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Abstract. Given p ∈ [1, ∞), we provide sufficient and necessary conditions on the
non-negative measurable kernels (ρt)t∈(0,1) ensuring convergence of the associated Bour-
gain–Brezis–Mironescu (BBM) energies (Ft,p)t∈(0,1) to a variant of the p-Dirichlet energy
on RN as t → 0+ both in the pointwise and in the Γ-sense. We also devise sufficient
conditions on (ρt)t∈(0,1) yielding local compactness in Lp(RN ) of sequences with bounded
BBM energy. Moreover, we give sufficient conditions on (ρt)t∈(0,1) implying pointwise and
Γ-convergence and compactness of (Ft,p)t∈(0,1) when the limit p-energy is of non-local
type. Finally, we apply our results to provide asymptotic formulas in the pointwise and
Γ-sense for heat content-type energies both in the local and non-local settings.

1. Introduction

1.1. Framework. We let I = (0, 1) and we fix a family (ρt)t∈I ⊂ L1
loc(RN) of non-

negative functions. Given p ∈ [1,∞) and t ∈ I, we consider the non-local functionals
Ft,p : Lp(RN) → [0,∞] defined as

Ft,p(u) =
∫
RN

∫
RN

|u(x) − u(y)|p
|x− y|p

ρt(x− y) dx dy (1.1)

for all u ∈ Lp(RN).
The asymptotic behavior of the family (Ft,p)t∈I as t → 0+ was first investigated by

Bourgain, Brezis and Mironescu in their seminal paper [19]. Their work has inspired a
vast literature on non-local-to-local convergence results (or BBM formulas, after [19]).
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While a comprehensive overview of the research is beyond our scopes, we focus on the
results most aligned with the spirit of [19]. In particular, we refer to [11,29,50,51,57,58]
for foundational contributions and to [47, 48] for extensions to general open sets. For
Γ-convergence results, see [9, 14, 27, 32, 43, 56]. For energies derived from gradient-type
integro-differential operators, we refer to [13, 23, 24, 26, 52, 53, 60]. For the extension
to non-Euclidean frameworks, such as magnetic Sobolev spaces, Riemannian manifolds,
Carnot groups, and metric-measure spaces, see [12, 33,37–42,44,45,55]. For other strictly
related results, we also refer to the monographs [6, 49].

1.2. Sharp conditions. A common trait of the works mentioned above is that they only
concern sufficient conditions for BBM formulas to hold. Namely, in the specific case of the
functionals in (1.1), under a certain set of conditions on the family (ρt)t∈I , one can find
an infinitesimal sequence (tk)k∈N ⊂ I and a non-negative Radon measure µ ∈ M (SN−1)
on the (N − 1)-dimensional sphere SN−1 in RN , depending on (ρtk

)k∈N only, such that
lim

k→∞
Ftk,p(u) = Dµ

p (u) (1.2)

for every u ∈ Sp(RN), where

Dµ
p (u) =

∫
SN−1

∥σ ·Du∥p
Lp dµ(σ). (1.3)

Here and in the following, we let

Sp(RN) =

W
1,p(RN) for p > 1,

BV (RN) for p = 1,

and we let Du be the distributional gradient of u ∈ Sp(RN) (if p = 1, then Du may be a
finite Radon measure on RN). Moreover, for every σ ∈ SN−1 and u ∈ Sp(RN), we let

∥σ ·Du∥p
Lp =


∫
RN

|σ ·Du(x)|p dx for p > 1,

|σ ·Du|(RN) for p = 1.
In the recent paper [30], the authors devise a set of conditions on the family (ρt)t∈I that

are both sufficient and necessary for the the validity of (1.2) in the case p = 2 by means
of Fourier transform techniques. Precisely, they recast the functionals (Ft,2)t∈I in (1.1)
into double integrals of the form

v 7→
∫
RN

|v(ξ)|2
∫
RN

1 − cos(z · ξ)
|z|2

ρt(z) dz dξ

where v ∈ L2(RN) is such that | · | |v| ∈ L2(RN). Unfortunately, for p ̸= 2, the Fourier
approach is not viable anymore, but in [30, Sec. 5.3] the authors conjecture that similar
conditions are sufficient and necessary for the validity of (1.2) for every p ∈ [1,∞).

For radially symmetric families (ρt)t∈I , necessary conditions are outlined in [35] for p = 2,
while sufficient and necessary conditions are achieved in [34] for every p > 1, confirming
the conjecture made in [30] in this particular case.

To the best of our knowledge, the conjecture in [30] is currently open for arbitrary
families (ρt)t∈I and p ̸= 2. Our first main result, stated in Theorem 1.1 below, affirmatively
answers the conjecture posed in [30]. Even more, we prove that the conditions devised
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in [30] are sufficient and necessary for the convergence of the functionals in (1.1) not only
in the pointwise sense, but also in the Γ-convergence sense (for a complete description of
Γ-convergence, we refer to the monographs [20,28]).
Theorem 1.1. Let p ∈ [1,∞). The following are equivalent.
(A) There exists an infinitesimal sequence (tk)k∈N ⊂ I such that

sup
R>0

lim sup
k→∞

Rp
∫
RN

ρtk
(z)

Rp + |z|p
dz < ∞ (1.4)

and νk = ρtk
L N ⋆

⇀ αδ0 in Mloc(RN) as k → ∞ for some α ≥ 0.
(B) There exist an infinitesimal sequence (tk)k∈N ⊂ I and µ ∈ M (SN−1) such that:

(i) if u ∈ Sp(RN), then lim sup
k→∞

Ftk,p(u) ≤ Dµ
p (u);

(ii) if (uk)k∈N ⊂ Sp(RN) is such that uk → u in Lp(RN) as k → ∞ for some
u ∈ Sp(RN), then lim inf

k→∞
Ftk,p(uk) ≥ Dµ

p (u).

As in [47,57], we can refine property (ii) in Theorem 1.1 by additionally requiring that
the family (ρt)t∈I has maximal rank; that is, by assuming that there exist τ ∈ I and a
basis v1, . . . , vN ∈ SN−1 of RN such that

inf
δ>0

inf
i=1,...,N

lim sup
t→0+

∫
Bδ ∩ Cτ (vi)

ρt(z) dz > 0, (1.5)

where Cτ (vi) =
{
x ∈ RN : x · vi ≥ (1 − τ) |x|

}
for each i = 1, . . . , N .

Theorem 1.2. Let p ∈ [1,∞). Assume that (A) or (B) holds and that (ρtk
)k∈N has

maximal rank. If (uk)k∈N ⊂ Lp(RN) is such that uk → u in Lp(RN) as k → ∞ for some
u ∈ Lp(RN) and lim inf

k→∞
Ftk,p(uk) < ∞, then u ∈ Sp(RN).

When the conclusion of Theorem 1.2 holds—that is, when the finiteness of the lim inf of
the functionals along an Lp convergent sequence implies that the limit function belongs to
some subspace X p(RN ) of Lp(RN ) (e.g., X p(RN ) = Sp(RN ))—we say that the functionals
(Ft,p)t∈I are coercive on X p(RN) (see Definition 2.5 below for a more precise statement).

Any radially symmetric family (ρt)t∈I has maximal rank, but non-radially symmetric
families with maximal rank are known (examples can be found in [57]). We do not know
if the maximal rank condition is also necessary for the conclusion of Theorem 1.2 to hold.

To prove Theorems 1.1 and 1.2, we mix the approaches of [30,47,57] in a new fashion.
As in the proof of [30, Th. 1.2], the sufficiency part consists in showing that (1.4) yields

the pointwise and Γ-convergence of (Ft,p)t∈I as t → 0+ (up to subsequences) to

G µ,ν
p (u) =

∫
SN−1

∥σ ·Du∥p
Lp dµ(σ) +

∫
RN \{0}

∥u(· + z) − u∥p
Lp

|z|p
dν(z) (1.6)

for all u ∈ Sp(RN), where µ ∈ M (SN−1) and ν ∈ Mloc(RN) are two non-negative Radon
measures depending on (ρt)t∈I only (see Theorem 3.2 for the precise statement). Loosely
speaking, the measure µ is given by (up to subsequences)

µ(E) = lim
δ→0+

lim
t→0+

∫
E

(∫ δ

0
ρt(σr) rN−1 dr

)
dH N−1(σ) (1.7)
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for every Borel set E ⊂ SN−1, while the measure ν is (up to subsequences) the weak∗ limit
of the family (ρtL N)t∈I as t → 0+. Consequently, due to (1.6), in order to achieve (1.2),
the measure ν must be supported on {0}; that is, ν = αδ0 for some α ≥ 0. Additionally,
thanks to (1.7), as in [47,57] the maximal rank assumption (1.5) guarantees that the limit
p-Dirichlet energy (1.3) bounds the Sp(RN) seminorm, yielding Theorem 1.2. To prove
the convergence to G µ,ν

p , we revise the line of [30] replacing Fourier transform techniques
with some plain arguments invoking basic properties of Sp(RN) functions.

The proof of the necessary part differs from the one of [30] and combines three ingredients.
We first show that the validity of (1.2) for some µ ∈ M (SN−1) implies (1.4) by testing (1.2)
on suitably chosen compactly supported Lipschitz functions. This, in turn, implies that
(Ft,p)t∈I converges to G µ̃,ν

p as t → 0+ for some µ̃ ∈ M (SN−1) and ν ∈ Mloc(RN ) as above.
We hence conclude the proof by showing that, if G µ,0

p (u) = G µ̃,ν
p (u) for all u ∈ Sp(RN),

then ν = αδ0 for some α ≥ 0 via a scaling argument.

1.3. Compactness. A further research line concerns compactness properties of the func-
tionals (1.1). As well-known, for N ≥ 2, the radial symmetry of the family (ρt)t∈I yields
compactness of the functionals (1.1), see [19, Th. 4], [58, Ths. 1.2 and 1.3] and [6, Th. 4.2].
If N = 1, then additional conditions must be imposed due to counterexamples [19,58].

To the best of our knowledge, no compactness result is available for non-radially
symmetric families. Our second main result, inspired by [14, Th. 3.5], partially fills this
gap and yields quite flexible sufficient conditions on the possibly non-radially symmetric
family (ρt)t∈I which ensure compactness properties for the functionals in (1.1). Precisely,
given p ∈ [1,∞), we assume that

ρt(x) = |x|p Kt(x)
ϕK,β,p(t) , for a.e. x ∈ RN and t ∈ I, (1.8)

where (Kt)t∈N is given by
Kt(x) = β(t)NK(β(t)x), for a.e. x ∈ RN and t ∈ I,

for some non-negative function K ∈ L1
loc(RN) \ {0} and a Borel function β : I → (0,∞).

Moreover, in (1.8), we have set

ϕK,β,p(t) = mK,p(β(t))
β(t)p

for all t ∈ I,

where mK,p : [0,∞) → [0,+∞) is defined as

mK,p(R) =
∫

BR

|x|p K(x) dx for all R > 0.

With the above notation in force, our compactness result can be stated as follows. Here
and below, we say that a subset X ⊂ Lp(RN) is locally precompact in Lp(RN) if, for each
compact set E ⊂ RN , X is a precompact subset of Lp(E).
Theorem 1.3. With the above notation in force, assume that

| · |p K ∈ L1(RN) and lim
t→0+

β(t) = ∞.

If (tk)k∈N ⊂ I and (uk)k∈N ⊂ Lp(RN) are such that tk → 0+ as k → ∞ and

sup
k∈N

(
∥uk∥Lp + Ftk,p(uk)

)
< ∞,
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then (uk)k∈N is locally precompact in Lp(RN) and any of its Lp
loc(RN) limits is in Sp(RN).

The proof of Theorem 1.3 generalizes the strategy in [14] to any p ∈ [1,∞). The core
idea is to show that, for each u ∈ Lp(RN) and t > 0, then there is vt ∈ Sp(RN) such that

∥vt − u∥Lp ≤ CK,p ∥| · |p K∥L1 F K
t,p(u) β(t)−p,

∥∇vt∥Lp ≤ CK,p ∥| · |p K∥L1 F K
t,p(u),

where CK,p > 0 depends on K and p only (see Proposition 4.5 for the precise statement).

1.4. Non-local limit energies. The convergence of (Ft,p)t∈I to the functional G µ,ν
p

in (1.6) as t → 0+ can be seen as a non-local-to-non-local convergence result. Naturally,
one may ask whether the stability of the non-local nature of the functionals also occurs for
functions with lower regularity. A similar behavior was, in fact, observed in [2, Th. 1.1(iii)]
for characteristic functions of bounded sets with finite (local or non-local) perimeter.

Our next main result aims to provide a deeper understanding of this non-local stability,
thereby generalizing [2]. Here and below, given p ∈ [1,∞) and a measurable function
κ : RN → [0,∞], we consider the non-local Sobolev space

W κ,p(RN) =
{
u ∈ Lp(RN) : [u]W κ,p < ∞

}
,

where the non-local seminorm is defined by letting

[u]W κ,p =
(∫

RN

∫
RN

|u(x) − u(y)|p κ(x− y) dx dy
)1/p

.

We refer, e.g., to [16, 34] for more details on the space W κ,p(RN). Here we just observe
that the fractional Sobolev–Slobodeckij space W s,p(RN), with s ∈ (0, 1) and p ∈ [1,∞),
corresponds to the choice κ(z) = |z|−N−sp for all z ∈ RN \ {0}.

