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Abstract. We study the speed of convergence in L∞ norm of the vanishing viscosity process
for Hamilton-Jacobi equations with uniformly or strictly convex Hamiltonian terms with su-

perquadratic behavior. Our analysis boosts previous findings on the rate of convergence for this

procedure in Lp norms, showing rates in sup-norm of order O(εβ), β ∈ (1/2, 1), or O(ε| log ε|)
with respect to the vanishing viscosity parameter ε, depending on the regularity of the initial

datum of the problem and convexity properties of the Hamiltonian. Our proofs are based on

integral methods and avoid the use of techniques based on stochastic control or the maximum
principle.

1. Introduction

This paper studies quantitative estimates of the rate of convergence of the vanishing viscosity
approximation of periodic solutions to the viscous Hamilton-Jacobi equation

(1)

{
−∂tuε − ε∆uε +H(Duε) = f(x, t) in QT := Tn × (0, T ),

uε(x, T ) = uT (x) in Tn.

towards its first-order counterpart

(2)

{
−∂tu+H(Du) = f(x, t) in QT := Tn × (0, T ),

u(x, T ) = uT (x) in Tn.

Here, H : Rn → R is the so-called Hamiltonian, while f : QT → R and uT : Tn → R are the
periodic source and the terminal condition of the problem.

The rate of convergence of this regularization approach has been widely investigated in the
context of viscosity solutions and it is sensitive of the regularity and the geometric properties of the
Hamiltonian and the data of the problem. In the case of Lipschitz solutions and locally Lipschitz H
the O(

√
ε) rate of convergence for ∥uε−u∥∞ was established in [Fle64, Lio82, CL84, Eva10] using

probabilistic techniques, maximum principle approaches and integral duality methods respectively,
see also [Cal18] for a proof via the regularization by sup/inf-convolution. In the absence of further
assumptions, this rate is sharp in view of the recent examples discussed in [QSTY24, Section 4],
and it becomes even slower if one weakens the regularity conditions on H and u or considers
homogenization problems, see for example [BCD97, CCM11].

One may then wonder whether the O(
√
ε) rate can be improved under further assumptions.

First, following the common principle in PDE theory that smallness conditions imply smoothness,
one can deduce a faster O(ε) rate of convergence in sup-norms when ∥D2uT ∥∞ is small or for
short time horizons [Lio82, Chapter 12]. This rate is a consequence of C1,1 estimates that are
independent of the viscosity, and that hold typically in these smallness regimes. In this case,
applying the usual maximum principle to the (linearized) equation solved by uε − u, one obtains

∥uε − u∥L∞(QT ) ≤ Cε.
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This agrees with L1 rates of convergence for the vanishing viscosity process of the one-dimensional
Burger’s equation [Wan99, Theorem 3.1].

If H is assumed to be uniformly convex, well-known results provide one-side O(ε) rate in sup-
norm [Lio82] (this rate is also well-known for conservation laws under the Oleinik one-side Lipschitz
condition [NT92]), and O(ε) rate in the weaker L1 norm [LT01, CGM23]. These rates can be in-
terpolated, giving new convergence results in Lp spaces [CGM23]. A special role in the uniformly
convex framework is played by the purely quadratic Hamiltonian: by means of the Hopf-Cole
reduction and the explicit representation formula for the heat flow [Bre20], the O(ε| log ε|) rate in
sup-norm has been observed in the literature. See [Wan99] for conservation laws, and [QSTY24,
Proposition 4.4] for the one-dimensional Hamilton-Jacobi equation. This result has been very
recently generalized to the multidimensional case [CD25, Section 3], for equations posed on the
whole space Rn and Lipschitz data.

The first goal of this paper is to prove that the O(ε| log ε|) rate holds beyond the purely
quadratic case, that is, for uniformly convex Hamiltonians. We assume, in particular, that for
some 0 < θ ≤ Θ,

(H) H ∈ C2 and θIn ≤ D2
ppH(p) ≤ ΘIn for all p.

Throughout the paper, uT will be implicitly assumed to be of class C2,α, and f of class
C2+α,1+α/2. This will guarantee that the unique solution to (1) is classical for each ε > 0. Never-
theless, all the estimates obtained below will depend on Lipschitz or semiconcavity properties of
uT and f , that will be specified below.

The first result, stated in Theorem 3.1, shows that the general O(
√
ε) rate can be boosted to

(3) −C1,βε
β ≤ uε − u ≤ C2ε, on QT , for any β ∈ (1/2, 1).

Here, C1,β , C2 depend on some semiconcavity properties of uT and f . This estimate implies also a

new O(εβ/2) rate of convergence of gradients in L∞
t (L2

x) norms and, consequently, the convergence
rate for solutions of certain hyperbolic systems of conservation laws.

Secondly we prove, in Theorem 4.1, the analytic bound

(4) ∥(uε − u)(τ)∥L∞(Tn) ≤ Cτε| log ε|, for any τ ∈ [0, T ).

Note that Cτ deteriorates as τ → T , as we are using only the information uT ∈ W 1,∞(Tn)
on the final condition. The bounds (3)-(4) complete the picture of the vanishing viscosity ap-
proximation for uniformly convex Hamiltonians, answering a question posed in [QSTY24, p.17],
which provided numerical evidence in favor of the validity of these results. Moreover, we observe
in Remark 3.3 that the order ε can be reached in special situations, such as the one of convex data.

In the second part of the paper, we continue our analysis and consider Hamiltonians that are
merely strictly convex. More precisely, we relax (H) to

(Hγ) H ∈ C2 satisfies θ|ξ|2|p|γ−2 ≤ D2
ppH(p)ξ · ξ ≤ Θ|ξ|2, ξ ∈ Rn, ξ ̸= 0, γ > 2, |p| ≤ C,

for some 0 < θ < Θ, a model being the superquadratic Hamiltonian

H(p) = |p|γ , γ > 2.

We prove in Theorem 5.1 the following estimate: there exists βγ ∈
(
1
2 , 1
)
such that

(5) −C3,β ε
β ≤ uε − u ≤ C2 ε on QT , for each β < βγ .

The upper bound βγ is explicit. One can check that the leftmost rate O(εβγ ) deteriorates to
O(

√
ε) as γ → +∞ and agrees with (3) in the limit γ → 2. To the best of our knowledge, these

intermediate rates βγ are new within the framework of strictly convex Hamiltonians. Numerical
experiments have been carried out in [QSTY24], suggesting that one should indeed expect some
intermediate situation βγ ∈ (1/2, 1). We do not known whether the upper bound βγ obtained
here is sharp or not, and we believe that further investigation of strictly but not uniformly convex
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problems can be an interesting research direction. See Remark 5.2 for further comments.

