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INTRODUCTION

The study of deformations of geometric structures driven by systems of nonlinear partial differen-
tial equations became very relevant in differential geometry and mathematical physics in recent
decades. Concrete examples are, for instance, the analysis of the behavior in time of the interfaces
surfaces in phase changes of materials or in the flows of immiscible fluids. From a mathematical
point of view, the great success of this topic was the application of such deformation techniques
in solving some famous long—standing open problems in geometry, notably among them, the
Poincaré conjecture by Perelman, by means of the Ricci flow.

In this thesis, we deal with hypersurfaces and we study one of the most known among their
geometric flows, namely the surface diffusion flow. We will consider the evolution in time of smooth
sets E in the n—dimensional flat torus T™ ~ R"™/Z", for every t in a time interval [0, T), such that
their boundaries 0E;, which are smooth hypersurfaces, move with “outer” normal velocity V;
given by

Vt = Ath on 8Et, (01)

where A; and H; are respectively the Laplacian and the mean curvature of the hypersurface 0E;,
forall t € [0,T). Choosing as ambient space the flat torus T", described as the quotient of R" by a
discrete group of translations generated by some n linearly independent vectors, is equivalent to
consider the flow of “periodic” hypersurfaces in the Euclidean space, invariant by such group
of translations. Then, it is clear that our analysis also applies to compact hypersurfaces in R" or,
more in general, in any (generalized) “cylinder” S x --- x 8! x R x - - - x R of dimension n, with
a flat metric.

Such flow was first proposed by Mullins in [52] to study thermal grooving in material sciences
(see also [26] for a nice presentation). Indeed, in the physically relevant case of three-dimensional
space, it describes the evolution of interfaces between solid phases of a system, which are studied
in a variety of physical settings including phase transitions, epitaxial deposition and grain growth
(see for instance [39] and the references therein).

A very important property of this geometric flow is that it is the gradient flow of a functional,
which clearly gives a natural “energy”, decreasing in time during the evolution (the velocity V;
is minus the gradient, that is, the Euler—-Lagrange equation of a functional). Precisely, the surface
diffusion flow is the H ~!-gradient flow of the following Area functional

A(OE) = / du
OF
that gives the area of the (n — 1)-dimensional smooth boundary of any sets £, under a volume
constraint (here y is the “canonical” measure associated to the Riemannian metric on OF induced
by the metric of T™ coming from the scalar product of R", which coincides with the (n —1)—
dimensional Hausdorff measure %" 1).

Parametrizing the moving smooth surfaces 0F; by a family of embeddings ¢; : M — T"
such that ¢, (M) = JE;, where M is a fixed smooth, compact (n — 1)—dimensional differentiable
manifold and v, is the outer unit normal vector to JE; as above, the evolution law (0.1) can be
expressed as

0
% = (Ath)Vt . (02)
Then, by the general equality Ay = —Hwv (equation (1.8) below), relation (0.2) can be rewritten as
% = —AAy; + lower order terms (0.3)
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hence, we have to deal with a fourth order, quasilinear and degenerate, parabolic system of PDEs.
More precisely, it is quasilinear, as the coefficients (as second order partial differential operator) of
the Laplacian associated to the induced metrics on the evolving hypersurfaces, depend on the first
order derivatives of ¢, (and the coefficient of AA on the third order derivatives) and the operator at
the right hand side of system (0.3) is degenerate, as its symbol (that is, the symbol of its linearized
operator) admits zero eigenvalues, due to the invariance of the Laplacian by diffeomorphisms.

From the evolution law (0.1), it follows easily that the volume Vol(E;) of the moving sets is
constant in time. However, the lack of the maximum principle, as the flow is of fourth order, implies
that it does not preserve convexity (see [42]), nor the embeddedness (see [33]), indeed it also does
not have a “comparison principle”, while it is invariant by isometries of T"”, reparametrizations
and tangential perturbations of the velocity of the motion.

Due to the parabolic nature of this system of PDEs, it is known that for every smooth initial set
Ey in T™, with boundary described by ¢g : M — T", the flow with such initial data exists unique
and is smooth in some positive time interval [0, T"). The original result, proved by Escher, Mayer
and Simonett in [26], deals with the evolution in the whole space R™ of a generic hypersurface
even only immersed, hence possibly with self-intersections. It is anyway straightforward to adapt
the same arguments to our case, when the ambient is a flat torus T™ and the hypersurfaces are
boundaries of sets.

Theorem. Let pg : M — R™ be a smooth and compact, immersed hypersurface. Then, there exists a
unique smooth ¢ : [0,T) x M — R" such that p; = (t,-) is the surface diffusion flow of @, that is, a
solution of system (0.3), for some maximal time of existence T' > 0. Moreover, such flow and the maximal
time of existence depend continuously on the C*%—norm of the initial hypersurface po.

Actually, it is very likely, as in many geometric evolution equations, that this flow could develop
singularities in finite time, even if a rigorous example is not present in literature (up to our
knowledge). In [26], Escher et al. exhibited an immersed curve with a loop within a loop (namely,
a limagon) and showed that during a numerical simulation of its evolution by surface diffusion,
the inner loop tightens and then contracts to a point developing a singularity. Analogously, in [25]
the same authors gave numerical evidence that for an evolving dumbbell with a thin neck, a
pinching—off should occur. We mention that these two situations have been instead analyzed
rigorously for the mean curvature flows by Angenent in [5] and by Grayson in [35], respectively
(see also [48] and [6] for alternative proofs).

Anyway, in some particular cases one can show that singularities do not appear, i.e. the flow
exists smooth for all positive times. For instance, in [26] the authors showed that if the initial
hypersurface is C?“—close enough to a sphere with the same enclosed volume, then the flow exists
for every time and smoothly converges to a translate of such sphere. The analogous result was
obtained by Escher and Mucha in [27] for compact surfaces in R"*! with a Besov-type condition
and then by Wheeler in [62] for surfaces and in [63] for closed plane curves (see also the work
of Elliott and Garcke [24]) with a weaker initial W?2?—closedness condition. Furthermore, in [64]
Wheeler showed that any surface diffusion flow of curves that exists for all time, must converge
smoothly, exponentially fast to a multiply—covered circle. We also mention a work by Miura e
Okabe [50] where the authors proved a global existence result provided that the initial curve is
W?22—close to a multiply covered circle.

Later on, Acerbi, Fusco, Julin and Morini in [1] extended these results, to any two and three—
dimensional hypersurface sufficiently “close” to the boundary of a smooth strictly stable critical set £
for the volume constrained Area functional (as it is every ball, actually), showing that the flow
exists for all positive times and asymptotically converges (in a suitable sense) to a translate of E.
Our aim in this thesis is to generalize such stability conclusion to any dimension, following the
lines presented by the author in [23] (in collaboration with Nicola Fusco and Carlo Mantegazza)
and in [16] (in collaboration with Daniele De Gennaro, Andrea Kubin and Anna Kubin).
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The notions of criticality and stability are as usual defined in terms of first and second variations
of A. We say that a smooth subset E C T" is critical for A under a volume constraint, if for any
smooth one—-parameter family of diffeomorphisms ®; : T — T", such that Vol(®;(E)) = Vol(E),
fort € (—¢,¢) and @y = Id (E; = ®¢(F) will be called volume-preserving variation of E), it follows

d
SAWE)|_ =0,

It is easy to see that this condition is equivalent to the existence of a constant A € R such that
H=2A\ on O0F,

where H is the mean curvature of OF, that is, OF is a hypersurface with constant mean curvature.
The second variation of A at a critical set F, leading to the central notion of stability, is more
involved and, differently by other authors, we will compute it in detail with the tools of the
differential /Riemannian geometry (like for the first variation). We will then see that at a critical
set F, the second variation of .A along a volume—-preserving variation £; = ®;(E) only depends
on the normal component ) on JF of the infinitesimal generator field X = % | 1o of the variation.
The volume constraint on the admissible deformations of E implies that the functions i) must have
zero integral on OF, hence it is natural to define a quadratic form ITg on such space of functions
which is related to the second variation of .A by the following equality,
d2

() = G A@E)| _ . 04)

where E; = ®,(E) is a volume—preserving variation of E such that

(vl ) =0

on OF, with vg the outer unit normal vector of OF.

Because of the obvious translation invariance of the functional .4, it is easy to see (by means of
the formula (0.4)) that the form I1g vanishes on the finite dimensional vector space given by the
functions ¢ = (vg|n), for every vector n € R™. We underline that the presence of such “natural”
degenerate subspace of the quadratic form I1g (or, equivalently, the translation invariance of A) is
the main reason of several technical difficulties.

We then say that a smooth critical set £ C T" is strictly stable if

[g(y) >0

for all non-zero functions v : 9F — R, with zero integral and L?-orthogonal to every function
¢ = (viln).

The heuristic idea behind the whole thesis is that in a region around a strictly stable critical
set £/, we have a “potential well” for the “energy” A (and the set F is a local minimum) and,
defining a suitable notion of “closedness”, if a set starts “close enough” to E, during its evolution
by (minus) the gradient of such energy, it cannot “escape” the well and eventually asymptotically
converges to a set of (local) minimal energy, which must be a translate of £. This can be clearly
interpreted as a kind of “dynamical stability” in a neighborhood of E (and its translates or “up to
translations”).

To be more precise, we will prove the following results:

Theorem (Theorem 3.3.14). Let E C T", for n > 3, be a strictly stable critical set for the Area functional
under a volume constraint. Then, there exists § > 0 such that, if Eq is a smooth set, Cl—close to E,
satisfying Vol(Ey) = Vol(E) and

Vol(EgAE) <8 and / |V”_2H|2duo+/ |VH|? dpo < 6,
8E0 aEO
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the unique smooth surface diffusion flow E; starting from Ey is defined for all t > 0 and converges smoothly
to E' = E + n exponentially fast as t — +oo, for some n € R™.

Theorem (Theorem 3.4.8). Let E C T", for n > 3, be a strictly stable set for the Area functional under a
volume constraint. Then, there exists § > 0 such that, if Eq is a smooth set d—close in CYlto E, satisfying
Vol(Ey) = Vol(E), then the surface diffusion flow E; starting from Eq exists smooth for all times t > 0
and Ey — E + 71 ast — +oo, for some T € T", in C* for every k € N exponentially fast.

In showing the first theorem we will follow the line of the proof in [1], revisited in [18] and
extended to any dimension in [23], based on suitable energy estimates and compactness argu-
ments. We underline that this was actually a completely new approach to manage the translation
invariance of the functional 4, in previous literature only dealt with by means of semigroup
techniques. More in detail, setting

]—'(t):/ |V"‘2H|2dut+/ |VH|? dyu
aEt aEt

and fixed dg > 0, we consider the surface diffusion flow starting from a set Ey which is dp—close to
E, such that Vol(EgAE) < dp and F(0) < dp. By means of energy estimates, we show that if dy is
chosen small enough, there exists § > 0 (as in the statement of the theorem) such that the maximal
time of existence of I is actually +oo. Once global-in-time existence has been established, a
compactness argument yields the existence of a sequence ¢; — 400 and of a set F’, critical for A,
such that £y, — E’ (in a suitable sense). Since necessarily E’ is close to £ and Vol(E) = Vol(E’),
we conclude that E’ is a translate of E, then, the exponential convergence of the flow to E’ follows
from suitable elliptic estimates.

The proof of the second theorem is based on the gradient flow structure of the evolution, in
particular, the main tool is the Alexandrov—type inequality in [17, Theorem 1.3], combined with the
quantitative isoperimetric inequality in [2]. By means of an iterative procedure and higher order
estimates, we extend the flow for all times. In order to do so, we need to show that the solution
coming from the short-time existence and regularity result depends only on the bounds of the
initial datum, which is not a priori clear from the existence result in [26]. More precisely, instead of
using an approach by scaling (as it is done in [43]), we rely on Schauder estimates on the linearized
problem solved by the flow, which is a quasilinear perturbation of the biharmonic heat equation,
in spirit of [41]. After establishing global existence, we obtain the exponential convergence up to
translations via a Gronwall-type argument. Finally, we prove the convergence of the flow to (a
translate of) the strictly stable set, by exploiting the decay of the geometric quantities in time, as
in [1, 18, 23]. We stress that this line of proof works in any dimension, without energy estimates
for the high derivatives of the curvature, which is one of the main bottlenecks of the previous
method.

The thesis is organized as follows:

¢ In Chapter 1 we first collect the necessary definitions and preliminaries about hypersur-
faces. Then, we show that families of smooth hypersurfaces of R" which are all Cl—close
enough to a fixed compact, embedded one, have uniformly bounded constants in some rele-
vant inequalities, like Sobolev, Gagliardo-Nirenberg and “geometric” Calderén-Zygmund
inequalities.

¢ In Chapter 2 we introduce the Area functional and study its basic properties. In particular,
we compute its first and second variations and we discuss the notions of criticality, stability
and local minimality of a set and their mutual relations, in this context.

¢ In Chapter 3 we finally consider the surface diffusion flow and we analyze its analytic and
geometric features. We prove a short-time existence result and then we show the stability of
the flow along the two different lines that we described above.
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SOME GEOMETRIC PRELIMINARIES

1.1 GEOMETRY OF HYPERSURFACES

We introduce the basic notations and facts about hypersurfaces that we need in the thesis, possible
references are [31] or the first part of [53].

We will consider closed smooth hypersurfaces in R" (or in the n-dimensional torus T" =~
R"™/Z"), given by smooth immersions ¢ : M — R" of a smooth, (n — 1)-dimensional, compact
manifold M, representing a hypersurface ¢(M) of R". Taking local coordinates around any
p € M, we have local bases of the tangent space T, M, which can be identified with the (n —1)-
dimensional hyperplane diy (7, M) of R" ~ T, R" which is tangent to (M) at ¢(p) and of the

cotangent space 7, M, respectively given by vectors {%} and 1-forms {dz;}. So, we will denote

i

vectors on M by X = X%, which means X = X ia%i' covectors by Y = Yj, thatis, Y = Y;dx; and

a general mixed tensor with 7' = T}!"*.

In the whole paper the convention to sum over repeated indices will be adopted.

Sometimes we will also need to consider tensors along M, viewing it as a submanifold of R"
(or T™) via the map ¢, in that case we will use the Greek indices to denote the components of
such tensors in the canonical basis {e, } of R", for instance, given a vector field X along M, not
necessarily tangent, we will have X = X%e,,.

The manifold M gets in a natural way a metric tensor g, pull-back via the map ¢ of the
metric tensor of R", coming from the standard scalar product (- | -) of R™, hence, turning it into a
Riemannian manifold (M, g). Then, the components of g in a local chart are

= (90|00
i = Oz; | 0x;
and the “canonical” measure p, induced on M by the metric g is then locally described by
= +/det g;; £"~ 1, where "1 is the standard Lebesgue measure on R" 1.

Thus, supposing that M has a global coordinate chart, we can write the Area functional on the
hypersurface p(M) in the following way,

Alp(M)) = /M dp = /M \/det g;j(x) de. (1.1)

When this is not the case (as it is usual), we need several local charts (Uy, ¢ ) and a subordinated
partitions of unity f : M — [0, 1] (that is, the compact support of f;, : M — [0, 1] is contained in
the open set U, C M, for every k € I), then

AN = J o =3 [ fein = 5

kel kel

/Uk fr(z) detgfj(x) dz

where gl’-“j are the coefficients of the metric g in the local chart (U, o).

In order to work with coordinates, in the computations with integrals in this section we will assume that
all the hypersurfaces have a global coordinate chart, by simplicity. All the results actually hold also in the
general case by using partitions of unity as above.

The inner product on M, extended to tensors, is given by

— . . 1121 j121 LU QS1...Sk
9(T,S) = Girsy - Gigsp, @7 - g ATy kST 2
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where g;; is the matrix of the coefficients of the metric tensor in the local coordinates and gY isits
inverse. Clearly, the norm of a tensor is then

IT| = /g(T,T).

The induced Levi-Civita covariant derivative on (M, g) of a vector field X and of a 1-form w
are respectively given by

VXt = 6‘71:] +F;'kX ] Vjwi = 6755 — Ik,

where F; i, are the Christoffel symbols of the connection V, expressed by the formula

; 1 470 0 0
rl.zfll(i 7_7) 12
jk 29 8£Ej gkl + axkgjl Ers gjk (1.2)
The covariant derivative VT of a tensor T' = Tﬁ;l’“ will be denoted by VST]?]’Z’“ = (VT)?le’Z,
and with VT we will mean the m~th iterated covariant derivative of a tensor 7.
The gradient V f of a function, the divergence div X of a tangent vector field and the Laplacian
Af at a point p € M, are defined respectively by

g(Vf(p),v) = dfp(v)  VveT,M,
oxX'
83;‘1'

(in a local chart) and Af = div Vf. The Laplacian AT of a tensor T is AT = g% V;V;T. We then
recall that by the divergence theorem for compact manifolds (without boundary), there holds

divX = trVX = V, X' = + T X"

/ divXdu=0, (1.3)
M

for every tangent vector field X on M, which in particular implies

/ Afdu=0,
M

for every smooth function f : M — R.

Assuming that we have a globally defined unit normal vector field v : M — R"™ to p(M) (this
will hold in our situation where the hypersurfaces are embedded or are boundaries of sets E C T",
hence we will always consider v to be the outer unit normal vector at every point of 0F), we define
the second fundamental form B which is a symmetric bilinear form given, in local charts, by its

components
1) —

8$i8$ 7
and whose trace is the mean curvature H = g*/h;; of the hypersurface (with these choices, the
standard sphere of R" has positive mean curvature).

Remark 1.1.1. If the hypersurface M C R" is the graph of a function f : U — R with U an open
subset of R"~!, that is, ¢(z) = (, f(z)), then we have

5oy OF OF _ (V£
9ij = 0ij + du; Oz ) V= TtV (1.4)
Hess;; f

= (1.5)

T VIV
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Af Hessf(V/,Vf) . i
= - s+ 5 = —div = (1.6)
VIFIVIE  (VIFIVIP) V1+|VS
where Hessf is the Hessian of the function f.
Then, the following Gauss—Weingarten relations hold,
D%  Op v 1s 0@
=Tk 2 _p, — = had"s , 1.7
0z;0x; Y Oxy, v Ox; il Oz (1.7)
which easily imply |Vv| = |B| and the identity
L 0% D |
= g _TE ) = ¢k = —H
ANp=yg ([hiax]— 7 amk) g hijv V. (1.8)

The symmetry properties of the covariant derivative of B are given by the following Codazzi
equations,
vihjk = vjhik = vkhij (19)

which imply the following Simons’ identity (see [60]),
Ahi; = V;V;H+Hhjg"hej — [B[hy; . (1.10)

By means of Codazzi equations (1.9), using the normal coordinates at a point p € M (and recalling

that Fi?j and 0%1- ¢’F vanish in p € M), we have

L 0%v v
— _Tk 2
Av=g (amiaxj ”axk)
0 0
_ i Y . lsi
g ox; (h]lg 3:53)
2

6Iiaxs

iy 0 g
- 1s 9% !
=9"Nihjg” 5~ + 9" hjg”
y 9 g
1s 9F !
=9“Vihijg” Do, g7 hjighisv
=VH-|B|*v, (1.11)
Finally, the Riemann tensor is expressed via the second fundamental form as follows (Gauss

equations),
Rijrr = hikhji — hahjk (1.12)

hence, the formulas for the interchange of covariant derivatives, which involve the Riemann
tensor, become

ViViX® = V;ViX® =Ryjig™ X' = R X! = (harhji — hahjr) 9" X!

ViVjwk — V;Viwy, = Rijrg"ws = Rijpws = (harhji — hithji) g% ws

for every vector field X and 1-form w.

1.2 UNIFORM INEQUALITIES

In this section, following the line of [19], we aim to show that families of smooth hypersurfaces of
R™ which are all C'—close enough to a fixed compact, embedded one, have uniformly bounded
constants in some relevant inequalities for the mathematical analysis, like Sobolev, Gagliardo—
Nirenberg, “geometric” Calderén-Zygmund, trace and extension inequalities.
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These technical results will be applied to study the behavior of the hypersurfaces close (in some
norm, for instance in C'-norm) to critical ones (possibly “stable”) and the asymptotic limits of
the flows existing for all times. Moreover, they are used repeatedly more or less explicitly in the
works [1, 2, 18, 23], where uniform controls on the constants are necessary.

For the time being, we fix My a smooth, compact, embedded hypersurface of R” (or T"). So, it
is well known (by its compactness and smoothness) that, for € > 0 small enough, My has a tubular
neighborhood

N ={z e R" : d(z,Mp) < e} (1.13)

(where d is the Euclidean distance on R") such that the orthogonal projection map 7 : N — My
giving the (unique) closest point on My, is well defined and smooth.
Then, if E is “the interior” of My, the signed distance function dg : N. — R from My

d(x) = {d(m,Mo) ifz ¢ E

(1.14)
—d(z,My) ifzxekFE

is well defined and smooth in N (for a proof of the existence of such tubular neighborhood and
of all the subsequent properties, see [49] for instance). Moreover, for every x € N, the projection
map  is given explicitly by

mp(z) =2 —Vdy(z)/2 = x — dp(z)Vdg(z) (1.15)
and the unit vector Vdg(z) is orthogonal to M at the point 75 (z), indeed actually
Vdg(z) = Vdg(rg(x)) = v(rg(z)) . (1.16)

This implies that, every smooth hypersurface M which is C''~close enough to My, can be written
(possibly after reparametrization) as

M = {z+¢(z)v(z) : x € Mo}, (1.17)

for a smooth function ¢ : Mo — R with ||¢[|c1(as,) < €. Indeed, if ¢y : M — R"and ¢ : M — R"
are two smooth immersions such that at least one of them is an embedding (¢, for instance)
of a differentiable manifold M, describing respectively My and M, close in C!, then the map
To oy L' My —» Myisa diffeomorphism, which implies that «|y; : M — My is also a
diffeomorphism. Then, the map ¢ above in expression (1.17), is uniquely given by ¢(z) =
dp(r|y; (), which has small C'-norm, as 7|y gets C''~closer and closer to the identity, as ¢ is
Cl—close to ¢g.
Hence, from now on, we will consider families of hypersurfaces (clearly all containing M)

¢H(Mp) = {M ={z+¢(z)v(z) : © € Mo}
for a smooth ¢ : Mo — R with [|¢]|c1 () < 6}

where § € (0,¢). We are going to see that the constants in Sobolev, Gagliardo-Nirenberg, some ge-
ometric Calderén-Zygmund inequalities, trace and extension inequalities are uniformly bounded,
depending only on My and 6.

Before starting discussing that, we introduce another technical construction. We notice that,
possibly choosing a smaller € > 0, the tubular neighborhood N. of Mj defined above, can be
covered by a finite number of open hypercubes Q1, ..., Q; C R™ respectively centered at some
points pi, ..., py € My, such that, forevery i € {1,...,k} and every M € €}(Mp), with § € (0,¢),
the “pieces” of hypersurfaces M N Q; can be written as orthogonal graphs on the affine hyperplanes
I, Mo = p; + T, Mo, parallel to the tangent hyperplanes to M at the points p; € My and passing
through them, as in the following figure.
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Then, we let p; : R™ — [0, 1] a smooth partition of unity (with compact support) for V., associated
to the open covering Q;, hence, if M € ¢}(My) and u : M — R, there holds

k
u(y) = uly)pi(y)

=1

with the compact support of up; : M — R contained in the piece M N Q; of the hypersurface M,
which is described as the graph of a smooth function ¢; : I'l,, My — RR, that is, M N Q); is the image
of the map =z — O(z) = = + 6;(z)v(p;) on I1,, My N Q;. Moreover, it is easy to see that, possibly
choosing an even smaller ¢ > 0, we have ||6; Hcl(npi My) < 20, foreveryi € {1,...,k}, since also
M can be locally written as an orthogonal graph on 11, Mg.

We notice and underline that the family (and the number) of the hypercubes @;, as well as the
width € > 0 of the tubular neighborhood N, that we considered for this construction, only depend
on M), precisely on its local and global geometry (in particular, on its second fundamental form
Bg — see [10] for more details).

We highlight to the reader that in the following, we will often denote with C a constant which may vary
from a line to another.

10



1.2 UNIFORM INEQUALITIES

1.2.1  Sobolev, Poincaré and Gagliardo—Nirenberg interpolation inequalities

We start discussing the Sobolev constants Cg (M, p) of any compact (n — 1)-dimensional hyper-
surface M, for every p € [1,n — 1), entering in the following inequalities (which are known to
hold, see [7, Chapter 2], for instance),

. 1/p*
e oy =( [ 1ol i)
1/p
<Cs(p)([ 1Vl +Ju? du)
M
=Cs(M,p) ”uHWl»P(M)

for every Cl—function u : M — R (or u € WL?(M)), where p* = & pl)p is the Sobolev conjugate
exponent of p. It is well known that a bound on Cg(M, 1) implies a bound on Cg(M,p), for every
p € [1,n —1) (see [7, Chapter 2, Section 5], for instance), hence we concentrate on the case p = 1,
where 1* = Z—:é

We first want to argue localizing things by means of the construction of the previous section.
We then have a finite family of hypercubes Q; centered at p; € My, the partition of unity p;
and a parametrization x — O(z) = z + 0;(z)v; on Iy, My N Q; of each piece M N Q; of any
smooth hypersurface M € ¢}(My), where v; = v(p;) and the functions 6; : I, My — R satisfy
H97;||C1(Hpi Mp) < 26, forevery i € {1,...,k}. Moreover, in dealing with any piece M N Q;, we
will assume (without clearly losing generality) that IT,, My = R"~! C R" and we observe that
in such parametrization, by formula (1.4), the Riemannian measure p associated to the (induced)
metric g on M is given by = JO £ !, with #"~! the Lebesgue measure on I, My = R"!

and JO = /1 + |VR"7'9;2, which clearly satisfies 1 < JO < 1+ 24.
For every C'~function u : M — R, we can write

n—2
() wi=an)™ /\Zum

as the compact support of up; is contained in M N Q;.
Then, for every C! function v : M — R with compact support in M N Q;, there holds

k n—2

n—2
72 )nl (/ |u% )nfl
> pil =2 du
MNQ; ’

=1

n—2

(/MHQ_ [0(u) 7 du(y)) e (/]Rn_1 o+ 0|2 JO () do) "

n—2

<O@)( [ llat o) ar)"

11



1.2 UNIFORM INEQUALITIES

as JO® < 1+ 26 and applying the Sobolev inequality for functions with compact support in R" !,
we have

n—2

(/anﬂ [v(z + Hz(m);/m% dm) =

<C VR (2 + 0;(2)1s)]| d
]R'nfl

=C | |Vole+0(z)m) o (1d+ VR 0i(x) @ vy) | da
Rn—1

<C Vo(a + 0 (x)v)| |1d + VR0, () © 1| da
]Rn—l

=C \Vo(z + 0;(x)v;)| /14 VR 719;|2 da

Rn—1

= C/ [Vo(y)ldu(y) (1.18)
M
as /1 +|VR"7'9;|2 = J@. Hence,

n—2
(/ |U|% du) "L 0(5)/ [Vl du
MNQ; M

and setting v; = up;, after summing on ¢ € {1,...,k}, we conclude

n—2 n—2
n—1 n—1 n—1 n—1
W) <Y (il )
(/M Z MNQ; !

k
=CO) X [ 1Vulpitlul [Vl d
=1

<C) [ Vuldu+Co,0) [ fulan, (1.19)
M M

as |Vp;| < C(My,0), forevery i € {1,...,k}. This clearly gives a uniform bound on Cs(M, 1) for
all the hypersurfaces in €} (M), depending only on M (in particular, on its second fundamental
form By, as we said in the previous section) and ¢ > 0.

Let now see an alternate line, based on the “global” graph representation of the hypersurfaces
M € ¢}(My) over M.
For every C! function u : M — R, we have

n—2

(W= auw) ™ = ([ et v = e auo)

where JVY is the Jacobian of the map ¥ : My — M and it is an easy check that, at every point

x € My, there holds .
—— < JY < C(Bg,9), 1.20
C«(B07 5) ( 0 ) ( )
for some constant C(Bp,d) > 0, where By is the second fundamental form of My. Moreover,
C(Bo,d) goes to 1 as § — 0. Notice that the fact that By appears here can be seen from the

expression of d¥, that is

d¥, = Idq, v, + dpe @ v(x) + 1 (2)dvy

12



1.2 UNIFORM INEQUALITIES

as, by the Gauss-Weingarten relations (1.7), dv, is related to Bo(z).
Then, by applying the Sobolev inequality holding for Mj, we have

n—2

([ tute+ w@w() [ duo@)
Mo
< Cs(Mp, 1) /M V0u(z + 9 ()w(2))]] duo(z)

+ Cs(Mo, 1) / (e + 9(2)v(2))| dpio(z)

My

< Cs(Mp, 1) A Vule + 0@ (@) |4 ()] diox)

+Cs(Mp, 1) / u(z + 9(2)v(2))]| dpo(z)

Mo

<C(Mp,5) /M IVu(y) | ¥ (y) duly)
+C(Ma.0) [ fulo)| T¥ () )

<c8)( [ 1Vuldut) + [ fulo)lau(»)

Hence,

(f = ) < ot [ vl [ juld).

As before, this means that the constant C'(My, d) is a uniform bound on Cs(M, 1) for all the
hypersurfaces in €}(Mp), moreover, since C(Mp,§) — 1, as § — 0, it also shows the continuous
dependence of Cs(M, 1) under the C''—convergence of the hypersurfaces.

Theorem 1.2.1. Let My C IR™ be a smooth, compact hypersurface, embedded in R™. Then, there exist
uniform bounds, depending only on My and & (more precisely, on the “C1— structure” of the immersion of
My in R", its dimension and its second fundamental form), for all the hypersurfaces M € €}(My) on:

(i) the volume of M from above and below away from zero,
(i) the Sobolev constants for p € [1,n — 1) of the embeddings W (M) < LP" (M),
(iii) the Sobolev constants for p € (n — 1, 4-00] of the embeddings WhP(M) — CO1=(n=1)/p(pr),
(iv) the constants in the Poincaré—Wirtinger inequalities on M for p € [1,400],
(v) the constants in the embeddings of the fractional Sobolev spaces WP (M),
(vi) the constants in the Gagliardo—Nirenberg interpolation inequalities on M.
Moreover, all these bounds go to the corresponding constants for My, as § — 0.

Proof.

(i) This is trivial due to the C'—closedness of M to M.

(ii) As explained at the beginning of the section, we can estimate the constant in the Sobolev
inequality for p € [1,n — 1), by means of Cs(M, 1), which is uniformly bounded for all the
hypersurfaces M € ¢}(My), by the above discussion.

(iii) If p > n — 1, we show that there exists a uniform constant C'(My, p, §) such that

[ullgo.aary < C(Mo, p, ) lullwrp(ar) (1.21)

13



1.2 UNIFORM INEQUALITIES

witha=1—-(n—1)/pand

u(y) —u(y”
lllcon = sup [u(@)[+  sup W)=l
yeM yreM, yAy 1Y — Y

for all M € €}(Mp) and every C* function u : M — R.

In the same setting and notation at the beginning of this section, it is easy to see that we can
choose a special family of hypercubes @); such that enlarging their edges of a small value o > 0,
we have hypercubes ); with the further property that M N Q; can be still written as an orthogonal
graph on I, My = R"~! C R™

The following holds

k

sup |u(y)| <Y sup  [u(y)pi(y)]
yEM i=1 yEMﬁQi

and for every C'! function v : M — R with compact support in M N Q;, by applying the Sobolev
inequality for p > n — 1 in R"~! and arguing as in obtaining estimate (1.18), we have

sup [o(y)| = sup |v(z 4+ 60;(z)v;)]
yeMNQ; reRn—1

n— 1/
<C Vo(z +0;(x)v;) o Id + VR 10ix @ ;)| dx P
]Rnfl

<cO)([ v+ oimras)”

<C(0) (/]Rnil |Vv(x+9i(x)ui)|pJ®dx)l/p

1/p
—c)([ [woPauw) (1.22)
M
as JO > 1. Setting v; = up; and estimating as in getting inequality (1.19), we conclude
1/p
suplul < C(Mo.p.0) ([ 1Vul? + ul?au) " (1.23)
M M

Regarding the seminorm [u]co.a = SUp, y«cnr, yry %, given two points y, y* € M, we

have

Ju(y) —uly") = | > vily) —vily)

=1

k
<Y fuily) —vily)]- (1.24)
i=1

Then, for any C! function v : M — R with compact support in M N Q;, if y and y* both belong
to the intersection of M with the ”e~nlarged” hypercube Q;, we can write y = z + 0;(z)v; and
y* = a* + 0;(z*)v; for some z,z* € Q; NII,, My (by our initial choice of the family @Q;) and there
holds

=3
—~~
<
~—
I
<
—~
<
*
=
I

v(z + 0;(z)v;) —v(z* + 0;(z" ;)]

Mo,p) |z —2*[*[|VR" (v 0 ©) | o(n-1)
Mo, p.8) [y =" |* [VX"(00©) o1y
Mo, p,0) [y — y*|“ [Vl Loy »

(
(
(
(

where the first inequality follows as in the proof of Theorem 4 in Section 5.6.2 of [28], the second
one holds since |z — 2*| < |y — y*| and the third one is obtained arguing like in estimate (1.22).