Theorem 1.4. Let p ∈ [1,∞) and (ρt)t∈I ⊂ L1
loc(RN ). Assume that there exist C > 0 and

a measurable function κ : RN → [0,∞] such that

ρt(z)
|z|p

≤ Cκ(z) for all t ∈ I and a.e. z ∈ RN (1.9)

and

lim
t→0+

ρt(z)
|z|p

= κ(z) for a.e. z ∈ RN . (1.10)

Then, the limit
lim

t→0+
Ft,p(u) = [u]pW κ,p , for u ∈ W κ,p(RN),

holds in the pointwise sense and in the Γ-sense with respect to the Lp topology, and the
functionals (Ft,p)t∈I are coercive on W κ,p(RN).

Although we do not pursue this direction here, it is worth noticing that assumptions (1.9)
and (1.10) are prototypical and can be adapted in various ways, as different types of upper
and lower controls may be considered (see, for instance, [2]).

As a natural counterpart to Theorem 1.3 in this framework, we complement Theorem 1.4
with the following compactness result.
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Theorem 1.5. Let p ∈ [1,∞) and (ρt)t∈I ⊂ L1
loc(RN ). Assume that, for every ε > 0, there

exists δ > 0 such that

ρt(z) ≥ 1
εδN

for a.e. z ∈ Bδ and every t ∈ (0, δ). (1.11)

If (tk)k∈N ⊂ I and (uk)k∈N ⊂ Lp(RN) are such that tk → 0+ as k → ∞ and

sup
k∈N

(
∥uk∥Lp + Ftk,p(uk)

)
< ∞,

then (uk)k∈N is locally precompact in Lp(RN ) and any of its Lp
loc(RN ) limits is in W κ,p(RN ),

where κ : RN → [0,∞] is given by

κ(z) = lim inf
t→0+

ρt(z)
|z|p

for a.e. z ∈ RN .

As above, we point out that (1.11) is prototypical, and similar alternative conditions
may also be considered. Loosely speaking, assumption (1.11) requires that z 7→ ρt(z) |z|N
blows up as t → 0+ close to z = 0 in a sort of quantitative sense.

Theorem 1.4 relies on an application of the Dominated Convergence Theorem and Fatou’s
Lemma, exploiting the limits (1.9) and (1.10). Theorem 1.5, instead, is a consequence of the
Fréchet–Kolmogorov Compactness Theorem, since the bound (1.11) allows to quatitatively
control the Lp distance between functions and their smoothed versions.

1.5. Asymptotics of heat-type energies. We apply our results to study the asymptotic
behavior of energies induced by heat-type kernels.

Our first main result in this direction concerns the classical heat semigroup. Here and
below, for p ∈ [1,∞), we let the heat semigroup (Ht)t>0 be defined as

Htu = ht ∗ u for all u ∈ Lp(RN) and t > 0,
where

ht(x) = e− |x|2
4t

(4πt)N
2
, for all x ∈ RN and t > 0,

is the heat kernel.

Theorem 1.6. If p ∈ [1,∞), then the limit

lim
t→0+

t−
p
2

∫
RN

Ht(|u− u(x)|p)(x) dx = 2Γ(p)
Γ(p/2) ∥Du∥p

Lp , for u ∈ Sp(RN), (1.12)

holds in the pointwise and Γ-sense with respect to the Lp topology, and the functionals in the
right-hand side are coercive on Sp(RN). Moreover, if (tk)k∈N ⊂ I and (uk)k∈N ⊂ Lp(RN)
are such that tk → 0+ as k → ∞ and

lim inf
k→+∞

t
− p

2
k

∫
RN

Htk
(|uk − uk(x)|p)(x) dx < ∞,

then (uk)k∈N is locally precompact in Lp(RN) and any of its Lp
loc(RN) limits is in Sp(RN).

The pointwise limit in Theorem 1.6 and its link with the BBM formula are already
known, see [38, Th. B] and the related discussion for example. However, we were not able
to trace the Γ-convergence and compactness parts of Theorem 1.6 in the literature.
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It is worth mentioning that formula (1.12) plays a central role in the study of small
time asymptotics for the heat semigroup. For p = 1 and u = χE ∈ BV (RN), the limit
in (1.12) rewrites as∫

E
HtχE dx = |E| − 1√

π
P (E) ·

√
t+ o(

√
t) as t → 0+, (1.13)

where the quantity in the left-hand side of (1.13) is the so-called (relative) heat content of
the set E. The study of the short-time behavior of energies induced by the heat semigroup
originated from De Giorgi’s seminal work on finite perimeter sets [31], and later expanded
across various settings, including not only Euclidean spaces [10, 46, 54, 59, 61], but also
Riemannian manifolds [7], Carnot groups [38], sub-Riemannian manifolds [3,25], and RCD
metric-measure spaces [21].

Our second main result is the fractional counterpart of Theorem 1.6. Here and below,
for p ∈ [1,∞) and s ∈ (0, 1), we let the fractional heat semigroup (Hs

t)t>0 be defined as

Hs
tu = hs

t ∗ u for all u ∈ Lp(RN) and t > 0,

where (hs
t)t>0 is the fractional heat kernel. Unfortunately, the fractional heat kernel does

not have an explicit expression, apart from the case s = 1
2 , in which it is known that

h
1
2
t (x) =

Γ
(

N+1
2

)
π

N+1
2

t

(t2 + |x|2)
N+1

2
, for all x ∈ RN and t > 0

(see [62] for instance), where Γ denotes Euler’s Gamma function as customary.

Theorem 1.7. Given p ∈ [1,∞) and s ∈ (0, 1), let ψs,p : I → [0,∞) be defined as

ψs(t) =


t

p
2s if 2s > p,

t| log t| if 2s = p,

t if 2s < p,

for all t ∈ I. The limits

lim
t→0+

∫
RN

Hs
t(|u− u(x)|p)(x)

ψs,p(t) dx =



Γ
(
1 − p

2s

)
Γ
(
1 − p

2

) 2Γ(p)
Γ(p/2) ∥Du∥p

Lp in Sp(RN) if 2s ≥ p,

s 4s

π
N
2

Γ
(

N
2 + s

)
Γ(1 − s) [u]p

W 2s,
p
2s

in W 2s, p
2s (RN) if 2s < p,

hold in the pointwise and Γ-sense with respect to the Lp topology, and all the functionals
in the left-hand sides are coercive on the respective spaces. Moreover, if (tk)k∈N ⊂ I and
(uk)k∈N ⊂ Lp(RN) are such that tk → 0+ as k → ∞ and

lim inf
k→+∞

∫
RN

Hs
tk

(|uk − uk(x)|p)(x)
ψs(tk) dx < ∞,

then (uk)k∈N is locally precompact in Lp(RN) and any of its Lp
loc(RN) limits is in Sp(RN)

if 2s ≥ p and in W 2s, p
2s (RN) if 2s < p.
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For p = 1 and only for characteristic functions of sets, the pointwise limits in Theo-
rem 1.7 were obtained in [2, Th. 4.1] under the additional assumption that the sets under
consideration are bounded, while the Γ-limits were established in the recent work [43]. The
strategies of proof in [2,43] are both different from our approach. We refer to Remarks 6.3
and 6.4 below for further comments on the relation between our work and [2, 43].

Actually, we can prove a more general version of Theorem 1.7, generalizing [2, Th. 1.1].
For the precise statement, which is more involved, we refer to Theorem 6.5 below.

1.6. Other approaches in Hilbert spaces. In the Hilbertian case p = 2, Theorems 1.6
and 1.7 can be achieved in alternative and more general ways.

We can prove the following result, which might be already partially known to experts.
Here and below, H is an Hilbert space and (Ht)t≥0 is a strongly continuous semigroup
of symmetric operators on H, L is the (infinitesimal) generator of (Ht)t≥0 with domain
D(L) ⊂ H, and [0,∞) ∋ t 7→ Ht(u) = (Htu, u)H is the semigroup content of u ∈ H.

Theorem 1.8. Let H, (Ht)t≥0 and L be as above. The following hold:

(i) if u ∈ D(L), then lim sup
t→0+

H0(u) − Ht(u)
t

≤ (−Lu, u)H;

(ii) if (uk)k∈N ⊂ H and (tk)k∈N ⊂ (0,∞) are such that uk → u in H for some u ∈ D(L)
and tk → 0+, then

lim inf
k→∞

H0(uk) − Htk
(uk)

tk
≥ (−Lu, u)H.

As a consequence, the functionals u 7→ H0(u)−Ht(u)
t

converge to u 7→ (−Lu, u)H on H as
t → 0+ pointwise and in the Γ-sense with respect to the strong topology in H.

The proof of Theorem 1.6 exploits some elementary arguments involving the spectral
representation of the non-negative operator −L. We observe that, in the case H = L2(RN )
and L = −(−∆)s with s ∈ (0, 1], Theorem 1.8 covers the case p = 2 in Theorems 1.6
and 1.7. Actually, if H = L2(RN) and the semigroup of operators (Ht)t≥0 is given by

(Htu, v)L2 =
∫
RN
e−λ(ξ)t û(ξ) · v̂(ξ) dξ

for all t ≥ 0 and u, v ∈ L2(RN), where λ : RN → [0,∞] is a measurable function (in the
aforementioned cases, λ(ξ) = (2π|ξ|)2s for ξ ∈ RN and s ∈ (0, 1]), then a different and
simpler approach via Fourier transform is also possible, see Section 7.2 for more details.

1.7. Organization of the paper. The rest of the paper is organized as follows. In
Section 2, we provide the main notation and the basic results used throughout the paper.
In Section 3, we deal with the sharp conditions for the BBM formula in Theorem 1.1. In
Section 4, we specialize the BBM formula to the family of kernels (1.8) and we prove the
compactness criterion stated in Theorem 1.3. In Section 5, we treat non-local-to-non-local
results, proving Theorems 1.4 and 1.5. In Section 6, we apply our theorems to the study
of energies induced by heat-type kernels, both in the local and in the non-local setting,
proving Theorems 1.6 and 1.7. Finally, in Section 7, we detail the proof of Theorem 1.8
and the alternative proof of heat content asymptotics in L2(RN) via Fourier transform.
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2. Preliminaries

2.1. General notation. We let N ∈ N and SN−1 =
{
x ∈ RN : |x| = 1

}
be the (N − 1)-

dimensional unitary sphere in RN .
We let L N be the N -dimensional Lebesgue measure in RN and we let H s be the s-

dimensional Hausdorff measure in RN , with s ∈ [0, N ]. All sets and functions are assumed
to be Lebesgue measurable. We use the shorthand |E| = L N(E) for every Lebesgue
measurable E ⊂ RN .

Given a non-empty set X ⊂ RN , we let C(X) and Lip(X) be the spaces of continuous
and Lispschitz continuous functions on X, respectively. As customary, we let Cc(X) and
Lipc(X) be their subsets of compactly supported functions, respectively. If X is open,
then we also let C∞(X) and C∞

c (X) be the spaces of smooth functions and of smooth
functions with compact support on X, respectively.

2.2. Radon measures. Let X ⊂ RN be a non-empty set. We let M (X) and Mloc(X)
be the spaces of finite and locally finite non-negative Radon measures on X, respectively.

By Riesz’ Representation Theorem, Mloc(X) can be identified as the dual of Cc(X),
endowed with local uniform convergence. Thus, we say that (µk)k∈N ⊂ Mloc(X) converges
to µ ∈ Mloc(X) in the (local) weak∗ sense, and we write µk

⋆
⇀ µ in Mloc(X) as k → ∞, if

lim
k→∞

∫
X
f dµk =

∫
X
f dµ for every f ∈ Cc(X). (2.1)

We recall that, if µk
⋆
⇀ µ in Mloc(X) as k → ∞, then (2.1) actually holds for every

bounded Borel function f : X → R with compact support such that the set of its discon-
tinuity points is µ-negligible. Consequently, if X is compact and µk

⋆
⇀ µ in Mloc(X) as

k → ∞, then (2.1) holds for every f ∈ C(X). See [8] for a more detailed discussion.
For future convenience, we recall the following result, which corresponds to [57, Lem. 6].

Lemma 2.1. Let µ ∈ M (SN−1) and let Θµ ∈ C(RN) be defined as

Θµ(v) =
∫
SN−1

|v · σ| dµ(σ), for every v ∈ RN . (2.2)

Then, minSN−1 Θµ > 0 if and only if span(suppµ) = RN .

2.3. Sobolev and BV spaces. For p ∈ [1,∞), we let

Sp(RN) =

W
1,p(RN) for p > 1

BV (RN) for p = 1.
As customary, Du denotes the distributional gradient of u ∈ Sp(RN). In particular, if
p = 1, then Du may be a finite Radon measure on RN . We endow Sp(RN ) with the norm

∥u∥Sp(RN ) = (∥u∥p
Lp + ∥Du∥p

Lp)1/p , for u ∈ Sp(RN),
where, as customary, we have set

∥Du∥p
Lp =


∫
RN

|Du(x)|p dx for p > 1,

|Du|(RN) for p = 1.
(2.3)

We recall the following simple result, whose proof is omitted.
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Lemma 2.2. Let p ∈ [1,∞) and u ∈ Sp(RN). The following hold:
(i) ∥u( · + z) − u∥Lp ≤ ∥z ·Du∥Lp for all z ∈ RN ;

(ii) |∥u( · + z) − u∥Lp − ∥z ·Du∥Lp | ≤ |z|2
2 ∥D2u∥Lp for all z ∈ RN .

