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Introduction

Through the present dissertation, we aim to illustrate some outcomes related to the study
of the boundary behavior of almost-minimizers of the relative perimeter in an Euclidean
open subset. The main results obtained are on the one hand a boundary Monotonicity
Formula, for which we refer to [23], and on the other hand two results regarding the
behavior of an almost-minimizer of the relative perimeter in an open set Ω near a vertex-
type singularity of ∂Ω [24,25]. The latter results are discussed in Chapter 4 and Chapter
5. As it will be carefully explained later, we remark that the definition of vertex appearing
in Chapter 5 is different from the classical notion of vertex for a cone, since it is quite
more general.

Given an open set Ω ⊂ Rn and a measurable set E ⊂ Ω, we define the relative
perimeter of E in Ω restricted to an open set A ⊂ Rn as

PΩ(E;A) := P (E; Ω ∩ A)

with the short form PΩ(E) when A ⊃ Ω, and with P (E;B) denoting the standard perime-
ter of E in an open set B (see Definition 1.2.2). We say that E is an almost-minimizer of
the relative perimeter in Ω if, roughly speaking, E minimizes PΩ among those measurable
sets F ⊂ Ω that are obtained from E via a compact variation into Ω (Definition 2.1.1). In
particular, the competitor F could differ from E up to the boundary of Ω. Accordingly,
the present definition of almost-minimality wishes for someway generalize the notion of
free-boundary area-minimizing surface.
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Boundary Monotonicity Formula

In the third chapter, we focus on the proof of the boundary Monotonicity Formula, and
then we apply it to the proof of a perimeter-minimizing cone property for the limit of a
blow-up sequence of an almost-minimizer. The Monotonicity Formula is a tool that for
instance permits proving that if E is an almost-minimizer of the relative perimeter in an
open set Ω ⊂ Rn and x0 ∈ Ω ∩ ∂E, the density ratios between the perimeter of E in the
relative ball Br(x0) ∩ Ω and rn−1 are monotonically non-decreasing in r up to an error
term that goes to 0 as r → 0+ in a quantified way. The Monotonicity Formula is known
and classical when x0 is internal to Ω, and a proof can be found in [13]. It is known
also for x0 ∈ ∂Ω, but typically under smoothness assumptions on ∂Ω ( [2], [14]) In our
main result Theorem 3.3.2, we prove a boundary Monotonicity Formula at a boundary
point x0 ∈ ∂Ω provided the domain Ω satisfies a visibility condition at x0. Roughly
speaking, this condition requires the existence of R > 0 and a point Vr, for 0 < r < R,
slightly displaced with respect to x0 such that each point x ∈ ∂Ω ∩Br(x0) is visible from
Vr, i.e. the segment connecting Vr with x does not intersect Ω. This condition leads
to the construction of a quasi-conical competitor for E, allowing to prove the boundary
Monotonicity Formula through a suitable adaptation of the classical argument developed
by Giusti in [13], where indeed the construction of a conical competitor represents a
key passage. The aforementioned visibility condition does not constitute a smoothness
assumption on Ω, since it is satisfied, for instance, by a generic convex set, possibly singular
at 0, provided it is suitably approximated by its tangent cone at 0 (see Example 3.2.12),
and even by other open sets with quite rough boundary (Example 3.2.13). Then, in the
final part of Chapter 3, we show how the boundary Monotonicity Formula previously
obtained can be employed to prove that any blow-up sequence of an almost-minimizer E
of the relative perimeter admits a subsequence that L1

loc-converges to a minimal cone in
the tangent cone to Ω at x0, denoted by Ωx0 .

The Monotonicity Formula is an important tool in the study of the regularity of an
almost-minimizer of the relative perimeter ( [7], [13], [26]), and also of more general
objects, like varifolds. In his seminal work [1], Allard proves an interior Monotonicity
Formula for integral, k-dimensional varifolds with Lp-mean curvature, p > k, that is
subsequently used in the proof of an internal regularity result for the same varifolds. In
this case, the proof of the Monotonicity Formula is made using a first variation of the



CONTENTS 7

varifold along a suitable vector field. We also mention [2], where the same author proves
a boundary Monotonicity Formula for varifolds with C1,1 boundary. In [14], the authors
focus on the study of the boundary regularity for free-boundary integral k-varifolds. In
particular, they prove that if the varifold V intersects ∂Ω orthogonally, V has Lp mean
curvature with p > k and the mass of V inside small balls centered at points of ∂Ω is
close to the volume of a half ball, then V is a C1,α submanifold of Rn with boundary, that
is diffeomorphic to a half ball. Also in this case, the Monotonicity Formula represents a
key tool in the proof of the main regularity result, while its proof is based in particular
on a reflection through ∂Ω procedure, that requires Ω at least of class C2. The common
aspect among all the aforementioned works is the presence of a smoothness hypothesis
on Ω. Indeed, a key passage in the proof of the boundary Monotonicity Formula is
to vary the varifold along a suitable vector-field tangent to ∂Ω. The technical difficulties
arising in implementing variation arguments in the presence of singularities of ∂Ω motivate
why the big majority of the works available in the literature concerning the boundary
Monotonicity Formula, and consequently the study of the boundary regularity, require
some smoothness assumptions on Ω. As we remarked above, the proof of the boundary
Monotonicity Formula developed in Chapter 3 is not based on a variation argument,
but exploits the construction of a quasi-conical competitor, allowing to skip the strong
smoothness assumptions on ∂Ω that are typically required. It is worth mentioning that
such a boundary Monotonicity Formula could be applied to the study of the boundary
regularity for almost-minimizers of the relative perimeter. A regularity result in this
sense is known only if ∂Ω ∈ C2 [14]. An interesting development could be to exploit
the boundary Monotonicity Formula proved in the present thesis in order to extend the
regularity result in [14] to more general domains Ω, for instance for those with ∂Ω ∈ C1,β.

Behavior of the almost-minimizers near vertices

A fascinating question regarding the theory of the free-boundary minimal surfaces is that
about their behavior near the boundary of their container Ω. In the broader context of
capillarity, it is known that if Ω is of class C1,1, a capillary surface interface in Ω satisfies
Young’s law (see [30]), i.e., forms a contact angle β = arccos γ with ∂Ω, where γ ∈ [−1, 1]
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is the wetting coefficient appearing in the capillary energy (without bulk terms)

PΩ(E) + γP (E; ∂Ω) ,

this resulting in the relative perimeter when γ = 0. The proof of Young’s law relies on
a boundary regularity result for local minimizers of the capillary energy, which requires
∂Ω to be sufficiently smooth [8]. However, despite of its relevance in applications [12],
much fewer is known, in general, about the behavior of a capillary surface near singular
points of ∂Ω. We mention here some works by Concus-Finn [5], Lancaster [21], Chen-
Finn-Miersemann [4], Lancaster-Siegel [20], Tamanini [29], Leonardi-Saracco [22], where
the authors focus their attention on the behavior of a capillary surface close to a wedge-
or corner-type singularity. About the case of free-boundary minimal surfaces (γ = 0), we
also recall the study on free-boundary minimal surfaces in 3-dimensional wedge domains,
mainly due to Hildebrandt and Sauvigny [16–19], and the recent contribution by Edelen
and Li [9], where the authors demonstrate an ε-regularity result for free-boundary minimal
surfaces in domains that are close to a polyhedral-cone, i.e. are the image of a polyhedral
cone through a transformation that is C2-close to the identity. The present dissertation
aspires to take place among the literature mentioned above, providing a survey about the
behavior of an almost-minimizer of the relative perimeter (or a free-boundary minimal
surface) near a vertex-type singularity of the container. This analysis is carried out in
two different but complementary directions. In Chapter 4, we focus on a specific setting.
Given an axially-symmetric, (n + 1)-dimensional convex cone, that up to translations is
assumed to coincide with

Ωλ :=
{

(x1, ..., xn+1) ∈ Rn+1 : xn > λ
√
x2

1 + ...+ x2
n−1 + x2

n+1

}
,

for some λ > 0, we study the stability of the free-boundary minimal surface Σ obtained by
the intersection of Ωλ with a n-plane containing the axis of Ωλ. For our stability analysis,
we introduce a Lipschitz flow Σt[f ] of deformations of Σ associated with a compactly-
supported, scalar deformation field f , which satisfies the key property ∂Σt[f ] ⊂ ∂Ωλ, for
all t ∈ R. The construction is actually performed in more general convex domains, in
particular those that can be represented as epigraphs of a convex map. By computing the
lower-right second variation of the area of Σ along this flow, we discover that the stability
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of Σ into Ωλ depends on dimΣ = n. When n = 2, in Theorem 4.3.3, we prove that Σ is
not stable; consequently, Σ fails to be area-minimizing in a 3-dimensional circular cone.
While, when n ≥ 3, in Theorem 4.3.5 we show something rather surprising, namely that,
as Ωλ has a sufficiently large aperture, i.e. λ is small enough, then Σ is strictly stable.
This behavior sinks its roots in the feature assumed by the non-negativity condition for
the second variation of the area of Σ. Indeed, we proved that the latter is equivalent to
the validity of the following functional relation, for every f : Σ → R Lipschitz continuous
and compactly supported into Σ:

∫
Σ

|∇f |2 ≥ λ
∫

∂Σ

f(y)2

|y|
dHn−1(y) .

This functional inequality, in a slightly different shape, is known in literature, in particular
in the context of reaction-diffusion problems [6], and is called Kato’s Inequality. This
inequality fails when n = 2 (because, if f is compactly supported and f(0) ̸= 0, then
the right hand side explodes), while it is proved to hold when dimΣ ≥ 3, with a suitable
dimensional constant in place of λ. Thus, as n ≥ 3 and λ is smaller than a suitable
threshold λ∗ ≡ λ∗(n), the stability of Σ follows. The different (and, at first sight, quite
unexpected) stability properties of Σ have a correspondence in some literature on minimal
surfaces within cones. In particular, a result of Morgan [27] implies that the free-boundary
∂Σ is an area-minimizing (n− 1)-surface in ∂Ωλ as soon as n ≥ 4 and λ is small enough.
The investigation initiated in Chapter 4 opens the doors to other interesting questions.
For instance, one could ask whether, for λ ≤ λ∗, Σ is only stable or even area-minimizing
into Ωλ. A possible approach for the proof of the minimality of Σ into Ω could be the
construction of an appropriate (sub-)calibration of Σ into Ω. The calibration method is
the same employed by Morgan in [27] to demonstrate his minimality result for ∂Σ into ∂Ωλ

in dimension n ≥ 4. We then expect that, via a suitable adaptation of this construction,
we should be able to prove the minimality of Σ into Ωλ at least for n ≥ 4. However, the
same kind of analysis in the case n = 3 seems harder, as it is not fully clear whether ∂Σ
is unstable, or at least not area-minimizing, in ∂Ωλ. We limit to notice that our result
seems to support the conjecture that Σ is locally area-minimizing also when n = 3.

In the last Chapter of the thesis, we concentrate on the proof of a so-called Vertex-
skipping Theorem. The question underlying this result generalizes that which moved us
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in the study of the minimality of Σ in an axially symmetric cone: our purpose is to
understand whether the boundary of an almost-minimizer of the relative perimeter in an
open, convex set Ω ⊂ Rn could contain vertex-type singularities of ∂Ω. We say that a
point x0 ∈ ∂Ω is a vertex for Ω if the tangent cone Ωx0 to Ω at x0 does not contain lines,
i.e., up to isometries, Ωx0 cannot be written as R × C, for some convex cone C ⊂ Rn−1.
We notice that here a vertex x0 of Ω is not the vertex of a cone, i.e. it is not required
that x0 + t(x − x0) ∈ Ω, for every x ∈ Ω. Nonetheless, we remark that, when Ω is a
cone having a vertex at x0, the two definitions trivially coincide. With a little abuse of
terminology, saying vertex, we will refer both to the vertex of a cone and to the vertex
of an open, convex set Ω in the sense of the definition just provided. The context shall
clarify which is the correct interpretation of the terminology. In our main result Theorem
5.3.1, we prove what follows.

Let Ω ⊂ R3 be an open, convex set, and let x0 ∈ ∂Ω be a vertex for Ω. If E ⊂ Ω is
a local almost-minimizer of the relative perimeter in Ω, then

x0 /∈ ∂E ∩ Ω ,

i.e. the closure of the boundary of E does not contain vertex-type singularities of
the boundary of Ω.

This result generalizes Theorem 4.3.4 proved in Chapter 4. On the other hand, it is worth
to mention that the validity of such a result in dimension n ≥ 4 seems improbable, owing
to the stability result Theorem 4.3.5. The proof of the statement above is based on a
contradiction argument, that is composed of three main steps. The first one is a double
blow-up procedure, that allows to reduce the problem to the case of a conical minimizer
of the relative perimeter in the tangent cone to Ω at x0, and containing x0. We notice
that, since more classical Monotonicity Formulas (such as that proved in [13]) are enough
for the proof of Theorem 5.3.1, the boundary Monotonicity Formula proved in Chapter 3
does not play a direct role here. Nevertheless, its application permits to show that, under
some further assumptions on Ω (mainly those allowing to apply Theorem 3.4.1), a single
blow-up of Ω at x0 is enough in the context of our proof (Remark 5.1.5). The second step
consists of the characterization of the boundary of the conical minimizer obtained through
the aforementioned blow-up operation. We in particular show that the boundary of this
minimizer is a plane containing the vertex. The proof of this fact is very delicate: in



CONTENTS 11

particular, it is based on the properties of geodesic triangles on the sphere. The final step
is devoted to construct a competitor with less area than the plane, achieving the desired
contradiction. To do so, the idea is to pack the tangent cone into a cone with rectangular
section, that we called pyramid-cone, performing then the construction of the competitor
in this special cone. This construction is non-trivial: to build a competitor with less
area than the plane in the pyramid-cone, the idea is to displace the plane itself along its
normal up to a suitable height, and then find an astute connection with the original plane
to produce the competitor. We conclude by highlighting an important consequence of the
Vertex-skipping Theorem 5.3.1 in combination with Theorem 1.1 proved in the already
cited paper by Edelen-Li [9]: the singular set of a 2-current in a 3-dimensional plyhedral
domain is empty. This improves Theorem 1.2 demonstrated in [9].





Chapter 1

Bounded Variation functions

In this Chapter, we introduce the notions of variation for the gradient of a measurable
function and of perimeter for a measurable set, namely the total variation of its character-
istic map. Then we illustrate the main properties satisfied by the functions with bounded
variation.

1.1 Differentiation of Radon measures

For a definition of Radon measure, real Radon measure, or vector Radon measure we refer
to [3, Definition 1.40]. With a little abuse of terminology, saying Radon measure we will
equivalently refer to a Radon measure, a real Radon measure, or a vector Radon measure.
If µ is a Radon measure on Rn taking values in Rp, we denote by |µ| its total variation
(see [3, Definition 1.4]). Let u = (u1, ..., up) : Rn → Rp be summable with respect to |µ|,
then we denote by u · µ the Radon measure defined by

u · µ(E) :=
∫

E
u · dµ =

p∑
q=1

∫
E
uqdµq .

It can be proved (see [3, Proposition 1.23]) that

|u · µ| = |u| · µ . (1.1.1)

13
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We have the following result, whose proof can be found in [26, Corollary 5.11]. From now
on, by Br(x) we will denote a ball of center x and radius r, and denoting by Br the ball
Br(0).

Lemma 1.1.1. Let µ, ν be Radon measures taking values in R, Rp respectively. Then,
for µ-a.e. x ∈ Rn, the following limit exists

Dµν(x) := lim
r→0+

ν(Br(x))
µ(Br(x)) ,

and the corresponding function f is such that f ∈ L1
loc(Rn, µ;Rp) and

ν = Dµν · µ+ νs
µ ,

where νs
µ is singular with respect to µ.

The function Dµν is called the µ-density of ν.

1.2 Variation and perimeter

We start with the following

Definition 1.2.1. Let Ω ⊂ Rn be an open subset and f ∈ L1
loc(Rn). The variation of f

in Ω is defined by

|Df |(Ω) = sup
{∫

Ω
f div ϕ dx : ϕ ∈ C1

c (Ω;Rn) , ||ϕ||L∞(Ω) ≤ 1
}
.

We say that f has bounded variation in Ω, and we write f ∈ BV (Ω), provided f ∈ L1(Ω)
and

|Df |(Ω) < +∞ .

When f coincides with the characteristic of a measurable set, we use the following
terminology.

Definition 1.2.2. Let Ω ⊂ Rn be an open subset and E ⊂ Rn be a measurable set. We
call perimeter of E in Ω the following quantity

P (E; Ω) = |D1E|(Ω) ,
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We say that E has finite perimeter in Ω if P (E; Ω) < +∞.

In the next Chapters, we will often use the following notation: given two open sets Ω,
A ⊂ Rn and a measurable set E ⊂ Ω, we set

PΩ(E;A) := P (E;A ∩ Ω) ,

with the short form PΩ(E;A) := P (E) when A contains Ω. We call PΩ the relative
perimeter in Ω, and PΩ(E;A) the relative perimeter of E in Ω restricted to A.
Sometimes we will also use the following terminology.

Definition 1.2.3. Let Ω ⊂ Rn be an open set.

(i) We say that f ∈ L1
loc(Ω) has locally bounded variation in Ω if

|Df |(A) < +∞ , for any A ⊂⊂ Ω, A open.

(ii) We say that a measurable subset E ⊂ Ω is a Caccioppoli Set (or that has locally
finite perimeter) in Ω, if

P (E;A) < +∞ , for any A ⊂⊂ Ω, A open.

We will denote by BVloc(Ω) the space of the functions f ∈ L1
loc(Ω) such that

f ∈ BV (Ω ∩ A) , for all open, bounded sets A ⊂ Ω .

We remark that f ∈ BVloc(Ω) implies that f has locally bounded variation in Ω, but the
viceversa does not hold.

A bounded variation function can be characterized by its distributional gradient. The
proof of the result below corresponds to the proof of Theorem 5.1 in [10].

Theorem 1.2.4. Let Ω ⊂ Rn be open. A function f ∈ L1(Ω) has bounded variation
in Ω if and only if its distributional gradient is a Radon measure, i.e. there exists a
vector-valued Radon measure µf : B(Rn) → Rn with the following property:

−
∫

Ω
f div ϕ dx = (ϕ · µf ) Ω , for all ϕ ∈ C1

c (Ω;Rn).
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Moreover, the total variation of µf and the variation of f coincide, i.e.

|µf |(Ω) = |Df |(Ω) .

From now on, with a little abuse of notation, we will identify Df and µf . Let now
f ∈ BV (Ω). As a consequence of Lemma 1.1.1 we can consider the |Df |-density of Df ,
that we call νf , which is defined by

νf (x) = lim
r→0+

Df(Br(x))
|Df |(Br(x)) , for |Df |-a.e. x ∈ Rn .

We have νf ∈ L1(Rn, |Df |;Rn). Since trivially Df is absolutely continuous with respect
to |Df |, νf realizes

Df = νf · |Df | . (1.2.1)

Moreover, from (1.1.1), (1.2.1), it follows that

|νf | · |Df | = |νf · |Df || = |Df | ,

and so that νf (x) = 1 at |Df |-a.e. x ∈ Rn. When E has finite perimeter in Ω, we set

νE = ν1E
. (1.2.2)

The variation |Df(Ω)| is lower-semicontinuous with respect to the L1
loc-convergence. The

proof of the following result is given in [10].

Lemma 1.2.5. Let Ω ⊂ Rn be open, and {fj}j≥1 ⊂ L1
loc(Ω) be a sequence of functions

having locally bounded variation in Ω that L1
loc converges to a function f . Then the

following inequality holds:
|Df |(Ω) ≤ lim inf

j
|Dfj|(Ω) .

1.3 Properties of BV functions

1.3.1 Approximation and compactness

BV functions can be approximated by smooth functions in a suitable sense.
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Theorem 1.3.1. Let Ω ⊂ Rn be open and f ∈ BV (Ω). Then there exists a sequence
{fj}j≥1 ∈ C∞(Ω) ∩BV (Ω) such that

||fj − f ||L1(Ω) → 0 , |Dfj|(Ω) → |Df |(Ω) . (1.3.1)

Moreover, provided (1.3.1) holds, we also have Dfj ⇀
∗ Df , i.e., for all ϕ ∈ C∞

c (Rn;Rn),
∫
Rn
ϕ · dDfj →

∫
Rn
ϕ · dDf , as j → ∞ .

For the proof of the Theorem above, see Theorems 5.3 and 5.4 in [10].

Remark 1.3.2. If condition (1.3.1) holds, we say that the sequence fj strictly converges to
f (see [3, Definition 3.14]). Thus Theorem 1.3.1 tells us in particular that C∞(Ω)∩BV (Ω)
is dense in BV (Ω) with respect to the strict convergence.