The proofs presented here exploit a duality approach [Eva10], being based on the analysis of
the adjoint of the linearization of (1). A more detailed description of the arguments is given in
the next section.

We conclude by mentioning that one of our main motivations to address this vanishing viscosity
problem was the more complicated study of the rate of the convergence problem in Mean Field
Control, where, roughly speaking, one fixes ε > 0 in (1) and let the dimension n → ∞. In some
specific situations (see for example [DDJ24]), this problem can be reduced in fact to a question
of vanishing viscosity for Hamilton-Jacobi equations posed on the Euclidean space (with fixed
dimension). We report the implications of our results in the convergence problem for Mean Field
Control in Remark 5.3.

It is worth mentioning that other approximations of Hamilton-Jacobi equations have been
considered in the literature, for example regularizations via nonlocal operators [DI06, Gof24].
Finally, it would be interesting to apply this approach to the study of the convergence rate of the
vanishing viscosity approximation of Mean Field Games systems [TZ23], numerical methods, cf.
[BCD97, Cal18, CGT13], stationary problems and homogenization.
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Project 2022W58BJ5 (subject area: PE - Physical Sciences and Engineering) “PDEs and optimal
control methods in mean field games, population dynamics and multi-agent models”.

2. Preliminaries and method of proof

Following a classical approach (see for instance [FS86, Theorem 5.1]) we first observe that the
estimate of the quantity ∥uε − u∥L∞ can be obtained, via an asymptotic expansion, from an
estimate of ∥∂εuε∥L∞ , see in particular Remark 2.2 below. Note also that, by differentiating (1)
with respect to ε, vε = ∂εuε solves the linear drift-diffusion PDE

−∂tv
ε − ε∆vε +DpH(Duε) ·Dvε = ∆uε

equipped with homogenous final condition vε(T ) = 0. Now, for any (x̄, τ) ∈ QT , by means of the
dual problem solved by ρ = ρε,τ,x̄

(6)

{
∂tρ− ε∆ρ− div(DpH(Duε)ρ) = 0 in Qτ,T := Tn × (τ, T ),

ρ(τ) = δx̄ in Tn

we get a representation formula, for arbitrary s ∈ [τ, T ], as follows

vε(x̄, τ) =
w

Tn
vε(s)ρ(s) dx+

x

Tn×(τ,s)
∆uερdxdt = (I) + (II) .

One can take for simplicity s = T , so that the integral (I) is zero. Therefore, the estimate on
vε boils down to a control on (II), that involves second-order derivatives D2uε weighted by ρ.
The crucial step of the approach presented here is in fact to exploit the weight ρ, which, from
perspective of optimal control, describes the flow of optimal trajectories originating from x̄ at time
τ .

There are two main ingredients that allow to control the quantity
s

∆uερ. These are the
presence of the diffusion and the convexity of the Hamiltonian. The diffusion gives bounds of the
form

(7)
w T

τ

w

Tn
|D2uε|2ρdxdt ≲

1

ε
,
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see Lemma 2.3 below. Note that this implies immediately, by Hölder’s inequality and conservation
of mass for ρ, that ∣∣∣∣xTn×(τ,T )

∆uερ

∣∣∣∣ ≤
√

T − τ

ε
.

This crude bound gives the O(
√
ε) control on ∥uε−u∥L∞ . To improve it, one needs to get further

information out of the convex structure of H. To this aim, we follow a general principle of optimal
control, which roughly states that optimal trajectories should be “stable”, as well as the optimal
drift, when restricted to time intervals of the form [t, T ] ⊂ (τ, T ], that is, away from the originating
point (x̄, τ). We make this observation quantitative by proving estimates of the form

(8)
w T

τ+δ

w
|D2uε|2ρdxdt ≲

1

δα
,

where δ > 0 and α > 1 (see (10)). This, together with (7), allows to improve the previous bounds,
by splitting the time interval into [τ, τ + δ] ∪ [τ + δ, T ] as follows:∣∣∣∣xTn×(τ,T )

∆uερ

∣∣∣∣ ≲ 1

δα
+

√
δ

ε
.

A suitable choice of δ = δ(ε) gives then the desired rate O(εβ), for β < 1.
To reach the optimal rate O(ε| log ε|), a more delicate analysis is needed, as it corresponds to

the “critical” case α = 1 in the previous bound. We exploit here some additional entropy and first-
order bounds for (6) when the initial datum does not belong to the Orlicz space LlogL (Lemma
4.2). We refer to [NFSS22] for a related analysis under different assumptions on the velocity field
and the initial datum.

The analysis of the strictly convex case is even more delicate, as (8) is meaningful only when
|Duε| is bounded away from zero. Under our strict convexity assumptions, (8) becomes

w T

τ+δ

w

|Du|2≥m
|D2uε|2ρdxdt ≲

1

m
γ−2
2 δα

,

To compensate the lack of information when |Du| is close to zero, we need to sharpen (7) in regions
where the gradient is small. The proof of the crucial estimate (20) is obtained via a Bochner-type
identity for w̃ = φ(|Du|2),

∆w̃ = 4φ′′
n∑

j=1

(Duxj
·Du)2 + 2φ′D∆u ·Du+ 2φ′|D2u|2,

where φ is a carefully chosen truncation function. We proceed with a hole-filling technique in the
spirit of K.-O. Widman [Wid71]. This technique has been historically applied to obtain interior
Morrey estimates, and local Hölder continuity as a byproduct, for elliptic equations and systems.
We apply here a similar method to get integral bounds of (weighted) second order derivatives over
sublevel sets of the gradient (instead of concentric balls as in the classical literature).

We conclude by stressing again that it is crucial to look at integral estimates on second deriva-
tives, as classical pointwise estimates (coming from example from the theory of viscosity solutions)
merely give

∥∂tuε∥L∞
x,t

, ∥Duε∥L∞
x,t

≤ C =⇒ ∥∆uε∥L∞
x,t

≲
1

ε
.

These bounds have no (straightforward) use in the control of the rate of convergence.

The next lemmata make some of the steps that have been previously described rigorous.

Lemma 2.1. Assume that H satisfies (H) or (Hγ). For every (x, t) ∈ Tn × [0, T ] and ε > 0, the

derivative vε(x, t) = ∂εuε(x, t) is well-defined. The function vε is of class C2+α,1+α/2(Tn× [0, T ]),
and it solves

(9)

{
−∂tv

ε − ε∆vε +DpH(Duε) ·Dvε = ∆uε in Tn × (0, T ),

vε(x, T ) = 0 in Tn
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in the classical sense.