2.4. Non-local Sobolev spaces. Given p ∈ [1,∞) and a non-negative measurable
function κ : RN → [0,∞], we let

W κ,p(RN) =
{
u ∈ Lp(RN) : [u]W K,p < ∞

}
,

where
[u]W κ,p =

(∫
RN

∥u(· + z) − u∥p
Lp κ(z) dz

)1/p

for u ∈ Lp(RN). We note that W κ,p(RN), endowed with the norm

∥u∥W κ,p = (∥u∥p
Lp + [u]pW κ,p)1/p , for u ∈ W κ,p(RN),

is a Banach space. We refer to [16, 34] for a more detailed presentation. Here we only
mention that the fractional Sobolev–Slobodeckij space W s,p(RN), with s ∈ (0, 1) and
p ∈ [1,∞), corresponds to the choice κ(z) = |z|−N−sp for all z ∈ RN \ {0}.

2.5. Convergence of functionals on Lp(RN ). Let p ∈ [1,∞) and let X p(RN ) ⊂ Lp(RN ).
Given Fk, G : Lp(RN ) → [0,∞], k ∈ N, we adopt the following terminology. For a complete
description of Γ-convergence, we refer to the monographs [20,28].

Definition 2.3 (Pointwise convergence). We say that (Fk)k∈N converges to G on X p(RN )
as k → ∞ in the pointwise sense if lim

k→∞
Fk(u) = G(u) for every u ∈ X p(RN).

Definition 2.4 (Γ-convergence). We say that (Fk)k∈N converges to G on X p(RN) as
k → ∞ in the Γ-sense with respect to the Lp topology if the following two properties hold:

• (Γ-lim inf) if (uk)k∈N ⊂ X p(RN) is such that uk → u in Lp(RN) as k → ∞ for some
u ∈ X p(RN), then lim inf

k→∞
Fk(uk) ≥ G(u);

• (Γ-lim sup) if u ∈ X p(RN), then there exists (uk)k∈N ⊂ X p(RN) such that uk → u in
Lp(RN) as k → ∞ and lim sup

k→∞
Fk(uk) ≤ G(u).

Definition 2.5 (Coerciveness). We say that (Fk)k∈N is coercive on X p(RN) if, whenever
(uk)k∈N ⊂ Lp(RN ) is such that uk → u for some u ∈ Lp(RN ) as k → ∞ and lim inf

k→∞
Fk(uk) <

∞, then u ∈ X p(RN).

2.6. Family of kernels. Throughout the paper, we let I = (0, 1). We let (ρt)t∈I ⊂
L1

loc(RN ) be a family of non-negative kernels, ρt ≥ 0 for every t ∈ I. The following results
generalizes [30, Lem. 5.2]. We briefly detail its proof for the convenience of the reader.

Lemma 2.6. Let p ∈ [1,∞) and J ⊂ I be such that 0 ∈ J̄ . The following are equivalent:

(i) sup
R>0

[
Rp lim sup

t∈J, t→0+

∫
RN

ρt(z)
Rp + |z|p

dz
]
< ∞;

(ii) sup
R>0

[
lim sup
t∈J, t→0+

∫
BR

ρt(z) dz + lim sup
t∈J, t→0+

Rp
∫

Bc
R

ρt(z)
|z|p

dz
]
< ∞;
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(iii) there exists R0 > 0 such that

lim sup
t∈J, t→0+

∫
BR0

ρt(z) dz + sup
R>R0

lim sup
t∈J, t→0+

Rp
∫

Bc
R

ρt(z)
|z|p

dz < ∞;

(iv) sup
R>0

lim sup
t∈J, t→0+

∫
BR

ρt(z) dz < ∞ and

lim sup
t∈J, t→0+

∫
Bc

R

ρt(z)
|z|p

dz = 0 for all R > 0;

(v) lim sup
t∈J, t→0+

∫
RN

(1 ∧ |z|−p) ρt(z) dz < ∞ and

lim sup
t∈J, t→0+

∫
Bc

R

(1 ∧ |z|−p) ρt(z) dz = 0 for all R > 0.

Proof. The equivalence (i) ⇐⇒ (ii) can be proved verbatim as in [30, Lem. 5.2]. It is clear
that (ii) =⇒ (iii), while the fact that∫

BR

ρt(z) dz =
(∫

BR0

+
∫

BR\BR0

)
ρt(z) dz ≤

∫
BR0

ρt(z) dz +Rp
∫

BR

ρt(z)
|z|p

dz

for every R > R0 yields that (iii) =⇒ (ii). The implication (ii) =⇒ (iv) is obvious.
Conversely, given R > 0, by the first part of (iv) we can find M > R such that

lim sup
t∈J, t→0+

∫
Bc

M

ρt(z)
|z|p

dz ≤ 1
Rp
,

so that

lim sup
t∈J, t→0+

∫
Bc

R

ρt(z)
|z|p

dz ≤ lim sup
t∈J, t→0+

∫
Bc

M

ρt(z)
|z|p

dz + lim sup
t∈J, t→0+

∫
BM \BR

ρt(z)
|z|p

dz

≤ 1
Rp

+ 1
Rp

lim sup
t∈J, t→0+

∫
BM \BR

ρt(z) dz ≤ C + 1
Rp

,

where C = sup
r>0

lim sup
t∈J, t→0+

∫
Br

ρt(z) dz < ∞, proving that (iv) =⇒ (ii). The equivalence

(v) ⇐⇒ (iii) follows via elementary arguments, so we omit its proof. □

Remark 2.7. The equivalence (i) ⇐⇒ (ii) in Lemma 2.6 is proved in [30, Lem. 5.2] for
p = 2. Property (v) in Lemma 2.6 is exploited in [34] for radially symmetric families
(ρt)t∈I and p > 1, see [34, Sec. 9.2] for more details.

Following [57, Sec. 1.3] and [47, Sec. 1], we introduce the following terminology. From
now on, given τ ∈ I and v ∈ SN−1, we set Cτ (v) =

{
x ∈ RN : x · v ≥ (1 − τ) |x|

}
.

Definition 2.8 (Maximal rank). Let J ⊂ I be such that 0 ∈ J̄ . We say that the family
(ρt)t∈J ⊂ L1

loc(RN) has maximal rank if there exist τ ∈ I and a basis v1, . . . , vN ∈ SN−1

of RN such that
inf
δ>0

inf
i=1,...,N

lim sup
t∈J, t→0+

∫
Bδ ∩ Cτ (vi)

ρt(z) dz > 0.

The (first part of the) following result was implicitly proved across the proof of [30,
Prop. 3.2]. For similar results, we refer to [57] and [47, Lem. 2.1].
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Lemma 2.9. Let J ⊂ I be such that 0 ∈ J̄ . If

sup
R>0

lim sup
t∈J, t→0+

∫
BR

ρt(z) dz < ∞,

then there exist a countable set J0 ⊂ J , two infinitesimal sequences (tk)k∈N ⊂ J and
(δl)l∈N ⊂ J \ J0, and two measures µ ∈ M (SN−1) and ν ∈ Mloc(RN) such that:

(i) letting νk = ρtk
L N for every k ∈ N, it holds that νk

⋆
⇀ ν in Mloc(RN ) as k → ∞;

(ii) letting Al =
{
x ∈ RN : δl < |x| < 1

δl

}
for every l ∈ N, it holds that

lim
k→∞

∫
Al

f dνk =
∫

Al

f dν, for every l ∈ N and f ∈ C(RN \ {0});

(iii) letting µδ
t ∈ M (SN−1) be given by

µδ
t (E) =

∫
E

(∫ δ

0
ρt(σr) rN−1 dr

)
dH N−1(σ) (2.4)

for every H N−1-measurable set E ⊂ SN−1 and t, δ ∈ I, it holds that:
(a) letting µl

k = µδl
tk

for every k, l ∈ N, there exists (µl)l∈N ⊂ M (SN−1) such that
µl

k
⋆
⇀ µl in M (SN−1) as k → ∞ for every l ∈ N;

(b) the sequence (µl)l∈N ⊂ M (SN−1) is such that µl ⋆
⇀ µ in M (SN−1) as l → ∞.

In addition, if (ρt)t∈J has maximal rank, then span(suppµ) = RN .

In the proof of Lemma 2.9, we will need the following simple result, which can be
inferred as in the proof of [47, Lem. 2.1]. We thus omit its proof.

Lemma 2.10. Let τ ∈ I and let v1, . . . , vN ∈ SN−1 be a basis of RN such that Cτ (vi) ∩
Cτ (vj) = {0} for every i, j = 1, . . . , N , with i ̸= j. Then, there exists c0 > 0 such that, for
each v ∈ SN−1, there exists i0 ∈ {1, . . . , N} such that |v ·σ| ≥ c0 for all σ ∈ Cτ (vi0) ∩SN−1.

Proof of Lemma 2.9. Let us set

M = sup
R>0

lim sup
t∈J, t→0+

∫
BR

ρt(z) dz < ∞. (2.5)

We split the proof in three steps.
Step 1. Let νt = ρt L N for all t ∈ J and let (Rk)k∈N ⊂ (0,∞) be a strictly increasing

sequence. By (2.5), we can find a strictly decreasing sequence (tk)k∈N ⊂ J such that
tk → 0+ and, moreover,

νtk
(BRk

) =
∫

BRk

ρtk
(z) dz ≤ M + 1 for each k ∈ N. (2.6)

By known results (e.g., see [8, Th. 1.59]), we can find ν ∈ M (RN ) such that, up to passing
to a non-relabeled subsequence, νtk

⋆
⇀ ν in Mloc(RN) as k → ∞, and ν(RN) ≤ M + 1.

Step 2. Let us set Aδ =
{
x ∈ RN : δ < |x| < 1

δ

}
for all δ ∈ J . By definition, the family

(∂Aδ)δ∈J consists of pairwise disjoint compact sets in RN which are precisely the sets of
discontinuity points of the functions (χAδ

)δ∈J . We can thus apply [8, Prop. 1.62(b)] (also
see the discussion in [8, Ex. 1.63]) and find a countable set J0 ⊂ J such that ν(∂Aδ) = 0
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for all δ ∈ J \ J0, where ν is the measure obtained in Step 1. Since νtk

⋆
⇀ ν in Mloc(RN)

as k → ∞ by Step 1 and ⋃δ∈J Aδ = RN \ {0} by construction, we hence infer that

lim
k→∞

∫
Aδ

f dνk =
∫

Aδ

f dν for every δ ∈ J \ J0 and f ∈ C(RN \ {0}).

Step 3. Now pick any strictly decreasing sequence (δl)l∈N such that δl → 0+ as l → ∞
and consider the measures (µδl

tk
)l,k∈N as defined in (iii), where (tk)k∈N is as in Step 1. Owing

to (2.4) and to (2.6), we get that

µδl
tk

(SN−1) ≤
∫
SN−1

(∫ 1

0
ρtk

(σr) rN−1 dr
)

dH N−1(σ) =
∫

B1
ρtk

(z) dz ≤ M + 1

for each k ∈ N sufficiently large and each l ∈ N. Thus, for each l ∈ N, we can find a
subsequence (tlk)k∈N of (tk)k∈N and µl ∈ M (SN−1) such that µl

tl
k

⋆
⇀ µl in Mloc(SN−1) as

k → ∞ and µl(SN−1) ≤ M + 1. By a routine diagonal argument, we can find subsequence
(t′k)k∈N of (tk)k∈N such that µl

t′
k

⋆
⇀ µl in M (SN−1) as k → ∞ for all l ∈ N. Morerover,

we can find a subsequence (δlj )j∈N and µ ∈ M (SN−1) such that µδlj
⋆
⇀ µ in M (SN−1) as

j → ∞ and µ(SN−1) ≤ M + 1.
Combining Steps 1, 2 and 3 above, we infer the validity of (i), (ii) and (iii), concluding

the proof of the first part of the statement of Lemma 2.9.
Step 4. Let us now additionally assume that (ρt)t∈J has maximal rank. Therefore, let

τ ∈ I and the basis v1, . . . , vN ∈ SN−1 of RN be as in Definition 2.8, and let us set

ĉ = inf
δ>0

inf
i=1,...,N

lim sup
t∈J, t→0+

∫
Bδ ∩ Cτ (vi)

ρt(z) dz > 0. (2.7)

Let (µδl

t′
k
)k,l∈N ⊂ M (SN−1) and µ ∈ M (SN−1) be as in Step 3. Owing to (2.7) and a routine

diagonal argument, we can find a subsequence (t′′k)k∈N of (t′k)k∈N such that

c = inf
δ>0

inf
i=1,...,N

lim
k→∞

∫
Bδl

∩ Cτ (vi)
ρt′′

k
(z) dz.

Now let c0 > 0 be the constant given by Lemma 2.10 and fix v ∈ SN−1. By Lemma 2.10,
we can find i0 ∈ {1, . . . , N} such that |v ·σ| ≥ c0 for all σ ∈ Cτ (vi0) ∩SN−1. Thus, recalling
the notation introduced in Lemma 2.1, for each l ∈ N and k ∈ N we can estimate

Θ
µ

δl
t′′
k

(v) ≥ c0 µ
δl

t′′
k

(
Cτ (vi0) ∩ SN−1

)
= c0

∫
Bδl

∩ Cτ (vi0 )
ρt′′

k
(z) dz ≥ c0 ĉ

Owing to Step 3, first letting k → ∞ and then letting l → ∞, we get Θµ(v) ≥ c0 ĉ. Since
v ∈ SN−1 was arbitrary, we get minSN−1 Θ ≥ c0 ĉ and we conclude by Lemma 2.1. □

2.7. The functionals Ft,p. Let p ∈ [1,∞). We define Ft,p : Lp(RN) → [0,∞] by letting

Ft,p(u) =
∫
RN

∥u( · + z) − u∥p
Lp

|z|p
ρt(z) dz (2.8)

for u ∈ Lp(RN) and t ∈ I. The following result improves and generalizes [30, Prop. 4.1].
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Lemma 2.11. Let J ⊂ I be such that 0 ∈ J̄ . If there exists C > 0 such that
lim sup
t∈J, t→0+

Ft,p(u) ≤ C∥Du∥p
Lp (2.9)

for every u ∈ Lipc(RN), then any of the properties in Lemma 2.6 holds.
Proof. Let R > 0 and define uR ∈ Lipc(RN) by letting

uR(x) =


1 for x ∈ BR/4,

2 − 4
R

|x| for x ∈ BR/2 \BR/4,

0 for x ∈ Bc
R/2.

