEt⟩(∇dE − νEt)|
⩽ 2|X| |∇dE − νEt |
⩽ 4ε|X| ,
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then
|Xτt | ⩽ 4ε|Xτt + ⟨X|νEt⟩νEt | ⩽ 4ε|Xτt |+ |⟨X|νEt⟩| ,

hence,
|Xτt | ⩽ C|⟨X|νEt⟩| . (2.38)

We now estimate the covariant derivative of Xτt along ∂Et, that is,

|∇Xτt | = |∇X −∇(⟨X|νEt⟩νEt)|
= |∇(⟨X|∇dE⟩∇dE)−∇(⟨X|νEt⟩νEt)|
= |∇(⟨X|∇dE⟩∇dE)−∇(⟨X|νEt⟩∇dE) +∇(⟨X|νEt⟩∇dE)−∇(⟨X|νEt⟩νEt)|
⩽ |∇(⟨X|(∇dE − νEt)⟩∇dE)|+ |∇(⟨X|νEt⟩(∇dE − νEt))|
⩽Cε

[
|∇X|+ |∇⟨X|νEt⟩|

]
+C|X|

[
|∇(∇dE)|+ |∇νEt |

]
⩽Cε

[
|∇(⟨X|νEt⟩νEt +Xτt)|+ |∇⟨X|νEt⟩|

]
+C

(
|⟨X|νEt⟩|+ |Xτt |

) [
|∇2dE |+ |∇νEt |

]
hence, using inequality (2.38) and arguing as above, there holds

|∇Xτt | ⩽ C|∇⟨X|νEt⟩|+C|⟨X|νEt⟩|
[
|∇2dE |+ |∇νEt |

]
.

Then, we get

∥∇Xτt∥2L2(∂Et)
⩽C∥∇⟨X|νEt⟩∥2L2(∂Et)

+C

ˆ
∂Et

|⟨X|νEt⟩|2
[
|∇2dE |+ |∇νEt |

]2
dµ

⩽C∥⟨X|νEt⟩∥2H1(∂Et)
+C∥⟨X|νEt⟩∥2

L
2p
p−2 (∂Et)

∥∥|∇2dE |+ |∇νEt |
∥∥2
Lp(∂Et)

⩽C ∥⟨X|νEt⟩∥2H1(∂Et)

where in the last inequality we used as usual Sobolev embeddings, as p > max{2,n− 1} and the
fact that ∥∇νEt∥Lp(∂Et) is bounded by the inequality (2.37) (as ∥∇2dE∥Lp(∂Et)).
Considering the covariant derivative of X = Xτt + ⟨X|νEt⟩νEt , by means of this estimate, the
trivial one

∥∇⟨X|νEt⟩∥L2(∂Et) ⩽ ∥⟨X|νEt⟩∥H1(∂Et)

and inequality (2.38), we obtain estimate (2.36).

We now show that any smooth set E sufficiently W 2,p–close to another smooth set F , can
be “translated” by a vector η ∈ Rn such that ∂E − η = {y + ψη(y)νF (y) : y ∈ ∂F}, for a
function ψη ∈ C∞(∂F ) having a suitable small “projection” on T (∂F ) (see the definitions and the
discussion after Remark 2.2.4).

Lemma 2.2.15. Let p > n− 1 and F ⊆ Tn a smooth set with a tubular neighborhood Nε. For any τ > 0

there exist constants δ,C > 0 such that if another smooth set E ⊆ Tn satisfies Vol(E△F ) < δ and
∂E = {y + ψ(y)νF (y) : y ∈ ∂F} ⊆ Nε for a function ψ ∈ C∞(R) with ∥ψ∥W 2,p(∂F ) < δ, then there
exist η ∈ Rn and ψη ∈ C∞(∂F ) with the following properties:

∂E − η = {y+ ψη(y)νF (y) : y ∈ ∂F} ⊆ Nε ,

|η| ⩽ C∥ψ∥W 2,p(∂F ), ∥ψη∥W 2,p(∂F ) ⩽ C∥ψ∥W 2,p(∂F )

and ∣∣∣ˆ
∂F

ψηνF dµ
∣∣∣ ⩽ τ∥ψη∥L2(∂F ) .
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Proof. We let dF to be the signed distance function from ∂F , as in formula (1.14). We underline
that, throughout the proof, the various constants will be all independent of ψ : ∂F → R.
As observed in Remark 2.2.7, there exists an orthonormal basis {e1, . . . , en} of Rn such that the
functions ⟨νF |ei⟩ are orthogonal in L2(∂F ), that is,

ˆ
∂F

⟨νF |ei⟩⟨νF |ej⟩ dµ = 0, (2.39)

for all i ̸= j. Given a smooth function ψ : ∂F → R, we set

η =
n∑
i=1

ηiei ,

where

ηi =


1

∥⟨νF |ei⟩∥2L2(∂F )

´
∂F ψ(x)⟨νF (x)|ei⟩ dµ if i ∈ IF ,

ηi = 0 otherwise
(2.40)

and IF is the set of the indices i ∈ {1, . . . ,n} such that ∥⟨νF |ei⟩∥L2(∂F ) > 0. Note that, from Hölder
inequality, it follows

|η| ⩽ C1∥ψ∥L2(∂F ) . (2.41)

Step 1. Let Tψ : ∂F → ∂F be the map

Tψ(y) = πF (y+ ψ(y)νF (y)− η) . (2.42)

It is easily checked that there exists ε0 > 0 such that if

∥ψ∥W 2,p(∂F ) + |η| ⩽ ε0 ⩽ 1 , (2.43)

then Tψ is a smooth diffeomorphism, moreover,

∥JTψ − 1∥L∞(∂F ) ⩽ C∥ψ∥C1(∂F ) (2.44)

(here JTψ is the Jacobian relative to ∂F ) and

∥Tψ − Id∥W 2,p(∂F ) + ∥T−1
ψ − Id∥W 2,p(∂F ) ⩽ C(∥ψ∥W 2,p(∂F ) + |η|) . (2.45)

Therefore, setting Ê = E − η, we have

∂Ê = {z + ψη(z)νF (z) : z ∈ ∂F} ,

for some function ψη which is linked to ψ by the following relation: for all y ∈ ∂F , we let
z = z(y) ∈ ∂F such that

y+ ψ(y)νF (y)− η = z + ψη(z)νF (z) ,

then,
Tψ(y) = πF (y+ ψ(y)νF (y)− η) = πF (z + ψη(z)νF (z)) = z,

that is, y = T−1
ψ (z) and

ψη(z) =ψη(Tψ(y))

= dF (z + ψη(z)νF (z))

= dF (y+ ψ(y)νF (y)− η)

= dF (T
−1
ψ (z) + ψ(T−1

ψ (z))νF (Tψ(y))− η).
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Thus, using inequality (2.45), we have

∥ψη∥W 2,p(∂F ) ⩽ C2

(
∥ψ∥W 2,p(∂F ) + |η|

)
, (2.46)

for some constant C2 > 1. We now estimateˆ
∂F

ψη(z)νF (z) dµ(z) =

ˆ
∂F

ψη(Tψ(y))νF (Tψ(y))JTψ(y) dµ(y)

=

ˆ
∂F

ψη(Tψ(y))νF (Tψ(y)) dµ(y) +R1 , (2.47)

where

|R1| =
∣∣∣∣ˆ
∂F

ψη(Tψ(y))νF (Tψ(y)) [JTψ(y)− 1] dµ(y)

∣∣∣∣ ⩽ C3∥ψ∥C1(∂F )∥ψη∥L2(∂F ) , (2.48)

by inequality (2.44).
On the other hand,ˆ

∂F
ψη(Tψ(y))νF (Tψ(y)) dµ(y)

=

ˆ
∂F

[
y+ ψ(y)νF (y)− η− Tψ(y)

]
dµ(y)

=

ˆ
∂F

[
y+ ψ(y)νF (y)− η− πF (y+ ψ(y)νF (y)− η)

]
dµ(y)

=

ˆ
∂F

{
ψ(y)νF (y)− η+

[
πF (y)− πF (y+ ψ(y)νF (y)− η)

]}
dµ(y)

=

ˆ
∂F

(ψ(y)νF (y)− η) dµ(y) +R2 , (2.49)

where

R2 =

ˆ
∂F

[
πF (y)− πF (y+ ψ(y)νF (y)− η)

]
dµ(y)

= −
ˆ
∂F

dµ(y)

ˆ 1

0
∇πF (y+ t(ψ(y)ν(y)− η))(ψ(y)νF (y)− η) dt

= −
ˆ
∂F

∇πF (y)(ψ(y)νF (y)− η) dµ(y) +R3 . (2.50)

In turn, recalling inequality (2.41), we get

|R3| ⩽
ˆ
∂F

dµ(y)

ˆ 1

0
|∇πF (y+ t(ψ(y)νF (y)− η))−∇πF (y)| |ψ(y)νF (y)− η| dt ⩽ C4∥ψ∥2L2(∂F ) .

(2.51)
Since πF (x) = x− dF (x)∇dF (x) for x ∈ Nε (by equation (1.15)), it follows

∂πiF
∂xj

(x) = δij −
∂dF
∂xi

(x)
∂dF
∂xj

(x)− dF (x)
∂2dF
∂xi∂xj

(x),

thus, for all y ∈ ∂F , there holds

∂πiF
∂xj

(y) = δij −
∂dF
∂xi

(y)
∂dF
∂xj

(y) .

From this identity and equalities (2.47), (2.49) and (2.50), we conclude
ˆ
∂F

ψη(z)νF (z) dµ(z) =

ˆ
∂F

[
ψ(x)νF (x)− ⟨η | νF (x)⟩νF (x)

]
dµ(x) +R1 +R3 .
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As the integral at the right–hand side vanishes by relations (2.39) and (2.40), estimates (2.48)
and (2.51) imply∣∣∣ˆ

∂F
ψη(y)νF (y) dµ(y)

∣∣∣ ⩽ C3∥ψ∥C1(∂F )∥ψη∥L2(∂F ) +C4∥ψ∥2L2(∂F )

⩽ C∥ψ∥C1(∂F )

(
∥ψη∥L2(∂F ) + ∥ψ∥L2(∂F )

)
⩽ C5∥ψ∥1−ϑW 2,p(∂F )

∥ψ∥ϑL2(∂F )

(
∥ψη∥L2(∂F ) + ∥ψ∥L2(∂F )

)
, (2.52)

where in the last passage we used a well known interpolation inequality, with ϑ ∈ (0, 1) depending
only on p > n− 1 (see [7, Theorem 3.70] and Proposition 3.3.4 below).
Step 2. The previous estimate does not allow to conclude directly, but we have to rely on the
following iteration procedure. Fix any number K > 1 and assume that δ ∈ (0, 1) is such that
(possibly considering a smaller τ )

τ + δ < ε0/2, C2δ(1+ 2C1) ⩽ τ , 2C5δ
ϑK ⩽ τ . (2.53)

Given ψ, we set ψη,0 = ψ and we denote by η1 the vector defined as in (2.40). We set E1 = E − η1

and denote by ψη,1 the function such that ∂E1 = {x+ ψη,1(x)νF (x) : x ∈ ∂F}. As before, ψη,1
satisfies

y+ ψη,0(y)νF (y)− η1 = z + ψη,1(z)νF (z) .

Since ∥ψ∥W 2,p(∂F ) ⩽ δ and |η| ⩽ C1∥ψ∥L2(∂F ), by inequalities (2.41), (2.46) and (2.53) we have

∥ψη,1∥W 2,p(∂F ) ⩽ C2δ(1+C1) ⩽ τ . (2.54)

Using again that ∥ψ∥W 2,p(∂F ) < δ < 1, by estimate (2.52) we obtain∣∣∣ˆ
∂F

ψη,1(y)νF (y) dµ(y))
∣∣∣ ⩽ C5∥ψη,0∥ϑL2(∂F )

(
∥ψη,1∥L2(∂F ) + ∥ψη,0∥L2(∂F )

)
,

where we have ∥ψη,0∥L2(∂F ) ⩽ δ.
We now distinguish two cases.
If ∥ψη,0∥L2(∂F ) ⩽ K∥ψη,1∥L2(∂F ), from the previous inequality and (2.53), we get∣∣∣ˆ

∂F
ψη,1(y)νF (y) dµ(y)

∣∣∣ ⩽ C5δ
ϑ
(
∥ψη,1∥L2(∂F ) + ∥ψη,0∥L2(∂F )

)
⩽ 2C5δ

ϑK∥ψη,1∥L2(∂F )

⩽ δ∥ψη,1∥L2(∂F ) ,

thus, the conclusion follows with η = η1.
In the other case,

∥ψη,1∥L2(∂F ) ⩽
∥ψη,0∥L2(∂F )

K
⩽

δ

K
⩽ δ . (2.55)

We then repeat the whole procedure: we denote by η2 the vector defined as in formula (2.40) with
ψ replaced by ψη,1, we set E2 = E1 − η2 = E − η1 − η2 and we consider the corresponding ψη,2
which satisfies

w+ ψη,2(w)νF (w) = z + ψη,1(z)νF (z)− η2 = y+ ψη,0(y)νF (y)− η1 − η2 .

Since

∥ψη,0∥W 2,p(∂F ) + |η1 + η2| ⩽ δ +C1δ +C1∥ψη,1∥L2(∂F )

⩽ δ +C1δ
(
1+

1

K

)
⩽ C2δ(1+ 2C1)

⩽ τ ,
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the map Tψη,0(y) = πF (y + ψη,0(y)νF (y)− (η1 + η2)) is actually a diffeomorphism, thanks to
formula (2.43) (having chosen τ and δ small enough).
Thus, by applying inequalities (2.46) (with η = η1 + η2), (2.41), (2.53) and (2.55), we get

∥ψη,2∥W 2,p(∂F ) ⩽ C2

(
∥ψη,0∥W 2,p(∂F ) + |η1 + η2|

)
⩽ C2δ

(
1+C1 +

C1

K

)
⩽ τ ,

asK > 1, analogously to conclusion (2.54). On the other hand, by estimates (2.41), (2.54) and (2.55),

∥ψη,1∥W 2,p(∂F ) + η2 ⩽ C2δ(1+C1) +C1
δ

K
⩽ C2δ(1+ 2C1) ⩽ τ ,

hence, also the map Tψη,1(x) = πF (x+ψη,1(x)νF (x)− η2) is a diffeomorphism satisfying inequal-
ities (2.43) and (2.44). Therefore, arguing as before, we obtain∣∣∣ˆ

∂F
ψη,2(y)νF (y) dµ(y)

∣∣∣ ⩽ C5∥ψη,1∥ϑL2(∂F )

(
∥ψη,2∥L2(∂F ) + ∥ψη,1∥L2(∂F )

)
.

Since ∥ψη,1∥L2(∂F ) ⩽ δ by inequality (2.55), if ∥ψη,1∥L2(∂F ) ⩽ K∥ψη,2∥L2(∂F ) the conclusion
follows with η = η1 + η2. Otherwise, we iterate the procedure observing that

∥ψη,2∥L2(∂F ) ⩽
∥ψη,1∥L2(∂F )

K
⩽

∥ψη,0∥L2(∂F )

K2
⩽

δ

K2
.

This construction leads to three (possibly finite) sequences ηn, En and ψη,n such that
En = E − η1 − · · · − ηn, |ηn| ⩽ C1δ

Kn−1

∥ψη,n∥W 2,p(∂F ) ⩽ C2

(
∥ψη,0∥W 2,p(∂F ) + |η1 + · · ·+ ηn|

)
⩽ C2δ(1+ 2C1)

∥ψη,n∥L2(∂F ) ⩽
δ
Kn

∂En = {x+ ψη,n(x)νF (x) : x ∈ ∂F}

If for some n ∈ N we have ∥ψη,n−1∥L2(∂F ) ⩽ K∥ψη,n∥L2(∂F ), the construction stops, since, arguing
as before, ∣∣∣ˆ

∂F
ψη,n(y)νF (y) dµ(y)

∣∣∣ ⩽ δ∥ψη,n∥L2(∂F )

and the conclusion follows with η = η1 + · · · + ηn and ψη = ψη,n. Otherwise, the iteration
continues indefinitely and we get the thesis with

η =
∞∑
n=1

ηn, ψη = 0 ,

(notice that the series is converging), which actually means that E = η+ F .

We finally show Theorem 2.2.10.

Proof of Theorem 2.2.10.
Step 1. We first want to see that

m0 = inf
{

ΠE(ψ) : ψ ∈ T⊥(∂E), ∥ψ∥H1(∂E) = 1
}
> 0.

To this aim, we consider a minimizing sequence ψi for the above infimum and we assume that
ψi ⇀ ψ0 weakly in H1(∂E), then ψ0 ∈ T⊥(∂E) (since it is a closed subspace of H1(∂E)) and if
ψ0 ̸= 0, there holds

m0 = lim
i→+∞

ΠE(ψi) ⩾ ΠE(ψ0) > 0
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due to the strict stability of E and the lower semicontinuity of ΠE (recall formula (2.21) and the
fact that the weak convergence in H1(∂E) implies strong convergence in L2(∂E) by Sobolev
embeddings). On the other hand, if instead ψ0 = 0, again by the strong convergence of ψi → ψ0 in
L2(∂E), by looking at formula (2.21), we have

m0 = lim
i→∞

ΠE(ψi) = lim
i→∞

ˆ
∂E

|∇ψi|2 dµ = lim
i→∞

∥ψi∥2H1(∂E) = 1

since ∥ψi∥L2(∂E) → 0.

Step 2. Now we show that there exists a constant δ1 > 0 such that if E is like in the statement and
∂F = {y+ ψF (y)νE(y) : y ∈ ∂E}, with ∥ψF ∥W 2,p(∂E) ⩽ δ1 and Vol(F ) = Vol(E), then

inf

{
ΠF (ψ) : ψ ∈ H̃1(∂F ), ∥ψ∥H1(∂F ) = 1,

∣∣∣ˆ
∂F

ψνF dµ
∣∣∣ ⩽ δ1

}
⩾
m0

2
.

We argue by contradiction assuming that there exists a sequence of sets Fi with ∂Fi = {y +
ψFi(y)νE(y) : y ∈ ∂E} with ∥ψFi∥W 2,p(∂E) → 0 and Vol(Fi) = Vol(E) and a sequence of
functions ψi ∈ H̃1(∂Fi) with ∥ψi∥H1(∂Fi) = 1 and

´
∂Fi

ψiνFi dµi → 0, such that

ΠFi(ψi) <
m0

2
.

We then define the following sequence of smooth functions

ψ̃i(y) = ψi(y+ ψFi(y)νE(y))−
 
∂E

ψi(y+ ψFi(y)νE(y)) dµ(y) (2.56)

which clearly belong to H̃1(∂E). Setting θi(y) = y + ψFi(y)νE(y), as p > max{2,n− 1}, by the
Sobolev embeddings, θi → Id in C1,α and νFi ◦ θi → νE in C0,α(∂E), hence, the sequence ψ̃i is
bounded in H1(∂E) and if {ek} is the special orthonormal basis found in Remark 2.2.7, we have
⟨νFi ◦ θi|ek⟩ → ⟨νE |ek⟩ uniformly for all k ∈ {1, . . . ,n}. Thus,

ˆ
∂E

ψ̃i⟨νE |εi⟩ dµ→ 0,

as i→ ∞, indeed, ˆ
∂E

ψ̃i⟨νE |ek⟩ dµ−
ˆ
∂E

ψ̃i⟨νFi ◦ θi|ek⟩ dµ→ 0

and ˆ
∂E

ψ̃i⟨νFi ◦ θi|ek⟩ dµ =

ˆ
∂Fi

ψi⟨νFi |ek⟩ Jθ
−1
i dµi → 0,

as the Jacobians (notice that Jθi are Jacobians “relative” to the hypersurface ∂E) Jθ−1
i → 1

uniformly and we assumed ˆ
∂Fi

ψiνFi dµi → 0 .

Hence, using expression (2.26), for the projection map π on T⊥(∂E), it follows

∥π(ψ̃i)− ψ̃i∥H1(∂E) → 0

as i→ ∞ and

lim
i→∞

∥π(ψ̃i)∥H1(∂E) = lim
i→∞

∥ψ̃i∥H1(∂E) = lim
i→∞

∥ψi∥H1(∂Fi) = 1, (2.57)

since ∥ψFi∥W 2,p(∂E) → 0, thus ∥ψi∥C1,α(∂E) → 0, by looking at the definition of the functions ψ̃i in
formula (2.56).
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Note now that the W 2,p– convergence of Fi to E (the second fundamental form B∂Fi of ∂Fi is
“morally” the Hessian of ψFi ) implies

B∂Fi ◦ θi → B∂E in Lp(∂E) ,

as i→ ∞, then, by Sobolev embeddings again (in particularH1(∂E) ↪→ Lq(∂E) for any q ∈ [1, 2∗),
with 2∗ = 2(n− 1)/(n− 3) which is larger than 2) and the W 2,p–convergence of Fi to E, we get

ˆ
∂Fi

|B∂Fi |
2ψ2

i dµi −
ˆ
∂E

|B∂E |2ψ̃2
i dµ→ 0 .

Finally, recalling expression (2.21), we conclude

ΠFi(ψi)− ΠE(ψ̃i) → 0 ,

since we have
∥ψi∥L2(∂Fi) − ∥ψ̃i∥L2(∂E) → 0 ,

which easily follows again by looking at the definition of the functions ψ̃i in formula (2.56) and
taking into account that ∥ψFi∥C1,α(∂E) → 0, hence limits (2.57) imply

∥∇ψi∥L2(∂Fi) − ∥∇ψ̃i∥L2(∂E) → 0 .

By the previous conclusion ∥π(ψ̃i)− ψ̃i∥H1(∂E) → 0 and Sobolev embeddings, it this then straight-
forward, arguing as above, to get also

ΠE(ψ̃i)− ΠE(π(ψ̃i)) → 0,

hence,
ΠFi(ψi)− ΠE(π(ψ̃i)) → 0.

Since we assumed that ΠFi(ψi) < m0/2, we conclude that for i ∈ N, large enough there holds

ΠE(π(ψ̃i)) ⩽
m0

2
< m0,

which is a contradiction to Step 1, as π(ψ̃i) ∈ T⊥(∂E).