Proof. We denote by C2k+α,k+α/2 the classical Hölder space with respect to the parabolic dis-
tance. Note first that by Schauder estimates (for quasilinear parabolic equations), uε is of class
C2+α,1+α/2(Tn × [0, T ]), hence ∆uε ∈ Cα,α/2(Tn × [0, T ]) and the (linear) Cauchy problem (9)
admits a unique classical solution vε ∈ C2+α,1+α/2(Tn × [0, T ]). Consider now, for η > 0, the
finite difference

vεη =
uε+η − uε

η

and note that it satisfies vεη(T ) = 0 and

−∂tv
ε
η − (ε+ η)∆vεη +

H(Duε+η)−H(Duε)

η
= ∆uε.

Here we use the regularity of H to show that, by the second-order Taylor expansion,

H(Duε+η) = H(Duε) +DpH(Duε) ·D(uε+η − uε) + ΨD(uε+η − uε) ·D(uε+η − uε),

where the matrix-valued function Ψ is defined as

Ψε,η(x, t) =
1

2

w 1

0
(1− ζ)D2

ppH
(
Duε(x, t) + ζ(Duε+η(x, t)−Duε(x, t))

)
dζ.

The function Ψ is continuous, and bounded in Tn × [0, T ] uniformly with respect to η by the
uniform bound D2

ppH ≤ Θ. Hence,

−∂tv
ε
η − (ε+ η)∆vεη +DpH(Duε) ·Dvεη + ηΨDvεη ·Dvεη = ∆uε.

To pass to the limit η → 0, we use the Hölder regularity estimates on vεη from [LSU68] (uniform

in η), that go through gradient bounds first, then W 2,1
p (the parabolic Sobolev space of second

order) regularity and Sobolev embeddings finally. We can then extract a subsequence, that we
keep denoting by vεη, that converges uniformly to some continuous function vε by Ascoli-Arzelà
Theorem. To show that the limit vε (along the specific subsequence) solves (9), we use a standard
viscosity solution argument: ηΨ vanishes uniformly on Tn × [0, T ] and ε + η → ε. Therefore, by
the stability of viscosity solutions, vε is a viscosity solution of (9). Since viscosity solutions to
the linear problem (9) are unique, vε enjoys in fact the regularity claimed at the beginning of the
proof. Moreover, this uniqueness property also shows that vεη → vε uniformly on Tn × [0, T ] along
the full limit η → 0, providing the desired assertion. □

Remark 2.2. The proof of the rate of convergence will be reduced to an L∞ estimate on vε. Having
this at our disposal, we then get that, for every ε′′ > ε′ > 0, (x, t) ∈ Tn × [0, T ],

|uε′′(x, t)− uε′(x, t)| ≤
w ε′′

ε′
|vε(x, t)|dε ≤

w ε′′

ε′
∥vε∥∞dε.

Hence, whenever ε 7→ ∥vε∥∞ is integrable on (0, 1), we have that uε is a Cauchy sequence in the
space of continuous functions on Tn × [0, T ], and its uniform limit u satisfies

∥uε′′ − u∥∞ ≤
w ε′′

0
∥vε∥∞dε.

Moreover, by uniform convergence and stability of the notion of viscosity solution, u turns out to
be a (the) viscosity solution of (2). Similarly, an upper bound on (vε)+ yields an upper bound on
(uε − u)+.

Lemma 2.3. Assume that H satisfies (H) or (Hγ) (in fact, H can be assumed to be only locally
Lipschitz). Then, for each (x, τ) ∈ Tn × [0, T ] and ρ solving (6) we have

|Duε(x, τ)|+ ε
w T

τ

w

Tn
|D2uε|2ρdxdt ≤ CL,

where CL depends on ∥DuT ∥L∞
x
, ∥Df∥L∞

x,t
and T .
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Proof. The estimate is well-known but we briefly sketch its proof here for completeness. It is
enough to look at the equation solved by w = |Duε|2, namely

−∂tw − ε∆w + 2ε|D2uε|2 +DH(Duε) ·Dw = Df ·Duε.

By duality with (6), we have

|Duε(x, τ)|2 + 2ε
w T

τ

w

Tn
|D2uε|2ρdxdt ≤

w

Tn
|DuT |2ρ(x, 0)dx+

w T

τ

w

Tn
Df ·Duερdxdt

≤ ∥DuT ∥2∞ + T∥Df∥∞;QT
∥Du∥∞;QT

Using now Young’s inequality and taking the supremum over (x, τ) ∈ Tn×[0, T ] one concludes. □

3. Rate of convergence for uniformly convex Hamiltonians and semiconcave data

In this section we prove that the rate of convergence of the quantity ∥(uε − u)−∥L∞ for semi-
concave solutions of Hamilton-Jacobi equation can be boosted from O(

√
ε) to O(εβ), β ∈ (1/2, 1)

in L∞ norm. This is usually known to be O(
√
ε) in L∞ norm or O(ε) in the weaker L1 norm or

in a certain average sense [Tra21], see also [Gof24] for different rates of order O(ε) with nonlocal
regularization of the PDE. The proof uses the nonlinear adjoint method and exploits only the
conservation of mass property of the dual equation (6).

Theorem 3.1. Let H be such that (H) holds. Then, if uε solves (1) and u solves the first-order
equation (2) we have that

−Cεβ ≤ uε − u ≤ (T∥(∆uT )
+∥L∞

x
+ ∥(∆f)+∥L1

t (L
∞
x ))ε, β ∈ (1/2, 1).

where C depends on n, θ, ∥(∆uT )
+∥L∞

x
, ∥(∆f)+∥L∞

x,t
, T, ∥DuT ∥L∞

x
, ∥Df∥L∞

x,t
.

Proof. Step 1 (O(ε) bound from above). The linear upper bound on (uε−u)+ is well-known, even
under weaker assumptions on H, see [CGM23] and [Lio82, Proposition 11.2]. We briefly recall the
proof for completeness. First, note that by Lemma 2.1 the function v = ∂εuε solves (9). Testing
(9) against the solution of the adjoint problem (6) , we find by the conservation of mass for (6)
that

ρ(x̄, τ) =
w T

τ

w

Tn
∆uερdxdt ≤ ∥(∆uε)

+∥L1
t (L

∞
x )

≤ T∥(∆uT )
+∥L∞(Tn) + ∥(∆f)+∥L1(0,T ;L∞(Tn)),

where we used the semi-superharmonic bound in [CGM23, Remarks 3.6 and 4.9], see also [Lio82].
By Remark 2.2 we conclude the estimate

∥(uε − u)+∥L∞(QT ) ≤ ε(T∥(∆uT )
+∥L∞(Tn) + ∥(∆f)+∥L1(0,T ;L∞(Tn))).

