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ABSTRACT. We study L entropy solutions to 2 x 2 systems of conservation laws. We show
that, if a uniformly convex entropy exists, these solutions satisfy a pair of kinetic equations
(nonlocal in velocity), which are then shown to characterize all solutions with finite entropy
production. Next, we prove a Liouville-type theorem for genuinely nonlinear systems, which
is the main result of the paper. This implies in particular that for every finite entropy
solution, every point (t,z) € R x R\ J is of vanishing mean oscillation, where J C R™ x R
is a set of Hausdorff dimension at most 1.

1. INTRODUCTION

We consider 2 x 2 hyperbolic systems of conservation laws in one space dimension
Oru(t,x) + 0z f(u(t,x)) =0, in 7/, uel (1.1)

where U C R? is a bounded open set. We assume that the system is hyperbolic, that is, D f
is diagonalizable with real eigenvalues A1, Ay that satisfy

Al(u) < Aa(u) Vuel. (1.2)

It is well known that in the setting of nonlinear conservation laws additional conditions must
be imposed on distributional solutions in order to select the physically relevant ones: entropy
solutions are weak solutions to (1.1) that in addition satisfy the entropy inequality

Op(u) + 0xq(uw) <0 inZ;, (1.3)
for every entropy-entropy flux pair (n(u),¢(u)) € R x R such that
Vg(u) = Vn(u)D f(u), 7) convex.

The existence of entropy solutions is commonly investigated using relaxation techniques,
by approximation schemes (such as front tracking or Glimm scheme), or by approximating the
equation adding smoothing viscosity terms. Consider for example the viscous approximations
with identity viscosity matrix: it is well known that if the viscous approximations u®, solving

ou® + 0, f (uf) = eu, u® RT xR —U (1.4)
1

T
converge in L; . to a function u, then w is an entropy solution to (1.1). We refer to [Bre00],
[Daf16] for a general introduction to the subject.

The compactness in the strong topology of the family {u®}. is a delicate subject. Under the
existence of a bounded domain U for (1.4) where (1.2) is satisfied, the method of compensated
compactness developed by Tartar [Tar79], first adapted by DiPerna [DiP83a] to handle the
case of nonlinear hyperbolic conservation laws, allows to prove the strong compactness of
the family {u®}., under standard nonlinearity assumptions on the flux f, known as genuine
nonlinearity (see Definition 2.2). For a more recent account on this topic we refer to [Ser00,
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Chapter 9], [Dafl6]. We remark that a general result on the boundedness in L* of the
sequence {u®}. is lacking, and the existence of such domain & must be checked each time
(see e.g. [DiP83b], [LPS96] where the problem is solved for classical systems of gas dynamics).

Since the method of compensated compactness is not constructive, the structure and reg-
ularity of L solutions obtained in this way is at the moment completely unknown, apart
for few very special exceptions, which are systems of Temple class [AC05], and the system
of isentropic gas dynamics with v = 3, to which various authors dedicated some attention
due to its very particular and simple structure, and proved regularity in terms of traces and
fractional Sobolev spaces [LPT94b], [Gol23], [Vas99]. See also [Tal24], or the forthcoming
paper [AMT25], for improvements upon the available fractional regularity, and for a proof of
the concentration of the entropy dissipation measures on a 1 dimensional rectifiable set.

In this paper, we first study L entropy solutions to 2 x 2 systems of conservation laws.
We show that, if a uniformly convex entropy exists, entropy solutions are in particular finite
entropy solutions, and we show that the latter are characterized by a pair of kinetic equations
nonlocal in the kinetic variable (Theorem 1.3). Next, we prove a Liouville-type theorem for
genuinely nonlinear systems (Theorem 1.4), which is the main result of the paper, stating
that global isentropic solutions must be constant. This implies in particular that, for every
finite entropy solution, there exists a candidate jump set J C Rt x R of Hausdorff dimension
at most 1 such that every point (¢,x) € RT x R\ J is of vanishing mean oscillation.