Step 3. In order to simplify the notation, in the rest of the proof we denote ψF = ψ.
Let us now consider F such that Vol(F ) = Vol(E), Vol(F△E) < δ and

∂F = {y+ ψ(y)νE(y) : y ∈ ∂E} ⊆ Nε,

with ∥ψ∥W 2,p(∂E) ⩽ δ where δ > 0 is smaller than δ1 given by Step 2.
Taking a possibly smaller δ > 0, we consider the field X and the associated flow Φ found in
Lemma 2.2.13. Hence, divX = 0 in Nε and Φ(1, y) = y + ψ(y)νE(y), for all y ∈ ∂E, that is,
Φ(1, ∂E) = ∂F ⊆ Nε which implies E1 = Φ1(E) = F and Vol(E1) = Vol(F ) = Vol(E). Then
the special variation Et = Φt(E) is volume–preserving, for t ∈ [−1, 1] and the vector field X is
admissible, by the last part of such lemma.
By Lemma 2.2.15, choosing an even smaller δ > 0 if necessary, possibly replacing F with a translate
F − σ for some η ∈ Rn if needed, we can assume that∣∣∣∣ˆ

∂E
ψ νE dµ

∣∣∣∣ ⩽ δ1
2
∥ψ∥L2(∂E). (2.58)

We now claim that ∣∣∣∣ˆ
∂E

⟨X|νEt⟩νEt dµt
∣∣∣∣ ⩽ δ1∥⟨X|νEt⟩∥L2(∂Et) , (2.59)
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for every t ∈ [0, 1]. To this aim, we write
ˆ
∂E

⟨X|νEt⟩νEt dµt =
ˆ
∂E

⟨X ◦ Φt|νEt ◦ Φt⟩(νEt ◦ Φt) JΦt dµ

=

ˆ
∂E

⟨X ◦ Φt|νE⟩νE dµ+R1

=

ˆ
∂E

⟨X(x)|νE⟩νE dµ+R1 +R2

=

ˆ
∂E

ψνE dµ+R1 +R2 +R3

with appropriate R1,R2 and R3 (see below).
By the definition of X in formula (2.30) (in the proof of Lemma 2.2.13), the bounds 0 < C1 ⩽
ξ ⩽ C2 and ∥J(πE ◦ Φt)−1∥L∞(∂E) ⩽ C3 (by inequality (2.28) and Sobolev embeddings, as
p > max{2,n−1}, we have ∥Φ(t, ·)− Id∥C1,α(∂E) ⩽ C∥ψ∥W 2,p(∂E) ⩽ Cδ), the following inequality
holds

ˆ
∂E

|X(Φ(t,x))| dµ =

ˆ
∂E

∣∣∣∣ˆ ψ(πE(Φ(t,x)))

0

ξ(Φ(t,x))∇dE(Φ(t,x))

ξ(Φ(t,x) + sν(πE(Φ(t,x))))
ds

∣∣∣∣ dµ
⩽ C

ˆ
∂E

|ψ(πE(Φ(t,x)))| dµ

=

ˆ
∂E

|ψ(z)|J(πE ◦ Φt)
−1(z) dµ(z)

⩽ C∥ψ∥L2(∂E). (2.60)

for every t ∈ [0, 1].
We want now to prove that for every ε > 0, choosing a suitably small δ > 0 we have the estimate

|R1|+ |R2|+ |R3| ⩽ ε∥ψ∥L2(∂E). (2.61)

First,

R1 =

ˆ
∂E

⟨X ◦ Φt|νEt ◦ Φ⟩νEt ◦ Φt[JΦt − 1] dµ

+

ˆ
∂E

⟨X ◦ Φt|νEt ◦ Φt⟩νEt ◦ Φt dµ−
ˆ
∂E

⟨X ◦ Φt, νE⟩νE dµ

=

ˆ
∂E

⟨X ◦ Φt|νEt ◦ Φt⟩νEt ◦ Φt [JΦt − 1] dµ+

ˆ
∂E

⟨X ◦ Φt|νEt ◦ Φt − νE⟩νE dµ

+

ˆ
∂E

⟨X ◦ Φt|νEt ◦ Φt⟩(νEt ◦ Φt − νE) dµ

⩽
ˆ
∂E

|X ◦ Φt| ∥JΦt − 1∥L∞(∂E) dµ+

ˆ
∂E

|X ◦ Φt| ∥νE − νEt ◦ Φt∥L∞(∂E) dµ ,

then, since by equality (2.27), it follow that for every t ∈ [0, 1] the two terms

∥νE − νEt ◦ Φ(t,x)∥L∞(∂E) and ∥JΦt − 1∥L∞(∂E)

can be made (uniformly in t ∈ [0, 1]) small as we want, if δ > 0 is small enough, by using
inequality (2.60), we obtain

|R1| ⩽ ε∥ψ∥L2(∂E)/3.
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Then we estimate, by means of inequality (2.27) and where s = s(t, y) ∈ [t, 1],

|R2| ⩽
ˆ
∂E

|X(Φ(t,x))−X(Φ(1,x))|+ |X(Φ(1,x))−X(x)| dµ

⩽
ˆ
∂E

|X(Φ(t,x))−X(Φ(1,x))|+ ∥∇X∥L2(Nε)∥ψ∥L2(∂E)

=

ˆ
∂E

(1− t)|∇X(Φs(y))|
∣∣∣∣∂Φs

∂t
(y)

∣∣∣∣ dµ(y) + ∥∇X∥L2(Nε)∥ψ∥L2(∂E)

⩽
ˆ
∂E

|∇X(Φ(s,x))||Φ(t,x)− Φ(1,x)|+ ∥∇X∥L2(Nε)∥ψ∥L2(∂E)

⩽ C∥∇X∥L∞(Nε)C∥ψ∥L2(∂E) + ∥∇X∥L2(Nε)∥ψ∥L2(∂E),

where in the last inequality we use equation (2.60). Hence, using equality (2.31) and Sobolev
embeddings, as p > max{2,n− 1}, we get

|R2| ⩽ C∥ψ∥W 2,p(∂E)∥ψ∥L2(∂E),

then, since ∥ψ∥W 2,p(∂E) < δ, we obtain

|R2| < ε∥ψ∥L2(∂E)/3,

if δ2 is small enough.
Arguing similarly, recalling the definition of X given by formula (2.30), we also obtain |R3| ⩽
ε∥ψ∥L2(∂E), hence estimate (2.61) follows. We can then conclude that, for δ > 0 small enough, we
have ∣∣∣∣ˆ

∂E
⟨X|νEt⟩νEt dµt

∣∣∣∣ ⩽ ∣∣∣∣ˆ
∂E

ψνE dµ

∣∣∣∣+ ε∥ψ∥L2(∂E) ⩽
(δ1
2
+ ε
)
∥ψ∥L2(∂E)

for any t ∈ [0, 1], where in the last inequality we used the assumption (2.58), thus choosing
ε = δ1/4 we get ∣∣∣∣ˆ

∂E
⟨X|νEt⟩νEt dµt

∣∣∣∣ ⩽ 3δ1
4

∥ψ∥L2(∂E).

Along the same line, it is then easy to prove that

∥⟨X|νEt⟩∥L2(∂Et) ⩾ (1− ε)∥ψ∥L2(∂E),

for any t ∈ [0, 1], hence claim (2.59) follows.
As a consequence, since ⟨X|νEt⟩ ∈ H̃1(∂Et), being X admissible for Et (recalling computa-
tion 2.6) and ∂Et can be described as a graph over ∂E with a function with small norm in
W 2,p(∂E) (by estimate (2.28) of Lemma 2.2.13), we can apply Step 2 with F = Et to the function
⟨X|νEt⟩/∥⟨X|νEt⟩∥H1(∂Et), concluding

ΠEt(⟨X|νEt⟩) ⩾
m0

2
∥⟨X|νEt⟩∥H1(∂Et). (2.62)
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By means of Lemma 2.2.14, for δ > 0 small enough, we now show the following inequality on
∂Et (here div is the divergence operator and Xτt = X − ⟨X|νEt⟩νEt is a tangent vector field on
∂Et), for any t ∈ [0, 1],

∥div(Xτt⟨X|νEt⟩)∥
L

p
p−1 (∂Et)

= ∥divXτt⟨X|νEt⟩+ ⟨Xτt |∇⟨X|νEt⟩⟩∥
L

p
p−1 (∂Et)

≤C∥∇Xτt∥L2(∂Et)∥⟨X|νEt⟩∥
L

2p
p−2 (∂Et)

+C∥Xτt∥
L

2p
p−2 (∂Et)

∥∇⟨X|νEt⟩∥L2(∂Et)

≤C∥X∥H1(∂Et)∥X∥
L

2p
p−2 (∂Et)

≤C∥X∥2H1(∂Et)

≤C∥⟨X|νEt⟩∥2H1(∂Et)
, (2.63)

where we used the Sobolev embedding H1(∂Et) ↪→ L
2p
p−2 (∂Et), as p > max{2,n− 1}.

Then, we compute (here Xτt is the tangent component of X and Ht is the mean curvature)

A(∂F )−A(∂E) =A(∂E1)−A(∂E)

=

ˆ 1

0
(1− t)

d2

dt2
A(∂Et) dt

=

ˆ 1

0
(1− t)

(
ΠEt(⟨X|νEt⟩)

)
dt

=

ˆ 1

0
(1− t)ΠEt(⟨X|νEt⟩) dt

−
ˆ 1

0
(1− t)

ˆ
∂E

Ht div(Xτt⟨X|νEt⟩) dµt dt ,

by Theorem 2.1.12, the definition of ΠEt in formula (2.21) and taking into account that divX = 0

in Nε and that Xt = X , as the variation is special.
Hence, by estimate (2.62), we have (recall that H = H0 = λ constant, as E is a critical set)

A(∂F )−A(∂E) ≥ m0

2

ˆ 1

0
(1− t)∥⟨X|νEt⟩∥2H1(∂Et)

dt

−
ˆ 1

0
(1− t)

ˆ
∂Et

Ht div(Xτt⟨X|νEt⟩) dµt dt

=
m0

2

ˆ 1

0
(1− t)∥⟨X|νEt⟩∥2H1(∂Et)

dt

−
ˆ 1

0
(1− t)

ˆ
∂Et

(Ht − λ) div(Xτt⟨X|νEt⟩) dµt dt

⩾
m0

2

ˆ 1

0
(1− t)∥⟨X|νEt⟩∥2H1(∂Et)

dt

−
ˆ 1

0
(1− t)∥Ht − λ∥Lp(∂Et)∥div(Xτt⟨X|νEt⟩)∥

L
p
p−1 (∂Et)

dt

⩾
m0

2

ˆ 1

0
(1− t)∥⟨X|νEt⟩∥2H1(∂Et)

dt

−C

ˆ 1

0
(1− t)∥Ht − λ∥Lp(∂Et)∥⟨X|νEt⟩∥2H1(∂Et)

dt,
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by estimate (2.63).
If δ > 0 is sufficiently small, as Et is W 2,p–close to E, we have

∥Ht − λ∥Lp(∂Et) < m0/4C ,

hence,

A(∂F )−A(∂E) ⩾
m0

4

ˆ 1

0
(1− t)∥⟨X|νEt⟩∥2H1(∂Et)

dt.

Then, we can conclude the proof of the theorem with the following series of inequalities, holding
for a suitably small δ > 0 as in the statement,

A(∂F ) ⩾ A(∂E) +
m0

2

ˆ 1

0
(1− t)∥⟨X|νEt⟩∥2H1(∂Et)

dt

⩾ A(∂E) +C∥⟨X|νE⟩∥2L2(∂E)

⩾ A(∂E) +C∥ψ∥2L2(∂E)

⩾ A(∂E) +C[Vol(E△F )]2

⩾ A(∂E) +C[α(E,F )]2,

where the first inequality is due to the W 2,p–closedness of Et to E, the second one by the very
expression (2.30) of the vector field X on ∂E,

|⟨X(y)|νE(y)⟩| =
∣∣∣ˆ ψ(y)

0

ds

ξ(y+ sνE(y))

∣∣∣ ⩽ C|ψ(y)|,

the third follows by a straightforward computation (involving the map L defined by formula (1.49)
and its Jacobian), as ∂E is a “normal graph” over ∂F with ψ as “height function”, finally the last
one simply by the definition of the “distance” α, recalling that we possibly translated the “original”
set F by a vector η ∈ Rn, at the beginning of this step.

We conclude this section by proving two propositions that will be used later. The first one says
that when a set is sufficiently W 2,p–close to a strictly stable critical set of the Area functional A,
then the quadratic form (2.21) remains uniformly positive definite (on the orthogonal complement
of its degenerate subspace, see the discussion at the end of the previous subsection).

Proposition 2.2.16. Let p > max{2,n− 1} and E ⊆ Tn be a smooth strictly stable critical set with Nε
a tubular neighborhood of ∂E. Then, for every θ ∈ (0, 1] there exist σθ, δ > 0 such that if a smooth set
F ⊆ Tn is W 2,p–close to E, that is, Vol(F△E) < δ and ∂F ⊆ Nε with

∂F = {y+ ψF (y)νE(y) : y ∈ ∂E}

for a smooth ψF with ∥ψF ∥W 2,p(∂E) < δ, there holds

ΠF (ψ) ⩾ σθ∥ψ∥2H1(∂F ),

for all ψ ∈ H̃1(∂F ) satisfying

min
η∈OE

∥ψ− ⟨η|νF ⟩∥L2(∂F ) ⩾ θ∥ψ∥L2(∂F ),

where OE is defined by formula (2.25).

Proof.
Step 1. We first show that for every θ ∈ (0, 1] there holds

mθ= inf
{

ΠE(ψ) : ψ ∈ H̃1(∂E) , ∥ψ∥H1(∂E)=1 and min
η∈OE

∥ψ−⟨η|νE⟩∥L2(∂E) ⩾ θ∥ψ∥L2(∂E)

}
> 0 .

(2.64)
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Indeed, let ψi be a minimizing sequence for this infimum and assume that ψi ⇀ ψ0 ∈ H̃1(∂E)
weakly in H1(∂E).
If ψ0 ̸= 0, as the weak convergence in H1(∂E) implies strong convergence in L2(∂E) by Sobolev
embeddings, for every η ∈ OE we have

∥ψ0 − ⟨η|νE⟩∥L2(∂E) = lim
i→∞

∥ψi − ⟨η|νE⟩∥L2(∂E) ⩾ lim
i→∞

θ∥ψi∥L2(∂E) = θ∥ψ0∥L2(∂E),

hence,
min
η∈OE

∥ψ0 − ⟨η|νE⟩∥L2(∂E) ⩾ θ∥ψ0∥L2(∂E) > 0,

thus, we conclude ψ0 ∈ H̃1(∂E) \ T (∂E) and

mθ = lim
i→∞

ΠE(ψi) ⩾ ΠE(ψ0) > 0 ,

where the last inequality follows from estimate (2.22) in Remark 2.2.6.
If ψ0 = 0, then again by the strong convergence of ψi → ψ0 in L2(∂E), by looking at formula (2.21),
we have

mθ = lim
i→∞

ΠE(ψi) = lim
i→∞

ˆ
∂E

|∇ψi|2 dµ = lim
i→∞

∥ψi∥2H1(∂E) = 1

since ∥ψi∥L2(∂E) → 0.
Step 2. In order to finish the proof it is enough to show the existence of some δ > 0 such that if
Vol(F△E) < δ and ∂F =

{
y+ ψF (y)νE(y) : y ∈ ∂E

}
with ∥ψF ∥W 2,p(∂E) < δ, then

inf
{

ΠF (ψ) : ψ ∈ H̃1(∂F ) , ∥ψ∥H1(∂F ) = 1 and min
η∈OE

∥ψ− ⟨η|νF ⟩∥L2(∂F ) ⩾ θ∥ψ∥L2(∂F )

}
⩾ σθ =

1

2
min{mθ/2, 1} , (2.65)

where mθ/2 is defined by formula (2.64), with θ/2 in place of θ.

Assume by contradiction that there exist a sequence of smooth sets Fi ⊆ Tn, with ∂Fi = {y+
ψFi(y)νE(y) : y ∈ ∂E} and ∥ψFi∥W 2,p(∂E) → 0 and a sequence ψi ∈ H̃1(∂Fi), with ∥ψi∥H1(∂Fi) =
1 and minη∈OE ∥ψi − ⟨η|νFi⟩∥L2(∂Fi) ⩾ θ∥ψi∥L2(∂Fi), such that

ΠFi(ψi) < σθ ⩽ mθ/2/2 . (2.66)

Let us suppose first that limi→∞ ∥ψi∥L2(∂Fi) = 0 and observe that by the Sobolev embeddings
∥ψi∥Lq(∂Fi) → 0 for some q > 2, thus, since the functions ψFi are uniformly bounded in W 2,p(∂E)
for p > max{2,n− 1}, recalling formula (2.21), it is easy to see that

lim
i→∞

ΠFi(ψi) = lim
i→∞

ˆ
∂Fi

|∇ψi|2 dµi = lim
i→∞

∥ψi∥2H1(∂Fi)
= 1 ,

which is a contradiction with assumption (2.66).
Hence, we may assume that

lim
i→∞

∥ψi∥L2(∂Fi) > 0. (2.67)

The idea now is to write every ψi as a function on ∂E. We define the functions ψ̃i(∂E) → R, given
by

ψ̃i(y) = ψi
(
y+ ψFi(y)νE(y)

)
−
 
∂E

ψi(y+ ψFi(y)νE(y)) dµ(y) ,

for every y ∈ ∂E.
As ψFi → 0 in W 2,p(∂E), we have in particular that

ψ̃i ∈ H̃1(∂E) , ∥ψ̃i∥H1(∂E) → 1 and
∥ψ̃i∥L2(∂E)

∥ψi∥L2(∂Fi)
→ 1 ,
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moreover, note also that νFi(· + ψFi(·)νE(·)) → νE in W 1,p(∂E) and thus in C0,α(∂E) for a
suitable α ∈ (0, 1), depending on p, by Sobolev embeddings. Using this fact and taking into
account the third limit above and inequality (2.67), one can easily show that

lim inf
i→∞

minη∈OE ∥ψ̃i − ⟨η|νE⟩∥L2(∂E)

∥ψ̃i∥L2(∂E)

⩾ lim inf
i→∞

minη∈OE ∥ψi − ⟨η|νFi⟩∥L2(∂Fi)

∥ψi∥L2(∂Ei)
⩾ θ .

Hence, for i ∈ N large enough, we have

∥ψ̃i∥H1(∂E) ⩾ 3/4 and min
η∈OE

∥ψ̃i − ⟨η|νE⟩∥L2(∂E) ⩾
θ

2
∥ψ̃i∥L2(∂E) ,

then, in turn, by Step 1, we infer

ΠE(ψ̃i) ⩾
9

16
mθ/2 . (2.68)

Arguing now exactly like in the final part of Step 2 in the proof of Theorem 2.2.10, we have that all
the terms of ΠFi(ψi) are asymptotically close to the corresponding terms of ΠE(ψ̃i), thus

ΠFi(ψi)− ΠE(ψ̃i) → 0 ,

which is a contradiction, by inequalities (2.66) and (2.68). This establishes inequality (2.65) and
concludes the proof.

The following final result of this section states that close to a strictly stable critical set there are
no other smooth critical sets (up to translations).

Proposition 2.2.17. Let p and E ⊆ Tn be as in Proposition 2.2.16. Then, there exists δ > 0 such that if
E′ ⊆ Tn is a smooth critical set with Vol(E′) = Vol(E), Vol(E△E′) < δ, ∂E′ ⊆ Nε and

∂E′ = {y+ ψ(y)νE(y) : y ∈ ∂E}

for a smooth ψ with ∥ψ∥W 2,p(∂E) < δ, then E′ is a translate of E.

Proof. In Step 3 of the proof of Theorem 2.2.10, it is shown that under these hypotheses on E

and E′, if δ > 0 is small enough, we may find a small vector η ∈ Rn and a volume–preserving
variation Et such thatE0 = E, E1 = E′ − η and

d2

dt2
A(∂Et) ⩾ C[Vol(E△(E′ − η))]2 ,

for all t ∈ [0, 1], where C is a positive constant independent of E′.
Assume that E′ is a smooth critical set as in the statement, which is not a translate of E, then
d
dtA(∂Et)

∣∣
t=0

= 0, but from the above formula it follows d
dtA(∂Et)

∣∣
t=1

> 0, which implies that
E′ − η cannot be critical, hence neither E′, which is a contradiction. Indeed, s 7→ E1−s is a
volume–preserving variation for E′ − η and

d

ds
A(∂E1−s)

∣∣∣
s=0

= − d

dt
A(∂Et)

∣∣∣
t=1

< 0 ,

showing that E′ − η is not critical.



3
T H E S U R F A C E D I F F U S I O N F L O W

3.1 G E O M E T R I C F E AT U R E S

We start this section with the general notion of smooth flow of sets.

Definition 3.1.1. Let Et ⊆ Tn for t ∈ [0,T ) be a one-parameter family of sets, then we say that it is
a smooth flow if there exists a smooth reference set F ⊆ Tn and a map Ψ ∈ C∞([0,T )×Tn;Tn) such
that Ψt = Ψ(t, ·) is a smooth diffeomorphism from Tn to Tn and Et = Ψt(F ), for all t ∈ [0,T ).

The velocity of the motion of any point x = Ψt(y) of the set Et, with y ∈ F , is then given by

Xt(x) = Xt(Ψt(y)) =
∂Ψt

∂t
(y).

Remark 3.1.2. Notice that, in general, the smooth vector field Xt, defined in the whole Tn by
Xt(Ψt(z)) =

∂Ψt
∂t (z) for every z ∈ Tn, is not independent of t.

When x ∈ ∂Et, we define the outer normal velocity of the flow of the boundaries ∂Et, which are
smooth hypersurfaces of Tn, as

Vt(x) = ⟨Xt(x)|νt(x)⟩,

for every t ∈ [0,T ), where νt is the outer normal vector to Et.

However, we only use the following definition which is obtained by representing the smooth
hypersurfaces ∂Et in Tn with a family of smooth embeddings. This is actually the more standard
way to define the surface diffusion flow, in the more general situation of smooth and possibly
immersed–only hypersurfaces (usually in Rn), without being the boundary of any set.