Since suppuR ⊂ BR/2, we have that
∥uR( · + z) − uR∥p

Lp = 2∥uR∥p
Lp ≥ 2|BR/4|

for every z ∈ Bc
R, from which we deduce that

Ft,p(uR) ≥
∫

Bc
R

∥uR( · + z) − uR∥p
Lp

|z|p
ρt(z) dz ≥ 2|BR/4|

∫
Bc

R

ρt(z)
|z|p

dz. (2.10)

On the other hand, we can estimate

∥DuR∥p
Lp =

∫
BR/2\BR/4

|DuR(x)|p dx ≤
( 4
R

)p

|BR/2|. (2.11)

By combining (2.9) with (2.10) and (2.11), we infer that

lim sup
t∈J, t→0+

∫
Bc

R

ρt(z)
|z|p

dz ≤ C
( 4
R

)p |BR/2|
2|BR/4|

= C 2N−1+2p R−p, (2.12)

for R > 0. In view of (iii) in Lemma 2.6, to conclude we hence just need to prove that

lim sup
t∈J, t→0+

∫
B1
ρt(z) dz < ∞. (2.13)

To this aim, we define v ∈ Lipc(RN) by letting

v(x) =


e|x|2 for x ∈ B2,

e4(3 − |x|) for x ∈ B3 \B2,

0 for x ∈ Bc
3.

Since v is radially symmetric, a change of variable yields
∥v( · + z) − v∥p

Lp = ∥v( · + |z|e1) − v∥p
Lp

for every z ∈ RN . Therefore, letting D =
{
x ∈ B1 : x1 ≥ 1

2

}
⊂ B1, we can estimate

∥v( · + z) − v∥p
Lp ≥

∫
D

∣∣∣e|x+|z|e1|2 − e|x|2
∣∣∣p dx =

∫
D
ep|x|2

∣∣∣e|z|2+2|z|x1 − 1
∣∣∣p dx

≥
∫

D

(
e|z| − 1

)p
dx ≥ |D| |z|p

for every z ∈ B1, from which we deduce that

Ft,p(v) ≥
∫

B1

∥v( · + z) − v∥p
Lp

|z|p
ρt(z) dz ≥ |D|

∫
B1
ρt(z) dz. (2.14)
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By combining (2.14) with (2.9), we infer (2.13) and thus conclude the proof. □

2.8. The functional G µ,ν
p . Given two measures µ ∈ M (SN−1) and ν ∈ M (RN ), we define

G µ,ν
p : Lp(RN) → [0,∞) by letting

G µ,ν
p (u) =


∫
SN−1

∥σ ·Du∥p
Lp dµ(σ) +

∫
RN \{0}

∥u(· + z) − u∥p
Lp

|z|p
dν(z) for u ∈ Sp(RN),

∞ otherwise.
(2.15)

Here, as in (2.3), for every σ ∈ SN−1 and u ∈ Sp(RN), we have set

∥σ ·Du∥p
Lp =


∫
RN

|σ ·Du(x)|p dx for p > 1,

|σ ·Du|(RN) for p = 1.
We observe that, for each fixed σ ∈ SN−1, the energy u 7→ ∥σ·Du∥Lp is lower semicontinuous
on Sp(RN) with respect to the Lp convergence of functions.

We collect the basic properties of G µ,ν
p in the following result, whose proof is omitted.

Lemma 2.12. Let p ∈ [1,∞), µ ∈ M (SN−1) and ν ∈ M (RN). The functional G µ,ν
p

satisfies the bound
G µ,ν

p (u) ≤ ∥Du∥p
Lp

(
µ(SN−1) + ν(RN \ {0})

)
(2.16)

for every u ∈ Sp(RN). Moreover, if (uk)k∈N ⊂ Sp(RN) is such that uk → u in Lp(RN) as
k → ∞ for some u ∈ Sp(RN), then

lim inf
k→∞

G µ,ν
p (uk) ≥ G µ,ν

p (u). (2.17)

The following results builds upon the ideas contained in the proof of [30, Th. 1.1].
Lemma 2.13. If λ, µ ∈ M (SN−1), ν ∈ M (RN) and α ∈ [0,∞) are such that G µ,ν

p (u) =
G λ,αδ0

p (u) for every u ∈ Lipc(RN), then ν = βδ0 for some β ∈ [0,∞).

Proof. We let u ∈ Lipc(RN ) and we define uε = ε1− N
p u(·/ε) for every ε > 0. We note that

uε ∈ Lipc(RN) for every ε > 0. Moreover, we have that

∥σ ·Duε∥p
Lp =

∥∥∥ε− N
p σ ·Du(·/ε)

∥∥∥p

Lp
= ∥σ ·Du∥p

Lp

for every σ ∈ SN−1 and, similarly,

∥uε( · + z) − uε∥p
Lp = εN

∥∥∥ε1− N
p

(
u
(

· + z
ε

)
− u

)∥∥∥p

Lp
= εp

∥∥∥u ( · + z
ε

)
− u

∥∥∥p

Lp

for every z ∈ RN . Thus, the equality G µ,ν
p (uε) = G λ,αδ0

p (uε) equivalently rewrites as
∫
SN−1

∥σ ·Du∥p
Lp dµ(σ) + εp

∫
RN \{0}

∥∥∥u ( · + z
ε

)
− u

∥∥∥p

Lp

|z|p
dν(z) =

∫
SN−1

∥σ ·Du∥p
Lp dλ(σ)

(2.18)
for every ε > 0. We claim that

lim
ε→0+

εp
∫
RN \{0}

∥∥∥u ( · + z
ε

)
− u

∥∥∥p

Lp

|z|p
dν(z) = 0. (2.19)
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Indeed, by Lemma 2.2(i), we can estimate

εp

∥∥∥u ( · + z
ε

)
− u

∥∥∥p

Lp

|z|p
≤ ∥Du∥p

Lp (2.20)

for every z ∈ RN \ {0} and ε > 0. Moreover, we have that

lim sup
ε→0+

εp

∥∥∥u ( · + z
ε

)
− u

∥∥∥p

Lp

|z|p
≤ lim sup

ε→0+
εp 2p∥u∥p

Lp

|z|p
= 0 (2.21)

for every z ∈ RN \ {0}. Owing to (2.20) and (2.21), the claimed (2.19) follows by the
Dominated Convergence Theorem applied with respect to ν. Therefore, passing to the
limit in (2.18) as ε → 0+ and exploiting (2.19), we conclude that∫

SN−1
∥σ ·Du∥p

Lp dµ(σ) =
∫
SN−1

∥σ ·Du∥p
Lp dλ(σ)

whenever u ∈ Lipc(RN). By our initial assumption, this means that∫
RN \{0}

∥u( · + z) − u∥p
Lp

|z|p
dν(z) = 0

for every u ∈ Lipc(RN ). In particular, if u ∈ Lipc(RN ) is such that suppu ⊂ Bε/2 for some
ε > 0, then

0 ≥
∫

Bc
ε

∥u( · + z) − u∥p
Lp

|z|p
dν(z) = 2∥u∥p

Lp

∫
Bc

ε

dν(z)
|z|p

,

from which we deduce that ν(Bc
ε) = 0 whenever ε > 0. Thus ν(RN \ {0}) = 0, from which

we get that ν = βδ0 for some β ∈ [0,∞), concluding the proof. □

3. Sharp conditions for the BBM formula

Let p ∈ [1,∞) and let (ρt)t∈I ⊂ L1
loc(RN) be such that ρt ≥ 0 for every t ∈ I. The

following result improves and generalizes [30, Th. 1.1 and Cor. 1.3].

Theorem 3.1 (BBM formula). The following statements are equivalent.
(A) There exists an infinitesimal sequence (tk)k∈N ⊂ I such that

sup
R>0

lim sup
k→∞

Rp
∫
RN

ρtk
(z)

Rp + |z|p
dz < ∞

and νk = ρtk
L N ⋆

⇀ αδ0 in Mloc(RN) as k → ∞ for some α ≥ 0.
(B) There exists an infinitesimal sequence (tk)k∈N ⊂ I and µ ∈ M (SN−1) such that

(Ftk,p)k∈N converges to G µ,0
p on Sp(RN) as k → ∞ pointwise and in the Γ-sense

with respect to the Lp topology.
In addition, if (A) or (B) holds and (ρtk

)k∈N has maximal rank, then the family (Ftk,p)k∈N
is coercive on Sp(RN).

To prove Theorem 3.1, we need the following preliminary result, which improves and
generalizes [30, Th. 1.2].
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Theorem 3.2. Let J ⊂ I be such that 0 ∈ J̄ . If any of the properties in Lemma 2.6 hold,
then there exist an infinitesimal sequence (tk)k∈N ⊂ J and two measures µ ∈ M (SN−1)
and ν ∈ M (RN) such that the following hold:

(i) ρtk
L N ⋆

⇀ ν in Mloc(RN) as k → ∞;
(ii) if u ∈ Sp(RN), then lim sup

k→∞
Ftk,p(u) ≤ G µ,ν

p (u);

(iii) if (uk)k∈N ⊂ Sp(RN) is such that uk → u in Lp(RN) as k → ∞ for some u ∈
Sp(RN), then lim inf

k→∞
Ftk,p(uk) ≥ G µ,ν

p (u).

As a consequence, (Ftk,p)k∈N converges to G µ,ν
p on Sp(RN) as k → ∞ pointwise and in

the Γ-sense with respect to the Lp topology. In addition, if (ρt)t∈J has maximal rank, then
the family (Ftk,p)k∈N is coercive on Sp(RN).

Proof. For every measurable set A ⊂ RN , u ∈ Sp(RN) and t ∈ I, we set

Ft,p(u;A) =
∫

A

∥u( · + z) − u∥p
Lp

|z|p
ρt(z) dz.

Note that Ft,p(u;RN) = Ft,p(u) for every t ∈ I and u ∈ Sp(RN). Owing to Lemma 2.6,
there exists M > 0 such that

lim sup
t→0+

∫
BR

ρt(z) dz + lim sup
t→0+

Rp
∫

BR

ρt(z)
|z|p

dz ≤ M (3.1)

for every R > 0. By (3.1), we can apply Lemma 2.9 and find a countable set J0 ⊂ J , two
infinitesimal sequences (tk)k∈N ⊂ J and (δl)l∈N ⊂ J \ J0, and two measures µ ∈ M (SN−1)
and ν ∈ M (RN) satisfying the statements (i), (ii) and (iii) of Lemma 2.9. In particular,
this immediately yileds (i). We shall prove (ii) and (iii) separately. In what follows, we let
(µl

k)k,l∈N ⊂ M (SN−1) and (µl)l∈N ⊂ M (SN−1) be given in statement (iii) of Lemma 2.9.
Proof of (ii). We begin by observing that

Ft,p(u;RN) = Ft,p(u;Bδ) + Ft,p(u;Aδ) + Ft,p(u;Bc
1/δ) (3.2)

for every t, δ ∈ I, where Aδ =
{
x ∈ RN : δ < |x| < 1

δ

}
as Lemma 2.9. We now deal with

each piece on the right-hand side of (3.2) separately. By Lemma 2.2(i), we can estimate

Ftk,p(u;Bδl
) ≤

∫
Bδl

∥∥∥ z
|z| ·Du

∥∥∥p

Lp
dνk(z) =

∫
SN−1

∥σ ·Du∥p
Lp dµl

k(σ)

for every u ∈ Sp(RN) and k, l ∈ N (recall the definition in (2.4) in Lemma 2.9). Since
σ 7→ ∥σ ·Du∥p

Lp ∈ C(SN−1) for every u ∈ Sp(RN), by Lemma 2.9(iii) we get that

lim
l→∞

lim sup
k→∞

Ftk,p(u;Bδl
) ≤ lim

l→∞
lim

k→∞

∫
SN−1

∥σ ·Du∥p
Lp dµl

k(σ)

= lim
l→∞

∫
SN−1

∥σ ·Du∥p
Lp dµl(σ) =

∫
SN−1

∥σ ·Du∥p
Lp dµ(σ).