Step 2 (Second order estimate). We prove that for α ∈ (1, 2) we have the bound

(10)
w T

τ

w

Tn
(t− τ)α|D2uε|2ρdxdt ≤ K,

where ρ solves (6) and K depends on n, α, T, θ, uT , f . We first find, by differentiating twice
the equation for uε and uniform convexity of H, the following inequality solved by the function
z(x, t) = (t− τ)α∆uε(x, t):

− ∂tz − ε∆z + θ(t− τ)α|D2uε|2 +DpH(Duε) ·Dz

≤ −α(t− τ)α−1∆uε(x, t) + (t− τ)α∆f(x, t) in QT .

By duality and integrating in Tn × (τ, T ) we have

(11)
w

Tn
z(τ)ρ(τ) dx︸ ︷︷ ︸

=0

+θ
w T

τ

w

Tn
(t− τ)α|D2uε|2ρdxdt =

w

Tn
z(T )ρ(T )dx︸ ︷︷ ︸

≤(T−τ)α∥(∆uT )+∥L∞(Tn)

− α
w T

τ

w

Tn
(t− τ)α−1∆uερdxdt+

w T

τ

w

Tn
(t− τ)α∆fρdxdt.
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We now use Young’s inequality as follows

−α
w T

τ

w

Tn
(t− τ)α−1∆uερdxdt

≤ θ

2n

w T

τ

w

Tn
(t− τ)α|∆uε|2ρdxdt+

nα2

2θ

w T

τ

w

Tn
(t− τ)α−2ρdxdt

≤ θ

2

w T

τ

w

Tn
(t− τ)α|D2uε|2ρdxdt+

nα2

2θ

w T

τ
(t− τ)α−2 dt

≤ θ

2

w T

τ

w

Tn
(t− τ)α|D2uε|2ρdxdt+

nα2

2θ(α− 1)
Tα−1.

We then obtain

(12)
w T

τ

w

Tn
(t− τ)α|D2uε|2ρdxdt

≤ nα2

θ2(α− 1)
Tα−1 +

2

θ
Tα∥(∆uT )

+∥L∞(Tn) +
Tα+1

α+ 1
∥(∆f)+∥L∞(QT ) =: K.

Step 3 (O(εβ) bound from below). We now proceed to estimate the rate of convergence: define

again v = vε(x, t) = ∂εuε(x, t) and find by Lemma 2.1 the PDE (9). By duality we find

(13) v(x̄, τ) =
w

Tn
v(T )ρ(T )dx+

w T

τ

w

Tn
∆uερdxdt.

We only estimate the last term on the right-hand side since vε(T ) = 0. Assume first that τ+ε < T .
Then,∣∣∣w T

τ

w

Tn
∆uερdxdt

∣∣∣ ≤ √
n

(w T

τ+ε

w

Tn
(t− τ)α/2|D2uε|ρ(t− τ)−α/2dxdt+

w τ+ε

τ

w

Tn
|D2uε|ρdxdt

)
≤

√
n

(w T

τ+ε

w

Tn
(t− τ)α|D2uε|2ρdxdt

) 1
2
(w T

τ+ε

w

Tn
(t− τ)−αρdxdt

) 1
2

+
√
n

(w τ+ε

τ

w

Tn
|D2uε|2ρdxdt

) 1
2
(w τ+ε

τ

w

Tn
ρdxdt

) 1
2

≤
√

nKε1−α

α− 1
+
√
CL,

where we used the (12) and Lemma 2.3. Note that if τ ≥ T − ε, then the same estimate holds,

without the term
√

nKε1−α

α−1 , as in this case there is no need to split the first integral.

Back to (13), this implies that

vε(x̄, τ) ≥ −C̃ε
1−α
2 .

Since the previous estimate holds for all x̄, τ , by Remark 2.2 we obtain

uε − u ≥ −C̃ε
3−α
2 ,

and we conclude by setting 3−α
2 = β ∈ (1/2, 1). □

Remark 3.2. Since K in the previous proof grows linearly in the dimension n, one can easily check
that the rate (from below) of the previous result grows linearly in n.

The previous proof extends to more general Hamiltonians H = H(x, t, p) ∈ C2(Rn×(0, T )×Rn)
under the conditions

sup
(x,t)∈QT

|DxH(x, t, p)|, sup
(x,t)∈QT

|D2
xpH(x, t, p)|, sup

(x,t)∈QT

|D2
xxH(x, t, p)| ≤ CH(1 + |p|),

together with
D2

ppH(x, t, p)ξ · ξ ≥ a(x, t)|ξ|2, a > 0,

and the constant of the estimates will depend also on CH , a. More precisely, the bound (10) under
these assumptions was proved in [Tra11], while the second order estimate can be found starting
from equation (36) in [CG19] and following the proof of Proposition 3.6 therein.
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Remark 3.3 (Reaching O(ε)). As we mentioned in the introduction, the linear order O(ε) can be
reached in exceptional cases only, for example under smallness conditions. We mention here two
other possible situations where the presence of a uniformly convex Hamiltonian can be exploited.
If one takes α = 0 in the previous proof, then (11) reads

θ
w T

τ

w

Tn
|D2uε|2ρdxdt ≤ ∥(∆uT )

+∥L∞(Tn) +
w T

τ

w

Tn
∆fρdxdt−∆uε(x̄, τ).

The last term −∆uε(x̄, τ) is in general unbounded as ε → 0, and that is exactly why we put
the weight (T − τ)α in the previous proof. Nevertheless, if one assumes that uT and f(·, t) are
convex, then it is known that uε(·, t) is convex as well for all t and ε (for example by employing
coupling methods, see for example [Con24] or [CM24]). Therefore, −∆uε(x̄, τ) ≤ 0 and the
previous inequality gives a uniform bound on

s
|D2uε|2ρ that is independent of τ, x̄, ε. Arguing

as in the previous proof (with an even simpler argument, since there is no need to split the time
interval), one reaches the order O(ε) in sup-norm. Clearly the hypothesis on convexity of the data
is extremely restrictive if periodicity is also assumed, but the arguments presented here can be
easily adapted to the nonperiodic setting, paying some attention on the usual technicalities arising
from the presence of unbounded domains.