Remark 1.3.3. The sequence {fj}j≥1 built for the proof Theorem 1.3.1 turns out to have
the following, further property (see [13, Remark 1.18])

lim
ρ→0+

ρ−N
∫

Ω∩Bρ(x0)
|fj − f |dx = 0 , for all N > 0, x0 ∈ ∂Ω, j ≥ 1 . (1.3.2)

Combining Theorem 1.3.1 with the compactness result holding for Sobolev functions,
one can prove the following compactness result for BV functions, provided the domain is
regular enough (see [10, Theorem 5.5]).

Theorem 1.3.4. Let Ω ⊂ Rn be an open, bounded set with Lipschitz boundary, and
{fj}j≥1 ∈ BV (Ω) be such that, for some constant C > 0,

||fj||BV (Ω) := ||fj||L1(Ω) + |Dfj|(Ω) ≤ C , for every j. (1.3.3)

Then there exists a function f ∈ BV (Ω) and a subsequence fjk
of fj such that

||fjk
− f ||L1(Ω) → 0 .
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1.3.2 Coarea

Theorem 1.3.5 (Coarea for BV functions). Let Ω ⊂ Rn be open and f ∈ L1(Ω). For
t ∈ R, let

Et = {x ∈ Ω : f(x) > t} .

Then the following statements hold:

(i) if f ∈ BV (Ω), then Et has finite perimeter for a.e. t ∈ R, t 7→ P (Et; Ω) is
measurable, and

|Df |(Ω) =
∫
R
P (Et; Ω)dt ;

(ii) conversely, if f ∈ L1(Ω), t 7→ P (Et; Ω) is measurable, and
∫
R
P (Et; Ω)dt < +∞ ,

then f ∈ BV (Ω).

Proof. The proof of the measurability of t 7→ P (Et; Ω) is given in [10, Lemma 5.1]. The
other statements are proved in Theorem 5.9 of the same book.

We also give the following Coarea result for Lipschitz continuous maps.

Theorem 1.3.6 (Coarea for Lipschitz functions). If ϕ ∈ Lip(Rn), E ⊂ Rn is a Borel set,
and f : Rn → [0,∞) is a Borel function, then

∫
E
f |∇ϕ| =

∫
R

∫
E∩{ϕ=t}

f dHn−1 dt .

1.3.3 Traces

Theorem 1.3.7. Let Ω ⊂ Rn be an open, bounded set with Lipschitz boundary and denote
by νΩ the outer, unit, normal vector defined Hn−1-a.e. on ∂Ω. Then there exists a unique
linear and bounded operator

Tr(f, ∂Ω) : BV (Ω) → L1(∂Ω,Hn−1)
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called trace operator such that, for all f ∈ BV (Ω),

lim
r→0+

−
∫

Br(x)∩Ω
|Tr(f, ∂Ω)(x) − f(y)| dy = 0 , for Hn−1-a.e. x ∈ Ω . (1.3.4)

Moreover, for all f ∈ BV (Ω), the following identity holds:
∫

Ω
f div ϕ dx = −(ϕ ·Df)Ω +

∫
∂Ω

⟨ϕ, νΩ⟩ Tr(f, ∂Ω) dHn−1 , for any ϕ ∈ C1
c (Rn,Rn) .

(1.3.5)

Proof. The linearity and the uniqueness of Tr(f, ∂Ω) immediately follow by condition
(1.3.4). The existence is proven in [13, Theorem 2.10].

The function Tr(f, ∂Ω) is called the trace of f in Ω. Identity (1.3.4) ensures in partic-
ular that

Tr(f, ∂Ω)(x) = lim
r→0+

−
∫

Br(x)∩Ω
f(y) dy , for Hn−1-a.e. x ∈ ∂Ω . (1.3.6)

Hence, the trace can be interpreted as the boundary value on ∂Ω assumed by the function
f . In particular, if f ∈ BV (Ω) ∩ C0(Ω), then (1.3.6) yields

Tr(f, ∂Ω) = f |∂Ω , Hn−1-a.e. on ∂Ω .

Remark 1.3.8. Under the assumptions of Theorem 1.3.7, the operator Tr(·, ∂Ω) is also
continuous with respect to the strict convergence (see [13, Theorem 2.11] or [3, Theorem
3.88]). We also observe that, selecting a suitable sequence {fj}j≥1 ⊂ C∞(Ω) ∩ BV (Ω)
realizing the thesis of Theorem 1.3.1, by applying (1.3.2) and (1.3.6) we have

|Tr(fj, ∂Ω)(x) − Tr(f, ∂Ω)(x)| =
∣∣∣∣∣ lim
r→0+

−
∫

Br(x)∩Ω
fj(y) dy − lim

r→0+
−
∫

Br(x)∩Ω
f(y) dy

∣∣∣∣∣
≤ lim

r→0+
−
∫

Br(x)∩Ω
|fj(y) − f(y)| dy (1.3.7)

= 0 , for Hn−1-a.e. x ∈ ∂Ω ,

and thus Tr(fj, ∂Ω) = Tr(f, ∂Ω), Hn−1-a.e. on ∂Ω.

Let Ω, Ω′ ⊂ Rn open, bounded sets with Lipschitz boundary such that Ω ⊂⊂ Ω′.
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We observe that ∂Ω can be oriented by νΩ, the unit, normal vector that points out with
respect to Ω, or by −νΩ, the unit, normal vector that points out with respect to Ω′ \ Ω.
For any f ∈ BV (Ω′), we can then consider two traces for f on ∂Ω, the first one with
respect to Ω, the second one with respect to Ω′ \ Ω:

Tr+(f, ∂Ω) = Tr(f, ∂Ω) , Tr−(f, ∂Ω) = Tr(f, ∂(Ω′ \ Ω)) .

From (1.3.6), it follows that the definition of Tr−(f, ∂Ω) does not depend on Ω′. The
functions Tr±(f, ∂Ω) ∈ L1(∂Ω; Hn−1) are called the inner trace and the outer trace of f
in Ω respectively. The following extension of BV functions result holds.

Lemma 1.3.9. Let Ω, Ω′ ⊂ Rn be open subsets. In addition, let Ω be bounded and have
Lipschitz boundary, and assume that Ω ⊂⊂ Ω′. For all f ∈ BV (Ω′), we have

|Df |(Ω′) = |Df |(Ω) + |Df |(Ω′ \ Ω) + ||Tr+(f, ∂Ω) − Tr−(f, ∂Ω)||L1(∂Ω;Hn−1) . (1.3.8)

Conversely, for any f1 ∈ BV (Ω), f2 ∈ BV (Ω′ \ Ω), if we set f = f1 1Ω + f2 1Ω′\Ω, then

f ∈ BV (Ω′) .

Proof. The argument is very similar to that exploited for the proof of Theorem 5.8 in
[10].

Remark 1.3.10. We observe in particular that, by (1.3.8),

|Df |(∂Ω) = ||Tr+(f1, ∂Ω) − Tr−(f2, ∂Ω)||L1(∂Ω;Hn−1). (1.3.9)

Lemma 1.3.11. Fix an open set A ⊂ Rn and a Lipschitz function ϕ : A → R of class
C1, such that |∇ϕ(x)| > 0 for all x ∈ A. Set Ar = ϕ−1(−∞, r). Then for all f ∈ BV (A),
for L1-a.e. r ∈ R, and Hn−1-a.e. x ∈ ∂Ar ∩ A, we have

f(x) = Tr+(f, ∂Ar)(x) = Tr−(f, ∂Ar)(x) . (1.3.10)

Proof. We observe that, for a.e. r ∈ R,

Tr+(f, ∂Ar) = Tr−(f, ∂Ar) , Hn−1-a.e. on ∂Ar ∩ A. (1.3.11)
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Indeed, for the proof of (1.3.11) we can combine (1.3.8) with |Df |(∂Ar ∩ A) = 0 for a.e.
r ∈ R, which in turn comes from the fact that |Df | is a finite measure and ∂Ar ∩∂As∩A =
∅ whenever r ̸= s. Let x ∈ A be a Lebesgue point for f , then x ∈ ∂Ar if and only if
r = ϕ(x). Thanks to the smoothness of ∂Ar ∩ A (a consequence of the Implicit Function
Theorem) we have

|Ar ∩Bρ(x)| = 1
2 ρ

n + o(ρn) , as ρ → 0+ ,

and consequently

f(x) = lim
ρ→0+

1
ωn ρn

∫
Bρ(x)

f(y) dy

= lim
ρ→0+

1
ωn ρn

(∫
Ar∩Bρ(x)

f(y) dy +
∫

Bρ(x)\Ar

f(y) dy
)

= lim
ρ→0+

1
2

1
|Ar ∩Bρ(x)|

∫
Ar∩Bρ(x)

f(y) dy + 1
2

1
|Bρ(x) \ Ar|

∫
Bρ(x)\Ar

f(y) dy

= 1
2 Tr+(f, ∂Ar)(x) + 1

2 Tr−(f, ∂Ar)(x)

= Tr±(f, ∂Ar)(x) .

Since the set of Lebesgue points for f coincides with A up to a Ln-negligible set, by
Theorem 1.3.6 we obtain that the first equality in (1.3.10) is verified for L1-a.e. r ∈ R
and Hn−1-a.e. x ∈ ∂Ar ∩ A, which together with (1.3.11) concludes the proof.

Proposition 1.3.12. Under the assumptions of Lemma 1.3.11, we take f, fj ∈ BV (A)
for j ∈ N, such that

||fj − f ||L1(A) −→ 0 , |Dfj|(A) −→ |Df |(A) .

Then, for a.e. 0 < r < 1, we have

Tr(f, ∂Ar) := Tr+(f, ∂Ar) = Tr−(f, ∂Ar) (1.3.12)
Tr(fj, ∂Ar) := Tr+(fj, ∂Ar) = Tr−(fj, ∂Ar) , for all j ≥ 1 , (1.3.13)
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and

|Dfj|(Ar) −→ |Df |(Ar) , ||Tr(fj, ∂Ar) − Tr(f, ∂Ar)||L1(∂Ar) −→ 0 , (1.3.14)

hence in particular fj strictly converges to f on Ar.

Proof. Thanks to Lemma 1.3.11, the two identities (1.3.12) and (1.3.13) hold for a.e.
0 < r < 1. In particular, for such r, we deduce that |Df |(∂Ar) = 0, hence |Df |(Ar) =
|Df |(Ar). Moreover, by Lemma 1.2.5, we have

lim inf
j→∞

|Dfj|(Ar) ≥ |Df |(Ar)

= |Df |(Ar) = |Df |(A) − |Df |(A \ Ar)
= lim

j→∞
|Dfj|(A) − |Df |(A \ Ar)

≥ lim sup
j→∞

|Dfj|(A) − |Dfj|(A \ Ar)

= lim sup
j→∞

|Dfj|(Ar)

≥ lim sup
j→∞

|Dfj|(Ar) ,

which proves that
|Df |(Ar) = lim

j→∞
|Dfj|(Ar) .

Since ||fj − f ||L1(A) → 0, we have in particular ||fj − f ||L1(Ar) → 0, and thus {fj}j≥1

strictly converges to f in Ar. Finally, (1.3.14) holds because, as observed in Remark
1.3.8, the inner trace operator is continuous with respect to the strict convergence.

1.4 Structure properties of Caccioppoli Sets

The perimeter of a set can be roughly described as a generalization of the measure of the
boundary of the set itself. In this section, we give a very important structure Theorem for
sets having (locally) finite perimeter. The proof of this capital result is due to Ennio De
Giorgi. We start stating the following Lemma, whose proof is exactly that of Proposition
12.19 contained in [26]. The other parts of the present section are mostly inspired by
Chapter 5 of [26].
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Lemma 1.4.1. Let E ⊂ Rn be a set of locally finite perimeter. Then

sptD1E = {x ∈ Rn : 0 < |E ∩Br(x)| < ωnr
n , for all r > 0} ⊂ ∂E .

Moreover, there exists a measurable set E ′ ⊂ Rn such that

|E ′∆E| = 0 , spt |D1E′| = ∂E ′ . (1.4.1)

Remark 1.4.2. In other words, the support of D1E is contained in the topological bound-
ary of E. In addition, up to choosing suitably a representative for E, the support of D1E

coincides with ∂E.

Definition 1.4.3. Let E ⊂ Rn be a set of locally finite perimeter. We define the reduced
boundary of E, and we denote it by ∂∗E, as the set of those points x ∈ Rn such that
|D1E(Br(x))| > 0, for all r > 0, and the following limit exists

νE(x) = lim
r→0+

D1E(Br(x))
|D1E(Br(x))| ,

with |νE(x)| = 1.

Remark 1.4.4. We observe that νE(x) is precisely the |D1E|-density of D1E that we
introduced in (1.2.2). Then

|νE(x)| = 1 , for |D1E|-almost all points x ∈ Rn ,

D1E = νE · |D1E| ∂∗E . (1.4.2)

Remark 1.4.5. By definition, ∂∗E ⊂ sptD1E. Moreover, we observe that (1.4.2) implies

sptD1E ⊂ ∂∗E.

Hence ∂∗E ⊂ sptD1E ⊂ ∂∗E. By Lemma 1.4.1, we infer that up to a suitable choice of
a representative of E realizing (1.4.1), we also have

∂∗E ⊂ ∂E = ∂∗E .
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We finally state the following structure Theorem due to De Giorgi. The proof of this
result can be found in [26].

Theorem 1.4.6. Let E ⊂ Rn be a set of locally finite perimeter. Then

|D1E| = Hn−1 ∂∗E , D1E = νE · Hn−1 ∂∗E ,

and the following generalization of the Gauss-Green Formula holds:
∫

E
∇ϕ dx =

∫
∂∗E

ϕνE dHn−1 .

Moreover ∂∗E is countably (n − 1)-rectifiable, i.e. there exist countably many C1 hyper-
surfaces Mj ⊂ Rn, compact sets Kj ⊂ Mj and a Borel set F with Hn−1(F ) = 0 realizing

∂∗E = F ∪
⋃
j≥1

Kj .

Finally, for every x ∈ Kj, we have νE(x)⊥ = TxMj.

1.4.1 A local extension result

For this part, we assume that Ω ⊂ Rn is an open set with Lipschitz boundary. We fix
ρ > 0 such that, up to an isometry, there exist a Lipschitz function ω : B′

ρ → R and a
constant m > 0, with ω(0) = 0 and m > ∥ω∥L∞(B′

ρ), satisfying the following property: if
we set Cρ,m = B′

ρ × (−m,m), we have

Ω ∩ Cρ,3m = {x = (x′, xn) ∈ Rn : x′ ∈ B′
ρ , ω(x′) < xn < 3m} . (1.4.3)

We aim to prove that, under this assumption, any measurable set E ⊂ Ω with 1E ∈
BVloc(Ω)1 can be extended to a locally finite perimeter set Ẽ in Ω ∪ Cρ,m, in such a way
that Ẽ ∩ Ω = E ∩ Ω, P (Ẽ; ∂Ω ∩ Cρ,m) = 0, and P (Ẽ;S(B)) ≤ C P (E;B), for all Borel
sets B ⊂ Cρ,m \ Ω and for some constant C > 0 depending on the dimension n and the
function ω. In what follows, we will denote by TxE the approximate tangent space to
∂∗E at x2.

1We recall that in this paper f ∈ BVloc(Ω) means f ∈ BV (A) for all A ⊂ Ω open and bounded.
2The approximate tangent space TxE is given by the orthogonal complement of νE(x).
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Set Cρ = B′
ρ × R and define the map S : Cρ → Cρ as

S(x) := (x′, 2ω(x′) − xn) . (1.4.4)

Note that S satisfies S2(x) = x for all x. Moreover, elementary computations show that

Lip(S) ≤
√

3 + 6Lip(ω)2 . (1.4.5)

Given E ⊂ Ω measurable with 1E ∈ BVloc(Ω), we define Ẽ ⊂ Ω ∪ Cρ as

Ẽ = E ∪ (Sρ(E) \ Ω) , (1.4.6)

where Sρ(E) = S(E ∩ Cρ). Clearly, we have Ẽ ∩ Ω = E ∩ Ω. Further properties of Ẽ are
stated in the next lemma.

Lemma 1.4.7. Let E ⊂ Ω be a measurable set with 1E ∈ BVloc(Ω). Then, for almost all
x ∈ ∂∗E, S restricted to x+TxE is differentiable at x, and we denote by dESx : TxE → Rn

its differential. Moreover, if Ẽ is the set defined in (1.4.6), we have

P (Ẽ; ∂Ω ∩ Cρ,m) = 0 (1.4.7)

and, for all Borel sets B ⊂ S(Cρ,m ∩ Ω),

P (Ẽ;B) = P (Sρ(E);B) =
∫

∂∗E∩S(B)
JES(x) dHn−1(x) ≤ C P (E;S(B)) , (1.4.8)

where JES(x) :=
√

det(dES∗
x ◦ dESx), dES∗

x is the adjoint of dESx, and C = Lip(S)n−1.

Proof. Owing to Theorem 1.4.6, we know that ∂∗E is countably (n− 1)-rectifiable. Then
the fact that S|TxE is differentiable at Hn−1-a.e. x ∈ ∂∗E follows immediately from [26,
Theorem 11.4].

Now, we prove (1.4.7) in the following way. Thanks to Lemma 1.3.9 we only need to
check that, for Hn−1-a.e. x ∈ ∂Ω ∩ Cρ,m, we have

Tr+(1Ẽ, ∂Ω)(x) = Tr−(1Ẽ, ∂Ω)(x) ,



26 CHAPTER 1. BOUNDED VARIATION FUNCTIONS

that is,
Tr+(1E, ∂Ω)(x) = Tr+(1Sρ(E), ∂(Rn \ Ω))(x) . (1.4.9)

The proof of (1.4.9) goes as follows. We employ the characterization of the trace as a
limit of averages: for Hn−1-a.e. x ∈ ∂Ω we have

Tr+(1E, ∂Ω)(x) = lim
r→0+

|E ∩Br(x) ∩ Ω|
|Br(x) ∩ Ω|

and
Tr+(1Sρ(E), ∂(Rn \ Ω))(x) = lim

r→0+

|Sρ(E) ∩Br(x) \ Ω|
|Br(x) \ Ω|

.

Then we combine this characterization with a consequence of (1.3.4), i.e. that the trace
of a BV characteristic function coincides with a characteristic function Hn−1-almost ev-
erywhere on ∂Ω, to infer that we only need to show the equivalence

Tr+(1E, ∂Ω)(x) = 0 ⇔ Tr+(1Sρ(E), ∂(Rn \ Ω))(x) = 0 .

One of the two required implications (the other can be discussed similarly) is

Tr+(1E, ∂Ω)(x) = 0 ⇒ Tr+(1Sρ(E), ∂(Rn \ Ω))(x) = 0 .

This implication can be restated as

|E ∩Br(x) ∩ Ω| = o(rn) ⇒ |Sρ(E) ∩Br(x) \ Ω| = o(rn) as r → 0+. (1.4.10)

Up to taking r > 0 small enough, we have Br(x) ⊂ Cρ,m, hence setting L = Lip(S) we get

|Sρ(E) ∩Br(x) \ Ω| ≤ |S
(
E ∩ S(Br(x)) ∩ Ω

)
|

≤ Ln|E ∩BLr(x) ∩ Ω|

= Lno(Lnrn) = o(rn) as r → 0+ ,

which proves the implication (1.4.10) and concludes the proof of (1.4.7).
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Finally, for the proof of (1.4.8), it is enough to show that

Hn−1(∂∗S(E)∆S(∂∗E)) = 0 . (1.4.11)

Indeed, if (1.4.11) holds, Theorem 1.4.6 ensures that

P (S(E);B) = Hn−1(∂∗S(E) ∩B) = Hn−1(S(∂∗E) ∩B) = Hn−1(S(∂∗E ∩ S(B))) ,

thus (1.4.8) is an immediate consequence of the Area Formula for rectifiable sets (see [26,
Theorem 11.6]). Let us demonstrate (1.4.11). Again by Theorem 1.4.6, it suffices to prove
that

S(E)(0) = S(E(0)) , S(E)(1) = S(E(1)) . (1.4.12)

Let us prove the first of the previous identities, as the proof of the other one is obtained
by observing that (Rn \ E)(0) = E(1). Let 0 < δ < ρ, and x ∈ Ω ∩ (B′

ρ−δ × R). Set
L = Lip(S) as before, then by construction, for any 0 < r < δ, S(Br(S(x))) ⊂ BLr(x),
and thus the Area Formula yields

|S(E) ∩Br(S(x))| =
∫

E∩Br(S(x))
JS dx ≤ Ln|BLr(x)| . (1.4.13)

Since r is arbitrary and S−1 = S, it is easy to check that, thanks to (1.4.13), if x ∈ E(0)

then S(x) ∈ S(E)(0), which proves the inclusion S(E(0)) ⊂ S(E)(0). The reverse inclusion
is proved in a completely analogous way. The proof of the lemma is then achieved thanks
to (1.4.5).
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Chapter 2

Almost minimality

In this Chapter, we introduce the definition of (local) almost-minimizer of the relative
perimeter in an open subset. This notion will play a key role in the thesis, since the most
part of our results will apply to almost minimizers.