(3.3)

Moreover, since

z 7→ fu(z) = ∥u( · + z) − u∥p
Lp

|z|p
∈ C(RN \ {0}) (3.4)
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for every u ∈ Sp(RN), by Lemma 2.9(ii) and by the Monotone Convergence Theorem, we
also have that

lim
l→∞

lim
k→∞

Ftk,p(u;Al) = lim
l→∞

lim
k→∞

∫
Al

fu dνk = lim
l→∞

∫
Al

fu dν =
∫
RN \{0}

fu dν

=
∫
RN \{0}

∥u(· + z) − u∥p
Lp

|z|p
dν(z)

(3.5)

for every u ∈ Sp(RN), where Al = Aδl
for every l ∈ N as in Lemma 2.9(ii). Finally, by

exploiting (3.1), we can estimate

lim
l→∞

lim sup
k→∞

Ftk,p(u;Bc
1/δl

) ≤ 2p ∥u∥p
Lp lim

l→∞
lim sup

k→∞

∫
Bc

1/δl

ρtk
(z)

|z|p
dz

≤ 2p ∥u∥p
Lp M lim

l→∞
δp

l = 0
(3.6)

for every u ∈ Sp(RN). By combining (3.3), (3.5) and (3.6) with (3.2), we get (ii).
Proof of (iii). Let (uk)k∈N ⊂ Sp(RN) and u ∈ Sp(RN) be such that uk → u in Lp(RN)

as k → ∞. Let (ηj)j∈N ⊂ C∞
c (RN) be a sequence of mollifiers and set uj

k = uk ∗ ηj

and uj = u ∗ ηj for every k, j ∈ N. We observe that uj
k, u

j ∈ Sp(RN) ∩ C∞(RN) with
D2uj

k, D
2uj ∈ Lp(RN) for every k, j ∈ N. Moreover, by Young’s inequality, we have that

uj
k → uj, Duj

k → Duj and D2uj
k → D2uj in Lp(RN) as k → ∞, (3.7)

for every j ∈ N. In addition, by Minkowski’s inequality,

∥uj
k( · + z) − uj

k∥Lp ≤ ∥uk( · + z) − uk∥Lp ,

for every k, j ∈ N and z ∈ RN , from which we get that Ft,p(uj
k;A) ≤ Ft,p(uk;A) for every

measurable set A ⊂ RN and every k, j ∈ N. Consequently, we have that

lim inf
k→∞

Ftk,p(uk) ≥ lim inf
k→∞

Ftk,p(uj
k)

for every j ∈ N. We now claim that

lim
k→∞

Ftk,p(uj
k) = G µ,ν

p (uj) (3.8)

for every j ∈ N. To prove (3.8), we argue as in the proof of (ii) by again relying on (3.2).
Indeed, as in (3.6), observing that ∥uj

k∥Lp ≤ ∥uk∥Lp for every k, j ∈ N, we have that

lim
l→∞

lim
k→∞

Ftk,p(uj
k;Bc

1/δl
) = 2p ∥uj∥p

Lp M lim
l→∞

δp
l = 0

for every j ∈ N. Moreover, as in (3.5), since fuj
k

→ fuj locally uniformly on RN \ {0} as
k → ∞ for every j ∈ N owing to (3.7) (for the notation, recall (3.4)), we also have that

lim
l→∞

lim
k→∞

Ftk,p(uj
k;Al) = lim

l→∞
lim

k→∞

∫
Al

fuj
k

dνk = lim
l→∞

∫
Al

fuj dν =
∫
RN \{0}

fuj dν

=
∫
RN \{0}

∥uj(· + z) − uj∥p
Lp

|z|p
dν(z)
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for every j ∈ N. In addition, as in (3.3), since the functions σ 7→ ∥σ · Duj
k∥p

Lp converge
uniformly on SN−1 to σ 7→ ∥σ ·Duj∥p

Lp as k → ∞ for every j ∈ N owing to (3.7), we get

lim
l→∞

lim
k→∞

∫
Bδl

∥∥∥ z
|z| ·Duj

k

∥∥∥p

Lp
dνk(z) = lim

l→∞
lim

k→∞

∫
SN−1

∥σ ·Duj
k∥p

Lp dµl
k(σ)

= lim
l→∞

∫
SN−1

∥σ ·Duj∥p
Lp dµl(σ) =

∫
SN−1

∥σ ·Duj∥p
Lp dµ(σ)

for every j ∈ N (recall the definition in (2.4) in Lemma 2.9). Therefore, in view of (3.2),
the claim in (3.8) follows if we prove that

lim
l→∞

lim
k→∞

Ftk,p(uj
k;Bδl

) =
∫
SN−1

∥σ ·Duj∥p
Lp dµ(σ);

that is, equivalently, we just have to show that

lim
l→∞

lim
k→∞

∣∣∣∣∣Ftk,p(uj
k;Bδl

) −
∫

Bδl

∥∥∥ z
|z| ·Duj

k

∥∥∥p

Lp
dνk(z)

∣∣∣∣∣ = 0 (3.9)

for every j ∈ N. To this aim, we start by noticing that, by Lemma 2.2(ii),∣∣∣∣∣∥u
j
k( · + z) − uj

k∥Lp

|z|
−
∥∥∥ z

|z| ·Duj
k

∥∥∥
Lp

∣∣∣∣∣ ≤ |z|
2 ∥D2uj

k∥Lp

for every z ∈ RN . Hence, since |ap − bp| ≤ pmax{a, b}p−1|a− b|, for all a, b ≥ 0, and

max
{

∥uj
k( · + z) − uj

k∥Lp

|z|
,
∥∥∥ z

|z| ·Duj
k

∥∥∥
Lp

}
≤ ∥Duj

k∥Lp

for every k, j ∈ N and z ∈ RN by Lemma 2.2(i), we can estimate∣∣∣∣∣∥u
j
k( · + z) − uj

k∥p
Lp

|z|p
−
∥∥∥ z

|z| ·Duj
k

∥∥∥p

Lp

∣∣∣∣∣ ≤ p ∥Duj
k∥p−1

Lp

∣∣∣∣∣∥u
j
k( · + z) − uj

k∥Lp

|z|
−
∥∥∥ z

|z| ·Duj
k

∥∥∥
Lp

∣∣∣∣∣
≤ p|z|

2 ∥Duj
k∥p−1

Lp ∥D2uj
k∥Lp ,

for every i, j ∈ N and z ∈ RN . Consequently, we get that∣∣∣∣∣Ftk,p(uj
k;Bδl

) −
∫

Bδl

∥∥∥ z
|z| ·Duj

k

∥∥∥p

Lp
dνk(z)

∣∣∣∣∣ ≤ p

2 ∥Duj
k∥p−1

Lp ∥D2uj
k∥Lp δl νk(Bδl

)

for every k, j, l ∈ N, from which, owing to (3.1) and (3.7), the claimed (3.9) follows. We
thus completed the proof of (3.8) and so, by the lower semicontinuity of G µ,ν

p with respect
to the Lp convergence of functions in Sp(RN) (recall (2.17)),

lim inf
k→∞

Ftk,p(uk) ≥ lim inf
j→∞

G µ,ν
p (uj) = G µ,ν

p (u),

concluding the proof of (iii).
With (ii) and (iii) in force, the convergence of (Ftk,p)k∈N to G µ,ν

p on Sp(RN) as k → ∞
in the pointwise and Γ-sense with respect to the Lp topology follows by Definition 2.4. We
are thus left to prove that, if (ρt)t∈J has maximal rank, then (Ftk,p)k∈N is coercive. Indeed,
let (uk)k∈N ⊂ Lp(RN) be such that uk → u in Lp(RN) as k → ∞ for some u ∈ Lp(RN)
and C = lim inf

k→∞
Ftk,p(uk) ∈ [0,∞). Let us define uj

k = uk ∗ ηj and uj = u ∗ ηj for every
k, j ∈ N as in the proof of (iii). We observe that uj

k, u ∈ Sp(RN ) with Ft,p(uj
k) ≤ Ft,p(uk)
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for every k, j ∈ N and that uj
k → uj in Lp(RN) as k → ∞ for every j ∈ N. Therefore,

thanks to (iii), we get that

C ≥ lim inf
k→∞

Ftk,p(uj
k) ≥ G µ,ν

p (uj)

for every j ∈ N. We now note that

G µ,ν
p (uj) ≥

∫
SN−1

∥σ ·Duj∥p
Lp dµ(σ) =

∫
RN

∫
SN−1

|σ ·Duj(x)|p dµ(σ) dx.

By Jensen’s inequality, and recalling the notation introduced in (2.2), we have that∫
SN−1

|σ ·Duj(x)|p dµ(σ) ≥ µ(SN−1)1−p
(∫

SN−1
|σ ·Duj(x)| dµ(σ)

)p

= µ(SN−1)1−p Θµ(Duj(x))p,

so that supj∈N ∥Θµ(Duj)∥Lp < ∞. Now, since (ρt)t∈J has maximal rank, by Lemma 2.9
we get that span(suppµ) = RN and thus, by Lemma 2.1, we infer that

α =
∫
SN−1

Θµ(σ) dH N−1(σ) ∈ (0,∞).

As a consequence, we hence deduce that

∞ > sup
j∈N

∥Θµ(Duj)∥Lp ≥ α sup
j∈N

∥Duj∥Lp ,

proving that (uj)j∈N is a bounded sequence in Sp(RN ). Since uj → u in Lp(RN ) as j → ∞,
we get that u ∈ Sp(RN), concluding the proof. □

We can now prove Theorem 3.1.

Proof of Theorem 3.1. We prove the equivalence between (A) and (B) by showing the the
two implications separately.

Proof of (A) =⇒ (B). If (A) holds, then by Theorem 3.2 we find two measures µ ∈
M (SN−1) and ν ∈ M (RN) such that (Ftk,p)k∈N converges to G µ,ν

p on Sp(RN) as k → ∞
pointwise and in the Γ-sense with respect to the Lp topology. Actually, Theorem 3.2(i)
yields that ν = αδ0 for some α ∈ [0,∞), so that G µ,αδ0

p = G µ,0
p on Sp(RN), proving (B).

Proof of (B) =⇒ (A). If (B) holds, then (2.16) yields that

lim
k→∞

Ftk,p(u) = G µ,0
p (u) ≤ µ(SN−1) ∥Du∥p

Lp

for every u ∈ Sp(RN). We can thus apply Lemma 2.11 and then Lemma 2.6 to get the
first part of (A). This, in turn, allows us to apply Theorem 3.2 and find two measures
λ ∈ M (SN−1) and ν ∈ M (RN) such that ρtk

L N ⋆
⇀ ν in Mloc(RN) as k → ∞ and,

moreover, (Ftk,p)k∈N converges to G λ,ν
p on Sp(RN ) as k → ∞ pointwise and in the Γ-sense

with respect to the Lp topology. Because of (B), this means that G λ,ν
p = G µ,0

p on Sp(RN)
and thus, by Lemma 2.13, we conclude that ν = αδ0 for some α ∈ [0,∞), proving the
second part of (A).

To conclude the proof, it is enough to observe that, if (A) or (B) holds and (ρtk
)k∈N is

of maximal rank, then Theorem 3.2 yields that (Ftk,p)k∈N is coercive on Sp(RN). □
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4. Special families of kernels: convergence and compactness

In this section we specialize our analysis to a particular class of families of kernels.

4.1. Special kernels. We let K ∈ L1
loc(RN) \ {0} be a non-negative function and we set

mK,p(R) =
∫

BR

|x|p K(x) dx (4.1)

for all R > 0 and p ∈ [1,∞). We let β : I → (0,∞) be a Borel function and we set

ϕK,β,p(t) = mK,p(β(t))
β(t)p

(4.2)

for all t > 0. Finally, we let (Kt)t∈I ⊂ L1
loc(RN) be given by

Kt(x) = β(t)NK(β(t)x)
for each t > 0 and a.e. x ∈ RN . Given p ∈ [1,∞), we consider the following special family
of kernels (ρt)t∈I ⊂ L1

loc(RN), depending on p, K and β, given by

ρt(x) = |x|pKt(x)
ϕK,β,p(t) (4.3)

for every t > 0 and a.e. x ∈ RN . We observe that, for the family (4.3), the functional Ft,p

in (2.8) can be rewritten as

F K,β
t,p (u) = 1

ϕK,β,p(t)

∫
RN

∫
RN

|u(x) − u(y)|p Kt(x− y) dx dy (4.4)

for each t > 0. Unless required for better clarity, we will omit the dependence on K and β
in the quantities of interest to keep the notation short.

4.2. Convergence to local energies. We now apply Theorem 3.1 to the special family
of kernels given by (4.3). To this aim, we state the following result, which rephrases
Lemma 2.9 for the special family in (4.3). A similar result has been discussed in [57, Ex. 2].

Proposition 4.1. Let K ∈ L1
loc(RN) \ {0} and β : I → (0,∞) be as above, and let

p ∈ [1,∞). The measures (µδ
t )t,δ>0 in (2.4) in Lemma 2.9 corresponding to the family

(ρt)t∈I in (4.3) are given by

µδ
t (E) =

∫
E

(∫ β(t)δ

0
rN+p−1K(σr) dr

)
dH N−1(σ)
mK,p(β(t))

for every H N−1-measurable set E ⊂ SN−1. Moreover, if
| · |p K ∈ L1(RN) and lim

t→0+
β(t) = ∞, (4.5)

then the following hold:
(i) µδ

t
⋆
⇀ θK,p H N−1 in M (SN−1) as t → 0+ for δ > 0, where θK,p : SN−1 → [0,∞] is

given by

θK,p(σ) =

∫ ∞

0
rN+p−1 K(σr) dr

∥| · |p K∥L1
for H N−1-a.e. σ ∈ SN−1; (4.6)
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(ii) the measures (νt)t∈I , defined as νt = ρt L N for every t ∈ I, where the family (ρt)t∈I

is as in (4.3), satisfy νt
⋆
⇀ δ0 in Mloc(RN) as t → 0+;

(iii) if K is radially symmetric, then the family (ρt)t∈I in (4.3) has maximal rank and
θK,p(σ) = 1

NωN
for every H N−1-a.e. σ ∈ SN−1, so that

∫
SN−1

∥σ ·Du∥p
Lp θK,p(σ) dH N−1(σ) = 2

N

Γ
(

N+1
2

)
Γ
(

p+1
2

)
Γ
(

N+p
2

) ∥Du∥p
Lp (4.7)

for every u ∈ Sp(RN).