Definition 3.1.3. Let E ⊆ Tn be a smooth set. We say that the family Et ⊆ Tn, for t ∈ [0,T ) with
E0 = E, is a surface diffusion flow starting from E if the map t 7→ χEt is continuous from [0,T ) to
L1(Tn) and the hypersurfaces ∂Et move by surface diffusion, that is, there exists a smooth family
of embeddings φt : ∂E → Tn, for t ∈ [0,T ), with φ0 = Id and φt(∂E) = ∂Et, such that

∂φt
∂t

= (∆H)ν , (3.1)

where, at every point and time, H and ∆ are respectively the mean curvature and the Laplacian
(with the Riemannian metric induced by Tn, that is, by Rn) of the moving hypersurface ∂Et, while
ν is the “outer” normal to the smooth set Et.

Remark 3.1.4. An alternative way to describe the flow is to speak of the sets “enclosed” by the
boundary hypersurfaces moving by surface diffusion. This anyway would introduce an ambiguity,
since every hypersurface ∂Et clearly “separate” Tn in components and one should indicate which
ones are actually the sets Et at every time t. The use of the continuity of the map t 7→ χEt is a way
to avoid such ambiguity. Moreover, it follows easily that being the solution of the PDE system (3.1)
unique, by Theorem 3.2.1 below, the sets Et are uniquely determined (being a “geometric flow”,
actually the same “geometric” uniqueness also holds for the hypersurfaces ∂Et, like for the mean
curvature flow, see [48, Section 1.3]).

By means of equation (1.8), the system (3.1) can be rewritten as

∂φt
∂t

= −∆t∆tφt + lower order terms (3.2)

64



3.1 G E O M E T R I C F E AT U R E S 65

and it can be seen that it is a fourth order, quasilinear and degenerate, parabolic system of PDEs.
Indeed, it is quasilinear, as the coefficients (as second order partial differential operator) of the
Laplacian associated to the induced metrics gt on the evolving hypersurfaces, that is,

∆tφt(p) = ∆gt(p)φt(p) = gijt (p)∇
gt(p)
i ∇gt(p)

j φt(p)

depend on the first order derivatives of φt, as gt (and the coefficient of ∆t∆t on the third order
derivatives). Moreover, the operator at the right hand side of system (0.3) is degenerate, as its
symbol (the symbol of the linearized operator) admits zero eigenvalues due to the invariance of
the Laplacian by diffeomorphisms.

Like the Area functional, the flow is obviously invariant by isometries of Tn (or of Rn) and
reparametrizations. The volume–preserving property follows immediately arguing as in computa-
tion (2.6), indeed, if Et = Ψt(F ) is a surface diffusion flow, described by Ψ ∈ C∞([0,T )×Tn,Tn)
(as in Definition 3.1.1), with associated smooth vector field Xt satisfying

∂Ψt

∂t
(y) = Xt(Ψt(y)) ,

we have

d

dt
Vol(Et) =

ˆ
F

∂

∂t
JΨt(y) dy

=

ˆ
F
divXt(Ψ(t, y))JΨ(t, y) dy

=

ˆ
Et

divXt(x) dx

=

ˆ
∂Et

⟨X, νt⟩ dµt

=

ˆ
∂Et

Vt dµt

=

ˆ
∂Et

∆tHt dµt

= 0 ,

where µt is in the canonical measure induced on ∂Et by the flat metric of Tn and the last equality
follows from the divergence theorem (1.3).

Moreover, the surface diffusion flow can be regarded as the H̃−1–gradient flow of the volume–
constrained Area functional, in the following sense (see [32], for instance).
For a smooth set E ⊆ Tn, we let the space H̃−1(∂E) ⊆ L2(∂E) to be the dual of H̃1(∂E) with
the norm ∥u∥

H̃1(∂E)
=
´
∂E |∇u|2 dµ (the functions in H1(∂E) with zero integral) and the pairing

between H̃1(∂E) and H̃−1(∂E) simply being the integral of the product of the functions on ∂E.
Then, it follows easily that the norm of a smooth function v ∈ H̃−1(∂E) is given by

∥v∥2
H̃−1(∂E)

=

ˆ
∂E

v(−∆)−1v dµ =

ˆ
∂E

⟨∇(−∆)−1v,∇(−∆)−1v⟩ dµ

and, by polarization, we have the H̃−1(∂E)–scalar product between a pair of smooth functions
u, v : ∂E → R with zero integral,

⟨u, v⟩
H̃−1(∂E)

=

ˆ
∂E

⟨∇(−∆)−1u,∇(−∆)−1v⟩ dµ =

ˆ
∂E

u(−∆)−1v dµ ,

integrating by parts.
This scalar product, extended to the whole space H̃−1(∂E), make it a Hilbert space, hence, by the
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Riesz representation theorem, there exists a function ∇H̃−1

∂E A ∈ H̃−1(∂E) such that, for every smooth
function v ∈ H̃−1(∂E), there holds

ˆ
∂E

vH dµ = δA∂E(v) = ⟨v,∇H̃−1

∂E A⟩
H̃−1(∂E)

=

ˆ
∂E

v(−∆)−1∇H̃−1

∂E A dµ ,

by Theorem 2.1.5.
Then, by the fundamental lemma of calculus of variations, we conclude

(−∆)−1∇H̃−1

∂E A = H+ c ,

for a constant c ∈ R, that is,
∇H̃−1

∂E A = −∆H .

It clearly follows that the outer normal velocity of the moving boundaries of a surface diffusion
flow Vt = ∆tHt is minus the H̃−1–gradient of the volume–constrained functional A.
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The following existence/uniqueness theorem of classical solutions for the surface diffusion flow
was proved by Escher, Mayer and Simonett in [26]. It should be expected, by the explicit parabolic
nature of system (3.1), as shown by the formula (3.2).
As we mentioned in the introduction, it deals with the evolution in the whole space Rn of a
generic hypersurface, even only immersed, hence possibly with self–intersections. It is then
straightforward to adapt the same arguments to our case, when the ambient is the flat torus Tn

and the hypersurfaces are the boundaries of the sets Et, as in Definition 3.1.3, getting a (unique)
surface diffusion flow in a positive time interval [0,T ), for every initial smooth set E0 ⊆ Tn.

Theorem 3.2.1. Let φ0 : M → Rn be a smooth and compact, immersed hypersurface. Then, there exists
a unique smooth surface diffusion flow φ : [0,T )×M → Rn, starting from M0 = φ0(M ) and solving
system (3.1), for some maximal time of existence T > 0. Moreover, such flow and the maximal time of
existence depend continuously on the C2,α–norm of the initial hypersurface.

As an easy consequence, we have the following theorem, well suited for our setting.

Theorem 3.2.2. Let E ⊆ Tn be a smooth set, Nε a tubular neighborhood of ∂E and ME < ε/2. For every
E0 ⊆ Tn smooth set in C1

ME
(E) with

∂E0 = {y+ ψ0(y)νE(y) : y ∈ ∂E}

for a smooth function ψ0 : ∂E → R, there exists a unique surface diffusion flow Et, starting from E0, such
that

∂Et = {y+ ψt(y)νE(y) : y ∈ ∂E}

for smooth functions ψt : ∂E → R, for t ∈ [0,T (E0)), with T (E0) depending on the C2,α–norm of ψ0.

Instead of proving Theorem 3.2.1 (hence, Theorem 3.2.2), which is well known, we show
the following alternative short–time and existence result. Moreover, we provide higher order
regularity estimates depending on the C1,1–bound on the initial datum only.

Theorem 3.2.3. LetE ⊆ Tn be a smooth set and ε > 0. Then, there exist δ = δ(E, ε) and T = T (E, ε) >
0 with the following property: if E0 is the normal deformation of E induced by ψ0 ∈ C1,1(∂E) (as in
Definition 1.3.1), ∥ψ0∥C1,1(∂E) ⩽ δ and Vol(E0) = Vol(E), then the surface diffusion flow Et starting
from E0 exists in [0,T ), the sets Et are normal deformations of E induced by ψ(t, ·) ∈ C∞(∂E) for all
t ∈ (0,T ) and

sup
t∈(0,T )

∥ψ∥C2(∂E) ⩽ ε. (3.3)
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Moreover, for every k ∈ N \ {0}, there exist constants Ck = Ck(E, ε) > 0 such that

sup
t∈[T/2,T )

∥∇k+2ψ∥C0(∂E) ⩽ Ck(∥ψ0∥C1,1(∂E) + 1). (3.4)

To prove this theorem we use the classical linearization and fixed point approach in order to
solve the nonlinear evolution problem. Then, following closely what was done in [30] (combined
with the results of [41]), we employ some Schauder–type estimates to show the higher order
regularity of the flow. Before doing that, we recall some useful facts and lemmas.

Let E ⊆ Tn be a smooth set and Nε a tubular neighborhood of ∂E. It is well known that any
small deformation of ∂E can be represented as the graph of a “height” function ψ and conversely,
to any smooth function ψ : ∂E → R we can associate a set Eψ such that the hypersurface ∂Eψ is
given by φ(x) = x+ ψ(x)νE(x) (see [48] for more details). We aim to compute the equation for
a smooth (time dependent) function ψ(t,x), so that φt = x+ ψ(t,x)νE(x) satisfies system (3.1).
Obviously, we set ψ(0,x) = 0, for every x ∈ ∂E.
Arguing as in [48, Section 1.5], we deduce that ψ must satisfy the following evolution equation:

∂ψ

∂t
=− ∆2

tψ− 1

⟨νE | νt⟩
∆t⟨νE | νt⟩∆tψ+

1

⟨νE | νt⟩
∆tP (x,ψ,∇ψ)

=− ∆2
tψ+ J̃(x,ψ,∇ψ,∇2ψ,∇3ψ), (3.5)

where P and J̃ are smooth functions (assuming that ψ and ∇ψ are small). So, denoting by ⊗ the
usual tensor product, it follows that the function J̃ can be written as

J̃(x,ψ,∇ψ,∇2ψ,∇3ψ) = ⟨Q̃1 | ∇2ψ⟩+ ⟨Q̃2 | ∇2ψ⊗∇2ψ⟩+ ⟨Q̃3 | ∇3ψ⟩+ q̃4

where Q̃1, Q̃2, Q̃3 and q̃4 are, respectively, tensor–valued and scalar–valued functions depending
on (x,ψ,∇ψ). Moreover, they are smooth if their arguments are small enough.
Hence, linearizing the Laplace–Beltrami operator yields the following evolution equation (compare
with [30, Section 3.1])

∂ψ

∂t
= −∆2

Eψ+ ⟨A(x,ψ,∇ψ) | ∇4ψ⟩+ J(x,ψ,∇ψ,∇2ψ,∇3ψ), (3.6)

where A is a smooth 4th–order tensor, vanishing when both ψ and ∇ψ vanish and J is given by

J = ⟨Q1 | ∇3ψ⊗∇2ψ⟩+ ⟨Q2 | ∇3ψ⟩+ ⟨Q3 | ∇2ψ⊗∇2ψ⊗∇2ψ⟩
+ ⟨Q4 | ∇2ψ⊗∇2ψ⟩+ ⟨Q5 | ∇2ψ⟩+ q6, (3.7)

where Qi, for i = 1, . . . , 5 and q6 are, respectively, smooth tensor–valued and scalar–valued
functions depending on (x,ψ,∇ψ).

3.2.1 The biharmonic heat equation on a Riemannian manifold

We collect some classical results concerning the biharmonic heat equation on a smooth Riemannian
manifold (Σ, g), that is, the following problem:{

∂tu = −∆2
Σu+ f in [0,+∞)× Σ

u(·, 0) = u0 on Σ

for some given functions f : [0,+∞)× Σ → R and u0 : Σ → R.
For the detailed proofs, see [29, 41] and the references therein.
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Theorem 3.2.4 ([29, Theorem 2]). Given a smooth Riemannian manifold (Σ, g), there exists a unique
biharmonic heat kernel with respect to g, denoted by bg ∈ C∞((0,+∞)× Σ × Σ

)
. Moreover, let T > 0,

for any integers k, p, q ⩾ 0 and for any (t,x, y) ∈ (0,T )× Σ × Σ we have

|∂kt ∇p
x∇q

ybg(t,x, y)| ⩽ Ct−
n+4k+p+q

4 exp{−δ
(
t−

1
4 d(x, y)

) 4
3 },

where ∇x, ∇y are covariant derivatives with respect to g and the constants C, δ > 0 depend on T , g and
p+ q+ 4k.

Given the biharmonic heat kernel bg ∈ C∞((0,+∞)× Σ × Σ
)

and a function u0 ∈ C0(Σ), for
(t,x) ∈ (0,+∞)× Σ we define

Su0(t,x) =

ˆ
Σ
bg(t,x, y)u0(y)dµ(y) . (3.8)

Hence, Su0 is the solution of the homogeneous problem{
∂tv+ ∆2

Σv = 0 in (0,+∞)× Σ
v(·, 0) = u0 on Σ

(3.9)

and it is smooth, since the biharmonic heat kernel is smooth for every t > 0.
We now collect some results from [41]. We start with the following Schauder–type estimates on

the solution of the homogeneous problem (3.9), which are a slight reformulation of [41, Theorem
3.8] that better fit our purposes.

Theorem 3.2.5 ([41, Theorem 3.8]). Let T > 0 and u0 ∈ C1,1(Σ). Then, there exists C(Σ,T ) > 0 such
that

sup
t∈(0,T )

∥Su0∥C1,1(Σ) ⩽ C∥u0∥C1,1(Σ) . (3.10)

Furthermore, for any l, k ∈ N, we have

sup
t∈(0,T )

tl+
k
4

∥∥∥∂lt∇k+2
g Su0(t)

∥∥∥
C0(Σ)

⩽ Cl,k∥u0∥C1,1(Σ), (3.11)

for some constants Cl,k > 0 depending on l, k as well as Σ, T .

Definition 3.2.6. Fix 0 < T < +∞ and 0 < β < 1. We define

YT =
{
u ∈ C0

(
(0,T )× Σ

)
: ∥u∥YT < +∞

}
with the norm

∥u∥YT = sup
t∈(0,T )

(
t
1
2 ∥u(t, ·)∥C0(Σ) + t

1
2
+ β

4 [u(t, ·)]Cβ(Σ)
)

+ sup
(t,x)∈(0,T )×Σ

sup
0<h<T−t

t
1
2
+ β

4
|u(t+ h,x)− u(t,x)|

|h|
β
4

,

where [ · ]Cβ is the Hölder seminorm.
Similarly, we define

XT =
{
u ∈ C0((0,T )× Σ) : u(t, ·) ∈ C4(Σ), ∥u∥XT < +∞

}
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with the norm

∥u∥XT = sup
t∈(0,T )

( 4∑
k=0

t−
1
2
+ k

4 ∥∇ku(t, ·)∥C0(Σ) + t
1
2
+ β

4 [∇4u(t, ·)]Cβ(Σ)

+ t
1
2 ∥∂tu(t, ·)∥C0(Σ) + t

1
2
+ β

4 [∂tu(t, ·)]Cβ(Σ)
)

+ sup
(t,x)∈(0,T )×Σ

sup
0<h<T−t

t
1
2
+ β

4
|∇4u(t+ h,x)−∇4u(t,x)|

|h|
β
4

+ sup
(t,x)∈(0,T )×Σ

sup
0<h<T−t

t
1
2
+ β

4
|∂tu(t+ h,x)− ∂tu(t,x)|

|h|
β
4

. (3.12)

Proposition 3.2.7. The spaces (YT , ∥ · ∥YT ) and (XT , ∥ · ∥XT ) are Banach spaces.

The proof of the completeness of the spaces YT and XT is standard. Indeed, one can prove
directly that all Cauchy sequences converge to a function in the space and the candidate limit is
obtained by means of a diagonal argument.

Remark 3.2.8. Since the norm
∑4

k=0 ∥∇ku∥C0 is equivalent to the norm ∥u∥C0 + ∥∇4u∥C0 in the
function space C4(Σ), we have that the norm ∥ · ∥XT defined in formula (3.12) is equivalent to the
following norm:

∥u∥′
XT

=∥u∥XT +
3∑

k=0

sup
(t,x)∈(0,T )×Σ

sup
0<h<T−t

t−
1
2
+ k

4
+ β

4
|∇ku(t+ h,x)−∇ku(t,x)|

|h|
β
4

.

Given the biharmonic heat kernel bg ∈ C∞((0,T ) × Σ × Σ
)
, the solution (if it exists) to the

nonhomogeneous problem {
∂tu+ ∆2

Σu = f in (0,T )× Σ
u(·, 0) = 0 on Σ

(3.13)

where f is a fixed function on (0,T )× Σ, is given (by Duhamel’s principle) by

V f(t,x) =

ˆ t

0

ˆ
Σ
bg(t− s,x, y)f(s, y) dµ(y) ds (3.14)

and V f ∈ C∞((λ/2,λ)× Σ), for every λ > 0.

We conclude this section by recalling the following fundamental Schauder–type estimates for
solutions of problem (3.13), proved in [41] (see [41, Remark 3.12] for the final comments on the
constant C).

Theorem 3.2.9 ([41, Theorem 3.10]). Let 0 < T < +∞, if f ∈ YT , then V f ∈ XT and there exists a
constant C > 0 depending on Σ,T such that

∥V f∥XT ⩽ C∥f∥YT .

Moreover, the equation (∂t + ∆2
Σ)V f = f holds in classical sense on (0,T )× Σ and V f ∈ C∞((0,T )×

Σ).

3.2.2 A new proof of the short–time existence and uniqueness result

In order to prove Theorem 3.2.3, we need some fundamental estimates which follows from the
results above (with Σ = ∂E). We consider the map ψ 7→ f [ψ] with represents the nonlinear error
term generated in linearizing equation (3.5)

f [ψ](x) = ⟨A(x,ψ,∇ψ),∇4ψ⟩+ J(x,ψ,∇ψ,∇2ψ,∇3ψ), (3.15)
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where A and J are the operators defined in formula (3.6). The following lemma provides such
estimates on f [ψ].

Lemma 3.2.10. For any ε,m > 0 there exist T , δ > 0 depending on E and ε, with the following properties:

(i) for every ψ0 ∈ C1,1(Σ) and ζ ∈ XT satisfying ∥ζ∥XT ⩽ m, we have

f [ζ + Sψ0] ∈ YT , (3.16)

(ii) if, moreover, ∥ψ0∥C1,1(Σ) ⩽ δ, there holds

∥f [Sψ0]∥YT ⩽ ε(∥ψ0∥C1,1(Σ) + 1) , (3.17)

(iii) for every ζ1, ζ2 ∈ XT satisfying ∥ζi∥XT ⩽ m, there holds

∥f [ζ1 + Sψ0]− f [ζ2 + Sψ0]∥YT ⩽ ε∥ζ1 − ζ2∥XT . (3.18)

Proof. Let T < 1 to be chosen later and ε,m > 0.
We only prove equation (3.17) and we give a sketch of the proof for estimates (3.16) and (3.18), as
they are similar.

We will drop the dependence on the set E in the norms and we will write A(t,x) assuming implicitly the
dependence on ψ and ∇ψ. Moreover, for clarity of exposition, we prove the results for the simplified error
term

f̃ [ψ](x, t) = ⟨A(x,ψ(x, t),∇ψ(x, t)),∇4ψ(x, t)⟩+ ⟨Q,∇3ψ(x, t)⊗∇2ψ(x, t)⟩ , (3.19)

where Q is a (constant) tensor and ∥Q∥ < 1. Then, we briefly analyze other terms of J .

From the very definition of f̃ , denoting ψ = Sψ0, we have

∥f̃ [ψ]∥C0 ⩽ ∥A∥C0∥∇4ψ∥C0 + ∥∇3ψ∥C0∥∇2ψ∥C0 (3.20)

and

[f̃ [ψ]]Cβ ⩽ ∥∇4ψ∥C0 sup
τ∈TN

(
|τ |−β |A(t,x+ τ )−A(t,x)|

)
+ ∥A∥C0 [∇4ψ]Cβ + [∇3ψ]Cβ∥∇

2ψ∥C0 + ∥∇3ψ∥C0 [∇2ψ]Cβ . (3.21)

We multiply by t1/2 both sides of inequality (3.20) to get

t1/2∥f̃ [ψ]∥C0 ⩽ ∥A∥C0t1/2∥∇4ψ∥C0 + t1/2∥∇3ψ∥C0∥∇2ψ∥C0 . (3.22)

By means of inequalities (3.11) with l = 0, k = 0, 1, 2, we have that the right–hand term in
estimate (3.22) is bounded by ∥ψ∥C1,1 (up to a constant that depends on E).
We now fix δ > 0 sufficiently small, depending on ε and E, so that ∥A∥C0 is bounded by ε,
which can be done since A is a smooth tensor and A(·, 0, 0) = 0. Finally, taking T small enough,
depending on ε and E, we conclude

sup
t∈(0,T )

t1/2∥f̃ [ψ]∥C0 ⩽ ε∥ψ0∥C1,1 .

Taking into account the full expression for the error term f [ψ] in (3.15) (see the very definition of
J in formula (3.7)), arguing as above, we show that

sup
t∈(0,T )

t1/2∥f [ψ]∥C0 ⩽ Cε (∥ψ0∥C1,1 + 1) ,
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where the extra constant term comes from the fact that ∥q6∥C0 ⩽ C, hence

sup
t∈(0,T )

t1/2∥q6∥C0 ⩽ ε .

Concerning the Hölder seminorm in space, we first remark that

sup
τ∈TN

|A(t,x+ τ )−A(t,x)|
|τ |β

⩽ [A(·,ψ,∇ψ)]Cβ + ∥∂2A∥C0 [ψ]Cβ + ∥∂3A∥C0 [∇ψ]Cβ ,

where ∂2A and ∂3A denote the derivative of A(x, y, z) with respect to the second and third
components, respectively. Therefore, employing again the bounds (3.10) and (3.11), we have

t1/2∥∇4ψ∥C0 sup
τ

|A(t,x+ τ )−A(t,x)|
|τ |β

⩽ ε∥ψ0∥C1,1 ,

where we choose δ > 0 sufficiently small, depending on ε, E, such that

[A(·,ψ,∇ψ)]Cβ + ∥∂2A∥C0 [ψ]Cβ + ∥∂3A∥C0 [∇ψ]Cβ ⩽ ε,

which is possible since A is smooth and A(· , 0, 0) = 0. Thus, multiplying by t
1
2
+ β

4 both sides of
inequality (3.21), we obtain

t
1
2
+ β

4 [f̃ [ψ]]Cβ ⩽ t
β
4 ε∥ψ0∥C1,1 + ∥A∥C0t

1
2
+ β

4 [∇4ψ]Cβ

+ t
1
4 t

1
4
+ β

4 ∥∇3ψ∥Cβ∥∇
2ψ∥C0 + t

1
4 t

1
4 ∥∇3ψ∥C0t

β
4 ∥∇2ψ∥Cβ .