1.1. Related literature. The well posedeness theory of hyperbolic systems of conservation
laws in one space dimension is rather complete for initial data with small BV norm, for which
one can obtain a priori BV bounds on the vanishing viscosity approximations [BB05] with
viscosity given by the identity matrix, for general hyperbolic nxn systems. As proved recently
in [BDL23|, such solutions are unique in the setting of small BV solutions which satisfy
the Liu admissibility condition. When restricting to special classes of genuinely nonlinear
2 x 2 systems, more general uniqueness results are available [CKV22]. For initial data with
small oscillation (i.e. close in L> to a constant) the famous result by Glimm and Lax
[GL70] shows that there exist solutions whose BV norm decays in time. These solutions
are conjectured to be unique in some intermediate spaces, see [ABB23], [ABM25], but this
remains an open problem. In the same small-oscillation setting of the Glimm-Lax theorem
a recent and notable result [Gla24] shows that solutions obtained with the front-tracking
method propagate fractional- BV regularity. Finally, in [CVY24] it is proved that continuous
(possibly non entropic) solutions are not unique, differently from the scalar (multi-d) case
[BBM17], [Sil18].

In the setting of L°° solutions to 1d systems of conservation laws, with no smallness
assumption on the initial datum, in analogy with the scalar multi-d conservation law [DOWO03,
DLRO3], it is expected that, even if entropy solutions are not generally BV starting from a
general L initial datum, solutions should be BV-like. By this we mean that, at least if the
flux is genuinely nonlinear, there is a 1-rectifiable set J C RT x R such that

(1) for any convex entropy-entropy flux 7, ¢ the dissipation measure

fin = O (w) + 0zq(u) (1.5)
is concentrated on J;
(2) Every point (¢,z) € J¢ is a Lebesgue point of u
or even better

(2") Every point (¢,x) € J¢ is a continuity point of w.
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We remark that (1) is known to be true in the case of solutions with finite entropy production
to scalar conservation laws in one dimension [BM17], and in the same paper it is proved that
(2) is true when the flux does not contain affine components. Property (1) is proved more
generally for finite entropy solutions to scalar conservation laws in 1d: in [Mar22] for strictly
convex fluxes, and in [Tal24], [AMT25] for general weakly nonlinear fluxes. In general space
dimension d > 1 (1), (2) are still open for general fluxes for which {f'(v) | v € I} is not
contained in an hyperplane for every interval I, but for partial results in the scalar case see
[Mar19], [Sil18].

Recent examples presented in [BCZ18] suggest that, for genuinely nonlinear 2 x 2 systems
of conservation laws, the total variation of a solution can potentially become infinite in finite
time, even when starting from a BV initial datum. This behavior contrasts with the scalar
case, where the BV norm is decreasing in time thanks to Kruzkov theorem [Kru77]. Therefore
as mentioned in [DLRO03] it would be even more relevant to obtain a BV-like structure for
solutions to 2 x 2 system of conservation laws since BV bounds are probably not available,
not even for initial data with bounded variation. For other related models where BV bounds
are not available see [AT24a, AT24b, Mar21].

1.2. Contributions of the present paper. It is well known that systems of two conser-
vation laws, differently from systems of n conservation laws, n > 2, admit infinitely many
entropies (see Definition 2.1). Building on this fact, Perthame & Tzavaras [PT00] constructed
a family of discontinuous entropies and derived a kinetic formulation for entropy solutions
of the system of elastodynamics. Our first contributions is to show that, for general 2 x 2
systems admitting a uniformly convex entropy, with these entropies at hand one is able to
derive a pair of kinetic equations of nonlocal type for all solutions obtained with the vanishing
viscosity-compensated compactness method (see Theorem 1.3). In contrast with the kinetic
formulations that can be obtained in the scalar case [LPT94a], [DOWO03], in the context of
2 x 2 systems the kinetic equations are nonlocal in the kinetic variable. In the rest of the
paper, we restrict to domains U of the form

U= (¢1,02)(W)

where
W= w, @] x [z

is a rectangle in the Riemann invariant coordinates (defined by (2.2)), although there are not
serious obstruction in working with more general convex domains.

The main results of this paper are based only on a kinetic formulation, which in turn is
equivalent to the following notion of finite entropy solution.

Definition 1.1. We say that u : Q@ — U is a finite entropy solution to (2.1) if for every
entropy-entropy flux pair n,q € C? it holds

Om(uw) + 0zq(u) = puy, iy € A () locally finite measure. (1.6)
We say that u is isentropic if y1,, = 0 for all entropy-entropy flux pairs (1, q) € C2.

It is a simple observation that entropy solutions are in particular finite entropy solutions,
if a uniformly convex entropy exists.