14



1.2 UNIFORM INEQUALITIES

If both y* and y do not belong to M N Qi clearly |v(y) —v(y*)| = 0, whileif y € M N Qi with
v(y) #0buty* € M NQ;, theny € M NQ;, hence |y — y*| = o and

)

— oyt v
o) =) _ 00 ¢ g gy 1720
ly —y*|* oo o
by estimate (1.22).
It follows that, for every y and y* in M, we have

W < C(Mo,p,0)(1+ =)Vl Lo(ar) -

Then, putting together this and inequality (1.24), we conclude, for every y and y* in M,

k
u(y) —u(y*) <D Jily) —vi(y*)] < C(Mo,p,6) |y — y*|* IVl (ar)
i=1
which, with inequality (1.23) gives the desired estimate (1.21).

(iv) In order to obtain the conclusion for the Poincaré-Wirtinger inequality, for any p € [1, 4+o0]
and all M € €}(M),

Ju =l Lo (ary < C(Mo,p, 0)[IVull Lo (ary »

where @ = f,, udyu, we argue by contradiction assuming this uniform estimate is false. Then, for
each k € N, there would exist a graph hypersurface M, € ¢}(My) and a function uy, € WP (M)
such that
lug = gl Lo (ary) 2 FIIVugllLea,)-

where u;, = ka uy, dug. We renormalize these function as

up — Uy,

Ve = 7=,
llur — Ukl Lo (a1,

then, [3, vidpk =0, vkl Lo (ag,) = L and [Vl po(ag,) < 17k
If we consider the functions w;, = vy o ¥y : My — R, where ¥y : My — My, is given by
Y (z) = 4+ ¢r(x)v(z) (as in the second way to deal with Cg(M, 1), at the beginning of this
section), we have
0 < C'(Mo,p,8) < llwil oasy) < C (Mo, p,0) (125)

and
IVwi |l Lo (ag) < C (Mo, p,0)/ k. (1.26)

In particular, the functions wy, are equibounded in WP (M), hence by the Rellich—-Kondrachov
embedding theorem and the estimate (1.26), there exists a subsequence (not relabeled) converging

in LP (M) to a constant function equal to some A € R which cannot be zero, by the estimate (1.25).

Moreover, there holds
/ wi(z) JY¥g(2) dpo () :/ wi o ¥ (y) dp(y) =/ vp(y) dpg(y) =0,
Mo Mj, M,

hence, since JY}, are equibounded (formula (1.20)) and assuming, possibly passing again to a
subsequence, that Vol(M}) — V > 0, by means of point (i), we conclude

0= / (i () = \) T () dpo () + A | T¥y() dao(z) — AV,
My Mo

as k — oo, being [, J¥j(2) duo(x) = Vol(My). This is clearly a contradiction, as A, V # 0 and
we are done.
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1.2 UNIFORM INEQUALITIES

The case p = +o0 is analogous.

(v) As for the “usual” (with integer order) Sobolev spaces, all the constants in the embeddings
of the fractional Sobolev spaces are also uniform for the family ¢} (7). The proof is along the
same line, localizing with a partition of unity and using the inequalities holding in R"~! (see [22]
and [57]).

(vi) Finally, we want to show that for any ¢, r real numbers 1 < ¢ < +00,1 <7 < oo and j,m
integers 0 < j < m, there exists a constant C' depending on j,m,r, ¢, 6, My and ¢ such that the
following interpolation inequalities hold

; m 9, 11—
IV ull poary < C(IV™ull ey + llull e ary) Hu||1Lq?M)7 (1.27)

for all M € €}(My), where

1 ] 1 1-6
Lo dp(lomy,
p n-—1

r n—1 q

for every 6 € [j/m, 1] such that p is nonnegative, with the exception of the case r = % # 1 for
which the inequality is not valid for 6 = 1.
Moreover, if u : M — R is a smooth function with JCM udyp = 0, inequality (1.27) simplifies to

IVl Lo ary < CIV™ G a1l gy - (1.28)

We can obtain inequality (1.27) arguing as in Proposition 5.1 of [47], essentially following the
line of the proof of Theorem 3.70 in [7], but substituting the Sobolev—Poincare inequality (41) in
the argument there with its version where the constant is uniform for all M € €}(Mp). Indeed,
the other “ingredients” in such proof are a bound on the volume (uniform, by point (i)) and
some “universal” inequalities in which the constants do not depend on the hypersurfaces at all [7,
Theorem 3.69].

Such Sobolev—Poincare inequality (41) in Theorem 3.70 of [7] reads

”uHLP*(M) < CSP(M7P)||VU||LP(M) ) (1.29)

for every C'—function u : M — R (or u € W'P(M)) with [,, udu = 0, (here, as before, p* =
% is the Sobolev conjugate exponent) and we actually need it with a uniform constant, in
order to get inequality (1.28), by the very same proof of such theorem.

This inequality actually follows by points (ii) and (iv). Indeed, for every u € WP(M), by

Sobolev inequality, we have
lall o (ar) < C (Mo, p.8) (19l o ary + lull o ary)
and, by Poincare-Wirtinger inequality, as & = [;, udu = 0,
[ull e (ar) < C (Mo, p, 0)|[Vull Lo (ar

hence, we obtain inequality (1.29) with Csp(M, p) bounded by a uniform constant C' (Mo, p, J),
for every M € €}(Mp). O

Remark 1.2.2 (The fractional Sobolev spaces W*P(M)).

At point (v) of the theorem above we considered the fractional Sobolev space W*” on the hy-
persurfaces M € €}(My), which are usually defined via local charts for M and partitions of
unity, that is, getting back to the definition with the Gagliardo W*?-seminorms in R"~! (we refer
to [3, 21, 22, 57], for details). They can be also defined equivalently by considering directly on M
the Gagliardo W*P—seminorm of a function f € LP(M), for s € (0, 1), as follows

oo = [, [ HELOE )it
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1.2 UNIFORM INEQUALITIES

and setting || f|lwsr(ar) = | flle(ar) + [flwsr(ar)- Moreover, the constants giving the equiva-
lence of the two norms obtained by localization or by this direct definition are uniform for all
M € ¢}(Mp). Indeed, the localization method is “uniform” for all M € €}(M;), meaning that
the number of necessary local charts is fixed and the diffeomorphisms between R"~! and “corre-
sponding” (associated to correlated local charts, that is, being a graph on the same piece of My,
as in our construction) local “pieces” of any different hypersurfaces M € €} (M), are uniformly
close each other in C''-norm.

1.2.2  Geometric Calderén—-Zygmund inequalities

Theorem 1.2.3. Let My C R" be a smooth, compact hypersurface, embedded in R™ and p € (1,400).
Then, if 6 > 0 is small enough, there exists a constant C'(Moy, p, ) such that the following geometric
Calderon—Zygmund inequality holds,

1Bl o (ar) < C (Mo, p,6) (14 [H o (1))
for every M € &}(My).

Proof. We recall the local representation as graphs of the hypersurfaces M € €}(My) over My, as
at the beginning of the previous section. We have a finite family of hypercubes @); centered at
pi € My, the partition of unity p; and a parametrization z — ©(z) = x + 0;(z)v; on Iy, Mo N Q; of
each piece M N Q; of any smooth hypersurface M € QZ% (My), where v; = v(p;) and the functions
6; : 11,, Mo — R satisfy HeiHcl(HmMO) < 26, forevery i € {1,...,k}. Moreover, in dealing with
any piece M N Q;, we will assume (clearly without losing generality) that IT,, My = R*~! C R"
and that Q; NI1,, My is the hypercube Qar C I1,, My = R"~! with edges of length 2R > 0,
centered at the origin. Finally, we can also ask that the family of hypercubes @ C R"~! with
edges parallel to the ones of @; and of length R (half of the one of ();), centered at p;, covers any
hypersurface M € &}(Mp).

By formulas (1.5) and (1.6), in the parametrization of M N Q; given by ®, the second fundamental
form B and mean curvature H of M are then expressed by

—1
HessR"™ 0,

1+ VR, |2
ARy, Hess®"™'0,(VR" ', VR" 'y,
i + €58 z( I3 z)

1+ | VR g2 (/14 |VR"g;[2)°

Letting and p : R*~! — [0, 1] a cut-off function with compact support in Q25 and equal to 1 on
Qr = Q; NIy, Mo and setting Ag = {(,6i(z)) : = € Qr}, Asr = {(2,0i(x)) : x € Qar}, we
have

IBIE, (4, = / Bo®PJOdr < / P |HessR" ™ 0[P da = / |pHessR" '[P dz,  (1.31)
Qr Qr Rn—1

aspu=JO " tand JO = /1 + |VR"7';|2. Then, we estimate

/ |pHessR" ™ '6;|P dz < C / |Hess®" ™' (p8;)|P dz + C / 12VR" " @ VR 9,|P da
]Rnfl n—1 ]Rnfl

Bo® = — (1.30)

and

Ho® = -

+ C/ |9iHess]Rn71p\p dx
Rn—1

<C |Hess]Rn71(p9i)|p dx + C,
Rr—1
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1.2 UNIFORM INEQUALITIES

where C = C(My,p,d), as the last two integrals in the first line are clearly bounded by a constant
C = C(Moy, p,9).

Hence, applying the standard Calderén-Zygmund estimates in R" ! (see [34], for instance) to
the last term above, we get

/ |pHessR" 6,7 da
Rn—1

<C IAR" ™ (p0,)|P dz + C
]Rn—l
< 0/ IpAR"” 9\pdx+0/ 2(VR" ) VR >|de+0/ 10, AR" " p|P d:
Rn—1
e HessR"™ 0'(V1Rn '6;, VR" g,
<C —p(Ho®)y/1+ VR g;[2 + 2 d b ”d C
Rn—1 PHOO)Y1+] i 1+ |VR"g, )2 ot
<C  lpHe@Pd+C | |pHessR" 0, (VR" "0, VR" 0, P dx + C
SO lp(Heo®) dx+C/ 1|V]Rn_19,'|2p|pHess]Rn_19i|p dx + C
R~ R~

where the constant C' depends only on My, p and ¢ (we estimated the last two integrals in the
second line with such a constant, as we did above for the Hessian).
If 6 > 0is small enough, then C |VR" 719,120 < 1/2 and we get

/ |pHess®" 0P dr < 20/ p(Ho®)Pdr+20 <20 [ |(Ho®)P dz+2C
Rnfl ]R'n,—l Q2R

which clearly implies, by formula (1.31),

HB||LP(AR)<C/ (Ho®)Pdz+C<C [ |(Ho®)PJOdz+C

Q2R
<O+ [H, )

with C = C(My,p, ).
Hence, by construction and invariance by isometry,

IBllo(aingr) < €O+ T, 4m0) < CO+ IHIE, ) -

Since the number of hypercubes Q) covering M is fixed and C' = C (Mo, p, §), we obtain the thesis
of the theorem. O

We have an analogous theorem for Schauder estimates, after defining appropriately the Holder
C%“_norm of a tensor 7 on M, that is,

1T o (ar) = Sup 17|+ [T coaar

where we need to give a meaning to the seminorm [T] 0,0 (-

If T is an m—form (hence, a covariant m—tensor), one possibility is to “extend the action” of the
tensor T from the bundle & T'M of covariant m-—tensors on M to the one of the whole “ambient”
R™ by means of the orthogonal projection on the tangent bundle T'M (as we identify T, M with
a vector subspace of T R" ~ RR", for every x € M). To give an example, if 7" = B, letting
7z : R" — T, M be the orthogonal projection on the tangent space of M, for every z € M, we
can define the “extension” of B (without relabeling it) by considering at every = € M the bilinear
form B, : @27, R" ~ R" x R” — R as B, (v,w) = By (7 (v), m:(w)). Extending analogously a
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1.2 UNIFORM INEQUALITIES

general m—form T' from operating on @"*T'M to @™TR", its norm as a multilinear functional is
unchanged at every point € M and we can then consider its components 7}, ;.. in the canonical
basis of R to define

n

[Tleoapn = >, [Tijmlcosan
j17"'7jm:1
_ zn: sup 1D (®) = Ty i W]

. - z,yeM r—=y @
JiseeJm=1 xHy | |

Finally, if the tensor is of general type (it has also contravariant components), we “transform” it in
a covariant one by means of the musical isomorphisms (see [31], for instance) and then proceed as
above. Anyway, in the following all the tensors will be covariant.

Remark 1.2.4. This “global”, partially coordinate—free definition (only the canonical coordinates of
R™ are involved, not any coordinate chart for M) is useful in general, but in our special case of
families of hypersurfaces which are representable as graphs on a fixed one, we can also consider
an equivalent Holder seminorm by means of the local description of M with the hypercubes Q;,
which is more convenient for our computations. For any m—form 7" on M, we set (in the notation
of the proof of Theorem 1.2.3)

n—1
[T}CO,O(V) = Z (T, jm O®]CO’O‘(®*1(V))
1y Jm=1
n—1
= Y sup T im (©(2)) = Ty, (O(y))]
. =, 2ye®—1(V) |Z‘ — y|0/ )
1y Jm=1 .

for every open set V. C M N Q;, where T}, _;,. are the components of T in the parametrization
x> O(x) = z + 0;(z)en+1. Then, we define

k
[T]co.e ) = Z[T]CO’Q(AR)v

i=1
by means of the finite family of sets Ar (Whose number is fixed) covering M € @% (Mp).

Theorem 1.2.5. Let My C R™ be a smooth, compact hypersurface, embedded in R™ and o € (0, 1]. Then,
if 6 > 0 is small enough, there exists a constant C'(Moy, e, &) such that the following geometric Schauder
estimate holds,

Bllco.e(ary < C(Mo, a,6) (1 + [Hllcoa(ar))

for every M € €5*(My).

Proof. In the same setting and notation of the proof of Theorem 1.2.3, for every hypercube @);,
the function 6; belongs to C1*(Qar), with 10illcre(@yp) < 26. Then, keeping into account
Remark 1.2.4, we deal with [|B|| o, (4,), which satisfies

—1
HessR" ™ 9;

[Bllcoe 1) = 1B @lcncasy = | ’
R R 1 + |v]Rn—10i|2

by equality (1.30) and since Qr = @~ !(AR), by construction.

S Cllbillezagr ,»  (1.32)
Co*(Qr)
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1.2 UNIFORM INEQUALITIES

Hence, by the standard Schauder estimates in Qo = @~ 1(AsR) (see [34], for instance), we get

10ill o2 (@p)
n—1
< C AR billco.a(@ym) + Clibillcra(@un)

HessR" ™6, (VR"'9;, VR"7'g,)
C _ H @ 1+ V]Rn_lﬂ 2+ (] (2 (2
o)1+ [vr A

N

+C
C%*(Q2r)

n—1 n—1
< C||HO®HC’O*"(Q2R) +C HV]R 0i||%0’a(Q2R)HHeSS]R QiHCU“"(QzR) +C
< C[Ho®|lgoa(gyn) + CO¥illcza(@un) +C

where the constant C depends only on Mo, o and §, as ||0;|c1.0(@,,) < 26. This estimate clearly
implies, by formula (1.32) and equality (1.30),

IBllcoa(ag) < C [ Hlcoaar) + CO[Bllcoaan +C
and since the family of sets A covering M € ¢}(My) is finite and its number is fixed, we conclude
IBllgo.a(ary < C IHllgo.a(ary + CO%|IBllgo.a(ary + C

with a constant C depending only on My, o and é (and we can clearly choose C' to be monotonically
increasing with §).
Then, if § > 0 is small enough, we have C'§* ||B||%o,a(M) < HB||QCO,Q(M) /2, hence we get

[Bllco.a(ary < 2C [[Hl|go.aar) +2C,

that is,
IBllco.a(ary < C (1 + [Hlcoaar) »

where the constant C' depends only on My, a and §, which is the thesis of the theorem. O

We now consider families of (n — 1)-dimensional graph hypersurfaces in M € ¢}(My) over M
as above, with a uniform bound ||H| 7 (3s) < Cu withp = n — 1, for every M in such family (by
Theorem 1.2.3,if § > 0 is small enough, this implies ||B|[;»(5s) < CB) o1 [|B| oo (21) < CB.

Arguing again in the same setting and notation of the proof of Theorem 1.2. 3 for p e (1,+00)
and any C?~function u : M — R (or u € W2P(M)), we have

k

IV%ull 2o (ary < C Y IV (upi) | o (vingy) (1.33)
=1

(here V is the Levi-Civita connection of M) and, for every C? function v : M — R, with compact
support in M N Q;, there holds

[ W@Pauw = [ [P0+ i) IO () do
MNQ; Rr—1

<C(5) /R (V0 bu(a) P (134)

as JO = /1 +|VR"7'9;|2 < 1+ 20.
In the coordinates given by the parametrization ©, the coefficients of the metric g of M (induced
by R")in M NQ); are
00; 00;
aixg (.%‘ 0T mm x ) ’

9o (O(z)) = dpm +
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1.2 UNIFORM INEQUALITIES

hence, they and the ones of the inverse matrix are bounded by a constant depending only on Mj
and 4. By formula (1.2), the Christoffel symbols of the Levi-Civita connection V satisfy

(g o@ RS aai
e (© <¢ Z ‘ gicr ’ ¢ Z 8@33:,; 8xq( 7] (1.35)

pvqy"‘* pvqﬂ'*

Then, recalling the first formula (1.7),

020, | %0
81‘583:7“ ’ ’ 3x48xm ’
£ (©(2)) 5 (1) = Ban (O())(O(0))

<OIT(0()] |5 (@) + [Ban(O(2)|
< CHess®" 6;(x)| |v1R"‘19i<x>| (14 VR"79;(2)]) + IB(O(x))],

where in the last passage we estimated the Christoffel symbols by means of inequality (1.35). As
|VR™™ ;] < | <26, we conclude

[HessR" ™0, ()| <C[Hess®" ™ '0;(2)| VX" '0;(z)| + C|B(O(2))]
<C|HessR" " '0;(2)[5 + C|B(O())]
with a constant C' depending only on §, which implies, if ¢ is smaller than 1/2C, the estimate

—1

|Hess]Rn 0;(z)| < 2C(My,d)|B(O(z))],

for every x € Q; NI1,, M C R" L
By the first formula (1.35), it follows

[T, ()] < ClHess™"6:(x)] VX" 6i] < Co[B(O())]
with C' = C(6), then computing schematically, we have
(V20)(O(x)) = HessIRnil(v 00)(z) —T(O(z)) * VRnil(v 00)(x), (1.36)
hence,
(V20)(©(x))] < ClHess®" ™ (v0 @) ()| + C3[B(O()| VX" (v ©) (a)].

Applying the Calderén-Zygmund inequality in R" 1, we get
[ @oert@mld<c [ Hes® oot o) do
+C8 [ BOE@)PIVET ( + b)) do
< C/RH AR [v(2 + 0;(2) )] P da
+CE) [ IBO@)P V(@) do.
< c/ﬂw1 AR [v(2 + 0;(2))]|P da

w00 [ BT ). (1.37)
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1.2 UNIFORM INEQUALITIES

arguing as in estimate (1.22) to get the last inequality.
Contracting equation (1.36) with the inverse of the metric and estimating, we have

AR (000) ()] < Cl(AV)(©(2))| + C5|(Bo®) (x)| [VR" (v0©) ()]

thus, by inequalities (1.34) and (1.37), we obtain

/ V2o()Pdp(y) <C [ |(Av)(z+ 6 (2)) P de
MNQ; Rn—1

+C B(y)[P[Vu(y) [P duly)
MNQ;

<C |Av(y) [P du(y)
MNQ;

+ C/ B(y)IP|Vo(y)|P duly) ,
MNQ;

with C' = C(Moy, p, §), arguing again as above.
Getting back to inequality (1.33), we conclude
k

IV ull a0y < €3IV P ringy
=1

o )P /MOQ BPIV (upi)” du
i=1 i i

k

<ey [ suPdusc [ (Jul - [Vul) da
= June; MNQ;

<C’/ |Au\pdu+0/ (JulP + |VulP) dp, (1.38)
M M

with ' = C(Mo,p, 9, |B|| L (ar))- Interpolating the integral of [Vu[? between ||V2u||L,,(M) and
[ull»(ar) by means of the uniform Gagliardo-Nirenberg inequalities of the previous section, we
obtain the following theorem.

Theorem 1.2.6. Let My C R" be a smooth, compact hypersurface, embedded in R™ and p € (1,400).
Then, if § > 0 is small enough, there exists a constant C' which depends only on Mo, p, 6 and ||B|| oo (ar)
such that the following Calderon—Zygmund inequality holds,

IV ull 2o (ar) < ClIdull poary + Cliwll Lean (1.39)

hence,
lullwzpary < ClAulLo(ary + Cllull Lo ar) » (1.40)

for every hypersurface M € €(Mo) and u € W2P(M).
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1.2 UNIFORM INEQUALITIES

Remark 1.2.7. Notice that if p < n — 1, we can modify the chain of inequalities (1.38) as follows:

k
IV ull o0y <€ 3NV wrd o ringy
i—1
k
<O [ AP C [ B () di
< Jyna, MNQ;
k
; MﬂQi| ( Z)|
_p (n—1)p (oopd)
+C</ B! du) ey (/ IV (upi)| =r=D d“) o
MNQ; MNQ;
k
<CZ/ |A(up;) [P dp+ C||BJI .- L(MNQ;) HvQ(uPi)“Zzp(MQQi).
i=1 7 MNQ;

Hence, arguing as before, it is easy to conclude that inequalities (1.39) and (1.40) hold with a
constant C' = C'(Mo, p, 4, || Bl Ln-1(ar)), if 6 > 0 is small enough. Moreover, since we have seen in
Theorem 1.2.3 that a control on |[H|| ;n-1(,7) implies a control on ||B||;»-1(,7), we have uniform
Calderén-Zygmund inequalities for families of (n — 1)-dimensional graph hypersurfaces over
My, with mean curvature uniformly bounded in L™~ (M).

With a similar argument, computing as in Theorem 1.2.5, we have analogous Schauder estimates
for C%? functions v : M — R, with M € (’:é’a(Mo) and § > 0 small enough,

[ull gzaary < CllAullgo.a(ary + Cllullcoa(ar) » (1.41)

where the constant C' depends only on My, o € (0,1], 6 and [|Bf|go.a(ar) (or [[Hco.a(ar), by
Theorem 1.2.5).

Remark 1.2.8. Localizing and computing in coordinates (see Remark 1.2.4), it is easy to generalize
estimates (1.39), (1.40) and (1.41) also to tensors, under the same hypotheses. The same holds also
for all the estimates of the previous section (see [47] for an example of how this can be done).

1.2.3  Geometric higher order Calderén—Zygmund estimates

We let M as above and p > 1, we want to deal with || V*B|| L»(M), assuming that we have a uniform
bound [H|[4(pr) < Cu with ¢ > n — 1, where M is an (n — 1)—d1mens1ona1 graph hypersurfaces
over My in 035(M0) as above, if 6 > 0 is small enough, which implies |B|| 47y < Cg, by
Theorem (1.2.3).

Theorem 1.2.9. Let Mo C R"™ be a smooth, compact hypersurface, embedded in R™. Then, for any
g > n—1,if 6 > 0is small enough, there exists a constant C' which depends only on My, p, q, §
and |[H|| a(rr), such that the following geometric higher order Calderon—Zygmund inequality holds, for
pe(l,n—1),

IV*Bllo(ary < C(1+ [V*H] o ar))

hence,
IBllwerary < C(L+ [Hllwrran) » (1.42)

for any hypersurface M € €}(Mo) and k € IN.
Moreover, the same inequalities hold for any p € (1, +o0) with a constant C' depending only on My, p, &
and ||Bl| peo (s
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1.2 UNIFORM INEQUALITIES

Proof. We first deal with the case p € (1,n — 1). Fixed k € IN, by means of inequality (1.39), which
holds with a constant C' = C(Mo, p, 4, [|B|[zn-1(ar)), by Remark 1.2.7 and taking into account
Remark 1.2.8, we have

IV*Bll 2o (ary = IVi Via (Vi -+ Vi, B) | 1o (ar)
<CIA(Vig - Vi, B)llze(ar) + ClIVis -+ Vi Bll 2o (any
=Cllg""VeVmVis - Vi, Bllpoiary + CIIV* 2Bl o)
<Cllg"VViy Vi - - VieBllLr(ar) + C”vk_QB”LP(M)
+ C||Riem x* Vk_2BHLp(M) + C||VRiem Vk_3B||Lp(M)
<Cllg"™VVisVi,Vin - Vi Bllpo(ar) + CIIV* 7Bl 1o an)
+ C||Riem Vk_ZBHLp(M) + C||VRiem Vk_3B||Lp(M)
+ C||V*Riem = V¥ B|| 1 (1)

<Cllg"™VVisViy - Vi, VinBll o (ary + CIIV* 7Bl o ary
+C ’Ci?HVSRiem * Vk727sB|\Lp(M)
s=0
<Clg"" Vi VeViy - Vi, VBl o(ary + ClIVF Bl o any
+C kiQHVSRiem « VF"2 B oy
s=0

<Clg"" Vi Viy - Vi, ViVeuBl oy + CIVF Bl o any
k—2
+ C ZHVSRlem * Vk’72isBHLp(M)
5=0
=C|V*"2AB| o (ar) + CIIV* 2Bl 1o (ar)
k—2
+C ) ||V Riem x V¥ 7B | 1,
s=0
where the symbol T" * S (following Hamilton [40]) denotes a tensor formed by a sum of terms each
one given by some contraction of the pair 7', S with the inverse of the metric g*/. A very useful
property of such * product is that |T « S| < C|T'||S| where the constant C' depends only on the
“algebraic structure” of T" .S, moreover, it clearly holds VI'« S = VT « S+ T« VS.
By formula (1.12) for the Riemann tensor, we can then write Riem = B x B, hence

IV*Bll 1o ary < CIVF2AB| 1oar) + CIV* Bl o any
k—2

+C D IVH(B*B) « VF 2B o)
s=0

< CIV*2ABl| 1o (ary + CIIVF 2Bl o ()
+C > |IVBxV'B*V'B| 1o (1.43)
s,r,teIN

st+r+t=k—2

Now, by Simons’ identity (1.10), we have
VF2AB = VFH + VA2 (HB?) — VF2(|B|?B),
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1.2 UNIFORM INEQUALITIES

hence,
||Vk_2AB||LP(M) < ”ka”LP(M) +C Z [V°Bx* V"B« vtB”LP(M) .

s,r,teN
st+rt+t=k—2

Using this estimate in inequality (1.43), we conclude
”ka”LP(M) < CHka”LP(M) + CHvk_zBHLP(M
+C > |IVBxV'B*V'B| 1
s,r,teN

str+t=k—2

We now estimate any of the terms in the last sum as follows: we have

IV*B* V"B VBl 1o(ar) < CIVBIl Lo (an) IV Bl Lonan) IV Bl oo (a1 » (1.44)
with
_k+1 gkl k1
T os+17 T or41’ TTYE

hence, 1/a+1/6+1/y = 1, as s+r+t = k— 2. Moreover, using the interpolation esti-
mates (1.27) (extended to tensors — see Remark 1.2.8), there hold

0o 0o
IV°Bl| o (ar) < CUIV*Bllo(ar) + IBllzo(ar) " IBI " )

5 11010
IV Bl o8 (ary < C(IV*Bll Lo (ary + 1Bl o (ar)) “IBI L

6. 1-6.
IV Bl o a1y SC(IV*Bllzoary + 1Bl ze(ar) " IBIl ot

Ln—l(M)
with 0, = 05 =17 J& and 0., = ki determined by
1 s — /1 k 1—6,
ﬁ_n—l+9a(5_n—1)+n—1
1 r 1k 11,
- f.(=_ %
pB n—1+ﬁ(p n—1>+n—1
1 t 1 k 1-6
= 4 (- e
Py n—1+ (p n—1)+n—1
Noticing that 0, € (s/k,1), 05 € (r/k,1) and 0, € (t/k, 1), if we choose 6,, 3 and 6, such that
_s+1 r — r+1 t — t+1
5 <0, <0, D ey <fy=""2 and L<o, <, =17"
pleste=gop 08O =py a4 p=Hh <%=

respectively close to 6, 03 and 6., the uniquely determined values qq, gg and ¢, satisfying

Lo +9a(%— b )+1;—9"

pa n—1 n—1 o

1 T 1 k 1—95
= .= —

pB n—1+ﬂ(p n—l)Jr 43

1 t 1 k 1-46
=" sz Y
DY n71+ V(p n71)+ Qv

must be close to n, thus properly choosing 6, 63 and 0., as above, we have that g, g3 and ¢, are
smaller than ¢ > n — 1. Hence, by the interpolation estimates again, we have

Oc 0o
IV°Blloa(ary < C(IV*Bllzo(ar) + IBlloan) 1Bl 1 tar)

0 1-6
V"Bl os (ary < C IV Bllzo(ar) + 1Bl zoary) ™ 1Bl as oy

0 1-6
IV*Bl v (ar) < CUIV*Bllzoqar) + IBllzo(ar) " 1B Ly {a)
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1.2 UNIFORM INEQUALITIES

Then, since |[B||aa (a1), [IBll 98 (1) and [[B[ 4+ (ar) are bounded by C'[|B|| 4 (1), being the three
exponents smaller that ¢ (the volumes are equibounded for all M € €}(Mp)), we get

s 0o o
IV°Bl Lo (ar) < C(IV*Bll o ary + Bl Le(ar)) ||BH1 /
r 0 1— 9
V"Bl zos (ary < C(IV*Bllro(ary + 1Bl zean) 1Bl M)

0 1 0
IV'Bll o (ar) < CUIV™Bllzo(ar) + 1Bl zoan)) ™ 1Bl o ]M
Letting
s+1 r+1  t+1
= =1

O=Gatbs+0) <yt tarr &
as s +r +t = k — 2, putting these estimates in inequality (1.44) and recalling Theorem 1.2.3, we
conclude

V3B % V"B V'B| so(ar) < CIV*Blloary+ [Blloan) ” [BI3:6,

< C(”ka”LP(M)+ ”B”LP(M)) (1 11| aar))
e)
<C(IV*Bllgo(an+ IBllzo(an) ™ (1.45)

3-0

with C = C(Mo,p, 6, [|H| n—1(ar) Hl a(ary) = C (Mo, p. 0, [H pa(ar)), as ¢ > n — 1.
Hence, by means of Young inequality, as ® < 1, we estimate

IV*Bl 1o (ary < CIVFHI o (as
+C| vk QBHM )+ CUIV*Bll o (ar) + 1Bl o (ar)©
< C|IVFH o (ar)
+ CIV* 2Bl 1o (ar) + CellV*Bll 2o (ary + ClIBll o (ary + C,

then choosing ¢ > 0 such that Ce < 1/2, after “absorbing” in the left hand side the term
CsHV’“BHLp(M) and estimating ||B|[»(5s) with C(1 + [[H||»(as)), we obtain

IV*Bll 2o (ary < CIV*Hl| o (ar) + CIIV* Bl Lo (ary + CIHl o (ar) +C'-

The term || V*~2B)| (M) can be treated analogously, by interpolation between |V*B|| () and
Bl L»(ar) (it is actually easier to deal with it) and [|H|| (57 < C(Moy, p, q, O)|[H|| pa(ar hence we
finally have the desired estimate

IV*Bll o (ar) < CIIV*HI| 1o (ar) + C.

with C' = C (Mo, p,q, 0, [Hl La(ar)), forany M € ¢}(Mo) with § > 0 small enough.