Then, all the terms at the right–hand side of this inequality can be bounded employing inequali-
ties (3.10) and (3.11), thus we can make such right–hand side above as small as needed taking T , δ
small enough. Analogous computations show a similar inequality for the complete error term
f [ψ], once we notice that, since the terms Qi for i = 1, . . . , 5 are not constant, some (bounded)
derivatives appear.
Finally, we show how to bound the Hölder seminorm in time appearing in ∥f̃ [ψ]∥YT . We fix
t ∈ (0,T ) and h ∈ (0,T − t). So, by the very definition of f̃ [ψ](t), we have,

|f̃ [ψ](t+ h)− f̃ [ψ](t)| ⩽ |⟨A(ψ(t+ h),∇ψ(t+ h)),∇4ψ(t+ h)⟩ − ⟨A(ψ(t),∇ψ(t)),∇4ψ(t)⟩|
+ |⟨Q,

(
∇3ψ(t+ h)⊗∇2ψ(t+ h)

)
⟩ − ⟨Q,

(
∇3ψ(t)⊗∇2ψ(t)

)
⟩| ,

where we omitted the dependence on x, in order to simplify the notation.
By the triangular inequality, we obtain

|⟨A(ψ(t+ h),∇ψ(t+ h)),∇4ψ(t+ h)⟩ − ⟨A(ψ(t),∇ψ(t)),∇4ψ(t)⟩|
⩽ ∥A∥C0 |∇4ψ(t+ h)−∇4ψ(t)|+ ∥∂3A∥C0 |∇ψ(t+ h)−∇ψ(t)|∥∇4ψ(t)∥C0

+ ∥∂2A∥C0 |ψ(t+ h)−ψ(t)|∥∇4ψ∥C0 (3.23)

and

|⟨Q, (∇3ψ(t+ h)⊗∇2ψ(t+ h))⟩ − ⟨Q,
(
∇3ψ(x, t)⊗∇2ψ(x, t)

)
⟩|

⩽ |∇3ψ(t+ h)−∇3ψ(t)|∥∇2ψ∥C0 + ∥∇3ψ∥C0 |∇2ψ(t+ h)−∇2ψ(t)| . (3.24)

Therefore, from formulas (3.23) and (3.24), we get

|f̃ [ψ](t+ h)− f̃ [ψ](t)|
⩽ (∥∂2A∥C0 |ψ(t+ h)−ψ(t)|+ ∥∂3A∥C0 |∇ψ(t+ h)−∇ψ(t)|) ∥∇4ψ(t)∥C0

+ ∥A∥C0 |∇4ψ(t+ h)−∇4ψ(t)|+ |∇3ψ(t+ h)−∇3ψ(t)|∥∇2ψ∥C0

+ ∥∇3ψ∥C0 |∇2ψ(t+ h)−∇2ψ(t)| .
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Applying again estimates (3.10), (3.11) and using the smallness of ∥A∥C0 , we obtain inequal-
ity (3.17) by taking T and δ small enough. Then, as above, the same conclusion hold for f [ψ], once
we notice that the derivatives of Qi for i = 1, . . . , 5 and q6 are bounded.
Hence, given ψ0 ∈ C1,1(Σ) and ζ ∈ XT such that ∥ζ∥XT ⩽ m, recalling the definition of ∥ · ∥XT in
formula (3.12) and arguing as above, we can show that

f [ζ + Sψ0] ∈ YT .

The proof of inequality (3.18) is quite similar. We show the computations only for the term
supt∈(0,T ) t

1/2∥ · ∥C0 appearing in the norm of YT and for the simplified error term (3.19). Setting
ψi = ζi + Sψ0, we have

|f̃ [ψ1]−f̃ [ψ2]|
=
∣∣⟨A(x,ψ1,∇ψ1),∇4ψ1⟩ − ⟨A(x,ψ2,∇ψ2),∇4ψ2⟩+ ⟨Q, (∇3ψ1 ⊗∇2ψ1 −∇3ψ2 ⊗∇2ψ2)⟩

∣∣
⩽ ∥∇4ψ1∥C0 (∥∂1A∥C0 |ζ1 − ζ2|+ ∥∂2A∥C0 |∇ζ1 −∇ζ2|) + ∥A∥C0 |∇2ζ1 −∇2ζ2|

+ ∥∇3ψ1∥C0 |∇2ζ1 −∇2ζ2|+ ∥∇2ψ2∥C0 |∇3ζ1 −∇3ζ2| .

Multiplying both sides of this inequality by t1/2, we get

t1/2|f̃ [ψ1]− f̃ [ψ2]|

⩽
(
∥∇4ψ1∥C0

(
t∥∂1A∥C0 + t

3
4 ∥∂2A∥C0

)
+ t1/2 (∥A∥C0 + ∥∇3ψ1∥C0

)
+ t1/4∥∇2ψ2∥C0

)
∥ζ1 − ζ2∥XT

⩽ t1/4
(
t1/2∥∇4ψ1∥C0∥A∥C1 + ∥A∥C0 + t1/4∥∇3ψ1∥C0 + |∇2ψ2∥C0

)
∥ζ1 − ζ2∥XT .

By definition of ∥ · ∥XT and by the estimates (3.10) and (3.11), we conclude by taking T and δ small
enough. Using the observations above, the same conclusion holds for the full f [ψ].

We will denote with Br(x) the ball in Rn of center x and radius r, while Br and B will be a short–hand
notations for Br(0) and B1(0) (that is, the unit ball), respectively. Moreover, given x ∈ Rn, we will write
x = (x′,xn) where x′ ∈ Rn−1 and xn ∈ R. Similarly, we will denote with B′

r(x
′) ⊆ Rn−1 the ball in

Rn−1 with radius r > 0 and center x′ ∈ Rn−1.

We are now ready to prove our short–time existence result for the surface diffusion evolution.

Proof of Theorem 3.2.3. Let us fix ε > 0. We underline that in the whole proof the constant C
depends on n, ε and E.

Step 1. We show the existence of a solution of equation (3.6) via a fixed point argument.
Let T < 1 and δ < 1 to be chosen later and let ψ1 ∈ C∞((0,T );C∞(∂E)) be the unique solution
of the problem ∂tψ1 = −∆2ψ1 in [0,T )× ∂E

ψ1(·, 0) = ψ0 on ∂E

where ψ0 ∈ C1,1(∂E) is such that ∥ψ0∥C1,1(∂E) ⩽ δ. Thus, recalling the definition of Sψ0 in
formula (3.8), we have ψ1 = Sψ0. From Theorem 3.2.5 and for δ small enough depending on ε,
the solution ψ1 satisfies the estimates (3.3) and (3.4).
Let now ψ2 be the unique solution of the problem∂tψ2 = −∆2ψ2 + f [ψ1] in [0,T )× ∂E

ψ2(·, 0) = ψ0 on ∂E
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where f [ψ] is defined in equation (3.15). By formulas (3.8) and (3.14), such solution is given by

ψ2 = V f [ψ1] + Sψ0 = V f [Sψ0] + Sψ0 .

We then define an iterative scheme. For i ⩾ 3, we let ψi be the unique solution of the problem∂tψi = −∆2ψi + f [ψi−1] in [0,T )× ∂E

ψi(·, 0) = ψ0 on ∂E
(3.25)

that is, ψi = V f [ψi−1] + Sψ0. Let us denote by ζi = ψi − Sψ0, that is ζi = V f [ψi−1]. We aim to
show that the sequence ζi converges in XT . To do so, assume that ζj ∈ XT for j = 1, . . . , i− 1

with ∥ζj∥XT ⩽ m, then, by Theorem 3.2.9 and Lemma 3.2.10, we get ζi ∈ XT and

∥ζi∥XT = ∥V f [ψi−1]∥XT ⩽ C∥f [ψi−1]∥YT = C∥f [ζi−1 + Sψ0]∥YT

⩽ C

i−1∑
j=2

∥f [ζj + Sψ0]− f [ζj−1 + Sψ0]∥YT +C∥f [Sψ0]∥YT

⩽ C
( i−1∑
j=1

εj
)
(∥ψ0∥C1,1(∂E) + 1) ⩽ Cε

(
1+

+∞∑
j=1

εj
)
(∥ψ0∥C1,1(∂E) + 1)

⩽ Cε(∥ψ0∥C1,1(∂E) + 1) ⩽ m .

Moreover, Lemma 3.2.10 implies that, for δ(ε,E) and T (ε,E) small enough, there holds

∥ζi+1 − ζi∥XT ⩽ ε∥ζi − ζi−1∥XT ,

for all i ⩾ 3. Therefore, ζi is a Cauchy sequence in XT , hence it admits a limit function ζ satisfying

∥ζ∥XT ⩽ Cε(∥ψ0∥C1,1(∂E) + 1) (3.26)

and, passing to the limit in problem (3.25), we get∂tψ = −∆2ψ+ f [ψ] in [0,T )× ∂E

ψi(·, 0) = ψ0 on ∂E

with ψ = ζ + Sψ0.
Moreover, by estimates (3.10) and (3.26), there holds

∥ψ∥C2(∂E) = ∥ζ + Sψ0∥C2(∂E) ⩽ ∥ζ∥XT + ∥Sψ0∥C2(∂E) ⩽ Cε(∥ψ0∥C1,1(∂E) + 1) . (3.27)

Step 2. By inequality (3.27) we get immediately that estimate (3.4) holds for k = 0, 1, 2. In order to
prove such estimate for k ⩾ 3, we fix a point x ∈ ∂E and we use normal coordinate around x. In
particular, we fix B′

r = U ⊆ ∂E such that the inverse gijE of the metric gE of ∂E (induced by the
flat metric of Tn) satisfies 1

2δij ⩽ gijE ⩽ 2δij .
Then, we observe that by the previous step, the function ψ restricted to [T/2,T )×B′

r is of class
C∞. Moreover, recalling that ψ = ζ + Sψ0, we have that the function ζ satisfies

∂tζ = −∆2
t ζ + f̃ , (3.28)

where we denoted by f̃ = (∂t + ∆2
t )(Sψ0) + f ′. Taking the covariant derivative ∇ (with respect to

the metric gE) in this equality, we get that the function ∇ζ satisfies the equation

∂t∇ζ = −∆2
t∇ζ − (∇gijt )g

kl
t (ζ)ijkl − gijt (∇g

kl
t )(ζ)ijkl +∇f̃

= −∆2
t∇ζ + F ,
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where the error term F contains the derivatives of ζ up to order four and we denoted by gt the
metric on ∂Eψ(t,·).
In order to estimate ∥F∥Cβ/4([T/2,T ];Cβ(B′

r))
we first observe that by inequalities (3.11), it follows

∥∇
(
(∂t + ∆2

t )(Sψ0)
)
∥Cβ/4([T/2,T );Cβ(B′

1))
⩽ Cε(∥ψ0∥C1,1(∂E) + 1) ,

then we remark that the other terms in F can be bounded analogously, recalling that they contain
derivatives of ζ up to order four. So, by means of the bound (3.26), we obtain that

∥F∥Cβ/4([T/2,T );Cβ(B′
r))

⩽ Cε(∥ψ0∥C1,1(∂E) + 1) . (3.29)

Since the coefficients of ∆2
t are close to the ones of ∆2, depending on ∥ψ(t, ·)∥C1,1(∂E) as gijt − gijE =

Q(x,ψ,∇ψ), where Q is a smooth function with Q(x, 0, 0) = 0 (see [48], for instance), we have
that ∂t + ∆2

t is a uniformly parabolic operator. Then, by standard interior Schauder estimates and
the bound (3.29), there exists a constant C > 0, which depends on T , ε and E, such that

∥∇ζ∥C1,β/4([T/2,T );C4,β(B′
r/2))

⩽ C
(
∥F∥Cβ/4([T/4,T );Cβ(B′

r))
+ ∥∇ζ∥C0([T/4,T )×B′

r)

)
⩽ Cε(∥ψ0∥C1,1(∂E) + 1) ,

where we used the estimate ∥ζ∥C1(([T/4,T )×B′
r))

⩽ ∥ζ∥XT and the bound (3.29).
Hence, we finally conclude

sup
t∈[T/2,T )

∥∇5ψ∥C0(∂E) ⩽ C(∥ψ0∥C1,1(∂E) + 1) .

Then, estimate (3.4) follows by induction, for every k ∈ N. Indeed, let us suppone that inequal-
ity (3.4) holds for k ∈ N, we want to show that it holds for k+ 1. Taking k− 1 covariant derivatives
(with respect to the metric g) in formula (3.28), we get the following equation

∂t∇k−1ζ = −∆2
t∇k−1ζ + F̃ ,

where the error term F̃ contains the derivatives of ζ up to the order k + 2. Then, we estimate
∥F̃∥Cβ/4([T/2,T ];Cβ(B′

r))
by means of inequality (3.4) and we conclude by means of the same

argument above.

3.3 L O N G – T I M E B E H AV I O R – I

From now on we drop the t–subscript on Ht, Bt, ∆t, µt and we simply write H, B, ∆, µ for the
mean curvature, second fundamental form, Laplacian and canonical measure, respectively, when
it is clear that they refer to the set Et and its boundary.

3.3.1 Evolution of geometric quantities

Along any surface diffusion flow φt : M → Tn (or when the ambient is a general flat space) we
have the following evolution equations (computed in detail in [47, Proposition 3.4] for a general
geometric flow of hypersurfaces),

∂

∂t
gij = 2∆Hhij ,

∂

∂t
gij = −2∆Hhij ,

∂

∂t
µ = H∆Hµ (3.30)

and
∂

∂t
Γijk = ∇B ∗ ∆H+B ∗∇∆H (3.31)
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where the symbol ∗ was introduced in Section 1.2.3.
Then, arguing as in [48, Proposition 2.3.1], we get the following evolution equation for the mean
curvature

∂

∂t
H = −∆∆H− ∆H|B|2 . (3.32)

We now introduce some notation which will be useful for the computations that follow (see [47]).
If T1, . . . ,Tl is a finite family of tensors (here l is not an index of the tensor T ), with the symbol

l

⊛
i=1

Ti

we will mean T1 ∗ T2 ∗ · · · ∗ Tl.
With the symbol ps(∇αT ,∇βS, . . . ,∇γR) we will denote a “polynomial” in the tensors T ,S, . . . ,R
and their iterated covariant derivatives with the ∗ product as

ps(∇αT ,∇βS, . . . ,∇γR) =
∑

i+j+···+k=s
cij...k∇iT ∗∇jS ∗ · · · ∗ ∇kR

where the ci1...il are some real constants and i ⩽ α, j ⩽ β, ... , k ⩽ γ. Moreover, we set p0( · ) = 0.
Notice that every tensor must be present in every additive term of ps(∇αT ,∇βS, . . . ,∇γR) and
there are no repetitions.
We will use instead the symbol qs(∇αB,∇βH) for a completely contracted “polynomial” (hence a
function) of the iterated covariant derivatives of B and H, respectively up to α and β (repetitions are
allowed), where in every additive term both B and H must be present and H without derivatives
is considered as a contracted B–factor. That is,

qs(∇αB,∇βH) =
∑ p

⊛
k=1

∇ikB
q

⊛
l=1

∇jlH

with p, q ⩾ 1, i1, . . . , ip ⩽ α and 1 ⩽ j1, . . . , jq ⩽ β, then the coefficient s denotes the sum

s =

p∑
k=1

(ik + 1) +

q∑
l=1

(jl + 1) . (3.33)

We advise the reader that in the following the “polynomials” ps and qs could vary from a line to another
in a computation, by addition of “similar” terms.

With this notation, we have the following “computation” lemmas.

Lemma 3.3.1. For every tensor T and function f on M , we have

∂

∂t
∇sT = ∇s ∂T

∂t
+ ps(∇s−1T ,∇sB,∇s∆H) for every s ⩾ 1 (3.34)

∂

∂t
df = d

∂f

∂t
and

∂

∂t
∇sf = ∇s ∂f

∂t
+ ps−1(∇s−2(∇f),∇s−1B,∇s−1∆H) (3.35)

for every s ⩾ 2.

Proof. We show the first equation by induction on s ∈ N. If s = 1, we have

∂

∂t
∇T =

∂

∂t
(∂T + TΓ) =

∂

∂t
∂T +

∂

∂t
(TΓ) = ∂

∂T

∂t
+
∂T

∂t
Γ + T

∂Γ
∂t

=∇∂T

∂t
+ T ∗∇B ∗ ∆H+ T ∗B ∗∇∆H = ∇∂T

∂t
+ p1(T ,∇B,∇∆H) ,
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where we computed “schematically”, denoting with ∂ the standard derivative in coordinates (with
commute with ∂

∂t ) and with Γ the Christoffel symbols, moreover, we used formula (3.31).
Now, assuming that formula (3.34) holds up to s− 1, we apply it to the tensor S = ∇T

∂

∂t
∇sT =

∂

∂t
∇s−1S = ∇s−1 ∂S

∂t
+ ps−1(∇s−2S,∇s−1B,∇s−1∆H)

=∇s−1 ∂

∂t
∇T + ps(∇s−1T ,∇s−1B,∇s−1∆H)

=∇s−1
(
∇∂T

∂t
+ p1(T ,∇B,∇∆H)

)
+ ps(∇s−1T ,∇s−1B,∇s−1∆H)

=∇s ∂T

∂t
+ ps(∇s−1T ,∇sB,∇s∆H)

by the properties of the ∗–product. Hence, formula (3.34) is proved.
To get equation (3.35), we apply the previous formula to T = ∇f as follows

∂

∂t
∇sf =

∂

∂t
∇s−1∇f = ∇s−1 ∂

∂t
∇f + ps−1(∇s−2(∇f),∇s−1B,∇s−1∆H)

=∇s ∂f

∂t
+ ps−1(∇s−2(∇f),∇s−1B,∇s−1∆H)

and we are done.

Proposition 3.3.2. Let Et ⊆ Tn be a surface diffusion flow. Then, the following equations hold

d

dt

ˆ
∂Et

|∇H|2 dµt = − 2ΠEt(∆H) +

ˆ
∂Et

H|∇H|2∆H dµt −
ˆ
∂Et

2B(∇H,∇H)∆H dµt

(3.36)
d

dt

ˆ
∂Et

|∇n−2H|2 dµt =− 2

ˆ
∂Et

|∇nH|2 dµt +
ˆ
∂Et

q2n+2(∇n−4B,∇n−1H) dµt

+

ˆ
∂Et

q2n+2(∇n−3(B2),∇nH) dµt (3.37)

where:

• Every “monomial” of q2n+2(∇n−4B,∇n−1H) has 4 factors in B, ∇H and their covariant derivatives.
The factor B (or H without derivatives) or its covariant derivative up to ∇n−4B is present exactly one
time and the other three factors are derivatives of ∇H up to ∇n−1H, with ∇n−1H or ∇n−2H present
at least one time. Moreover, if the factor ∇n−1H is not present, B cannot appear without derivatives.

• Every “monomial” of q2n+2(∇n−3(B2),∇nH) has 3 factors in B2, ∇H and their covariant deriva-
tives. The factor B2 or its covariant derivative up to ∇n−3(B2) is present exactly one time, the other
two factors are derivatives of ∇H up to ∇nH. The factor ∇nH is present exactly one time, with the
exception of “monomials” of kind ∇n−1H ∗B2 ∗∇n−1H.

Finally, the coefficients of these “polynomials” are algebraic, that is, they are the result of formal manipula-
tions, in particular, they are independent of Et.
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Proof. Taking into account the evolution equations (3.30) and (3.32), integrating by parts, we
compute

d

dt

ˆ
∂Et

|∇H|2 dµt =
ˆ
∂Et

H|∇H|2 ∆H dµt −
ˆ
∂Et

2hij∇iH∇jH∆H dµt

−
ˆ
∂Et

2gij∇iH∇j

(
|B|2∆H+ ∆∆H

)
dµt

=

ˆ
∂Et

H|∇H|2 ∆H dµt −
ˆ
∂Et

2B(∇H,∇H)∆H dµt

+

ˆ
∂Et

2|B|2(∆H)2 dµt +

ˆ
∂Et

2∆H∆∆H dµt

=

ˆ
∂Et

H|∇H|2 ∆H dµt −
ˆ
∂Et

2B(∇H,∇H)∆H dµt

+

ˆ
∂Et

2|B|2(∆H)2 dµt −
ˆ
∂Et

2|∇∆H|2 dµt ,

where the first term on the right hand side comes from the area measure variation and the second
one from the evolution equation of the inverse of the metric. Then, we have formula (3.36),
recalling Definition 2.2.1 of the form ΠEt .
To get equation (3.37), we compute analogously

d

dt

ˆ
∂Et

|∇n−2H|2 dµt =
ˆ
∂Et

|∇n−2H|2H∆H dµt + 2

ˆ
∂Et

g
(
∇n−2H,

∂

∂t
∇n−2H

)
dµt

− 2

n−2∑
k=1

ˆ
∂Et

∆Hhikjk
n−2∏

l ̸=k,l=1

giljl∇n−2
i1...in−2

H∇n−2
j1...jn−2

H dµt .