2.1 Almost minimizers

Definition 2.1.1. Let Ω ⊂ Rn be an open set and E ⊂ Rn be measurable. We say that
E is a local almost-minimizer of PΩ if, for any x ∈ Ω there exists rx > 0 such that, for
any 0 < r < rx and any measurable subset F of Ω with F∆E ⊂⊂ Br(x), one has

PΩ(E;Br(x)) ≤ PΩ(F ;Br(x)) + |F∆E|
n−1

n ψΩ(E;x, r) , (2.1.1)

for a suitable function ψΩ(E;x, r) such that limr→0+ ψΩ(E;x, r) = 0.
If ψΩ(E;x, r) = 0, for all x ∈ Ω, we say that E is a minimizer of PΩ.
If there exists a function ψΩ(E; r) : (0, r0) −→ R such that limr→0+ ψΩ(E; r) = 0, and

ψΩ(E;x, r) ≤ ψΩ(E; r) , for all x ∈ Ω ,

we say that E is a almost-minimizer of PΩ.

Various notions of almost minimality can be found in literature. The notion chosen in

29
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Definition 2.1.1 turns out to be rather weak, in the sense that the other, most common
definitions of almost-minimality require conditions that are stronger than (2.1.1). This is
the case of the so-called Λ-minimizers. We say that E is a Λ-minimizer of PΩ if, for any
x ∈ Ω there exists rx > 0 such that, for any 0 < r < rx and any measurable subset F of
Ω with F∆E ⊂⊂ Br(x), one has

PΩ(E;Br(x)) ≤ PΩ(F ;Br(x)) + Λ|F∆E| . (2.1.2)

It is then clear that condition (2.1.2) is stronger than (2.1.1): in particular, Λ-minimizers
satisfy (2.1.1) with

ψΩ(E;x, r) = Λ r ω1/n
n .

2.1.1 Minimality gap

Definition 2.1.2. Let Ω, A ⊂ Rn be open sets and f ∈ BVloc(Ω). The minimality gap of
f in A relative to Ω is

ΨΩ(f ;A) = |Df |(Ω∩A)−inf{|Dg|(Ω∩A) : g ∈ BVloc(Ω) , g − f has compact support in A} .

If f = 1E for some measurable set E with 1E ∈ BVloc(Ω), the minimality gap measures
how far is a measurable subset E from minimizing PΩ. When f = 1E, for some measurable
subset E ⊂ Rn, we denote ΨΩ(1E;A) by ΨΩ(E;A).

Lemma 2.1.3. Let Ω, A ⊂ Rn be open sets and E ⊂ Ω be such that 1E ∈ BVloc(Ω).
Then

ΨΩ(E;A) = PΩ(E;A) − inf{PΩ(F ;A) : 1F ∈ BVloc(Ω) , F∆E ⊂⊂ A ∩ Ω} .

Proof. Let us define

I1 = inf{|Dg|(Ω ∩ A) : g ∈ BVloc(Ω) , spt(g − 1E) ⊂⊂ A ∩ Ω}

I2 = inf{PΩ(F ;A) : 1F ∈ BVloc(Ω) , F∆E ⊂⊂ A ∩ Ω} .

It suffices to show that I1 = I2. For sure, I1 ≤ I2 because we can take g = 1F in the
definition of I1. Fix now ε > 0, and let g ∈ BVloc(Ω) be such that spt(g− 1E) ⊂⊂ A∩A
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and
|Dg|(Ω ∩ A) ≤ I1 + ε . (2.1.3)

For t ∈ R, let us set
Gt = {x ∈ Ω : g(x) > t} .

We observe that, for each 0 < t < 1, Gt \ spt(g − 1E) = E \ spt(g − 1E), and so

Gt∆E ⊂ spt(g − 1E) ⊂⊂ A ∩ Ω . (2.1.4)

We can now exploit Theorem 1.3.5 and (2.1.4) to infer that

|Dg|(Ω ∩ A) =
∫
R
PΩ(Gt;A)dt ≥

∫ 1

0
PΩ(Gt;A)dt ≥ I2 . (2.1.5)

By (2.1.3) and (2.1.5), we deduce that

I1 ≤ I2 ≤ I1 + ε .

Owing to the arbitrariness of ε, we finally conclude that I1 = I2.

Lemma 2.1.4. Under the assumptions of Definition 2.1.2, if A ⊂⊂ A′, then

ΨΩ(f ;A) ≤ ΨΩ(f ;A′) .

Proof. Let us fix ε > 0, and let g be such that

|Df |(Ω ∩ A) − |Dg|(Ω ∩ A) ≥ ΨΩ(f ;A) − ε .

We can take

g̃(x) =

g(x) if x ∈ Ω ∩ A

f(x) if x ∈ Ω \ A.
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Since A ⊂⊂ A′ and the fact that f and g̃ coincide out of A, by (1.3.8), we get

ΨΩ(f ;A′) ≥ |Df |(Ω ∩ A′) − |Dg̃|(Ω ∩ A′)
= |Df |(Ω ∩ A) + |Df |(Ω(A′ \ A)) + |Df |(Ω ∩ ∂A)−

− |Dg̃|(Ω ∩ A) − |Dg̃|(Ω ∩ (A′ \ A)) − |Dg̃|(Ω ∩ ∂A)
= |Df |(Ω ∩ A) − |Dg|(Ω ∩ A)
≥ ΨΩ(f ;A) − ε .

Since ε is arbitrary, we conclude.

Remark 2.1.5. The minimality gap of a local almost-minimizer satisfies a suitable de-
cay on balls. Indeed, under the assumptions of Definition 2.1.2, if E is a local almost-
minimizer (resp. a minimizer) of PΩ, then, owing to Lemma 2.1.3 and the trivial estimate
|F∆E| ≤ ωnr

n, we have

ΨΩ(E;Br(x)) ≤ ω
n−1

n
n rn−1ψΩ(E;x, r) (resp. ΨΩ(E;Br(x)) = 0), (2.1.6)

for all x ∈ Ω, 0 < r < rx, where ψΩ(E;x, r) is the function appearing in (2.1.1). Con-
versely, if for any x ∈ Ω there exists rx > 0 such that for all 0 < r < rx,

ΨΩ(E;Br(x)) = 0 ,

then E is a minimizer of PΩ.

2.1.2 Density estimates

In this subsection we establish perimeter and volume density estimates for almost-minimizers
at a point either in Ω or on ∂Ω.

Lemma 2.1.6. Let Ω ⊂ Rn be an open set with a Lipschitz boundary. Let E be an
almost-minimizer in Ω, and let x ∈ Ω. Assume that PΩ(E;Br(x)) > 0 for all r > 0.
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Then, there exist constants C ≥ 1, r > 0, depending on Ω, E and x, such that

C−1rn−1 ≤ PΩ(E;Br(x)) ≤ Crn−1 (2.1.7)
min

(
|E ∩Br(x) ∩ Ω|, |(Br(x) ∩ Ω) \ E|

)
≥ C−1rn , (2.1.8)

for all 0 < r < r.

Proof. Up to a translation, we assume that x = 0. We start proving (2.1.8). Given r > 0
we set

m(r) := |Br ∩ Ω ∩ E| , µ(r) := |Br ∩ Ω \ E| .

Both m and µ are non-decreasing, thus differentiable for almost all r > 0. By [26, Example
13.3], for almost all r > 0, we have

m′(r) = Hn−1(E ∩ ∂Br ∩ Ω) , µ′(r) = Hn−1(∂Br ∩ Ω \ E) .

Since the one-parameter family of rescaled domains Dr := r−1(Ω ∩ Br), 0 < r ≤ 1 is
precompact with respect to the L1-convergence in the class of Lipschitz and connected
domains, there exists a constant C > 0 such that the following, relative isoperimetric
inequality holds

PΩ(E;Br) ≥ C min{m(r), µ(r)}n−1
n , (2.1.9)

for all 0 < r < 1. Set 0 < t < r and define the competitor

Ft =

E ∪Bt ∩ Ω if m(t) > µ(t),

E \Bt ∩ Ω otherwise.

We note that in the first case Ft∆E = Bt ∩ Ω \ E, while in the second case Ft∆E =
Bt ∩ Ω ∩ E. In any case, we have Ft∆E ⊂⊂ Br ∩ Ω. Thus, by the almost-minimality of
E in Ω, and for almost all 0 < t < r, we infer that either

PΩ(E;Br) ≤ PΩ(Ft;Br) + µ(t)n−1
n ψ(r) (2.1.10)

≤ PΩ(E;Br \Bt) + Hn−1(∂Bt ∩ Ω \ E) + µ(r)n−1
n ψ(r) ,
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or

PΩ(E;Br) ≤ PΩ(Ft;Br) +m(t)n−1
n ψ(r) (2.1.11)

≤ PΩ(E;Br \Bt) + Hn−1(∂Bt ∩ Ω ∩ E) +m(r)n−1
n ψ(r) .

where ψ(r) := ψΩ(E; 0, r). Taking the limit as t ↗ r in (2.1.10) and (2.1.11), and using
(2.1.9), we deduce that, if m(r) > µ(r), then for almost all 0 < r < r0 we have

µ′(r) + µ(r)n−1
n ψ(r) ≥ Cµ(r)n−1

n ,

while otherwise, we have

m′(r) +m(r)n−1
n ψ(r) ≥ Cm(r)n−1

n .

Therefore, calling s(r) := min{m(r), µ(r)} and owing to the infinitesimality of ψ(r) as
r → 0, we obtain

s′(r)
s(r)n−1

n

≥ C ,

for 0 < r < r, for some C, r > 0. Integrating this inequality on the interval (0, r) we obtain
(2.1.8). Then, the first inequality in (2.1.7) follows from (2.1.8) and (2.1.9). Finally, the
second inequality in (2.1.7) follows from the observation that, taking the limit as t ↗ r

in (2.1.10) and possibly redefining r and C, we have

PΩ(E;Br) ≤ H(∂Br ∩ Ω \ E) + µ(r)n−1
n ψ(r) ≤ Crn−1 ,

for every 0 < r < r. □

2.1.3 Some estimates for the minimality gap

Here we prove two key properties of the minimality gap. The first one is the lower
semicontinuity property of the minimality gap for uniform sequences of local almost-
minimizers. The second is an upper bound for the difference between the minimality gaps
of two BVloc functions.

In what follows, we will say that Ωj → Ω locally in Hausdorff distance if there exist
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r0,m, L > 0, with r0 < m, and L-Lipschitz functions ωj, ω : B′
r0 → (−m,m) providing

local graphical representations of ∂Ωj, ∂Ω, respectively, as in (1.4.3), such that ωj → ω

uniformly in B′
r0 .

Lemma 2.1.7. For j ∈ N we let Ωj,Ω ⊂ Rn be open sets with uniformly Lipschitz
boundary, such that 0 ∈ ∂Ω and Ωj → Ω locally in Hausdorff distance. Let Ej, E be sets
of locally finite perimeter, such that Ej ⊂ Ωj, E ⊂ Ω, and Ej → E in L1(Br0). Finally,
we assume that Ej satisfies (2.1.1) for all 0 < r < r0 and x = 0, and that moreover we
have

lim
r→0+

sup
j
ψΩj

(Ej; 0, r) = 0 .

Then, E satisfies (2.1.1) for all 0 < r < r0, with ψΩ(E; 0, r) = supj ψΩj
(Ej; 0, r), and

lim inf
j

ΨΩj
(Ej;Br0) ≥ ΨΩ(E;Br0) . (2.1.12)

Moreover, if ΨΩj
(Ej;Br0) → 0 as j → ∞, then for almost all 0 < r < r0 we have

lim
j→∞

PΩj
(Ej;Br) = PΩ(E;Br) , for almost all r > 0 . (2.1.13)

Proof. Let us fix ε > 0. Let F ⊂ Ω be such that F∆E ⊂⊂ Br0 and

ΨΩ(E;Br0) ≤ PΩ(E;Br0) − PΩ(F ;Br0) + ε . (2.1.14)

By Lemma 1.3.11, for all j ≥ 1, for a.e. 0 < r < r0 and Hn−1-a.e. x ∈ ∂Br, we have

1Ej
(x) = Tr±(Ej, ∂Br)(x) and 1E(x) = Tr±(E, ∂Br)(x) , (2.1.15)

where Tr±(A, ∂Br) := Tr±(1A, ∂Br). By the L1
loc-convergence of Ej to E, we can choose

r < r0 with the above property and the additional

PΩ(E;Br) ≥ PΩ(E;Br0) − ε , (2.1.16)
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then take jε large enough, such that

F∆E ⊂⊂ Br , (2.1.17)∫
∂Br

|1Ej
− 1E|dHn−1 < ε for j ≥ jε . (2.1.18)

Let us fix δ > 0, define

Uδ :=
{
x = (x′, xn) ∈ Cr,m : ω(x′) − δ < xn ≤ ω(x′)

}
,

and assume δ so small that
Hn−1(∂Br ∩ Uδ) < ε (2.1.19)

and
PΩ(E;Br) ≤ P (E;Br ∩ (Ω + δen)) + ε . (2.1.20)

Owing to the uniform convergence of ωj to ω, we can select jδ ≥ 1 such that ∥ωj −ω∥∞ < δ

for all j ≥ jδ, then for those j we define

Aj := Ωj ∩ Ω ∩Br , Bj := (Ωj \ Ω) ∩Br , (2.1.21)

and observe that Bj ⊂ Uδ. Now we set

Fj := (F̃ ∩ Ωj ∩Br) ∪
(
Ej ∩ (Br0 \Br)

)
, (2.1.22)

where F̃ = F ∪ (S(F ) \ Ω) and S is the symmetry through ∂Ω defined in (1.4.4) (with
ρ = r0). Thanks to (2.1.17), we have Fj ⊂ Ωj and Fj∆Ej ⊂⊂ Br0 , which means that Fj

is a competitor for Ej in the definition of ΨΩj
(Ej, Br0). Moreover, by (2.1.22), (2.1.18),

and (2.1.19), we have

PΩj
(Fj;Br0) ≤ PΩj

(Fj;Br) + PΩj
(Ej;Br0 \Br)

+
∫

∂Br∩Ωj∩Ω
|1Ej

− 1E|dHn−1 + Hn−1(∂Br ∩ Uδ)

≤ PΩj
(Fj;Br) + PΩj

(Ej;Br0 \Br) + 2ε . (2.1.23)
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Let us compute P (Fj;Br ∩ Ωj). By Lemma 1.4.7, P (F̃ ; ∂Ω ∩ Cr0,m) = 0, hence

PΩj
(Fj;Br) = P (F ;Aj) + P (S(F );Bj) . (2.1.24)

Again by Lemma 1.4.7, up to possibly taking a smaller δ, we have

P (S(F );Bj) = P (F̃ ;Bj) ≤ P (F̃ ;Uδ) ≤ ε . (2.1.25)

Putting together (2.1.23), (2.1.24), and (2.1.25), and taking into account (2.1.15), we
obtain

ΨΩj
(Ej;Br0) ≥ PΩj

(Ej;Br0) − PΩj
(Fj;Br0) (2.1.26)

≥ PΩj
(Ej;Br) − P (F ;Aj) − 3ε

≥ PΩj
(Ej;Br) − PΩ(F ;Br0) − 3ε .

Now, since for all j ≥ jε we have ∥ωj − ω∥∞ < δ, we infer that

Br ∩ (Ω + δen) ⊂ Br ∩ Ωj .

This inclusion combined with (2.1.26) and (2.1.20) gives

ΨΩj
(Ej;Br0) ≥ P (Ej;Br ∩ (Ω + δen)) − P (F ;Br0 ∩ Ω) − 3ε , (2.1.27)

so that taking the liminf as j → ∞ in (2.1.27), and using the lower semicontinuity of the
perimeter, (2.1.20), (2.1.16), and (2.1.14), we find

lim inf
j

ΨΩj
(Ej;Br0) ≥ lim inf

j
P (Ej;Br ∩ (Ω + δen)) − PΩ(F ;Br0) − 3ε

≥ P (E;Br ∩ (Ω + δen)) − PΩ(F ;Br0) − 3ε
≥ PΩ(E;Br) − PΩ(F ;Br0) − 4ε
≥ PΩ(E;Br0) − PΩ(F ;Br0) − 5ε
≥ ΨΩ(E;Br0) − 6ε .

Then, the arbitrary choice of ε implies (2.1.12). Now, the fact that E satisfies (2.1.1)
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with ψΩ(E; 0, r) as in the statement can be proved with the same argument used to show
(2.1.12), also taking into account that |Ej∆Fj| → |E∆F | as j → ∞. Finally, to prove
(2.1.13) we consider the sequence Fj defined as before, but now with F = E. Choosing
ε > 0 arbitrarily, for j large enough we obtain as before

ΨΩj
(Ej;Br0) ≥ PΩj

(Ej;Br0) − PΩj
(Fj;Br0)

≥ PΩj
(Ej;Br) − PΩ(E;Br) − 3ε ,

which gives the desired conclusion.

Lemma 2.1.8. Let Ω, A ⊂ Rn be open sets, with ∂Ω Lipschitz and A bounded, of class
C2, and such that Hn−1(∂A ∩ ∂Ω) = 0. Let f, g ∈ BVloc(Ω), then

|ΨΩ(f, A) − ΨΩ(g, A)| ≤
∣∣∣∣|Df |(Ω ∩ A) − |Dg|(Ω ∩ A)

∣∣∣∣ (2.1.28)

+ ∥Tr+(f0, ∂A) − Tr+(g0, ∂A)∥L1(∂A) ,

where f0, g0 denote the zero-extensions of, respectively, f and g on A \ Ω.

Proof. Given ε > 0, there exists h ∈ BVloc(Ω) with spt(h− f) ⊂⊂ A, such that

ΨΩ(f, A) ≤ |Df |(A ∩ Ω) − |Dh|(A ∩ Ω) + ε (2.1.29)
≤
∣∣∣|Df |(A ∩ Ω) − |Dg|(A ∩ Ω)

∣∣∣+ ΨΩ(g, A) + |Dh̃|(A ∩ Ω) − |Dh|(A ∩ Ω) + ε ,

where h̃ ∈ BVloc(Ω) will be suitably chosen, so that in particular spt(h̃−g) ⊂⊂ A. For the
definition of h̃, we claim that it is possible to construct a sequence A(k) of inner parallel
sets of A that converge to A, for which |Df0|(∂A(k)) = |Dg0|(∂A(k)) = 0 and, moreover,

lim
k

∫
∂A(k)

|Tr+(f0 − g0, ∂A
(k))| dHn−1 =

∫
∂A

|Tr+(f0 − g0, ∂A)| dHn−1 . (2.1.30)

For the proof of (2.1.30) we argue as follows. Since A is of class C2, there exists δ > 0 such
that, for all 0 < t < δ, the map ζt(x) = x+ tνA(x) is a diffeomorphism of class C1 between
∂A and the boundary ∂At of the inner parallel set At = {x ∈ A : dist(x, ∂A) > t}. Now,
we consider two sequences f0,j, g0,j of smooth approximations of f0, g0 on A, with traces
Tr+(f0,j, ∂A) = Tr+(f0, ∂A) and Tr+(g0,j, ∂A) = Tr+(g0, ∂A), respectively (see Remark
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1.3.8). By inspecting the proof of Anzellotti-Giaquinta’s approximation theorem, it is not
restrictive to ask that the sequences f0,j, g0,j also satisfy

∫
A\A1/k

(|f0,j − f0| + |g0,j − g0|) dx ≤ 1
k2 , (2.1.31)

for all j and for k > δ−1. We note that the tangential Jacobian of ζt satisfies Jζt(x) =
1 +O(t), hence the area formula gives
∫

∂At

|f0,j(y) − g0,j(y)| dHn−1(y) = (1 +O(t))
∫

∂A
|f0,j(ζt(x)) − g0,j(ζt(x))| dHn−1(x) .