If p € (1,400), we can argue as before, but using directly inequality (1.39), which holds
with a constant C' = C(Mo, p, d, || B 1 (ar)) and getting inequality (1.45) with a constant C' =
C (Mo, p, 9, B[ oo (ar)), by simply Choosmg a suitably large ¢ > n — 1 and estimating ||B|[ 4 (1)
with C|B|[ oo (ar)- The rest of the proof goes in the same way, estimating all the terms |[B|| 14 (5r)
and |[H||za(pr) with C[[B[ o (ar)

1.2.4 Other inequalities

For the sake of completeness, we recall some other inequalities that hold uniformly in our setting,
even if we will not use them in the sequel.
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1.2 UNIFORM INEQUALITIES

Let My be a smooth and compact hypersurface embedded in R"~!, bounding a domain Ey and
¢ > 0 the width of a tubular neighborhood N; of M. For any ¢ € (0,¢), we consider the family
Ci(Ep), defined as

Y : Ey — E is a diffeomorphism with ||¥ — Id <4
{E —Y(Ey) : 0 p [ ||01(E0) }

Y(z) = 2 + P(x)w(x) for every x € Mo and |41 (agy) < 0

where 1 is the unit normal vector field pointing outward of Mp.

Then, the Jacobian of the map ¥ : £y — E (and also the tangential one of its restriction to M) is
bounded from above and from below by some constants which depend only on ¢ and the second
fundamental form of My (see Section 1.2.1 for details).

It clearly follows that if £ € C}(Ey), then M = 0E = ¥ (M) € €}(My). Moreover, if M €
¢}/ (Mp), then there exists a smooth function ¢ : My — R with [|¢] o1 (M) < ¢', such that
M = {z+(x)v(z) : © € My}, then we can construct a smooth diffeomorphism ¥ : Eg — E as
follows (E is the domain bounded by M):

¥(z) =

x ifx € Eo\Ns
@+ ((do(z)/€)p(mo(x)) VR 'do(z)  ifz € EoN N:

where dj is the signed distance function from M (which is negative in Ep) and ¢ — ((t) is a
smooth monotone non—decreasing function, defined on IR, such that it is equal to 1 if £ >> 0 and to
0ift < —1/2, with |¢/(t)] < 3, for every ¢t € R. So, it follows

¥ = dllc () = 1<(do(-) /)0 (mo (D) VR do ()l ea o)
< C(Mo, &)Yl e (ay) -

Hence, fixed any 6 € (0,¢), depending the constant C' only on My and ¢, possibly choosing ¢’
small enough, the set E belongs to C} (Ej).

We now discuss some uniform inequalities involving also the domains which are bounded by
the hypersurfaces.

Trace inequalities

Letting Eoy, Mo, ¢ > 0 and 6 > 0 as above and any E € C(%(Eo) (with associated smooth
diffeomorphism ¥ : £y — E), it is well known that the trace of any function v € H!(E) (a real
function on M = J0F, which we still simply denote by u, that coincides with the restriction of v to
M, if u € C°(E)) is well defined and that the following trace inequality holds (see [61, Chapter 4,
Proposition 4.5]),

||u|\?{1/g(M) <Cg /Eu2 + |Vu|? dz, (1.46)
which implies

o=y < Cr [ 1Vul?de,
H1/2(]\/[) 5

where % = f, udz (see also [28, 46]). We want to show that these inequalities hold with uniform
constants C(My, §), for every E € C}(Ep).
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Expressing ||u/|? 12 () by means of the Gagliardo W'/22—seminorm of a function u € L?(M)

and setting ® = Y|y, : Mo — M, we have
el /2ar) = lullzzan + [u}ivmw)

2
= Jullzzqar // = W)' dy(y) du(y”)

< Clluo ¢||L2(M0)

u(®()) — u(®(z))]? * *
+/M0 /Mo |D(z) — P ()| JO () JP(x*) dpo(x)dpo(z™)
< Olluo ¥z MO)

e /MO /Mo = WD gy o o)

‘T*(E*|n

< iy [ Ju(¥@)P + V(o ¥ (a) P da
Eo
< c/ w2+ [Vul da = Clluls g (147)
E

where the constant C' depends only on Ey (we applied inequality (1.46) for Ey in passing from the
fourth to the fifth line) and ¢ (in bounding |d¥|, |[d®|, J¥ and J® above and below away from
Zero).

Remark 1.2.10. With a similar argument, we can show the following generalization of this inequality,
with a uniform constant

ol sre-72(ary < C(Eoy 5,8l gz
(see again [61, Chapter 4, Proposition 4.5]), for s € (1/2,3/2).

Inequalities for harmonic extensions

We let Ey, Mg, e > 0and § > 0 as above and F € Cg (Ep) (with associated smooth diffeomor-
phism ¥ : By — E), with M = 9E € €}(M).

We denote by u : E — R the harmonic extension of a function f : M — R in H'/2(M) to E. We
aim to show that the following inequality (see [61, Chapter 5, Proposition 1.7])

lull () < Crllfllrzarn » (1.48)
which implies
2 2
[ 194 do < Coll 12

for every E € C}(Ey), with uniform constants C = (Ej, §).
Arguing as above, in formula (1.47), we end up with the following inequalities:

ull 1) < C(Eo, 0)lluo ¥l g1 (g
||UO‘I’HH1(EO) SCgIf o ¥l grr2(asyy = Crollf 0 Pl sz
I1f o @l g1/2(a1) < C (Mo, 0)Lf |l gr1/2(ar)

where the second estimate is given by inequality (1.48) for Ey. Putting them together, we have the
conclusion.

Remark 1.2.11. As above, we also have the following generalization, for s € [1/2,3/2),

lll grs+172(y < C(Eo, 8, 0)1f |25 (r)
(see again [61, Chapter 5, Proposition 1.7]).
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1.2.5 Some remarks

¢ All the previous uniform constants depend on the geometric properties of My, in particular
on the maximal width of a tubular neighborhood, its volume and its second fundamental
form. Hence, uniformly controlling such quantities gives uniform estimates for larger
families of hypersurfaces, see [8, 9, 10, 20, 45] for a deeper and detailed discussion).

¢ Notice that for Sobolev, Poincaré, interpolation, trace and “harmonic extension” inequalities,
we do not ask § > 0 to be small, but just § < ¢, while for the Calderén-Zygmund-type
inequalities, that we worked out in Section 1.2.2, a smallness condition on ¢ is necessary for
the conclusions.

¢ All the inequalities hold uniformly also for families of immersed-only hypersurfaces (non
necessarily embedded), if they can be expressed as graphs on a fixed compact, smooth
hypersurface, possibly immersed-only too.

¢ It is easy to see that everything we did still works also if the ambient is a flat, complete
Riemannian manifold, in particular in any flat torus T" (as it is in the rest of this thesis).
With some effort, the results can be generalized to graph hypersurfaces in any complete
Riemannian manifold, then the constants also depend on the geometry (in particular, on the
curvature) of such an ambient space.

1.3 HYPERSURFACES IN THE n—DIMENSIONAL FLAT TORUS
In all the following T" ~ R™/Z" is a flat n—dimensional torus, quotient of R™ by a discrete group of
translations generated by some n linearly independent vectors.

Since, in the next chapters, we will deal with embedded smooth hypersurfaces which are bound-
aries of smooth sets, we give the following definitions.

We say that a set E C T" is a smooth set if it is the closure of an open subset of T" and its
boundary JF is a smooth embedded hypersurface (unless otherwise stated all the sets we are
going to consider will be smooth). Then, for a smooth set £ C T" and ¢ > 0 small enough, we
define the tubular neighborhood N, of JF, the orthogonal projection map 7y and the signed
distance function dg from 0F, as in (1.13), (1.15) and (1.14), respectively, replacing Mo with OF.

This clearly implies that the map

OF x (—e,¢e) 3 (y,t) — L(y,t) =y +tVdg(y) =y +tv(y) € N; (1.49)
is a smooth diffeomorphism with inverse
N.> 2z~ L™ Yz) = (ng(z),dp(z)) € OE x (—¢,¢€) .
Moreover, denoting with J L its Jacobian (relative to the hypersurface OF), there holds
0<Cy <JL(y,t) < Cy

on OF x (—¢,¢), for a couple of constants C1, Ca, depending on F and e.

From now on, in all the rest of the work, with N, we will always denote a suitable tubular neighborhood
of a smooth set, with the above properties.

By means of such tubular neighborhoods of smooth sets £ C T", we can speak of “Wkp—
closedness” (or of “C*—closedness” and “C*®—closedness”) of sets. Indeed, fixed a smooth set
E, we say that F', I’ C T" are é—close in WkP (or in C¥), for some § > 0 “small enough”, if we
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have Vol(FAF') < § and that F, OF" are contained in a tubular neighborhood N; of E as above,
described by

OF ={y+¢(y)ve(y) : y€dE}  and  OF ={y+¢'(y)ve(y) : y € OE},

for two functions ¢ : IE — R with [[¢) — ¢'[|yyx.n(sp) < 0 (respectively, ||t — 9’| ok (9p) < 6 and
[ = ¥'[lchoom) < 9). That is, we are asking that the two sets /" and F" differ by a set of small

Lebesgue measure and that their boundaries are “close” in W*? (or C¥ and C**%) as graphs on
OF.

Definition 1.3.1. Given a smooth set £ C T" and a smooth function ¢ : 9F — IR such that
%]l co o) is sufficiently small, we define the normal deformation of E induced by v to be the set £,
having as boundary

OEy = {x +¢(z)vg(x) : © € OE}.

Definition 1.3.2. Given a smooth set £ C T" and a tubular neighborhood N; of JF, for any
M < &, we denote by ¢}, (E), the class of all sets F' C E U N. such that Vol(FAE) < M and F is
a normal deformation of £ induced by some function 1)z € C*(9F), that is

OF ={y+vYr(y)ve(y) : y € OE},

with [[YF|c19p) < M (hence, OF C N).

Analogously, we define (‘:}MI (E) to be the class of all sets F' as above, with the associate function
¢r belongings to C11(IE) and |[¢p[ 11 (pp) < M.

Definition 1.3.3. Given a sequence of smooth sets F; € ¢},(E), for some smooth set E C T", we
will write F; — F in WP if there exists ' € €}, (E) such that for every § > 0, if i € N is large
enough there holds Vol(F;AF) < § and, describing the boundaries of F;, F' as

OF; = {y +vi(y)ve(y) : y € OF} and OF = {y+(y)ve(y) : y € O},

for some smooth function 1;, 1 : OF — R, we have ||1; — '(/)Hwkt,p(aE) < 4.
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THE AREA FUNCTIONAL

In this sections we discuss the Area functional and its basic properties.

Definition 2.0.1 (Area functional). For every smooth set E C T"™ we define the Area functional

A(OF) = du,
oE
where p is the “canonical” measure associated to the Riemannian metric on OF induced by the
metric tensor of T”, coming from the scalar product of IR" (it is easy to see that x coincides with
the (n — 1)-dimensional Hausdorff measure restricted to OF).

2.1 FIRST AND SECOND VARIATION

We start by computing the first variation of the functional A.

Definition 2.1.1. Let £ C T" be a smooth set. Given a smooth map ® : (—¢,e) x T" — T",
for e > 0, such that ®; = ®(¢t,-) : T" — T" is a one-parameter family of diffeomorphism with
®( = Id, we say that By = ®;(E) is the variation of E associated to @ (or to ®;). If moreover there
holds Vol(E;) = Vol(E) for every t € (—¢,¢), we call E; a volume—preserving variation of E.

The vector field X € C*°(T";R") defined as X = % | 1o 18 called the infinitesimal generator of
the variation Fj.

Remark 2.1.2. As we are going to consider only smooth sets F, it is easy to see that this definition
of variation is equivalent to have a family of diffeomorphisms &, of E only, indeed these latter
can always be extended to the whole T".

Moreover, as the relevant objects are actually the boundaries of the sets £ and in view of the
sequel, we could even consider only smooth “deformations” of E. We then give the following
definition since it is easier and more convenient for the computations.

Definition 2.1.3. Given a smooth one parameter family of immersions ¢; : 0F — T", with ¢ €
(—e,€), we say that ¢, is the “deformation” of O E induced by the variation E; in Definition 2.1.1, if
wo = Id, 1 (OF) = OF; and % = X along OF, where the field X is the infinitesimal generator
of the variation FE;.

1o

Definition 2.1.4. Given a variation E; of F, coming from the one—parameter family of diffeomor-
phism &, the first variation of A at E with respect to @, is given by

d
—A(OF,
OB,
We say that E is a critical set for A, if all the first variations relative to variations E; of E are zero.
We say that E is a critical set for A under a volume constraint, if all the first variations relative to
volume—preserving variations E; of F are zero.

It is clear that if E' is a minimum for 4 (under a volume constraint), then it is a critical set for A
(under a volume constraint). We are now going to compute the first variation of .A and see that it
depends only on the restriction to OF of the infinitesimal generator X of the variation E; of E.
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2.1 FIRST AND SECOND VARIATION

Theorem 2.1.5 (First variation of the functional A). Let E C T™ a smooth set and ® : (—e,e) x T" —
T™ a smooth map giving a variation Ey = ®(E) with infinitesimal generator X € C°°(T™;R™). Then,

d
%A((?Et)’tzo— /BE H(X |vg) du

where v is the outer unit normal vector and H the mean curvature of OF.
In particular, the first variation of the functional A depends only on the normal component of the restriction
of the infinitesimal generator X to OF.

Proof. Let ¢, be the deformation of JF induced by the variation F, as in Definition 2.1.3.
Denoting by gi; = gi;(t) the induced metrics (via ¢y, as above) on the smooth hypersurfaces 9E;
and setting ¢ = ¢, in a local chart we have

9 _ 0 Jop| 0
Al 8t<8xi 8;53> =0
(2] 22 (2| 2e)
89@- 8:10]- ax]‘ sz

0 Oy 0
= X — (X —-2(X
Ox; < ‘ 3:17j> + Ox; < ’ 8xl> < ’ 89:l5'z]>
0 dp 0 dy k
=2 (X, = {x. —ork (x
Ox; < 0z > + oz < Ox; > K <
where we used the Gauss—Weingarten relations (1.7) in the last step and we denoted with X, =
X — (X|vg)vg the “tangential part” of the vector field X along the hypersurface OF (seeing T;,0E

as a hyperplane of R" ~ T, T").
Letting w be the 1-form defined by w(Y) = ¢g(X,,Y), this formula can be rewritten as

axk> +2hij<X|VE>,

0 Ow;  Ow;
Egij —o 8IZ + 3:@ - 2]."’“ W + th] <X|Z/E> Viw]' + iji + thj <X|Z/E> . (2.1)
Hence, by the formula
4 et A(t) = det A(t) tr [A7L(t) 0 A'(1)], (2.2)

dt
holding for any n x n squared matrix A(t) dependent on ¢, we get

\/det gij gij%gij

\/M (Vlwg + V]Wz + 2hlj <X ‘ VE>)
- 2
= y/det g;; (diVXT +H(X| I/E>) , (2.3)

t=0

0
oV,
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2.1 FIRST AND SECOND VARIATION

where the divergence is the (Riemannian) one relative to the hypersurface 0E. Then, we conclude
(recalling the discussion after formula (1.1))

0
t=0 Ot Jog it t=0

0
=% /3E v det g;; dx ’t:O
0
= / 5\/detgij
oF
= /8E(divXT+H(X |vE))+/det g dw

= / (divX,+H(X |vg)) du
oE

0 0
GAOE)| = 5 A(@(0E)) |

dzx
t=0

— [ X g
oE
where in the last step we applied the divergence theorem, that is, formula (1.3), on 0F. O

Given a smooth set E and any vector field X € C°°(T"™; R"™), considering the associated smooth
flow @ : (—¢,e) x T™ — T", defined by the system

{zg(t,x) = X(®(t,x)),

P(0,z) == @4

for every x € T" and ¢t € (—¢,¢), for some € > 0, we have a variation E; = ®;(F) with
infinitesimal generator X. We call this variation the special variation associated to X. Moreover,
given any smooth vector field X € C*°(0E;RR"), it can be extended easily to a smooth vector field
X € C®(T";R") with X|pp = X.

Hence, if E is a critical set for A there holds

| Xl du=o.
oF

for every X € C°°(T";R"). Choosing a smooth vector field X € C*°(T";R") with X|sp = Hvp,
we then obtain the following corollary.

Corollary 2.1.6. A smooth set E C T" is a critical set for A if and only if H = 0 on OF, that is the
condition of a minimal surface holds.

It is less easy to characterize the infinitesimal generators of the volume—preserving variations
of E, in order to find an analogous criticality condition on a set £, for the functional A under a
volume constraint.

Given @ : (—¢,¢) x T™ — T™ such that Vol(®;(E)) = Vol(E,) = Vol(E) forall t € (—¢,¢), we let
X € C°(T";R") be the family of the vector fields (well) defined by the formula

Xu(@(t,2)) = 92(1.2).

for every t € (—e,¢) and z € T", hence, if t = 0, the vector field X = X is the infinitesimal
generator of the volume—preserving variation £;. Then, by changing variables, we have

d d d 0
= —Vol(E;) = — dr = — D(t,z)dz = —JP(t,2)dz. 2.
0 dtvo( +) dt/Et x dt/EJ (t,z)dz /Eatj (t,z)dz (2.5)
As JO(t,z) = det[dD(t, z)], by means of formula (2.2), we obtain

%Jd)(t, 2) = JO(t,2) tr [dD(t,2) L 0 dXy(D(t, 2)) 0 dD(t, 2)],
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2.1 FIRST AND SECOND VARIATION

since, by the definition of X; above,

9 4a(t,2) = d 221, 2) = dIX,(O(1, 2))] = dX(D(1, 2)) 0 dD(L, 2).

ot ot
Being the trace of a matrix invariant by conjugation, we conclude
%J@(t,z) — JD(t, 2) tr [dX (D(t, 2))] = JB(E, =) div X (D(L, =),
hence, by equality (2.5) and the divergence theorem (in T"), it follows
0= /E div Xy (D(t, 2))JD(t, =) d= — /E divX; (2) do = /8 Xeo@lvg) i, @0
¢

where v, is the outer unit normal vector and y; the canonical Riemannian measure of the smooth
hypersurface 0F;, given by the embedding ¢, = ®; : 0E — T". Thus, letting t = 0,

%Vol(Et)‘tZO _ /a (Xlug)dp =0 2.7)

and we conclude that if X € C°°(T";R") is the infinitesimal generator of a volume—preserving
variation for F, its normal component ¢y = (X|vg) on OF has zero integral (with respect to the
measure ).

Conversely, we have the following lemma whose proof is postponed after Lemma 2.2.13, since the
arguments in the two proofs are very similar.

Lemma 2.1.7. Let ¢ : 0E — R a smooth function with zero integral with respect to the measure p on
OE. Then, there exists a smooth vector field X € C*°(T™;R"™) such that ¢ = (X|vg), divX = 0ina
neighborhood of OF and the flow ® defined by system (2.4) having X as infinitesimal generator, gives a
volume—preserving variation Ey = ®¢(E) of E.

Hence, with this characterization of the infinitesimal generators of the volume—preserving
variations for F, by Theorem 2.1.5 we have that F is a critical set for the functional A under a
volume constraint if and only if

| Xl du=o.
OF

for every X € C°°(T";R") such that (X|vg) has zero integral on OE. By Lemma 2.1.7, this is

similarly to say that
/ Hydp =0,
oE

for all ¢y € C*°(9F) such that |, op ¥ dp = 0, which is equivalent to the existence of a constant
A € R such that
H=A\ on OF.

That is, OF is a smooth hypersurface with constant mean curvature.
This motivates the following proposition.

Proposition 2.1.8. A smooth set E C T"™ is a critical set for the Area functional A under a volume
constraint, if there exists a constant A € R such that

H=2AX on L.
Remark 2.1.9. Clearly, the critical sets for the unconstrained Area functional must satisfy
/ H(X,vg)dp =0
oK

for every X € C°°(T",R"™), which easily implies the minimal surface equation H = 0 on 9E.



2.1 FIRST AND SECOND VARIATION 35

Now we deal with the second variation of the functional A.

Definition 2.1.10. Given a variation E; of E, coming from the one-parameter family of diffeomor-
phism @, the second variation of A at E with respect to ®; is given by

d2
— A(OFE, .
dat? AOE) t=0
In the following proposition we compute the second variation of the Area functional.

Proposition 2.1.11. Let E C T"™ a smooth set and @ : (—e,e) x T" — T"™ a smooth map giving a
variation Ey = Oy (E) with infinitesimal generator X € C°°(T™;R™). Then,

Ao = V(X|vg)|* = (X|vg)?|B|?) d
0B = [ (9(Xle) ~ (Xl BE) do

+ [ B + (e - 2009 XD) + BOG X)) i, 29

where X; = X — (X|vg)vg is the tangential part of X on OF, B and H are respectively the second
fundamental form and the mean curvature of OF and

9?d 0 0Xy
Z =g (0. = glxuewN|_ =],

where, for every t € (—e, ), the vector field X, € C°°(T";R"™) is defined by the formula

+dX (X)), (2.9)

oD
Xt(qD(taZ)) = W(Lz)a
for every z € T, hence, Xog = X.

Proof. Let ¢; be the deformation of E induced by the variation E}, as in Definition 2.1.3.
By arguing as in the first part of the proof of Theorem 2.1.5 (without taking ¢ = 0), we have

Gaom) - |

Hy (X o @¢|vg,) dus,
oF

where H; is the mean curvature of E;. Consequently, we have

d? d
GEAOE) | = | (X0 @iy )/Actg de|

t=0 dt Jop t=0

where 9i5 = Gij (t)

In order to simplify the notation in the following computations, we drop the subscripts, that is, we
let H(t,-) = Hy, v(t,-) = vg,, ¥(t,-) = (Xp o Qtlvg,), o(t,-) = ¢ and X (¢,-) = X; o Oy (by a little
abuse of notation, since X is already the infinitesimal generator of the variation).

We then need to compute the derivatives

oH 5}
s and =X (2.10)
since we already know, by formula (2.3), that
0 .
En det g;; o (dleT + HI/J) v det g;; o’

hence, this derivative gives the following contribution to the second variation,

/ (YHdivX, +?H?) dp.
OF



2.1 FIRST AND SECOND VARIATION
Then, we compute (recalling formula (2.9))

X > < 8V> 8u>

={( —\v +{ X|— -

=0 < ot =0 ot ot
and using the fact that 2 %7 |, is tangent to OF, in a local coordinate chart we obtain
X ov _ xr Oy 61/>

ot/ \,_o Oxp | Ot

where in the last inequality we used the notation X, = X% (%D. Notice that, <%ﬁ |v) = 0 for every
P P
pe{l,...,n—1}and t € (—¢,¢), hence, using the Gauss—Weingarten relations (1.7),

O(X]v)
ot

= (Z|v) + <X

t=0 t=0

)

t=0

a / 0y _ /90X Oy | Ov
0=% <axp ”> o <axp ”>+<ax,, at> o
0 ov Jp |Ov
= 5z, X - <X axp>+<axp 8t> .
_ % i i
" Oz, 8xp Oxp =0
02 6v> <6so )
Oxp O0xq | 0zp Zp =0
oY q dy |Ov
= o, < >+<axp 6t> »
_ <8gﬁ 3u>
— Xhyugtgg + (|
 Omy Tp g dxp| Ot /|,
and we can conclude that 50 18 5
p |0V __ %
<8xp 8t> . = oz, + Xhpg , (2.11)

where h,, are the components of the second fundamental form B of OF in the local chart. Thus,
we obtain the following identity

0 Jp | v
Z - p( X9
ot (Xl) ’t:O (Zlv) + Xz <3:17p 8t> 0
oy
= (Z|v) - T%Xf + XX hpq
= <Z|V>—<XT|V<X|1/>>—|—B(X7—7XT) (212)

and the relative contribution to the second variation is given by

[ HZW) = (X9 (X10)) + B X)) do.

Now we conclude by computing the first derivative in (2.10). To this aim, we note that

32@ ij
H=- <8x18x] l/>g

hence, we need the following terms

dg¥

o (2.13)

t=0
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2.1 FIRST AND SECOND VARIATION

9%p |ov
<8Ilal‘] (9t> t=0 (2'14)
a 9%
<8t8zi8xj 1/> Ly (2.15)
We start with the term (2.13), recalling that
95 | Gy 4+ Vi + 2 (X|0)
ot o iWj JWi i

by equation (2.1), where w is the 1-form defined by w(Y) = ¢g(X;.,Y).
Using the fact that g;; ¢’F = 0, we obtain

Y TS/ L IS NN og’*
0= ot liso? + gij o o =9 (Viw; + Vjw; + 2hij (X |v))+gij T ’t:O
then,
pk o
99 ‘ = —girgtk (viwj + Vjw; + 2h; <X\u>): —VPXE —VFXP — 2nPRep
ot =0 i "
We then proceed with the computation of the term (2.14), by means of equation (2.11),
*¢o |ov i / Op |Ov & oY
= —rk (222 —rk (- 22 q
<axiaxj 8t> o <3xk 8t> " Tl gy K Fha)
and finally we compute the term (2.15),
o 9y *X 9% (yv) ?X,
N v = vV = 14 + v).
ot axia%‘j 85@83:]- =0 81’Z‘8$]‘ 8331'63:]-
We have
2 2 2
8(1/)V)V:8w+ 81/V¢
8xz8x] 8x18x] axzax]
%Y 7] i 0P
= = (hq'? 2
0x;0x; + <8xl( 9 axp) 1/>1/)
9% ! 9%
- harg'P
3Iiaxj + Jlg <8x18z] V>’l/1
82
v + PhjigPhip

- 8x@8x]
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2.1 FIRST AND SECOND VARIATION

and
0?°X, U\ 0 /oX, U\ 0X,| ov
8xi8xj o 8xi al‘j 8xj 81‘1'
0 0 Oy X, | ov
- Y[ Y (xp P _ “r
Ox; <5‘xj ( Taxp) ’V> < 0x; 8xi>
0 xP 0% A 0X, | ov
T 0 |T T 0z ;0x) Oz | 0z;
0 0X,| ov
— —— (XPH V- ( T
8xi (XThp]> < 6xj 6£Cl>
0 0 dp \ | Ov
— _ Y (xppN_{ L (xp T2
Ox; (X2hy) <6xj (XT Z%cp) 8:1:1->
0 *p | ov 0Xt / oy | ov
— __Y (xPyp N_xP VN _ AT [ Y
Ox; (XPhys) = X7 <8xj(9xp 8$i> O0x; <8xp 6xi>
0 Jp | Ov XY / oy | ov
— _ (xPh. )—XxPrk (| 22N |z
Bxi( Phpj) X7 Jp<8mk 8x¢> O0x;j <8xp 0z;
0 oxXP
= oz (thpj)_Xgrﬁphilglqgkq - aTjhilglquq
0 i oxk
Hence, we finally get
OH o 0% . O
it — _9p.. YT _ 2_ g T ¥ gk 27
= L:O 203y VXL = 2XWIBI = g 5 4 g T

. .
+ B (X|v) = g T g X7 + g7

Ty

(XPhy;) + hijV'X)
— B (X|v) — hij V' X] — M)

+g" [% (thpj) -} (thpk)}

—P|B]* = Ap — hiy V' X] + g9V (XPhy;)

= —UIB? — A — hij VX + div(XPhy;)

= —¢|B|* = M) + (X;| divB)

= —¢|B* — Ay + (X,|VH),

where in the last equality we used the Codazzi-Mainardi equations (see [48]). We conclude that
the contribution of the first term in (2.10) is then

/ (=P B — A+ (X,|VH)) dp.
oF

Putting all these contributions together, we obtain the second variation of the Area functional,

d2

TAWE) | = /a [Fos = BP0 VH) + yH X, + gH

t=0

FH((Z]) — (X, V) +B(XT,XT))] dy.
Integrating by parts, we have

O(X,|VH) dp = — / [H(X, V) + Hep divX,] du

oFE oE
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2.1 FIRST AND SECOND VARIATION

and we can conclude

d2
GAQE)| = [ ([0 B + P 4 H((Zly) ~ 2]V ) + B X)) d,
t=0 oOFE
which is the formula we wanted. O

In the following proposition we rewrite explicitly formula (2.8) and we notice that the second
variation of A only depends on the normal component of X on 9F, thatis, on (X, vg).

Theorem 2.1.12 (Second variation of A). Let E C T™ a smooth set and @ : (—e,e) x T" — T" a
smooth map giving a variation E; with infinitesimal generator X € C°°(T"™;R™). Then,

SR = [ (V)P (Xlve)?IBP) d

dt? t=0 OF
0X;

H|(X iV X — div((X|ve) X, =t
+/8E [( lvg) div dlv(( lve) )+< 3t |i—o

‘VEH du (2.16)

where vy is the outer unit normal vector to OE, X; = X — (X|vg)vg is the tangential part of X on
OF, B and H are respectively the second fundamental form and the mean curvature of OE, the vector field
X € C°(T"™; R™) is defined by the formula X:(®(t,z)) = %—?(t,z)for everyt € (—e,e) and z € T™

Proof. We claim that
H(X|vp)? + (Z|ve) — 2(X|V(X|vE)) + B(X7, X;)

OX, t:O‘VE> . 2.17)

= (X|vg) divl"X — div((X|vE) X, ) + <W

In order to show the claim in (3.62) we notice that, being every derivative of v a tangent vector
field,

(X7|V(X|vg)) = (vpldX (X7)) + (X[(X-|Vvg))
= (vpldX (X7)) + (X (X [Vvp))
= (vpldX(X;))+ B(X:, X;),

by the Gauss—Weingarten relations (1.7).
Therefore, since Z — % 1—o = dX(X), we have

H(X |vg) + (Z|vp) — 2(X-|V(X|vE)) + B(X;, X;) — <%’t:0’VE>

= H(X|vg)® + (vpldX (X)) — (X;|V(X|vg)) - (ve|dX (X,))
= H(X|vg)® + (veldX (X|vE)vE)) — (X V(X|vg))
= H(X|vp)? + (X|vp)veldX (vp)) + (X|vg) divX, — div(X|ve)X,).  (2.18)

We also notice that, choosing an orthonormal basis e1, . .., e5—1, €, = v of R® ata pointp € OF
and letting X = X"e;, we have

(e:| VXY = (e;|VI"X — (V"X up)vg) = divl "X — (vp|dX (vE))

where the symbol V' f denotes the projection on the tangent space to OF of the gradient VI'f of a
function, called tangential gradient of f and coincident with the gradient operator of F applied to
the restriction of f to the hypersurface, while (¢;|V X?) is called tangential divergence of X, usually
denoted with div' X and coincident with the (Riemannian) divergence of dF if X is a tangent
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2.1 FIRST AND SECOND VARIATION 40

vector field, as we will see below (see [59]). Moreover, if we Choose a local parametrization of OF
such that g—i(p) =e¢; forie{1,...,n— 1}, wehavee] = %ﬁj =g = §;;atpand
(e VIX") = div'X = (ei| VIXE) + (e VI (X [v)v))
= (eil VXL) + (X|vg) (e VT )

1s0¢"
Ors

. Y
= (@l VX7) + (Xlvp) g hag
= Ve, X7+ (X|vp)hi

=divX; + (X|vg)H,

where we used again the Gauss—Weingarten relations (1.7) and the fact that the covariant derivative
of a tangent vector field along a hypersurface of R" can be obtained by differentiating in IR™ (a local
extension of) the vector field and projecting the result on the tangent space to the hypersurface
(see [31], for instance). Hence, we get

(wpldX (vg)) = divl"X — (e VTX?) = divl"'X — divX, — (X|vg)H
and claim (2.17) follows by substituting this left term in formula (2.18). O

Remark 2.1.13. We are not aware of the presence in literature of this “geometric” line in deriving
the (first and) second variation of .A, moreover, in [14, Theorem 2.6, Step 3, equation 2.67], this
latter is obtained only at a critical set, while in [11, Theorem 3.6] the methods are strongly “analytic”
and in our opinion less straightforward. These two papers are actually the ones on which is based
the computation in [2, Theorem 3.1] of the second variation of the (nonlocal) Area functional at a
general smooth set E C T". Anyway, in this last paper, the variations of E are all special variations,
that is, they are given by the flows in system (2.4), indeed, the term with the time derivative of X;
is missing (see formulas 3.1 and 7.2 in [2]).