(3.38)

We focus on the second integral, noticing that we can collect the terms inside the other integrals in
a “polynomial” of kind q2n+2(B,∇n−3(∇H)) such that every “monomial” has 4 factors in B, ∇H

and its covariant derivatives up to ∇n−2H (remember that we consider H as a contracted B–factor,
in the first term – we will always do the same also in the following). Moreover, the factor ∇n−2H

appears at least one time.
By equation (3.32) and formula (3.35) in Lemma 3.3.1 with f = H and s = n− 2, we have

∂

∂t
∇n−2H =∇n−2 ∂

∂t
H+ pn−3(∇n−4(∇H),∇n−3B,∇n−3∆H)

=∇n−2
(
− ∆∆H− ∆H|B|2

)
+ pn−3(∇n−4(∇H),∇n−3B,∇n−3∆H)

hence, the second integral in formula (3.38) is equal to
ˆ
∂Et

g
(
∇n−2H,∇n−2

(
− ∆∆H− ∆H|B|2

))
+ g
(
∇n−2H, pn−3(∇n−4(∇H),∇n−3B,∇n−3∆H)

)
dµt .

Then, recalling the properties of pn−3(∇n−4(∇H),∇n−3B,∇n−3∆H), integrating by parts in the
second term inside the integral, we can “take away” one derivative from B (in the “monomials”
containing it) and “move” it on the other three factors, which are derivatives of H. Hence, the
integral of such term becomes of kind

´
∂Et

q2n+2(∇n−4B,∇n−1H) dµt, noticing that ∇nH cannot
appear, as by the properties of pn−3(∇n−4(∇H),∇n−3B,∇n−3∆H) either it contains ∇n−3B or
∇n−3∆H, but not both together in any of its “monomials”. Summarizing, we have a sum of
integrals each one like ˆ

∂Et

∇jB ∗∇i1H ∗∇i2H ∗∇i3H dµt ,
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with 0 ⩽ j ⩽ n− 4, 1 ⩽ i1 ⩽ i2 ⩽ i3 ⩽ n− 1, with i3 equal either to n− 1 or n− 2 and

2n+ 2 = (j + 1) +
3∑
l=1

(il + 1) ,

by formula (3.33). Then, if i3 = n− 2, that is the factor ∇n−1H is not present, we can integrate
repeatedly by parts, “carrying away” derivatives from ∇i1H and distributing them on the other
three factors. It is then easy to see that at some point either the term ∇n−1H appears or some
derivative must go on B.
Hence, from equation (3.38) and since the above “polynomial” of kind q2n+2(B,∇n−3(∇H)) is a
fortiori of kind q2n+2(∇n−4B,∇n−1H), we obtain

d

dt

ˆ
∂Et

|∇n−2H|2 dµt =
ˆ
∂Et

|∇n−2H|2H∆H dµt

− 2

ˆ
∂Et

g
(
∇n−2H,∇n−2

(
∆∆H

))
dµt

− 2

ˆ
∂Et

g
(
∇n−2H,∇n−2

(
∆H|B|2

))
dµt

+

ˆ
∂Et

q2n+2(∇n−4B,∇n−1H) dµt (3.39)

where every “monomial” of q2n+2(∇n−4B,∇n−1H) has 4 factors in B, ∇H and their covariant
derivatives, moreover

• the factor B (or H, without derivatives) or its derivatives up to order n− 4 is present exactly
one time,

• the other three factors are derivatives of ∇H up to ∇n−1H,

• the higher order factor ∇n−1H or ∇n−2H is present at least one time,

• if the factor ∇n−1H is not present, B cannot appear without derivatives.

Now we deal with the second integral in the right hand side of equation (3.39) which can be
written as

−2

ˆ
∂Et

gi1j1 · · · gin−2jn−2gmsgpq∇n−2
j1...jn−2

H∇n−2
i1...in−2

∇4
mspqH dµt .

We interchange repeatedly the covariant derivatives in the last factor inside the integral in order
to have

−2

ˆ
∂Et

gi1j1 · · · gin−2jn−2gmsgpq∇n−2
j1...jn−2

H∇2
pm∇2

sq∇n−2
i1...in−2

H dµt + Error Terms ,

where any “error term” introduced at every interchange has the form ∇l(Riem ∗ ∇n−lH) =
∇l(B2 ∗∇n−lH), for l = 0, . . . ,n− 1, by the Gauss equations (1.12).
Integrating by parts twice, “moving” the double derivative ∇2

pm on the other factor, we get

−2

ˆ
∂Et

gi1j1 · · · gin−2jn−2gmsgpq∇2
mp∇n−2

j1...jn−2
H∇2

sq∇n−2
i1...in−2

H dµt + Error Terms ,

which is equal to

−2

ˆ
∂Et

|∇nH|2 dµt +
n−1∑
l=0

ˆ
∂Et

∇n−2H ∗∇l(B2 ∗∇n−lH) dµt ,
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where we made explicit the error terms, by what we observed above. Then, we notice that,
integrating twice by parts in every integral in the sum above with l ⩾ 2 and only one time when
l = 1, we have

−2

ˆ
∂Et

|∇nH|2 dµt +
ˆ
∂Et

∇n−2H ∗B2 ∗∇nH dµt +
n−1∑
l=2

ˆ
∂Et

∇nH ∗∇l−2(B2 ∗∇n−lH) dµt

+

ˆ
∂Et

∇n−1H ∗B2 ∗∇n−1H dµt ,

hence, the last two integrals on the first line contain the factor ∇nH exactly one time and we can
finally write the second integral in the right hand side of equation (3.39) as

−2

ˆ
∂Et

|∇nH|2 dµt +
ˆ
∂Et

q2n+2(∇n−3(B2),∇nH) dµt +

ˆ
∂Et

∇n−1H ∗B2 ∗∇n−1H dµt ,

where every “monomial” of q2n+2(∇n−3(B2),∇nH) has 3 factors in B2, ∇H and their covariant
derivatives, moreover

• the factor B2 or its derivatives up to order n− 3 is present exactly one time,

• the other two factors are a derivatives of ∇H up to ∇nH,

• the factor ∇nH appears exactly one time.

Finally, integrating by parts two times the third integral in formula (3.39), the integrand becomes
a contraction of ∇nH with ∇n−4(∆H|B|2), which is clearly also a “polynomial” of the form
q2n+2(∇n−3(B2),∇nH) satisfying these same properties and we are done.

Remark 3.3.3. We notice that if n = 3, the expressions (3.36) and (3.37) coincide. Hence, we will
actually never use Lemmas 3.3.9 and 3.3.10 for the estimates of the next section, in the special case
n = 3. In other words, whenever we will work on quantities involving (n− 2)–derivatives of the
mean curvature, we will assume that n ⩾ 4 without specifying further.

3.3.2 Estimate of the energy variation and other basic estimates

In all the following, we will be interested in having uniform estimates for the families of sets in C1
ME

(E),
given a smooth set E ⊆ Tn and a tubular neighborhood Nε of ∂E, for ME < ε. To this aim, we need
that the constants in the Sobolev, Poincaré, Gagliardo–Nirenberg interpolation and Calderón–Zygmund
inequalities relative to all the hypersurfaces ∂F boundaries of the sets F ∈ C1

ME
(E), are uniform (for the

Calderón–Zygmund inequalities, we actually need that F ∈ C1
ME

(E), with ME > 0 small enough). This
is the content of Section 1.2 , where such uniformity is proved in detail. Hence, from now on we will use
the adjective “uniform” in order to underline such fact. We also highlight that in all the following we will
denote with C a constant which may vary from a line to another and depends only on E and ME .

Proposition 3.3.4 (Gagliardo–Nirenberg interpolation inequalities). Let E ⊆ Tn be a smooth set,
j,m ∈ N with 0 ⩽ j < m and 0 < r, q ⩽ +∞. Then, for every F ∈ C1

ME
(E) and every covariant tensor

T = Ti1...il the following uniform interpolation inequalities hold:

∥∇jT∥Lp(∂F ) ⩽ C
(
∥∇mT∥Lr(∂F ) + ∥T∥Lr(∂F )

)θ∥T∥1−θ
Lq(∂F )

, (3.40)

with the compatibility condition

1

p
=

j

n− 1
+ θ
(1
r
− m

n− 1

)
+

1− θ

q
,
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for all θ ∈ [j/m, 1] for which p ∈ [1,+∞) is nonnegative, with the exception of the case r = n−1
m−j ̸= 1 for

which the inequality is not valid for θ = 1. The constant C depends only on n, j, m, p, q, r, E and ME .
Moreover, if f : ∂F → R is a smooth function, inequality (3.40) becomes

∥∇jf∥Lp(∂F ) ⩽ C ∥∇mf∥θLr(∂F )∥f∥
1−θ
Lq(∂F )

, (3.41)

if j ⩾ 1 or j = 0 and
ffl
∂F f dµ = 0.

By density, all these inequalities clearly extend to functions and tensors in the appropriate Sobolev spaces.

Proof – Sketch. For a single fixed regular hypersurface ∂F , inequality (3.41) is given by Theo-
rem 3.70 in [7], while inequality (3.40) for T equal to a function f : ∂F → R can be obtained by
repeating step by step the proof of such theorem, once established the following Sobolev–type
inequality for hypersurfaces without boundary,

∥f∥Lp∗ (∂F ) ⩽ C
(
∥∇f∥Lp(∂F ) + ∥f∥Lp(∂F )

)
,

for every p ∈ [1,n− 1) (an example of such argument can be found in [47, Section 6]).
The extension of inequality (3.40) to tensors can be obtained as in [47, Sections 5 and 6], by means
of the estimate (see [7], Proposition 2.11 and also [12, 13]),∣∣∣∣∇√|T |2 + ε2

∣∣∣∣ =
∣∣∣∣∣ ⟨∇T ,T ⟩√

|T |2 + ε2

∣∣∣∣∣ ⩽ |T |√
|T |2 + ε2

|∇T | ⩽ |∇T |

clearly leading to the previous Sobolev inequality for tensors, as
√
|T |2 + ε2 converges to |T | when

ε→ 0 (this argument is necessary as |T | is not necessarily smooth).
Finally, the “uniformity” in the constants of the inequalities, independently of F ∈ C1

ME
(E),

follows by the same independence in the Sobolev inequalities, as it is shown and discussed in
detail in Section 1.2 (Theorem 1.2.1 – point (vi)).

Remark 3.3.5. Notice that in the same hypotheses of this proposition, by means of the uniform
Sobolev–Poincarè inequality

∥f − f ∥Lq∗ (∂F ) ⩽ C ∥∇f∥Lq(∂F ) ,

for every q ∈ [1,n− 1) which can be easily deduced by estimate (3.41), we have the following
uniform Poincaré inequalities

∥f − f ∥Lp(∂F ) ⩽ C ∥∇f∥Lp(∂F ) , (3.42)

for every p ∈ [1,+∞].

Remark 3.3.6. Very similar uniform interpolation inequalities are worked out in [47], for any family
of n–dimensional, regular hypersurfaces N ⊆ Rn+1 satisfying Vol(N) + ∥H∥Ln+δ(N) ⩽ C, for
some δ > 0, instead of being boundaries of sets belonging to C1

ME
(E).

As a direct consequence of Proposition 3.3.4, we have the following lemma that will be used
very often in the sequel.

Lemma 3.3.7. Let E ⊆ Tn be a smooth set and j,m ∈ N with 1 ⩽ j < m. Then, for every F ∈ C1
ME

(E)
and every covariant tensor T , the following uniform inequalities hold, for every ε > 0,

∥∇jT∥2Lp(∂F ) ⩽ C∥∇mT∥2θL2(∂F )∥∇T∥
2(1−θ)
L2(∂F )

+C∥∇T∥2L2(∂F ) ⩽ ε∥∇mT∥2L2(∂F ) +C∥∇T∥2L2(∂F ) ,

(3.43)

with the compatibility condition

1

p
=
j − 1

n− 1
− θ
(m− 1

n− 1

)
+

1

2
,
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for all θ ∈
[ j−1
m−1 , 1

]
for which p ∈ [1,+∞) is nonnegative, with the exception of the case n−1

m−j = 2 for
which the inequality is not valid for θ = 1 and

∥∇jT∥Lp(∂F ) ⩽ C∥∇mT∥
j−1
m−1

Lp(∂F )
∥∇T∥

m−j
m−1

Lp(∂F )
+C∥∇T∥Lp(∂F ) ⩽ ε∥∇mT∥Lp(∂F ) +C∥∇T∥Lp(∂F ) ,

(3.44)

for every p ∈ (1,+∞).
The constants C depends only on n, j, m, p, E, ME and ε.

Proof. The first inequality in formula (3.43) comes from inequality (3.40), by substituting ∇T in
place of T , while the second one follows by Young inequality. Analogously, one gets formula (3.44).

Lemma 3.3.8. Let E ⊆ Tn be a smooth set, F ∈ C1
ME

(E) and f1, . . . , fl smooth functions such that
∥fi∥L∞(∂F ) ⩽ C. Then, for every α1, . . . ,αl ∈ N with α1 + · · ·+ αl ⩽ k and p ∈ (1,+∞), there holds

∥|∇α1f1| · · · |∇αlfl|∥Lp(∂F ) ⩽ Ck

l∑
i=1

(
∥∇kfi∥Lp(∂F ) + ∥∇fi∥Lp(∂F )

)
, (3.45)

for some uniform constant Ck.

Proof. Without loss of generality, we may assume that α1 + · · ·+ αl = k, otherwise we argue
with k′ = α1 + · · ·+ αl in place of k and then we apply the previous lemma (inequality (3.44)).
Moreover, we can also assume that αi ⩾ 1, for every i ∈ {1, . . . , l}, as we can simply estimate any
|fi| with C, if it appears in the left hand side of inequality (3.45).
We first use Hölder inequality,

∥|∇α1f1| · · · |∇αlfl|∥Lp(∂F ) ⩽
l∏

i=1

∥∇αifi∥
L
pk
αi (∂F )

.

Then, by the uniform interpolation inequalities (3.41) (being every αi ⩾ 1), we have

∥∇αifi∥
L
pk
αi (∂F )

⩽ ∥∇kfi∥
αi
k

Lp(∂F )
∥fi∥

1−αi
k

L∞(∂F )
⩽ ∥∇kfi∥Lp(∂F ) ,

hence, the thesis follows by Young inequality, as α1 + · · ·+ αl = k.

Lemma 3.3.9. Let Et ⊆ Tn be a surface diffusion flow such that Et ∈ C1
ME

(E), for some smooth set E
and q2n+2(∇n−3(B2),∇nH) is a “polynomial” as in Proposition 3.3.2. Then,

ˆ
∂Et

q2n+2(∇n−3(B2),∇nH) dµt ⩽ −∥∇nH∥2L2(∂Et)
+C∥∇H∥2L2(∂Et)

,

for some constant C which depends on E and ME and for any j ⩽ n− 3, also on

• ∥∇jB∥
L

2n−2
2j−n+3 (∂Et)

if j > (n− 3)/2,

• ∥∇jB∥Lp(∂Et), for every 1 < p < +∞ if j = (n− 3)/2,

• ∥∇jB∥L∞(∂Et) if j < (n− 3)/2.

Proof. In Proposition 3.3.2, we found out that every “monomial” of q2n+2(∇n−3(B2),∇nH) has
3 factors in B2, ∇H and their covariant derivatives. The factor B2 or its covariant derivative
up to ∇n−3(B2) is present exactly one time, the other two factors are derivatives of ∇H up to
∇nH. The factor ∇nH is present exactly one time, with the exception of “monomials” of kind
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∇n−1H ∗B2 ∗∇n−1H.
Hence, after expanding the iterated derivatives of B2, the integrals of the non–exceptional “mono-
mials” have the form ˆ

∂Et

∇kB ∗∇jB ∗∇iH ∗∇nH dµt ,

with j + k ⩽ n− 3 and i+ j + k = n− 2, by formula (3.33).
We now estimate the modulus of these integrals (after “carrying” the modulus inside the integrals
and using the properties of the ∗–product). Actually different cases may happen:

1. If k, j < n−3
2 , by Peter–Paul inequality, for every ε > 0, we get
ˆ
∂Et

|∇kB||∇jB||∇iH||∇nH| dµt ⩽ ε

ˆ
∂Et

|∇nH|2 dµt +C

ˆ
∂Et

|∇iH|2 dµt ,

for any ε > 0, with C = C
(
ε, ∥∇kB∥L∞(∂Et), ∥∇

jB∥L∞(∂Et)

)
. Then, estimating the last integral

by means of Lemma 3.3.7 (inequality (3.43) with θ = i−1
n−1 ), we conclude

ˆ
∂Et

|∇kB||∇jB||∇iH||∇nH| dµt ⩽ 2ε

ˆ
∂Et

|∇nH|2 dµt +C

ˆ
∂Et

|∇H|2 dµt .

2. If k < n−3
2 and j > n−3

2 , as above we get
ˆ
∂Et

|∇kB||∇jB||∇iH||∇nH| dµt ⩽ ε

ˆ
∂Et

|∇nH|2 dµt +C

ˆ
∂Et

|∇jB|2|∇iH|2 dµt , (3.46)

for any ε > 0, with C = C
(
ε, ∥∇kB∥L∞(∂Et)

)
. Hence, using the Hölder inequality on the last

integral, we have
ˆ
∂Et

|∇jB|2|∇iH|2 dµt ⩽ C∥∇jB∥2
L

2(n−1)
2j−n+3 (∂Et)

∥∇iH∥2
L

n−1
n−j−2 (∂Et)

⩽ C∥∇iH∥2
L

n−1
n−j−2 (∂Et)

,

with C = C
(
∥∇jB∥

L
2n−2

2j−n+3 (∂Et)

)
.

Then, we estimate the last term by means of inequality (3.43) with θ = 1
2 −

i+j−n+1
n−1 ∈

[
i−1
n−1 , 1

)
,

that is,
C∥∇iH∥2

L
n−1
n−j−2 (∂Et)

⩽ ε∥∇nH∥2L2(∂Et)
+C∥∇H∥2L2(∂Et)

.

Hence, getting back to inequality (3.46), we conclude
ˆ
∂Et

|∇kB||∇jB||∇iH||∇nH| dµt ⩽ 2ε∥∇nH∥2L2(∂Et)
+C∥∇H∥2L2(∂Et)

,

for any ε > 0, with C = C
(
ε, ∥∇kB∥L∞(∂Et), ∥∇

jB∥
L

2n−2
2j−n+3 (∂Et)

)
.

3. If k = j = n−3
2 (hence i = 1), by means of Young and Hölder inequalities, we have

ˆ
∂Et

∣∣∇n−3
2 B

∣∣2|∇H||∇nH| dµt ⩽ ε∥∇nH∥2L2(∂Et)
+C∥∇

n−3
2 B∥4

L
4n−4
n−3 (∂Et)

∥∇H∥2Ln−1(∂Et)

⩽ ε∥∇nH∥2L2(∂Et)
+C∥∇H∥2Ln−1(∂Et)

, (3.47)

with C = C
(
ε,
∥∥∇n−3

2 B
∥∥
L

4n−4
n−3 (∂Et)

)
. Then, by the uniform inequality (3.43) with θ = n−3

2n−2 ∈

[0, 1), we get
∥∇H∥2Ln−1(∂Et)

⩽ ε∥∇nH∥2L2(∂Et)
+C∥∇H∥2L2(∂Et)

,
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hence, estimating the last term in inequality (3.47) with this one, we conclude
ˆ
∂Et

∣∣∇n−3
2 B

∣∣2|∇H||∇nH| dµt ⩽ 2ε∥∇nH∥2L2(∂Et)
+C∥∇H∥2L2(∂Et)

,

with C = C
(
ε,
∥∥∇n−3

2 B
∥∥
L

4n−4
n−3 (∂Et)

)
.

4. If k = n−3
2 and j < n−3

2 , we argue as in the previous case. Indeed, we have
ˆ
∂Et

|∇
n−3
2 B||∇jB||∇iH||∇nH| dµt ⩽ ε∥∇nH∥2L2(∂Et)

+C∥∇
n−3
2 B∥2

L
4n−4
n−3 (∂Et)

∥∇iH∥2
L

4n−4
n+1 (∂Et)

⩽ ε∥∇nH∥2L2(∂Et)
+C∥∇iH∥2

L
4n−4
n+1 (∂Et)

where C = C
(
ε,
∥∥∇n−3

2 B
∥∥
L

4n−4
n−3 (∂Et)

, ∥∇jB∥L∞(∂Et)

)
. Then, by means of the uniform inequal-

ity (3.43) with θ = i−1
n−1 +

1
4 −

1
2(n−1)

∈
[
i−1
n−1 , 1

)
, we get

∥∇iH∥2
L

4n−4
n+1 (∂Et)

⩽ ε∥∇nH∥2L2(∂Et)
+C∥∇H∥2L2(∂Et)

and we conclude, as above,
ˆ
∂Et

|∇
n−3
2 B||∇jB||∇iH||∇nH| dµt ⩽ 2ε∥∇nH∥2L2(∂Et)

+C∥∇iH∥2L2(∂Et)
,

where C = C
(
ε,
∥∥∇n−3

2 B
∥∥
Lp(∂Et)

, ∥∇jB∥L∞(∂Et)

)
.

The integrals of the exceptional “monomials” can be estimated by means of inequality (3.43), with
θ = n−2

n−1 , as follows
ˆ
∂Et

|B|2|∇n−1H|2 dµt ⩽ C∥∇n−1H∥2L2(∂Et)
⩽ ε∥∇nH∥2L2(∂Et)

+C∥∇H∥2L2(∂Et)
,

where the constant C depends on ∥B∥L∞ and we used the Young inequality.
Hence, adding together the estimates on the integrals of all the terms in q2n+2(∇n−3(B2),∇nH)
(belonging to all the above cases) and choosing suitable ε > 0, we obtain the thesis of the
lemma.