(2.1.32)
As t → 0+ we have ζt(x) → x uniformly. Therefore, by following the same Cauchy-
sequence argument as in the classical construction of the trace (see, e.g., [10]), the com-
positions f0,j(ζt(x)) and g0,j(ζt(x)) can be shown to converge in L1(∂A) to some limits
f̂0,j and ĝ0,j, respectively. Hence (2.1.32) implies

lim
t→0+

∫
∂At

|f0,j(y) − g0,j(y)| dHn−1(y) =
∫

∂A
|f̂0,j(x) − ĝ0,j(x)| dHn−1(x) . (2.1.33)

At the same time, if we choose a vector field ξ ∈ C1(Rn;Rn) and set either uj = f0,j or
uj = g0,j, by Gauss-Green Theorem we obtain

∫
At

(uj ÷ ξ + ∇uj · ξ) dx = −
∫

∂At

uj ξ · νAt dHn−1

= −(1 +O(t))
∫

∂A
uj(ζt(x)) ξ(ζt(x)) · νA(x) dHn−1(x) ,

hence taking the limit as t → 0+ gives
∫

A
(uj ÷ ξ + ∇uj · ξ) dx = −

∫
∂A
ûj ξ · νA dHn−1 ,

which means that f̂0,j and ĝ0,j coincide, respectively, with Tr+(f0, ∂A) and Tr+(g0, ∂A)
up to Hn−1-null sets and for all j, by the uniqueness of the trace. We can thus rewrite
(2.1.33) as

lim
t→0+

∫
∂At

|f0,j(y) − g0,j(y)| dHn−1(y) =
∫

∂A
|Tr+(f0 − g0, ∂A)(x)| dHn−1(x) . (2.1.34)
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To get (2.1.30) from (2.1.34), we must choose A(k) appropriately. To this aim, we apply the
coarea formula to the integral in (2.1.31) and average the resulting inequality, deducing
the existence of 0 < tk < 1/k such that for all j

∫
∂A(k)

(|f0,j − Tr(f0, ∂A
(k))| + |g0,j − Tr(g0, ∂A

(k))|) dHn−1 ≤ 1
k
, (2.1.35)

where we have set A(k) = Atk
. By the triangle inequality and (2.1.35) we obtain

∫
∂A(k)

|Tr+(f0 − g0, ∂A
(k))| dHn−1 ≤

∫
∂A(k)

|f0,j − g0,j| dHn−1 + 1
k
,

which gives (2.1.30) at once from (2.1.34).
Now we observe that |Df0|(∂A(k)) = |Dg0|(∂A(k)) = 0 because the inner and outer

traces of f0 and g0 on ∂A(k) coincide, hence we can define

h̃ = h1A(k) + g1A\A(k) .

Note that spt(h̃− g) ⊂⊂ A and, if k is large enough, spt(h− f) ⊂⊂ A(k), so that

|Dh̃|(A ∩ Ω) ≤ |Dh|(A(k) ∩ Ω) + |Dg0|(A \ A(k)) +
∫

∂A(k)
|Tr(f0 − g0, ∂A

(k))| dHn−1 .

By choosing k large enough we obtain |Dg0|(A \ A(k)) < ε and thus

|Dh̃|(A ∩ Ω) − |Dh|(A ∩ Ω) ≤
∫

∂A
|Tr+(f0 − g0, ∂A)| dHn−1 + ε. (2.1.36)

By combining (2.1.29) and (2.1.36), we get

ΨΩ(f, A) ≤
∣∣∣|Df |(A ∩ Ω) − |Dg|(A ∩ Ω)

∣∣∣+ ΨΩ(g, A) +
∫

∂A
|Tr+(f0 − g0, ∂A)| dHn−1 + 2ε .

Since ε is arbitrary, we conclude

ΨΩ(f, A) − ΨΩ(g, A) ≤
∣∣∣|Df |(A ∩ Ω) − |Dg|(A ∩ Ω)

∣∣∣+ ∫
∂A

|Tr+(f0 − g0, ∂A)| dHn−1

and, by exchanging the role of f and g in the argument above, we obtain (2.1.28).



Chapter 3

Boundary Monotonicity Formula

The aim of the present Chapter is to prove a boundary Monotonicity Formula holding
for local almost-minimizers of the relative perimeter at a boundary point x0 of an open
set Ω ⊂ Rn with Lipschitz continuous boundary, under the assumption that Ω satisfies a
visibility condition at x0. The main results proved in this chapter are contained in [23].
From now on, given x ∈ Rn, we write x = (x′, xn), where x′ = (x1, ..., xn−1) ∈ Rn. We
denote by B′

r(x′) the (n− 1)-dimensional ball of radius r and center x′. Moreover, given
a Lipschitz function f : Rn → Rp, we define Lip(f, A) as the Lipschitz constant of f |A,
for all sets A ⊂ Rn, and we set Lip(f) := Lip(f,Rn).

3.1 A result on the uniform convergence.

In the next section, we will use the following technical Lemma.

Lemma 3.1.1. Let fj ∈ Lip(Rn) be a sequence of Lipschitz continuous functions with the
following properties:

sup
j≥1

|fj(0)| < ∞ , L := sup
j≥1

Lip(fj) < ∞ . (3.1.1)

Let us assume that there exists a function f such that

fj(x) → f(x) , for all x ∈ Rn .

41
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Then fj converges to f locally uniformly in Rn, i.e.

||fj − f ||L∞(BR) → 0 , for all R > 0 .

Proof. We argue by contradiction. Let us assume that there exists R > 0 such that

||fj − f ||L∞(BR) ↛ 0 .

Then we need to have ℓ = lim supj→∞ ||fj − f ||L∞(BR) > 0. Hence, in particular, for a
suitable subsequence gk = fjk

, we should have

||gk − f ||L∞(BR) → ℓ . (3.1.2)

Owing to (3.1.1), we are in position to apply Ascoli-Arzelà Theorem to gk deducing that
it admits a subsequence uniformly convergent to f in BR. Thus we conclude, because this
condition contradicts (3.1.2).

3.2 The visibility property

In this section we introduce the visibility property and its main consequences. In what
follows, Ω ⊂ Rn denotes an open set with Lipschitz boundary such that 0 ∈ ∂Ω and ∂Ω
is a graph in a neighborhood of 0, as in (1.4.3). For notational convenience, we will only
consider the visibility property at 0, but of course, we could equally define the property
at a generic point of ∂Ω.

Definition 3.2.1. We say that Ω satisfies the visibility property provided there exists
T > 0 and a function u ∈ C1([0, T ))1 such that:

(V1) u(0) = u′(0) = 0 and 0 ≤ u′ ≤ 2−1;

(V2) The function

γu(t) := t−1 sup
0<s≤t

√
u(s)
s

+ u′(s)

1By u ∈ C1([0, T )) we mean that u ∈ C1(0, T ) and there exist finite the limits of u(t) and u′(t) as
t → 0.
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is summable on (0, T );

(V3) for all 0 < t < T , the segment joining the point Ut = −u(t) en with a point x
belonging to ∂Ω ∩Bt does not intersect Ω.

Remark 3.2.2. We note that (V1) and (V2) imply that u(t) = o(t) and

tγu(t) → 0 , (3.2.1)

as t → 0. Moreover, the summability of γu(t) implies that of t−2u(t), indeed 0 ≤ u(t) ≤ t/2
by (V1) and thus

0 ≤ u(t)
t2

= t−1u(t)
t

≤ t−1

√
u(t)
t

≤ γu(t) . (3.2.2)

In the following proposition, we rewrite the assumption (V3) in the form of a property
involving the functions ω(x′) and u(t). This will be particularly useful when checking
the visibility property for relevant classes of domains (see the examples at the end of the
section).

Proposition 3.2.3. Ω satisfies the property (V3) in Definition 3.2.1 if and only if, for
any ν ∈ ∂B′

1 and for all 0 < t < T , the slope mt(s) of the line connecting Ut with
(s, ω(sν)), that is given by

mt(s) = ω(sν) + u(t)
s

,

is non-increasing as a function of s, for s > 0 such that s2 + ω(sν)2 < t2.

Proof. Let us assume that (V3) holds, and set ων(s) = ω(sν) for more simplicity. By
contradiction, let s1 < s2 be such that s2

i +ων(si)2 < t2, for i = 1, 2, and mt(s1) < mt(s2).
By definition of mt, we have

ων(s1) + u(t)
s1

<
ων(s2) + u(t)

s2
,

and so equivalently
ων(s1) <

s1

s2

(
ων(s2) + u(t)

)
− u(t) .

This implies that the point

x =
(
s1ν,

s1

s2

(
ων(s2) + u(t)

)
− u(t)

)
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is internal to Ω and lies on the segment connecting (s2ν, ων(s2)). This contradicts (V3).
Conversely, let us suppose that mt(s) is non-increasing in s, for s > 0 such that

s2 + ων(s)2 < t2. Set P (s) = (sν, ων(s)), then, arguing by contradiction, assume that
s2 > 0 is such that s2

2 + ων(s2)2 < t2 and there exists λ ∈ (0, 1) with the property

(1 − λ)Ut + λP (s2) = (λs2, λ(u(t) + ων(s2)) − u(t)) ∈ Ω .

Then ων(λs2) < λ(u(t)+ων(s2))−u(t). By continuity, for all δ > 0 there exists λδ ∈ (λ, 1)
such that

λδ(u(t) + ων(s2)) − u(t) − δ < ων(λδ s2) < λδ(u(t) + ων(s2)) − u(t) . (3.2.3)

Since the segment [Ut, P (s2)] is compactly contained in Bt, by (3.2.3), we can pick δ > 0
small enough and a correspondent λδ such that

P (λδs2) ∈ Bt . (3.2.4)

Let s1 = λδs2. We observe that (3.2.4) and (3.2.3) imply

mt(s1) < mt(s2) , s2
1 + ων(s1)2 < t2 ,

and this contradicts our hypothesis. This completes the proof of the proposition.

Corollary 3.2.4. Assume that ω satisfies

⟨x′,∇ω(x′)⟩ ≤ ω(x′) + u(|x′|) for a.e. x′ ∈ B′
ρ , (3.2.5)

where u : (0, T ) → R is a non-decreasing function satisfying properties (V1) and (V2).
Then Ω satisfies the visibility property.

Proof. Since ω is Lipschitz, the function mt defined in the statement of Proposition 3.2.3
is a.e. differentiable, thus mt is non-increasing if and only if m′

t(s) ≤ 0 at almost every s.
We observe that

m′
t(s) = ω′

ν(s)
s

− ων(s) + u(t)
s2 ,
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thus m′
t ≤ 0 if and only if

s ω′
ν(s) ≤ ων(s) + u(t) . (3.2.6)

The hypothesis (3.2.5) implies that

s ω′
ν(s) ≤ ων(s) + u(s) for almost all 0 < s < T . (3.2.7)

Hence if s > 0 is such that s2 + ων(s)2 < t2, then s < t, and by (3.2.7), since u is
non-decreasing, we obtain

s ω′
ν(s) ≤ ων(s) + u(t) ,

that is precisely (3.2.6). Consequently, (V3) is verified thanks to Proposition 3.2.3.

3.2.1 Existence of the tangent cone

An important consequence of the visibility property is the existence of the tangent cone
to Ω at 0.

Proposition 3.2.5. Let Ω ⊂ Rn satisfy the visibility property. Then there exists the
tangent cone to Ω at 0, denoted by Ω0. More precisely, if we set Ωs := s−1Ω for s > 0,
we obtain

lim
s→0+

distH(Ωs ∩BR,Ω0 ∩BR) = 0 , for all R > 0. (3.2.8)

Proof. Let us fix ν ∈ ∂B′
1, and let

ων(s) = ω(sν) , s ≥ 0 ,

where ω is the function realizing (1.4.3). Let s > 0 be a point where ων is differentiable
and let t =

√
s2 + ων(s)2. By (V3) in Definition 3.2.1, we deduce that the slope of the

line connecting (s, ων(s)) with Ut needs to be bounded below by ω′
ν(s), that is,

ω′
ν(s) ≤ ων(s) + u(t)

s
.

We set L =
√

1 + Lip(ω)2 and observe that t ≤ Ls. Since u is non-decreasing by (V1),
we infer

ω′
ν(s) ≤ ων(s) + u(Ls)

s
,
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hence we get (
ων(s)
s

)′

= ω′
ν(s)
s

− ων(s)
s2 ≤ u(Ls)

s2 ≤ L2u(Ls)
(Ls)2 . (3.2.9)

We integrate (3.2.9) between s1 < s2 thanks to (V2) (see Remark 3.2.2), and obtain

ων(s2)
s2

− ων(s1)
s1

≤ L2
∫ s2

s1

u(Ls)
(Ls)2 ds = L

∫ Ls2

Ls1

u(t)
t2

dt .

Thus we conclude that the function

s 7→ ων(s)
s

− L
∫ Ls

0

u(t)
t2

dt

is monotonically non-increasing in s and bounded by Lip(ω) + L
∫ Ls

0 t−2u(t) dt, for 0 <

s < L−1T . Therefore there exists

D+
ν ω(0) := lim

s→0+

ων(s)
s

= lim
s→0+

ων(s)
s

− L
∫ Ls

0

u(t)
t2

dt ∈ R .

Let us define

ω0(x′) =


|x′|D+

x′
|x′|
ω(0) if x′ ̸= 0,

0 if x′ = 0 .

The function ω0 is 1-homogeneous, therefore the set

Ω0 = {x ∈ Rn : xn > ω0(x′)}

is a cone with vertex at 0. Now, for all s > 0, we set

ωs(x′) =


ω(sx′)
s

if x′ ̸= 0,

0 if x′ = 0 .
(3.2.10)

It is immediate to observe that ωs(0) = 0 and, setting t = s|x′|,

ωs(x′) = ω (t(x′/|x′|))
t

|x′| → |x′|D+
x′

|x′|
ω(0) = ω0(x′) , as s → 0+ .

Since {ωs}s>0 is a one-parameter family of locally equi-bounded and equi-Lipschitz func-
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tions that pointwisely converge to ω0 as s → 0+, we can apply Lemma 3.1.1 to conclude
that this convergence is locally uniform. This easily implies the Hausdorff convergence
stated in (3.2.8).

Remark 3.2.6. We note that for the proof of Proposition 3.2.5, the hypothesis (V2) of
Definition 3.2.1 can be replaced by the weaker hypothesis of summability of t−2u(t) on
(0, T ). We also observe that, if Ω is convex, then the existence of the tangent cone Ω0 is
always granted, even though (V2) may not be satisfied.

3.2.2 An off-centric visibility property

The next lemma shows that the assumption (V3) in Definition 3.2.1 can be replaced by
an equivalent assumption, where off-centric balls are taken instead of balls centered at 0.
This off-centric visibility property will be useful later on.

Lemma 3.2.7. The following properties are equivalent:

(i) Ω satisfies the visibility property;

(ii) There exist R > 0 and a function v ∈ C1(0, R) satisfying properties (V1), (V2) of
Definition 3.2.1, and

(V3’) for all 0 < r < R, any segment joining the point Vr = −v(r) en

with a point x belonging to ∂Ω ∩Br(Vr) does not intersect Ω.

Proof. We prove that (i) implies (ii). Let z(t) = t− u(t) where u is as in Definition 3.2.1.
We can find 0 < T ′ < T such that z(t) is an increasing C1 diffeomorphism of the interval
(0, T ′) with the property

1
2 t ≤ z(t) ≤ t .

Let R = z(T ′). Then we can consider the inverse z−1 of z in (0, R), that is an increasing
diffeomorphism such that

r ≤ z−1(r) ≤ 2 r . (3.2.11)

Setting Ut = −u(t)en, it follows that Bt−u(t)(Ut) ⊂ Bt, for all 0 < t < T , thus (V3) holds
for all points x ∈ ∂Ω ∩Bt−u(t)(Ut). We then have that

Br(Uz−1(r)) ⊂ Bz−1(r) , for any 0 < r < R.
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Any line segment joining x ∈ ∂Ω ∩ Bz−1(r) with Uz−1(r) does not intersect Ω, hence the
same property holds for any x ∈ ∂Ω ∩Br(Uz−1(r)). Let

v(r) = u(z−1(r)) , 0 < r < R .

It is clear that (V3’) holds. By (3.2.11), up to possibly reducing the value of R, (V2) and
v′ ≤ 2−1 follow. Since both u and z−1 are non-decreasing, v is non-decreasing, thus also
(V1) is satisfied. A completely analogous argument shows that (ii) implies (i), and the
proof is concluded.

For all 0 < r < R, we define

Cr = {Vr + t(z − Vr) : z ∈ ∂Br(Vr) ∩ Ω , t > 0} . (3.2.12)

The set Cr is an open cone with vertex at Vr.

Lemma 3.2.8. Assume that Ω satisfies the (off-centric) visibility property. Then, for all
0 < r < R, the cone Cr contains Ω ∩Br(Vr).

Proof. By contradiction, let x ∈ (Ω ∩Br(Vr)) \ Cr. For all 0 < t ≤ r, let

xt = Vr + t
x− Vr

|x− Vr|
,

and note that x = xt0 for a suitable 0 < t0 < r. It’s clear that xr /∈ Ω, otherwise xt0 would
belong to Cr, for all t > 0, which is against our assumption. We can then select a value
s ∈ (t0, r] such that xs ∈ ∂Ω. This leads to a contradiction with the visibility because the
segment joining Vr and xs ∈ Br(Vr) ∩ ∂Ω contains xt0 = x ∈ Ω.

3.2.3 Foliation by off-centric spheres

Let us consider the family of off-centric balls Br(Vr), with Vr = −v(r)en, for 0 < r < R.
By the Implicit Function Theorem we can easily show the existence of a smooth function ϕ,
such that ∂Br(Vr) is the r-level set of ϕ. This means that the punctured ball BR(VR)\{0}
is foliated by the spheres ∂Bs(Vs) = ϕ−1(s) for 0 < s < R.
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Lemma 3.2.9. There exists a function ϕ ∈ C1(BR(VR) \ {0}) such that 0 ≤ ϕ < R and

∂Br(Vr) = ϕ−1(r) , for any 0 < r < R.

In particular, for any x ∈ BR(VR) \ {0} we have

∇ϕ(x)
|∇ϕ(x)| = x− Vϕ(x)

|x− Vϕ(x)|
(3.2.13)

and
∣∣∣∣∣∇ϕ(x) − x

|x|

∣∣∣∣∣ ≤ 7

√√√√v(ϕ(x))
ϕ(x) + v′(ϕ(x)) . (3.2.14)

Proof. If v(r) is identically 0, then there is nothing to prove because ϕ(x) = |x| in this case.
We then suppose v ̸= 0. Let us start by proving the existence of the function ϕ. We observe
that, for any x ∈ BR(VR), there exists a unique r = rx ∈ [0, R) such that x ∈ ∂Br(Vr).
Indeed, if x = 0, we can take r = 0. Otherwise, let F : (BR(VR) \ {0}) × (0, R) → R be
the function defined by

F (x, r) = |x− Vr|2 − r2 . (3.2.15)

It is immediate to observe that F is continuous. Moreover,

F (x, 0) = |x|2 > 0 and F (x,R) < 0 , for all x ∈ BR(VR) \ {0} .

Hence we can find r ∈ (0, R) such that F (x, r) = 0, i.e. such that x ∈ ∂Br(Vr). Let us
show the uniqueness. Indeed, if r, r′ ∈ (0, R) have the property that

x ∈ ∂Br(Vr) ∩ ∂Br′(Vr′) ,

then we get

|r − r′| = ||x− Vr| − |x− Vr′ || ≤ |Vr − Vr′ | = |v(r) − v(r′)| ≤ 1
2 |r − r′| ,

thus we must have r = r′. Now we can define ϕ(x) = rx. Let us show that ϕ ∈
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C1(BR(R) \ {0}). To do so, we note that ϕ is implicitly defined by

F (x, ϕ(x)) = 0 , (3.2.16)

where F is the function defined in (3.2.15). Easy computations give

∂rF (x, r) = −2r + 2v′(r)(xn + v(r)) .

Therefore, if we assume F (x, r) = 0 (that is, x ∈ Br(Vr)) we obtain

∂rF (x, r) = −2r + 2v′(r)(xn + v(r)) ≤ 2r + |xn + v(r)| ≤ −r ,

where the first inequality follows from the assumption 0 ≤ v′ ≤ 2−1, while the second
inequality from

|xn + v(r)| = |⟨x− Vr, en⟩| ≤ |x− Vr| = r .

By the Implicit Function Theorem we deduce that ϕ ∈ C1(BR(VR) \ {0}). The identity
(3.2.13) is a consequence of the fact that, if ϕ(x) = r, then the vector ∇ϕ(x) is orthogonal
to the level set ∂Br(Vr) = ϕ−1(r) at x.

Let us now prove (3.2.14). We first observe that, if ϕ(x) = r > 0, then

∇ϕ(x) = −∂xF (x, r)
∂rF (x, r) = x+ v(r)en

r − v′(r)(xn + v(r)) (3.2.17)
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Then (3.2.17) yields
∣∣∣∣∣∇ϕ(x) − x

|x|

∣∣∣∣∣
2

= |x+ v(r)en|2

(r − v′(r)(xn + v(r)))2 + 1 − 2
〈

x+ v(r)en

r − v′(r)(xn + v(r)) ,
x

|x|

〉

= |x+ v(r)en|2

(r − v′(r)(xn + v(r)))2 + 1 − 2 |x+ v(r)en|2 − v(r)(xn + v(r))
(r − v′(r)(xn + v(r)))|x|

= |x| r2 + |x|(r − v′(r)(xn + v(r)))2 − 2(r − v′(r)(xn + v(r)))[r2 − v(r)(xn + v(r))]
|x|(r − v′(r)(xn + v(r)))2

=
|x|
r

+ |x|
r

(
1 − v′(r)(xn+v(r))

r

)2
− 2

(
1 − v′(r)(xn+v(r))

r

) (
1 − v(r)

r
xn+v(r)

r

)
|x|
r

(
1 − v′(r)(xn+v(r))

r

)2

=
1 +

(
1 − v′(r)(xn+v(r))

r

)2
− 2 r

|x|
(
1 − v′(r)(xn+v(r))

r

) (
1 − v(r)

r
xn+v(r)

r

)
(
1 − v′(r)(xn+v(r))

r

)2 .