Proposition 1.2. Let u : Q C Rt x R — U be an entropy solution, and assume that there
exists a uniformly convex entropy E :U — R. Then wu is also a finite entropy solution.
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Proof. Let n be any C? entropy, and let £ > 0 big enough such that 7 + xE is convex. Then
we have

HE(u) + 0,G(u) = pg,
dh(n+ KE)(u) + 0:(q + KG)(u) = pyirp

where G is the entropy flux of E, and pg, jy+xr are locally finite negative measures, because
u is entropic. Then

Omn(u) + 0xq(w) = pintre — KpE
which proves the result. ]

We observe that for 2 x 2 systems of conservation laws, uniformly convex entropies always
exist under standard assumptions, see [Dafl6, Chapter 12].

Theorem 1.3. Let u : Q — U be a finite entropy solution to (2.1), and define x,,, ¥, and
Uy, @y, a5 1 (3.9), (3.10). Then there are locally finite measure pg, 1 € A (2 x (w,w)) and
v, 1 € M (2 X (2,Z)) such that

OiXu(t, 2, €) + Optpy (t,2,6) = Oepi1 + po in 7' (2 x (w,w)) (1.7)

Orvu(t; 7, C) + 0z (t,2,() = 01 +vo - in 7'(Q x (2,7)) (1.8)
Moreover, w is an isentropic solution if and only if (1.7), (1.8) hold with u; = v; = 0.

Here x,,, %, are functions supported on the hypograph of the first Riemann invariant ¢;
(see Section 3.1), and similarly v,,, ¢,, are supported on the hypograph of the second Riemann
invariant ¢o. The observation that allows to use the assumption about genuine nonlinearity
in this kinetic setting is that when & is close to the first Riemann invariant of the system,
one has

Yyt z, ) = €] (u(t, 2))xu(t, 7, 8)

and the speed A;[¢](u) is strictly monotone in £ (see Proposition 3.2). A similar monotonic-
ity property holds for the second Riemann invariant in connection with the second equation
(1.8). In the “local” case (i.e. Ai[¢](u) = A1(§)) it is known that, if the velocity is not
constant in &, then one can use the dispersive properties of the transport term to obtain
some regularity of the solution w [DLM91], [LPT94a]. However, these results have not been
successfully applied to nonlocal equations such as (1.7), (1.8). The present kinetic formula-
tion, obtained in connection with the Lagrangian representation recently developed in the
context of scalar conservation laws (see [BBM17], [Mar19]) could be useful to study BV -like
regularity properties of these solutions and will be a topic for future research.

Some remarks are here in order:

- Kinetic formulations that characterize entropy solutions have been obtained for par-
ticular systems, see [LPT94b] for the system of isentropic gas dynamics, or [PT00] for
a systems in elasticity. A generalization of the kinetic formulation for the system of
isentropic gas dynamics with v = 3 leads to the multibranch solutions introduced by
Brenier & Corrias [BC98], which can be viewed as an example of kinetic formulations
in the setting of a very specific system of n conservation laws. Equations (1.7), (1.8)
(without assumptions on the sign of 1, 1) do not characterize entropy solutions, but
rather finite entropy solutions (see Theorem 1.3). Since we do not assume any spe-
cific structure on the system, the task of characterizing exactly the class of entropy
solutions at the kinetic level seems a challenging topic.
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- When considering the physical viscosity, as e.g. in [CP10] for the system of gas dy-
namics, vanishing viscosity solutions might not have a signed dissipation measure for
every convex entropy. Therefore they might be a priori only finite entropy solutions,
satisfying kinetic formulations similar to the one in Theorem 1.3.

- The kinetic formulation of Theorem 1.3 contains additional source terms pg, 19, which
appear as the result of “decoupling” the conservation law into two kinetic equations
associated with the two Riemann invariants. In [ABB23] it is conjectured that so-
lutions to 2 x 2 systems of conservation laws should share some of their regularity
properties with scalar conservation laws with source terms, in particular this result
seems to go in the same direction of [ABB23].

Combining the entropies of [PT00] with the above mentioned Lagrangian tools we establish
the main result of this paper.

Theorem 1.4 (of Liouville-type). Let w : R? — U C R? be a bounded weak solution to a
hyperbolic system of two conservation laws (1.1). Assume that the eigenvalues are genuinely
nonlinear:
OwA1(u), O 2(u) >¢>0 Vuel,
and that for every entropy-entropy flux pair n,q
on(u) + 0xq(u) =0 n gg,m. (1.9)
Then u is a constant function.

This result holds for any weak isentropic (i.e. satisfying (1.9) for every entropy-entropy
flux pair) solution, regardless of whether a uniformly convex entropy exists, since only the
kinetic formulation of Theorem 1.3 is used, and isentropic solutions automatically satisfy
(1.7), (1.8) with Wi = Vi = 0.