Lemma 3.3.10. Let Et ⊆ Tn be a surface diffusion flow such that Et ∈ C1
ME

(E), for some smooth set E
and q2n+2(∇n−4B,∇n−1H) be a family of “polynomials” as in Proposition 3.3.2. Then,

ˆ
∂Et

q2n+2(∇n−4B,∇n−1H) dµt ⩽ −∥∇nH∥2L2(∂Et)
+C∥∇H∥2L2(∂Et)

for some constant C which depends on E and ME and, for any j ⩽ n− 4, also on

• ∥B∥L∞ and ∥∇jB∥
L

2n−2
2j−n+3 (∂Et)

if j > (n− 3)/2,

• ∥B∥L∞ and ∥∇jB∥Lp(∂Et), for every 1 < p < +∞ if j = (n− 3)/2,

• ∥B∥L∞ and ∥∇jB∥L∞(∂Et) if j < (n− 3)/2.
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Proof. From Proposition 3.3.2, we have that every “monomial” of q2n+2(∇n−4B,∇n−1H) has 4

factors in B, ∇H and their covariant derivatives. The factor B (or H without derivatives) or its
covariant derivative up to ∇n−4B is present exactly one time and the other three factors are
derivatives of ∇H up to ∇n−1H, with ∇n−1H or ∇n−2H present at least one time. Moreover, if the
factor ∇n−1H is not present, B cannot appear without derivatives.
Hence, we have a sum of integrals each one like

ˆ
∂Et

∇jB ∗∇i1H ∗∇i2H ∗∇i3H dµt ,

with 0 ⩽ j ⩽ n− 4, 1 ⩽ i1 ⩽ i2 ⩽ i3 ⩽ n− 1, i3 ∈ {n− 1,n− 2} and j + i1 + i2 + i3 = 2n− 2, by
formula (3.33).
We now estimate the modulus of these integrals (after “carrying” the modulus inside the integrals
and using the properties of the ∗–product). Arguing as in Lemma 3.3.9, we have different cases:

1. If j > n−3
2 , by Peter–Paul inequality, we get

ˆ
∂Et

|∇jB||∇i1H||∇i2H||∇i3H| dµt ⩽ C

ˆ
∂Et

|∇jB|2|∇i1H|2|∇i2H|2 dµt +C

ˆ
∂Et

|∇i3H|2 dµt .

Then, we estimate the last integral by means of Lemma 3.3.7 (inequality (3.43) with θ = i3−1
n−1 ),

while for the first one we use the Hölder inequality with p = n−1
2j−n+3 , as follows,

C

ˆ
∂Et

|∇jB|2|∇i1H|2|∇i2H|2 dµt ⩽ C∥∇jB∥2
L

2(n−1)
2j−n+3 (∂Et)

∥|∇i1H||∇i2H|∥2
L

n−1
n−j−2 (∂Et)

.

We now bound the last norm in this inequality by means of Lemma 3.3.8, with f1 = f2 = H,
p = n−1

n−j−2 , α = (i1, i2) and k =
[
n+3
2

]
(the integer part of (n+3)/2), noticing that k > i1 + i2 as

i3 ∈ {n− 2,n− 1}. In doing this, we underline that in our case, the constants in inequality (3.45)
depend on ∥H∥L∞ which is clearly bounded by ∥B∥L∞ . Hence, we get

∥|∇i1H||∇i2H|∥2
L

n−1
n−j−2 (∂Et)

⩽ C∥∇kH∥2
L

n−1
n−j−2 (∂Et)

+C∥∇H∥2
L

n−1
n−j−2 (∂Et)

and, since by inequality (3.43), we have

C∥∇kH∥2
L

n−1
n−j−2 (∂Et)

⩽ C∥∇nH∥2θL2(∂Et)
∥∇H∥2(1−θ)

L2(∂Et)
+C∥∇H∥2L2(∂Et)

⩽ ε∥∇nH∥2L2(∂Et)
+C∥∇H∥2L2(∂Et)

,

with θ = k−n+j+1
n−1 + 1

2 ∈
[
k−1
n−1 , 1

)
and

C∥∇H∥2
L

n−1
n−j−2 (∂Et)

⩽ C∥∇nH∥2θL2(∂Et)
∥∇H∥2(1−θ)

L2(∂Et)
+C∥∇H∥2L2(∂Et)

⩽ ε∥∇nH∥2L2(∂Et)
+C∥∇H∥2L2(∂Et)

,

with θ = j−n+2
n−1 + 1

2 ∈ [0, 1), we conclude

∥|∇i1H||∇i2H|∥2
L

n−1
n−j−2 (∂Et)

⩽ 2ε∥∇nH∥2L2(∂Et)
+C∥∇H∥2L2(∂Et)

.

Thus, we easily get
ˆ
∂Et

|∇jB|2|∇i1H|2|∇i2H|2 dµt ⩽ 2ε∥∇nH∥2L2(∂Et)
+C∥∇H∥2L2(∂Et)

,

for any ε > 0, with C = C
(
ε, ∥B∥L∞ , ∥∇jB∥

L
2n−2

2j−n+3 (∂Et)

)
.
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2. If j = n−3
2 , again by Peter–Paul inequality, we have

ˆ
∂Et

|∇
n−3
2 B||∇i1H||∇i2H||∇i3H| dµt ⩽ C

ˆ
∂Et

|∇i1H|2|∇i2H|2 dµt+C

ˆ
∂Et

|∇
n−3
2 B|2|∇i3H|2 dµt .

(3.48)
We now use Hölder inequality for the last integral, that is

C

ˆ
∂Et

|∇
n−3
2 B|2|∇i3H|2 dµt ⩽C∥∇

n−3
2 B∥2

L
n−1
n−i3 (∂Et)

∥∇i3H∥2
L

2n−2
2i3−n−1 (∂Et)

⩽C∥∇i3H∥2
L

2n−2
2i3−n−1 (∂Et)

, (3.49)

where C = C
(
ε, ∥∇

n−3
2 B∥

L
n−1
n−i3 (∂Et)

)
. Then, we estimate the last term in (3.49) by means of

Lemma 3.3.7 (inequality (3.43) with θ = 1), so we get

∥∇i3H∥2
L

2n−2
2i3−n−1 (∂Et)

⩽ ε∥∇nH∥2L2(∂Et)
+C∥∇H∥2L2(∂Et)

, (3.50)

where C = C
(
ε, ∥∇

n−3
2 B∥

L
n−1
n−i3 (∂Et)

)
.

As in the previous step, in the first integral in (3.48) we use Lemma 3.3.8 with f1 = f2 = H,
p = 2, α = (i1, i2) and k =

[
n+3
2

]
(the integer part of (n+3)/2), noticing that k ⩾ i1 + i2. Hence,

we have
∥|∇i1H||∇i2H|∥2L2(∂Et)

⩽ C∥∇kH∥2L2(∂Et)
+C∥∇H∥2L2(∂Et)

. (3.51)

Holding, by inequality (3.43) with θ = k−1
n−1 ,

C∥∇kH∥2L2(∂Et)
⩽ C∥∇nH∥2θL2(∂Et)

∥∇H∥2(1−θ)
L2(∂Et)

+C∥∇H∥2L2(∂Et)

⩽ ε∥∇nH∥2L2(∂Et)
+C∥∇H∥2L2(∂Et)

, (3.52)

we conclude

∥|∇i1H||∇i2H|∥2L2(∂Et)
⩽ 2ε∥∇nH∥2L2(∂Et)

+C∥∇H∥2L2(∂Et)
. (3.53)

Hence,
ˆ
∂Et

|∇
n−3
2 B||∇i1H||∇i2H||∇i3H| dµt ⩽ 2ε∥∇nH∥2L2(∂Et)

+C∥∇H∥2L2(∂Et)
,

for any ε > 0, with C = C
(
ε, ∥B∥L∞ , ∥∇

n−3
2 B∥

L
n−1
n−i3 (∂Et)

)
.

3. If j < n−3
2 , we have

ˆ
∂Et

|∇jB||∇i1H||∇i2H||∇i3H| dµt ⩽ C

ˆ
∂Et

|∇i1H|2|∇i2H|2 dµt +C

ˆ
∂Et

|∇i3H|2 dµt ,

where C = C
(
∥∇jB∥L∞(∂Et)

)
.

Then, the last integral can be estimated by means of Lemma 3.3.7 (inequality (3.43), getting a
bound as in inequality (3.50), with C = C

(
ε, ∥∇jB∥L∞(∂Et)

)
.

The first integral in the right hand side can be estimated by means of Lemma 3.3.8 with
f1 = f2 = H, p = 2, α = (i1, i2) and k ⩾ i1 + i2 = 2n− 2− i3 − j. We have two cases:

• if i3 = n− 1, since k ⩾ i1 + i2 = n− 1− j, by means of inequalities (3.51) and (3.52)
we get the same conclusion as in inequality (3.53), for any 0 ⩽ j < n−3

2 , for a constant
C = C(ε, ∥B∥L∞ , ∥∇jB∥L∞);
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• if i3 = n− 2, since k ⩾ i1 + i2 = n− j and estimate (3.52) holds for k ⩽ n− 1, using
again inequalities (3.51) and (3.52), we get the the same conclusion (3.53), for any 1 ⩽
j < n−3

2 , for a constant C = C(ε, ∥B∥L∞ , ∥∇jB∥L∞). This is sufficient to conclude the
proof, as we remind that in the “polynomial” q2n+2(∇n−4B,∇n−1H), the “monomials”
B ∗ ∇i1H ∗ ∇i2H ∗ ∇n−2H are not present, that is, we do not need to deal with the case
i3 = n− 2 and j = 0.

Proposition 3.3.11. Let E ⊆ Tn be a smooth set and Et ∈ C1
ME

(E) a surface diffusion flow. Then,

d

dt

ˆ
∂Et

|∇H|2 dµt ⩽ − 2ΠEt(∆H) + ε∥∇nH∥2L2(∂Et)
+C1

(
1+ ∥∇H∥τL2(∂Et)

)
∥∇H∥2L2(∂Et)

d

dt

ˆ
∂Et

|∇n−2H|2 dµt ⩽ −∥∇nH∥2L2(∂Et)
+C2∥∇H∥2L2(∂Et)

for any ε > 0, with some τ > 0 and constants C1,C2 depending on E, ME , ε, ∥∇n−3B∥
L

2n−2
n−3 (∂E)

and

∥B∥L∞(∂E).

Proof. To get the first inequality, we start estimating the second and third terms in formula (3.36)
as follows,

C

ˆ
∂Et

|B||∇H|2|∇2H| dµt ⩽ C

ˆ
∂Et

|B|
3∏
l=1

|∇jlH| dµt ⩽ C∥B∥L∞(∂Et)

3∏
l=1

∥∇jlH∥Lβl (∂Et) ,

where we used Hölder inequality, with exponents βl = 7
jl+1 > 2, noticing that since

∑3
l=1 jl = 4,

we have
3∑
l=1

1

βl
=

3∑
l=1

jl + 1

7
= 1 .

Then, by the uniform interpolation inequalities (3.43), we get

∥∇jlH∥Lβl (∂Et) ⩽ C∥∇nH∥θl
L2(∂Et)

∥∇H∥1−θl
L2(∂Et)

+ ∥∇H∥L2(∂Et)

with
θl =

jl − 1

n− 1
+

1

2
− 1

βl
∈
(jl − 1

n− 1
, 1
)
,

for some uniform constants C, Hence,

C

ˆ
∂Et

|B||∇H|2|∇2H| dµt ⩽C(∥B∥L∞(∂Et))
[
∥∇nH∥Θ

L2(∂Et)
∥∇H∥3−Θ

L2(∂Et)

+
3∑
l=1

∥∇4H∥Θ−θl
L2(∂Et)

∥∇H∥3−Θ+θl
L2(∂Et)

+
3∑
l=1

∥∇4H∥θl
L2(∂Et)

∥∇H∥3−θl
L2(∂Et)

+ ∥∇H∥3L2(∂Et)

]
where

Θ =
3∑
l=1

θl =
3∑
l=1

jl − 1

n− 1
+

3

2
− 1 =

1

n− 1
+ 1/2 ⩽ 2 ,
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as
∑3

l=1 jl = 4.
Finally, by the Young inequality, we conclude

C

ˆ
∂Et

|B||∇H|2|∇2H| dµt ⩽ ε∥∇nH∥2L2(∂Et)
+C

(
1+ ∥∇H∥τL2(∂Et)

)
∥∇H∥2L2

for any ε > 0, with C = C(ε, ∥B∥L∞(∂Et)) and τ > 0.
About the second inequality, recalling formula (3.37), by Lemmas 3.3.9 and 3.3.10, we have the
thesis once we uniformly control with ∥∇n−3B∥

L
2n−2
n−3 (∂F )

and ∥B∥L∞(∂F ) the following norms:

• ∥∇jB∥
L

2n−2
2j−n+3 (∂Et)

if j > (n− 3)/2,

• ∥∇jB∥Lp(∂Et), for every 1 < p < +∞ if j = (n− 3)/2,

• ∥∇jB∥L∞(∂Et) if j < (n− 3)/2,

for any j ⩽ n− 3.

According to inequality (3.40), we have

∥∇jB∥Lp(∂F ) ⩽ C

(
∥∇n−3B∥

L
2n−2
n−3 (∂F )

+ ∥B∥
L

2n−2
n−3 (∂F )

)θ
∥B∥1−θ

L∞(∂F )

with
θ =

2n− 2

n− 3

( j

n− 1
− 1

p

)
∈
[ j

n− 3
, 1
]

and a uniform constant C.
If j > (n− 3)/2 we have the admissible case (see the conditions on θ in Proposition 3.3.4)

θ =
2n− 2

n− 3

( j

n− 1
− 2j − n+ 3

2n− 2

)
= 1 ,

with p = 2n−2
2j−n+3 .

If j = (n− 3)/2, we have
1

2
⩽ θ =

2n− 2

n− 3

( n− 3

2n− 2
− 1

p

)
< 1 ,

holding for p ∈
[4(n−1)

n−3 ,+∞
)
, then clearly also for all the smaller p ⩾ 1.

If j < (n− 3)/2, taking into account Remark 1.2.4 and the discussion that precedes it, we can
adapt the uniform Sobolev embeddings (Theorem 1.2.1–(iii)) to covariant tensors, as we did for
instance in Proposition 3.3.4. Hence, we have

∥∇jB∥L∞(∂Et) ⩽ C
(
∥∇n−3B∥

L
2n−2
n−3 (∂F )

+ ∥B∥L∞

)
,

with a uniform constant C.

Remark 3.3.12. Recalling Remark 3.3.6, in the proof of this proposition we could alternatively
uniformly control the constants in the interpolation inequalities by a function of the quantity
Vol(∂Et) + ∥H∥Ln(∂Et), instead of using Proposition 3.3.4, as it is done in [47], for instance. It
follows that this proposition holds also for only immersed (not boundaries of sets) smooth
hypersurfaces moving by the surface diffusion flow.
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3.3.3 Compactness

Lemma 3.3.13. Let E ⊆ Tn be a smooth set and Nε be a tubular neighborhood of ∂E. For ME small
enough and δ > 0, there exists a constant C = C(E,ME , δ) such that if F ∈ C1

ME
(E) with

∂F = {y+ ψF (y)νE(y) : y ∈ ∂E}

for a smooth function ψF : ∂E → R and
ˆ
∂F

|∇n−2H|2 dµ+
ˆ
∂F

|∇H|2 dµ ⩽ δ ,

there hold

∥B∥L∞(∂F ) + ∥∇n−3B∥
L

2n−2
n−3 (∂F )

⩽ C and ∥ψF ∥Wn,2(∂E) ⩽ C .

Moreover, for every 1 ⩽ p < 2n−2
n−3 , there exists a monotone non–decreasing function ω : R+ → R+,

depending only on E and ME , with limδ→0+ ω(δ) = 0 and such that if F satisfies the further condition

Vol(F△E) ⩽ δ ,

then ∥ψF ∥Wn−1,p(∂E) ⩽ ω(δ).
As a consequence, if Ei ⊆ C1

ME
(E) is a sequence of smooth sets such that

sup
i∈N

ˆ
∂Ei

|∇2H|n−2 dµi +

ˆ
∂Ei

|∇H|2 dµi < +∞ ,

then there exists a (non necessarily smooth) setE′ ∈ C1
ME

(E) such that, up to a (non relabeled) subsequence,
Ei → E′ in Wn−1,p as i→ ∞, for all 1 ⩽ p < 2n−2

n−3 . Moreover, if
ˆ
∂Ei

|∇n−2H|2 dµi +
ˆ
∂Ei

|∇H|2 dµi → 0 ,

as i→ ∞, the set E′ is critical for the volume–constrained Area functional, that is, its mean curvature is
constant.

Proof. Let F ∈ C1
ME

(E) with an associate function ψF : ∂E → R as in the statement. We start by
observing that, by the first inequality (3.43), we have

∥∇H∥
L

2n−2
n−3 (∂F )

⩽ C
(
∥∇n−2H∥θL2(∂F )∥∇H∥(1−θ)

L2(∂F )
+ ∥∇H∥L2(∂F )

)
⩽ C

√
δ ,

with θ = 1
n−3 and

∥∇H∥Ln(∂F ) ⩽ C
(
∥∇n−2H∥θ′L2(∂F )∥∇H∥(1−θ

′)
L2(∂F )

+ ∥∇H∥L2(∂F )

)
⩽ C

√
δ ,

with θ′ = (n−1)(n−2)
2n(n−3)

.
Then, by means of the uniform Sobolev embeddings (Theorem 1.2.1–(iii)), we get

∥H−H∥L∞(∂F ) ⩽ C ∥∇H∥Ln(∂F ) ⩽ C
√
δ (3.54)

where H =
ffl
∂F H dµ and all the constants depends only on E and ME .

By the uniform C1–bounds on ∂F , we may find a finite family (only depending on E and ME) of
“solid” cylinders of the form Ck = Dk + νE(xk)R, with Dk ⊆ TxkE a closed disk of fixed radius
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R > 0 centered at the origin, for a finite family of points xk ∈ E, such that ∂F ∩ Ck is the graph on
Dk of a smooth function fk : Dk → R, with

∥fk∥C1(Dk) ⩽ME (3.55)

for every k and ∂F =
⋃
∂F ∩ Ck.

Since we want to estimate
´
∂F∩Ck H dµ, which is a “geometric” quantity, we can assume (by means

of an isometry) that TxkE = ⟨e1, . . . , en−1⟩, hence νE(xk) = en, in the canonical orthonormal basis
of Rn and

∂F ∩ Ck = {(x, fk(x)) : x ∈ Dk} .

Then, by formulas in Remark 1.1.1 we have

H = −div

(
∇fk√

1+ |∇fk|2

)
,

hence,
ˆ
Dk

H dx = −
ˆ
Dk

div

(
∇fk√

1+ |∇fk|2

)
dx = −

ˆ
∂Dk

〈
∇fk√

1+ |∇fk|2

∣∣∣∣ x|x|
〉
dσ

=

ˆ
∂Dk

〈
νF

∣∣∣∣ x|x|
〉
dσ

where σ is the canonical (standard) (n− 2)–dimensional measure on the sphere ∂Dk. Thus, being
the last term at most equal to the area of the sphere ∂Dk, we get

HVol(Dk) =

ˆ
Dk

(H−H) dx+

ˆ
Dk

H dx ⩽
ˆ
Dk

|H−H| dx+C ⩽ C

ˆ
∂F∩Ck

|H−H| dx+C

where in the last inequality we kept into account estimate (3.55) in changing the domain (and
variables) of integration. Hence, controlling the last term of this inequality by estimate (3.54), it
follows that H is bounded by a constant depending on E, ME , δ and the same then holds also for
H. In particular, recalling that the volume of ∂F is uniformly bounded (as F ∈ C1

ME
(E)), we have

that H ∈ Lq(∂F ) for every q ∈ [1,+∞). Then, choosing ME small enough, Theorem 1.2.3, says
that we have an analogous uniform estimate on B in Lq(∂F ), for every q ∈ [1,+∞).
Once we have a control on ∥B∥Lq(∂F ), for some exponent q larger than the dimension of the
hypersurfaces, again ifME is small enough, we have the following uniform higher order Calderón–
Zygmund–type inequalities (inequalities (1.42))

∥∇kB∥L2(∂F ) ⩽ Ck
(
1+ ∥∇kH∥L2(∂F )

)
for every k ∈ N, where the constants Ck depend on E, ME and ∥B∥Lq(∂F ) and the dimension.
It then follows

∥∇n−2B∥L2(∂F ) ⩽ C(E,ME , δ) (3.56)

and, by inequality (3.40), we have

∥∇n−3B∥
L

2n−2
n−3 (∂F )

⩽ C
(
∥∇n−2B∥L2(∂F ) + ∥B∥L2(∂F )

)θ
∥B∥1−θ

L2(∂F )

with θ = n−1
n−2

(
n−3
2n−1 −

1
2

)
= 1. Hence, we conclude

∥B∥Lq(∂F ) + ∥∇n−3B∥
L

2n−2
n−3 (∂F )

⩽ C(E,ME , δ) , (3.57)

for every q ∈ [1,+∞).
These geometric estimates on B and their derivatives, can be “transferred” to estimates on the
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function ψF : ∂E → R, by means of the technique of localization/representation for any “graphi-
cal” hypersurface on ∂E introduced by Langer in [45] for surfaces, generalized to any dimension
by Delladio [20] and fully developed in details by Breuning in the papers [8, 9, 10] (such technique
is similar to the one we used to estimate H above). In particular, by the results in [10], under
a uniform control on ∥B∥Lq(∂F ) with q larger than the dimension of the hypersurface, we have
that an estimate on ∥B∥Wk,p(∂F ) implies a uniform estimate on ∥ψF ∥Wk+2,p(∂F ) and viceversa, for
every set F ∈ C1

ME
(E). Hence, by the previous estimates (3.56) and (3.57) on B and its derivatives,

we conclude
∥ψF ∥Wn,2(∂E) ⩽ C(E,ME , δ) .

Then, we notice that, by the uniform Sobolev embeddings, we have

∥∇2ψF ∥L∞(∂E) ⩽ C(E,ME , δ)

which in turn implies ∥B∥L∞(∂F ) ⩽ C(E,ME , δ), by what we said above.
Now, in the hypotheses of the lemma on a sequence of sets Ei, writing

∂Ei = {y+ ψi(y)νE(y) : y ∈ ∂E} ,

by the previous estimates and the uniform Sobolev compact embeddings

Wn,2(∂E) ↪→Wn−1,p(∂E) ↪→ C1(∂E)

for all 1 ⩽ p < 2n−2
n−3 , up to a (not relabeled) subsequence there exists a set E′ ∈ C1

ME
(E) such that

ψi → ψE′ in Wn−1,p(∂E) (and in C1(∂E)) where

∂E′ = {y+ ψE′(y)νE(y) : y ∈ ∂E} ,

for all 1 ⩽ p < 2n−2
n−3 .