Proof. Let us first observe that, by (4.5), we have
lim

t→0+
mK,p(β(t)) = ∥| · |p K∥L1 . (4.8)

We can now briefly prove each statement separately.
Proof of (i). Given δ > 0 and φ ∈ C(SN−1), we can compute

lim
t→0+

∫
SN−1

φ(σ) dµδ
t (σ) = lim

t→0+

1
mK,p(β(t)

∫
SN−1

φ(σ)
∫ β(t)δ

0
rN+p−1K(σr) dr dH N−1(σ)

= 1
∥| · |p K∥L1

∫
SN−1

φ(σ)
∫ ∞

0
rN+p−1K(σr) dr dH N−1(σ)

=
∫
SN−1

φ(σ) θK,p(σ) dH N−1(σ)

by (4.5), the Dominated Convergence Theorem, (4.8) and Fubini’s Theorem.
Proof of (ii). In view of (4.8), we infer that

lim
t→0+

νt(RN) = lim
t→0+

∥ρt∥L1 = lim
t→0+

∥| · |p K∥L1

mK,p(β(t)) = 1.

Moreover, if φ ∈ Cc(RN), then by changing variables we have

lim
t→0+

∫
RN
φ dνt = lim

t→0+

1
mK,p(β(t))

∫
RN
φ

(
x

β(t)

)
|x|p K(x) dx = φ(0) (4.9)

by (4.8) and the Dominated Convergence Theorem, owing to (4.5).
Proof of (iii). Formula (4.7) is well known, see [38, 57] for instance. Thus, we just focus

on the maximal rank property. We shall prove that Definition 2.8 is satisfied for any τ ∈ I
and e1, . . . , eN ∈ SN−1 the canonical basis of RN . Indeed, by radial symmetry, we have∫

Bδ ∩ Cτ (ei)
ρt(z) dz =

∫
Bδ ∩ Cτ (e1)

ρt(z) dz

for all i = 1, . . . , N . Arguing as in (4.9), we can compute∫
Bδ ∩ Cτ (e1)

ρt(z) dz = 1
mK,p(β(t))

∫
Bδβ(t) ∩ Cτ (e1)

|x|p K(x) dx.

Therefore, by combining the above equalities, we get that

lim sup
t→0+

∫
Bδ ∩ Cτ (ei)

ρt(z) dz = lim
t→0+

1
mK,p(β(t))

∫
Bδβ(t) ∩ Cτ (e1)

|x|p K(x) dx = cK,p
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by (4.8) and the Monotone Convergence Theorem, where

cK,p = 1
∥| · |p K∥L1

∫
Cτ (e1)

|x|p K(x) dx ∈ (0, 1)

and the validity of Definition 2.8 readily follows, concluding the proof. □

We are now ready to apply Theorem 3.1 to the special family in (4.3). We remark that
Theorem 4.2 below was already implicitly given in [57], although the main results of [57]
are stated on bounded open subsets of RN with Lipschitz boundary.
Theorem 4.2. Let K ∈ L1

loc(RN ) \ {0} and β : I → (0,∞) be as above, and let p ∈ [1,∞).
If (4.5) holds, then the limit

lim
t→0+

β(t)p
∫
RN

∫
RN

|u(x) − u(y)|p Kt(x− y) dx dy =
∫
SN−1

∥σ ·Du∥p
Lp θK,p(σ) dH N−1(σ),

where θK,p : SN−1 → [0,∞] is as in (4.6), holds for u ∈ Sp(RN) pointwise and in the
Γ-sense with respect to the Lp topology, and the functionals in the right-hand side are
coercive. If, in addition, K is radially symmetric, then the limit

lim
t→0+

β(t)p
∫
RN

∫
RN

|u(x) − u(y)|p Kt(x− y) dx dy = 2
N

Γ
(

N+1
2

)
Γ
(

p+1
2

)
Γ
(

N+p
2

)
∥| · |pK∥L1

∥Du∥p
Lp

holds for u ∈ Sp(RN ) pointwise and in the Γ-sense with respect to the Lp topology, and the
functionals in the right-hand side are coercive.
Proof. The statement directly follows by combining Theorem 3.2 with the properties
collected in Proposition 4.1. We omit the simple computations. □

4.3. Compactness. We now complete the asymptotic analysis of the energies (4.4)
relative to the special family (4.3) achieved in Theorem 4.2 with a compactness result, see
Theorem 4.4 below. For its statement, we need to introduce the following terminology.
Definition 4.3 (Local precompactenss). Let p ∈ [1,∞). A set X ⊂ Lp(RN) is locally
precompact in Lp(RN) if X is precompact in Lp(E) for every compact set E ⊂ RN .

We are now ready to state our compactness result. We refer to [19, Th. 4], [58, Ths. 1.2
and 1.3] and [6, Th. 4.2] for similar results in this direction.
Theorem 4.4 (Compactness). Let K ∈ L1

loc(RN) \ {0} and β : I → (0,∞) be as above.
Let p ∈ [1,∞) and assume that (4.5) holds. If (tk)k∈N ⊂ I and (uk)k∈N ⊂ Lp(RN ) are such
that tk → 0+ as k → ∞ and

sup
k∈N

(
∥uk∥Lp + Ftk,p(uk)

)
< ∞,

then (uk)k∈N is locally precompact in Lp(RN) and any of its Lp
loc(RN) limits is in Sp(RN).

For the proof of Theorem 4.4, we need the following preliminary result, which generalizes
(the proof of) [14, Th. 3.5] to every p ∈ [1,∞).
Proposition 4.5. Let K ∈ L1

loc(RN) \ {0} and β : I → (0,∞) be as above. Assume that
p ∈ [1,∞) is such that | · |p K ∈ L1(RN). If u ∈ Lp(RN) and t > 0, then there exists
vt ∈ Sp(RN) such that

∥vt − u∥Lp ≤ CK,p ∥| · |p K∥L1 F K
t,p(u) β(t)−p
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and
∥∇vt∥Lp ≤ CK,p ∥| · |p K∥L1 F K

t,p(u),
where CK,p > 0 depends on K and p only.

In the proof of Proposition 4.5 we need the following estimate, which revisits the one
in [14, Lem. 3.4] for every p ∈ [1,∞). We omit its proof, since it follows by a simple
application of Tonelli’s Theorem.

Lemma 4.6. Let p ∈ [1,∞). If G ∈ L1(RN) is a non-negative function, then∫
RN

∥u(· + z) − u∥p
Lp (G ∗G)(z) dz ≤ 2p ∥G∥L1

∫
RN

∥u(· + z) − u∥p
Lp G(z) dz

for every u ∈ Lp(RN).

Proof of Proposition 4.5. Since | · |p K ∈ L1(RN), we have K ∈ L1(RN) \ {0} and so
G = min{K, 1} satisfies G ∈ L1 ∩L∞(RN )\{0}. Hence G∗G is a non-negative continuous
function which is strictly positive on a non-empty open set in RN . Thus, we can find a
non-negative function φ ∈ Lipc(RN) \ {0} such that

φ ≤ G ∗G and |∇φ| ≤ G ∗G. (4.10)
We hence set

Gt(x) = β(t)NG(β(t)x), φt = β(t)Nφ(β(t)x)
∥φ∥L1

for every t > 0 and x ∈ RN . We note that ∥Gt∥L1 = ∥G∥L1 ≤ ∥K∥L1 , ∥φt∥L1 = 1 and,
moreover, owing to (4.10),

φt ≤ Gt ∗Gt

∥φ∥L1
and |∇φt| ≤ Gt ∗Gt

∥φ∥L1
β(t) (4.11)

for every t > 0. Finally, given u ∈ Lp(RN), we set vt = u ∗ φt for every t > 0 and we note
that vt ∈ Sp(RN) for every t > 0. Owing to Jensen’s inequality, (4.11), Lemma 4.6 and
the definitions in (4.1) and (4.2), we can estimate

∥vt − u∥p
Lp ≤

∫
RN

∥u(· + z) − u∥p
Lp φt(z) dz ≤ 1

∥φ∥L1

∫
RN

∥u(· + z) − u∥p
Lp (Gt ∗Gt)(z) dz

≤ 2p∥Gt∥L1

∥φ∥L1

∫
RN

∥u(· + z) − u∥p
Lp Gt(z) dz ≤ 2p ∥K∥L1

∥φ∥L1

∫
RN

∥u(· + z) − u∥p
Lp Kt(z) dz

= 2p ∥K∥L1

∥φ∥L1
F K

p,t(u)ϕK,p(t) ≤ 2p ∥K∥L1

∥φ∥L1
∥| · |p K∥L1 F K

p,t(u) β(t)−p

and, similarly,

∥∇vt∥p
Lp ≤ ∥∇φt∥p−1

L1

∫
RN

∥u(· + z) − u∥p
Lp |∇φt(z)| dz

≤ ∥∇φ∥p−1
L1

β(t)p

∥φ∥p
L1

∫
RN

∥u(· + z) − u∥p
Lp (Gt ∗Gt)(z) dz

≤ ∥∇φ∥p−1
L1

∥φ∥p
L1

2p ∥K∥L1

∥φ∥L1
∥| · |p K∥L1 F K

p,t(u)

for every t > 0, yielding the conclusion. □
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Proof of Theorem 4.4. For convenience, we let

M = sup
k∈N

(
∥uk∥Lp + Ftk,p(uk)

)
< ∞.

By Proposition 4.5 we can find vk = vtk
∈ Sp(RN) such that ∥vk − uk∥Lp ≤ Cβ(tk)−p and

∥∇vk∥Lp ≤ C for every k ∈ N, where C > 0 depends on K, p and M only. In particular,
the sequence (vk)k∈N is bounded in Sp(RN) and thus we can find a subsequence (vkj

)j∈N
and u ∈ Sp(RN) such that vkj

→ u in Lp
loc(RN) as j → ∞. Since β(tk) → ∞ as k → ∞,

we also get that uk → u in Lp
loc(RN) as k → ∞. A similar argument proves that any

Lp
loc(RN) limit of (uk)k∈N belongs to Sp(RN). □

For future convenience, we complete Theorem 4.4 by recalling the following result, which
is a consequence of [58, Ths. 1.2 and 1.3] (we also refer to the discussion in [58, Sec. 2]).

Proposition 4.7. Let p ∈ [1,∞). If (uk)k∈N ⊂ Lp(RN) and (λk)k∈N ⊂ I are such that
λk → 0+ and

sup
k∈N

(
∥uk∥Lp +

∫
RN

∥uk(· + z) − uk∥p
Lp

| log λk| (λk + |z|)N+p
dz
)
< ∞,

then (uk)k∈N is locally precompact in Lp(RN) and any of its Lp
loc(RN) limits is in Sp(RN).

Proof. The results follows from [58, Ths. 1.2 and 1.3]. Indeed, it is enough to consider the
non-negative radial kernels (ρk)k∈N defined as

ρk(z) = ck|z|p χB1(z)
| log λk| (λk + |z|)N+p

,

for all z ∈ RN and k ∈ N, where

ck =
∫

B1

|z|p

| log λk| (λk + |z|)N+p
dz

is a renormalization constant such that
∫
RN
ρk(z) dz = 1 for all k ∈ N. Since

0 < inf
k∈N

ck ≤ sup
k∈N

ck < ∞,

the kernels (ρk)k∈N satisfy the properties in [58, Eq. (2)], and also the additional property
in [58, Eq. (8)] for N = 1. We omit the plain details. □

5. Non-local limit energies: convergence and compactness

In this section we collect some results concerning the convergence and the compactness
properties of the functionals Ft,p in some natural cases in which the family of kernels does
not satisfy the conditions in statement (A) of Theorem 3.1.

5.1. Convergence. The following result generalizes [2, Th. 1.1(iii)] to the functional
setting and to any integrability exponent p ∈ [1,∞). This result can be seen as the
non-local counterpart of the implication (A) =⇒ (B) in Theorem 3.1.
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Theorem 5.1. Let p ∈ [1,∞) and (ρt)t∈I ⊂ L1
loc(RN ). Assume that there exist C > 0 and

a measurable function κ : RN → [0,∞] such that
ρt(z)
|z|p

≤ Cκ(z) (5.1)

for all t ∈ I and a.e. z ∈ RN , and

lim
t→0+

ρt(z)
|z|p

= κ(z) (5.2)

for a.e. z ∈ RN . Then, the limit
lim

t→0+
Ft,p(u) = [u]pW κ,p , for u ∈ W κ,p(RN),

holds in the pointwise sense and in the Γ-sense with respect to the Lp topology, and the
functionals (Ft,p)t∈I are coercive on W κ,p(RN).

Proof. If u ∈ W κ,p(RN), then z 7→ ∥u(· + z) − u∥p
Lp κ(z) ∈ L1(RN) and thus, by (5.1), we

can apply the Dominated Convergence Theorem to get that

lim
t→0+

Ft,p(u) =
∫
RN

∥u(· + z) − u∥p
Lp κ(z) dz = [u]W κ,p .

Moreover, if (tk)k∈N ⊂ I and (uk)k∈N ⊂ Lp(RN) are such that tk → 0+ and uk → u in
Lp(RN) as k → ∞, then by (5.2) we can apply Fatou’s Lemma to get

lim inf
k→∞

Ftk,p(uk) ≥
∫
RN

lim
k→∞

∥uk(· + z) − uk∥p
Lp

ρtk
(z)

|z|p
dz

=
∫
RN

∥u(· + z) − u∥p
Lp κ(z) dz = [u]pW κ,p .

In particular, if lim inf
k→∞

Ftk,p(uk) < ∞, then u ∈ W κ,p(RN). The proof is complete. □

5.2. Compactness. The following result can be seen as a non-local counterpart of the
compactness result achieved in Theorem 4.4.