A quite standard consequence of Theorem 1.4 is that, for any finite entropy solution, there
is a set J C RT x R with Hausdorff dimension at most 1, such that every point in J¢ is
a point of vanishing mean oscillation (VMO), see Theorem 5.2. It was known that such a
Liouville-type theorem would have implied the VMO property (see, e.g., [DOWO03], [CT11]),
but a proof of Theorem 1.4 had been missing for some time. The 1-rectifiability of J remains
a challenging problem. Notice that J can be defined for a finite entropy solution and it takes
the form:

J= {(t, x) €Q limsupw > 0} (1.10)

r—0t r

where

v= \/ py € M(9).

nesé
‘77|02<1

Here \/ denotes the supremum in the sense of measures (see [AFP00, Definition 1.68]) and &
is the set of entropies n : Y — R (Definition 2.1), while p,, is the corresponding dissipation
measure in (1.5).

Remark 1.5. The measures pu1, po (and vq, 1) are not uniquely determined by the left hand
sides of (1.7), (1.8).

The paper is structured as follows.
In Section 2 we introduce some preliminaries related to the general theory of hyperbolic
conservation laws.



6 FABIO ANCONA, ELIO MARCONI, AND LUCA TALAMINI

In Section 3 we first recall the construction of [PT00] and then we prove Theorem 1.3.

In Section 4 we introduce some tools related to the Lagrangian representation needed for
the proof of Theorem 1.4.

Finally, in Section 5 we prove Theorem 1.4.

2. PRELIMINARIES ABOUT CONSERVATION LAWS

We consider systems of two conservation laws
Oru(t,z) + 0y f(u(t,x)) =0, (t,x) € Q CRT xR, uel (2.1)

where U C R? is an open bounded set, u = (uy,us) € U C R? is a state vector of conserved
quantities, the flux f is a smooth function f : U — R2. A typical choice for the domain € is
Q= R*" x R, although in this paper other domains are occasionally used. The system (2.1)
is called strictly hyperbolic if the matrix D f has distinct real eigenvalues

A(u) < Aa(u) Vuecl

with corresponding eigenvectors r1(u),r2(w). We also let ¢1,¢5 be the corresponding left
eigenvectors, normalized so that

El(u) r,(u) :(51'7]‘ Yuel.

Being a system of two equations, (2.1) admits a coordinate system of Riemann invariants
é1,$2. We assume that the latter are smooth invertible functions ¢ = (¢1,¢2) : U — R?
defined by

Voi(u) = l1(u), Va(u) = la2(u) Vu e lU. (2.2)
We let W = (¢1, ¢2)(U) C R2. A function g can be expressed in terms of the state vector u
or in terms of the Riemann invariants (w, z), according to

g(u) =3¢~ (w)),  Oug=r1-Vg, 0.9=r2-Vy.
From now on, relying on a common abuse of notation, we will use the same symbol g for
both expressions.
It is well known that weak solutions to hyperbolic systems of conservation laws are not
unique, therefore in order to select physically relevant solutions, one is usually interested only
in entropic solutions of (2.1).

Definition 2.1 (Entropies). A pair of Lipschitz functions n,q : Y C R? — R is called an
entropy-entropy flux pair for (2.1) if

Vn(u)-Df(u) = Vg(u) for almost every u € U. (2.3)

In the following we will also use weaker notions of entropy-entropy flux pairs.

Admissible (entropy) solutions of (2.1) are the ones that dissipate the family of convex
entropies. Precisely, a function w :  — U is called an entropy weak solution of (2.1) if it
satisfies

on+0,q<0  in 2'(Q) (2.4)

for all entropy-entropy flux pairs (n,q) with n a convex function. The relevance of this
definition lies in the fact that the viscous approximations to (2.1)

u(t,x) + f(us(t,z)), = eus (t,z) € Q CRT xR, ueld (2.5)

xxTo
produce entropy admissible weak solutions of (2.1) in the limit e — 0*. We say that uw : Q —

U is a vanishing viscosity solution to (2.1) if there exists a sequence ¢; — 07 and a sequence
u : Q — U of solutions to (2.5) such that u¢ — w in LL ().
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We have the following well known energy bound, see e.g. [Ser00, Section 9.2]. Assuming
the existence of a uniformly convex entropy F : U — R, it follows that if u€ is a family of
solutions to (2.5) with u(¢,xz) € U, then for every compact set K C € there is a constant
Ck such that

sup// (ﬁu;)Q dz dt < Ck. (2.6)
e>0 K
In fact, more precisely for every M,T > 0, there holds

M+L(T—t) M+LT
/ / Veu ) drdt < C’/ E(u(0,z))dx (2.7)
M—L(T—t) M-LT

where C, L > 0 are positive constants depending only on f and E.