If actually ˆ
∂Ei

|∇n−2H|2 dµi +
ˆ
∂Ei

|∇H|2 dµi → 0 ,

clearly for the limit set E′ the mean curvature must be constant.
The fact that ∥ψF ∥Wn−1,p(∂E) goes uniformly to zero as δ → 0, hence we have a function ω as in

the statement, follows by the fact that, assuming Fi ∈ C1
ME

(E) and

Vol(Fi△E) ⩽ δi ,

ˆ
∂Fi

|∇n−1H|2 dµi +
ˆ
∂Fi

|∇H|2 dµi ⩽ δi

with δi → 0, as i → ∞, by the previous argument we have that ψFi : ∂E → R converges to
some ψ : ∂E → R in Wn−1,p(∂E), hence in L1(∂E), while the limit Vol(Fi△E) → 0 implies that
∥ψFi∥L1(∂E) → 0, then we conclude that ψ must be zero and we have the thesis.

3.3.4 Global existence and stability – I

Theorem 3.3.14. Let E ⊆ Tn, for n ⩾ 3, be a strictly stable critical set for the Area functional under a
volume constraint and let Nε be a tubular neighborhood of ∂E. For ME < ε/2 small enough, there exists
δ > 0 such that, if E0 is a smooth set in C1

ME
(E) satisfying Vol(E0) = Vol(E) and

Vol(E0△E) ⩽ δ and
ˆ
∂E0

|∇n−2H|2 dµ0 +
ˆ
∂E0

|∇H|2 dµ0 ⩽ δ , (3.58)

then, the unique smooth surface diffusion flow Et starting from E0, given by Proposition 3.2.2, is defined
for all t ⩾ 0. Moreover, Et converges smoothly to E′ = E + η exponentially fast as t → +∞, for some
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η ∈ Rn, with the meaning that the sequence of smooth functions ψt : ∂E → R representing ∂Et as
“normal graphs” on ∂E, that is,

∂Et = {y+ ψt(y)νE(y) : y ∈ ∂E},

satisfy, for every k ∈ N,
∥ψt −ψ∥Ck(∂E) ⩽ Cke

−βkt ,

for every t ∈ [0,+∞), for some positive constants Ck and βk, where ψ : ∂E → R represents ∂E′ =
∂E + η as a “normal graph” on ∂E.

Remark 3.3.15. The request that E0 belongs to C1
ME

(E) with ME small enough, is necessary only
in order to be able to represent its boundary as a graph of a function with bounded gradient on
∂E and to have uniform Sobolev, interpolation and Calderón–Zygmund inequalities, as proved in
Section 1.2, while the first condition (3.58) is a “closedness” assumption in L1 for E0 and E (that
is, on ψ0). The second “small energy” condition (3.58) in the theorem implies (see the last part of
Lemma 3.3.13 and its proof) that the mean curvature of ∂E0 is “close” to be constant, as it is for
the strictly stable set E (actually for any critical set). Notice that this latter is a condition “of order
n” for the boundary of E0 and that all these assumptions are clearly implied by an appropriate
Wn,2–closedness of ∂E to ∂E, arguing as in Lemma 3.3.13.

Before showing the proof of Theorem 3.3.14, we recall the following lemma, which is Proposi-
tion 2.2.16 under stronger assumptions.

Lemma 3.3.16. Let E ⊆ Tn be a strictly stable critical set for the Area functional under a volume
constraint. For every θ ∈ (0, 1] there exist a constant σθ > 0 such that if F ∈ C1

2ME
(E) satisfies

Vol(F△E) ⩽ δ0 and
ˆ
∂F

|∇H|2 dµ ⩽ δ0 , (3.59)

for δ0 > 0 small enough, there holds

ΠF (ψ) ⩾ σθ∥ψ∥2L2(∂F ),

for all ψ ∈ H̃1(∂F ) satisfying

min
η∈OE

∥ψ− ⟨η | νF ⟩∥L2(∂F ) ⩾ θ∥ψ∥L2(∂F )

where the vector subspace OE ⊆ R4 was defined in formula (2.24).

Proof. Representing the boundary of F ∈ C1
2ME

(E) as ∂F = {y + ψF (y)νE(y) : y ∈ ∂E} for
a smooth function ψF : ∂E → R, according to Proposition 2.2.16, fixed some p > n− 1, there
exists a positive constant C = C(θ, p) such that the conclusion follows if ∥ψF ∥W 2,p(∂E) ⩽ C. This
inequality follows if conditions (3.59) hold with δ0 small enough, by the properties of the function
ω stated in Lemma 3.3.13 (and Sobolev embeddings).

Proof of Theorem 3.3.14. By choosingME small enough, we assume that for every set F ∈ C1
2ME

(E),
all the constants in the inequalities we are going to consider for functions on ∂F are uniform,
depending on E and ME , as it is shown in Section 1.2.
After choosing some small δ0 > 0, we consider the surface diffusion flow Et starting from
E0 ∈ C1

ME
(E) satisfying

Vol(E0△E) ⩽ δ and
ˆ
∂E0

|∇n−2H|2 dµ0 +
ˆ
∂E0

|∇H|2 dµ0 ⩽ δ ,
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for δ < δ0/2 and we let T (E0) ∈ (0,+∞] be the maximal time such that the flow is defined for t
in the interval [0,T (E0)), Et ∈ C1

2ME
(E),

Vol(Et△E) ⩽ δ0 and F(t) =

ˆ
∂Et

|∇n−2H|2 dµt +
ˆ
∂Et

|∇H|2 dµt ⩽ δ0 .

All the moving boundaries ∂Et can be represented as normal graphs on ∂E as

∂Et =
{
y+ ψt(y)νE(y) : y ∈ ∂E

}
for some smooth functions ψt : ∂E → R. Moreover, if T (E0) < +∞, then at least one of the three
following conditions must hold:

• lim supt→T (E0) ∥ψt∥C1(∂E) = 2ME

• lim supt→T (E0) F(t) = δ0

• lim supt→T (E0) Vol(Et△E) = δ0

otherwise, restarting the flow from a time t close enough to T (E0) by means of Proposition 3.2.2,
we have the contradiction that T (E0) cannot be the maximal time defined above. Indeed, the time
interval of smooth existence of the flow given by such proposition is bounded below by a constant
depending on the C2,α–norm of ψt and this latter by a constant depending on δ0, by the first point
of Lemma 3.3.13 and Sobolev (uniform) embeddings.
We are going to show that if δ0 was chosen small enough, there exists δ > 0 such that none of these
conditions can occur, hence T (E0) = +∞, that is, the surface diffusion flow of E0 exists for all
time.

Let us define, for K > 2, the following “energy” function

E(t) =
ˆ
∂Et

|∇n−2H|2 dµt +K

ˆ
∂Et

|∇H|2 dµt ⩾ F(t)

(notice that also holds E(t) ⩽ KF(t)). From Lemma 3.3.13 we easily have

∥B∥L∞(∂Et) + ∥∇n−3B∥
L

2n−2
n−3 (∂Et)

⩽ S0(F(t)) ⩽ S0(E(t)) , (3.60)

for t ∈ [0,T (E0)), where the function S0 : [0,+∞) → R+ is continuous and monotone non–
decreasing and it is determined by E and ME .

We now split the rest of the proof into steps. Our first goal will be to show that the function E
decreases in time if δ is small enough, for an appropriate constant K.

Step 1 (Monotonicity of E).
By Proposition 3.3.11, for any t ∈ [0,T (E0)), we have

d

dt
E(t) ⩽ −2KΠEt(∆H)− (1−εK)∥∇nH∥2L2(∂Et)

+(C2+KC1+KC1∥∇H∥τL2(∂Et)
)∥∇H∥2L2(∂Et)

,

for any ε > 0, τ > 0 and some constants C1,C2 depending on E, ME , ε, ∥∇n−3B∥
L

2n−2
n−3 (∂E)

and

∥B∥L∞(∂E). Then, choosing ε = 1/2K, we obtain

d

dt
E(t) ⩽ − 2KΠEt(∆H)− 1

2
∥∇nH∥2L2(∂Et)

+
(
S2(E(t)) +KS1(E(t)) +KS1(E(t))∥∇H∥τL2(∂Et)

)
∥∇H∥2L2(∂Et)

, (3.61)
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where S1,S2 : [0,+∞) → R+ are two continuous, monotone non–decreasing functions depending
on E, ME , by inequality (3.60).
By inequality (3.43) in Lemma 3.3.7 (with ε = 1/2), we have

∥∇n−2H∥2L2(∂Et)
⩽

1

2
∥∇nH∥2L2(∂Et)

+C∥∇H∥2L2(∂Et)
,

that is,

−1

2
∥∇nH∥2L2(∂Et)

⩽ −∥∇n−2H∥2L2(∂Et)
+C∥∇H∥2L2(∂Et)

and substituting into inequality (3.61), we get (recalling that K > 2)

d

dt
E(t) ⩽ − 2KΠEt(∆H)− ∥∇n−2H∥2L2(∂Et)

+
(
S2(E(t)) +KS1(E(t)) +KS1(E(t))∥∇H∥τL2(∂Et)

)
∥∇H∥2L2(∂Et)

⩽ − 2KΠEt(∆H)− ∥∇n−2H∥2L2(∂Et)
/K − ∥∇H∥2L2(∂Et)

+
(
1+ S2(E(t)) +KS1(E(t)) +KS1(E(t))∥∇H∥τL2(∂Et)

)
∥∇H∥2L2(∂Et)

= − 2KΠEt(∆H)−E(t)/K
+
(
1+ S2(E(t)) +KS1(E(t)) +KS1(E(t))∥∇H∥τL2(∂Et)

)
∥∇H∥2L2(∂Et)

.

If we assume that, for every t ∈ [0,T (E0)), there holds

ΠEt(∆H) ⩾ σ∥∇H∥2L2(∂Et)
, (3.62)

for some constant σ > 0, then

d

dt
E(t) ⩽−

[
2Kσ− 1− S2(E(t))−KS1(E(t))−KS1(E(t))∥∇H∥τL2(∂Et)

]
∥∇H∥2L2(∂Et)

−E(t)/K

⩽−
[
2Kσ− S(E(t))(1+K +K1−τ/2E(t)τ/2)

]
∥∇H∥2L2(∂Et)

−E(t)/K ,

with S = max{S1,S2+ 1} : [0,+∞) → R+ continuous, monotone non–decreasing and depending
on E and ME .
Hence,

d

dt
E(t) ⩽ −P (E(t)∥∇H∥2L2(∂Et)

−E(t)/K ,

with P (s) = 2Kσ − (1+K)S(s)− S(s)K1−τ/2sτ/2, which is a continuous and monotone non–
increasing function, determined by E and ME .
It is then an exercise of qualitative analysis of ordinary differential inequalities, to conclude that if
P (0) is positive, the first term starts and stays negative and the “energy” E satisfies

d

dt
E(t) ⩽ −E(t)/K (3.63)

for every t ∈ [0,T (E0)), that is, the function E is never increasing, so it remains bounded by E(0)
(moreover, it decreases exponentially and converges to zero, as t→ +∞, if the flow is “eternal”).
Thus, choosing an appropriate constant K, by the definition of the function S, it is easy to see that
we can make P (0) > 0, hence if δ > 0 is small, since E(0) ≤ KF(0) ≤ δK, it follows that E(0) is
small enough and we have the above conclusion.

Step 2 (Proof of estimate (3.62)).
We now want to apply Lemma 3.3.16 with F = Et and φ = ∆H, for all t ∈ [0,T (E0)), hence, we
need to show that there exists a small constant θ > 0 such that

min
η∈OE

∥∆H− ⟨η | νt⟩∥L2(∂Et) ⩾ θ∥∆H∥L2(∂Et) for all t ∈ [0,T (E0)) . (3.64)
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Considering the special basis {ei} of Rn and the associated set i ∈ IE in the discussion just
after Definition 2.2.5, by the properties of the function ω stated in Lemma 3.3.13, if δ0 is small
enough we have that for every t ∈ [0,T (E0)) the norm ∥ψF ∥Wn,2(∂E) is small, hence the same
holds for ∥ψF ∥C1(∂E). Then, it follows that there exists a constant C0 = C0(E,ME) > 0 such
that, for every i ∈ IE , we have ∥⟨ei | νt⟩∥L2(∂Et) ⩾ C0 > 0, holding ∥⟨ei | νE⟩∥L2(∂E) > 0 (notice
that this argument also shows that, with an appropriate choice of small δ0 and δ, the condition
lim supt→T (E0) ∥ψt∥C1(∂E) = 2ME cannot occur). It is then easy to see that the vector ηt ∈ OE
realizing the above minimum for Et is unique and satisfies

∆H = ⟨ηt | νt⟩+ g, (3.65)

where g ∈ L2(∂Et) is a function L2–orthogonal (with respect to the measure µt on ∂Et) to the
vector subspace of L2(∂Et) spanned by the functions ⟨ei | νt⟩. Moreover, letting ηt = ηitei, from
relation (3.64) we have

∥∆H∥2L2(∂Et)
⩾ ∥⟨ηt | νt⟩∥2L2(∂Et)

=

ˆ
∂Et

|ηit⟨ei | νt⟩|2 dµt ⩾ C2
0 |ηit|2 = C|ηt|2 , (3.66)

where C is a constant depending only on E and ME .
We now argue by contradiction, assuming ∥g∥L2(∂Et) < θ∥∆H∥L2(∂Et).
We recall that, thanks to the uniform Poincaré inequality (3.42), we have

ˆ
∂Et

|H−H|2 dµt ⩽ C

ˆ
∂Et

|∇H|2 dµt ⩽ C∥∆H∥2L2(∂Et)
(3.67)

where the second estimate can be obtained integrating by parts and using the Cauchy–Schwarz
inequality.
Hence, by multiplying relation (3.65) by H−H and integrating over ∂Et, we get∣∣∣∣ˆ

∂Et

(H−H)∆H dµt

∣∣∣∣ = ∣∣∣∣ˆ
∂Et

(H−H)g dµt

∣∣∣∣
< θ∥H−H∥L2(∂Et)∥∆H∥L2(∂Et)

⩽ Cθ∥∆H∥2L2(∂Et)
, (3.68)

where the equality follows from the identities
ˆ
∂Et

H νt dµt = 0 and
ˆ
∂Et

νt dµt = 0

holding for every embedded hypersurface. Then, recalling estimate (3.66) and the fact that g is
L2–orthogonal to ⟨ηt | νt⟩, we have

∥⟨ηt | νt⟩∥2L2(∂Et)
=

ˆ
∂Et

∆H⟨ηt | νt⟩ dµt

= −
ˆ
∂Et

⟨∇H | ∇⟨ηt | νt⟩⟩ dµt

⩽ |ηt|∥∇νt∥L2(∂Et)∥∇H∥L2(∂Et)

⩽ C∥∆H∥L2(∂Et)∥∇νt∥L2(∂Et)

∣∣∣∣ˆ
∂Et

(H−H)∆H dµt

∣∣∣∣1/2

⩽ C
√
θ∥∆H∥2L2(∂Et)

,

where in the last inequality we used relation (3.68) and we estimated ∥∇νt∥L2(∂Et) by inequal-
ity (3.60) and the fact that F(t) ⩽ δ0, as ∇νt = B by the Gauss–Weingarten relations (1.7).
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If then θ > 0 is chosen so small that C
√
θ < 1− θ2 in the last inequality, we have a contradiction

since equality (3.65) and the fact that ∥g∥L2(∂Et) < θ∥∆H∥L2(∂Et) imply (by L2–orthogonality) that

∥⟨ηt | νt⟩∥2L2(∂Et)
> (1− θ2)∥∆H∥2L2(∂Et)

.

All this argument shows that with such a suitable choice of θ, condition (3.64) holds, hence by
Lemma 3.3.16, we conclude

ΠEt(∆H) ⩾ σθ∥∆H∥2L2(∂Et)
for all t ∈ [0,T (E0)).

Then, the second estimate (3.67) clearly proves assumption (3.62) and the proof of monotonicity of
E in Step 1 is concluded. Hence, if δ is small enough, E(t) remains bounded by δ during the flow,
up to the time t = T (E0), thus the same clearly holds for F(t).

Step 3 (Global existence of the flow).
We have seen at Step 1 that choosing an appropriate constant K, if δ is small enough, then the
“energy” E(t) is uniformly bounded and decreasing. More precisely, integrating the differential
inequality (3.63), there holds

E(t) ⩽ E(0)e−t/K ⩽ δe−t/K ⩽ δ (3.69)

hence, we also have F(t) ⩽ δe−t/K ⩽ δ, for every t ∈ [0,T (E0)).
Moreover, at Step 2 we already saw that if δ0 is chosen small enough,

lim sup
t→T (E0)

∥ψt∥C1(∂E) = 2ME

is not possible. Hence, in order to obtain the global existence of the flow, we only have to show
that also

lim sup
t→T (E0)

Vol(Et△E) = δ0 (3.70)

cannot occur.
We define the following quantity

D(t) =

ˆ
Et△E

d(x, ∂E) dx =

ˆ
Et

dE(x) dx−
ˆ
E
dE(x) dx, (3.71)

where dE : Nε → R is the signed distance function defined in formula (1.14). We observe that,

Vol(Et△E) ⩽ C∥ψt∥L1(∂E) ⩽ C∥ψt∥L2(∂E)

and

∥ψt∥2L2(∂E) = 2

ˆ
∂E

ˆ |ψt(y)|

0
t dt dµ(y)

= 2

ˆ
∂E

ˆ |ψt(y)|

0
d(L(y, t), ∂E) dt dµ(y)

= 2

ˆ
Et△E

d(x, ∂E) JL−1(x) dx

⩽ CD(t) ,

where the constants depend on E and ME , L : ∂E × (−ε, ε) → Nε is the smooth diffeomorphism
defined in formula (1.49) and JL is its Jacobian. It clearly follows

Vol(Et△E) ⩽ C∥ψt∥L1(∂E) ⩽ C∥ψt∥L2(∂E) ⩽ C
√
D(t) , (3.72)
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and
D(t) ⩽

ˆ
Et△E

2ME dx = 2MEVol(Et△E) . (3.73)

Then, recalling formula (3.71), we compute

d

dt
D(t) =

d

dt

ˆ
Et△E

d(x, ∂E) dx =

ˆ
∂Et

dE ∆H dµt ⩽ C∥∆H∥L2(∂Et) ⩽ C
√
δ e−t/2K ,

for all t ⩽ T (E0), where the last inequality clearly follows from the above estimate (3.69) for E(t).
By integrating this differential inequality on [0, t) with t ∈ [0,T (E0)) and taking into account
estimate (3.72), we get

Vol(Et△E) ⩽ C∥ψt∥L2(∂E) ⩽ C

√
D(0) + 2KC

√
δ ⩽ C

4
√
δ ,

as D(0) ⩽ CVol(E0△E) ⩽ Cδ, by inequality (3.73) with t = 0. Hence, if δ > 0 is small enough
such that C 4

√
δ < δ0, we have that also condition (3.70) cannot happen.

We conclude that the surface diffusion flow of E0 exists smooth for every time, moreover
Et ∈ C1

2ME
(E) and

Vol(Et△E) ⩽ C
4
√
δ ,

ˆ
∂Et

|∇n−2H|2 dµt +
ˆ
∂Et

|∇H|2 dµt ⩽ δe−t/K , (3.74)

for every t ∈ [0,+∞).

Step 4 (Convergence, up to a subsequence, to a translate of E).
Let ti → +∞, then by estimates (3.74), the sets Eti satisfy the hypotheses of the last point of
Lemma 3.3.13, hence, up to a (not relabeled) subsequence, we have that there exists a critical
set E′ ∈ C1

2ME
(E) such that Eti → E′ in Wn−1,p for p < 2n−2

n−3 , that is ∥ψti − ψ∥Wn−1,p(∂E) → 0

for some ψ : ∂E → R representing ∂E′ as a “normal graph” on ∂E. As ∂E′ has constant mean
curvature and it is a graph over ∂E of a C1 function (by Sobolev embeddings), it follows by
standard regularity theory for quasilinear equations that it is smooth (see [34] for instance), then
by Proposition 2.2.17, we have that E′ = E + η for some (small) η ∈ Rn. Such proposition
actually states that E is a strict local minimum for the volume–constrained Area functional, up to
translations and that a smooth set “close enough” to E (as E′ in our situation) can be a critical set
if and only if it is a translate of E.

Step 5 (Smooth exponential convergence of the full sequence).
Arguing similarly as above, we consider the function

D(t) =

ˆ
Et△E′

d(x, ∂E) dx

with derivative

d

dt
D(t) =

d

dt

ˆ
Et△E′

d(x, ∂E) dx =

ˆ
∂Et

sgn(ψt −ψ) d∂E ∆H dµt , (3.75)

where sgn is the “sign function”. By the exponential second estimate (3.74) and the fact that
Et ∈ C1

2ME
(E), we have ∣∣∣∣ ddtD(t)

∣∣∣∣⩽ C∥∆H∥L2(∂Et) ⩽ C
√
δ e−t/2K

for all t ⩾ 0, moreover,

D(t) ⩽
ˆ
Et△E′

2ME dx = 2MEVol(Et△E′) ⩽ C∥ψt −ψ∥L1(∂E) ⩽ C∥ψt −ψ∥L2(∂E)
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which implies D(ti) → 0, as i→ ∞, by the previous step.
Integrating the differential inequality (3.75), we get

D(t)−D(ti) = −
ˆ ti

t

d

ds
D(s) ds ⩽

ˆ +∞

t

∣∣∣∣ ddsD(s) ds

∣∣∣∣⩽ ˆ +∞

t
C
√
δe−s/2K ds

⩽ 2CK
√
δe−t/2K ,

hence, passing to the limit as i→ ∞, we conclude

D(t) ⩽ Ce−t/2K

for every t ⩾ 0, thus limt→+∞D(t) = 0. Then, we have

∥ψt −ψ∥2L2(∂E) = 2

ˆ
∂E

∣∣∣∣ˆ ψt(y)

ψ(y)
s ds

∣∣∣∣ dµ(y)
= 2

ˆ
∂E

∣∣∣∣ˆ ψt(y)

ψ(y)
d(L(y, s), ∂E) ds

∣∣∣∣ dµ(y)
= 2

ˆ
Et△E′

d(x, ∂E) JL−1(x) dx

⩽ CD(t)

⩽ Ce−t/2K ,

where L : ∂E × (−ε, ε) → Nε is, as before, the smooth diffeomorphism defined in formula (1.49)
with Jacobian JL. By this exponential decay and the uniform bound on ∥ψt−ψ∥Wn,2(∂E) following
from estimates (3.74) by means of Lemma 3.3.13, we obtain the convergence of the full sequence
Et to E′ in Wn−1,p.
Finally, we have that the convergence of Et → E + η is actually exponentially smooth, by arguing
as in the proof of Theorem 5.1 in [30] (see also [16]), that is, via standard parabolic estimates
and the uniform interpolation inequalities (and Sobolev embeddings), holding the exponential
convergence in Wn−1,p.