Notice that the second variation in general does not depend only on the normal component
(X|vE) of the restriction to OF of the infinitesimal generator X of a variation & (this will anyway be
true at a critical set E, see below), due to the presence of the Z-term and of B(X;, X;) depending
also on the tangential component of X and of its behavior around OE. Even if we restrict ourselves
to the special variations coming from system (2.4), with a normal infinitesimal generator X, which
imply that all the vector fields X; are the same and coinciding with X, hence Z = dX(X) and
X, = 0, the second variation still depends also on the behavior of X in a neighborhood of 0F
(as Z). However, there are very particular case in which it depend only on (X |vg), for instance
when the variation is special and X is normal with zero divergence (of T") on JF (in particular,
if divl"X = 0 in a neighborhood of JE or in the whole T"), as it can be seen easily in the above
theorem.

It follows that if we have a critical set E for the unconstrained Area functional, hence H = 0 on
OF (see Remark 2.1.9), the second variation of A is simply given by
d2

GEAOE)|_ = [ (Ve = (X, BE) du.

However, we see that the second variation has the same form also for A under a volume constraint,
at a critical set.

Proposition 2.1.14. If E C T" is a critical set for A under a volume constraint, there holds

E A0E)| = V(X|vg)|* = (X|vg)?BI?) d
EA0B)|_ = [ (9Xg)? - (Xl BE) di

for every volume—preserving variation Ey of E.
Hence, the second variation of A at E depends only on the normal component of the restriction of the
infinitesimal generator X to OF, that is, on (X|vg).
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Proof. Computing the second derivative of the (constant) volume of E;, by equations (2.5)—(2.6)
we have (recalling formulas (2.3), (2.12) and using the divergence theorem)
0 dZVI(E)’ d/diX(m)dw‘ d/ (X|vg,)d ‘
= —— VO = — V. = —
dt2 Yo dt E, ! t=0 dt JoE A ) P

— /8E [divXT<X |vg) + H(X |vg)? + (Z|vg) — (X, |V(X|vE)) +B(XT,XT)} dy
- /dE [H(X | v5)? + (Z|v) — 20XV (X|vg) + B(Xx, X7) | dp, 219)

hence, being H constant on 9F, we are done. O
Remark 2.1.15. Notice that by the previous computation and relation (2.17), it follows

j—;vol(Et) \ = /8E [<X|I/E> aiv"X + <%L:0’V>} di=0, (2.20)

t=0

for every volume—preserving variation E; of E. Hence, if we restrict ourselves to the special
(volume—preserving) variations coming from system (2.4), as in [2], we have

= vol(E = | (X|vg)divl' X du =0

@O(t)‘tzo—/w( lvg) div =0,
indeed, for such variations we have X; = X, for every t € (—¢,¢). Thus, one can clearly use
equality (2.20) to show the above proposition.
Moreover, we see that if we have a special variation generated by a vector field X such that
divl"X = 0 on dE, then %Vol(Et) | +—o = Oand if E is a critical set, the second integral in
formula (2.16) vanishes. This is then true for the special volume—preserving variations coming
from Lemma 2.1.7 and when X is a constant vector field, hence the associated special variation
FEy is simply a translation of E (clearly, in this case .A(9F}) is constant and the first and second
variations are zero).

2.2 STABILITY AND WZP-LOCAL MINIMALITY

By Proposition 2.1.14, the second variation of the Area functional under a volume constraint at
a smooth critical set E is a quadratic form in the normal component on OF of the infinitesimal
generator X € C*°(T";R") of a volume-preserving variation, that is, on ¢ = (X |vg). This and
the fact that the infinitesimal generators of the volume—preserving variations are “characterized”
by having zero integral of such normal component on 0F, by Lemma 2.1.7 and the discussion
immediately before, motivate the following definition.

Definition 2.2.1. Given any smooth open set ¥ C T" we define the space of (Sobolev) functions
(see [7])

HY(OF) = {w:aE—nR . 4 € H'(9E) and u)du:o}
OFE

and the quadratic form I : H'(9E) — R as

Ig(y) = /aE(WI2 —4*|BJ?) du (2.21)

with the notations of Theorem 2.1.12.

Definition 2.2.2. Given any smooth open set £ C T", we say that a smooth vector field X €
C>(T";R") is admissible for E if the function ¢ : JE — R given by ¢ = (X|vg) belongs to
H'(OE), that is, has zero integral on JFE.
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Remark 2.2.3. Clearly, if X € C°°(T";R") is the infinitesimal generator of a volume—preserving
variation for F, then X is admissible, by the discussion after Corollary 2.1.6.

Remark 2.2.4. By what we said above, if E is a smooth critical set for .A under a volume constraint,
we can from now on consider only the special variations E; = ®;(E) associated to admissible
vector fields X, given by the flow @ defined by system (2.4), hence

d
GA0E)| = [ (Xlvg)du=0
OF

t=0
and
d2

TEAGE)| = Tp((XIvs))

where I is the quadratic form defined by formula (2.21).

We notice that every constant vector field X = n € IR" is clearly admissible, as

/ <n\uE>d,u:/diV77dat:O
oF E

and the associated flow is given by ®(¢,z) = x + tn, then, by the translation invariance of the
functional A, we have A(9E;) = A(JF) and

0= TgAOE)| _ =Ts(nlve)).
that is, the form Il is zero on the vector subspace
T(OE) ={(nlvg) : neR"} C H'(OE)
of dimension clearly less than or equal to n. We split
HY(8E) = T(0E) & T+ (9E),
where T+(0E) C H'(OE) is the vector subspace L2—orthogonal to T(OE) (with respect to the
measure p on JF), that is,
T (9E) = {1/} e H'(9E) : / bvp dp = o}
OE
:{¢ € HY(OE) : / Ydu =0 and / Yrgdu = O}
OE OB

and we give the following “stability” conditions.

Definition 2.2.5 (Stability). We say that a critical set £ C T" for A under a volume constraint is
stable if N
Ig(y) >0  forally € H(OF)

and strictly stable if moreover

[g() >0  forally € TH(AE)\ {0}.

We postpone a quite detailed discussion about the classification of stable and strictly stable
critical sets for the volume constrained Area functional (see Section 3.5).
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Remark 2.2.6. Introducing the symmetric bilinear form associated (by polarization) to I1x on
H'(0E),

I1 +¢)—11 -

bp( ) = LEW+9) ; B —¢)

at a critical set £ C T", it can be seen that actually T'(0F) is a degenerate vector subspace
of HY(OF) for by, that is, bp(1), ) = 0 for every v € H'(OF) and ¢ € T(9F). By means of
formula (1.11), since E (being critical) satisfies H = A for some constant A € IR, we have

—Avg — |Bl’vg =0

on OE. This equation can be written as L(v;) = 0, for every i € {1,...,n}, where L is the
self-adjoint, linear operator defined as

L(¢) = —Ay — [B*y,

which clearly satisfies

b () = /8E<L(1/))|<P>d/i and  TIp() = /8E<L<w)|w>du

Then, if we “decompose” a smooth function ¢ € H(JE) as ¢ = ¢ + (n|vg), for some n € R™ and
¢ € T+(9F), we have (recalling formula (2.21))

Mg (y) = /6 L)1) dn
:/ <L(s0)|<p>du+2/ <L(<n\VE>)|w)du+/ (L({nlve))(nlve)) du
OF OF OF

=Ig(y).
By approximation with smooth functions, we conclude that this equality holds for every function
in H1(0F).
The initial claim about the form b, then easily follows by its definition. Moreover, if F is a strictly
stable critical set there holds

[g(y) >0  foreveryy € H (IE)\ T(9E). (2.22)
Remark 2.2.7. We observe that there exists an orthonormal frame {ey, ..., e, } of R” such that
| weledtveles) du=o. 02
oF
for all i # j, indeed, considering the symmetric n x n-matrix A = (a;;) with components
aij = [ ViV dp, where vl = (vg|e;) for some basis {e1,...,e,} of R™, we have

/ (Ovg)i(Ov); dp = (0AO )5,
oF

for every O € SO(n). Choosing O such that OAO~! is diagonal and setting ¢; = O~ '¢;, rela-
tions (2.23) are clearly satisfied.

Hence, the functions (vg|e;) which are not identically zero are an orthogonal basis of T'(OF). We
set

Ig = {ie{l,...,n} : (vgle;) is not identically zero} (2.24)
and
Op = Span{e; : i € Ig}, (2.25)
then, given any ¢ € H!(9E), its projection on T (9E) is
v{vgle) d
e M< vele:) . (2.26)

iclg H VE|€Z>||L2 (0E)
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From now on we will extensively use Sobolev spaces on smooth hypersurfaces. Most of their properties
hold as in R"™, standard references are [3] in the Euclidean space and [7] when the ambient is a manifold.

Definition 2.2.8. We say that a smooth set E C T" is a local minimizer for the Area functional A if
there exists § > 0 such that
A(OF) = A(OF)

for all smooth sets F' C T™ with Vol(F') = Vol(E) and Vol(EAF) < 4.
We say that a smooth set E C T" is a W2P_local minimizer if there exists & > 0 and a tubular
neighborhood N. of E, such that
A(OF) = A(OF)
for all smooth sets F C T" with Vol(F) = Vol(E), Vol(EAF) < ¢ and dF contained in N,
described by
OF ={y +4(y)vely) - y € OF},

for a smooth function ¢ : 9E — R with [|¢|[yy2.09p) < 9.
Clearly, any local minimizer is a W2P_]ocal minimizer.

We immediately show a necessary condition for W??-local minimizers.

Proposition 2.2.9. Let the smooth set E C T" be a W*P-local minimizer of A, then F is a critical set and
[g(y) >0 forall ) € HY(9E),

in particular, E is stable.

Proof. If E is a W2P—local minimizer of A, given any ¢ € C*°(9E) N H'(DE), we consider the
admissible vector field X € C°°(T™;R™) given by Lemma 2.1.7 and the associated flow ®. Then,
the variation E; = ®;(E) of E is volume—preserving, that is, Vol(E;) = Vol(E) and for every
d > 0, there clearly exists a tubular neighborhood N; of E and € > 0 such that for t € (—2,%) we
have

Vol(EAE;) < 6

and
OF; = {y +v¥p,(y)ve(y) : y € OB} C Ne
for a smooth function ¢, : 0E — R with [|¢ g, |lyy2.0(95) < 0. Hence, the W?2P-local minimality
of E/ implies
A(OF) < A(OF,),

for every t € (—¢,2). It follows

d
0= LA =/ Hy dp,
dt (OE:) =0 Jop Ydp
by Theorem 2.1.5, which implies that F is a critical set, by the subsequent discussion and

d2
< — =
0< S5 AWE)| _ =Tip().
by Proposition 2.1.14 and Remark 2.2.4. B N
Then, the thesis easily follows by the density of C°°(0F) N H!(OE) in H*(OF) (see [7], for instance)
and the definition of 1, formula (2.21). O

The rest of this section will be devoted to showing that the strict stability (see Definition 2.2.5) is
a sufficient condition for the W2P_]ocal minimality. Precisely, we will prove the following theorem,
which is [2, Theorem 3.9].
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Theorem 2.2.10. Let p > max{2,n — 1} and E C T" a smooth strictly stable critical set for the Area
functional A (under a volume constraint), with N, a tubular neighborhood of OF. Then, there exist
constants §,C' > 0 such that

A(OF) = A(OE) + C[a(E, F))?,

for all smooth sets F C T" such that Vol(F') = Vol(E), Vol(FAE) < 6, 0F C N, and

OF = {y+vr(y)ve(y) : y € OE},
for a smooth function Y with ||V |ly2.poE) < 9, where the “distance” o(E, I) is defined as

a(E,F) = min Vol(EA(F +n)).
77€]R"
As a consequence, E is a W2P-local minimizer of A. Moreover, if F' is W*P—close enough to E and
A(OF) = A(OE), then F is a translate of E, that is, E is locally the unique W*P-local minimizer, up to
translations.

Remark 2.2.11. We could have introduced the definitions of strict local minimizer or strict W?P—
local minimizer for the Area functional, by asking that the inequalities A(0F) < A(9F) in
Definition 2.2.8 are equalities if and only if F' is a translate of E. With such notion, the conclusion
of this theorem is that E is actually a strict W?P-local minimizer (with a “quantitative” estimate
of its minimality).

Remark 2.2.12. With a non trivial extra effort, by using some fine results from the regularity theory
for minimal surfaces, it can be proved that in the same hypotheses of this theorem, the set E is
actually a local minimizer (see [2]).

For the proof, we need some technical lemmas. We underline that most of the difficulties are
due to the presence of the degenerate subspace T'(OF) of the form ITg (where it is zero), related to
the translation invariance of the Area functional (recall the discussion after Remark 2.2.4).

In the next key lemma we are going to show how to construct volume—-preserving variations
(hence, admissible smooth vector fields) “deforming” a set £ to any other smooth set with the
same volume, which is W?P?—close enough. By the same technique we will also prove Lemma 2.1.7
immediately after, whose proof was postponed.

Lemma 2.2.13. Let E C T" be a smooth set and N a tubular neighborhood of OF. Forallp > n —1,
there exist constants 0, C' > 0 such that if 1) € C*°(0F) and ||v|ly2»(95) < 9, then there exists a vector
field X € C°°(T";R"™) with divX = 0in N, and the associated flow ®, defined by system (2.4), satisfies

O(l,y) =y+v(y)vely), forally € IE. (2.27)

Moreover, for every t € [0,1]

19(¢, ) — Id|lw2roE) < ClYllwer(op) - (2.28)

Finally, if Vol(E1) = Vol(E), then the variation Ey = ®y(E) is volume—preserving, that is, Vol(E;) =
Vol(E) forall t € [—1,1] and the vector field X is admissible.

Proof. We start considering the vector field X € C°°(N,; R") defined as
X (x) = {(2)Vdp(x) (2.29)

for every x € N, where dg : N. — R is the signed distance function from £ and ¢ : N; — R is
the function defined as follows: for all y € 9E, we let f, : (—¢,e) — R to be the unique solution of
the ODE

{f{,(t) 4 £, (O (y + trp(y) = 0
fy(o) =1
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and we set

€)= €ty + w(0) = £y(1) = exp(~ [ Mdly+ svp(0))ds),

recalling that the map (y,t) — x = y + tvg(y) is a smooth diffeomorphism between OF x (—¢,¢)
and N, (with inverse z — (7g(z),dg(x)), where g is the orthogonal projection map on E,
defined by formula (1.15)). Notice that the function f is always positive, thus the same holds for £
and ¢ =1, Vdg = vg, hence X =vgon JE.

Our aim is then to prove that the smooth vector field X defined by

Y(rp(z)) ds -
e A TR Zc=mRi 230

for every z € N, and extended smoothly to all T", satisfies all the properties of the statement of
the lemma.

Step 1. We saw that X log = v, now we show that divX = 0and analogously divX = 0in NN,.
Givenany x = y + tvg(y) € N., withy € OE, we have

divX (z) = div[é(z)Vdg ()]
= (V&(2)|Vdp(x)) + §(z)Adg(x)
= Dlety + e ()] + €l + s () Ay + ()
= f;//(t) + fy()Adp(y + tve(y))
=0,

where we used the fact that fy(t) = (V&(y + tve(y))|ve(y)) and Vde(y +tve(y)) = ve(y), by
formula (1.16).

Since the function
ds

o(z) /TZJ(WE(I))
x—0(x) =
0 {(rp(@) + sv(mp(r))
is clearly constant along the segments ¢ — x + tVdg(z), for every « € N, it follows that

0— %[0(3& +tVdg(z))] ‘t o = (VO@)[Vdg(w)),

hence, N
divX = (VO|Vdg)¢ + 0divX = 0.

Step 2. Recalling that ) € C°°(9E) and p > n — 1, we have

1Yl e am) < Wllcror) < CElYIW2p(0E):

by Sobolev embeddings (see [7]). Then, we can choose § < £/Cp such that for all x € OF we have
that z £ ¢ (z)vp(z) € Ne.
To check that equation (2.27) holds, we observe that

Y(rE(z)) ds
0(x) :/0 E(rp(x) + svp(rp(x)))

represents the time needed to go from g () to 7g(2) + ¢ (7e(x))ve(7E(2)) along the trajectory
of the vector field X, which is the segment connecting 7g(x) and ng(z) + ¢(7g(z))vp(rp(z)),
of length ¢)(7g(x)), parametrized as

s—=7g(x) + sv(rp(z))ve(re(x)),
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for s € [0,1] and which is traveled with velocity {(7g(z) + svgp(mE(2))) = fr,(2)(s). Therefore,

by the above definition of X = 0X and the fact that the function 6 is constant along such segments,
we conclude that

O(1,y) —®(0,y) = (y)ve(y),
thatis, ®(1,y) =y + ¢ (y)ve(y), forall y € OF.
Step 3. To establish inequality (2.28), we first show that
[Xlw2r (v, < Clldllw2eom) (2.31)

for a constant C' > 0 depending only on F and ¢. This estimate will follow from the definition of
X in equation (2.30) and the definition of W?P-norm, that is,

X wer vy = XN zove) IV X Lo vy + ||v2X||LP(N

As |Vdg| = 1 everywhere and the positive function £ satisfies 0 < C1 < € < Co in N, for a pair of
constants C7 and C9, we have

(s () ds P
HXHLP N.) /NE /0 E(rp(x) + svp(rp(z))) ) Vdn(o)| de

, G(rp () ds P J

< el (@) + svp(ne@)|

C«P
< / [Y(rg(x))|P do

Cp

- g | ,5'1”(%(@/ + v ()P Iy, ) dt dp(y)
ch e

- C%/aEw(y)l /_6 JL(y,t) dt du(y)

< C/ [ (y) P du(y)
= CHl/)HLp (8E)°

where L : OF x (—¢,e) — N. the smooth diffeomorphism defined in formula (1.49) and JL its
Jacobian. Notice that the constant C' depends only on £ and «.
Now we estimate the LP-norm of V.X. We compute

 Velrp(e)dns(e)
VX = e )+ Sms(a)(nele py S@VE(@)

_ Uow( ) Ve(rp(a) + svp(mp (@ D) () Idds} ¢(2)Vdp(z)
|

§2(rp(x) + svp(np(x)))

/w(”E(‘”)) Vé(np(x) + svp(rp(z)))
0 §2(rp(x) + svp(np(x)))

e & Vé(x)Vd vid

drp(z)sdvg(re(x)) ds} &(x)Vdg(z)
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and we deal with the integrals in the three terms as before, changing variable by means of the
function L. That is, since all the functions drg, dvg, VZdg, &, 1/€, VE are bounded by some
constants depending only on £ and ¢, we easily get (the constant C' could vary from line to line)

VX7, <C/NE |V1/1(7TE(x))|pdx+C’/6 (g (2))P da
= s j|vw(7rE(y+tVE(y)))|pJL(y,t)dtdu(y)

v [ [ utnsty+ wp ()P TLG0) drduty)
OF J —¢

:C/BE(W(Z/NP-F Ve (y)IP) /8 JL(y,t) dt du(y)

—€
< O, o5y + IV oy

< Ol 1o -

A very analogous estimate works for ||V2X [ N and we obtain also

hence, inequality (2.31) follows with C = C (E7 e).
Applying now Lagrange theorem to every component of ®(-,y) forany y € 9F and t € [0,1],
we have

Pi(t,y) —yi = Pi(t,y) — Pi(0,y) = tX'(D(s,9)),
forevery i € {1,...,n}, where s = s(y, t) is a suitable value in (0, 1). Then, it clearly follows
[@(t,) —1dl| Lo (o) < ClIX |z (v,) < ClliX w2z < ClYllw2rom) (2.32)

by estimate (2.31), with C' = C(F, ) (notice that we used Sobolev embeddings, being p > n — 1,
the dimension of 0F).

Differentiating the equations in system (2.4), we have (recall that we use the convention of
summing over the repeated indices)

FVID;(t,y) = VEXI(D(t,y)) Vidw(t,y) (2.33)
ViCIDj(O,y) = (Sl'j
for every i, j € {1,...,n}. It follows,

9 wi i ; i
&’V D;(t,y) — 5ij|2< 2|(ViD;(t,y) — 6;5) VFXT (D(t,y)) Vi (t, y)|

i 2
2| VX | oo ()| V'@ (8 ) = i | +2[ VX || oo (v,

VD (t,y) — by
hence, for almost every ¢ € [0, 1], where the following derivative exists,
0\ .
Elvl(bj(t, y) — 5l]|< OHVXHLOO(NE) (|VZ(I)]‘ (t, y) — (Sij‘—l—l) .
Integrating this differential inequality, we get
Vi (t,y) — 6| < eIV Xy — 1 ¢ CIXlw2rive) —q)
as t € [0,1], where we used Sobolev embeddings again. Then, by inequality (2.31), we estimate

1 C
3 Vit ) — il o) < C(NIWEP0R) —1) < Clllwonor), (234
1<4,j<n
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as [[Yllw2rop) < 0, forany t € [0,1] and y € OF, with C = C(E,¢,9).
Differentiating equations (2.33), we obtain

FVIVID;(ty) = VIVEXT (D(t,y)) VIO (1, y) V Dy (1, y)
+ VEXT (D(t,y))VIVIDL(t, y)
VIVID(0,y) =0

(where we sum over s and k), for every ¢t € [0,1],y € dE and i, j,¢ € {1,...,n}.
This is a linear non-homogeneous system of ODEs such that, if we control C'|¢)(|yy 2.0 (9, the smooth

coefficients in the right hand side multiplying the solutions V/V®; (-, ) are uniformly bounded

(as in estimate (2.34), the Sobolev embeddings imply that VX is bounded in L> by C|¢)|[yy2.0(95))-

Hence, arguing as before, for almost every ¢ € [0, 1] where the following derivative exists, there
holds

0
52 V2@t y)| < CIVX o () | VDL, ) [+CI VX (D(1, )|
< CS|IV2D(t,y)|[+C|IVEX (D(t,y))]

by inequality (2.31) (notice that inequality (2.34) gives an L>°~bound on V®, not only in LP, which
is crucial). Thus, by means of Gronwall’s lemma (see [54], for instance), we obtain the estimate

t t
[V2@(t,y)|< C/ [V2X (D(5,9))|e?) ds < C/ VX (@(s,y))] ds
0 0

hence,
V() oy <€ [ ([ 9000 a5)" o)

<C / /a VX (@(s.0) P du(y)ds
:C'/ \V2X (z)|PJL Y (z) dx
Ne

<CIVEX |7,y

<CIX Bz,

SClIIy2(om) - (2.35)

by estimate (2.31), for every ¢ € [0, 1], with C = C(E,¢,9).
Clearly, putting together inequalities (2.32), (2.34) and (2.35), we get the estimate (2.28) in the
statement of the lemma.

Step 4. Finally, computing as in formula (2.19) and Remark 2.1.15, we have
d? n
—Vol(E;) = / (X|vg,) divE"X dus,
dat? oF

forevery t € [-1,1], hence since by Step 1 we know that divT"X = 0in N. (which contains each
dEy), we conclude that 4 o Vol(Et) = 0 forallt € [—1, 1], that is, the function ¢ — Vol(E}) is linear.
If then Vol(E,) = Vol( ) Vol(Ey), it follows that Vol(E;) = Vol(E), for all t € [—1, 1] which
implies that X is admissible, by Remark 2.2.3. O

With an argument similar to the one of this proof, we now prove Lemma 2.1.7.
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Proof of Lemma 2.1.7. Let ¢ : OE — R a C*° function with zero integral, then we define the
following smooth vector field in N,

X(2) = ¢(rp(e) X (2),

where X is the smooth vector field defined by formula (2.29) and we extend it to a smooth vector
field X € C°°(T";R"™) on the whole T". Clearly, by the properties of X seen above,

(X(W)lve () = W)X @)ve(y) = ()

for every y € OF.

As the function = — ¢ (7g(z)) is constant along the segments t +— z + tVdg(z), for every
x € N, it follows, as in Step 1 of the previous proof, that divX = 0in N.. Then, arguing as in
Step 4, the flow @ defined by system (2.4) having X as infinitesimal generator, gives a variation
E; = @4(F) of E such that the function ¢ — Vol(E}) is linear, for ¢ in some interval (—§,§). Since,
by equation (2.7), there holds

d
—VIE‘ :/ X d:/ dy =0,
g NE) | = Xlepdp= | b dp
such function ¢ — Vol(E;) must actually be constant.

Hence, Vol(E;) = Vol(E), for all t € (—0,9) and the variation E; is volume—-preserving. O

Lemma 2.2.14. Lef p > max{2,n — 1} and E C T"™ a strictly stable critical set for the Area functional A
(under a volume constraint). Then, in the hypotheses and notation of Lemma 2.2.13, there exist constants
6,C > 0 such that if || |lyy2p9p) < 6 then | X| < Cl(X|vg,)| on OE: and

IVXlL20m,) < ClIUX e 1 (08 (2.36)
(here V is the covariant derivative along Ey), for all t € [0, 1], where X € C°°(T™;R™) is the smooth
vector field defined in formula (2.30).

Proof. Fixed ¢ > 0, from inequality (2.28) it follows that there exist § > 0 such that if [¢)||yy2.0 (o) <
0 there holds

|VEt (@(t,y)) - VE(y)l Se
for every y € OF, hence, as Vdg = vy on OF, we have

Vdp(®H(t,2) —vp, (2)] = |vp(® (7)) —vp, ()| <&
for every x € OE;. Then, if [[¢)| 2.0 () is small enough, ®~1(t,-) is close to the identity, thus
IVdg(® 7 (t,2)) — Vdg(z)| < &
on JFE; and we conclude

IVde — vE, || Lo (aE,) < 2¢-

Moreover, using again the inequality (2.28) and following the same argument above, we also
obtain
IV2dg — Vg, || (o8, < 2. (2.37)

We estimate X, = X — (X|vg,)vg, (recall that X = (X|Vdg)Vdg),

| Xn| = |X — (X|vE,)vE,|
= (X|Vdg)Vdg — (X|vE,)vE,|
= |(X|Vdg)Vde — (X|vg,)Vde + (X|vE,)Vdg — (X|vE,)vE, |
< [(X[(Vdg —vg,))Vde| + (X |ve,)(Vde — vE,)|
< 2|X||Vdg — vg,|
< 4de|X|,
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then
| X7 | < 4e|Xr, + (X|vg,)ve,| < 4e|Xn |+ [(X|vE,)!
hence,
| Xr| < CX|vE,)!. (2.38)

We now estimate the covariant derivative of X, along 0F, that is,

VX7 | =|VX = V({(X|vg,)vE,)|
=|V((X|Vdg)Vdg) - V((X|vg,)vE,)|
=|V{(X|Vdg)Vdg) - V(X |vE,)Vdg) + V((X|vE,)Vdr) = V((X|vE,)vE, )|
<IVI(X(Vdg —vg,))Vdg)| + V(X |vg,)(Vde — vEg,))]
< Ce[|VX|+ V(X |vg,)|] + CIX|[|IV(VdE)| + |Vvg,|]
<Ce[|[V((X|vg,)ve, + Xn)| + V(X |ve,)[] + C([(Xve)| + | Xx]) [[V2de| + [Vvg, ]

hence, using inequality (2.38) and arguing as above, there holds
VXr| < CIV(X|vg,)| + CUX|ve)|[IV?ds| + [Vvg,]]

Then, we get

2
IV 1220 < CIV (X0 22 0, +C/6E (X, [2[IV2de] + Vv, ] du
t

<CIX e B omy + Ol (X lvm,)

2
Et)HWZdE' + \VVEJHLp(aEt)

”2 2p
LP=2(d
<C X ve) o8,

where in the last inequality we used as usual Sobolev embeddings, as p > max{2,n — 1} and the
fact that || Vv, || 1»(5E,) is bounded by the inequality (2.37) (as HVQdEHLp(aEt)).
Considering the covariant derivative of X = X, 4+ (X|vg,)vE,, by means of this estimate, the
trivial one

IV{Xve) L2 (08) < KX IVE H (08,

and inequality (2.38), we obtain estimate (2.36). O

We now show that any smooth set E sufficiently W2P—close to another smooth set F, can
be “translated” by a vector n € R" such that 0F —n = {y+ ¥, (y)vr(y) : y € OF}, for a
function v, € C*°(9F) having a suitable small “projection” on T'(OF) (see the definitions and the
discussion after Remark 2.2.4).

Lemma 2.2.15. Let p > n — 1 and F' C T™ a smooth set with a tubular neighborhood N.. For any T > 0
there exist constants 6, C' > 0 such that if another smooth set E C T"™ satisfies Vol(EAF) < 6 and
OE ={y+¢(y)vr(y) : y € OF} C N for a function ¢ € C*°(R) with ||[¢|ly2.0op) < 9, then there
exist n € R™ and 1, € C°°(9F) with the following properties:

OF —n={y+vy(y)vr(y) : y € OF} C N¢,

Inl < Cllvllwerr),  lnllweear) < Clvlwesor)
and
[ e di| < 7)o
oF
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Proof. We let d to be the signed distance function from 0F), as in formula (1.14). We underline
that, throughout the proof, the various constants will be all independent of +/ : F — R.

As observed in Remark 2.2.7, there exists an orthonormal basis {e1, ..., ey} of R" such that the
functions (vp|e;) are orthogonal in L2 (9F), that is,

[ wrles)ivrles) du =0, 239)
OF

for all i # j. Given a smooth function ¢ : 0F — R, we set

n
n=>y_mei,
i=1
where

L (@) wp(@)|e)dy  ifielp,
m:{wuﬂez s, faF (2.40)

n; =0 otherwise

and I is the set of the indices i € {1,...,n} such that ||(vF|e;)||2(9F) > 0. Note that, from Holder
inequality, it follows

Inl < Cill¥llz2or) - (2.41)
Step 1. Let T, : OF — OF be the map
Ty(y) = mp(y+¥(y)vr(y) —n). (242)
It is easily checked that there exists eg > 0 such that if
[Yllw2par) +Inl <e0 <1, (2.43)
then Ty, is a smooth diffeomorphism, moreover,
[JTy = Ul g or) < Cll¢lcr(ar) (2.44)
(here JT is the Jacobian relative to JF) and
1Ty = 1dllw2ror) + 1T, = 1dllw20or) < CU¢Iw2em) + ) (2.45)
Therefore, setting E=EFE- 7, we have
OF = {z+ ¢y (2)vp(z) : z € OF},

for some function v, which is linked to ¢ by the following relation: for all y € 9F, we let
z = z(y) € OF such that

y+ve(y) —n =2+ ¢y(2)vr(2),

then,
Typ(y) = mr(y +¢(y)vr(y) —n) = 7r(z + Yy (2)vr(z)) = 2,
thatis, y = TJl(z) and
Pn(2) =¥ (Ty(y))
=dp(z +vy(2)vr(2))
=dp(y +¢y)vr(y) —n)
=dp (T, " (2) + (T, (2))vr(Ty(y)) —n).
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Thus, using inequality (2.45), we have

[nllw2re@r) < Co2(l¥llw2r@or) +Inl), (2.46)

for some constant Cy > 1. We now estimate

/ (2)vp(2) dp(z / (T (9))v (T (9)) T Ty () dia(y)

— /a (T () e (T () dn(y) + B (2.47)
where
|Ri| = '/3F Un(Ty(y))vr(Ty(y)) [TTy(y) — 1] du(y)‘ < Csll¥llerom 1vnllrzor),  (248)
by inequality (2.44).
On the other hand,
Uy (Ty(y) ) v (Ty(y)) du(y)
oOF
— [y @) - Tow)] duty)
OF
=/ v+ $(@)vp@y) — 1 —1p(y +9@)vr@y) — )] duly)
/ (o) vr(y) —n + [rr(y) — 7r(y + o@)vey) —m)] ) du(y)
— [ @) -0 duly) + Re. (2.49)
oFr
where

Ry — / [me(y) — 70y + () (y) — )] du(y)
oF
- [ auty / Vap(y + ) (y) — ) (6(y)vr (v) — ) dt
/ Vrr(y ve(y) —n)du(y) + Rs. (2.50)

In turn, recalling inequality (2.41), we get

1
| R3] < /E)qu(y)/o Ve + (0 (y)ve(y) —n) = Vel [$y)ve(y) —nldt < Caldlfz o) -

(2.51)
Since 7 (2) = v — dp(z)Vdp(z) for 2 € N. (by equation (1.15)), it follows

871’% 5 6dF 8dF anF

thus, for all y € OF, there holds

s (y) = bi5 — o (v) oz, (y)-

From this identity and equalities (2.47), (2.49) and (2.50), we conclude

/ Un(2)vr(2) du(z) =/ [V (@)vr(z) = (| ve(@))ve(z)] du(z) + Ry + Rs.
oF oF
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As the integral at the right-hand side vanishes by relations (2.39) and (2.40), estimates (2.48)
and (2.51) imply

’/E)F Uy (y)ve(y) dp(y)| < Call$llcrom 190l 2 o) + Call¥l1Z2or)
Cllvllcrom (1Wnll L2om + ¥l L2 0r))
05”1/)”11/[721,9p(ap)”"/}Hi%aF)(”"/JUHL?([)F) + ¥l 20m)),  (2.52)

where in the last passage we used a well known interpolation inequality, with ¢ € (0, 1) depending
only on p > n — 1 (see [7, Theorem 3.70] and Proposition 3.3.4 below).