In fact, even if the data are not assumed to be convex, every point (x̄, τ) such that −∆uε(x̄, τ)
remains bounded above uniformly with respect to ε is a point where convergence of uε(x̄, τ) to
u(x̄, τ) is linear in ε. The points where convergence is linear are known to form a set of full
Lebesgue measure when the Hamiltonian is purely quadratic, see [QSTY24, Proposition 4-(ii)].
We expect also this to be true when H is uniformly convex.

The first consequence of the quantitative bound in Theorem 3.1 concerns the speed of conver-
gence of gradients in the vanishing viscosity approximation.

Corollary 3.4. Under the assumptions of Theorem 3.1 we have

∥Duε −Du∥L∞(0,T ;L2(Tn)) ≤ Cε
β
2 .

Proof. We first note that the semiconcavity estimate implies

∥∆uε∥L∞(0,T ;L1(Tn)) ≤ C1

for a constant C1 independent of ε, see [Kru66] or [CGM23, Theorem 4.14]. Integrating by parts
we get for a.e. t ∈ (0, T )

w

Tn
|Duε(t)−Du(t)|2dx = −

w

Tn
∆(uε − u)(uε − u)(t)dx

≤ ∥(uε − u)(t)∥L∞(Tn)∥∆(uε − u)(t)∥L1(Tn) ≤ Cεβ ,

where C is independent of ε. □

We conclude this section with an application to the convergence rate of the solution to the
quasilinear parabolic system{

∂tp
ε
i + ∂xi

H(pε1, ..., p
ε
n) = ε∆pεi in QT , i = 1, ..., n

pεi (x, 0) = p0i (x) in Tn

to the solution of the hyperbolic system

(14)

{
∂tpi + ∂xi

H(p1, ..., pn) = 0 in QT , i = 1, ..., n

pi(x, 0) = p0i (x) in Tn.

The convergence of the parabolic equation to the system of conservation laws (14) was proved by
S.N. Kruzhkov in Theorem 8 of [Kru67], see also [Lio82, Section 16.1]. The connection among (2)
and (14) is the following: if u is a solution of (2), then p(x, t) = Du(x, t) with pi(x, t) = ∂xi

u(x, t)
and p(x, 0) = Du(x, 0) lead to (14). Corollary 3.4 implies the following:

Corollary 3.5. If H is uniformly convex and p0 = Du0 with p0 ∈ C1(Tn), we have

∥pεi − pi∥L2(QT ) ≤ Cε
β
2 , β ∈ (1/2, 1).
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4. An improved rate for uniformly convex Hamiltonians and Lipschitz data

We now improve the left-side rate of convergence of Section 3 to O(ε| log ε|). While in the
previous result we rely on the semiconcavity of uT , the following argument will depend merely
on its Lipschitz continuity, at the price of an estimate that deteriorates close to T . This provides
an analytic proof to general uniformly convex Hamilton-Jacobi equations of the one-dimensional
result in Proposition 4.4-(i) of [QSTY24].

Theorem 4.1. Let uε be a solution of (1) with H satisfying (H). For all ε ∈ (0, 1) and τ ∈ [0, T )
we have

∥(uε − u)(τ)∥L∞(Tn) ≤
C

(T − τ)1/2
ε| log ε|

where C depends on n, ∥DuT ∥L∞
x
, T, ∥(∆f)+∥L∞

x,t
, θ,Θ.

The proof of this result is divided in several steps and requires a careful analysis of entropy-type
bounds for solutions of the adjoint problem (6). The next lemma shows a certain control with
respect to ε of the W 1,1 norm for solutions of Fokker-Planck equations with bounded velocity fields
and Dirac initial condition, in the regime of small viscosity. These estimates are known when the
drift of the Fokker-Planck equation belongs to some Sobolev space and the initial data belongs to
an Orlicz class, cf. [LBL19]. In particular, this complements the analysis of [NFSS22], see Remark
1 therein, where a decay result of the Sobolev norm is studied when the velocity field b = b(x, t)
of the advection equation is weakly compressible, i.e.

[div(b)]− ∈ L1
t (L

∞
x ),

and ρ(τ) ∈ LLogL(Tn). These available results cannot be applied in our setting since here ρ(τ)
is just a probability measure. Quantitative convergence rates for Fokker-Planck equations within
the Diperna-Lions framework have been the matter of [BCC22], see also the references therein.

Lemma 4.2. Assume that 0 < ε ≤ 1 and τ ≤ T − 4ε. Let ρ := ρε,τ,x be a solution of{
∂tρ− ε∆ρ+ div(bρ) = 0 in Qτ,T ,

ρ(τ) = δx

and assume that ∥b∥L∞(Tn×(τ,T )) ≤ K. Then, there exists C > 0 depending on n,K and

t1 ∈ [τ + ε, τ + 2ε], t2 ∈ [T − 2ε, T − ε]

such that w

Tn
|Dρ(y, ti)|dy ≤ C

ε
(1 + | log ε|)1/2 , i = 1, 2.

Proof. After the time change t 7→ t− τ the problem reads{
∂tρ̂− ε∆ρ̂+ div(bρ̂) = 0 in Tn × (0, T − τ),

ρ̂(0) = δx

We can apply [BKRS15, Corollary 7.2.3] with the choice A = εIn, B = b̂, c = 0, λ0 = ε, Θ = 1
2 ,

and any ν > (n+ 2)/2 to get

ρ̂(x, t) ≤ Cν,n

(
1 +

1

ε

)ν

t−
n+2
2

w t

t/2

w

Tn

[
1 + εν +

t2ν

εν
|b̂|2ν

]
ρ̂ dy ds

≤ Cν,n,K

(
1 +

1

ε

)ν

t−
n+2
2

[
1 +

t2ν

εν

]w t

t/2

w

Tn
ρ̂ dy ds = Cν,n,K

(
1 +

1

ε

)ν

t−
n
2

[
1 +

t2ν

εν

]
for all (x, t) ∈ Tn × (0, τ). Therefore,

| log ρ̂(x, t)| ≤ C1

(
1 + | log ε|+ | log t|+

∣∣∣∣log t2

ε

∣∣∣∣) ,

yielding by the conservation of mass

(15)
w

Tn
ρ̂(t)| log ρ̂(y, t)|dy ≤ C1

(
1 + | log ε|+ | log t|+

∣∣∣∣log t2

ε

∣∣∣∣) .
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Let us now test the equation for ρ̂ by log ρ̂ and integrate to obtain, for t ∈ (0, τ),

d

dt

w

Tn
ρ̂(t) log ρ̂(t)dx+ ε

w

Tn

|Dρ̂(t)|2

ρ̂(t)
dx =

w

Tn
(b̂Dρ̂)(t)dx,

hence by Young’s inequality and the conservation of mass

d

dt

w

Tn
ρ̂(t) log ρ̂(t)dx+

ε

2

w

Tn

|Dρ̂(t)|2

ρ̂(t)
dx ≤ 1

2ε

w

Tn
|b̂|2ρ̂(t)dx ≤ K2

2ε
.