(3.2.18)

Next we observe that
∣∣∣|x| − r

∣∣∣ =
∣∣∣x− |x− Vr|

∣∣∣, hence

r − v(r) ≤ |x| ≤ r + v(r) . (3.2.19)

Exploiting (3.2.19), then summing and subtracting 2 in the numerator of the last term of
(3.2.18), we get

∣∣∣∣∣∇ϕ(x) − x

|x|

∣∣∣∣∣
2

≤
2 − 2

(
1 − v(r)

r−v(r)

) (
1 − v′(r)(xn+v(r))

r

) (
1 − v(r)

r
xn+v(r)

r

)
(
1 − v′(r)(xn+v(r))

r

)2 .

We now recall that v′ ≤ 2−1, thus in particular v(r) ≤ 2−1r, and we observe that xn +
v(r) ≤ r, which leads to the final estimate
∣∣∣∣∣∇ϕ(x) − x

|x|

∣∣∣∣∣
2

≤ 8
{

v(r)
r − v(r) + v′(r)(xn + v(r))

r
+ v(r)(xn + v(r))

r2 + v(r)2v′(r)(xn + v(r))2

(r − v(r))r2

}

≤ 8
{

v(r)
r − v(r) + v′(r) + v(r)

r
+ v(r)

2(r − v(r))

}

≤ 40
{
v(r)
r

+ v′(r)
}
,
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and this concludes the proof.

3.2.4 Some examples

We exhibit some relevant classes of domains for which the visibility holds. We recall that

ων(s) = ω(sν) , for s ≥ 0.

Example 3.2.10 (Lipschitz cones and outer star-shaped sets). Let Ω be either a cone
with respect to 0, or such that its complement Rn \ Ω is locally star-shaped with respect to
0. It is immediate to check that Ω satisfies the visibility property with visibility function
u(t) ≡ 0.

Example 3.2.11 (C1,β-sets). Let Ω have C1,β boundary and assume 0 ∈ ∂Ω. We show
that Ω satisfies the visibility property. Up to a rotation we can assume that Ω admits a
representation as in (1.4.3) with ω ∈ C1,β(B′

ρ). By Corollary 3.2.4, it is enough to show
that ω satisfies (3.2.5). Since ∇ω is β-Hölder, we have

⟨x′,∇ω(x′)⟩ ≤ ⟨x′,∇ω(0)⟩ + u(|x′|) . (3.2.20)

where u(t) = C t1+β for some C > 0. Set ω(x′) := ω(x′) − ⟨∇ω(0), x′⟩ and note that ω is
C1,β, ω(0) = 0, ∇ω(0) = 0, and

|ω(x′) − ⟨x′,∇ω(0)⟩| ≤ max
|y′|≤|x′|

|∇ω(y′)||x′|

≤ (|∇ω(0)| + C|x|β)|x′| (3.2.21)
= C |x′|1+β .

Putting together (3.2.20) and (3.2.21), we finally get

⟨x′,∇ω(x′)⟩ ≤ ω(x′) + u(|x′|), for a.e. x′ ∈ B′
ρ ,

that is precisely (3.2.5). Since trivially u is non-decreasing and satisfies (V2), by Corollary
3.2.4 we infer that Ω satisfies the visibility property.
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Example 3.2.12 (Convex sets satisfying (V2)). Let Ω be a convex set with 0 ∈ ∂Ω. For
s > 0, let

Ωs := 1
s

Ω , Ω0 :=
⋃
s>0

1
s

Ω .

The set Ω0 is the tangent cone to Ω at 0. Let

u(r) := distH(Ω ∩Br,Ω0 ∩Br) , (3.2.22)

and assume that u(r) satisfies (V2).

We observe that u is monotonically non-decreasing in r. Let us prove that Ω satisfies
the visibility property. As before, we assume that Ω admits a graphical representation
as in (1.4.3) with the further property that ω : B′

ρ → R is convex. Using the notations
introduced in the proof of Proposition 3.2.5, by the convexity of ω, we can define

ω0(x′) =


|x′|D+

x′
|x′|
ω(0) if x′ ̸= 0,

0 if x′ = 0 ,

and deduce that
Ω0 = {x ∈ Rn : xn > ω0(x′)} .

By the definition of u given in (3.2.22), we have

||ω − ω0||L∞(B′
r) ≤ Cu(r) , for some C > 0 . (3.2.23)

Owing to Corollary 3.2.4, the visibility property can be proved by showing that (3.2.5)
holds. Thanks to the convexity of ω, for all ν ∈ ∂B′

1, we have

D+
ν ω(0) ≤ ω′

ν

(
s

2
+)

:= lim
σ→0+

ων(s/2 + σ) − ων(s/2)
σ

, for all 0 ≤ s < ρ . (3.2.24)
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Moreover, for all 0 < σ < s/2, by (3.2.23) and the convexity of ων, we have

ων(s/2 + σ) − ων(s/2)
σ

≤ ων(s) − ων(s/2)
s/2

= 2 ων(s)
s

− ων(s/2)
s/2

= 2 ων(s)
s

− 2D+
ν ω(0) +D+

ν ω(0) − ων(s/2)
s/2 +D+

ν ω(0) (3.2.25)

= 2
s

(ων(s) − ω0(sν) + ω0(sν/2) − ων(s/2)) +D+
ν ω(0)

≤ D+
ν ω(0) + C̃

u(s)
s

, for some C̃ > 0 .

Putting together (3.2.24) and (3.2.25), we obtain

∣∣∣∣D+
ν ω(0) − ω′

ν

(
s

2
+)∣∣∣∣ ≤ C̃

u(s)
s

.

This suffices to conclude. In fact, if x′ ∈ B′
ρ \ {0} is such that ω is differentiable at x′,

setting s := |x′|, ν := x′/|x′|, for some C > 0, we achieve

⟨x′,∇ω(x′)⟩ = ⟨sν,∇ω(sν)⟩ = s ω′
ν(s+)

≤ sD+
ν ω(0) + C u(s)

≤ ω(sν) + C u(s) = ω(x′) + C u(|x′|) .

Since ω is convex, it is differentiable a.e. in B′
ρ, and so (3.2.5) is verified. Moreover, u

is non-decreasing and satisfies (V2) by our assumption, thus we conclude.

Example 3.2.13 (A piece-wise affine profile). For i ∈ N, let

yi = 2−i , ỹi = 2−i + 2−2i .

We observe that yi+1 < yi+1 < yi. For i ∈ N, we define

Pi = (yi, ỹi) , Qi = (ỹi, ỹi) .

We can consider the polygonal curve formed by the segments PiQi+1, Qi+1Pi+1, i ≥ 0. It is
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Figure 3.1: The graph of ω(y) "bounces" between the graphs of y and y + y2.

immediate to observe that this curve coincides with the graph of the function ω : [0, 1] → R
uniquely defined by

ω(y) =

2−(i+1) + 2−2(i+1) if y ∈ (yi+1, ỹi+1],

ai y − bi if y ∈ (ỹi+1, yi] ,
(3.2.26)

for i ≥ 0, where

ai = 1 + 3 · 2−(i+1)

1 − 2−(i+1) , bi = 2−2i + 2−(3i+1)

1 − 2−(i+1) .

Let Ω ⊂ R2 be an open set such that

Ω ∩ ((−1, 1) × R) = {x = (y, z) ∈ R2 : z > ω(|y|)} .

Let us show that Ω satisfies the visibility condition at 0. Owing to Corollary 3.2.4, it
suffices to show the existence of a non-decreasing function u : (0, 1) → R satisfying (V1),
(V2) and such that

y ω′(y) ≤ ω(y) + u(y) , for a.e. y ∈ (−1, 1) . (3.2.27)
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By (3.2.26), for every i ∈ N, we have

y ω′(y) =

0 if y ∈ (yi+1, ỹi+1],

ai y if y ∈ (ỹi+1, yi] .

Thus, in order to realize (3.2.27), it suffices to choose a function u = u(y) greater or equal
than the function

u(y) =

0 if y ∈ (yi+1, ỹi+1],

bi if y ∈ (ỹi+1, yi] .

We look for α > 0 such that
uα(y) = αy2 ≥ u(y) . (3.2.28)

In order to obtain the validity of (3.2.28), it suffices to impose that

uα(ỹi+1) = α ỹ2
i+1 ≥ bi .

It is immediate to observe that

α ỹ2
n+1 ≥ α

4 2−2i , bi ≤ 4 · 2−2i ,

hence, if for instance we take α = 16, (3.2.28) holds. Since the function u(y) = 16 y2

trivially fulfills (V1) and (V2), we conclude that Ω satisfies the visibility condition at 0.

3.3 Boundary Monotonicity Formula

The present section aims to prove a boundary Monotonicity Formula for local almost-
minimizers of PΩ at a point x0 ∈ ∂Ω satisfying the visibility property up to an isometry
(hence, from now on, we will directly assume x0 = 0). In the notation of the previous
section, given 0 < r1 < r2 < R, we recall Vr = −v(r)en and define

Ar1,r2 := Br2(Vr2) \Br1(Vr1) = ϕ−1(r1, r2) ,
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where ϕ(x) is the function defined in Lemma 3.2.9. We also conveniently introduce some
further notation. Given f ∈ BVloc(Ω) and 0 < r1 < r2, we set

µf (r) = |Df |(Ω ∩Br(Vr))
rn−1

and

G(f ; r1, r2) =
∫ r2

r1

n− 1
ρn

∫
Ω∩Bρ(Vρ)

(|∇ϕ| − 1) d|Df | dρ (3.3.1)

+ 1
rn−1

2

∫
Ω∩Br2 (Vr2 )

(|∇ϕ| − 1) d|Df | − 1
rn−1

1

∫
Ω∩Br1 (Vr1 )

(|∇ϕ| − 1) d|Df | .

In the next proposition, we combine the visibility property with an upper bound on µf (r)
and obtain the finiteness of limρ→0 G(f ; ρ, r).

Proposition 3.3.1. Let Ω ⊂ Rn satisfy the visibility property as in Definition 3.2.1, and
let f ∈ BVloc(Ω). Assume that µf (r) ≤ C for some constant C > 0 and for all r ∈ (0, R).
Then for r ∈ (0, R) the limit

G(f ; r) := lim
ρ→0

G(f ; ρ, r) (3.3.2)

=
∫ r

0

n− 1
ρn

∫
Ω∩Bρ(Vρ)

(|∇ϕ| − 1) d|Df | dρ+ 1
rn−1

∫
Ω∩Br(Vr)

(|∇ϕ| − 1) d|Df |

exists and is finite.

Proof. By (3.2.14), for all x ∈ Bρ(Vρ) we have

||∇ϕ(x)| − 1| ≤
∣∣∣∣∣∇ϕ(x) − x

|x|

∣∣∣∣∣ ≤ 7

√√√√v(ϕ(x))
ϕ(x) + v′(ϕ(x)) ≤ 7 sup

0<r≤ρ

√
v(r)
r

+ v′(r) = 7ργv(ρ) ,

where γv is the function defined in the visibility property (V2). Then, using the upper
bound on µf , for 0 < ρ < r < R we obtain

∣∣∣∣∣ρ1−n
∫

Ω∩Bρ(Vρ)
(|∇ϕ| − 1) d|Df |

∣∣∣∣∣ ≤ 7Cργv(ρ) .

Thanks to the summability of γv (see property (V2) of the visibility property) and to
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(3.2.1), from the last inequality we easily get the proof of the proposition.

Our monotonicity formula will then follow from the general inequality proved in the
next theorem.

Theorem 3.3.2 (Monotonicity inequality). Let Ω ⊂ Rn satisfy the visibility property,
and let f ∈ BVloc(Ω). Then, for R > 0 small enough, for almost every 0 < r1 < r2 < R,
we have(∫

Ω∩Ar1,r2

ϕ1−n |⟨νf ,∇ϕ⟩| d|Df |
)2

≤ 2
(∫

Ω∩Ar1,r2

|∇ϕ(x)|
ϕ(x)n−1 d|Df |

)

·
[
µf (r2) − µf (r1) +

∫ r2

r1

n− 1
ρn

ΨΩ(f ;Bρ(Vρ))dρ+G(f ; r1, r2)
]
, (3.3.3)

where νf is such that Df = νf |Df |.

Proof. We start by assuming f ∈ BV (Ω)∩C1(Ω). For all 0 < r < R and x ∈ Cr ∩Br(Vr),
where Cr is defined in (3.2.12), we let

Yr(x) = Vr + r
x− Vr

|x− Vr|
.

Standard computations yield

DYr(x) = r

[
1

|x− Vr|
D(x− Vr) + (x− Vr) ⊗ ∇|x− Vr|−1

]
(3.3.4)

= r

|x− Vr|

[
Id − x− Vr

|x− Vr|
⊗ x− Vr

|x− Vr|

]
.

We define
gr(x) = f(Yr(x)) for all x ∈ Cr ,

then the “off-centric conical competitor” is

fr(x) =

gr(x) if x ∈ Cr ∩Br(Vr)

f(x) if x ∈ Ω \Br(Vr) .
(3.3.5)
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By definition, fr coincides with f in Ω \Br(Vr), hence we infer

ΨΩ(f ;Br(Vr)) ≥ |Df |(Ω ∩Br(Vr)) − |Dfr|(Ω ∩Br(Vr)) . (3.3.6)

Then, by (3.3.6), we deduce that

|Df |(Ω ∩Br(Vr)) − ΨΩ(f ;Br(Vr)) ≤ |Dfr|(Ω ∩Br(Vr))
≤ |Dfr|(Cr ∩Br(Vr)) (3.3.7)

=
∫

Cr∩Br(Vr)
|∇gr(x)|dx .

Let us now compute the gradient of gr. By (3.3.4), setting

νr(x) = x− Vr

|x− Vr|
, Yr = Yr(x) ,

we obtain

∇gr(x) = DYr · ∇f(Yr) = r

|x− Vr|
∇f(Yr)νr(x)⊥

,

where ∇f(Yr)νr(x)⊥ denotes the projection of ∇f(Yr) onto the hyperplane

νr(x)⊥ := {y ∈ Rn : ⟨νr(x), y⟩ = 0} .

Going on with the computations, we obtain

|∇gr(x)| = r

|x− Vr|

√
|∇f(Yr)|2 − ⟨∇f(Yr), νr(x)⟩2

= r

|x− Vr|
|∇f(Yr)|

√√√√1 − ⟨∇f(Yr), νr(x)⟩2

|∇f(Yr)|2
.
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Consequently, we get

∫
Cr∩Br(Vr)

|∇gr|dx =
∫ r

0

∫
Cr∩∂Bρ(Vr)

r

ρ
|∇f(Yr)|

√√√√1 − ⟨∇f(Yr), νr⟩2

|∇f(Yr)|2
dHn−1 dρ

=
∫ r

0

(
ρ

r

)n−2
dρ
∫

Cr∩∂Br(Vr)
|∇f |

√√√√1 − ⟨∇f, νr⟩2

|∇f |2
dHn−1

≤ r

n− 1


∫

Ω∩∂Br(Vr)
|∇f |dHn−1 − 1

2

∫
Ω∩∂Br(Vr)

⟨∇f, νr⟩2

|∇f |
dHn−1

 .
(3.3.8)

Combining (3.3.7) and (3.3.8), we get

r

2(n− 1)

∫
Ω∩∂Br(Vr)

⟨∇f, νr⟩2

|∇f |
dHn−1 (3.3.9)

≤ r

n− 1

∫
Ω∩∂Br(Vr)

|∇f |dHn−1 −
∫

Ω∩Br(Vr)
|∇f |dx+ ΨΩ(f ;Br(Vr)) .

Multiplying both sides of (3.3.9) by (n − 1)r−n and observing that r = ϕ(y) for any
y ∈ ∂Br(Vr), we get

1
2

∫
Ω∩∂Br(Vr)

〈
∇f, ∇ϕ

|∇ϕ|

〉2 1
|∇f |ϕn−1 dH

n−1

≤ 1
rn−1

∫
Ω∩∂Br(Vr)

|∇f | dHn−1 + n− 1
rn

∫
Ω∩Br(Vr)

|∇f |dx+ n− 1
rn

ΨΩ(f ;Br(Vr))

= d

dr

(
1

rn−1

∫
Ω∩Br(Vr)

|∇f ||∇ϕ|dx
)

(3.3.10)

+ n− 1
rn

∫
Ω∩Br(Vr)

|∇f |(|∇ϕ| − 1)dx+ n− 1
rn

ΨΩ(f ;Br(Vr)) .
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Let us now integrate (3.3.10) between 0 < r1 < r2 < R. We then achieve

1
2

∫
Ω∩Ar1,r2

〈
∇f(x), ∇ϕ(x)

|∇ϕ(x)|

〉2 |∇ϕ(x)|
|∇f(x)|ϕ(x)n−1 dx

≤ 1
rn−1

2

∫
Ω∩Br2 (Vr2 )

|∇f(x)||∇ϕ(x)|dx− 1
rn−1

1

∫
Ω∩Br1 (Vr1 )

|∇f(x)||∇ϕ(x)|dx

(3.3.11)

+
∫ r2

r1

n− 1
rn

∫
Ω∩Br(Vr)

|∇f(x)|(|∇ϕ(x)| − 1)dx dr +
∫ r2

r1

n− 1
rn

ΨΩ(f ;Br(Vr))dr .

By Hölder’s Inequality, we get
(∫

Ω∩Ar1,r2

|⟨∇f(x),∇ϕ(x)⟩| dx

ϕ(x)n−1

)2

(3.3.12)

≤
(∫

Ω∩Ar1,r2

|∇ϕ(x)|
ϕ(x)n−1 |∇f(x)|dx

)
·

∫
Ω∩Ar1,r2

〈
∇f(x), ∇ϕ(x)

|∇ϕ(x)|

〉2 |∇ϕ(x)| dx
|∇f(x)|ϕ(x)n−1

 .

Putting together (3.3.11) and (3.3.12), we obtain

(∫
Ω∩Ar1,r2

|⟨∇f(x),∇ϕ(x)⟩| dx

ϕ(x)n−1

)2

≤ 2
(∫

Ω∩Ar1,r2

|∇ϕ(x)|
ϕ(x)n−1 |∇f(x)|dx

)

·

 1
rn−1

2

∫
Ω∩Br2 (Vr2 )

|∇f(x)|dx− 1
rn−1

1

∫
Ω∩Br1 (Vr1 )

|∇f(x)|dx (3.3.13)

+
∫ r2

r1

n− 1
ρn

ΨΩ(f ;Bρ(Vρ))dρ+G(f ; r1, r2)
 ,

where G(f ; r1, r2) is as in (3.3.1). This proves (3.3.3) for all f ∈ BV (Ω) ∩ C1(Ω).

Let now f ∈ BV (Ω). We can select a sequence fj ∈ BV (Ω) ∩ C1(Ω) such that

||fj − f ||L1(Ω) → 0 , |Dfj|(Ω) → |Df |(Ω) , Dfj
∗
⇀Df in Ω . (3.3.14)

In particular, by the continuity of the trace with respect to the strict convergence, we
have

||Tr+(fj, ∂Ω) − Tr+(f, ∂Ω)||L1(∂Ω,Hn−1) → 0 . (3.3.15)
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Let us consider the extensions

f0,j(x) =

fj(x) if x ∈ Ω

0 if x ∈ Rn \ Ω ,
f0(x) =

f(x) if x ∈ Ω

0 if x ∈ Rn \ Ω .

We observe that, by (3.3.14), (3.3.15),

||f0,j − f0||L1(Rn) → 0 , |Df0,j|(Rn) → |Df0|(Rn) .

By Proposition 1.3.12, for almost all 0 < r < R,

|Df0,j|(Br(Vr)) → |Df0|(Br(Vr)) , ||Tr+(f0,j, ∂Br(Vr))−Tr+(f0, ∂Br(Vr))||L1(∂Br(Vr)) → 0 ,
(3.3.16)

and in particular, owing to (3.3.15),

|Dfj|(Ω ∩Br(Vr)) = |Df0,j|(Ω ∩Br(Vr)) → |Df0|(Ω ∩Br(Vr)) = |Df |(Ω ∩Br(Vr)) .
(3.3.17)

Now (3.3.16), (3.3.17) allow to apply Lemma 2.1.8, deducing that

|ΨΩ(fj;Br(Vr)) − ΨΩ(f ;Br(Vr))| → 0 , as j → ∞ ,

for almost all 0 < r < R. This implies that
∫ r2

r1

n− 1
ρn

ΨΩ(fj;Bρ(Vρ))dρ →
∫ r2

r1

n− 1
ρn

ΨΩ(f ;Bρ(Vρ))dρ .