<
<

Step 2. The previous estimate does not allow to conclude directly, but we have to rely on the
following iteration procedure. Fix any number K > 1 and assume that § € (0, 1) is such that
(possibly considering a smaller 7)

TH8<e/2,  Cod(1+20)) <7, 205K <71. (2.53)

Given 1, we set ¥, o = 1) and we denote by n' the vector defined as in (2.40). We set £ = E —n*
and denote by 1, 1 the function such that 0E1 = {z + 1,1 (z)vr(z) : © € OF}. As before, 11
satisfies

Y+ ove(y) —n' =2+ Ppa(2)ve(2).
Since |[¢|l 20 (9r) < 6 and || < C1[|[¢]| 2 (o), by inequalities (2.41), (2.46) and (2.53) we have
[¥n1llw2ror) < C20(14+C1) <7 (2.54)

Using again that [[¢[ly2.(9r) < d < 1, by estimate (2.52) we obtain

| /8 Unaw)vr () du(w)| < G5l ol o (Wonal2om) + Wnollizor)

where we have [|¢n 0l p2(9F) < 6.
We now distinguish two cases.
I {[¢nollz2ar) < Kll¥nll12(aF), from the previous inequality and (2.53), we get

‘/M Uy (y)ve(y) du(y)‘ < Cs56” (I[¥nallzor) + 1vnollzzor))

< 2055‘9K||1/Jn,1||L2(aF)
< OlYnallzzory

thus, the conclusion follows with = n!.
In the other case,

1nollzzor _ 4

[¢n,1] L2(0F) S — r ST <9. (2.55)

We then repeat the whole procedure: we denote by 7? the vector defined as in formula (2.40) with
¢ replaced by v, 1, we set B2 = Ey —n? = E —n' —1? and we consider the corresponding ¢, 2
which satisfies

w4 Yy 2(w)vp(w) = 2+ y1(2)vp(2) —n° =y + Yyo(Y)vr(y) —n' — 0.

Since
[nollwzsar) + In' + 07| <6+ C16 + Cillvgall2or)
1
< R
<o+Cia(1+ )
02(5(1 + 201)

<
ST,
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the map Ty, ,(y) = 7r(y + ¥yo(y)vr(y) — (n* +n?)) is actually a diffeomorphism, thanks to
formula (2.43) (having chosen 7 and ¢ small enough).
Thus, by applying inequalities (2.46) (with n = 1! + n?), (2.41), (2.53) and (2.55), we get

C1

[ 2llwzear) < Co([¢nollwzsor) + In' +n?l) < 025(1 +C1+ f) <7,

as K > 1, analogously to conclusion (2.54). On the other hand, by estimates (2.41), (2.54) and (2.55),
)
11 llwzeor) +n° < C2d(1+C1) + Cigz < Cad(1+2C1) <,

hence, also the map Ty, , (v) = 7p(z + ¥y 1 (2)ve(2) — n?) is a diffeomorphism satisfying inequal-
ities (2.43) and (2.44). Therefore, arguing as before, we obtain

’/aF bu2(W)ve(y) du(y)| < Csllvnallfzom (12l 2om) + YnillL2om)

Since |[¢y,1]l12(9F) < 6 by inequality (2.55), if [[¢n1ll2(or) < Kll¥n2llz2(or) the conclusion
follows with n = n! + n2. Otherwise, we iterate the procedure observing that

lYnallz2or) _ Nnollzzer) 6
[¥n2llr2or) < % < e <%z

This construction leads to three (possibly finite) sequences 1", E;, and v, ,, such that

En=E-n'— =", | <5

lwzw(ar) + 0"+ -+ 0") < C26(142C1)

[¥nnllw2ror) < C2(lltno
[n.nllz2or) < 2=
OE, ={z+¢pn(x)vp(x) : x € OF}

If for some n € N we have |[Vyn-1z2(9r) < Kl[¥nnl 12(5F), the construction stops, since, arguing
as before,

[ et duto)| < vl aon

and the conclusion follows with n = n' +--- + 7™ and Yy = 1y n. Otherwise, the iteration
continues indefinitely and we get the thesis with

oo
n=>_n"  y=0,
n=1

(notice that the series is converging), which actually means that £ = n + F. O
We finally show Theorem 2.2.10.

Proof of Theorem 2.2.10.
Step 1. We first want to see that

mo = mf{nE(w . € THOE), [l om) = 1} > 0.

To this aim, we consider a minimizing sequence ; for the above infimum and we assume that
Vi — 1o weakly in H'(OE), then ¢y € T+(JE) (since it is a closed subspace of H'(9F)) and if
1o # 0, there holds

mo = lim ITg(v;) > Tg(de) >0

i—-+00
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due to the strict stability of £ and the lower semicontinuity of I1f (recall formula (2.21) and the
fact that the weak convergence in H!(OF) implies strong convergence in L?(0FE) by Sobolev
embeddings). On the other hand, if instead vy = 0, again by the strong convergence of v; — 1) in
L%(9E), by looking at formula (2.21), we have

mo = Jim M) = Jim [ [V du = Jim [l oy = 1

1—>00

since [|[¢ill2(aE) — 0.

Step 2. Now we show that there exists a constant §; > 0 such that if E is like in the statement and
OF = {y+v¢r(y)ve(y) : y € OE}, with |[Yr|lyw2por) < 01 and Vol(F) = Vol(E), then

mo

| e du] < 51} > ™Mo
oF 2

We argue by contradiction assuming that there exists a sequence of sets F; with 0F; = {y +
VY (y)ve(y) @ y € OE} with |[Yg |lweror) — 0 and Vol(F;) = Vol(E) and a sequence of

functions ¢; € H(9F;) with 1%ill g1 (aF,) = 1 and faFi YivE, du; — 0, such that

inf{HF(¢) L€ BYOF), 16 om) = 1,

mo

HFi (d)z) < 7

We then define the following sequence of smooth functions

Bi(y) = iy + op () (y) — ﬁ 0y + O ()vs() duy) (2.56)

which clearly belong to H'(OE). Setting 0;(y) = y + ¢r, (y)vE(y), as p > max{2,n — 1}, by the
Sobolev embeddings, §; — Id in C1** and vp, 0 0; — vg in C%*(0F), hence, the sequence Ui is
bounded in H!(JE) and if {e}} is the special orthonormal basis found in Remark 2.2.7, we have
(vp, o bilex) = (vE|ex) uniformly for all k € {1,...,n}. Thus,

/ bilvple) du — 0,
OF
as 1 — oo, indeed,
/ Vi{vpler) du — / Vi(vr, o filex) du — 0
OF OF

and
/ ViV, o Oiley) du = / Vi(vr, lex) JO; tdp; — 0,
OF OF;

as the Jacobians (notice that J6; are Jacobians “relative” to the hypersurface 0F) J0, R |
uniformly and we assumed

/ YivE, dp; — 0.
OF;
Hence, using expression (2.26), for the projection map 7 on 7+ (9F), it follows
17 (%) = Yill 1 (o) — O
as i — oo and
Tim (|7 () | 1 oy = Hm [ ill gy = Hm [[ill g o) = 1, (2.57)
1—00 1—00 11— 00

since [[¢F, [ w2r9E) — 0, thus [[¢i]|cre@m) — 0, by looking at the definition of the functions ¥; in
formula (2.56).
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Note now that the W?P— convergence of F; to E (the second fundamental form By r; of OF; is
“morally” the Hessian of ¢, ) implies

BaFioei — Bog in LP(OE)7

asi — oo, then, by Sobolev embeddings again (in particular H(0F) — L(9E) forany q € [1,2*),
with 2* = 2(n — 1) /(n — 3) which is larger than 2) and the W?P—convergence of F; to F, we get

/ | Bor, [*07 duz‘*/ |Bop|*¢? du — 0.
oF, o

Finally, recalling expression (2.21), we conclude

Ir, (¢;) — Hp(d) = 0,
since we have N
il 2o,y — Wil 2oy = O,

which easily follows again by looking at the definition of the functions ¢; in formula (2.56) and
taking into account that [|¢F, [|c1.2(9) — 0, hence limits (2.57) imply

IV%ill 22 or) — V¥l 205y — O-

By the previous conclusion () — Wil g1 (or) — 0 and Sobolev embeddings, it this then straight-
forward, arguing as above, to get also

g (i) — Mg(r(di) — 0,

hence, _
g, (¢i) —Hg(r(¢i)) — 0.
Since we assumed that ITg, (¢;) < mo/2, we conclude that for i € IN, large enough there holds

Ip(n () <

mo <
—_— ™m
9 0,

which is a contradiction to Step 1, as 7 (¢;) € T (9E).

Step 3. In order to simplify the notation, in the rest of the proof we denote ¥ = .
Let us now consider F such that Vol(F') = Vol(FE), Vol(FAFE) < ¢ and

OF ={y+(y)vp(y) : y € OE} C N,

with [[¢|[y2.»(9E) < § where § > 0 is smaller than 6, given by Step 2.

Taking a possibly smaller 6 > 0, we consider the field X and the associated flow ® found in
Lemma 2.2.13. Hence, divX = 0in N; and ®(1,y) = y + ¢(y)ve(y), for all y € OF, that is,
®(1,0F) = OF C N, which implies £} = ®(E) = F and Vol(E;) = Vol(F) = Vol(E). Then
the special variation E; = ®,(F) is volume-preserving, for ¢ € [—1, 1] and the vector field X is
admissible, by the last part of such lemma.

By Lemma 2.2.15, choosing an even smaller § > 0 if necessary, possibly replacing I’ with a translate
F — o for some n € R" if needed, we can assume that

é
[ s < Flolon @258)
oF

We now claim that
< al{Xve) 2208, (2.59)

/ (X (v, v, du
oF
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for every ¢ € [0, 1]. To this aim, we write
/ <X|VEt>VEt d/Jt = / <qu>t|VEtoq>t>(VEtOCDt) Jthd/J
OE OE
_ / (X o ®y|vg)ve du+ R
oE
= / (X(z)|lve)vedp+ R+ Re
2
:/ Yvgdu+ R1 + Ro + Rs3
oF
with appropriate R, Ry and R3 (see below).
By the definition of X in formula (2.30) (in the proof of Lemma 2.2.13), the bounds 0 < C7 <
¢ < Oy and ||J(mg o @)™ re(op) < Cs (by inequality (2.28) and Sobolev embeddings, as

p > max{2,n—1}, wehave | ®(t,-) — Id|[craap) < CllYllw2rop) < C)), the following inequality
holds

- Wre(®t) (Dt 2))Vdp(P(t,z))
[ o= [ | @02 T v (e (@04, 2))))

<C [ |p(rp(@(t,2)))] du
o

- /aE [(2)| (g 0 @)~ () du(2)
< Clolz20m). (260

ds|dp

forevery t € [0,1].
We want now to prove that for every € > 0, choosing a suitably small § > 0 we have the estimate

|Ri| + [Re| + [Rs| < el[¥]l2(op)- (2.61)
First,

Ry = / (X Oq)t|1/Et °<D>VEt oq>t[J¢'t — 1] du
OF

+/ (X 0o D¢|vp, o Dpyvp, o Py du—/ (X oy, vp)vpdu
o OF

— / (X 0@yl o Py)vpg, o Py [JO, — 1] dp + / (X o ®|vg, o P —vE)vE du
oE oE
+ /a (X o ®|vg, o ®y)(vE, o Py —vE) du
E
< [ X0~ oy dut [ X 0]~ v, 0 @il o) i
oE )
then, since by equality (2.27), it follow that for every ¢ € [0, 1] the two terms
lve —vE, o ®(t,z)|p~@or  and  [[J®t— 1L~ sE)
can be made (uniformly in ¢ € [0,1]) small as we want, if 6 > 0 is small enough, by using

inequality (2.60), we obtain
[B1| < El[¢llr2(0m) /3
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Then we estimate, by means of inequality (2.27) and where s = s(¢,y) € [t,1],
| R2| < /aE (X (@(t,2)) = X(P(1, 2))| + [ X (®(1,2)) — X ()] dp
< [ IX(@(t.2) = X(@(1,2)| + IV X 200y 122 0
:/ (1-8)|VX(D |‘
oFE

/8E IVX(®(s,2))[|D(t, x) = D(L, )| + IVX | L2(v.) Y]] 22 (0)

S CIVX| oo (3 ClIY N z2(aE) + IV X L2(vo) 1Vl L2 (0E)

] )4 IV X o v 20

N

where in the last inequality we use equation (2.60). Hence, using equality (2.31) and Sobolev
embeddings, as p > max{2,n — 1}, we get

|Ro| < CllYllwerom) Y]z E),

then, since ||¢[lyy2.(9E) < J, we obtain
| Ra| <Ell¢ll12(0m)/3;

if 95 is small enough.

Arguing similarly, recalling the definition of X given by formula (2.30), we also obtain |R3| <
Ell¥ll L2 (o), hence estimate (2.61) follows. We can then conclude that, for § > 0 small enough, we
have

_ o
[ v, | <| [ ovedn|+2oliziom < (5 +2) 1o,
oE oE

for any t € [0,1], where in the last inequality we used the assumption (2.58), thus choosing
€ = 01/4 we get

361
< TW||L2(8E)~

| Xlwm e, du
oE
Along the same line, it is then easy to prove that

KX e I L208) = (1= )Yl 12(0m),

for any ¢ € [0, 1], hence claim (2.59) follows.

As a consequence, since (X|vg,) € HY(OE), being X admissible for E; (recalling computa-
tion 2.6) and J0F; can be described as a graph over JF with a function with small norm in
W?2P(OF) (by estimate (2.28) of Lemma 2.2.13), we can apply Step 2 with F' = F; to the function
(X[vg,) /| (X | 11 (95, concluding

m
Mg, (Xlve) 2> S 1K ve)lm om,)- (2.62)
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By means of Lemma 2.2.14, for 6 > 0 small enough, we now show the following inequality on
OFE; (here div is the divergence operator and X,, = X — (X|vg,)vE, is a tangent vector field on
OEy), for any t € [0,1],

[[div (X, <X|VEt>)||Lp%(aEt) = [|div X7 (X |vg,) + <Xn|V<X|VEt>>I|Lp%1(aEt)

2p

< CIVXrli2(om X e 22,

+C||XnHLpsz2 Et)||V<X‘VEt>HL2(8Et)

(o

<X X
= ” HHl(aEt)H ||LP2TP2(8Et)

< OIX N1 0m,)
< CIX e in om,): (2.63)

where we used the Sobolev embedding H'(9E;) — Lz (OE;), as p > max{2,n — 1}.
Then, we compute (here X, is the tangent component of X and H; is the mean curvature)
A(OF) — A(OE) = A(0E1) — A(OFE)

1 d2

- /O (1-1) S5 AOE) di
1

= [ =08 (Xlvs)
1

— [ - O (X s di

0

1
—/ (1—t)/ H, div(Xy, (X |vm,)) dyse dt
0 OF

by Theorem 2.1.12, the definition of I1g, in formula (2.21) and taking into account that div X = 0
in N, and that X; = X, as the variation is special.
Hence, by estimate (2.62), we have (recall that H = Hy = A constant, as E is a critical set)

1
AOF) = 40E) = 7 [ (= 01X g s o,

1
_/ (l—t)/ H, div(Xe, (X|vi,)) dpie dt
0 OFE,

_mo [ _ 2
=5 [ =X e om,)
0

1
_/ (1—t)/ (H = \) div(Xo, (X|vg,)) dpsg dt
0 OFE;

mo

1
> /(1_t)||<X|VEt>II§{1<aEt>dt
0

1
= [ = O = oo i (X (Xl
mo

1
> [ 0= 01X ) gy

1
=0 [ = O = Nlgo (o X1 By 05
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by estimate (2.63).
If 6 > 0 is sufficiently small, as E} is W2P_close to E, we have

[He = Ml zo(aE,) < mo/4C,
hence, 1
A(OF) — A(OE) > %/@ (L= O HX e (o, dt-

Then, we can conclude the proof of the theorem with the following series of inequalities, holding
for a suitably small § > 0 as in the statement,

1
AOF) > AQE)+ 72 [ (1= 01X g s o

)+

)+CH<X|VE>HL2 oE)
OE) + Cll¢lZ2(om)
OE) + C[Vol(EAF))?
(0E) + Cla(E, F)]?,

where the first inequality is due to the W%P—closedness of E; to E, the second one by the very
expression (2.30) of the vector field X on 0F,

e =| [ e s < o

the third follows by a straightforward computation (involving the map L defined by formula (1.49)
and its Jacobian), as JF is a “normal graph” over 0F with ¢ as “height function”, finally the last
one simply by the definition of the “distance” «, recalling that we possibly translated the “original”
set F' by a vector nn € R", at the beginning of this step. O

We conclude this section by proving two propositions that will be used later. The first one says
that when a set is sufficiently W*P—close to a strictly stable critical set of the Area functional A,
then the quadratic form (2.21) remains uniformly positive definite (on the orthogonal complement
of its degenerate subspace, see the discussion at the end of the previous subsection).

Proposition 2.2.16. Lef p > max{2,n — 1} and E C T™ be a smooth strictly stable critical set with N
a tubular neighborhood of OE. Then, for every 6 € (0, 1] there exist o9, § > 0 such that if a smooth set
F C T is W2P—close to E, that is, Vol(FAE) < § and OF C N, with

OF ={y +¢r(y)vely) : y € OF}
for a smooth ¢ with ||[Yp||yw2.r@oE) <9, there holds
[r () 2 ol o),
for all y € H'(OF) satisfying
nfgg}EHdJ — (nlve)ll2(or) = 0l1¥l L2 ar)
where O is defined by formula (2.25).

Proof.
Step 1. We first show that for every 6 € (0, 1] there holds

my= inf{“EW) tp € HYOE), |4l om) =1 andnglg; | — mlve)llL2r) 2 9H¢||L2(3E)} >0.

(2.64)
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Indeed, let ¢; be a minimizing sequence for this infimum and assume that ¢; — ¢ € H! (OF)
weakly in H!(0F).

If 1o # 0, as the weak convergence in H'(9FE) implies strong convergence in L?(9E) by Sobolev
embeddings, for every n € Og we have

1Yo = lve)l L2 om) = M [[vi = (lve)lc20m) 2 im 0¢illL2om) = Ollvoll2 k),

hence,
nIgCi)HE 1Yo — (lve)ll2(om) = OllYollLz(am) > 0,

thus, we conclude 1y € H'(0E) \ T(9E) and
mg = lim Tg(y;) = g(vy) >0,
1—>00

where the last inequality follows from estimate (2.22) in Remark 2.2.6.
If 99 = 0, then again by the strong convergence of 1; — v in L?(OE), by looking at formula (2.21),
we have

_ 1 N — 13 12 — 1 12 —
mg = lim Tg(y;) = lg&/@E [V dp = igr&”%”Hl(aE) =1

i—00
since [|[¥ill 2 (o) — 0.

Step 2. In order to finish the proof it is enough to show the existence of some ¢ > 0 such that if
VOl(FAE) < §and OF = {y +¢r(y)ve(y) : y € OB} with [[¢r|ly2eop) < 6, then

inf{ Ip(v) : v € HY(OF), [l g1or) =1 and nfélgz v = nlve)llL2or) 2 9H1/)||L2(6F)}
1
> 09 = 3 min{my,o, 1}, (2.65)
where my /5 is defined by formula (2.64), with §/2 in place of 6.

Assume by contradiction that there exist a sequence of smooth sets F; CT", with OF; = {y +
Vr (y)ve(y) : y € OF} and [|Yr, |l w2r(op) — 0 and a sequence ; € H'(0F;), with il i omy) =
1 and min,co, |V — (nlve) 2 ar,) 2 0llvillL2oF;), such that

HFl(wz) <oy < m9/2/2. (2.66)

Let us suppose first that lim; o [|¢)i[|12(9r,) = 0 and observe that by the Sobolev embeddings
%ill La(ar,) — O for some g > 2, thus, since the functions v, are uniformly bounded in W2P(OE)
for p > max{2,n — 1}, recalling formula (2.21), it is easy to see that

1—00

t T (00 = i [ IV s = i Wl oy =1

which is a contradiction with assumption (2.66).
Hence, we may assume that

lim lellL?(aFl) > 0. (2.67)
1— 00

The idea now is to write every 1; as a function on 0E. We define the functions Vi(0E) = R, given
by
5i0) = vuly + ) ~ i+ 0r (W) duly).

for every y € OF.
As Y, — 0in W2P(JE), we have in particular that

ill 12 (o)

?ZZ' € ﬁl(aE), ||7ZlHH1(8E) —1 and :
19ill L2 (or;)
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2.2 STABILITY AND W2’p—LOCAL MINIMALITY

moreover, note also that vg, (- + ¢, (- )ve(-)) — vg in WHP(OF) and thus in C%®(0F) for a
suitable o € (0, 1), depending on p, by Sobolev embeddings. Using this fact and taking into
account the third limit above and inequality (2.67), one can easily show that

mingeoy [vi — (lve)llr2(om) mingeoy Vi — (lve) | 22or,)

lim inf = > liminf =0.
oo 1¥ill 2ok =00 1¥illL2(5E;)
Hence, for i € IN large enough, we have
b, >3/4 d in || AT
il o) = 3/ an i i — (nlvedlL2(0E) 2 §Wi||L2(aE) ;
then, in turn, by Step 1, we infer
~ 9
Mg (i) = ——mgy2. (2.68)

16
Arguing now exactly like in the final part of Step 2 in the proof of Theorem 2.2.10, we have that all
the terms of I, (1;) are asymptotically close to the corresponding terms of I (v;), thus

g, (¢;) — (i) =0,

which is a contradiction, by inequalities (2.66) and (2.68). This establishes inequality (2.65) and
concludes the proof. O

The following final result of this section states that close to a strictly stable critical set there are
no other smooth critical sets (up to translations).

Proposition 2.2.17. Let p and E C T" be as in Proposition 2.2.16. Then, there exists § > 0 such that if
E' C T™ is a smooth critical set with Vol(E') = Vol(E), Vol(EAE') < 6, 0E' C N, and

OE" ={y+¢(y)ve(y) : y € 0B}
for a smooth 4 with |[Y||yw2p o) < 0, then E' is a translate of E.

Proof. In Step 3 of the proof of Theorem 2.2.10, it is shown that under these hypotheses on
and E’, if § > 0 is small enough, we may find a small vector n € R™ and a volume—preserving
variation F; such thatEy = E, E1 = E' —nand

d2

A > CIVOl(EA (' —n))]?,
forall ¢ € [0, 1], where C'is a positive constant independent of E’.
Assume that E’ is a smooth critical set as in the statement, which is not a translate of E, then
4 A(OE,) ‘ +—o= 0, but from the above formula it follows 4 A(OE,) ] ;> 0, which implies that
E' — 1 cannot be critical, hence neither E’, which is a contradiction. Indeed, s — FE;_; is a
volume—preserving variation for E’ — 7 and

d d
SAOEL)| = —aA(aEt)L:f 0,

showing that E’ — 7 is not critical. O
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THE SURFACE DIFFUSION FLOW

3.1 GEOMETRIC FEATURES

We start this section with the general notion of smooth flow of sets.

Definition 3.1.1. Let E; C T" for ¢t € [0,T) be a one-parameter family of sets, then we say that it is
a smooth flow if there exists a smooth reference set F C T" and amap ¥ € C*°([0,T) x T™; T") such
that ¥; = ¥ (¢, -) is a smooth diffeomorphism from T" to T" and E; = ¥(F), forallt € [0,T).

The velocity of the motion of any point x = ¥;(y) of the set E;, with y € F, is then given by

Xu(r) = X (¥1(y) = ().

Remark 3.1.2. Notice that, in general, the smooth vector field X;, defined in the whole T" by
Xe(Ye(2)) = % (z) for every z € T", is not independent of ¢.

When x € 0E;, we define the outer normal velocity of the flow of the boundaries 0E;, which are
smooth hypersurfaces of T", as
Vi(z) = (Xe(2) (),
for every ¢ € [0,T'), where v is the outer normal vector to E.

However, we only use the following definition which is obtained by representing the smooth
hypersurfaces 0F; in T" with a family of smooth embeddings. This is actually the more standard
way to define the surface diffusion flow, in the more general situation of smooth and possibly
immersed—only hypersurfaces (usually in R"), without being the boundary of any set.

Definition 3.1.3. Let E C T™ be a smooth set. We say that the family E; C T", for ¢ € [0,T) with
Ey = E, is a surface diffusion flow starting from FE if the map ¢ — Xp, is continuous from [0,7") to
LY(T") and the hypersurfaces 0F; move by surface diffusion, that is, there exists a smooth family
of embeddings ¢; : OF — T", for t € [0,T'), with p9 = Id and ¢;(0F) = OE}, such that

i
— = (AH 3.1
o= (AH)v, (3.1
where, at every point and time, H and A are respectively the mean curvature and the Laplacian
(with the Riemannian metric induced by T", that is, by R") of the moving hypersurface 0 E;, while

v is the “outer” normal to the smooth set E;.

Remark 3.1.4. An alternative way to describe the flow is to speak of the sets “enclosed” by the
boundary hypersurfaces moving by surface diffusion. This anyway would introduce an ambiguity,
since every hypersurface 0E; clearly “separate” T™ in components and one should indicate which
ones are actually the sets E; at every time ¢. The use of the continuity of the map ¢t — Xp, is a way
to avoid such ambiguity. Moreover, it follows easily that being the solution of the PDE system (3.1)
unique, by Theorem 3.2.1 below, the sets E; are uniquely determined (being a “geometric flow”,
actually the same “geometric” uniqueness also holds for the hypersurfaces 0F;, like for the mean
curvature flow, see [48, Section 1.3]).

By means of equation (1.8), the system (3.1) can be rewritten as

9t

5 = —AiArpy + lower order terms (3.2)
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3.1 GEOMETRIC FEATURES

and it can be seen that it is a fourth order, quasilinear and degenerate, parabolic system of PDEs.
Indeed, it is quasilinear, as the coefficients (as second order partial differential operator) of the
Laplacian associated to the induced metrics g; on the evolving hypersurfaces, that is,

Depr(p) = Byt (p) = g7 () VP V9P ()

depend on the first order derivatives of ¢y, as g; (and the coefficient of A;A; on the third order
derivatives). Moreover, the operator at the right hand side of system (0.3) is degenerate, as its
symbol (the symbol of the linearized operator) admits zero eigenvalues due to the invariance of
the Laplacian by diffeomorphisms.

Like the Area functional, the flow is obviously invariant by isometries of T™ (or of R") and
reparametrizations. The volume-preserving property follows immediately arguing as in computa-
tion (2.6), indeed, if E; = ¥;(F) is a surface diffusion flow, described by ¥ € C*°([0,T") x T", T™)
(as in Definition 3.1.1), with associated smooth vector field X; satisfying

Phy) = xu(Hulw)

we have

d 0
Gvol(E) = [ S dy

= /F div X¢ (Y (t,y))JY(t,y) dy

= / div X¢(z) dz
E:

=/ (X, ve) dpee

OF:

=/ Vi dpe
OF:

I/ ArHy dpy
OFE;

:()7

where i is in the canonical measure induced on 0F; by the flat metric of T" and the last equality
follows from the divergence theorem (1.3).

Moreover, the surface diffusion flow can be regarded as the H~'-gradient flow of the volume-
constrained Area functional, in the following sense (see [32], for instance).
For a smooth set E C T", we let the space H™}(9E) C L%(9E) to be the dual of H'(dE) with
the norm ||ul| 7, (0F) = Jor |Vu|? dp (the functions in H'(9F) with zero integral) and the pairing

between H'(9E) and H~'(DE) simply being the integral of the product of the functions on JF.
Then, it follows easily that the norm of a smooth function v € H~1(0F) is given by

”UH%71(3E) = /;EU(_A)_I’U dp = /6E<V(—A)_IU,V(—A)_1’U> du

and, by polarization, we have the H~'(9F)-scalar product between a pair of smooth functions
u,v : 0F — R with zero integral,

W)y = [ (VD 0V 0 du= [ u(-8)od,

oE oE

integrating by parts. N
This scalar product, extended to the whole space H ! (0F), make it a Hilbert space, hence, by the
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3.2 SHORT-TIME EXISTENCE AND UNIQUENESS OF THE FLOW 66

Riesz representation theorem, there exists a function ng: AeH™! (OF) such that, for every smooth
function v € H~1(9OE), there holds

/ vHdp = Asp(v) = (v, ng:t@ﬁ,l(am = / v(—A)_lvgb:iéldu,
OE OB

by Theorem 2.1.5.

Then, by the fundamental lemma of calculus of variations, we conclude

(—A) WU =H e,

for a constant ¢ € R, that is,
71
Vs A= —AH.

It clearly follows that the outer normal velocity of the moving boundaries of a surface diffusion
flow V; = A;H; is minus the H _1—gradient of the volume-constrained functional A.

3.2 SHORT-TIME EXISTENCE AND UNIQUENESS OF THE FLOW

The following existence/uniqueness theorem of classical solutions for the surface diffusion flow
was proved by Escher, Mayer and Simonett in [26]. It should be expected, by the explicit parabolic
nature of system (3.1), as shown by the formula (3.2).

As we mentioned in the introduction, it deals with the evolution in the whole space R" of a
generic hypersurface, even only immersed, hence possibly with self-intersections. It is then
straightforward to adapt the same arguments to our case, when the ambient is the flat torus T"
and the hypersurfaces are the boundaries of the sets £, as in Definition 3.1.3, getting a (unique)
surface diffusion flow in a positive time interval [0, T'), for every initial smooth set Ey C T".

Theorem 3.2.1. Let o : M — R™ be a smooth and compact, immersed hypersurface. Then, there exists
a unique smooth surface diffusion flow ¢ : [0,T) x M — R", starting from Mo = po(M ) and solving
system (3.1), for some maximal time of existence T > 0. Moreover, such flow and the maximal time of
existence depend continuously on the C%“—norm of the initial hypersurface.

As an easy consequence, we have the following theorem, well suited for our setting.

Theorem 3.2.2. Let E C T"™ be a smooth set, N, a tubular neighborhood of OE and My < /2. For every
Eo C T" smooth set in €y, (E) with

OEo = {y +vo(y)ve(y) : y € OE}

for a smooth function 1o : OE — R, there exists a unique surface diffusion flow E, starting from Ey, such
that

OE; = {y +di(y)ve(y) : y € OE}
for smooth functions i, : OF — R, for t € [0, T(Ey)), with T(Ey) depending on the C*“~norm of 1.

Instead of proving Theorem 3.2.1 (hence, Theorem 3.2.2), which is well known, we show
the following alternative short—-time and existence result. Moreover, we provide higher order
regularity estimates depending on the C'*'-bound on the initial datum only.