Integrating on intervals (t1, t2) ⊂ (0, τ) and plugging in (15) gives then

(16) ε
w t2

t1

w

Tn

|Dρ̂(t)|2

ρ̂(t)
dt ≤ C2

(
1 + | log ε|+ | log t1|+ | log t2|+

∣∣∣∣log t21
ε

∣∣∣∣+ ∣∣∣∣log t22
ε

∣∣∣∣+ t2 − t1
ε

)
.

Choose now t1 = ε and t2 = 2ε. By the Mean Value Theorem there exists t̂ ∈ [ε, 2ε] such that

w

Tn

|Dρ̂(t̂)|2

ρ̂(t̂)
dx =

1

ε

w 2ε

ε

w

Tn

|Dρ̂(t)|2

ρ̂(t)
dxdt ≤ C3

ε2
(1 + | log ε|) .

Thus, by Hölder’s inequality we get

w

Tn
|Dρ̂(t̂)|dx ≤

(w
Tn

|Dρ̂(t̂)|2

ρ̂(t̂)
dx

)1/2 (w
Tn

ρ̂(t̂)dx
)1/2

≤ C
1/2
3

ε
(1 + | log ε|)1/2 .

Similarly, by choosing t1 = T − τ − 2ε and t2 = T − τ − ε we have the existence of t̃ ∈ [T − τ −
2ε, T − τ − ε] such that

w

Tn
|Dρ̂(t̃)|dx ≤ C

1/2
4

ε
(1 + | log ε|)1/2 .

Going back to the original time variable we obtain the assertion. □

In what follows, we will use again the adjoint problem for ρ = ρε,x̄,τ , where x̄ ∈ Tn, τ ∈ [0, T ){
∂tρ− ε∆ρ− div(DpH(Duε)ρ) = 0 in Qτ,T ,

ρ(τ) = δx̄

Lemma 4.3. Assume that 0 < ε ≤ 1 and τ ≤ T − 4ε. Then, there exists C depending on
n, ∥Duε(T )∥L∞

x
, T , and t1, t2 satisfying

t1 ∈ [τ + ε, τ + 2ε], t2 ∈ [T − 2ε, T − ε]

such that w t2

t1

w

Tn
(t− τ)(T − t)|D2uε|2ρ dxdt ≤ C(1 + | log ε|).

Proof. We find, by uniform convexity ofH, the following inequality solved by the function z(x, t) =
χ(t)∆uε(x, t), where χ(t) = (t− τ)(T − t) :

−∂tz − ε∆z + θχ|D2uε|2 +DH(Duε) ·Dz ≤ −χ′∆uε + χ∆f in Qτ,T .

Let now t1, t2 be as in Lemma 4.2, applied with b = −DpH(Duε), that gives

(17)
w

Tn
|Dρ(ti)|dx ≤ C

ε
(1 + | log ε|)1/2 , i = 1, 2.

for some

(18) t1 ∈ [τ + ε, τ + 2ε], t2 ∈ [T − 2ε, T − ε].

By duality between ρ and z and integrating in Tn × (t1, t2) we have

(19) θ
w t2

t1

w

Tn
χ|D2uε|2ρ dxdt =

w

Tn
z(t2)ρ(t2)dx−

w

Tn
z(t1)ρ(t1)dx−

w t2

t1

w

Tn
χ′∆uερdxdt+

+
w t2

t1

w

Tn
χ∆fρdxdt.
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Note that (∆uε)
2 ≤ n|D2uε|2, hence by Young’s inequality we get

−
w t2

t1

w

Tn
χ′∆uερdxdt ≤

θ

2

w t2

t1

w

Tn
χ|D2uε|2ρdxdt+

n

2θ

w t2

t1

(χ′)2

χ

(w
Tn

ρdx
)
dt ≤

θ

2

w t2

t1

w

Tn
χ|D2uε|2ρdxdt+

+
1

2θ
(4(t2 − t1) + (T − τ)(| log(t2 − τ)|+ | log(t1 − τ)|+ | log(T − t2)|+ | log(T − t1)|)) .

On the other hand, for i = 1, 2, integrating by parts yields, together with (17) and Lipschitz
estimates of Lemma 2.3∣∣∣w

Tn
z(ti)ρ(ti)dx

∣∣∣ ≤ χ(ti)
w

Tn
|Duε(ti)| |Dρ(ti)|dx ≤ (ti − τ)(T − ti)

C (1 + | log ε|)1/2

ε
.

Plugging the previous inequality into (19), and using also (18), we conclude that

θ

2

w t2

t1

w

Tn
χ|D2uε|2ρ dxdt ≤ C5

(
(1 + | log ε|)1/2 + 1 + | log ε|

)
for some C5 depending on n, ∥DuT ∥L∞

x
, T, ∥(∆f)+∥L∞

x,t
. □

Proof of Theorem 4.1. As in Theorem 3.1 we have to estimate
r T

τ

r
Tn ∆uερ dxdt. Let t1 and t2

be as in Lemma 4.2 and τ ≤ T − 4ε. Then,∣∣∣∣w T

τ

w

Tn
∆uερ dxdt

∣∣∣∣ ≤ √
n
w T

τ

w

Tn
|D2uε|ρ dxdt

=
√
n
w t1

τ

w

Tn
|D2uε|ρ dxdt+

√
n
w T

t2

w

Tn
|D2uε|ρ dxdt+

√
n
w t2

t1

w

Tn
|D2uε|ρ dxdt.

First, since t1 − τ ≤ 2ε and T − t2 ≤ 2ε, by Lemma 2.3

w t1

τ

w

Tn
|D2uε|ρ dxdt ≤

(w t1

τ

w

Tn
|D2uε|2ρ dxdt

)1/2

(t1 − τ)1/2 ≤
(
C

ε

)1/2

(2ε)1/2,

and similarly
w T

t2

w

Tn
|D2uε|ρ dxdt ≤ 2C1/2.