Finally, to conclude that the RHS of (3.3.13) for f = fj, passes to the limit as j → ∞,
giving precisely the RHS of (3.3.3), it suffices to show that the terms
∫

Ω∩Ar1,r2

ϕ1−n d|Dfj| ,
∫

Ω∩Br1 (Vr1 )
(|∇ϕ| − 1) d|Dfj| ,

∫
Ω∩Br2 (Vr2 )

(|∇ϕ| − 1) d|Dfj| ,

converge as j → ∞ respectively to
∫

Ω∩Ar1,r2

ϕ1−n d|Df | ,
∫

Ω∩Br1 (Vr1 )
(|∇ϕ| − 1) d|Df | ,

∫
Ω∩Br2 (Vr2 )

(|∇ϕ| − 1) d|Df | .
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To see this, it suffices to construct a suitable partition of each domain, for instance using
portions of circular annuli whose boundaries are negligible for |Df | and |Dfj| for all
j ≥ 1, to uniformly approximate each integrand by simple functions (up to removing a
small neighborhood of 0 in the case of the last two integrals). About the LHS of (3.3.13),
we observe that (3.3.14) implies

Dfj
∗
⇀Df in Ω ∩ Ar1,r2 .

Now, for f smooth, the LHS of (3.3.3) and the LHS of (3.3.13) coincide. Moreover, we
have

∫
Ω∩Ar1,r2

ϕ(x)1−n |⟨νf (x),∇ϕ(x)⟩| d|Df |(x) =
∣∣∣ϕ1−n∇ϕ ·Dfj

∣∣∣ (Ω ∩ Ar1,r2) .

In particular, (3.3.14) implies that

ϕ1−n∇ϕ ·Dfj
∗
⇀ ϕ1−n∇ϕ ·Df ,

and well-known properties of the weak-star convergence of Radon measures (see [26])
ensure that

∣∣∣ϕ1−n∇ϕ ·Df
∣∣∣ (Ω ∩ Ar1,r2) ≤ lim inf

j→∞

∣∣∣ϕ1−n∇ϕ ·Dfj

∣∣∣ (Ω ∩ Ar1,r2) .

This implies (3.3.3) and concludes the proof of the theorem.

The next corollary, a first important consequence of Theorem 3.3.2, states the mono-
tonicity of a suitable function of the radius r, which is defined by three terms: the renor-
malized perimeter µE(r), the integral of a renormalized minimality gap ΨΩ(E;Br(Vr)),
and the visibility error G(E, r). In particular, when E is an almost-minimizer, the in-
finitesimality of the second and third terms implies that µE(r) is “almost-increasing”,
hence that it admits a finite limit as r → 0. This limit represents the perimeter density
of E at 0, see Remark 3.3.4 below.

Corollary 3.3.3 (Boundary monotonicity for almost-minimizers). Let Ω be an open set
satisfying the visibility property. Let E ⊂ Ω be a local almost-minimizer, such that
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PΩ(E,Br) > 0 for all r > 0 and

∫ R

0
ρ−nΨΩ(E;Bρ(Vρ)) dρ < +∞ .

Then there exists R′ such that the function

r 7→ µE(r) + (n− 1)
∫ r

0
ρ−nΨΩ(E;Bρ(Vρ)) dρ+G(E; r)

is non-decreasing on (0, R′). Moreover, the two terms
∫ r

0 ρ
−nΨΩ(E;Bρ(Vρ)) dρ and G(E; r)

are infinitesimal as r → 0, hence in particular µE(r) is “almost-monotone” and the limit

θE(0) := lim
r→0+

µE(r)

exists and is finite.

Proof of Corollary 3.3.3. By Lemma 2.1.6 and the fact that Br(Vr) ⊂ Br+v(r), we can
find constants C,R > 0 such that

|Df |(Ω ∩Br(Vr))
rn−1 ≤

|Df |(Ω ∩Br+v(r))
(r + v(r))n−1

(
1 + v(r)

r

)n−1

≤ C , for all 0 < r < R.

By combining Proposition 3.3.1 with (3.2.14) and the previous bound, up to redefining
the constants C,R > 0, we obtain

|G(E; r)| ≤ C
(∫ r

0
γv(ρ) dρ+ rγv(r)

)
, for all 0 < r < R. (3.3.18)

Finally, the proof of the corollary follows directly from Theorem 3.3.2 and from the ob-
servation that the RHS of (3.3.18) is infinitesimal as r → 0+.

Remark 3.3.4. It is easy to check that, under the assumptions of Corollary 3.3.3, one
has

∃ lim
r→0+

PΩ(E;Br)
rn−1 = θE(0) . (3.3.19)

Indeed, this is an immediate consequence of the inclusions

Br−v(r)(Vr) ⊂ Br ⊂ Br+v(r)(Vr)
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combined with v(r) = o(r) as r → 0.

3.4 Blow-up limits of almost-minimizers are cones

We now apply Theorem 3.3.2 and prove that any blow-up limit of a local almost-minimizer
E of PΩ is a perimeter-minimizing cone.

Theorem 3.4.1. Let Ω ⊂ Rn be an open set satisfying the visibility property. Let E ⊂ Ω
be a local almost-minimizer in Ω such that

∫ R

0

ΨΩ(E;Br)
rn

dr < ∞ . (3.4.1)

Fix a decreasing sequence tj → 0 and set Etj
= t−1

j E. Then, up to subsequences, Etj

converges to E0 ⊂ Ω0 in L1
loc(Rn). Moreover, E0 is a nontrivial cone minimizing the

relative perimeter in Ω0.

Proof. Set Ej = Etj
and Ωj = Ωtj

for more simplicity. Then by the upper density estimate
on the relative perimeter of E (Lemma 2.1.6) coupled with analogous estimates satisfied
by Ω Lipschitz, we can find a constant C > 0 such that, for every fixed R > 0,

P (Ej;BR) ≤ P (Ωj;BR) + PΩj
(Ej;BR)

= t1−n
j

(
P (Ω;BRtj

) + PΩ(E;BRtj
)
)

≤ CRn−1 .

By the compactness property of sequences of sets with uniformly bounded relative perime-
ter the ball BR, we conclude that there exists a not relabeled subsequence Ej and a set E0

of finite perimeter in BR, such that Ej → E0 in L1(BR) as j → ∞. The fact that E0 ⊂ Ω0

up to null sets is immediate, since Ej ⊂ Ωj, for all j, and the sequence Ωj converges to
the tangent cone Ω0 locally in Hausdorff distance (hence, in L1

loc(Rn)) thanks to Proposi-
tion 3.2.5. Up to a standard diagonal argument we can assume that the subsequence Ej

converges to E0 in L1
loc(Rn). Moreover by the lower-density estimates on the volume of

E we also deduce that E0 can be neither the empty set, nor the whole Ω0 up to null sets
(that is, E0 is nontrivial).
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By the scaling properties of the perimeter, for any fixed R > 0 we have

ΨΩtj
(Etj

;BR) = 1
tn−1
j

ΨΩ(E;BtjR) ≤ ω
1− 1

n
n Rn−1ψΩ(E; 0, tjR) −→ 0 ,

therefore we can apply Lemma 2.1.7 and deduce that

ΨΩ0(E0;BR) ≤ lim inf
j

ΨΩtj
(Etj

;BR) = 0

for all R > 0 and, also owing to Corollary 3.3.3,

PΩ0(E0;BR) = lim
j
PΩtj

(Etj
;BR) = lim

j
t1−n
j PΩ(E;BtjR ∩ Ω) = Rn−1θE(0) .

Thus, E0 is a minimizer for the relative perimeter in the cone Ω0, such that

P (E0;BR ∩ Ω0)
Rn−1 = θE(0) for all R > 0.

Now, the monotonicity inequality (3.3.3) written for f = 1E0 and Ω = Ω0 takes the form

∫
Ω0∩(Br2 \Br1 )

| ⟨νE0(x), x⟩ |
|x|n

d|D1E|(x)
2

≤
(∫

Ω0∩(Br2 \Br1 )
|x|1−n d|D1E0(x)|

)
·
(
PΩ0(E0;Br2)

rn−1
2

− PΩ0(E0;Br1)
rn−1

1

)
= 0 ,

for almost all 0 < r1 < r2. The only possibility is then that ⟨νE0(x), x⟩ = 0 at Hn−1-a.e.
x ∈ ∂∗E0. By [26, Proposition 28.8] we infer that E0 is a cone with vertex at the origin,
up to negligible sets, and the proof is concluded.



Chapter 4

Free-boundary variations in
non-smooth domains

In this Chapter, we develop a technique for constructing "free-boundary variations" in
domains with non-smooth boundary. We then apply this technique to the study of the
stability of a n-plane containing the vertex of a circular cone in Rn+1.

4.1 Some preliminaries

4.1.1 Main notations

Along the present Chapter, will adopt the following notations: for n ≥ 2, given x ∈ Rn

and t ∈ R, we define x̃ = (x, t) ∈ Rn+1 and x′ ∈ Rn−1 such that x = (x′, xn), with a
slight abuse of notation. We identify x with (x, 0) ∈ Rn+1 and x′ with (x′, 0, 0) ∈ Rn+1,
whenever this does not create confusion. We denote by B̃r(x̃) the open ball of radius
r > 0 centered at x̃, and we set B̃r := B̃r(0). For any 1 ≤ i ≤ n + 1, we denote by pi

the hyperplane of Rn+1 of equation xi = 0, and use the same notation for the orthogonal
projection of Rn+1 onto this hyperplane. Given a differentiable function f : Rn+1 → R,
we denote the partial derivative of f with respect to xi as ∂if .

67
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4.1.2 A technical result about wedge-products

Let v1, ..., vk ∈ Rn+1 and denote by S[v1, ..., vk] the k×k symmetric matrix which elements
are the scalar products ⟨vi, vj⟩, for 1 ≤ i, j ≤ k. By applying the definition of determinant
and the Cauchy-Binet Formula (see, e.g., [28, Chapter 2]) it is immediate to show that

det(S[v1, ..., vk]) = |v1 ∧ ... ∧ vk|2 , (4.1.1)

where ∧ denotes the wedge-product of v1, ..., vk (we refer to [11] for a formal definition of
∧ and its main properties). We limit to mention that ∧ is alternating, i.e. v1 ∧ ... ∧ vk

vanishes whenever vi = vj, for some i ̸= j. Moreover, the wedge products v1 ∧ ... ∧ vk

form a linear vector space, usually denoted by ∧k Rn+1. If e1, ..., en+1 denote the canonical
basis of Rn+1, then the wedge products ei1 ∧ ...∧ eik

, for all 1 ≤ i1 < ... < ik ≤ n+ 1, form
a basis of ∧k Rn+1. We assume that ∧k Rn+1 is endowed with the unique scalar product
such that ei1 ∧ ...∧eik

, for 1 ≤ i1 < ... < ik ≤ n+1, are orthonormal. The norm associated
with this scalar product is denoted by | · |.
Let us introduce some convenient notation. We let α = (α1, . . . , αk) be a multi-index
with αℓ ∈ {1, . . . , n+ 1}. Then, we set eα = eα1 ∧ · · · ∧ eαk

and, given i ∈ {1, . . . , k} and
j ∈ {1, . . . , n+ 1}, we define

ej
α,i = eα1 ∧ · · · ∧ eαi−1 ∧ ej ∧ eαi+1 ∧ · · · ∧ eαk

Lemma 4.1.1. For i = 1, ..., n, let vi = ei+Ai en+Bi en+1, where Ai, Bi are real numbers.
Then

det(S[v1, ..., vn]) = (1 + An)2
(

1 +
n−1∑
i=1

B2
i

)
+B2

n

(
1 +

n−1∑
i=1

A2
i

)
− 2 (1 + An)Bn

n−1∑
i=1

AiBi .

(4.1.2)

Proof. Let us set α = (1, 2, . . . , n− 1). By definition of vn, using the alternating property
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of the wedge product and the fact that en
α,i ∧ en+1 = −en+1

α,i ∧ en, we get

v1 ∧ ... ∧ vn = (1 + An) eα ∧ en +Bn eα ∧ en+1 + (4.1.3)

+Bn

n−1∑
i=1

Ai e
n
α,i ∧ en+1 + (1 + An)

n−1∑
i=1

Bi e
n+1
α,i ∧ en

= (1 + An) eα ∧ en +Bn eα ∧ en+1 +
n−1∑
i=1

[BnAi − (1 + An)Bi] en
α,i ∧ en+1 .

By the orthonormality of the wedge products eα ∧ en, eα ∧ en+1, and en
α,i ∧ en+1 for i =

1, . . . , n− 1, we obtain

|v1 ∧ ... ∧ vn|2 = (1 + An)2
(

1 +
n−1∑
i=1

B2
i

)
+B2

n

(
1 +

n−1∑
i=1

A2
i

)
− 2 (1 + An)Bn

n−1∑
i=1

AiBi .

Then (4.1.2) immediately follows from (4.1.1).

4.2 Construction of the flow

We now construct one-parameter families of compact deformations of a fixed, n-dimensional
hyperplane Σ restricted to a Lipschitz epigraph Ω. The deformations are defined on Ω
and are “tangential”, in the sense that they send ∂Ω into itself.

Specifically, given a Lipschitz function ω = ω(x′, t) : Rn → R, we let

Ω = {x̃ = (x′, xn, t) ∈ Rn+1 : xn > ω(x′, t)} . (4.2.1)

We also let Σ := Ω ∩ pn+1 and set ∂Σ = Σ ∩ ∂Ω. Given x = (x′, xn) ∈ Σ, we consider the
parametric curve Γx : R → Rn+1 defined as

Γx(t) := (x′, xn + ω(x′, t) − ω(x′, 0), t) (4.2.2)

and, with a slight abuse of notation, we identify Γx with Γx(R).
The next lemma collects some key properties of the family {Γx : x ∈ Σ}.

Lemma 4.2.1. The family of parametric curves {Γx : x ∈ Σ} defines a foliation of Ω.
More precisely, the following properties hold:
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(i) Γx(0) = x and Γx ⊂ Ω, for all x ∈ Σ;

(ii) if x ̸= y ∈ Σ then Γx ∩ Γy = ∅;

(iii) Γx(t) ∈ ∂Ω for some t ∈ R if and only if Γx ⊂ ∂Ω.

(iv) the map (x, t) 7→ Γx(t) is Lipschitz.

Proof. Property (i) directly follows from the definition of Γx and by observing that x ∈ Σ
implies xn ≥ ω(x′, 0), hence

xn + ω(x′, t) − ω(x′, 0) ≥ ω(x′, t) .

Then, concerning property (ii), if Γx(t) = Γy(u) for some x, y ∈ Σ and some t, u ∈ R, by
definition we must have t = u, x′ = y′, and

xn + (ω(x′, t) − ω(x′, 0)) = yn + (ω(y′, u) − ω(y′, 0)) ,

which implies xn = yn and hence x = y, which proves (ii). The less obvious implication
of (iii) is the only if part: if Γx(t) ∈ ∂Ω for some t ∈ R, then

xn + ω(x′, t)) − ω(x′, 0)) = ω(x′, t) ,

i.e., xn = ω(x′, 0). Consequently,

Γx(u) = (x′, ω(x′, 0) + ω(x′, u) − ω(x′, 0), u) = (x′, ω(x′, u), u) ∈ ∂Ω

for all u ∈ R. Finally, the proof of (iv) easily follows from the estimate

|Γx(t) − Γy(u)| ≤ |x′ − y′| + |xn − yn| + |ω(x′, t) − ω(y′, u)| + |ω(x′, 0) + ω(y′, 0)| + |t− u|

≤ (1 + 2Lip(ω))(|x′ − y′| + |xn − yn| + |t− u|).

Let now f : Σ → R be a Lipschitz function with compact support in Σ. We define the
flow associated to f as

Φ[f ](x, t) := Γx(tf(x)) (4.2.3)
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for all (x, t) ∈ Σ × R. The map Φ[f ] satisfies Φ[f ](x, t) = x and, thanks to Lemma 4.2.1,
it is Lipschitz and one-to-one. When Φ[f ](·, t) is differentiable at x (which is true for
almost all x ∈ Σ), we denote by

DΦ[f ](x, t) = (∂1Φ[f ](x, t), . . . , ∂nΦ[f ](x, t))

the Jacobian matrix of Φ[f ](·, t) at x, and by DΦ[f ](x, t)T its transpose. We also define

S[f ](x, t) := DΦ[f ](x, t)T ·DΦ[f ](x, t)

and
J [f ](x, t) :=

√
det(S[f ](x, t)) ,

and note for future reference that

J [f ](x, 0) = 1 ∀x ∈ Σ . (4.2.4)

Then, we define
Σt[f ] = Φ[f ](Σ, t)

and
A[f ](t) := Hn(Φ[f ](Σ ∩ spt f, t)) =

∫
spt f

J [f ](x, t) dx ,

where the second identity follows from the Area Formula (see, e.g., [3, Theorem 2.91]).
The function A[f ](t) represents the area of the compact portion of the hyperplane Σ
deformed via the flow map Φ[f ](·, t). The minimality/stability of Σ is related to the
asymptotic properties of A[f ](t) when t → 0. In general, we cannot expect that A[f ](t) is
(twice) differentiable at t = 0, hence it will not be possible to compute the first and second
variations of the area in a classical sense. However, we can test the local minimality of Σ
by taking lower right variations, i.e.,

∂tA[f ](0+) := lim inf
t→0+

A[f ](t) − A[f ](0)
t
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and, assuming ∂tA[f ](0+) = 0,

∂2
tA[f ](0+) := 2 lim inf

t→0+

A[f ](t) − A[f ](0)
t2

.

Therefore, a first-order necessary condition for local minimality is

∂tA[f ](0+) ≥ 0 , ∀ f ∈ C0,1
c (Σ) , (4.2.5)

with strict inequality only if the local minimality is strict. Then, a second-order necessary
condition is

∂tA[f ](0+) = 0 =⇒ ∂2
tA[f ](0+) ≥ 0 , (4.2.6)

for all f ∈ C0,1
c (Σ).

4.3 The case of the (n + 1)-dimensional circular cone

From now on, Ωλ will denote the (n+1)-dimensional circular cone defined as the epigraph
of the function

ωλ(x′, xn+1) := λ
√

|x′|2 + x2
n+1 ,

with λ > 0 a fixed parameter defining the aperture of the cone. In this case, for all
f ∈ C0,1

c (Σ), the one-parameter flow associated with f is given by

Φ[f ](x, t) := (x′ , ωλ(x′, tf(x)) + xn − ωλ(x′, 0) , t f(x))

=
(
x′ , λ

√
|x′|2 + t2f(x)2 + xn − λ|x′| , t f(x)

)
.

It is immediate to check that Φ[f ](x, t) is differentiable on the set

∆f := {x ∈ spt f : x ̸= 0 , f is differentiable at x} ∪ (Σ \ spt f) .

In particular, since f is Lipschitz, we infer that

Hn(Σ \ ∆f ) = 0 .
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For almost all x ∈ ∆f and for 1 ≤ i ≤ n− 1, we have

∂iΦ[f ](x, t) = ei + [t ∂if(x) ∂n+1ωλ(x′, tf(x)) + ∂iωλ(x′, tf(x)) − ∂iωλ(x′, 0)] en + t ∂if(x)en+1

= ei + λ

 t2f(x) ∂if(x)√
|x′|2 + t2f(x)2

+ xi√
|x′|2 + t2f(x)2

− xi

|x|

 en + t ∂if(x)en+1

(4.3.1)

while, if i = n,

∂nΦ[f ](x, t) = (t ∂nf(x) ∂n+1ωλ(x′, tf(x)) + 1) en + t ∂nf(x)en+1

=
λ t2f(x) ∂nf(x)√

|x′|2 + t2f(x)2
+ 1

 en + t ∂nf(x)en+1 . (4.3.2)

We introduce the following notations:

αi(x, t) :=


λ

 t2f(x) ∂if(x)√
|x′|2 + t2f(x)2

+ xi√
|x′|2 + t2f(x)2

− xi

|x|

 if i = 1, ..., n− 1

λ
t2f(x)∂nf(x)√
|x′|2 + t2f(x)2

if i = n ,

(4.3.3)

βi(x, t) := t ∂if(x) , ∀i = 1, ..., n . (4.3.4)

We thus have

∂iΦ[f ](x, t) = ei + αi(x, t) en + βi(x, t) en+1 , ∀i = 1, ..., n . (4.3.5)

Lemma 4.3.1. Given f ∈ C0,1
c (Σ), for all t ∈ R, we have

J [f ](x, t)2 = 1 + t2

|∇f(x)|2 + 2λ f(x) ∂nf(x)√
|x′|2 + t2f(x)2

+R[f ](x, t) , (4.3.6)

where R[f ](x, t) is such that

sptR[f ](t, ·) ⊂ spt f , lim
t→0

R[f ](x, t)
t2

= 0 , a.e. in Σ ,

∣∣∣∣∣R[f ](x, t)
t2

∣∣∣∣∣ ≤ C , (4.3.7)
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where C ≥ 0 is a constant depending on Lipf only.