Theorem 3.2.3. Let E C T™ be a smooth set and € > 0. Then, there exist § = 6(E,e) and T =T (FE,e) >
0 with the following property: if Ey is the normal deformation of E induced by vy € CY1(OF) (as in
Definition 1.3.1), |[¢ollc1.1(pp) < 0 and Vol(Ey) = Vol(E), then the surface diffusion flow Ey starting
from Ey exists in [0, T), the sets Ey are normal deformations of E induced by 1 (t,-) € C*°(0F) for all
t € (0,T)and

sup ||[¥llc2(0m) < e (33)
te(0,T)
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Moreover, for every k € IN \ {0}, there exist constants Cy, = C(E, ) > 0 such that

sup  [V¥"29 )l coam) < Crlvollcraom) + 1)- (34)
te[T/2,T)

To prove this theorem we use the classical linearization and fixed point approach in order to
solve the nonlinear evolution problem. Then, following closely what was done in [30] (combined
with the results of [41]), we employ some Schauder—type estimates to show the higher order
regularity of the flow. Before doing that, we recall some useful facts and lemmas.

Let £ C T" be a smooth set and N; a tubular neighborhood of JF. It is well known that any
small deformation of OF can be represented as the graph of a “height” function ¢ and conversely,
to any smooth function ¢ : 0F — R we can associate a set £, such that the hypersurface 0E,; is
given by o(x) = x + ¢ (z)vg(x) (see [48] for more details). We aim to compute the equation for
a smooth (time dependent) function ¢ (¢, z), so that ¢; = = + ¢ (¢, 2)vg(z) satisfies system (3.1).
Obviously, we set (0, z) = 0, for every x € OE.

Arguing as in [48, Section 1.5], we deduce that 1) must satisfy the following evolution equation:

o o 9 1 1
T Ay — WAKVE | ve) At + WAI‘/P(&WP, V)
= — AZY + J(x,1, Vi, V29, V39), (3.5)

where P and .J are smooth functions (assuming that ¢ and V1) are small). So, denoting by @ the
usual tensor product, it follows that the function .J can be written as

T(@, 1, Vb, V2, V39) = (Q1 | V2¥) + (Q2 | V2 @ V) + (Q3 | V3Y) + @

where @ 1s @2, @3 and gy are, respectively, tensor-valued and scalar—valued functions depending
on (z,1, V). Moreover, they are smooth if their arguments are small enough.

Hence, linearizing the Laplace—Beltrami operator yields the following evolution equation (compare
with [30, Section 3.1])

9y

Tr = OBV (A8, V) [ V) + (@1, VY, V2, V), (3.6)

where A is a smooth 4th—order tensor, vanishing when both ¢ and V1 vanish and J is given by

J =(Q1| V3 @ V) +(Q2 | V?¥) + (Q3| V¢ @ V¢ @ V)
+(Q4| VY @ V2Y) + (Qs5 | V) + g6, (3.7)

where @);, for i = 1,...,5 and ¢¢ are, respectively, smooth tensor-valued and scalar-valued
functions depending on (z, 1, V1)).

3.2.1 The biharmonic heat equation on a Riemannian manifold

We collect some classical results concerning the biharmonic heat equation on a smooth Riemannian
manifold (X, g), that is, the following problem:

ou=—Atu+f in[0,+o00) x X
u(+,0) = ug on X%

for some given functions f : [0,4+00) x £ — Rand up : £ — R.
For the detailed proofs, see [29, 41] and the references therein.
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3.2 SHORT-TIME EXISTENCE AND UNIQUENESS OF THE FLOW

Theorem 3.2.4 ([29, Theorem 2]). Given a smooth Riemannian manifold (¥, g), there exists a unique
biharmonic heat kernel with respect to g, denoted by by € C'*° ((0, +00) X X X Z). Moreover, let T > 0,
for any integers k,p,q = 0 and for any (t,z,y) € (0,T) x X x X we have

_ ntdk+ptq %

OEVEV by (t0.y)| < O exp(—8(t R, 9) 1),

where NV, Vy, are covariant derivatives with respect to g and the constants C, 6 > 0 depend on T, g and
p+q+4k.

Given the biharmonic heat kernel b, € C*°((0,+00) x £ x %) and a function uy € C°(X), for
(t,z) € (0,400) x ¥ we define

Suo(t, z) = /Z b (L, 2o () dia(y) (3.8)

Hence, Suy is the solution of the homogeneous problem

{&gv +A20=0  in(0,400) x & 39)

v(+,0) = up onX

and it is smooth, since the biharmonic heat kernel is smooth for every ¢ > 0.

We now collect some results from [41]. We start with the following Schauder—type estimates on
the solution of the homogeneous problem (3.9), which are a slight reformulation of [41, Theorem
3.8] that better fit our purposes.

Theorem 3.2.5 ([41, Theorem 3.8]). Let T > 0 and ug € CY1(Z). Then, there exists C(Z,T) > 0 such
that

sup [[Sugllcri(z) < Clluolleras) - (3.10)
te(0,T)

Furthermore, for any I, k € IN, we have

k
sup i
te(0,T)

OFVET2 S (1) ‘

o) < Crilluollcra(z), (3.11)

for some constants Cy . > 0 depending on I, k as well as %, T
Definition 3.2.6. Fix 0 < T < +ooand 0 < 8 < 1. We define

Yy = {u e C(0,T) x ) : [|ully, < +oo}
with the norm

3 1.8
[l = (t2 lu(t, )l o) + 2T u(t, .)]Cﬁ(z))
e bl
+ sup sup t%+§ lu(t+ h,x) —u(t, z)|
(t,z)e(0,T)xT 0<h<T—t |h\ii

where [ -]~ is the Holder seminorm.
Similarly, we define

Xr={ue C%(0,T) x X) s u(t,”) € CHE), ||lullx, < 400}
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with the norm
4
_14k 1.8
[ull x, = sup (Zt 25| VRt )l coy + 1275 [Vt )] os(s)
te(0,7) \ g

+ 13 et o) + £25 [Opu(t, ')]05(2)>

8 |VAu(t + h, x) — Viu(t, z)|

+ sup sup

(t.2)€(0,1)xE 0<h<T—t In|%
+  sup N ] s h’x)ﬂ_ Opult )| (3.12)
(t,2)€(0,T)xE 0<h<T—t \h|2
Proposition 3.2.7. The spaces (Yr, || - |ly;.) and (X, | - || x,.) are Banach spaces.

The proof of the completeness of the spaces Y7 and X7 is standard. Indeed, one can prove
directly that all Cauchy sequences converge to a function in the space and the candidate limit is
obtained by means of a diagonal argument.

Remark 3.2.8. Since the norm Zé:o [V*ul| o is equivalent to the norm ||uco + || VAu| co in the
function space C*(X), we have that the norm || - || x,. defined in formula (3.12) is equivalent to the
following norm:

3 k k
/ 1.k, B |VPu(t+ h,z) — Viu(t, x
b, =lullxe +3°  sup sup a+ig VR o) ZVRult )
k=0 (t:2)€(0,T)xE 0<h<T—t |h|1

Given the biharmonic heat kernel b, € C* ((O, T) X Z x Z), the solution (if it exists) to the
nonhomogeneous problem

O+ Neu=f in (0,7) x % (3.13)
u(-,0) =0 onX
where f is a fixed function on (0,T) x %, is given (by Duhamel’s principle) by
t
Vi) = [ [ bt =500 (s duly) s (314)

and Vf € C®((A/2,\) x X), for every A > 0.

We conclude this section by recalling the following fundamental Schauder-type estimates for
solutions of problem (3.13), proved in [41] (see [41, Remark 3.12] for the final comments on the
constant C).

Theorem 3.2.9 ([41, Theorem 3.10]). Let 0 < T < 400, if f € Y7, then V f € Xp and there exists a
constant C' > 0 depending on ., T such that

IV lxr < Cllfllyy -
Moreover, the equation (0, + A2)V f = f holds in classical sense on (0,T) x L and V f € C*((0,T) x
Y).

3.2.2 A new proof of the short—time existence and uniqueness result

In order to prove Theorem 3.2.3, we need some fundamental estimates which follows from the
results above (with X = 9F). We consider the map v — f[¢] with represents the nonlinear error
term generated in linearizing equation (3.5)

f)(z) = (A(z,v, V), V) + J (2,9, Vi, V2, Vi), (3.15)
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where A and J are the operators defined in formula (3.6). The following lemma provides such
estimates on f[¢].

Lemma 3.2.10. For any e, m > 0 there exist T', 0 > 0 depending on E and e, with the following properties:

(i) for every 1o € CYY(Z) and ¢ € X satisfying ||C||x, < m, we have
fI¢+ Sto] € Y, (3.16)
(ii) if, moreover, ||vol|cr1(s) < 0, there holds
1F[S¢olllyr < elllvolloris) +1), (3.17)
(iii) for every (1, (2 € X satisfying (|| x, < m, there holds
1[G+ Svo] — flG + Svolllvy < el — Cllxy - (3.18)

Proof. LetT < 1 to be chosen later and e, m > 0.
We only prove equation (3.17) and we give a sketch of the proof for estimates (3.16) and (3.18), as
they are similar.

We will drop the dependence on the set E in the norms and we will write A(t, x) assuming implicitly the
dependence on v and V). Moreover, for clarity of exposition, we prove the results for the simplified error
term

Fl(@t) = (Al (1), Vi (@.1), Vi (@) +(Q, V(@) @ VZu(e,1)), (319)
where () is a (constant) tensor and ||Q|| < 1. Then, we briefly analyze other terms of J.

From the very definition of f, denoting 1) = S, we have

£ llco < N[ Alleo IV llco + V3%l o [ V24l co (3.20)

and
[Flllcs < IVl o sup (1717 P|A(t,x + 7) — A(t,z)))
TeTN
+ 1Al co [V e + V3¢l s V2l o + V20l co [V s - (3.21)

e multi t oth sides of inequality (3.20) to get
We multiply by ¢'/2 both sides of inequality (3.20) to g
720 Fvlllco < Aot 2 V4]l co + 12| V3| 0o | V24 co - (3.22)

By means of inequalities (3.11) with | = 0, k = 0,1, 2, we have that the right-hand term in
estimate (3.22) is bounded by ||¢||c1.1 (up to a constant that depends on E).

We now fix 6 > 0 sufficiently small, depending on ¢ and E, so that ||A|/co is bounded by e,
which can be done since A is a smooth tensor and A(+,0,0) = 0. Finally, taking 7" small enough,
depending on ¢ and E, we conclude

sup 12| f[¥]llco < ellvollcrr.
te(0,T)

Taking into account the full expression for the error term f[¢] in (3.15) (see the very definition of
J in formula (3.7)), arguing as above, we show that

sup 12| f[¥]llco < Ce (Iwollgra +1),
te(0,T)
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3.2 SHORT-TIME EXISTENCE AND UNIQUENESS OF THE FLOW

where the extra constant term comes from the fact that ||gs||co < C, hence

sup t'/%|gg]|co < €.
te(0,T)

Concerning the Holder seminorm in space, we first remark that

At — At
up AL +7) = At.2)
T€TN |T‘

<[AC 9, VY)los + 1024l o0 [¢] s + 1034l o [V s

where 92 A and 93A denote the derivative of A(z,y,z) with respect to the second and third
components, respectively. Therefore, employing again the bounds (3.10) and (3.11), we have

Alt, o+ 1) — A(t,x
2 lewsup EEEEDZACI < s,
T

where we choose § > 0 sufficiently small, depending on ¢, F, such that
[AC, 0, V)] os + 1024l co[¥]es + 1103 Allco [V es < e,

which is possible since A is smooth and A(-,0,0) = 0. Thus, multiplying by #2%4 both sides of
inequality (3.21), we obtain

148 7 B8 1.8
273 [f[vllos <tiellvoller + [ Alcot2 5[] e
1,1.8 1.1 8
+ TV oo [ V2o + 23V oot T [V s -
Then, all the terms at the right-hand side of this inequality can be bounded employing inequali-
ties (3.10) and (3.11), thus we can make such right-hand side above as small as needed taking 7', §
small enough. Analogous computations show a similar inequality for the complete error term

f[®], once we notice that, since the terms Q; fori = 1,...,5 are not constant, some (bounded)
derivatives appear.

Finally, we show how to bound the Holder seminorm in time appearing in || f[¢]||y,.. We fix

t € (0,T)and h € (0,T —t). So, by the very definition of f[¢]|(t), we have,

|FI)(¢ + h) = FI)(8)] < At + h), Veb(t + 1)), Vi (t + b)) — (A(b(t), Vib(t)), V(1))
+1Q, (VPy(t+ h) @ V29 (t+ h))) — (Q, (V30 (t) @ V(1))

where we omitted the dependence on z, in order to simplify the notation.
By the triangular inequality, we obtain

(A (t+h), Vo (t+ ), Vit + ) — (A(w(t), Vip(t)), V(1))
<Al o VRt + k) — V()| + (|03 A co| Vi (£ + h) — Vb ()] VH(2)]| co
+ 1024 ol (t+ h) = ()| [V*¥ | co (3.23)

and

Q. (VP(t +h) @ V24 (t +h))) = (@, (VP(,t) @ V2(x,1)))]
< VP (t+h) = VPOV co + IV ¢lloo[ V2 (E+ h) = V(1] (3.24)
Therefore, from formulas (3.23) and (3.24), we get

|FI)(t + h) — F[w)(1)]

< (0240l o l[tb(t+ h) = ()] + 93 Al 0o [V (t 4+ h) — Vb ()]) V44 (2) | co
+ [|Allco| VA (t 4 h) = VA ()] + V20 (t + h) — V39 (8)][[ V2] co
+ V3Pl o [V (t + h) — V()]
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3.2 SHORT-TIME EXISTENCE AND UNIQUENESS OF THE FLOW

Applying again estimates (3.10), (3.11) and using the smallness of || A||co, we obtain inequal-
ity (3.17) by taking 7' and ¢ small enough. Then, as above, the same conclusion hold for f[¢], once
we notice that the derivatives of Q; fori = 1,...,5 and ¢g are bounded.

Hence, given ¢y € C11(Z) and ¢ € X7 such that ||¢||x, < m, recalling the definition of || - || x,. in
formula (3.12) and arguing as above, we can show that

fK—FSwO] eYr.

The proof of inequality (3.18) is quite similar. We show the computations only for the term
SUPse(0,7) t1/2|| - || co appearing in the norm of Y7 and for the simplified error term (3.19). Setting
v = G + Stpo, we have

| Flebn]—fle2]|
= [(A@, 91, Vi), V1) — (A, 2, Viba), Vo) 4+ (Q, (Vb1 ® VZ4h1 — V34ha @ V)|
<V llco (1914l col¢r = Gal + (024l 0| VE1 = VGa]) + | Allcol V(1 — V2o
+ V21| 0| V2¢1 = VPGl + V242l 00 | V31 — V3ol -

Multiplying both sides of this inequality by t!/2, we get

12| lun] = Flwa)l
< (I*ullco (8101 Allo + 7182 All o ) + 172 (1 All o + 94| o)

+ 4920 o ) 161 — Call

<EA(E29 4ol Aller + 1Al co + 741V o + 192l 00 ) 1 = Gallx

By definition of || - || x,, and by the estimates (3.10) and (3.11), we conclude by taking 7" and ¢ small
enough. Using the observations above, the same conclusion holds for the full f[¢]. O

We will denote with By (x) the ball in R™ of center x and radius r, while B, and B will be a short-hand
notations for By (0) and B1(0) (that is, the unit ball), respectively. Moreover, given = € R", we will write
r = (2/,2,) where 2’ € R"! and x,, € R. Similarly, we will denote with B..(z') C R"~! the ball in
R"~! with radius r > 0 and center ' € R" 1,

We are now ready to prove our short-time existence result for the surface diffusion evolution.

Proof of Theorem 3.2.3. Let us fix ¢ > 0. We underline that in the whole proof the constant C
depends on n, € and F.

Step 1. We show the existence of a solution of equation (3.6) via a fixed point argument.

LetT < 1and d < 1 to be chosen later and let ¢, € C*°((0,T"); C*°(9E)) be the unique solution
of the problem

1/11(',0) =1 ondE

where ¢y € C1(9E) is such that [[¢o||c11(9p) < 0. Thus, recalling the definition of Sty in
formula (3.8), we have 1 = Svg. From Theorem 3.2.5 and for § small enough depending on ¢,
the solution 1 satisfies the estimates (3.3) and (3.4).

Let now 2 be the unique solution of the problem

{atwl =A% in[0,T) x 9E

Ophe = —N*po + flir]  in[0,T) x OF
a(-,0) = 1o on OF
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3.2 SHORT-TIME EXISTENCE AND UNIQUENESS OF THE FLOW

where f[¢] is defined in equation (3.15). By formulas (3.8) and (3.14), such solution is given by
Yo =V f[1] + Svpo = V f[Stbo] + Stbo .

We then define an iterative scheme. For i > 3, we let ¢; be the unique solution of the problem

Oypi = =i+ flia]  in[0,T) x OF
(3.25)
¥i(-,0) = v on 0F
that is, ¢; = V f[i—1] + Stbo. Let us denote by (; = 1; — Sty thatis ¢; = V f[1h;i—_1]. We aim to
show that the sequence (; converges in X7. To do so, assume that (;j € Xpforj =1,...,i—1

with ||(; | x, < m, then, by Theorem 3.2.9 and Lemma 3.2.10, we get (; € X7 and

IGillxr = IV flicalllxy < Clf[icalllyy = ClfG—1 + Stbo] v

i—1
<O NFIG + Svo) = FIG-1 + Svolllyy + ClFIS¥o]llyy

=2
i—1 +00

< C(Z&‘j) (Iollorrom) +1) < 05(1 + 25]) (Iollor1om) +1)
Jj=1 j=1

< Ce([[volleriom) +1) < m.
Moreover, Lemma 3.2.10 implies that, for 6(e, ') and T'(¢, E') small enough, there holds
[Giv1 = Gillxy <ellG = Gimallxy
for all ¢ > 3. Therefore, (; is a Cauchy sequence in X7, hence it admits a limit function ¢ satisfying
IKllxr < Cellltollens om) + 1) (3.26)

and, passing to the limit in problem (3.25), we get

oy = —N*+ f[¢]  in[0,T) x OE
¥i(+,0) = 1o on OF

with ¢ = ¢ + Siy.

Moreover, by estimates (3.10) and (3.26), there holds

1¥llc20m) = I+ Stolle2ar) < IClxr + 1SYolle2) < Celllvollcrior) +1)- (3.27)

Step 2. By inequality (3.27) we get immediately that estimate (3.4) holds for £ = 0, 1, 2. In order to
prove such estimate for k > 3, we fix a point € JF and we use normal coordinate around z. In
particular, we fix B, = U C OF such that the inverse giEj of the metric g of OF (induced by the
flat metric of ") satisfies %(&j < gg < 2055

Then, we observe that by the previous step, the function 1 restricted to [1'/2,T) x Bj. is of class
C*°. Moreover, recalling that i) = ( + S1)p, we have that the function ( satisfies

¢ = —AXH+ T, (3.28)

where we denoted by f = (9; + A?)(Sv) + f'. Taking the covariant derivative V (with respect to
the metric gr) in this equality, we get that the function V( satisfies the equation

V¢ = —AIVC — (Vg gt (Oiji — 97 (Vo) (Qijia + V
= —AIV(HF,
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3.3 LONG-TIME BEHAVIOR - I

where the error term F' contains the derivatives of ¢ up to order four and we denoted by g, the
metric on Oy, ).
In order to estimate || F'l| o574 /2 17,05 (1)) We first observe that by inequalities (3.11), it follows

IV (8 + 88)(5%0)) lcora (2,00 (my)) < Cellvollorom +1),

then we remark that the other terms in F' can be bounded analogously, recalling that they contain
derivatives of ¢ up to order four. So, by means of the bound (3.26), we obtain that

IE N gsrarsaryessry) < Cellvolloriom +1) - (3.29)
Since the coefficients of A? are close to the ones of A2, depending on ||4(t, -) lcri(om) as gij - gg =
Q(z,v, Vi), where Q is a smooth function with Q(z,0,0) = 0 (see [48], for instance), we have
that 9; + A? is a uniformly parabolic operator. Then, by standard interior Schauder estimates and
the bound (3.29), there exists a constant C' > 0, which depends on T, € and E, such that

IVClersraqrsarycans, ) <€ (||F||cﬁ/4([T/4,T);cB(B;,)) + HVC||CO([T/4,T)xB;))
< Ce([[Yollcraory +1)

where we used the estimate ||C[|c1(((7/4,7)xB1)) < [[¢][x, and the bound (3.29).
Hence, we finally conclude

sup [Vl coor) < Clllvollcriom) +1) -
te[T/2,T)

Then, estimate (3.4) follows by induction, for every & € IN. Indeed, let us suppone that inequal-
ity (3.4) holds for k € IN, we want to show that it holds for k£ 4 1. Taking k — 1 covariant derivatives
(with respect to the metric g) in formula (3.28), we get the following equation

OVFIC = —A2VFIC 4+ F

where the error term F contains the derivatives of ¢ up to the order k + 2. Then, we estimate
I Ellcs/ra(i7/2,7);08(Br)) PY means of inequality (3.4) and we conclude by means of the same
argument above. O

3.3 LONG-TIME BEHAVIOR -1

From now on we drop the t—subscript on Hy, By, A, iy and we simply write H, B, A, p for the
mean curvature, second fundamental form, Laplacian and canonical measure, respectively, when
it is clear that they refer to the set E; and its boundary.

3.3.1 Evolution of geometric quantities

Along any surface diffusion flow ¢; : M — T" (or when the ambient is a general flat space) we
have the following evolution equations (computed in detail in [47, Proposition 3.4] for a general
geometric flow of hypersurfaces),

9 o .. y )
—gi; = 2AHh;; , —g" = —2AHRY | —u = HAH .
(‘%g] hij 8tg h Bt'u w (3.30)
and

% ‘v = VBxAH+ B+ VAH (3.31)
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3.3 LONG-TIME BEHAVIOR - I

where the symbol * was introduced in Section 1.2.3.
Then, arguing as in [48, Proposition 2.3.1], we get the following evolution equation for the mean
curvature

%H = —AAH — AH|BJ?. (3.32)
We now introduce some notation which will be useful for the computations that follow (see [47]).
If Th, ..., T} is a finite family of tensors (here [ is not an index of the tensor T°), with the symbol
l
® T;
i=1

we will mean T * 15 * - - - x T].
With the symbol ps(VOT, VAS, ..., VY R) we will denote a “polynomial” in the tensors 7', S, ..., R
and their iterated covariant derivatives with the * product as

ps(VOT,VPS,...,VR) = Y ¢k V'T*V/Sx---x V'R
itj+tk=s

where the ¢;,_;, are some real constants and i < «, j < 3, ..., k < 7. Moreover, we set po(-) =0
Notice that every tensor must be present in every additive term of p,(V*T, vAs, ..., V7R) and
there are no repetitions.

We will use instead the symbol q*(V*B, VAH) for a completely contracted “polynomial” (hence a
function) of the iterated covariant derivatives of B and H, respectively up to o and 5 (repetitions are
allowed), where in every additive term both B and H must be present and H without derivatives
is considered as a contracted B—factor. That is,

P q
qS(VO‘B,VﬁH) — Z I@l VikB l@ VvVIH

withp, ¢ > 1,41,...,% < aand 1 < j1,...,jq < B, then the coefficient s denotes the sum

Il
Bl
i Mﬁ
oL

q
(ik+1) + > (i +1). (3.33)
=1

We advise the reader that in the following the “polynomials” p and q° could vary from a line to another
in a computation, by addition of “similar” terms.

With this notation, we have the following “computation” lemmas.
Lemma 3.3.1. For every tensor T and function f on M, we have

0 or

EVST Vs—t +ps(VETIT, VB, VSAH)  for every s > 1 (3.34)
df dg{ and %st = VS% +ps—1(VET2(VF), VETIB, VS 1AH) (3.35)

for every s > 2.
Proof. We show the first equation by induction on s € IN. If s = 1, we have

0 0 0 0 or orT or
QVT— t(aT—i—Tl") —8T+at( I = 3—+ET—0—TE

:V%JFT*VB*AHJFT*B*VAH:V% +p1(T, VB, VAH),
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3.3 LONG-TIME BEHAVIOR - I

where we computed “schematically”, denoting with J the standard derivative in coordinates (with
commute with %) and with I' the Christoffel symbols, moreover, we used formula (3.31).
Now, assuming that formula (3.34) holds up to s — 1, we apply it to the tensor S = VT’

0 0 s—1 S— 185 s—2 s—1 s—1
atv T=2Vis=vrie +ps—1(V528, VT IB, VS AH)
=V 1gtv:r+ps(vs 7, vSIB, Vel AH)
oT
— sl (va +p1(T, VB, VAH)) +ps (VLT VoI, v lAH)
saT s—1 S s
—V§+ps(v T,V*B, VSAH)

by the properties of the x—product. Hence, formula (3.34) is proved.
To get equation (3.35), we apply the previous formula to 7" = V f as follows
0
—st = vs Ivf=vwvst 5 VI s (V*=2(Vf),V* !B, V51 AH)

3{+ps (V™ 2(Vf) V*TIB, V*T1AH)

and we are done. O

=V

Proposition 3.3.2. Let £, C T" be a surface diffusion flow. Then, the following equations hold

d
= |VHPdu = —QHEt(AH)Jr/ H|VH|2AHdut—/ 2B(VH, VH) AH dy
dt Jog, OF; OF;
(3.36)
d
dt |vn72H‘2 d//tt — 2/ ‘VTLH|2 d,LLt +/ q2n+2(vn74B’vn71H) d,u/t
(o) OE; o) on
[ (B, V) di (3.37)
OFE;
where:

e Lvery “monomial” of ¢*"+2(V"4B, V" ~1H) has 4 factors in B, VH and their covariant derivatives.
The factor B (or H without derivatives) or its covariant derivative up to V"B is present exactly one
time and the other three factors are derivatives of VH up to V" ~1H, with V"~ H or V"~ 2H present
at least one time. Moreover, if the factor V" ~1H is not present, B cannot appear without derivatives.

e Every “monomial” of ¢*"2(V"~3(B2), V"H) has 3 factors in B?, VH and their covariant deriva-
tives. The factor B? or its covariant derivative up to V"3 (B2) is present exactly one time, the other
two factors are derivatives of VH up to V" H. The factor V"H is present exactly one time, with the
exception of “monomials” of kind V"~ H + B2 x V"~ 1H.

Finally, the coefficients of these “polynomials” are algebraic, that is, they are the result of formal manipula-
tions, in particular, they are independent of Ey.
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3.3 LONG-TIME BEHAVIOR - I

Proof. Taking into account the evolution equations (3.30) and (3.32), integrating by parts, we
compute
d y
— |VH|? dpy = / H|VH|? AH dyy; — / 21"V, HV ;H AH dyy
dt 8Et 8Et aEt

— / 29"V, HV; (|B[?AH + AAH) dp
OFE:
:/ H\VH|2AHdut—/ 2B(VH, VH) AH dyuy
(9Et aEt
+/ 2|B|2(AH)2dut+/ 2AH AAH dyy
8Et aEt
:/ H\VH|2AHdutf/ 2B(VH, VH) AH dyy
8Et 8Et
+/ 2|B|2(AH)2dut—/ 2|VAH|? duy
OF: OF:

where the first term on the right hand side comes from the area measure variation and the second
one from the evolution equation of the inverse of the metric. Then, we have formula (3.36),
recalling Definition 2.2.1 of the form I1g,.

To get equation (3.37), we compute analogously

d
—/ \V”*2H|2dut=/ |V”’2H|2HAHdut+2/ g(V”’ZH,QV”’2H> dyus
dt OEy OE; OE: ot
n—2 o n—2 o
- 22/ AR H gZz]le—Qi 2HV;L1_2J" QHd'ut'
k=17 9Bt I£k,1=1 o o

(3.38)

We focus on the second integral, noticing that we can collect the terms inside the other integrals in
a “polynomial” of kind ¢%"*2(B, V*~3(VH)) such that every “monomial” has 4 factors in B, VH
and its covariant derivatives up to V"~ 2H (remember that we consider H as a contracted B-factor,
in the first term — we will always do the same also in the following). Moreover, the factor V*~2H
appears at least one time.

By equation (3.32) and formula (3.35) in Lemma 3.3.1 with f = Hand s = n — 2, we have
0 n—2 n—2 0 n—4 n—3 n—3
EV H=V &H + pp—3(V"*(VH), V" °B, V" °AH)
=V""2(— AAH — AH|B|?) + p,—3(V"*(VH), V" *B, V" 3AH)

hence, the second integral in formula (3.38) is equal to
/ g(V"H, V"2 (— AAH — AH|B|?)) + (V" 2H, p,—3(V"*(VH), V"B, V" 3AH)) dpy .
OE;

Then, recalling the properties of p,,_3(V"~*(VH), V*3B, V" ~3AH), integrating by parts in the
second term inside the integral, we can “take away” one derivative from B (in the “monomials”
containing it) and “move” it on the other three factors, which are derivatives of H. Hence, the
integral of such term becomes of kind [, B, q?+2(vn—4B, V" 1H) dyuy, noticing that V*H cannot
appear, as by the properties of p,,_3(V"~4(VH), V" =3B, V" 3AH) either it contains V"~*B or
V"~3AH, but not both together in any of its “monomials”. Summarizing, we have a sum of
integrals each one like

VIB* VUH « V2H %« V3 H dpy
OFE:
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3.3 LONG-TIME BEHAVIOR - I 78
with0 <j<n—4,1<1i <ig <ig <n—1,with iz equal eitherton —1orn—2and
3
on+2= )+ (i +1)
=1

by formula (3.33). Then, if i3 = n — 2, that is the factor V" ~'H is not present, we can integrate
repeatedly by parts, “carrying away” derivatives from V1 H and distributing them on the other
three factors. It is then easy to see that at some point either the term V"~!H appears or some
derivative must go on B.

Hence, from equation (3.38) and since the above “polynomial” of kind q?"*2(B, V"*~3(VH)) isa
fortiori of kind ¢%7+2(V"~4B, V*~1H), we obtain

d
yr V" 2H 2 dpy = / |V 2H|?HAH dy
OF: OF:

~2 / g(V"2H, V" 2(AAH)) dy
OE;
— 2/ g(V"2H, V"2 (AH[B|?)) du
OE;
+ / g> 2 (VB VT IH) dyy (3.39)
O0E;
where every “monomial” of ¢?""2(V"~4B, V"~!H) has 4 factors in B, VH and their covariant

derivatives, moreover

¢ the factor B (or H, without derivatives) or its derivatives up to order n — 4 is present exactly
one time,

* the other three factors are derivatives of VH up to V"~ 1H,
¢ the higher order factor V" 1H or V" 2H is present at least one time,
* if the factor V"~!H is not present, B cannot appear without derivatives.

Now we deal with the second integral in the right hand side of equation (3.39) which can be
written as

_2/ gilh ._.gzn 2Jn— 2 ™MS P17 2 Hv? 2 v4 Hdy; .
OF:

JieJn—2 11...0n mspq

We interchange repeatedly the covariant derivatives in the last factor inside the integral in order
to have

_2/ gt ginein—zgmsgpagn=2 g2 2 gn2  Hy, + Error Terms,
OE,

J1-Jn i1..0n
where any “error term” introduced at every interchange has the form V!(Riem * V*~'H) =

V(B2 x«V"'H), forl = 0,...,n — 1, by the Gauss equations (1.12).
Integrating by parts twice, “moving” the double derivative ng on the other factor, we get

_2/ giljl,_ gzn 2Jn— 2 g gl vz yn—2 HV2 V2 Hd/,Lt+Error Terms,
OF;

mp ¥ ji..jn 110

which is equal to

n—
_2/ ‘VTLH|2 d,u/t + Z/ vn72H ” vl(BQ ” vnle) d/lt;
OF: 1=0 OF:
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where we made explicit the error terms, by what we observed above. Then, we notice that,
integrating twice by parts in every integral in the sum above with [ > 2 and only one time when
l =1, we have

n—1

—g/ \V”Hde-+/ﬁ V' PH B2« V' Hdp + Y V'H  VI72(B? « V' H) dpy
OF: OF: 1—2 OFE:

+ vnle*BQ *vnilHd,U/t,
OE:
hence, the last two integrals on the first line contain the factor V"H exactly one time and we can
finally write the second integral in the right hand side of equation (3.39) as

—2 / [VPH|? dps + / (VP (BY), Vi H) dp + | VPTTH«B2 VYT Hdpy,
OFE; OFE; OFE:

where every “monomial” of ¢?""2(V"~3(B2), V"H) has 3 factors in B2, VH and their covariant
derivatives, moreover

e the factor B? or its derivatives up to order n — 3 is present exactly one time,
¢ the other two factors are a derivatives of VH up to V"H,
¢ the factor V"H appears exactly one time.