Theorem 5.2. Let p ∈ [1,∞) and (ρt)t∈I ⊂ L1
loc(RN ). Assume that, for every ε > 0, there

exists δ > 0 such that
ρt(z) ≥ 1

εδN
(5.3)

for a.e. z ∈ Bδ and every t ∈ (0, δ). If (tk)k∈N ⊂ I and (uk)k∈N ⊂ Lp(RN) are such that
tk → 0+ as k → ∞ and

sup
k∈N

(
∥uk∥Lp + Ftk,p(uk)

)
< ∞,

then (uk)k∈N is locally precompact in Lp(RN ) and any of its Lp
loc(RN ) limits is in W κ,p(RN ),

where κ : RN → [0,∞] is given by

κ(z) = lim inf
t→0+

ρt(z)
|z|p

for a.e. z ∈ RN .

For the proof of Theorem 5.2 we need the following simple estimate exploiting (5.3).
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Lemma 5.3. Let p ∈ [1,∞) and (ρt)t∈I ⊂ L1
loc(RN). If (5.3) holds, then for every ε > 0

there exists δ > 0 such that, letting ηδ = χBδ
/|Bδ|,

∥ηδ ∗ u− u∥p
Lp ≤ ε

|B1|
Ft,p(u)

for every t ∈ (0, δ) and u ∈ Lp(RN).

Proof. Let u ∈ Lp(RN) and ε, δ > 0 be as in (5.3). By Jensen’s inequality, we have

∥ηδ ∗ u− u∥p
Lp ≤ 1

|Bδ|

∫
Bδ

∥u(· − z) − u∥p
Lp dz = 1

|B1|

∫
Bδ

∥u(· + z) − u∥p
Lp

δN
dz.

In virtue of (5.3), we thus infer that

∥ηδ ∗ u− u∥p
Lp ≤ ε

|B1|

∫
Bδ

∥u(· + z) − u∥p
Lp

ρt(z)
|z|p

dz = ε

|B1|
Ft,p(u),

concluding the proof. □

We can now detail the proof of Theorem 5.2
Proof of Theorem 5.2. By assumption, the sequence (uk)k∈N is bounded in Lp(RN ). Thus,
letting ηδ = χBδ

/|Bδ| ∈ L1(RN) for δ > 0, by [22, Cor. 4.28] the sequence (ηδ ∗ uk)k∈N is
locally precompact in Lp(RN ) for each δ > 0. As a consequence, the sequence (ηδ ∗ uk)k∈N
is totally bounded in Lp(E) for every compact set E ⊂ RN . By Lemma 5.3, also the
sequence (uk)k∈N is totally bounded in Lp(E) for every compact set E ⊂ RN , which implies
that the sequence (uk)k∈N is is locally precompact in Lp(RN). Finally, if u is an Lp

loc(RN)
limit of (uk)k∈N, then, up to subsequences, by Fatou’s Lemma we have

sup
k∈N

Ftk,p(uk) ≥ lim inf
k→∞

Ftk,p(uk) ≥
∫
RN

lim inf
k→∞

(
∥uk(· + z) − uk∥p

Lp

ρtk
(z)

|z|p

)
dz

≥
∫
RN

∥u(· + z) − u∥p
Lp κ(z) dz = [u]pW κ,p ,

proving that u ∈ W κ,p(RN) and concluding the proof. □

6. Application to heat kernels

In this section we apply the results of Sections 4 and 5 to families (ρt)t∈I induced by
heat-type kernels, both in the integer and in the fractional case.

6.1. Heat kernel. We begin with the standard case. We let (ht)t>0 : RN → (0,∞) be the
heat kernel, which is given by

ht(x) = e− |x|2
4t

(4πt)N
2
, (6.1)

for all x ∈ RN and t > 0. Given p ∈ [1,∞], we define the heat semigroup
(Ht)t>0 : Lp(RN) → Lp(RN)

by letting
Htu = ht ∗ u (6.2)

for all u ∈ Lp(RN) and t > 0. Note that (6.2) makes sense by Young’s inequality, since
ht ∈ L1(RN) for all t > 0 due to (6.1).
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The following result is somehow known, at least for the part concerning the pointwise
limit. We refer to [38, Th. B] for a detailed discussion.

Theorem 6.1. If p ∈ [1,∞), the the limit

lim
t→0+

t−
p
2

∫
RN

Ht(|u− u(x)|p)(x) dx = 2Γ(p)
Γ(p/2) ∥Du∥p

Lp , for u ∈ Sp(RN),

holds in the pointwise sense and in the Γ-sense with respect to the Lp topology, and the
functionals in the right-hand side are coercive on Sp(RN). Moreover, if (tk)k∈N ⊂ I and
(uk)k∈N ⊂ Lp(RN) are such that tk → 0+ as k → ∞ and

lim inf
k→+∞

t
− p

2
k

∫
RN

Htk
(|uk − uk(x)|p)(x) dx < ∞,

then (uk)k∈N is locally precompact in Lp(RN) and any of its Lp
loc(RN) limits is in Sp(RN).

Proof. Letting K(x) = h1(x) for all x ∈ RN and β(t) = t−
1
2 for all t > 0, we get that

Kt(x) = ht(x) for all x ∈ RN and t > 0. By radial symmetry, we can compute

∥| · |p K∥L1 = 2p−1N√
π

Γ
(

N+p
2

)
Γ
(

N+1
2

) .
Since | · |p K ∈ L1(RN ) for every p ∈ [1,∞) due to (6.1), the conclusion hence follows from
Theorems 4.2 and 4.4. We omit the simple computations. □

6.2. Fractional heat kernel. We now deal with the fractional counterpart of Theorem 6.1.
Given s ∈ (0, 1), we let (hs

t )t>0 : Rn → (0,∞) be the fractional heat kernel. For s = 1
2 , it is

known that

h
1
2
t (x) =

Γ
(

N+1
2

)
π

N+1
2

t

(t2 + |x|2)
N+1

2
(6.3)

for all x ∈ RN and t > 0. For s ∈ (0, 1), s ≠ 1
2 , the heat kernel does not have an explicit

formula. Anyway, it is a smooth, positive, radially symmetric probability function obeying
the scaling law

hs
t(x) = t−

N
2s hs

1

(
t−

1
2sx
)

(6.4)
for all x ∈ RN and t > 0. Moreover, by [17, Th. 2.1], we have that

lim
x→∞

|x|N+2s hs
1(x) = ζN,s,

with

ζN,s = s 4s

π
N
2

Γ
(

N
2 + s

)
Γ(1 − s) . (6.5)

Therefore, thanks to (6.4), we also get that

lim
t→0+

hs
t(x)
t

= ζN,s

|x|N+2s
(6.6)

for all x ∈ RN \ {0}, where ζN,s is as in (6.5), and that there exists CN,s > 0 such that
C−1

N,s t(
t

1
s + |x|2

)N+2s
2

≤ hs
t(x) ≤ CN,s t(

t
1
s + |x|2

)N+2s
2

(6.7)
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for all x ∈ RN and t > 0. The fractional heat kernel enjoys the following relation with
the integer heat kernel (6.1). Actually, such relation is a particular case of the general
approach sketched in [18, Sec. 1.1.4]. For each s ∈ (0, 1), there exists a family of probability
densities (ηs

t )t>0 on (0,∞) such that

hs
t(x) =

∫ ∞

0
hτ (x) ηs

t (τ) dτ for all x ∈ RN and t > 0. (6.8)

As proved in [1, Sec. 2], the family (ηs
t )t>0 satisfies

∫ ∞

0
τα ηs

1(τ) dτ =
Γ
(
1 − α

s

)
Γ (1 − α) (6.9)

for all α ∈ (−∞, s).
As above, given s ∈ (0, 1) and p ∈ [1,∞], we define the fractional heat semigroup

(Hs
t)t>0 : Lp(RN) → Lp(RN)

by letting
Hs

tu = hs
t ∗ u (6.10)

for all u ∈ Lp(RN) and t > 0. We observe that (6.10) makes sense again by Young’s
inequality, since hs

t ∈ L1(RN) for all t > 0 and s ∈ (0, 1), owing to the bounds in (6.7).
The following result is the fractional counterpart of Theorem 6.1. In the special case

p = 1, this result was proved (in a weaker form) in [43].

Theorem 6.2. Given p ∈ [1,∞) and s ∈ (0, 1), let ψs,p : I → [0,∞) be defined as

ψs(t) =


t

p
2s if 2s > p,

t| log t| if 2s = p,

t if 2s < p,

for all t ∈ I. The limits

lim
t→0+

∫
RN

Hs
t(|u− u(x)|p)(x)

ψs,p(t) dx =



Γ
(
1 − p

2s

)
Γ
(
1 − p

2

) 2Γ(p)
Γ(p/2) ∥Du∥p

Lp in Sp(RN) if 2s ≥ p,

s 4s

π
N
2

Γ
(

N
2 + s

)
Γ(1 − s) [u]p

W 2s,
p
2s

in W 2s, p
2s (RN) if 2s < p,

hold in the pointwise and Γ-sense with respect to the Lp topology, and all the functionals
in the left-hand sides are coercive on the respective spaces. Moreover, if (tk)k∈N ⊂ I and
(uk)k∈N ⊂ Lp(RN) are such that tk → 0+ as k → ∞ and

lim inf
k→+∞

∫
RN

Hs
tk

(|uk − uk(x)|p)(x)
ψs(tk) dx < ∞,

then (uk)k∈N is locally precompact in Lp(RN) and any of its Lp
loc(RN) limits is in Sp(RN)

if 2s ≥ p and in W 2s, p
2s (RN) if 2s < p.

Proof. Letting Ks(x) = hs
1(x) for all x ∈ RN and βs(t) = t−

s
2 for all t > 0, we get that

Ks
t (x) = hs

t(x) for all x ∈ RN and t > 0. We distinguish three cases.
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Case 2s > p. We have that | · |p Ks ∈ L1(RN ), so the conclusion follows by Theorem 4.2.
We just need to observe that, by radial symmetry, we can compute

∥| · |p K∥L1 = 2p−1
√
π

Γ
(

N+p
2

)
Γ
(

N+1
2

) Γ
(
1 − p

2s

)
Γ
(
1 − p

2

)
exactly as in [2, Lem. 4.1], thanks to the relation (6.8) and the formula (6.9). We omit
the simple computations. For the compactness part, we can invoke Theorem 4.4.

Case 2s = p. We have that | · |2s Ks /∈ L1(RN). However, we can compute

ms(R) = mKs,2s(R) = NωN

∫ R

0
rN+2s−1 hs

1(re1) dr for all R > 0.

Since
d

dR

∫ R

0
rN+2s−1 hs

1(re1) dr = RN+2s−1 hs
1(Re1) ∼ cN,s

R
as R → ∞, where cN,s > 0 is as in (6.5), we must have that

ms(R) ∼ NωN cN,s logR
as R → ∞. We hence deduce that

ϕs(t) = ϕKs,2s(t) = tms

(
t−

s
2
)

∼ NωN cN,s
s

2 t| log t|

as t → 0+. The conclusion hence follows by observing that the family (ρt)t>0 given by

ρs
t(x) = |x|p hs

t(x)
t| log t| ,

for all x ∈ RN and t > 0, satisfies the properties in Theorem 3.1(A) (with no need of
passing to a subsequence). For the compactness part, we can invoke Proposition 4.7.

Case 2s < p. For the validity of the limit we can rely on Theorem 5.1, thanks to the limit
in (6.6) and the bounds in (6.7), while the compactness part follows from Theorem 5.2.
We omit the simple details. □

Remark 6.3 (On the constants in Theorem 6.2 for p = 1). We observe that, for p = 1,
the constants in Theorem 6.2 were computed in [43] with a completely different method,
based on the approach of [9]. We observe that our method is more direct and flexible,
yielding the values of the constants for all p ∈ [1,∞).

Remark 6.4 (On the proof of [43, Th. 2.1] for s ̸= 1
2). The proof of [43, Th. 2.1] in

the case s ̸= 1
2 , which is detailed in [43, Sec. 2.1], seems incorrect. Indeed, although the

statement and the proof of [43, Lem. 2.4] are correct, this result cannot be used to ensure
the validity of the assumptions in [43, Lem. 2.2], as the family (χEi

)i∈N a priori depends
on the chosen sequence (ti)i∈N, being Ei = Eti

for i ∈ N.

6.3. General heat-type kernels. We conclude this section by generalizing [2, Th. 1.1],
see Theorem 6.5 below. To state our result, we need to introduce some notation.