Proof. The partial derivatives of Φ[f ] satisfy the assumptions of Lemma 4.1.1, hence

J [f ]2 = (1 + αn)2
(

1 +
n−1∑
i=1

β2
i

)
+ β2

n

(
1 +

n−1∑
i=1

α2
i

)
− 2 (1 + αn)βn

n−1∑
i=1

αiβi .

where αi, βi are defined in (4.3.3) and (4.3.4). We now observe that, for every 1 ≤ i ≤ n−1,

lim
t→0+

αi(t) = 0 for x ̸= 0. (4.3.8)

In addition,

lim
t→0

αn[f ](t)
t

= 0 for x ̸= 0, lim
t→0

βi[f ](t) = 0 for all x, (4.3.9)

and

∥αn[f ](t)∥L∞(Σ)

t
≤ λ∥∂nf∥L∞(Σ) ,

∥βi[f ](t)∥L∞(Σ)

t
≤ ∥∂if∥L∞(Σ) . (4.3.10)

Let us define

R[f ] := α2
n

(
1 +

n−1∑
i=1

β2
i

)
+ 2αn

n−1∑
i=1

β2
i + β2

n

n−1∑
i=1

α2
i − 2 (1 + αn)βn

n−1∑
i=1

αiβi .

By the definition of αi, βi provided in (4.3.3), it is evident that αi and βi vanish as f
vanishes, and this implies that sptR[f ](t, ·) ⊂ spt f . Owing to (4.3.8), (4.3.9), we infer
that

lim
t→0

R[f ](x, t)
t2

= 0 , a.e. in Σ ,

while (4.3.10) yields
∣∣∣∣∣R[f ](x, t)

t2

∣∣∣∣∣ ≤ C , C constant depending on Lipf .
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This proves the validity of (4.3.7). On the other hand

J [f ]2 −R[f ] = 1 + 2αn +
n∑

i=1
β2

i = 1 + t2

|∇f(x)|2 + 2λ f(x) ∂nf(x)√
|x′|2 + t2f(x)2

 ,

that is precisely what we claimed.

We observe that (4.3.6) explicitly depends on t2. This implies the vanishing of the first
(lower) variation of the area, ∂tA[f ](0+) = 0, and the fact that the second variation can be
computed as the first variation of the area with respect to the parameter s = t2. To this
end, given s > 0 we conveniently set A[f ](s) = A[f ](

√
s) and J [f ](x, s) = J [f ](x,

√
s).

The following theorem holds.

Theorem 4.3.2. The following identity holds:

∂sA[f ](0+) = 1
2

(∫
Σ

|∇f(x)|2 dx− λ
∫
Rn−1

f(x′, λ|x′|)2

|x′|
dx′
)
, ∀f ∈ C0,1

c (Σ) .

(4.3.11)

Proof. Owing to (4.2.4), we have J [f ](0) ≡ 1, hence

∂sA[f ](0+) = lim inf
s→0+

∫
spt f

s−1
(
J [f ](x, s) − J [f ](x, 0)

)
dx

= lim inf
s→0+

∫
spt f

s−1
(
J [f ](x, s) − 1

)
dx . (4.3.12)

Now, (4.3.6) guarantees that

J [f ](x, s)2 = 1 + sG , where G :=
|∇f(x)|2 + 2λ f(x) ∂nf(x)√

|x′|2 + sf(x)2
+ R[f ](x,

√
s)

s

 .

Thus by (4.3.12) we infer
∫

spt f
s−1(J [f ](x, s) − 1) dx = I1

s + I2
s ,

where
I1

s := 1
s

∫
spt f

√
1 + sG−

(
1 + s

G

2

)
dx , I2

s :=
∫

spt f

G

2 dx .
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An elementary computation yields

√
1 + sG−

(
1 + s

G

2

)
= −s2G2/4

√
1 + sG+

(
1 + s

G

2

) ,

consequently
|I1

s | ≤ 1
4

∫
spt f

sG2∣∣∣∣√1 + sG+
(

1 + s
G

2

)∣∣∣∣dx .
Now it is immediate to observe that G = 0 whenever x /∈ spt f , and, as s → 0+,

√
sG −→ 0 a.e. in Σ, |

√
sG| ≤ C for some C > 0 depending on Lipf only.

By Dominated Convergence, we get

lim
s→0+

I1
s = 0 .

Let us now study the limit as s → 0+ of

I2
s =

∫
Σ

1
2 |∇f(x)|2 + λ f(x) ∂nf(x)√

|x′|2 + sf(x)2
+ 1

2
R[f ](x,

√
s)

s

 dx

By (4.3.7) and Dominated Convergence, we have

∫
Σ

R[f ](x,
√
s)

s
dx −→ 0 , as s → 0+ .
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On the other hand, denoting by g(x′) := f(x′, λ|x′|)2, an integration by parts yields

∫
Σ

λ f(x) ∂nf(x)√
|x′|2 + sf(x)2

dx = λ

s

∫
Σ

s f(s) ∂nf(x)√
|x′|2 + sf(x)2

dx

= λ

s

∫
Σ
∂n

√
|x′|2 + sf(x)2 dx

= λ

s

∫
Rn−1

(∫ +∞

λ|x′|
∂n

√
|x′|2 + sf(x)2dxn

)
dx′

= λ

s

∫
Rn−1

|x′| −
√

|x′|2 + sg(x′) dx′

= −λ
∫
Rn−1

g(x′)
|x′| +

√
|x′|2 + sg(x′)

dx′

Now, the integrand
g(x′)

|x′| +
√

|x′|2 + sg(x′)

is positive and monotonically non-increasing in s, for any x′ ̸= 0. Then, by Beppo Levi’s
Theorem, we obtain

lim
s→0+

∫
Rn−1

g(x′)
|x′| +

√
|x′|2 + sg(x′)

dx′ = 1
2

∫
Rn−1

g(x′)
|x′|

dx′ .

This implies that

lim
s→0+

I2
s = 1

2

∫
Σ

|∇f(x)|2 dx− λ

2

∫
Rn−1

g(x′)
|x′|

dx′ ,

and the proof is concluded.

Theorem 4.3.2 allows us to test in which cases Σ is stable. Indeed, by (4.3.11), the
first variation of the area vanishes, hence the stability condition can be stated in terms
of the lower-right second variation:

∂2
tA[f ](0+) = 2∂sA[f ](0+) ≥ 0 ,
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which is equivalent to the functional inequality

∫
Σ

|∇f(x)|2 dx ≥ λ
∫
Rn−1

f(x′, λ|x′|)2

|x′|
dx′ , (4.3.13)

or equivalently to ∫
Σ

|∇f(x)|2dx ≥ λ
∫

∂Σ

f(y)2

|y|
dHn−1(y) .

4.3.1 The case dimΣ = 2

In this case, we see that Σ is always unstable, and in particular it is not area minimizing
into Ωλ. This result will be generalized in the next chapter with the Vertex-skipping
Theorem 5.3.1.

Theorem 4.3.3. Let n = 2. Then, for all f ∈ C0,1
c (Σ) with the property that f(0) ̸= 0,

we have
∂sA[f ](0+) < 0 .

In particular, this shows that Σ is unstable.

Proof. When n = 2 the inequality (4.3.13) becomes

∫
Σ

|∇f(x)|2 dx ≥ λ
∫
R

f(x1, λ|x1|)2

|x1|
dx1 . (4.3.14)

We now observe that, for all f ∈ C0,1
c (Σ), the left-hand side of (4.3.14) is always finite

while the right-hand side is finite only if f(0) = 0. Thus (4.3.14) fails for all f ∈ C0,1
c (Σ)

such that f(0) ̸= 0.

We can then prove the following

Theorem 4.3.4. Let n = 2, and let us define

E := Ω ∩ {x ∈ R3 : x1 < 0} .

Then E is not a minimizer of the relative perimeter in Ω.
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Proof. It suffices to demonstrate that, for all r > 0, there exists a measurable set Fr ⊂ Ω
such that Fr∆E ⊂⊂ Br, and

PΩ(Fr;Br) < PΩ(E;Br) . (4.3.15)

Up to blowing up, it suffices to prove (4.3.15) for r = 1. Let f ∈ C0,1
c (Σ) be such that

f ≥ 0 , spt f ⊂⊂ Σ ∩B1 , f(0) > 0 . (4.3.16)

By Corollary 4.3.3, we know that

∂sA[f ](0+) < 0 ,

and thus we can select σ > 0 small enough to ensure

A[f ](σ) − A[f ](0)
σ

≤ max
{

−1 , 1
2 ∂sA[f ](0+)

}
< 0 . (4.3.17)

Since Φ[f ](·, 0) is the identity on Σ, and spt f is compact in Σ, up to possibly reducing
σ, we can also suppose that

Φ[f ](x,
√
s) ∈ B1 , for all x ∈ spt f .

Let us define
F := {Γx(t) : x ∈ Σ , t <

√
σf(x)} .

By construction, F∆E ⊂⊂ B1. Owing to (iv) of Lemma 4.2.1 and (4.3.17), we can deduce
that

PΩ(F ;B1) − PΩ(E;B1) = A[f ](σ) − A[f ](0) < 0 .

This concludes the proof.
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4.3.2 The case dimΣ ≥ 3

In this case, the aperture of the cone Ωλ plays a role. Indeed, we can prove that there
exists a threshold aperture parameter λ∗ > 0, such that for larger apertures (i.e., for
0 < λ ≤ λ∗), the hyperplane Σ becomes strictly stable.

Theorem 4.3.5. Let n ≥ 3. Then there exists λ∗ = λ∗(n) > 0 such that, if 0 < λ ≤ λ∗,
we have

∂sA[f ](0+) ≥ 0 for all f ∈ C0,1
c (Σ) (4.3.18)

and the inequality is strict whenever f is not identically zero, which means that Σ is
strictly stable.

To prove Theorem 4.3.5, we need the following result.

Lemma 4.3.6. Let n ≥ 3. Then

∫
Σ

|∇f(x)|2 dx ≥ Kn

(1 + λ)2

∫
Rn−1

f(x′, λ|x′|)2

|x′|
dx′ , for all f ∈ H1(Σ), (4.3.19)

where Kn = 2Γ2(n/4)Γ−2((n− 2)/4) and Γ(u) is Euler’s Gamma function.

Inequality (4.3.19) is known as Kato’s Inequality. A proof of a stronger version of
(4.3.19), valid when Σ is a half-space (i.e. for λ = 0), is provided in [6, Theorem 1.4].
Although our domain Σ is not a half-space, our version directly follows from inequality
(9) in the same work. We also mention that a former proof of Kato’s Inequality was given
by Herbst in [15].

Proof of Lemma 4.3.6. Let us denote by Rn
+ the half-space of points x ∈ Rn with xn > 0.

Inequality (9) of [6] states that

∫
Rn

+

|∇g(x)|2 dx ≥ Kn

∫
Rn−1

g(x′, 0)2

|x′|
dx′ , for all g ∈ H1(Rn

+). (4.3.20)

Given f ∈ H1(Σ), let us set

T (x) := (x′, xn + λ|x′|), g(x) := f(T (x)) .
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We have g ∈ H1(Rn
+). Since g(x′, 0) = f(x′, λ|x′|), we get

∫
Rn−1

g(x′, 0)2

|x′|
dx′ =

∫
Rn−1

f(x′, λ|x′|)2

|x′|
dx′ . (4.3.21)

We observe that
∇g(x) = ∇f(T (x)) + λ∂nf(T (x))

(
x′

|x′|
, 0
)
,

and thus
|∇g(x)|2 ≤ (1 + λ)2|∇f(T (x))|2 . (4.3.22)

Combining (4.3.20), (4.3.21) and (4.3.22), and noting that detDT ≡ 1, by the change of
variable formula we get

(1 + λ)2
∫

Σ
|∇f(x)|2dx = (1 + λ)2

∫
Rn

+

|∇f(T (x))|2dx

≥
∫
Rn

+

|∇g(x)|2dx

≥ Kn

∫
Rn−1

f(x′, λ|x′|)2

|x′|
dx′

and conclude the proof.

Proof of Theorem 4.3.5. By Lemma 4.3.6, the validity of (4.3.13), for all f ∈ C0,1
c (Σ), is

guaranteed by the condition
0 < λ ≤ Kn

(1 + λ)2 . (4.3.23)

Since the function λ 7→ λ(1 + λ)2 is monotonically increasing from 0 to +∞, there exists
a unique λ∗ > 0 such that

λ∗(1 + λ∗)2 = Kn

and, consequently, (4.3.23) is satisfied if and only if 0 < λ ≤ λ∗, as wanted.

Remark 4.3.7. Theorem 4.3.5 leaves a lot of questions open. Indeed, we do not know
whether the threshold α∗ > 0 is optimal, and it is not clear what happens if α is small.
Moreover, Theorem 4.3.5 provides just a stability result, but it remains to understand
whether Σ is really area-minimizing in Ω when α ≥ α∗. We expect that the quantitative
expansion of J [f ](t) provided in (4.3.6) could be employed to show that Σ is also mini-
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mizing. Finally, we did not treat the case of n > 3, i.e. the case in which the ambient
dimension is bigger than 4. The motivation of this is related to the difficulties arising in
computing the determinant J [f ](t). On the other hand, we notice that Kato’s Inequality
holds also as n > 3, hence if we knew that J [f ](t) expands as in (4.3.6) in some dimension
n > 3, we would deduce that Σ is stable in Ω for α ≥ α∗, where α∗ is expected to depend
on n.



Chapter 5

The Vertex-skipping Theorem

In this Chapter, we expose the argument for the proof of Theorem 5.3.1, as developed in
[25]. The argument of the proof is by contradiction, and requires a characterization of the
blow-up limit of a local almost-minimizer of the relative perimeter. This characterization
will turn out to be a consequence of the boundary Monotonicity Formula. In what follows,
Ω will always denote an open, convex subset of Rn.

5.1 Preliminary results

5.1.1 Tangent cone and vertices

Definition 5.1.1. Let x0 ∈ Ω. We define the tangent cone to Ω at x0 as

Ωx0 := lim
t→+∞

t(Ω − x0) =
⋃
t>0

t(Ω − x0) .

We observe immediately that Ωx0 is a cone with vertex at 0. Indeed, if y ∈ Ωx0 , by
definition, there exists t > 0 such that

y ∈ t (Ω − x0) .

Then, for all s > 0, sv ∈ st (Ω − x0) ⊂ Ωx0 .
We also provide the definition of vertex for an Euclidean convex set.

83
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Definition 5.1.2. Let x0 ∈ ∂Ω. We say that x0 is a vertex for Ω if Ωx0 does not contain
lines.

5.1.2 Minimality in the tangent cone

We start showing that a sequence of dilations of an almost-minimizer E in Ω converges,
up to subsequences, to a minimizer of the relative perimeter in the tangent cone Ω0. This
fact is an immediate consequence of Lemma 2.1.7.

Lemma 5.1.3. Let E be an almost-minimizer in Ω, and assume 0 ∈ ∂Ω and PΩ(E;Br) >
0 for all r > 0. Let tj ↘ 0 be a sequence and let

Ωtj
:= 1

tj
Ω , Etj

:= 1
tj
E .

Then there exist a subsequence sjk
and a measurable set E0 ⊂ Ω0 such that Esjk

→ E0 in
L1

loc and E0 is a perimeter-minimizer in Ω0, namely

ΨΩ0(E0;BR) = 0 for any R > 0.

Proof (of Lemma 5.1.3). First, we fix R > 0 and prove that there exist t0, C > 0 such
that

P (Et;BR) ≤ CRn−1 ∀ 0 < t < t0 . (5.1.1)

In what follows, for more simplicity, we will write C to denote a constant that might
change from one line to another. To prove (5.1.1), we note that

P (Ωt;BR) = t1−nP (Ω;BRt) ≤ CRn−1 (5.1.2)

since ∂Ω is Lipschitz. Then owing to (2.1.7) and (5.1.2), and assuming t < t0 :=
min(1, r̄/R), we obtain

P (Et;BR) ≤ PΩt(Et;BR) + P (Ωt;BR) = t1−n
(
PΩ(E;BtR) + P (Ω;BRt)

)
≤ C Rn−1 ,
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which proves (5.1.1). Consequently, we obtain the global perimeter bound

P (Et) ≤ P (Et;BR) + P (Ωt;BR) ≤ CRn−1 ,

hence any blow-up sequence Etj
admits a (not relabeled) subsequence converging in

L1(BR) to a limit set E0. By a standard diagonal argument, one can prove the exis-
tence of a subsequence and a limit set, still denoted respectively as Etj

and E0, such that
Etj

→ E0 in L1
loc(Rn). Since the corresponding sequence of rescaled domains Ωtj

converges
to the tangent cone Ω0 in L1

loc(Rn), we infer that E0 ⊂ Ω0.

Now we have to show that ΨΩ0(E0;BR) = 0, for all R > 0. To do so, we can apply
Lemma 2.1.7. Indeed, well-known properties of convex sets ensure that the sequence
of rescaled domains Ωtj

converges to the tangent cone Ω0 locally in Hausdorff distance.
Moreover, by the rescaling properties of the perimeter, since E is an almost-minimizer of
the relative perimeter in Ω, we infer that Etj

satisfies (2.1.1) for all 0 < r < r0 and x = 0
with the function

ψΩtj
(Etj

; 0, r) = ψΩ(E; 0, tjr) , 0 < r < r0/tj .

Now tj ↘ 0, hence there exists M > 0 such that |tj| ≤ M , for all j ∈ N. Moreover, since
ψΩ(E; 0, r) is infinitesimal as r → 0+, we infer that, for any ε > 0, there exists rε > 0
such that 0 ≤ ψΩ(E; 0, r) ≤ ε, for all 0 < r < rε. If we take r < rε/M , we then have

sup
j
ψΩtj

(Etj
; 0, r) = sup

j
ψΩ(E; 0, tjr) ≤ ε ,

and this sufficees to show that

lim
r→0+

sup
j
ψΩtj

(Etj
; 0, r) = 0 .

We are then in position to apply Lemma 2.1.7 to deduce that

lim inf
j

ΨΩtj
(Etj

;BR) ≥ ΨΩ0(E0;BR) , for all R > 0. (5.1.3)
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Finally, by (2.1.6) we obtain

ΨΩtj
(Etj

;BR) = 1
tn−1
j

ΨΩ(E;BtjR) ≤ ω
1− 1

n
n Rn−1ψΩ(E; 0, tjR) −→ 0 ,

which concludes the proof.

5.1.3 Flatness of the blow-up of an almost-minimizer

Thanks to Lemma 5.1.3, we know in particular that for a suitable choice of a sequence
tj ↘ 0 the rescalings Etj

with respect to 0 ∈ ∂Ω converge to a minimizer E0 in the tangent
cone Ω0. Exploiting Theorem 3.4.1, we can prove the following result.

Proposition 5.1.4. There exist a sequence sk ↘ 0 and a subset E00 ⊂ Ω0 such that

(E0)sk
−→ E00 , in L1

loc ,

and E00 is a minimal cone in Ω0, i.e. is a cone with vertex at 0 with the property that

ΨΩ0(E00;BR) = 0 for any R > 0. (5.1.4)

Proof. We note that Ω0 is a Lipschitz cone with vertex at 0, thus Ω0 satisfies the visibility
condition at 0 with the trivial choice u(t) ≡ 0 (see Example 3.2.10). Moreover, E0 is a
minimizer of the relative perimeter in Ω, i.e. ΨΩ0(E0;BR) = 0, for all R > 0, and this
trivially implies (3.4.1). We can then apply Theorem 3.4.1 in this special setting deducing
that, choosing a suitable sequence sk ↘ 0, there exists E00 ⊂ Ω0 such that

(E0)sk
−→ E0 , in L1

loc ,

and E00 is a minimal cone in Ω0, i.e. is a cone with vertex at 0 such that (5.1.4) holds
true, and this concludes the proof.

Remark 5.1.5. We observe that, if Ω satisfies the assumptions of Theorem 3.4.1, then
the same result allows to prove that E0 itself is a cone with vertex at 0. In this case, the
argument performed in the proof of Proposition 5.1.4 becomes unuseful, since E0 = E00.
In other words, a unique blow-up suffices.
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5.1.4 A Federer’s Reduction Lemma

Next, we state a slight variant of the classical Federer’s Reduction Lemma, which will be
used in the proof of Theorem 5.2.1. In what follows, by “cone” we shall always mean a
cone with respect to the origin.

Lemma 5.1.6. Let K ⊂ Rn be a convex cone, C ⊂ K be a minimizing cone for the
relative perimeter, both with vertex at 0. Let x0 ∈ ∂C ∩ ∂K \ {0}. For t > 0, we set

Ct := x0 + C − x0

t
, Kt := x0 + K − x0

t
.

Then there exist a sequence tj ↘ 0 and two sets Cx0, Kx0 such that

Cj := Ctj
−→ Cx0 , Kj := Ktj

−→ Kx0 (5.1.5)

in L1
loc-topology, Cx0 ⊂ Kx0 and Cx0, Kx0 are cylinders with axis coinciding with the line

joining 0 to x0. Moreover, the sets C ′
x0 := Cx0 ∩ x⊥

0 and K ′
x0 := Kx0 ∩ x⊥

0 are cones with
respect to 0 in the hyperplane x⊥

0 , and C ′
x0 is perimeter-minimizing in K ′

x0.