Finally, integrating by parts two times the third integral in formula (3.39), the integrand becomes
a contraction of V"H with V"~*(AH|B|?), which is clearly also a “polynomial” of the form
g2 (vn—3(B?), V'H) satisfying these same properties and we are done. O

Remark 3.3.3. We notice that if n = 3, the expressions (3.36) and (3.37) coincide. Hence, we will
actually never use Lemmas 3.3.9 and 3.3.10 for the estimates of the next section, in the special case
n = 3. In other words, whenever we will work on quantities involving (n — 2)-derivatives of the
mean curvature, we will assume that n > 4 without specifying further.

3.3.2  Estimate of the energy variation and other basic estimates

In all the following, we will be interested in having uniform estimates for the families of sets in C}\/[E (E),
given a smooth set E C T" and a tubular neighborhood N, of OF, for Mg < e. To this aim, we need
that the constants in the Sobolev, Poincaré, Gagliardo—Nirenberg interpolation and Calderén—Zygmund
inequalities relative to all the hypersurfaces OF boundaries of the sets F' € Q}WE (E), are uniform (for the
Calderon—-Zygmund inequalities, we actually need that F' € Q:}\/IE (E), with M > 0 small enough). This
is the content of Section 1.2 , where such uniformity is proved in detail. Hence, from now on we will use
the adjective “uniform” in order to underline such fact. We also highlight that in all the following we will
denote with C' a constant which may vary from a line to another and depends only on E and M.

Proposition 3.3.4 (Gagliardo-Nirenberg interpolation inequalities). Let £ C T" be a smooth set,
jomeNwith0 < j<mand0 < r,q < 4oo. Then, for every F € Q}V[E(E) and every covariant tensor
T =Tj, .4 the following uniform interpolation inequalities hold:

; m 01—
IV Tl oor) < C IV Tl ror) + 1T L 0r)) ||T||1Lq(08F)7 (3.40)

with the compatibility condition

1 ] 1 1-6
J +9( m )+
r n-—1
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forall § € [j/m, 1] for which p € [1,+00) is nonnegative, with the exception of the case r = 7= L £ 1 for
which the inequality is not valid for = 1. The constant C depends only on n, j, m, p, q, v, E and Mg.
Moreover, if f : OF — R is a smooth function, inequality (3.40) becomes

IV fll ooy < CUV™FIGror) ||f||Lq oF) (3.41)

ifj>1orj=0and fy, fdu=0.
By density, all these inequalities clearly extend to functions and tensors in the appropriate Sobolev spaces.

Proof — Sketch. For a single fixed regular hypersurface 0F, inequality (3.41) is given by Theo-
rem 3.70 in [7], while inequality (3.40) for T" equal to a function f : F — R can be obtained by
repeating step by step the proof of such theorem, once established the following Sobolev—type
inequality for hypersurfaces without boundary,

1o ory < C (IVFllvory + 1 £l o or)) »

for every p € [1,n — 1) (an example of such argument can be found in [47, Section 6]).
The extension of inequality (3.40) to tensors can be obtained as in [47, Sections 5 and 6], by means
of the estimate (see [7], Proposition 2.11 and also [12, 13]),

_‘ (VT,T) 7

o= | e < s

clearly leading to the previous Sobolev inequality for tensors, as \/|T'|? + £2 converges to |T'| when
¢ — 0 (this argument is necessary as |T| is not necessarily smooth).

Finally, the “uniformity” in the constants of the inequalities, independently of F' ¢ C}WE (E),
follows by the same independence in the Sobolev inequalities, as it is shown and discussed in
detail in Section 1.2 (Theorem 1.2.1 — point (vi)). O

V7| < VT

Remark 3.3.5. Notice that in the same hypotheses of this proposition, by means of the uniform
Sobolev-Poincare inequality

If - f”Lq (OF) = CHVfHLq OF)

for every ¢ € [1,n — 1) which can be easily deduced by estimate (3.41), we have the following
uniform Poincaré inequalities

1f = Flzrory < ClIVS o) (3.42)

for every p € [1, +o0].
Remark 3.3.6. Very similar uniform interpolation inequalities are worked out in [47], for any family
of n—dimensional, regular hypersurfaces N C R"*! satisfying Vol(N) + ||H|| sy S C, for
some 6 > 0, instead of being boundaries of sets belonging to C}VIE (E).

As a direct consequence of Proposition 3.3.4, we have the following lemma that will be used
very often in the sequel.

Lemma 3.3.7. Let E C T" be a smooth set and j,m € N with 1 < j < m. Then, for every F € €}, (E)
and every covariant tensor T, the following uniform inequalities hold, for every € > 0,

; m 2(1-6
IV T2 ory < CIV™ T2 0m) HVTIIL(Q@F)) +CIIVTII320p) < eV TI320p) + CIVTIZ2o8) »
(3.43)

with the compatibility condition
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forall 6 € [T]n;_ll, 1] for which p € [1,400) is nonnegative, with the exception of the case gl;_lj = 2 for
which the inequality is not valid for 0 = 1 and

—1

. J
IV Tl o (o) < CIIVmTIILp(aF HVTIILp or) T CIVTlleor) < eV Tlloop) + CIVT o or) »
(3.44)

for every p € (1,400).
The constants C depends only on n, j, m, p, E, Mg and .

Proof. The first inequality in formula (3.43) comes from inequality (3.40), by substituting V7" in

place of T', while the second one follows by Young inequality. Analogously, one gets formula (3.44).

O

Lemma 3.3.8. Let E C T" be a smooth set, F € QﬁM (E ) and f1,..., fi smooth functions such that
I fill oo (o) < C. Then, for every o, ...,y € Nwithay + -+ +a; < kand p € (1,+00), there holds

l

IV fal - 1V filllzoory < Cr D IV fill o ory + IV fill Logor)) » (3.45)
i=1

for some uniform constant C.

Proof. Without loss of generality, we may assume that a1 + --- + a; = k, otherwise we argue
with &' = a; + - -+ + oy in place of k and then we apply the previous lemma (inequality (3.44)).
Moreover, we can also assume that «; > 1, for every i € {1,...,1}, as we can simply estimate any
| fi| with C, if it appears in the left hand side of inequality (3.45).

We first use Holder inequality,

!
vV f] - [V < Vv f; .
VAl - IV filll e or) 1:[1” f HL%(&F)

Then, by the uniform interpolation inequalities (3.41) (being every «; > 1), we have
- kg % N kg
IVl gt S IR o L Floey < IV Filzsior)

hence, the thesis follows by Young inequality, as a1 + - -- + o; = k. O
Lemma 3.3.9. Let E; C T" be a surface diffusion flow such that E; € Q}ME (E), for some smooth set E
and q>"T2(V"—3(B2), V"H) is a “polynomial” as in Proposition 3.3.2. Then,
/aE g2 (VT (B%), VIH) dyr < ~ IV HI[F2 (05, + CIVHI2 o,
t

for some constant C which depends on E and Mg, and for any j < n — 3, also on

e |V/B ifj > (n—3)/2,
VBl s, if > (n-3)/

J ||VjB||Lp(3Ei),for every 1 < p < +00 ifji=(n-3)/2,
o V9B (o) ifj < (n—3)/2

Proof. In Proposition 3.3.2, we found out that every “monomial” of ¢?"*2(V"~3(B?), V"H) has
3 factors in B2, VH and their covariant derivatives. The factor B? or its covariant derivative
up to V" ~3(B?) is present exactly one time, the other two factors are derivatives of VH up to
V"H. The factor V"H is present exactly one time, with the exception of “monomials” of kind
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V" 1H % B? x V' H.
Hence, after expanding the iterated derivatives of B?, the integrals of the non—exceptional “mono-
mials” have the form

VFB % VIB « V'H « V"H dys
OF:

with j+k <n—-3and i+ j+ k =n—2, by formula (3.33).
We now estimate the modulus of these integrals (after “carrying” the modulus inside the integrals
and using the properties of the *—product). Actually different cases may happen:

1. If k,j < 252, by Peter-Paul inequality, for every & > 0, we get
/ IVEBIVIB VT H i <= [ VP C [ VHE dy,
Ey OE; OE;
for any € > 0, with C = C(e, [ V*B| 1 (95,) ||VJ’B||LOQ‘(8Et)). Then, estimating the last integral
by means of Lemma 3.3.7 (inequality (3.43) with § = =L

n—1

), we conclude

/ |V*B||V/B||VH||V"H| duy < 25/ |V”H|2dut+0/ |VH|? dys .
OFE: OF: OFE:

2. If k < 253 and j > 252, as above we get
/ VEBIVIB VIV dpe <= [ VP C [ VBRIV (340
8Et Et aEt

for any ¢ > 0, with C' = C(, | V*B]| L0 Et))' Hence, using the Holder inequality on the last
integral, we have

/ IV/BPIV'H dpe < CIIV/BJ? oy (IVHIP oo CHV’HH2 n—1
OF; Lz; ST (OE}) Ln=7=2(0F:) n=j=2 (9Ey)

with ¢ = o(||VJB|| )

L2] n+3(aE)
1+7—n+1
=

Then, we estimate the last term by means of inequality (3.43) with 6 = % -
that is, A
C|vH|?

n—1
Ln—Jj—2 (6E

< IV s, + CIVH o,

t

Hence, getting back to inequality (3.46), we conclude

/BE \VFB||VIB||VH||V"H]| dys < 2E||V”H\Ii2<aEt> +C||VH\\%2(aEt),
t

i - k 0o (A ‘7 n
for any & > 0, with C C’(z—:, IV*Bllpoo (om): IV/BI jans (aE))

3.Ifk=j5= ”T’?’ (hence ¢ = 1), by means of Young and Hélder inequalities, we have

v B*|VH||V"H|d "H B, H|2, .
/8 | II ||V"H| dpy < ]| VPH|72 (9E,) +C|v*z B| L;(aEt)IIV IZn-1(08,)

< EHV”HHLQ OF, +C||VH||LW,1 OE,) (3.47)
(0E:) (0E¢)

with C = C(,
[0,1), we get

VHT%BH dn—1 ) Then, by the uniform inequality (3.43) with § = J=2 €
Ln=3 (OEy) n

IVHITn-1 (05, < ellVPHIT2(9m,) + CIIVEIT2 (o5,
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hence, estimating the last term in inequality (3.47) with this one, we conclude

/8 V2 B’ |VHI[V"H] dur < 22|V HI2 o) + ClIVH] 220,

with C = 0(6 HV BHLn 3 (BE))

4. Ifk = "33 and j < 253, we argue as in the previous case. Indeed, we have

V"2 B||V/B||VH||[V"H| du; < ¢||V"H + OV B2, VH|? 4.
/aEtl I |[[V'H]| | dus < €| IILz@Et [ I = | I\L%@Ed

< el V'HIZ o, +C||V’H||24n 4

T (0E:)
where C = C (57 V"T%B HL an-4 (05, VB Lo (9E: )>. Then, by means of the uniform inequal-
ity (3.43) with§ = =% 4+ 1 — ﬁ € [=5,1), we get

2 Ry |I2 2
IV HHL%W&) < el VPHIL20m,) + CIIVHIL: (95,)

and we conclude, as above,

/aE V2" B [VB| [ VH| [V H| dpr < 26|V H|22 55, + CIVH| 2 (5, -

whereC’:C(E7 %SBHL,,(aEt),\\VJB||LOO(3Et)).

The integrals of the exceptional “monomials” can be estimated by means of inequality (3.43), with
0 = 2=2 as follows

/aE BI*IV" T H? dpe < CIIV" M H[72 9,y < IV HIIZ2(o5,) + CIVHI 291,
t

where the constant C' depends on ||B|| 1 and we used the Young inequality.

Hence, adding together the estimates on the integrals of all the terms in q?"*2(V"~3(B?), V"H)
(belonging to all the above cases) and choosing suitable ¢ > 0, we obtain the thesis of the
lemma. O

Lemma 3.3.10. Let E; C T"™ be a surface diffusion flow such that By € @}ME (E), for some smooth set E
and q*"T2(V" 4B, V") be a family of “polynomials” as in Proposition 3.3.2. Then,
/8E g t2(V" B, VT H) dpy < —||VTH|2, om) + C|VH|%, (OE)
t

for some constant C which depends on E and Mg, and, for any j < n — 4, also on

e |IB|| e and V]B n— ifj>(n-—3 /2,
Bl IV'BI[j2n 25 08y) ifj > (n—3)

* ||B|p~ and ||VjBHLp(aEt),for every 1 < p < 400 ifi=(n-3)/2

* |Bllz and V7B Lo (91,) ifj <(n=3)/2.
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Proof. From Proposition 3.3.2, we have that every “monomial” of ¢>**2(V"~4B, V"~'H) has 4
factors in B, VH and their covariant derivatives. The factor B (or H without derivatives) or its
covariant derivative up to V"B is present exactly one time and the other three factors are
derivatives of VH up to V" ~1H, with V*~1H or V"~ 2H present at least one time. Moreover, if the
factor V*~1H is not present, B cannot appear without derivatives.

Hence, we have a sum of integrals each one like

/ VIB* VUH %« V2H %« V3 H dpy

OFE:
with0<j<n—4,1<i1<ia<ig<n—1i3e{n—1,n—2}and j+ i1 +i2+i3 =2n—2,by
formula (3.33).

We now estimate the modulus of these integrals (after “carrying” the modulus inside the integrals
and using the properties of the x—product). Arguing as in Lemma 3.3.9, we have different cases:

1. If j > 253, by Peter-Paul inequality, we get
/ V7BV H[ V2RV H] dysy < C/ VBV HP | VE2H? dp + C/ [VEH] dpay
OB, OE, OB,

Then, we estimate the last integral by means of Lemma 3.3.7 (inequality (3.43) with 6 = ’;’;’%}),

while for the first one we use the Holder inequality with p = 5 j’i:LIH, as follows,
C/ VB VEHP V2R dpy < O VB o) IIVPHVEH]P a
e)oh L2—nT3 (9F) Ln=i=2(9E)

We now bound the last norm in this inequality by means of Lemma 3.3.8, with f; = fo =
p = nﬁ;EQ, a = (i1,i2) and k = [243] (the integer part of (n+3)/2), noticing that k > i1 + iz as
i3 € {n —2,n —1}. In doing this, we underline that in our case, the constants in inequality (3.45)

depend on ||H|| 1. which is clearly bounded by ||B|| 1. Hence, we get

IV V2 H] s <OIVRHIP +CIIVHH2 n-1
Ln=7-2(9 —2

o Ln—i— E n—j—2 (8Et)

and, since by inequality (3.43), we have

P (1-6) 2
v H”L7n1712 (OE; CanH”B (OE}) ||VH||L2 OFEy) +CHVH”L2(6Et)

< IV H o5, + CIVHR: (o5, -

. k—n+j+l | 1 - [k=1
with § = =2 4+ L e [521 1) and

n—1

) N 2(1-9) 2
CHVHHLnﬁﬁz(aEt < CIV'H| % (o, IVHI 295, + CIVEIT: (58,

< eIV HI o5, + CIVHIZ2 (o, -

with @ = -2 1 1 ¢ [0, 1), we conclude

i i 2 ny||2 2
IVPEITHIP oy, < 2V B, + CIVH o,

t

Thus, we easily get

/aE VB[V HP[V2H dpe < 26| V'H 72, + CIIVHIZ2 (o,
t

forany ¢ > 0, with C' = C( 1Bl £oe, ||VJB” s (8B, ))
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2. If j = "33, again by Peter-Paul inequality, we have

/ V"2 B||VI H||[V2H||V# H| dyy < c/ |vi1H|2|vi2H|2dut+0/ IV T B2V H|2 dyug .
OF: OE; OE:

(3.48)
We now use Holder inequality for the last integral, that is
C/ VT BPVEHP dp <CIVT B2 sy [VEH s
OF: Ln13 (8Et) L2i3—n—1 (aEt)
<C|VEH|? 50 s : (3.49)

L7371 (9F,)

where C' = C(e,HV Bl

). Then, we estimate the last term in (3.49) by means of
== (OE:)
Lemma 3.3.7 (inequality (3.43) with 6 = 1), so we get

||Vi3H|\i%§T3 < el V'HI 7208, + CIVHIZ: o8,) - (3.50)

Ey

where C' = c( IV B|| ns )
L"=73 (9E,)
As in the previous step, in the first integral in (3.48) we use Lemma 3.3.8 with f1 = fo = H

p=2,a=(i1,iz) and k = [23] (the integer part of (n+3)/2), noticing that k > i1 -+ 5. Hence,

we have 4 4
IVAH|IV2H] 729, < CIVFHIZ2 o5, + CIVHI2 (o, - (3.51)

Holding, by inequality (3.43) with 6 = %,

L2(0Ey)

n 2(1—0
CIV*HI2s o) < OV HIZ (o) IVHIZS 0+ ClIVH] 22 o,
(OE (OE:)
< eIV H|2s o, + ClIVH] 2205, (3.52)

we conclude
H|Vi1H||Vi2H|H%2(8Et) < 26||V”H||%2(6Et) + C’HVHH%Q(aEt) ) (3.53)

Hence,

/ V2 BV H| V2 H |V H] dpy < 2¢|V"H %2 (55,) + CIVHIZ2 o8,) -
OE;

for any € > 0, with C' = C’(e,\ )
(BE)

3.1t < ”T’?’,we have
[ VBV RV e < C [ VRPN d o+ C [ VR dy,
OFE, OFE: OE,

where C' = C(||V/B|| 1 (95,))-
Then, the last integral can be estimated by means of Lemma 3.3.7 (inequality (3.43), getting a
bound as in inequality (3.50), with C' = C(e, [|[V/B| 1 (a5,))-
The first integral in the right hand side can be estimated by means of Lemma 3.3.8 with
fi=fo=H,p=2,a= (il,i2> and k > i1 +i9 = 2n — 2 — i3 — j. We have two cases:
o ifi3 = n—1,since k > i1 +i2 = n—1— j, by means of inequalities (3 51) and (3.52)
we get the same conclusmn as in inequality (3.53), for any 0 < j < 53, for a constant
C = C(e |BllLe, VB 1=);
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e if i3 = n — 2, since k > i1 + iz = n — j and estimate (3.52) holds for k¥ < n — 1, using
again inequalities (3.51) and (3.52), we get the the same conclusion (3.53), for any 1 <
Jj< 3 , for a constant C' = C(e, ||B|| e, |[V/B|| ). This is sufficient to conclude the
proof, as we remind that in the “polynomial” ¢ +2(V"~*B, V" H), the “monomials”
B * Vi1H % V2H % V"~ 2H are not present, that is, we do not need to deal with the case
i3=n-—2and j = 0.

O
Proposition 3.3.11. Let EE C T" be a smooth set and E; € €}, _(E) a surface diffusion flow. Then,
% aEt|VH|2 dpy < — 201 g, (AH) + ¢ V' H 22 55,y + C1(1+ [IVHI T2 (o, IVHII 2 5,
G B A < IS o)+ CoVH I,
for any € > 0, with some T > 0 and constants C, Cy depending on E, Mg, ¢, ||V~ 3BH 2n— (BE) and
Bl (o)-

Proof. To get the first inequality, we start estimating the second and third terms in formula (3.36)
as follows,

C / IBJ[VH*|V2H] dpe < C / B H VIH] dpy < OBl oo (o5 HHW Hl s (0E,)
=1 =1
where we used Holder inequality, with exponents ; = ﬂ% > 2, noticing that since Z?:l J1=14,

we have
Ji+
I

=1

Then, by the uniform interpolation inequalities (3.43), we get

j 1-6
IV HI 11 9, < CIIV"H T @) IVBI 255, + IVHI L2 08,)

with

-1 1 1 /5—-1
0:4 - A ( 71)7
e I T e |

for some uniform constants C, Hence,

C [ IBIVHEIYH dpe <COIBl e o)) 197 H B g VB,

0-60 3—0+0,
+ Z\\V4H||L2<5Et IVHIZS8

3—0,
+ Z\\V4HIIL2 o0 IVHI300 ) + IVHI o]

where

2 -1 3 1
=N 9= Z Sol=——+41/252
;l ;n—1+2 o1 Y
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as Y7, g1 = 4.
Finally, by the Young inequality, we conclude

C [ BIVHEIVAH] i < IV 5, + C(1+ IVHI2 o, IVHI
t
for any e > 0, with C' = C(e, [|B| 1 (9p,)) and 7 > 0.

About the second inequality, recalling formula (3.37), by Lemmas 3.3.9 and 3.3.10, we have the
thesis once we uniformly control with ||V”—3B||L 2n=2 (o) and ||B|| o (9 the following norms:

e |V/B if j > (n—3)/2,

VB e it > (n—3)/
o ||VjB||Lp(3Et),for every 1 < p < +oo ifj=(mn-3)/2,
* [IVIB| (08, ifj<(n-3)/2

forany j < n—3.

According to inequality (3.40), we have

0
J n—3
I97Bllor) < C(IV" B g+ 1Bl 2 ) IBI

with

2n — 2 ] 1 ]
e o e e P B
n—3 \n—1 1p n—3
and a uniform constant C.

If j > (n — 3)/2 we have the admissible case (see the conditions on 6 in Proposition 3.3.4)

9_2n—2( J _2j—n+3)_1
 n-3\n-1 2n—2 /7
with p = 5222,
If j = (n—3)/2, we have
1 2n —
Lopo2no2(ned 1y g
2 3\2n—-2 p

holding for p € [ (n 3 L , +oo) then clearly also for all the smaller p > 1.

If j < (n—3)/2, taking into account Remark 1.2.4 and the discussion that precedes it, we can
adapt the uniform Sobolev embeddings (Theorem 1.2.1—(iii)) to covariant tensors, as we did for
instance in Proposition 3.3.4. Hence, we have

J n—3 o0
VB (o) < C(IV" Bl 2z o+ [Blrce)

with a uniform constant C. O

Remark 3.3.12. Recalling Remark 3.3.6, in the proof of this proposition we could alternatively
uniformly control the constants in the interpolation inequalities by a function of the quantity
Vol(0Ey) + |[H||»(9p,), instead of using Proposition 3.3.4, as it is done in [47], for instance. It
follows that this proposition holds also for only immersed (not boundaries of sets) smooth
hypersurfaces moving by the surface diffusion flow.

87



3.3 LONG-TIME BEHAVIOR - I

3.3.3 Compactness

Lemma 3.3.13. Let E C T" be a smooth set and N, be a tubular neighborhood of OE. For Mg small
enough and & > 0, there exists a constant C' = C(E, Mg, ) such that if F € QI}ME (E) with

OF ={y+vr(y)ve(y) : y € OF}

for a smooth function p : OF — R and

/ |V”’2H|2dﬂ+/ |VH?du <9,
OF OF

there hold

n—3
Bl (or) + 11V B\\L2g:32 oF) <C and [¥Fpllwnzor) < C.

Moreover, for every 1 < p < 22=2, there exists a monotone non—decreasing function w : Rt — R¥,
depending only on E and Mg, with limg_,o+ w(8) = 0 and such that if F satisfies the further condition

Vol(FAE) <6,

then ||y r|lwn—1.09E8) < w(9d).
As a consequence, if E; C €}, (E) is a sequence of smooth sets such that

sup / V2H["2 dpy; + / VHP? djs; < +oo,

then there exists a (non necessarily smooth) set E' € Q}M,E (E) such that, up to a (non relabeled) subsequence,
E; 5 E inWnLPgsi— oo, forall1 <p < % Moreover, if

[P [ vaR o,
as i — oo, the set E' is critical for the volume—constrained Area functional, that is, its mean curvature is

constant.

Proof. Let ' € Q:}\/[E (E) with an associate function ¢r : 9E — R as in the statement. We start by
observing that, by the first inequality (3.43), we have

n— -0
IVH 2z < O™l o [ VHI s ) + 198l 2(0r) < CVE,

OF)

with 0 = ﬁ and
- / 1-6
IVH] o) < CUIV™ 2H G o IVHI S oy + [ VH 2(05)) < CVE,

with ¢ = (- 2),

Then, by means of the uniform Sobolev embeddings (Theorem 1.2.1-(iii)), we get
[ —H] e (o5) < CIVH| o (or) < CV6 (3.54)

where H = f, . Hdp and all the constants depends only on E and Mg.
By the uniform C'-bounds on OF, we may find a finite family (only depending on E and Mp) of
“solid” cylinders of the form Cy, = Dy + vg(z)R, with Dy, C T, E a closed disk of fixed radius
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R > 0 centered at the origin, for a finite family of points z}, € E, such that 0F Ny, is the graph on
Dy, of a smooth function f; : Dy — R, with

I fellcr(py) < ME (3.55)

for every k and OF = |JOF NC.
Since we want to estimate [, rnc, Hdp, which is a “geometric” quantity, we can assume (by means
of an isometry) that T, E = (e1, ..., ep—1), hence vg(zy) = ey, in the canonical orthonormal basis
of R" and

IOFNC, = {(x, f(x)) : x € Di}.

Then, by formulas in Remark 1.1.1 we have

H= —div(vfk) ,
VI+[Vfil?

hence,

x>da
||

- Y N _ Vi
Jo e == [ o (eam) =~ Lo e

:/ <I/F x>d0
oD ||

where ¢ is the canonical (standard) (n — 2)—-dimensional measure on the sphere 9Dy Thus, being
the last term at most equal to the area of the sphere 0Dy, we get

Vol (Dy) = /

(ﬁ—H)dm+/ Hiz< [ [H-Hlde+C<C [ |[H-Tde+C
Dy,

Dy, Dy, OFNCy,

where in the last inequality we kept into account estimate (3.55) in changing the domain (and
variables) of integration. Hence, controlling the last term of this inequality by estimate (3.54), it
follows that H is bounded by a constant depending on E, Mg, § and the same then holds also for
H. In particular, recalling that the volume of 0F is uniformly bounded (as F' € Q}V[E (E)), we have
that H € L9(JF) for every g € [1,+00). Then, choosing M small enough, Theorem 1.2.3, says
that we have an analogous uniform estimate on B in LY(9F), for every ¢ € [1, +o0).

Once we have a control on |B|[1q(95), for some exponent g larger than the dimension of the
hypersurfaces, again if Mg, is small enough, we have the following uniform higher order Calderén—
Zygmund-type inequalities (inequalities (1.42))

IV*Bllz2(0r) < Ce(1+ [V*H r2(oF))

for every k € IN, where the constants Cy, depend on E, Mg and ||B||4(5F) and the dimension.
It then follows
IV"*Bll 2 (o) < C(E, Mg, ) (3.56)

and, by inequality (3.40), we have

0
IV Bl sy < C(IV"Bllizor) + [Bllrzom)) 1BI3z(o0,

(0F)

with ¢ = 2=1 (2=3. — 1) = 1. Hence, we conclude

B V" 3B 2n- < C(E, Mg, ), 3.57
Bl La(ar) + | IILz"_;(aF) (E, Mg, 0) (3.57)

for every ¢ € [1, 4+00).
These geometric estimates on B and their derivatives, can be “transferred” to estimates on the
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function ¢ : JF — R, by means of the technique of localization/representation for any “graphi-
cal” hypersurface on OF introduced by Langer in [45] for surfaces, generalized to any dimension
by Delladio [20] and fully developed in details by Breuning in the papers [8, 9, 10] (such technique
is similar to the one we used to estimate H above). In particular, by the results in [10], under
a uniform control on |[B||14(9r) with ¢ larger than the dimension of the hypersurface, we have
that an estimate on ||B|[yyx.»(5r) implies a uniform estimate on [|¢p ||y x+2.»(5p) and viceversa, for
every set ' € Q}WE (E). Hence, by the previous estimates (3.56) and (3.57) on B and its derivatives,
we conclude
[Yrllwn2or) < C(E, Mg,9).

Then, we notice that, by the uniform Sobolev embeddings, we have
IV*9p| o) < C(E, Mg, d)

which in turn implies ||B| o (95) < C(E, Mg, §), by what we said above.
Now, in the hypotheses of the lemma on a sequence of sets E;, writing

OF; = {y + vily)ve(y) : y € OB},
by the previous estimates and the uniform Sobolev compact embeddings

W2(9E) — W LP(9E) < C1(9E)

forall 1 < p < 222, up to a (not relabeled) subsequence there exists a set E' € ¢}, (E) such that

Y — Y in WPLP(9E) (and in C1(OE)) where

OF = {y+ g (y)ve(y) : y € OE},

forall 1 < p < 222

If actually

/ \Vn72H|2dMi+/ [VH|? dp; = 0,
oF; OFE;

clearly for the limit set £ the mean curvature must be constant.
The fact that [|¢p||yyn-1. (o) goes uniformly to zero as § — 0, hence we have a function w as in

the statement, follows by the fact that, assuming F; € Q}WE (E) and

Vol(F,AE) < 65, / |v"—1H\2du,-+/ |VH|? dp; < 6;
F; OF;

2

with §; — 0, as i — oo, by the previous argument we have that ¢, : 0F — R converges to
some ¢ : OF — R in W"~LP(9E), hence in L!(9F), while the limit Vol(F;AE) — 0 implies that
l"¥F L1 (am) — 0, then we conclude that ¢ must be zero and we have the thesis. O

3.3.4 Global existence and stability — I
Theorem 3.3.14. Let E C T", for n > 3, be a strictly stable critical set for the Area functional under a

volume constraint and let N be a tubular neighborhood of OE. For Mg < €/2 small enough, there exists
8§ > 0 such that, if Ey is a smooth set in Q}\/[E (E) satisfying Vol(Ey) = Vol(E) and

Vol(EgAE) <6 and / |V 2H|? dpug +/ |VH[? duo < 6, (3.58)
(9E0 aEO

then, the unique smooth surface diffusion flow Ey starting from Ey, given by Proposition 3.2.2, is defined
forall t > 0. Moreover, E; converges smoothly to E' = E + n exponentially fast as t — +oo, for some
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n € R", with the meaning that the sequence of smooth functions 1; : OE — R representing OF; as
“normal graphs” on OF, that is,

OE; = {y + ¢ (y)ve(y)  y € OF},

satisfy, for every k € N,
[t = vllen o) < Cre™™",

for every t € [0, +00), for some positive constants Cy, and By, where 1) : IE — R represents OE' =
OF + nas a “normal graph” on OF.

Remark 3.3.15. The request that Ey belongs to C}WE (E) with Mf small enough, is necessary only
in order to be able to represent its boundary as a graph of a function with bounded gradient on
OF and to have uniform Sobolev, interpolation and Calderén-Zygmund inequalities, as proved in
Section 1.2, while the first condition (3.58) is a “closedness” assumption in L! for Ej and E (that
is, on ). The second “small energy” condition (3.58) in the theorem implies (see the last part of
Lemma 3.3.13 and its proof) that the mean curvature of 0Ej is “close” to be constant, as it is for
the strictly stable set E (actually for any critical set). Notice that this latter is a condition “of order
n” for the boundary of Ey and that all these assumptions are clearly implied by an appropriate
Wn2_closedness of OF to OF, arguing as in Lemma 3.3.13.

Before showing the proof of Theorem 3.3.14, we recall the following lemma, which is Proposi-
tion 2.2.16 under stronger assumptions.

Lemma 3.3.16. Let E C T" be a strictly stable critical set for the Area functional under a volume
constraint. For every 6 € (0, 1] there exist a constant o9 > 0 such that if F' € QI%ME (E) satisfies

Vol(FAE) <6,  and / IVHI dp < 6, (3.59)
oF

for 6o > 0 small enough, there holds
HFW’) = 09”1/}“%2(31?),
for all y € H'(OF) satisfying
nlélgzﬂdj —mlvelzzar) Z 0¥l L2or)

where the vector subspace O C R* was defined in formula (2.24).