Let A be a set of indices and consider a family of non-negative continuous functions
(hα

t )t>0 : RN → [0,∞) for α ∈ A . Assume that hα
t is radially symmetric with ∥hα

t ∥L1 = 1
for each t > 0 and α ∈ A . Moreover, assume that there is β > 0 such that

hα
t (x) = t−βN hα

1 (t−βx) (6.11)
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for all x ∈ RN , t > 0 and α ∈ A . Given p ∈ [1,∞), we let

Ap =
{
α ∈ A : | · |p hα

1 ∈ L1(RN)
}

Moreover, given ζ > 0 and C ≥ 1, we let Bζ,C
p ⊂ A be the subset of indices α ∈ A such

that
lim

|x|→+∞
|x|N+p hα

1 (x) = ζ (6.12)

and
C−1

(1 + |x|)N+p
≤ hα

1 (x) ≤ C

(1 + |x|)N+p
(6.13)

for all x ∈ RN . Finally, we let Cp ⊂ A be the subset of indices α ∈ A such that
there exist t̄α, cα > 0, a Borel function ψα : (0,∞) → (0,∞) and a measurable function
κα : RN → [0,∞) such that

hα
t (x)
ψα(t) ≤ cακα(x) (6.14)

for a.e. x ∈ RN and t ∈ (0, t̄α) and

lim
t→0+

hα
t (x)
ψα(t) = κα(x) (6.15)

for a.e. x ∈ RN . We also let C̃p ⊂ Cp be be the subset of indices α ∈ Cp such that there
exist t̂α, ĉα > 0 and a measurable function κ̂α : RN → [0,∞] such that

κ̂α /∈ L1(RN) and κ̂α ∈ L1(RN \BR) (6.16)

for all R > 0, and
hα

t (x)
ψα(t) ≥ ĉακ̂α(x) (6.17)

for a.e. x ∈ RN and t ∈ (0, t̂α). As above, for each α ∈ A and p ∈ [1,∞], we define

(Hα
t )t>0 : Lp(RN) → Lp(RN)

by letting
Hα

t u = hα
t ∗ u (6.18)

for all u ∈ Lp(RN) and t > 0. We observe that (6.18) makes sense by Young’s inequality,
since hα

t ∈ L1(RN) for all t > 0 and α ∈ A by assumption.
We are now ready to state our result, improving and generalizing [2, Th. 1.1].

Theorem 6.5. Let p ∈ [1,∞) and let (Hα
t )t>0,α∈A be as above. Let ςα : I → [0,∞) be

defined as

ςα(t) =


tβp if α ∈ Ap,

tβp| log t| if α ∈ Bζ,C
p ,

ψα(t) if α ∈ C̃p,
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for all α ∈ A , with ζ > 0 and C ≥ 1. The limits

lim
t→0+

∫
RN

Hα
t (|u− u(x)|p)(x)

ςα(t) dx =



cN,p

N ∥| · |p hα
1 ∥L1

∥Du∥p
Lp in Sp(RN) if α ∈ Ap,

ζ β ωN cN,p ∥Du∥p
Lp in Sp(RN) if α ∈ Bζ,C

p ,

[u]pW κα,p in W κα,p(RN) if α ∈ Cp,

where

cN,p =
2 Γ

(
p+1

2

)
Γ
(

N+1
2

)
Γ
(

N+p
2

) ,

hold in the pointwise sense and in the Γ-sense with respect to the Lp topology, and all
the functionals in the right-hand sides are coercive on the respective spaces. Moreover, if
(tk)k∈N ⊂ I and (uk)k∈N ⊂ Lp(RN) are such that tk → 0+ as k → ∞ and

lim inf
k→+∞

1
ςα(tk)

∫
RN

Hα
tk

(|uk − uk(x)|p)(x) dx < ∞,

then (uk)k∈N is locally precompact in Lp(RN) and any of its Lp
loc(RN) limits is in Sp(RN)

if α ∈ Ap ∪ Bζ,C
p and in W κα,p(RN) if α ∈ C̃p.

Proof. The proof is quite similar to that of Theorem 6.2, so we simply sketch it. As before,
letting K(x) = hα

1 (x) for all x ∈ RN and βα = t−β for all t > 0, we get that Kα
t (x) = hα

t (x)
for all x ∈ RN and t > 0. The case α ∈ Ap directly follows from Theorem 4.2 and
Theorem 4.4. For the case α ∈ Bζ,C

p , we observe that, owing to (6.12),

ϕKα,p(t) ∼ NωN ζβ t
βp| log t| as t → 0+.

Therefore, it is enough to check that the family (ρt)t>0 given by

ρt(x) = |x|p hα
t (x)

tβp| log t| , for all x ∈ RN and t > 0,

satisfies the properties in Theorem 3.1(A) (with no need of passing to a subsequence). For
the compactness part, thanks to (6.13), it is enough to apply Proposition 4.7. Finally,
owing to (6.14) and (6.15), the case α ∈ Cp follows from Theorem 5.1, while, owing also
to (6.16) and (6.17), the compactness in the case α ∈ C̃p follows from [16, Th. 2.11]. □

Remark 6.6 (Comparison with [2, Th. 1.1]). We observe that [2, Th. 1.1] deals with the
case p = 1 only, and only in the case of bounded sets of finite perimeter. In addition,
[2, Th. 1.1(ii)] is weaker than Theorem 6.5, as [2, Th. 1.1(ii)] provides an upper estimate
on the lim sup and only under the stronger assumption that

hα
1 (x) = c

(1 + |x|n)m
, for all x ∈ RN , (6.19)

for some c, n,m > 0 such that mn = N + 1. Our result instead relies on (6.12) and (6.13)
only, which, in turn, in the case (6.19), naturally imposes that mn = N + p. We further
remark that our renormalization of (hα

t )α∈A ,t>0 differs from the one adopted in [2], as we
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require that ∥hα
1 ∥L1 = 1 for all α ∈ A . However, due to the scaling assumption (6.11),

corresponding to [2, Eq. (1.1)], the two approaches are completely equivalent.

7. Heat content in Hilbert spaces

In this section we briefly provide a different point of view on the sufficient condition
achieved in Theorem 3.1 in the Hilbertian framework.

7.1. Heat content in Hilbert spaces. We recall some standard notation (for a more
detailed account, see, e.g., [36]). We let H be a Hilbert space with scalar product ( · , · )H
and we let (Ht)t≥0 be a strongly continuous semigroup of symmetric operators on H.
Definition 7.1 (Semigroup content). The semigroup content of u ∈ H is the map
[0,∞) ∋ t → Ht(u) ∈ [0,∞) defined as

Ht(u) = (Htu, u)H

for all t ≥ 0. In particular, 0 ≤ Ht(u) ≤ H0(u) = (u, u)H for t ≥ 0 and u ∈ H.
We let L be the generator of the semigroup (Ht)t≥0, which is given by

Lu = lim
t→0+

Htu− u

t
in H, (7.1)

with domain D(L) = {u ∈ H : Lu exists as a strong limit}. We recall that L is a non-
positive definite self-adjoint operator, see [36, Lem. 1.3.1].

The following result can be seen as a general Hilbertian analogue of the implication
(A) =⇒ (B) in Theorem 3.1. Here the notions of convergence in D(L) ⊂ H in the
pointwise and in the Γ-sense with respect to the topology in H are the natural analogues
of Definitions 2.3 and 2.4. We omit the plain statements.
Theorem 7.2. Let H, (Ht)t≥0 and L be as above. The following hold:

(i) if u ∈ D(L), then lim sup
t→0+

H0(u) − Ht(u)
t

≤ (−Lu, u)H;

(ii) if (uk)k∈N ⊂ H and (tk)k∈N ⊂ (0,∞) are such that uk → u in H for some u ∈ D(L)
and tk → 0+, then

lim inf
k→∞

H0(uk) − Htk
(uk)

tk
≥ (−Lu, u)H.

As a consequence, the functionals u 7→ H0(u)−Ht(u)
t

converge to u 7→ (−Lu, u)H on H as
t → 0+ pointwise and in the Γ-sense with respect to the strong topology in H.
Proof. Let (Eλ)λ≥0 be the spectral representation of −L, so that

(−Lu, v)H =
∫ ∞

0
λ d(Eλu, v)H

for u ∈ D(L) and v ∈ H. By [36, Lem. 1.3.2], we can write

(Htu, v)H =
∫ ∞

0
e−tλ d(Eλu, v)H,

for all t ≥ 0 and u, v ∈ H, and thus

H0(u) − Ht(u) = (u− Htu, u)H =
∫ ∞

0
(1 − e−tλ) d(Eλu, u)
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for all t ≥ 0 and u ∈ H. Since 1 − s ≤ e−s for all s ≥ 0, we can hence estimate

H0(u) − Ht(u) ≤ t
∫ ∞

0
λ d(Eλu, u) = t(−Lu, u)H

for all t ≥ 0 and u ∈ D(L), yielding (i).
Now let (uk)k∈N ⊂ H, u ∈ H and (tk)k∈N ⊂ (0,∞) be as in (ii). We define the measures

µk, µ ∈ Mloc((0,∞)) by letting µk = (E·uk, uk)H for all k ∈ N and µ = (E·u, u)H. Since
uk → u in H as k → ∞, we infer that µk

⋆
⇀ µ in Mloc((0,∞)) as k → ∞. Therefore,

given R > 0, we can estimate
H0(uk) − Htk

(uk)
tk

≥
∫ R

0

1 − e−tkλ

tkλ
λ dµk(λ) ≥ 1 − e−tkR

tkR

∫ R

0
λ dµk(λ)

for all k ∈ N. By Tonelli’s Theorem and Fatou’s Lemma, we have that

lim inf
k→∞

∫ R

0
λ dµk(λ) = lim inf

k→∞

∫ R

0
µk((t, R)) dt ≥

∫ R

0
µ((t, R)) dt =

∫ R

0
λ dµ(λ)

for all R > 0. As a consequence, we get that

lim inf
k→∞

H0(uk) − Htk
(uk)

tk
≥
∫ R

0
λ dµ(λ)

for all R > 0. Letting R → ∞ in the above inequality, we conclude that

lim inf
k→∞

H0(uk) − Htk
(uk)

tk
≥
∫ ∞

0
λ dµ(λ) = (−Lu, u)H,

proving (ii). The rest of the statement follows by choosing uk = u for all k ∈ N. □

7.2. A quicker approach via Fourier transform. We now provide an alternative
quicker proof of Theorem 7.2 for H = L2(RN) via the Fourier transform.

We let
F(u)(ξ) = û(ξ) =

∫
RN
e−2πix·ξ u(x) dx,

for all ξ ∈ RN , be the Fourier transform of u ∈ L1(Rn). As customary, we extend the
Fourier transform to a unitary transformation on L2(RN) keeping the same notation.

Given a measurable function λ : RN → [0,∞], the family

(Ht)t≥0 : L2(RN) → L2(RN),
defined as

(Htu, v)L2 =
∫
RN
e−λ(ξ)t û(ξ) · v̂(ξ) dξ (7.2)

for all t ≥ 0 and u, v ∈ L2(RN), yield a strongly continuous semigroup of symmetric
operators on L2(RN). As in Definition 7.1, we can thus define the semigroup content
corresponding to (7.2) as

Ht(u) = (Htu, u)L2 =
∫
RN
e−λ(ξ)t |û(ξ)|2 dξ

for all t ≥ 0 and u ∈ L2(RN). Moreover, as in (7.1), the generator of (7.2) is given by

(−Lu, v)L2 =
∫
RN
λ(ξ) û(ξ) · v̂(ξ) dξ, v ∈ L2(RN),
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for all u ∈ D(L), where D(L) =
{
u ∈ L2(RN) : λ |û| ∈ L2(RN)

}
. As usual, we can

interpret λ as the Fourier symbol of the (non-negative) operator −L.

Alternative proof of Theorem 7.2. Since we have

H0(u) − Ht(u) =
∫
RN

(1 − e−λ(ξ)t)|û(ξ)|2 dξ

for all t ≥ 0 and u ∈ L2(RN), by the Dominated Convergence Theorem we infer that

lim
t→0+

H0(u) − Ht(u)
t

=
∫
RN
λ(ξ) |û(ξ)|2 dξ = (−Lu, u)L2

for all u ∈ D(L). Now let (uk)k∈N ⊂ L2(RN ) and (tk)k∈N ⊂ (0,∞) be such that uk → u in
L2(RN ) with u ∈ D(L) and tk → 0+ as k → ∞. As a consequence, also ûk → û in L2(RN )
as k → ∞ and thus, owing to Plancherel’s Theorem, up to passing to a subsequence,
ûk(ξ) → û(ξ) for a.e. ξ ∈ RN as k → ∞. Then, by Fatou’s Lemma, we get that

lim inf
k→∞

H0(uk) − Htk
(uk)

tk
= lim inf

k→∞

∫
RN

1 − e−λ(ξ)tk

tk
|ûk(ξ)|2 dξ ≥

∫
RN
λ(ξ)|û(ξ)|2 dξ,

readily yielding the conclusion. □

Remark 7.3 (Application to heat kernels). The choice λ(ξ) = 4π2|ξ|2 for all ξ ∈ RN

yields that Htu = ht ∗ u for all t ≥ 0 and u ∈ L2(RN) as in (6.2), and L = ∆ is the
Laplacian operator. Similarly, given s ∈ (0, 1), the choice λ(ξ) = (2π|ξ|)2s for all ξ ∈ RN ,
yields that Hs

tu = hs
t ∗ u for all t ≥ 0 and u ∈ L2(RN ) as in (6.10), and L = −(−∆)s is the

fractional Laplacian operator, see [62] for instance.

Remark 7.4 (Characteristic functions). In the setting of Section 7.2, Theorem 7.2 can be
applied to characteristic functions of sets with finite volume. In particular, in the case of
heat kernels as in Remark 7.3, this point of view allows to recover the results of [43] for
s ∈

(
0, 1

2

)
. For finer results in this direction, we also refer to [15].

Remark 7.5 (Non-negativity assumption). It is worth observing that the non-negativity
assumption −L ≥ 0 in Section 7 (or, analogously, the fact that λ ≥ 0 in (7.2) in Section 7.2)
plays a crucial role in the proof of Theorem 7.2. We do not know if such non-negativity
assumption can be dropped or, at least, relaxed. Similar considerations can be made
concerning the non-negativity assumption ρt ≥ 0 for t ∈ I in the case of the functionals
(Ft,p)t∈I in (2.8) for p ∈ [1,∞). We refer to [4, 5] for related discussions. The authors
thank Giovanni Alberti for several observations about these aspects.
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