To prove this result we need the following two technical Lemmas. The proof of Lemma
5.1.7 is part of the proof of Lemma 2.4 in [13], while the proof of Lemma 5.1.8 is a slight
variation of that of Lemma 9.8 in [13].

Lemma 5.1.7. Let f have locally bounded variation in Rn. For t ∈ R, let

ft : Rn−1 −→ R

be the function defined by ft(y) := f(y, t). Then, for almost all s < t, r > 0, one has
∫

Bn−1
r

|ft − fs|dHn−1 ≤ |Dnf |(Bn−1
r × (s, t)) , (5.1.6)

where Bn−1
r := Br ∩ {xn = 0}.

Lemma 5.1.8. Let f have locally-bounded variation in Rn, and Ω be an open, bounded
set in Rn−1. Then, for any T > 0,

|Df |(Ω × (−T, T )) ≥
∫ T

−T
|Dft|(Ω)dt ,
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with equality holding if f is independent of the variable xn.

Proof of Lemma 5.1.6. Up to a rotation, we can suppose that x0 = (0, ..., 0, a), for some
a > 0. We can argue as in the proof of Lemma 5.1.3 to deduce that there are a sequence
tj ↘ 0 and sets Cx0 , Kx0 such that (5.1.5) hold. We can also assume thatD1Ctj

⇀∗ D1Cx0
.

Furthermore, Kx0 is the tangent cone to K at x0 and Cx0 is perimeter-minimizing in Kx0 .
Let us show that Cx0 is a cylinder with axis coinciding with the xn-axis. Let us denote
by νC the inner, unit normal to ∂∗C, and let us set νn

C := ⟨νC , en⟩. As C is a cone with
respect to 0, we have

⟨x, νC(x)⟩ = 0 ,

for Hn−1-almost all x ∈ ∂∗C. Thus

−⟨x− x0, νC(x)⟩ = ⟨x0, νC(x)⟩ = a νn
C(x) ,

and consequently we obtain (a = |x0|)

|νn
C(x)| ≤ |x− x0|

|x0|
.

So, for some constant c > 0, for all ρ > 0, we have
∫

Bρ(x0)∩∂∗Ct

|νn
Ct

(x)|dHn−1(x) = t1−n
∫

Bρt(x0)∩∂∗Cx0

|νn
C(x)|dHn−1(x)

≤ t2−nρ

|x0|
P (C,Bρt(x0)) (5.1.7)

≤ c
ρnt

|x0|
.

Now by Reshetnyak’s lower semicontinuity Theorem (see Theorem 20.11 in [26], in par-
ticular we apply it for Φ(u) = |⟨u, en⟩|) we have

∫
Bρ(x0)∩∂∗Cx0

|νn
Cx0

(x)|dHn−1(x) ≤ lim inf
j→∞

∫
Bρ(x0)∩∂∗Ctj

|νn
Ctj

(x)|dHn−1(x) = 0 ,

and consequently
νn

Cx0
= 0 , Hn−1-a.e. on ∂∗Cx0 .
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Owing to Lemma 5.1.7, we deduce that 1Cx0
is independent of xn, hence there exists

C ′
x0 ⊂ Rn−1 such that

Cx0 = C ′
x0 × R.

From the conicity of Cx0 with respect to 0, it follows that C ′
x0 is a cone with respect to 0

in Rn−1. The same argument developed up to now can be performed for Kx0 , deducing
that there is a cone K ′

x0 with respect to the origin in Rn−1 with the property that

Kx0 = K ′
x0 × R .

To conclude, it remains to show the minimality of C ′
x0 in K ′

x0 . By contradiction, let C ′
x0

be not perimeter-minimizing in K ′
x0 . Then we can pick a competitor E ′

0 such that, for
some R, ϵ > 0, we have

E ′
0∆C ′

x0 ⊂⊂ K ′
x0 ∩Bn−1

R , PK′
x0

(E ′
0, B

n−1
R ) ≤ PK′

x0
(C ′

x0 , B
n−1
R ) − ϵ .

Given T > 0, let
E0 := E ′

0 × (−T, T ) ∪ (Cx0 ∩ {xn ≥ T}) .

By construction, E0 = Cx0 in Rn \
(
Bn−1

R × (−T, T )
)
. In addition, by minimality of Cx0

in Kx0 , we observe that

PKx0
(Cx0 , B

n−1
R × [−T, T ]) ≤ PKx0

(E0, B
n−1
R × [−T, T ]) . (5.1.8)

On the other hand, we have

PKx0
(Cx0 , B

n−1
R × [−T, T ]) = 2T PK′

x0
(C ′

x0 , B
n−1
R ) ,

and also

PKx0
(E0, B

n−1
R × [−T, T ]) ≤ 2T PK′

x0
(E ′

0, B
n−1
R ) + 2ωn−1R

n−1

≤ 2T PK′
x0

(C ′
x0 , B

n−1
R ) − 2Tϵ+ 2ωn−1R

n−1

= PKx0
(Cx0 , B

n−1
R × [−T, T ]) − 2Tϵ+ 2ωn−1R

n−1 ,

and this estimate contradicts (5.1.8) for T large enough. So C ′
x0 is a minimal cone in K ′

x0
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and the proof is concluded.

5.2 Characterization of the conical minimizer in R3.

Starting from an almost-minimizer E in Ω which satisfies volume density estimates at the
origin, and applying Lemma 5.1.3 at most twice, we have obtained a conical minimizer
E00 of the relative perimeter in the tangent cone Ω0. The next theorem shows that, in
dimension n = 3, ∂E00 ∩ Ω0 coincides with a convex angle contained in a 2-plane through
the origin, that meets ∂Ω0 orthogonally.

Theorem 5.2.1. Let n = 3 and E00 be the conical minimizer obtained in the previous
subsection. Then ∂E00 ∩ Ω0 coincides with a 2-plane intersected with Ω0, that meets ∂Ω0

orthogonally.

Proof. Set F = E00 for brevity, then the proof is accomplished by showing that there
exists exactly one geodesic arc γ ⊂ ∂B1 ∩ Ω0 such that

∂F ∩ ∂B1 ∩ Ω0 = γ , (5.2.1)

and γ meets ∂Ω0 ∩ ∂B1 orthogonally. We split the proof into some steps.
Step 1. We claim that ∂F ∩ ∂B1 ∩ Ω0 is made of countably-many (open) geodesic arcs

γi, i ≥ 1 integer, such that

γi ∩ γj = ∅, for i ̸= j,
⋃
i

γi = ∂F ∩ ∂B1 ∩ Ω0 .

By interior regularity, ∂F ∩ Ω0 is smooth, and its outer normal vector νF is orthogonal
to the radial directions (recall that F is a cone with vertex at the origin). Hence, ∂F
intersects transversally ∂B1 ∩ Ω0 along smooth curves γi that cannot cross each other.
Since F has locally-finite perimeter, the family of these curves is at most countable. Let
us now show that γi is a geodesic arc, for all i. With a slight abuse of notation, we
identify γi with its arc-length parametrization defined on the interval (0, Li), where Li is
the length of the curve. The connected component of ∂F that intersects ∂B1 along γi can
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be then parametrized through

σi(s, t) := s γi(t) , for s > 0, t ∈ (0, Li). (5.2.2)

We can choose the parametrization γi(t) in such a way that νF (σi(s, t)) = γi(t) × γ′
i(t),

for all s > 0. Exploiting (5.2.2), and using ÷∂FνF = 0 by the minimality of F , we infer

0 = ÷∂FνF (σi(s, t)) (5.2.3)

= d

dt
(γi(t) × γ′

i(t)) · γ′
i(t)

= −γi(t) × γ′
i(t) · γ′′

i (t), for all t . (5.2.4)

Since we also have γ′
i(t) · γ′′

i (t) = 0 by the choice of the arc-length parametrization, and
observing that {γ′

i(t), γi(t) × γ′
i(t)} is an orthonormal basis for the tangent space to ∂B1

at γ(t), we conclude that γ′′
i (t) is orthogonal to the tangent space to ∂B1 at γ(t), which

is precisely the definition of geodesic arc.

Step 2. We prove that γi meets ∂Ω0 orthogonally at its endpoints. More precisely, if
p is an endpoint of γi, then Ω0 admits a unique supporting plane at p, hence the outer
unit normal vector ν0(p) to ∂Ω0 at p is well-defined, and moreover if we denote by νi the
constant unit outer normal to the connected component of ∂F containing γi, we have

νi · ν0(p) = 0 . (5.2.5)

Let us first prove that Ω0 admits a unique supporting plane at p. Up to a rotation, we
may assume that p = (0, 0, 1), hence it follows that νi · e3 = 0. Owing to Lemma 5.1.6, we
can find a sequence tj ↘ 0 such that Ωp,tj

0 := t−1
j (Ω0 − p) locally converge to a cylinder of

type C ×R, and F p,tj := t−1
j (F − p) locally converge to a cylinder that can be written as

G× R, where G ⊂ C. Moreover, both C, and G are cones with respect to 0 in the plane
z = 0, and G is perimeter-minimizing in C. By convexity of C, up to a further rotation,
we can assume that

C = {(x1, x2, 0) : x2 > λ|x1|} ,

for some λ ≥ 0. Clearly, λ = 0 if and only if p admits a unique supporting plane for Ω0.
The only possibility is then that ∂G ∩ C is made of finitely many half-lines L1, ..., Lk of
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the form Lj = {t vj : t ≥ 0}, for some unit vectors vj. Up to relabeling, we can assume

0 < v1 · e2 ≤ vj · e2 for all j .

If either λ > 0 or k > 1, we could replace an initial portion of L1 with a projection segment
onto the closest side of C, which strictly decreases the perimeter and thus contradicts the
fact that G is perimeter-minimizing in C. Hence we necessarily have λ = 0 and k = 1,
i.e., there exists a unique supporting plane to Ω0 at p with ν0(p) = −e2, and moreover
v1 = e2. This proves the claim and, additionally, shows that two different geodesic arcs
cannot share a common endpoint.

Step 3. Finally, we prove that ∂F ∩ ∂B1 ∩ Ω0 is made of exactly one geodesic arc.
Suppose by contradiction that there exist two geodesic arcs γ1 ̸= γ2 contained in

∂F ∩ ∂B1 ∩ Ω0. From the previous step we know that

γ1 ∩ γ2 = ∅ .

For i = 1, 2 we denote by Πi the plane through the origin that contains γi, and by pi, qi

the boundary points of γi.
For i = 1, 2, we consider the point Ni ∈ ∂B1 such that γi is contained in the equator
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with north pole Ni and south pole Si = −Ni, and denote by µpi
, µqi

the corresponding
meridians connecting Ni with Si and passing through pi and qi, respectively. These
meridians bound a region of ∂B1, that we denote as Σi, which satisfies

Ω0 ∩ ∂B1 ⊂ Σi, i = 1, 2 .

Incidentally, thanks to the previous step, Σi is also obtained by intersecting the sphere
∂B1 with the wedge Wi given by the intersection of the two supporting half-spaces to
Ω0 at pi and qi, respectively. Since in particular Wi is a convex cone, it is immediate to
check that Σi = Wi ∩ ∂B1 is geodesically convex. Moreover, using the fact that the angle
formed by the vectors pi, qi is strictly smaller than π (recall that the origin is an isolated
vertex for Ω0) we infer that the internal angle formed by the two geodesic sides of Σi, i.e.
the meridians µpi

and µqi
, at Ni (or Si) is strictly smaller than π.

Now, observe that the closure of Σi is the union of two closed geodesic triangles TNi
, TSi

with vertices pi, qi, Ni and pi, qi, Si, respectively. Since in particular γ2 ⊂ Ω0 ∩ ∂B1 ⊂ Σ1,
and γ2 has a strictly positive distance from γ1, we must have that either γ2 ⊂ TN1 or
γ2 ⊂ TS1 . Without loss of generality, we assume γ2 ⊂ TN1 .

Now, we set p̃2 = Π2 ∩µp1 and q̃2 = Π2 ∩µq1 , and denote by γ̃2 the geodesic connecting
p̃2 and q̃2, and by Σ̃2 the associated geodesically convex region bounded by the meridians
µp̃2

, µq̃2
meeting at poles Ñ2 = N2 and S̃2 = S2. Clearly we have γ2 ⊂ γ̃2 and thus

Σ2 ⊂ Σ̃2. Moreover, we have

p̃2, q̃2 ∈ TN1 \ {p1, q1, N1} .

Indeed, the geodesic γ̃2 cannot intersect γ1, hence it is contained in TN1 and its closure is
disjoint from γ1 because Π2 ∩ γ1 = ∅; moreover, if we had p̃2 = N1 (or q̃2 = N1) we would
conclude that µq1 ⊂ Π2 (respectively, µp1 ⊂ Π2), but this is impossible because Π2 and γ1

are disjoint.
Now, consider the geodesic quadrilateral D determined by the four points p1, p̃2, q̃2, q1.

By the previous argument, D ⊂ TN1 . Denote by α1, α̃2, β̃2, β1 the angles formed by the
pairs of geodesic sides meeting at the respective vertices. Then, consider the two geodesic
triangles R1 = p1p̃2q1 and R2 = p̃2q̃2q1. Call α̃2,1 the internal angle to R1 at p̃2, and α̃2,2

the internal angle to R2 at p̃2. Similarly, call β1,1 the internal angle to R1 at q1, and
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β1,2 the internal angle to R2 at q1. We thus have α̃2 = α̃2,1 + α̃2,2, β1 = β1,1 + β1,2, and
therefore we deduce

α1 = β1 = π/2 , (5.2.6)
max(α̃2, β̃2) ≤ π/2 . (5.2.7)

Indeed, (5.2.6) follows from the orthogonality of γ1 with the meridians µp1 and µq1 , while
(5.2.7) follows from the fact that the quadrilateralD is contained in one of the two geodesic
triangles T̃N2 = p̃2q̃2N2, T̃S2 = p̃2q̃2S2 (indeed, by a symmetric argument, we have either
γ1 ⊂ T̃N2 or γ1 ⊂ T̃S2) and we know by construction that the internal angles to T̃N2 (or
T̃S2) at p̃2 and at q̃2 are both equal to π/2.

Now we notice that R1 must be a non-degenerate geodesic triangle because it possesses
an internal angle at p1 measuring α1 = π/2, and the other two vertices do not coincide.
Thus we have that the sum of the internal angles of R1 satisfies

α1 + α̃2,1 + β1,1 > π . (5.2.8)

At the same time, the sum of the internal angles of R2 is not smaller than π:

α̃2,2 + β̃2 + β1,2 ≥ π . (5.2.9)

By combining (5.2.6), (5.2.7), (5.2.8) and (5.2.9), we reach the contradiction

2π < (α1 + α̃2,1 + β1,1) + (α̃2,2 + β̃2 + β1,2) = α1 + α̃2 + β̃2 + β1 ≤ 2π

and this completes the proof of the theorem.

5.3 Proof of the main result

We now dispose of all the necessary tools to prove the following

Theorem 5.3.1 (Vertex-skipping). Let Ω ⊂ R3 be an open, convex set, and E ⊂ Ω be a
local almost-minimizer of PΩ. Then ∂E ∩ Ω does not contain vertices of Ω.

We argue by contradiction. By the results of the previous section, via a blow-up
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argument we can restrict the proof to the case of a domain Ω0 being a convex cone with
vertex at the origin, and of a minimizer given by the intersection with Ω0 of a half-space
whose boundary plane passes through the origin and meets ∂Ω0 orthogonally.

Before giving the proof of Theorem 5.3.1, we introduce a class of convex cones that
will play a key role in the first part of the proof.

Definition 5.3.2. We say that a convex cone C ⊂ R3 is a pyramid provided there exist
two wedges W1, W2 with orthogonally incident spines such that C = W1 ∩W2.

We note that a pyramid C ⊂ R3 is always a cone with vertex at the point V0 in
which the spines of the wedges intersect each other. Moreover, up to a rotation and a
translation, there exist a, b > 0 such that

C = Ca,b := {x ∈ R3 : x3 ≥ max{a|x1|, b|x2|}} .

Proof (of Theorem 5.3.1). The proof is split into two steps. In the first, we show the
result under the assumption that the conical container is a pyramid, i.e., a cone over a
rectangle. In the second, we employ a “packing-boy” technique that allows us to reduce
the case of a general convex cone to that of a suitably associated pyramid.

Step 1. Consider a pyramid cone Ca,b. We want to show that the plane

π0 = {x ∈ R3 : x1 = 0}

is not locally area-minimizing in Ca,b. To do so, we build a family of competitors that
improve the area of π0 in Ca,b. For ε ≥ 0, let πε = {x ∈ R3 : x1 = ε} and define

Rε := Ca,b ∩ {x ∈ πε : x3 ≤ 1} , Aε := H2(Rε) .

We note that R0 is a triangle in the plane π0, and that Rε is a trapezium in the plane πε

whenever 0 < ε < 1. Moreover, up to translations, Rε is obtained from R0 by removing
a triangle of area a2ε2

b
, so that we have

Aε = A0 − a2

b
ε2 . (5.3.1)

The idea is now to connect the trapezium Rε with π0 ∩Ca,b in order to obtain a local
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Figure 5.2

variation of π0 ∩ Ca,b. We formulate the problem in the following way. Let h > 0 and let
Th be the trapezium defined as

Th = Ca,b ∩ {x ∈ π0 : 1 ≤ x3 ≤ 1 + h} .

We immediately note that
H2(Th) = h(2 + h)

b
. (5.3.2)

We look for those smooth functions ϕh defined on the segment {1 ≤ x3 ≤ 1+h} satisfying
the following conditions:

ϕh(1) = 1 , ϕh(1 + h) = 0 . (5.3.3)

We observe that, looking at ϕh as a function of both variables x2 and x3 defined in Th,
the ruled surface

Gε(ϕh) = {(εϕh(x3), x2, x3) : (x2, x3) ∈ Th}

connects Rε with π0 ∩Ca,b (see Figure 5.2, where the red region is π0 ∩Ca,b, while the blue
one coincides with Rε ∪Gε(ϕh)). By suitably choosing h and the map ϕh, we claim that

Aε + H2(Gε(ϕh)) < A0 + H2(Th) . (5.3.4)
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Using (5.3.1), (5.3.2), and the area formula, (5.3.4) turns out to be equivalent to

∫∫
Th

√
1 + ε2|ϕ′

h(x3)|2dx2dx3 <
a2

b
ε2 + h(2 + h)

b
. (5.3.5)

To guarantee (5.3.5), we only need to impose that the second-order derivative at 0 of the
left-hand side is strictly smaller than the same derivative of the right-hand side. We first
observe that, by Dominated Convergence, one has

∫ 1+h

1
t ϕ′

h(t)2dt < a2 . (5.3.6)

Then, for α > 0, we choose

ϕh = ϕh,α(t) := hαt−α − 1
hα − 1 .

We observe that ϕh,α fulfills (5.3.3). Taking ϕh = ϕh,α, condition (5.3.6) becomes

α

2
(1 + h)α + 1
(1 + h)α − 1 =

∫ 1+h

1
t ϕ′

h,α(t)2dt < a2 . (5.3.7)

As h → +∞, the term on the left-hand side of (5.3.7) tends to α
2 , hence it is enough to

choose α < 2a2 and h large enough to enforce (5.3.7). This ultimately proves (5.3.4) and
shows that π0 cannot be area-minimizing in Ca,b.

Step 2. Let now Ω0 be a generic convex cone with vertex at the origin. Thanks to
Theorem 5.2.1, and up to rotations, we may suppose that the boundary of the minimizer
E00 is the intersection of the plane π0 with Ω0, hence there exists b > 0 such that

∂E00 ∩ Ω0 = {(0, x2, x3) : x3 ≥ b|x2|} .

Now, by Theorem 5.2.1 we have

Ω0 ⊂ W1 := {x ∈ R3 : x3 ≥ b|x2|} .

Since the origin is an isolated vertex for Ω0, it is not possible that ∂Ω0 contains the whole



98 CHAPTER 5. THE VERTEX-SKIPPING THEOREM

line {(t, 0, 0) : tR}, hence there must exist a > 0 such that the pyramid Ca,b verifies either

Ω0 ∩ {x1 ≥ 0} ⊂ Ca,b ∩ {x1 ≥ 0} (5.3.8)

or
Ω0 ∩ {x1 ≤ 0} ⊂ Ca,b ∩ {x1 ≤ 0} . (5.3.9)

We can assume for instance that (5.3.8) holds true, otherwise we simply flip the argument.
We take ε > 0 and set

R̂ε := Ω0 ∩ {x ∈ πε : x3 ≤ 1} , Âε := H2(R̂ε) .

With the choice of suitable values h and α, we already know that the connection map
ϕh,α constructed in the proof of Theorem 5.2.1 satisfies

Aε + H2(Gε(ϕh,α)) < A0 + H2(Th)

whenever ε is small enough. Finally, we observe that

Âε + H2(Gε(ϕh,α) ∩ Ω0) ≤ Aε + H2(Gε(ϕh,α))
Â(0) = A(0) ,

which shows that π0 cannot be a minimizer in Ω0. This concludes the proof of Theorem
5.3.1.
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