On the other hand, by Lemma 4.3,(w t2

t1

w

Tn
|D2uε|ρ dxdt

)2

=

(w t2

t1

w

Tn

(t− τ)1/2(T − t)1/2

(t− τ)1/2(T − t)1/2
|D2uε|ρ dxdt

)2

≤
(w t2

t1

w

Tn
(t− τ)(T − t)|D2uε|2ρ dxdt

)(w t2

t1

1

(t− τ)(T − t)
dt

)
≤ C6(1 + | log ε|) log |t1 − T | − log |t1 − τ | − log |t2 − T |+ log |t2 − τ |

T − τ

≤ C7(1 + | log ε|) | log ε|
T − τ

.

Therefore, ∣∣∣∣w T

τ

w

Tn
∆uερdxdt

∣∣∣∣ ≤ C8
1 + | log ε|
(T − τ)1/2

.

The rate of convergence

∥uε − u∥L∞(QT ) ≤
C9

(T − τ)1/2
ε| log ε|

is straightforward from Remark 2.2. □
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5. Rate of convergence for Hamiltonians with superquadratic growth and
semiconcave data

In this section we consider strictly convex Hamiltonians with superquadratic growth. We will
need to prove a refined version of (10) under (Hγ): this will be performed through a Bernstein-type
argument.

Theorem 5.1. Let H be such that (Hγ) holds. Then, if uε solves (1) and u solves the first-order
equation (2), we have for some βγ ∈

(
1
2 , 1
)

−Cεβ ≤ uε − u ≤ (T∥(∆uT )
+∥L∞

x
+ ∥(∆f)+∥L1

t (L
∞
x ))ε for all β < βγ .

where C depends on n, θ, γ, β, ∥(∆uT )
+∥L∞

x
, T, ∥(∆f)+∥L∞

x,t
, ∥DuT ∥L∞ , ∥Df∥L∞

x,t
and βγ depends

on γ.

The value of βγ is explicit, see (23) below.

Proof. The proof of the bound from above is the same of Theorem 3.1, owing to the semiconcavity
estimate in [CG19, Proposition 3.7 and Remark 3.8]. We prove the bound from below following
similar steps.

Step 1. We prove that for m small enough and η < 1/2 it holds

(20)
x

Qτ∩{|Du|2≤m}
|D2uε|2ρdxdt ≤

Cηm
η

ε
.

Let us first observe that for w̃ = φ(|Du|2) we have

∆w̃ = 4
∑
i

φ′′(Duxi
·Du)2 + 2φ′D∆u ·Du+ 2φ′|D2u|2,

which leads to the evolution PDE solved by w̃

(21) −∂tw̃ − ε∆w̃ + 2εφ′|D2u|2 +DpH(Du) ·Dw̃ = −4ε
∑
i

φ′′(Duxi
·Du)2 + 2φ′Df ·Du.

Notice that if φ is concave, we get

−∂tw̃ − ε∆w̃ + 2εφ′(|Du|2)|D2u|2 +DpH(Du) ·Dw̃ ≤ −4εφ′′(|Du|2)|Du|2|D2u|2 + 2φ′Df ·Du.

Let now 0 < δ < 1/2, and choose

φ(z) = φm(z) =


z z ∈ [0,m]

2(δ + 1)
√
mz − δz − δ − 1 z ∈ [m,κm], κ = (1+δ)2

δ2 > 1

m (1 + 1/δ) z ∈ [κm,+∞).

One may verify with a direct computation that φ is nonnegative, increasing, concave and C1.
Moreover,

φ′ = 1, φ′′ = 0 on [0,m)

φ′(z) + 2φ′′(z)z = −δ on (m,κm)

φ′ = φ′′ = 0 elsewhere.

Using these properties, and testing the PDE (21) by ρ and integrating we conclude

2ε
x

Qτ

φ′|D2u|2ρdxdt ≤
w

Tn
w̃ρ(x, t)dx

∣∣∣t=T

t=τ
− 4ε

x

Qτ

φ′′|Du|2|D2u|2ρdxdt

+ 2∥Df∥L∞(Qτ )

x

Qτ

φ′|Du|dxdt,
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hence, using φ′(z) + 2φ′′(z)z = −δ and −δ ≤ φ′ ≤ 1 on (m,κm), we have

ε
x

Qτ∩{|Du|2≤m}
|D2u|2ρdxdt ≤ m

(
1 +

1

δ

)
+ 2δε

x

Qτ∩{m<|Du|2<κm}
|D2u|2ρdxdt

+ 2∥Df∥L∞(Qτ )

x

Qτ∩{|Du|2<κm}
φ′|Du|dxdt.

We now proceed by a hole-filling type technique, that is, we “fill the hole” by adding to both
sides 2δε

s
Qτ∩{|Du|2<m} |D

2u|2ρ and obtain

ε
x

Qτ∩{|Du|2≤m}
|D2u|2ρdxdt ≤ mcδ +

2δ

1 + 2δ
ε
x

Qτ∩{|Du|2<κm}
|D2u|2ρdxdt+ cf

1 + 2δ

√
κm,

where cδ > 0 depends on δ only. If we now let, for m ∈ (0, 1),

h(m) :=
ε
s

Qτ∩{|Du|2≤m} |D
2u|2ρdxdt

mη
,

the previous inequality reads, after dividing by mη and using that m < 1 and η < 1/2, as

(22) h(m) ≤ cδm
1−η +

2δκη

1 + 2δ
h(κm) + cf

√
κm

1
2−η ≤ cδ +

2δκη

1 + 2δ
h(κm) + cf

√
κ.

Recalling the definition of κ above, on one hand we have
√
κ = 1+δ

δ , and, on the other hand, we
can pick δ small enough so that

2δ

1 + 2δ

(
1 + δ

δ

)2η

≤ 1

2
.

Consider now the sequence mj = 1/κj , j = 1, 2, . . . and evaluate the previous inequality on mj to
get

h(mj) ≤ c̃δ +
1

2
h(mj−1),

which yields by induction that h(mj) ≤ 2c̃δ + 1
2h(m1) for all j ≥ 2. Since h is increasing and

h(m1) is bounded by Lemma 2.3, we get the claim.

Step 2. We now proceed by differentiating twice the equation and use (Hγ) to find the following
inequality solved by the function z(x, t) = (t− τ)α∆uε, (α > 0 to be chosen later)

− ∂tz − ε∆z + θ(t− τ)α|Duε|γ−2|D2uε|2 +DpH(Duε) ·Dz

≤ −α(t− τ)α−1∆uε +∆f in QT .