3.4 L O N G – T I M E B E H AV I O R – I I

As in the previous section, we aim to study the evolution by surface diffusion of normal defor-
mations of a strictly stable set E. In this second line, the main tool will be a generalization of a
quantitative version of Alexandrov theorem.

3.4.1 A quantitative generalized Alexandrov theorem

The following is a famous and “classical” theorem due to Alexandrov (see the original paper [4]
for a complete and detailed proof, for instance).

Theorem 3.4.1. Let Ω ⊆ Rn be an open set of class C2. Then, H∂Ω is constant if and only if Ω is a ball.

A quantitative version of this result was first proven in [44, Theorem 1.10] and then rephrased
in [51, Theorem 1.3] as follows.

Theorem 3.4.2 ([51], Theorem 1.3). There exist δ ∈ (0, 1/2) and C > 0 with the following property: for
any ψ ∈ C1(∂B) ∩H2(∂B) such that ∥ψ∥C1(∂B) ⩽ δ, Vol(Eψ) = ωn and Bar(Eψ) = 0, we have

∥ψ∥H1(∂B) ⩽ C∥H−H∥L2(∂B) ,
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where Bar(Eψ) and H are, respectively, the barycenter of Eψ and the mean curvature of ∂Eψ and H =ffl
∂B H dHn−1.

Later on, in [17] the authors showed that in the periodic setting the above quantitative estimate
holds with B replaced by any strictly stable critical set. We call the conclusion in the following
theorem quantitive generalized Alexandrov inequality.

Theorem 3.4.3 ([17], Theorem 1.3). Let E ⊆ Tn be a strictly stable critical set. Then, there exist
δ∗ ∈ (0, 1/2) and C > 0 with the following property: for any ψ ∈ C1(∂E) ∩H2(∂E) such that
∥ψ∥C1(∂E) ⩽ δ∗ and satisfying∣∣∣∣ˆ

∂E
ψ dµ

∣∣∣∣ ⩽ δ∗∥ψ∥L2(∂E) ,

∣∣∣∣ˆ
∂E

ψνE dµ

∣∣∣∣ ⩽ δ∗∥ψ∥L2(∂E) (3.76)

we have
∥ψ∥H1(∂E) ⩽ C∥HEψ −HEψ∥L2(∂E) .

Moreover, as it is shown in [17, Section 3], the first condition (3.76) can be replaced with the
equality Vol(Eψ) = Vol(E).

Theorem 3.4.4. Let E ⊆ Tn be a strictly stable critical set. Then, there exist δ∗ ∈ (0, 1/2) and C > 0

with the following property: for any ψ ∈ C1(∂E) ∩H2(∂E) such that ∥ψ∥C1(∂E) ⩽ δ∗ and satisfying

Vol(Eψ) = Vol(E) ,

∣∣∣∣ˆ
∂E

ψνE dµ

∣∣∣∣ ⩽ δ∗∥ψ∥L2(∂E) ,

we have
∥ψ∥H1(∂E) ⩽ C∥HEψ −HEψ∥L2(∂E) . (3.77)

Finally, we notice that inequality (3.77) implies

∥ψ∥H1(∂E) ⩽ C∥HEψ − λ∥L2(∂E) ,

for any λ ∈ R.

3.4.2 Global existence and stability – II

In Theorem 3.2.3 we showed that the surface diffusion flow starting from E0 = Eψ0
exists in a

short–time interval and the evolving sets Et can be parametrized as normal deformations of a
fixed set smooth E, induced by functions ψ(t, ·) satisfying{

∂tψ(t,x)νt(p) · νE(x) = ∆tHt(p)
ψ(0,x) = ψ0(x)

for every x ∈ ∂E, with p = x+ ψ(t,x)νE(x). Moreover,

νt(p) · νE(x) =

1+
n−1∑
j=1

(∂τjψ(t,x))
2

(1+ κj(x)ψ(t,x))2

−1/2

,

where κj(x) and τj(x) for j = 1, . . . ,n− 1 are, respectively, the principal curvatures and the
principal directions of ∂E at x (see for instance [17, eq. (3.4)]). In particular, we remark that

νt(p) · νE(x) = 1+O(∥ψ(t, ·)∥H1) .
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Definition 3.4.5. We say that an open set E ⊆ Tn satisfies a uniform inner (respectively outer) ball
condition of radius r if there exists r > 0 such that for every x ∈ ∂E there exists a ball Br(y) ⊆ E

(resp. Br(y) ⊆ Tn \E) with x ∈ ∂Br(y).

Notice that every smooth set satisfies a uniform inner and outer ball condition.

Remark 3.4.6. Let E ⊆ Tn be a set satisfying a uniform ball condition of radius rE . Then, every
small C1,1–normal deformations of E satisfy a uniform ball condition of radius r ≈ rE . Indeed,
it is easy to see that if Eψ is the normal deformation of E induced by ψ ∈ C1,1(∂E), then the
Hausdorff distance between E and Eψ is bounded by ∥ψ∥C0(∂E). Furthermore, since ∇dEψ = νEψ
can be written as

νEψ =

(
νE −

n−1∑
i=1

∇ψ · vi
1+ κiψ

vi

)(
1+

n−1∑
i=1

(∇ψ · vi)2

(1+ κiψ)2

)−1/2

,

where the family vi denotes an orthonormal frame of the tangent space of ∂E. By differentiating
this formula, one can see that

∥dEψ − dE∥C1,1(∂E) ⩽ CE∥ψ∥C1,1(∂E) ,

which then implies that Eψ → E in C1,1, if ∥ψ∥C1,1 → 0. Therefore, by [15, Theorem 2.6] and [15,
Remark 2.7] one infers that the radius r of the uniform ball condition of the set Eψ depends
continuously on ∥ψ∥C1,1 when this latter is small enough. In particular, for every ε > 0 there exists
δ(rE , ε) > 0 such that, if ∥ψ∥C1,1 ⩽ δ then

|rE − r| ⩽ ε.

Lemma 3.4.7. Let E ⊆ Tn be a smooth set and m > 0. There exists η = η(m,E) > 0 such that, for every
k ∈ N, ψ ∈ Ck(∂E) with ∥ψ∥Ck(∂E) ⩽ m, ∥ψ∥C0(∂E) ⩽ η and for every σ ∈ Tn with |σ| ⩽ η, then the
normal deformation of E induced by ψ (as in Definition 1.3.1) and translated by σ, that is Eψ + σ, can be
written as a normal deformation of E induced by a function ψ̃ : ∂E → ∂E such that

∥ψ̃∥C0(∂E) ⩽ 2η, ∥ψ̃∥Ck(∂E) ⩽ C(∥ψ∥Ck(∂E) + |σ|) .

where C = C(E) > 0.

Proof. Being the set E smooth, it satisfies a uniform inner and outer ball condition, hence there
exists a positive radius r > 0 such that the signed distance dE from the set E, defined in for-
mula (1.14), is a smooth function in the tubular neighborhood Nr (see Definition (1.13)). Since, for
some k ⩾ 2, ψ has Ck–norm bounded by m, we also have ∥ψ∥C1,1(∂E) ⩽ m. Then, there exists a
radius ρ = ρ(m,E) such that the normal deformation Eψ of E induced by ψ satisfies a uniform
inner and outer ball condition of radius ρ and we can clearly assume without loss of generality
that ρ < r.
We now let η ⩽ ρ/2 to be chosen later, take any |σ| < η and set F = Eψ + σ. Clearly, F still
satisfies a uniform inner and outer ball condition of radius ρ. Then, for every y ∈ ∂F there exists
x ∈ ∂Eψ such that y = x+ σ, hence we have

d(y, ∂E) ⩽ |σ|+ d(x, ∂E) < η+ ∥ψ∥C0(∂E) ⩽ 2η

and in particular ∂F ⊆ N2η ⊆ Nr. We now define the map Tψ : ∂E → ∂E as in formula (2.42). By
choosing η small enough and using standard interpolation inequalities, there holds ∥ψ∥C1(∂E) +
|σ| < 1/2, which implies that the function x 7→ x+ ψ(x)νE(x) + σ is a diffeomorphism (since it is
a small perturbation of the identity). Since E is smooth (and possibly considering a smaller η),
we have that πE

∣∣
∂F

: ∂F → ∂E is a smooth diffeomorphism, Ck–close to the identity. Hence, by
inequality (2.45), we conclude

∥Tψ − I∥Ck(∂E) ⩽ C(∥ψ∥Ck(∂E) + |σ|) , (3.78)
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moreover, by the invertibility of the map x 7→ x+ ψ(x)νE(x) + σ, we also obtain

∥T−1
ψ − I∥Ck(∂E) ⩽ C(∥ψ∥Ck(∂E) + |σ|) . (3.79)

Then, we can find a function ψ̃ : ∂E → R such that F is the normal deformation of E induced by
ψ̃, more precisely for every x ∈ ∂E, there holds

x+ ψ(x)νE(x) + σ = Tψ(x) + ψ̃(Tψ(x))νE(Tψ(x)) .

Finally, using the above expression and the estimates (3.78) and (3.79), we conclude that

∥ψ̃∥Ck(∂E) ⩽ ∥T−1
ψ ∥Ck(∂E)(∥ψ∥Ck(∂E) + |σ|+ ∥Tψ − I∥Ck(∂E)) ⩽ C(∥ψ∥Ck(∂E) + |σ|) ,

for some constant C = C(E) > 0.

We are ready to state and prove the second version of our stability result.

Theorem 3.4.8. Let E ⊆ Tn be a strictly stable set and let E0 = Eψ0
be the normal deformation of E

induced by ψ0 ∈ C1,1(∂E) (as in Definition 1.3.1) with Vol(E0) = Vol(E). There exists δ = δ(E) > 0

such that if ∥ψ0∥C1,1(∂E) ⩽ δ, then the surface diffusion flow Et starting from E0 exists smooth for all
times t ⩾ 0 and Et converges smoothly to E + τ exponentially fast as t→ +∞, for some τ ∈ Tn, with the
same meaning of Theorem 3.3.14.

Proof. Let ε > 0 and δ(ε) ∈ (0, 1) to be chosen later (smaller than the constant given by Theo-
rem 3.2.3). We split the proof into steps.

Step 1. Our first goal is to show that the function G (t) = A(∂Et)−A(∂E) is non–increasing in
time and in particular, G (t) ⩽ Ce−ct as long as the flow exists.
Let ψ0 ∈ C1,1(∂E) with ∥ψ0∥C1,1 ⩽ δ < 1. By Theorem 3.2.3 there exists a time T > 0, which
depends on ε,E and a smooth flow Et starting from E0, for t ∈ [0,T ). Moreover, Et = Eψ and
ψ(t, ·) satisfies estimates (3.3) and (3.4). Without loss of generality, we can assume T < +∞.
We recall that

d

dt
A(∂Et) =

ˆ
∂Et

H∆H dµ = −∥∇H∥2L2(∂Et)
⩽ −C∥H−H∥2L2(∂Et)

,

where the constant C coming from the Poincaré inequality is uniform since ∥ψ(t, ·)∥C1,1(∂E)

remains bounded and small, for every t ∈ (0,T ) (see Section 1.2). So, the function G is non–
increasing.
Let δ∗ be the constant given by Theorem 3.4.4, p > n− 1 and ξ = ξ(δ∗, p) given by Lemma 2.2.15.
By estimates (3.3), (3.4) and by interpolation, we have that ∥ψ(t, ·)∥W 2,p(∂E) ⩽ ξ, for every t ∈
[T/2,T ), up to taking ε and δ small enough. Thus, for any t ∈ [T/2,T ), by Lemma 2.2.15, there
exists ηt and a function ψ̃(t, ·) such that Et + ηt = E

ψ̃

|ηt| ⩽ C∥ψ(t, ·)∥W 2,p(∂E) , ∥ψ̃(t, ·)∥W 2,p(∂E) ⩽ C∥ψ(t, ·)∥W 2,p(∂E)

and ∣∣∣∣ˆ
∂Et

ψ̃(t, ·)ν dµt
∣∣∣∣ ⩽ δ∗∥ψ̃(t, ·)∥L2(∂E) .

Furthermore, Lemma 3.4.7 (taking δ smaller, if needed) implies that ∥ψ̃(t, ·)∥C1(∂E) ⩽ δ∗.
We then apply Theorem 3.4.4 to the set Et + ηt = E

ψ̃
and we obtain

∥ψ̃(t, ·)∥H1(∂E) ⩽ C∥HE
ψ̃
− λ∥L2(∂E) ,
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for any λ ∈ R. By means of the bounds on ψ̃ and by the translation invariance, we thus get

∥ψ̃(t, ·)∥H1(∂E) ⩽ C∥HE
ψ̃
− λ∥L2(∂E

ψ̃
) = C∥HEt − λ∥L2(∂Et). (3.80)

We claim that
A(∂E

ψ̃(t,·))−A(∂E) ⩽ C∥ψ̃(t, ·)∥2H1(∂E) . (3.81)

Indeed, by defining for every x ∈ ∂E the function

Q(x) =

(
1+

n−1∑
j=1

(∂τj ψ̃(t,x))
2

(1+ κj(x)ψ̃(t,x))2

)1/2

,

we have

A(∂E
ψ̃
) =

ˆ
∂E

Q(x)
n−1∏
i=1

(
1+ κi(x)ψ̃(t, x)

)
dµ

= A(∂E) +

ˆ
∂E

(
HEψ̃(t, ·) +O(ψ̃(t, ·)2) +O(|∇ψ̃(t, ·)|2)

)
dµ

⩽ A(∂E) +HE

ˆ
∂E

ψ̃(t, ·) dµ+C

ˆ
∂E

(
ψ̃(t, ·))2 + |∇ψ̃(t, ·)|2

)
dµ

⩽ A(∂E) +C∥ψ̃(t, ·)∥2H1(∂E) ,

where we used [17, Lemma 3.1], relation HE =
∑n−1

i=1 κi and inequality∣∣∣∣ˆ
∂E

ψ̃(t, ·) dµ
∣∣∣∣ ⩽ C

ˆ
∂E

ψ̃(t, ·)2 dµ ,

which follows from the fact that Vol(Et) = Vol(E0) (see [17, Remark 3.2] for more details).
We now notice that, by the translation invariance and inequalities (3.80) and (3.81), for any λ ∈ R,
we have

A(∂Et)−A(∂E) = A(∂E
ψ̃
)−A(∂E) ⩽ C∥HEt − λ∥2L2(∂Et)

. (3.82)

Since for any t ∈ (0,T ), equation (3.82) for the particular choice of λ = H implies

G ′(t) = −∥HEt −HEt∥2L2(∂Et)
⩽ −CG (t) ,

by Gronwall’s inequality we conclude (recalling that G (0) ⩾ G (T/2))

G (t) ⩽ G (0)e−C(t−T/2) (3.83)

for every t ∈ [T/2,T ).

Step 2. We now show that the flow exists for every t ⩾ 0 and it converges exponentially fast to E
up to translations.
Possibly taking a smaller δ > 0, by means of the quantitative isoperimetric inequality in Theo-
rem 2.2.10, we get a family of translations τt such that

CVol(E△(Et + τt))
2 ⩽ A(∂Et)−A(∂E) ⩽ A(∂E0)−A(∂E).

Furthermore, since all the evolving sets Et, for t ∈ [T/2,T ), satisfy a uniform inner and outer ball
condition by Remark 3.4.6, by classical convergence results (see [15, Theorem 3.2], for instance) we
have that Et + τt is C1−close to E. In particular, by the implicit map theorem, there exist smooth
functions v(t, ·) : ∂E → R such that Et + τt = Ev(t,·) and

|τt| ⩽ max
x∈∂(Et+τt)

d(x, ∂Et) ⩽ ∥ψ(t, ·)∥C0(∂E) + ∥v(t, ·)∥C0(∂E) ⩽ 2ε ,
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up to taking δ small. Therefore, recalling inequality (3.83), we have

∥v(t, ·)∥2L1(∂E) ⩽ C(A(∂E0)−A(∂E))e−C(t−T/2) . (3.84)

By Lemma 3.4.7, we also have

∥v(t, ·)∥Ck(∂E) ⩽ C(∥ψ(t, ·)∥Ck(∂E) + |τt|) ,

for every k ⩾ 2.
Thus, for every t ∈ [T/2,T ), combining this estimate with (3.4), (3.84) and using the interpolation
inequalities, for any l ∈ N there exist k(l) ∈ N, θ(l) ∈ (0, 1) and C = C(E, l) > 0 such that

∥∇lv(t, ·)∥C0 ⩽ C∥v(t, ·)∥θL1∥v(t, ·)∥1−θCk
⩽ C(A(∂E0)−A(∂E))

θ
2 e−C(t−T/2) . (3.85)

Choosing G (0) = A(∂E0) −A(∂E) small (hence, choosing δ small) we can then apply again
Theorem 3.2.3 with Ev(T/2,·) = ET/2 + τT/2 as initial set to get existence of the translated flow up
to the time 3T/2. We remark that, by uniqueness, the flow above is well defined since it coincides
in [T/2,T ) with the flow Et translated by τt and estimate (3.83) holds for all t ∈ [T/2, 3T/2).
Since the bound (3.85) is uniform along the flow, choosing at every step the times t = kT/2, for
k ∈ N, we can iterate the procedure above to prove that the flow exists for all times t ∈ [0,+∞).
Moreover, for every t ∈ (0,+∞) there exists a translation τt such that Et + τt = Ev(t,·), with v

satisfying estimate (3.85). In particular, we have that v → 0 exponentially in Ck for any k ∈ N,
as t → +∞, hence Et + τt → E in Ck for every k. This also implies (arguing as in the previous
section, that is, ”transferring“ estimates on the function to geometric estimates on H – see for
instance Lemma 3.3.13) that ∥∆H∥L2(∂Et) → 0 exponentially fast.

Step 3. We conclude the proof by showing the convergence of the whole flow to a translate of E.
Let us prove the convergence of the translations τt. By compactness, we can find a sequence
tn → +∞ such that τtn → τ . Defining, D(t) as in formula (3.71), we get∣∣∣∣ ddtD(t)

∣∣∣∣ =
∣∣∣∣∣ ddt

ˆ
Et△(E−τ )

d(x, ∂E − τ ) dx

∣∣∣∣∣
=

∣∣∣∣ˆ
Et

div(dE−τ (x)Vt(x)ν(x)) dx

∣∣∣∣
=

∣∣∣∣ˆ
∂Et

dE−τ (x)∆H dµ

∣∣∣∣
⩽ A(∂E0)∥∆H∥L2(∂Et)

(
sup
x∈∂Et

d(x, ∂E − τ )

)
⩽ Ce−Ct , (3.86)

where we recall that Vt is the velocity of the flow in the normal direction.
Clearly, the estimate (3.86) implies that D(t) admits a limit as t→ +∞. By the previous step and
by the fact that τtn → τ , we deduce

D(t) → 0 as t→ +∞ .

Assume now that σ is the limit of τn up to a (non relabeled) subsequence. Thus, Eτn → E − σ and

0 = lim
n→+∞

D(τn) =

ˆ
E−σ△E−τ

d(x, ∂Eτ ) dx ,

which implies σ = τ . This concludes the proof as the exponential convergence follows from the
second step.
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3.5 T H E C L A S S I F I C AT I O N O F T H E S TA B L E C R I T I C A L S E T S

In this final section, we discuss the classes of smooth sets to which Theorem 3.3.14 and Theo-
rem 3.4.8 can be applied, hence, “dynamically exponentially stable” for the surface diffusion
flow. We observe that it is easy to see that (by a dilation/contraction argument) any strictly
stable smooth critical set must be connected, but actually, being the normal velocity of the surface
diffusion flow at every point defined by the local quantity ∆H, it follows that Theorem 3.3.14 can
be applied also to finite unions of boundaries of strictly stable critical sets (see [30] and Figure 1
below). Moreover, by Definition 2.2.5, if ∂E in Tn is composed by flat pieces, hence its second
fundamental form B is identically zero, the set E is critical and stable and with a little effort,
actually strictly stable. It is a little more difficult to show that any ball in any dimension n ∈ N is
strictly stable (it is obviously a critical set), which is connected to the study of the eigenvalues of
the Laplacian on the sphere Sn−1, see [36, Theorem 5.4.1], for instance. The same then holds for
all the “cylinders” Rk × Sn−k−1 ⊆ Rn, bounding E ⊆ Tn after taking their quotient by the same
equivalence relation defining Tn, determined by the standard integer lattice of Rn.

Notice that if n = 2, it follows that the only bounded strictly stable critical sets of the (in this
case) Length functional in the plane are the disks and in T2 they are the disks and the “strips” with
straight borders.

In the three–dimensional case, a first classification of the smooth stable “periodic” critical sets
for the volume–constrained Area functional, was given by Ros in [55], where it is shown that in
the flat torus T3, they are balls, 2–tori, gyroids or lamellae.

Figure 1: From left to right: balls, 2–tori, gyroids and lamellae.

Notice that, despite their name, the lamellae are (after taking the quotient) parallel planar 2–tori and
the 2–tori are quotients of circular cylinders in R3. As we said, with the balls, these surfaces are
actually strictly stable, while in [37, 38, 56] the authors established the strict stability of gyroids only
in some cases. To give an example, we refer to [38] where Grosse–Brauckmann and Wohlgemuth
showed the strict stability of the gyroids that are fixed with respect to translations. We remind that
the gyroids, that were discovered by the crystallographer Schoen in the 1970 (see [58]), are the
unique non–trivial embedded members of the family of the Schwarz’ P and D surfaces, namely,
the simplest and most well known triply–periodic minimal surfaces (see [56]).
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