Proof. Representing the boundary of F € %ME (E) as OF = {y +vr(y)ve(y) : y € OF} for
a smooth function ¢¥p : F — IR, according to Proposition 2.2.16, fixed some p > n — 1, there
exists a positive constant C' = C(6, p) such that the conclusion follows if | [lyy2.»(9g) < C. This
inequality follows if conditions (3.59) hold with §p small enough, by the properties of the function
w stated in Lemma 3.3.13 (and Sobolev embeddings). O

Proof of Theorem 3.3.14. By choosing My small enough, we assume that for every set F' € €1 iy (B),
all the constants in the inequalities we are going to consider for functions on J0F are uniform,
depending on E and Mg, as it is shown in Section 1.2.

After choosing some small §g > 0, we consider the surface diffusion flow E; starting from
Ey € QZ}V[E (E) satisfying

Vol(EgAE) <5 and / |V”_2H|2du0+/ |VH|? dpo < 6,
8E0 aEO
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for § < dp/2 and we let T(Ey) € (0, +oc] be the maximal time such that the flow is defined for ¢
in the interval [0, T(E)), Ey € €3, (E),

Vol(E;AE) <8y  and  F(t) :/ |v"*2H|2dm+/ |VH|? dpy < do .
8Et aEt

All the moving boundaries 0E; can be represented as normal graphs on OF as

0E, = {y+u(y)ve(y) : y € OE}

for some smooth functions ¢ : 9F — R. Moreover, if T (Ey) < 400, then at least one of the three
following conditions must hold:

* limsup,_,7(gy) I¥tlloror) = 2ME
L4 limsuptﬁT(EO) ]:(t) = 50

o limsup,_,p(g,) VOl(EtAE) = do

otherwise, restarting the flow from a time ¢ close enough to T'(Ep) by means of Proposition 3.2.2,
we have the contradiction that T'(Ey) cannot be the maximal time defined above. Indeed, the time
interval of smooth existence of the flow given by such proposition is bounded below by a constant
depending on the C*®-norm of v; and this latter by a constant depending on &y, by the first point
of Lemma 3.3.13 and Sobolev (uniform) embeddings.

We are going to show that if §y was chosen small enough, there exists § > 0 such that none of these
conditions can occur, hence T'(Ey) = oo, that is, the surface diffusion flow of Ej exists for all
time.

Let us define, for K > 2, the following “energy” function

E(t) =/ \V"‘ZHIQdutJrK/ \VH? duy > F(t)
BEt BEt

(notice that also holds £(t) < K F(t)). From Lemma 3.3.13 we easily have

0 "B an- < < :
1Bl or) + V2Bl 2z So(F(t)) < So(€(t)), (3.60)

for ¢ € [0,T(Ep)), where the function Sy : [0,+00) — RT is continuous and monotone non-
decreasing and it is determined by F and Mg.

We now split the rest of the proof into steps. Our first goal will be to show that the function £
decreases in time if J is small enough, for an appropriate constant K.

Step 1 (Monotonicity of £).
By Proposition 3.3.11, for any ¢ € [0,T(Ejp)), we have

d n T
GE(O) < 2K, (8H) = (1= K) [V o)+ (Ca+ K Co+ KCITHI o) VH 05

for any € > 0, 7 > 0 and some constants C1, Cy depending on E, Mg, ¢, ||Vn’3B||L2n732 (08) and

Bl Lo (a)- Then, choosing ¢ = 1/2K, we obtain

d 1 n
—E(t) < —2KTIg, (AH) — S|V H|[72(0m,)
+ (S2(E(1)) + KS1(£(H) + KS1(E@) [VHI 205 ) IVEIZ2 9, . (361)
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where S1, 52 : [0, +00) — R* are two continuous, monotone non—decreasing functions depending
on E, Mg, by inequality (3.60).
By inequality (3.43) in Lemma 3.3.7 (with € = 1/2), we have

IV 2] 29, IIV”HIILz @5+ CIVHIT2 o,
that is,
—*IIV”HIILz @om) < ~IV"*Hl 7295, + CIIVEIZ: (o5,
and substituting into inequality (3.61), we get (recalling that K > 2)

d
75( ) < = 2KTIg, (AH) — |[V"2H||3, (OEy)

 (S2(E(1)) + KS1(E(®) + KS1(E()IVH T2 o) | VI 220
< - 2KTIg, (AH) — [V 2H|)3, om)/ K = ||VH|\L2 oE)

+ (1+82(E(1) + KS1(E(t)) + KS1(&(t ))”VHHLz(aEt))||VH||2L2(aEt)
= —2KIlg,(AH) —E(t)/K
+ (L4 S2(E(8) + KS1(E(t)) + KS1(EW)IVHIT2 (9, IVHI 2 (o8,

t

If we assume that, for every ¢ € [0, T(Ep)), there holds
g, (AH) > O'HVH||L2(3Et (3.62)

for some constant o > 0, then

Le(1) <~ [2Ko — 1 - $2((1)) ~ KS1(6(0)) ~ KS1(ED)IVHI a0 IVH I 25,

—-E(t)/K
— [2Ko = S(£(1))(1+ K + K'72() )| VHI 29, — E(0)/ K ,

with S = max{Si, Sz + 1} : [0, +00) — R™ continuous, monotone non-decreasing and depending
on F and Mg.
Hence,

d
6 < —P(EWIVHI 2o, — EH) /K,

with P(s) = 2Ko — (1 + K)S(s) — S(s)K'~7/257/2, which is a continuous and monotone non—
increasing function, determined by F and Mg.

It is then an exercise of qualitative analysis of ordinary differential inequalities, to conclude that if
P(0) is positive, the first term starts and stays negative and the “energy” € satisfies

dts( ) < —E()/K (3.63)

for every ¢ € [0,T(Ep)), that is, the function £ is never increasing, so it remains bounded by £(0)
(moreover, it decreases exponentially and converges to zero, as t — +oo, if the flow is “eternal”).
Thus, choosing an appropriate constant &, by the definition of the function S, it is easy to see that
we can make P(0) > 0, hence if § > 0 is small, since £(0) < KF(0) < ¢K, it follows that £(0) is
small enough and we have the above conclusion.

Step 2 (Proof of estimate (3.62)).
We now want to apply Lemma 3.3.16 with F = E; and ¢ = AH, forall ¢t € [0,T(Ep)), hence, we
need to show that there exists a small constant § > 0 such that

nlgg;HAH — mlvelr2om,) = OlAH|L29p,)  forallt € [0,T(Ep)). (3.64)
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Considering the special basis {¢;} of R™ and the associated set i € Iy in the discussion just
after Definition 2.2.5, by the properties of the function w stated in Lemma 3.3.13, if §g is small
enough we have that for every ¢ € [0,T(Ep)) the norm |[¢r[|yyn.2(5g) is small, hence the same
holds for ||¢r||c1(9p). Then, it follows that there exists a constant Cy = Co(E, Mg) > 0 such
that, for every i € Ip, we have [[(e; [ v4)[|2(sE,) = Co > 0, holding |[{e; | vg) || 12(sr) > 0 (notice
that this argument also shows that, with an appropriate choice of small g and §, the condition
lim sup, 7 (g, [[¥tllcr(9p) = 2ME cannot occur). It is then easy to see that the vector 7 € Op
realizing the above minimum for E; is unique and satisfies

AH = <77t ‘ Z/t> + g, (365)

where g € L?(9E};) is a function L?~orthogonal (with respect to the measure 1; on 9E;) to the
vector subspace of L2(9FE;) spanned by the functions (e; | ). Moreover, letting 7 = nie;, from
relation (3.64) we have

IAHIZ 255, = 100 )32 (0, = /8 _ Iniei [ve)l” dyue > Gl = Clmel*, (3.66)
t

where C is a constant depending only on E and M.
We now argue by contradiction, assuming ||g([1.2(ax,) < 0l[AH[12(08,)-
We recall that, thanks to the uniform Poincaré inequality (3.42), we have

| -TRdu <O [ VP e < Ot o, (3.67)
aEt 8Et

where the second estimate can be obtained integrating by parts and using the Cauchy-Schwarz
inequality.
Hence, by multiplying relation (3.65) by H — H and integrating over 9E;, we get

/ (H—H)gdu
OF,

< 0|H - ﬁ”LQ(aEt) [AH] L2 5E,)
< CO|AH[ 2 o) - (3.68)

/ (H—T)AH dpg
OFE;

where the equality follows from the identities

/ H vt dlltt =0 and / 147 d,ut =0
8Et aEt

holding for every embedded hypersurface. Then, recalling estimate (3.66) and the fact that g is
L?-orthogonal to (1; | 1), we have

I 14} oy = [ HG]v5) di
OF:

_ / (VH| Ve | 1))
OF:

< nellIVvell 2 om) IVHI 2 (08,
1/2

< ClIAH 2 o5 V¥ 22080 /d (-T)AT d
t
< CVO||AH[ 2o, »

where in the last inequality we used relation (3.68) and we estimated || V4[| 2(9p,) by inequal-
ity (3.60) and the fact that 7 (t) < do, as Vi = B by the Gauss—-Weingarten relations (1.7).
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If then 6 > 0 is chosen so small that Cv/@ < 1 — 6? in the last inequality, we have a contradiction
since equality (3.65) and the fact that [|g|| ;2 (5,) < 0[|AH||12(5E,) imply (by L*-orthogonality) that

e | w1208,y > (1= 62 |AHIT2 (55, -

All this argument shows that with such a suitable choice of ¢, condition (3.64) holds, hence by
Lemma 3.3.16, we conclude

g, (AH) > op]|AH|172 (5, forall t € [0,T(Ep)).

Then, the second estimate (3.67) clearly proves assumption (3.62) and the proof of monotonicity of
€ in Step 1 is concluded. Hence, if § is small enough, £(¢) remains bounded by ¢ during the flow,
up to the time ¢t = T'(Ey), thus the same clearly holds for F(¢).

Step 3 (Global existence of the flow).

We have seen at Step 1 that choosing an appropriate constant K, if  is small enough, then the
“energy” £(t) is uniformly bounded and decreasing. More precisely, integrating the differential
inequality (3.63), there holds

E(t) <E0)e K L oe /K L6 (3.69)

hence, we also have F(t) < de~ /K < §, for every t € [0,T(Ejp)).
Moreover, at Step 2 we already saw that if J¢ is chosen small enough,

limsup ||| c1op) = 2ME
t—T(Ep)

is not possible. Hence, in order to obtain the global existence of the flow, we only have to show
that also

limsup Vol(E,AE) = &y (3.70)
t—T(Eo)
cannot occur.
We define the following quantity
D(t) = / d(z, OF) dz — / dp () dz — / dp(x) dz, (3.71)
EAE By E

where dp; : N. — R is the signed distance function defined in formula (1.14). We observe that,
Vol(E:AE) < CllYel prom) < Clivellzz o)

and

9 7 [¥¢ (y)]
||1/Jt||L2(aE) =2 tdtdu(y)
oE Jo
[t (y)]
—2 [ ["7 kw0, 08) drduty)
oE Jo

_9 / d(w,08) JL () da
EiANE
<CD(t),

where the constants depend on E and Mg, L : OF x (—¢,¢) — N. is the smooth diffeomorphism
defined in formula (1.49) and J L is its Jacobian. It clearly follows

Vol(EtAE) < Cllil 1ap) < CllYelzzomy < Cy/D(1), (3.72)
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and
D(t) < / 2Mp dx = 2MgVol(EAE) . (3.73)
EiNE

Then, recalling formula (3.71), we compute

d d
4 by = 7/ d(w, 0F) dz — / dp A dpy < CJ|AH||p2o5,) < CVE e /2K,
dt dt Jp,AE OF;

for all t < T'(Ep), where the last inequality clearly follows from the above estimate (3.69) for £(¢).
By integrating this differential inequality on [0,?) with ¢ € [0,T(Ep)) and taking into account
estimate (3.72), we get

Vol(E;AE) < Cllvgllp20m) < C/D(0) +2KCVE < CV5,

as D(0) < CVol(EgAE) < C4, by inequality (3.73) with ¢t = 0. Hence, if § > 0 is small enough
such that C'V/d < dp, we have that also condition (3.70) cannot happen.

We conclude that the surface diffusion flow of Ej exists smooth for every time, moreover
E; € €y, (E) and

Vol(E;AE) < CV3, / |V”_2H|2dut+/ |VH|? dyy < de VK (3.74)
8Et aE‘t

for every t € [0, +00).

Step 4 (Convergence, up to a subsequence, to a translate of E).

Let t; — 400, then by estimates (3.74), the sets E;, satisfy the hypotheses of the last point of
Lemma 3.3.13, hence, up to a (not relabeled) subsequence, we have that there exists a critical
set B € ¢}, (E) such that E;, — E'in W"=1 for p < 2222 that is ||¢;, — ¥llyn-10(95) — 0
for some ¢ : 9F — R representing E’ as a “normal graph” on 9E. As OE’ has constant mean
curvature and it is a graph over OF of a C! function (by Sobolev embeddings), it follows by
standard regularity theory for quasilinear equations that it is smooth (see [34] for instance), then
by Proposition 2.2.17, we have that E/ = E + ) for some (small) n € R". Such proposition
actually states that F is a strict local minimum for the volume—constrained Area functional, up to
translations and that a smooth set “close enough” to E (as E’ in our situation) can be a critical set
if and only if it is a translate of E.

Step 5 (Smooth exponential convergence of the full sequence).
Arguing similarly as above, we consider the function

D(t) :/ d(z,0F) dz
EyAE
with derivative

GD0 =% [ dwor)ds = [ senvn - ) dow At dy. (3.75)
dt dt EAE' OE;

where sgn is the “sign function”. By the exponential second estimate (3.74) and the fact that
E; € Q%ME (E), we have

d—
dtD(t)‘ < Cl|AH| 295, < CVoe /2K

for all ¢ > 0, moreover,

D(t) < /E . 2Mp dx = 2MpVol(EAE") < Cllvbr — Yl p1om) < Clive — ¥l 2 0m)
t
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which implies D(¢;) — 0, as i — oo, by the previous step.
Integrating the differential inequality (3.75), we get

t; o +o0o o
D(t) - D(t) = f/t %D(s)dsgft d%D(s)ds

< 20KV /2K

+oo
< / C\/ge—S/QK ds
t

hence, passing to the limit as i — oo, we conclude
D(t) < Ce /2K

for every ¢t > 0, thus lim;_, ;o D(¢) = 0. Then, we have

e (y)
4t — 1/J||%2(3E) = 2/ ‘/ sds
OE1JY(y)

bt (y)
:2/ / d(L(y,s),0F) ds
OE |4 (y)

= / d(z,0E) JL™! () dx
E:AE’

du(y)

du(y)

where L : OF x (—¢,e) — N. is, as before, the smooth diffeomorphism defined in formula (1.49)
with Jacobian J L. By this exponential decay and the uniform bound on [|¢; — ¢y n.2 (5 ) following
from estimates (3.74) by means of Lemma 3.3.13, we obtain the convergence of the full sequence
Eito E'in Wn—Lp,
Finally, we have that the convergence of £; — E + 7 is actually exponentially smooth, by arguing
as in the proof of Theorem 5.1 in [30] (see also [16]), that is, via standard parabolic estimates
and the uniform interpolation inequalities (and Sobolev embeddings), holding the exponential
convergence in W~ 1P,

O
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As in the previous section, we aim to study the evolution by surface diffusion of normal defor-
mations of a strictly stable set E. In this second line, the main tool will be a generalization of a
quantitative version of Alexandrov theorem.

3.4.1 A quantitative generalized Alexandrov theorem

The following is a famous and “classical” theorem due to Alexandrov (see the original paper [4]
for a complete and detailed proof, for instance).

Theorem 3.4.1. Let QO C R™ be an open set of class C2. Then, Hpq, is constant if and only if () is a ball.

A quantitative version of this result was first proven in [44, Theorem 1.10] and then rephrased
in [51, Theorem 1.3] as follows.

Theorem 3.4.2 ([51], Theorem 1.3). There exist 6 € (0,1/2) and C' > 0 with the following property: for
any ¢ € C1(OB) N H*(OB) such that ||| c1(9p) < 0, VOl(Ey) = wy, and Bar(E,) = 0, we have

1911 om) < CIH—Hl| 1295
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z;here Bar(El,l,) and H are, respectively, the barycenter of Ey, and the mean curvature of 0E,, and H =
HdH"".
OB

Later on, in [17] the authors showed that in the periodic setting the above quantitative estimate
holds with B replaced by any strictly stable critical set. We call the conclusion in the following
theorem quantitive generalized Alexandrov inequality.

Theorem 3.4.3 ([17], Theorem 1.3). Let E C T" be a strictly stable critical set. Then, there exist
§* € (0,1/2) and C > 0 with the following property: for any ¢ € CY(OE) N H?(OFE) such that
Il om) < 6* and satisfying

]/ wdu‘ < 0%l 2o ]/ vp du’ < 8 ¥l 2 (o) (3.76)
OF OF
we have B

Yl g1 0r) < ClHE, —HE,llL208) -

Moreover, as it is shown in [17, Section 3], the first condition (3.76) can be replaced with the
equality Vol(E,) = Vol(E).

Theorem 3.4.4. Let E C T" be a strictly stable critical set. Then, there exist 6* € (0,1/2) and C > 0
with the following property: for any ¢ € CY(OE) N H2(OE) such that [¥llerom) < 6* and satisfying

Vol(E,) = Vol(B). | [ vvidb] < 5 olizom)

we have
1Yl om) < ClHE, —HE,llL208) - (3.77)

Finally, we notice that inequality (3.77) implies
1Yl 0m) < ClHE, — AlL2(0E) -
for any A € R.
3.4.2  Global existence and stability — 11
In Theorem 3.2.3 we showed that the surface diffusion flow starting from £y = £, exists in a

short-time interval and the evolving sets E; can be parametrized as normal deformations of a
fixed set smooth E, induced by functions (¢, -) satisfying

{8tw(t7w)w(p) vp(r) = AHi(p)
¥(0,2) = to(x)

for every x € OF, with p = x + ¢ (t, z)vg(z). Moreover,

—-1/2
= (O0(tn))?
vi(p) - ve(w) = (sz_; (1+f€j($)w(t’x>)2) |

where k;(z) and 7j(z) for j = 1,...,n — 1 are, respectively, the principal curvatures and the
principal directions of JF at = (see for instance [17, eq. (3.4)]). In particular, we remark that

v(p) - ve(z) =1+ O(lY(Et, )l m) -

98



3.4 LONG-TIME BEHAVIOR - II

Definition 3.4.5. We say that an open set £ C T" satisfies a uniform inner (respectively outer) ball
condition of radius r if there exists r > 0 such that for every x € OF there exists a ball B, (y) C E
(resp. Br(y) C T™ \ E) with z € 0B, (y).

Notice that every smooth set satisfies a uniform inner and outer ball condition.

Remark 3.4.6. Let E C T" be a set satisfying a uniform ball condition of radius rg. Then, every
small C1'!-normal deformations of E satisfy a uniform ball condition of radius r ~ rp. Indeed,
it is easy to see that if E, is the normal deformation of E induced by ¢ € C11(9E), then the
Hausdorff distance between E and E,, is bounded by ||¢[|co(sp). Furthermore, since Vdg,, = vg,

can be written as
kv S (V- v; e
_ . ‘Ui z
VEw_<VE Z__leerva)( +Z (1+ Krip)? > ’

where the family v; denotes an orthonormal frame of the tangent space of E. By differentiating
this formula, one can see that

ldg, —dellciiom) < CellYllcrioE)

which then implies that E;, — E in C11, if [|¢)||¢11 — 0. Therefore, by [15, Theorem 2.6] and [15,
Remark 2.7] one infers that the radius 7 of the uniform ball condition of the set E;, depends
continuously on |||/ 1.1 when this latter is small enough. In particular, for every € > 0 there exists
d(rg,e) > 0such that, if ||¢]|c11 < J then

|T’E7T|<€

Lemma 3.4.7. Let E C T™ be a smooth set and m > 0. There exists n = n(m, E) > 0 such that, for every
k€N, € C*(OE) with [Ylleror) < my [[¥llcoar) < nand for every o € T™ with |o| < n, then the
normal deformation of E induced by ) (as in Definition 1.3.1) and translated by o, that is Ey, + o, can be
written as a normal deformation of E induced by a function ¢ : OE — OF such that

1%l coom) < 2n, WHck or) < CUlYlerar) +1ol) -
where C = C(E) >0

Proof. Being the set E smooth, it satisfies a uniform inner and outer ball condition, hence there
exists a positive radius r > 0 such that the signed distance dg from the set E, defined in for-
mula (1.14), is a smooth function in the tubular neighborhood N, (see Definition (1.13)). Since, for
some k > 2, 1) has C¥-norm bounded by m, we also have [¥llcr1(aE) < m. Then, there exists a
radius p = p(m, E) such that the normal deformation E,, of E induced by 1 satisfies a uniform
inner and outer ball condition of radius p and we can clearly assume without loss of generality
that p < r.

We now let < p/2 to be chosen later, take any |o| < n and set ' = Ey, + 0. Clearly, F still
satisfies a uniform inner and outer ball condition of radius p. Then, for every y € OF there exists
x € OEy such that y = = + o, hence we have

d(y,0F) < |o| +d(z,0E) <n+ |[¢llcoom) < 2n

and in particular 9F' C Na;; C N,.. We now define the map Ty, : 0F — OF as in formula (2.42). By
choosing 7 small enough and using standard interpolation inequalities, there holds [|v[|c1(o5) +
lo| < 1/2, which implies that the function z — x + ¢)(z)vg(x) + o is a diffeomorphism (since it is
a small perturbation of the identity). Since E is smooth (and possibly considering a smaller 7),
p + OF — OE is a smooth diffeomorphism, C*—close to the identity. Hence, by
inequality (2.45), we conclude

1Ty — ek omy < CUILIer@r) +1ol), (3.78)
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moreover, by the invertibility of the map x — z + ¢ (z)vg(z) + o, we also obtain
1T = Tlcror) < CUW e om) + o)) - (3.79)

Then, we can find a function ¢ : 9F — R such that F is the normal deformation of E induced by
1), more precisely for every x € 0F, there holds

z +9(@)vp(e) + o = Ty(e) + & (Ty(@) ve(Ty(e)).

Finally, using the above expression and the estimates (3.78) and (3.79), we conclude that

1l crom) < 1T, ler@my (1l om) + o]+ 1T = Tlicxor)) < C1Wlloram) + o) ,
for some constant C' = C(E) > 0. O
We are ready to state and prove the second version of our stability result.

Theorem 3.4.8. Let EE C T" be a strictly stable set and let Ey = E,,, be the normal deformation of £
induced by 1o € CYY(OF) (as in Definition 1.3.1) with Vol(Ey) = Vol(E). There exists § = §(E) > 0
such that if |[vo o119y < 0, then the surface diffusion flow Ey starting from Ey exists smooth for all
times t > 0 and Ey converges smoothly to E + T exponentially fast as t — +oo, for some T € T", with the
same meaning of Theorem 3.3.14.

Proof. Lete > 0 and 6(¢) € (0,1) to be chosen later (smaller than the constant given by Theo-
rem 3.2.3). We split the proof into steps.

Step 1. Our first goal is to show that the function ¢ (t) = A(9E:) — A(JE) is non-increasing in
time and in particular, ¢(t) < Ce™“ as long as the flow exists.

Let 19 € CH1(OE) with ||[¢h]|c11 < 6 < 1. By Theorem 3.2.3 there exists a time 7' > 0, which
depends on ¢, E and a smooth flow E; starting from Ey, for t € [0,T). Moreover, E; = E,;, and
(¢, -) satisfies estimates (3.3) and (3.4). Without loss of generality, we can assume T < +o0.

We recall that

d —
OFE;

where the constant C' coming from the Poincaré inequality is uniform since [[¢)(¢,-)[|c1.1(oE)
remains bounded and small, for every ¢t € (0,T") (see Section 1.2). So, the function ¢ is non—
increasing.

Let 6* be the constant given by Theorem 3.4.4, p > n — 1 and £ = £(¢*, p) given by Lemma 2.2.15.
By estimates (3.3), (3.4) and by interpolation, we have that [|¢(¢, -) ||Wz,p(a B) < &, forevery t €
[T'/2,T), up to taking e and § small enough. Thus, for any ¢ € [T'/2,T), by Lemma 2.2.15, there
exists 7; and a function IZ (t,-) suchthat B, +m = F s

el < Clet, lwenmy . 10 ) lwzaer < ClEE ) lwerom)
and

’{/‘;(u : ) v d:ut
OF:

< 5*||1Z(f=')||L2(aE)-

Furthermore, Lemma 3.4.7 (taking § smaller, if needed) implies that || (¢, -)|| o1 (9E) < 0™
We then apply Theorem 3.4.4 to the set B, +n, = E s and we obtain

(e (o) < ClHe; = Mlr208) »
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for any A € R. By means of the bounds on ¢ and by the translation invariance, we thus get
() (om) < ClHE; = Mr2om;) = ClHE, = A2 08:)- (3.80)
We claim that ~
A(DE, )~ ADE) < ClOt) s o) (381)
Indeed, by defining for every « € OF the function

— 2 1/2
< 2 ))))) ’

1+m] )0 (t,x

we have

n—1
A@Eg) = | Ql ) T1 (1+/<;z o(t, x)) dp
i=1

:A(C?EH/a (Hgt(t,-) + O((t,-)%) + OV (t,-) ) dps
< A(OFE) +HE/ O(t du+C/ )2+ |V(t, ) [?) dp

where we used [17, Lemma 3.1], relation Hg = Z?;ll i and inequality

[ . du‘ C/w 2y,

which follows from the fact that Vol(Et) = Vol(E)p) (see [17, Remark 3.2] for more details).
We now notice that, by the translation invariance and inequalities (3.80) and (3.81), for any A € R,
we have

A(OE;) — A(OE) = A(OE7) — A(OE) < C|H, — A||§2(8Et) . (3.82)

Since for any ¢ € (0,7'), equation (3.82) for the particular choice of A = H implies
' (t) =~ Hg, — i |20 o) < —CH(2).
by Gronwall’s inequality we conclude (recalling that 4 (0) > ¢(7'/2))
G(t) < 4(0)eC=1/2) (3.83)
forevery t € [T/2,T).

Step 2. We now show that the flow exists for every ¢ > 0 and it converges exponentially fast to E
up to translations.

Possibly taking a smaller § > 0, by means of the quantitative isoperimetric inequality in Theo-
rem 2.2.10, we get a family of translations 7; such that

CVOl(EA(E; 4+ 7))? < A(OE;) — A(OE) < A(OEy) — A(OE).

Furthermore, since all the evolving sets Ey, for t € [T'/2,T'), satisfy a uniform inner and outer ball
condition by Remark 3.4.6, by classical convergence results (see [15, Theorem 3.2], for instance) we
have that E; + 7; is C*—close to E. In particular by the implicit map theorem, there exist smooth
functions v(¢,-) : 9F — R such that £y + 7, = E,(; .y and

< d(z,0E;) < ||v(t,- + [Jv(t, - < 2,
|7t seatix (z,0E) < [9(t,)llcoor) + lv(t)llcoor) < 2¢
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up to taking ¢ small. Therefore, recalling inequality (3.83), we have
lo(t ) 1319m) < CLA(OEY) — A(IE))e=CU=T/2) (3.84)
By Lemma 3.4.7, we also have

lo(t,)lcromy < CUY(E )lor@r) + I7l)

forevery k > 2.
Thus, for every t € [T'/2,T), combining this estimate with (3.4), (3.84) and using the interpolation
inequalities, for any [ € IN there exist k(I) € IN,4(l) € (0,1) and C = C(E,[) > 0 such that

V' (t, o < Cllott NG ot 150 < CAOE) — A(DE))ze T2 (3.85)

Choosing ¢4(0) = A(9Ey) — A(OF) small (hence, choosing § small) we can then apply again
Theorem 3.2.3 with Eyr/2,) = Er/2 + T1/2 @5 initial set to get existence of the translated flow up
to the time 37'/2. We remark that, by uniqueness, the flow above is well defined since it coincides
in [T'/2,T) with the flow E; translated by 7+ and estimate (3.83) holds for all ¢ € [T'/2,3T/2).
Since the bound (3.85) is uniform along the flow, choosing at every step the times ¢t = kT'/2, for
k € N, we can iterate the procedure above to prove that the flow exists for all times ¢ € [0, +0c0).
Moreover, for every ¢t € (0, +00) there exists a translation 7 such that E; + 7 = Ey,), with v
satisfying estimate (3.85). In particular, we have that v — 0 exponentially in C* for any k € NN,
ast — +oo, hence E; + 7 — E in CF for every k. This also implies (arguing as in the previous
section, that is, ”transferring” estimates on the function to geometric estimates on H — see for
instance Lemma 3.3.13) that [|AH|| ;2 (5,) — 0 exponentially fast.

Step 3. We conclude the proof by showing the convergence of the whole flow to a translate of E.
Let us prove the convergence of the translations 7;. By compactness, we can find a sequence
ty, — +oo such that 7, — 7. Defining, D(t) as in formula (3.71), we get

D(t)’ _ |4 d(z,0F — 1) dx

% % EtA(E—T)

— / div(dp—, (z)Vi(z)v(z)) dx
Eq

:/ dE—T(x)AHd,U‘
OF;

< A(OE) |1AH| 1258, ( sup. d(z,0F — 7'))
x t

< Ce O, (3.86)

where we recall that V; is the velocity of the flow in the normal direction.
Clearly, the estimate (3.86) implies that D(t) admits a limit as t — +o0. By the previous step and
by the fact that ;,, — 7, we deduce

D(t) -0 ast— +oo.

Assume now that o is the limit of 7,, up to a (non relabeled) subsequence. Thus, £, — E — ¢ and

0= lim D(m,) :/ d(z,0ET) dz,
E—-ocAE—-T

n—+oo

which implies ¢ = 7. This concludes the proof as the exponential convergence follows from the
second step. O
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3.5 THE CLASSIFICATION OF THE STABLE CRITICAL SETS

In this final section, we discuss the classes of smooth sets to which Theorem 3.3.14 and Theo-
rem 3.4.8 can be applied, hence, “dynamically exponentially stable” for the surface diffusion
flow. We observe that it is easy to see that (by a dilation/contraction argument) any strictly
stable smooth critical set must be connected, but actually, being the normal velocity of the surface
diffusion flow at every point defined by the local quantity AH, it follows that Theorem 3.3.14 can
be applied also to finite unions of boundaries of strictly stable critical sets (see [30] and Figure 1
below). Moreover, by Definition 2.2.5, if E in T" is composed by flat pieces, hence its second
fundamental form B is identically zero, the set F is critical and stable and with a little effort,
actually strictly stable. It is a little more difficult to show that any ball in any dimension n € IN is
strictly stable (it is obviously a critical set), which is connected to the study of the eigenvalues of
the Laplacian on the sphere 871 see [36, Theorem 5.4.1], for instance. The same then holds for
all the “cylinders” R* x $"~*~1 C R”, bounding E C T™ after taking their quotient by the same
equivalence relation defining T", determined by the standard integer lattice of R™.

Notice that if n = 2, it follows that the only bounded strictly stable critical sets of the (in this
case) Length functional in the plane are the disks and in T? they are the disks and the “strips” with
straight borders.

In the three—dimensional case, a first classification of the smooth stable “periodic” critical sets
for the volume—constrained Area functional, was given by Ros in [55], where it is shown that in
the flat torus T3, they are balls, 2tori, gyroids or lamellae.

Y N \_/
g &
/ X0

Figure 1: From left to right: balls, 2—tori, gyroids and lamellae.

Notice that, despite their name, the lamellae are (after taking the quotient) parallel planar 2—tori and
the 2—tori are quotients of circular cylinders in R3. As we said, with the balls, these surfaces are
actually strictly stable, while in [37, 38, 56] the authors established the strict stability of gyroids only
in some cases. To give an example, we refer to [38] where Grosse-Brauckmann and Wohlgemuth
showed the strict stability of the gyroids that are fixed with respect to translations. We remind that
the gyroids, that were discovered by the crystallographer Schoen in the 1970 (see [58]), are the
unique non-trivial embedded members of the family of the Schwarz’ P and D surfaces, namely,
the simplest and most well known triply—periodic minimal surfaces (see [56]).
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