By duality and integrating in Tn × (τ, T ) we have

w

Tn
z(τ)ρ(τ) dx︸ ︷︷ ︸

=0

+θ
w T

τ

w

Tn
(t− τ)α|Duε|γ−2|D2uε|2ρdxdt =

w

Tn
z(T )ρ(T ) dx︸ ︷︷ ︸

≤(T−τ)α∥(∆uT )+∥L∞(Tn)

− α
w T

τ

w

Tn
(t− τ)α−1∆uε(x, t)ρdxdt+

w T

τ

w

Tn
(t− τ)α∆f(x, t)ρdxdt.

The last integral can be bounded as in Theorem 3.1. We split the first integral in two regions
(where the gradient is small and large respectively), apply the Hölder inequality and choose α > 1



14 MARCO CIRANT AND ALESSANDRO GOFFI

as follows

−α
w T

τ

w

Tn
(t− τ)α−1∆uερdxdt = −α

x

{|Du|2≤m}
(t− τ)α−1∆uερdxdt

− α
x

{|Du|2>m}
(t− τ)α−1∆uερdxdt

≤ α
√
n

(x
{|Du|2≤m}

|D2uε|2ρdxdt
) 1

2
(x

Qτ

(t− τ)2α−2ρdxdt

) 1
2

+ α
√
n

(x
{|Du|2>m}

(t− τ)α|D2uε|2ρdxdt
) 1

2
(x

Qτ

(t− τ)α−2ρdxdt

) 1
2

≤ Cα,T

√
Cη

√
mη

ε
+

θ

2

x

Qτ

(t− τ)α|Duε|γ−2|D2uε|2ρdxdt+
Cα,T

m
γ−2
2

.

This implies

w T

τ

w

Tn
(t− τ)α|Duε|γ−2|D2uε|2ρdxdt ≤ K̃1

(√
mη

ε
+

1

m
γ−2
2

+ ∥(∆f)+∥L∞(QT )

)
.

Choosing m = ε
1

η+γ−2 we get the following integral bound on superlevel sets {|Du|2 > m}
x

Qτ∩{|Du|2>m}
(t− τ)α|D2uε|2ρdxdt ≤ K̃2

(
ε

2−γ
2(γ+η−2) + 1

)
.

We can now conclude the proof. By the foregoing estimates and Lemma 2.3
w T

τ

w

Tn
∆uερdxdt ≤

√
n
w T

t0

w

Tn
(t− τ)α/2|D2uε|(t− τ)−α/2ρdxdt+

√
n
w t0

τ

w

Tn
|D2uε|ρdxdt

≤
√
n

(w T

t0

w

Tn
(t− τ)−αρdxdt

) 1
2
(w T

t0

w

Tn
|D2uε|2(t− τ)αρdxdt

) 1
2

+
√
n
CL√
ε

√
t0 − τ ≤

√
n

|α− 1|
((t0 − τ)1−α + (T − τ)1−α)

1
2×(x

{|Du|2≤m}
|D2uε|2(t− τ)αρdxdt+

x

Qτ∩{|Du|2>m}
|D2uε|2(t− τ)αρdxdt

) 1
2

+
√
n
CL√
ε

√
t0 − τ

≤ K̃3

√
n((t0 − τ)1−α + (T − τ)1−α)

1
2

(
mη

ε
+ ε

2−γ
2(γ+η−2) + 1

) 1
2

+
√
n
CL√
ε

√
t0 − τ .

With the choice of m = ε
1

η+γ−2 as before we get
w T

τ

w

Tn
∆uερdxdt ≤ K̃4

(
(t0 − τ)1−αε

2−γ
2(γ+η−2) + 1

)
+

√
n
CL√
ε

√
t0 − τ .

If τ+ε < T we choose t0 = τ+ε and α arbitrarily close to 1 and get the following result integrating
with respect to ε via Remark 2.2

∥uε − u∥L∞(QT ) ≤ K̃5ε
β , β <

γ + 2η − 2

2(γ + η − 2)
.

Then, the claim follows by choosing

(23) βγ = sup
η∈(0,1/2)

γ + 2η − 2

2(γ + η − 2)
=

γ − 1

2γ − 3
.

□
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Remark 5.2 (On the optimal convergence rate for strictly convex Hamiltonians). Note first that

βγ =
γ − 1

2γ − 3
→ 1 as γ → 2,

βγ =
γ − 1

2γ − 3
→ 1

2
as γ → ∞.

These limit rates are coherent with the rates obtained in the quadratic case and in the locally Lip-
schitz one. Our results are in the direction suggested by the numerical experiments in [QSTY24],
that show a rate of order εβ , β ∈ (1/2, 1) in the case of strictly convex Hamiltonians. Example

5 therein for instance indicates the order O(ε
2
3 ), when H(p) = 1

4 |p|
4 and f = 0. Our endpoint

rate βγ , once specialized to γ = 4 becomes 3/5, that is slightly worse than 2/3. We do not know
what could be the optimal convergence rate for H(p) = 1

4 |p|
4, and we cannot exclude that it may

depend on the regularity of f .
Note that, in our argument, the rate could be improved if we could allow η to vary in the wider

range (0, 1); for η → 1, the exponent 2/3 could be reached for quartic Hamiltonians: for general
γ > 2, it would be γ

2(γ−1) . Is this the optimal one? Here, we can allow for η < 1/2 (see for

example equation (22)), but that step of the proof “sees” only the Lipschitz property of f . We do
not know now how to improve this step using the information that f is more regular.

Remark 5.3 (On the convergence rate for some Mean Field Control problems). The issue of the
convergence problem in Mean Field Control has been in the last few years an active area of
research, see for instance [DDJ24] and references therein. In general, it amounts to study the
convergence of (symmetric) value functions of some control problems as the dimension n of the
Euclidean space increases, towards a limit value function, which satisfies an equation in the space
of probability measures. In some special cases, the problem can be recast into a vanishing viscosity
approximation of (finite-dimensional) Hamilton-Jacobi equations, where in particular the viscosity
satisfies ε = εn = 1/n (see in particular [DDJ24, Proposition 2.10]). The convergence rate in Mean
Field Control is known in general (under Lipschitz regularity assumptions) to be of order O(1/

√
n);

under convexity properties required by Theorems 3.1, 4.1 or 5.1, an improved rate of order 1/nβ ,
β ∈ (1/2, 1), or (1/n)| log(1/n)| shows up in the specific examples described in [DDJ24] .
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