Definition 2.2. We say that the eigenvalue A\ ()\2) is genuinely nonlinear (GNL) if there is
¢ > 0 such that

duhi(u) > e (0:do(w)>¢)  Yuel.

3. ENTROPIES, KINETIC FORMULATION

3.1. Construction of Singular Entropies. In this subsection we recall the construction
of singular entropies performed in [PT00], [Tza03]. We employ a relaxed (with respect to
Definition 2.1) concept of entropy-entropy flux pair. In particular, a weak entropy-entropy
flux pair is a pair of functions 7, q : Y — R that solves in the sense of distribution

Vq(u) — Df(u)Vp(u) =0  in 2'(U). (3.1)
Let g, h be the unique solutions to
Agw Alz
hy = h, = — h(w, z) =1, ,2)=1 3.2
Hoh g= =g h(w,?) (w,2) (32)

They can be computed explicitly as

— ex Z_ )\lz(way)
glw,z) = exp [/ M(w,9) — da(,9) dy}

o w )\Qw(ya Z)
h(w,z) = exp Vw Ay, 2) — A2(y, 2) dyl'

and they are uniformly positive on W. It is then classical (see e.g. [Ser00, Section 9.3]) that
1 is a smooth entropy if and only if, in Riemann coordinates,

g h .
Nwz = inw + l’l’]z in W.
g h

Following [PT00], we first construct a family of smooth entropies ®[¢, by|(w, z), depending on
two parameters: a scalar £ € [w,w]| and a smooth function by : [w, w] — R. These entropies
are constructed so that they can be “cut” along a line {w = £}. By this we mean that

x[&; bol(w, 2) = O[S, bol(w, 2) - Lyw>ey(w, 2) (3.3)
and

X[&; bol(w, 2) = O[S, bol(w, 2) - Lyw<ey(w, 2) (3-4)
will still be (discontinuous) weak entropies.
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FIGURE 1. Goursat problem for the entropy ©[¢,by]. The data are given
along the thick lines.

Definition 3.1. We denote by @I¢, by the entropy constructed as the unique solution to the
Goursat-boundary value problem (see Figure 1)

®wz = %Qw + hfwgza in W

O(w, z) = bo(w), Vw e [w,w]

O(&,2) =bo(§)g(&,2) Vzelz7.

Since ¢(§,z) = 1, the two boundary conditions are compatible (continuous) at the point
(&, 2), by construction. Since h, g are smooth and bounded away from zero, the existence of
a unique, smooth solution © to the above boundary value problem is standard. For a proof
of this fact, see e.g. [Ser00, Section 9.3], in which it is proved that solutions to the Goursat
problem are at least as smooth as the data and as the coefficients ¢./g, hyy/h. Moreover, it
also follows that

w, z,& — O[E, bo(w, 2)

is smooth as a function of three variables w, z, £. Now for fixed £, by we consider the entropy
flux B = E[¢, by] associated with @ = O[¢, by]: we have that

B )\2(5, Z))‘lz(ga Z)
)\1(57 Z) - >‘2(§a Z)

where the first equality follows from applying (2.3) to ©, =, and by taking the scalar product

with ro(w), while the second equality follows from the fact that @(¢,z) = by(§)g(&, 2z) for

every z € [z, z] and by (3.2). Therefore up to an additive constant in the entropy flux we can
assume that

E.(&2) = X(6,2)0.(8,2) =

6(57 Z) = ()‘1(67 z)@(ﬁ, Z))Z

E(62) = M(6,2)0(8,2) Vzelzz] (3.5)
Thanks to (3.5), we see that (x, %), and (X, %), where
p[&bo] = BIE o] - Luzey:  PlE bo] = ElE bo] - Lgusey (36)

are entropy-entropy flux pair solving (3.1).
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The entropies ©[¢, by] depend on a number ¢ € [w,w] and on a function by. To obtain a
“one dimensional” kinetic formulation for the first Riemann Invariant, for every £ we need to
make a choice of by. Following [PT00], we choose

bo(w) =1  Vw e [w,w)]

and with this choice we rename the entropy ® omitting the dependence on by, which is now
fixed:
O[¢(w,2) =O[¢, 1 (w,2) V€ [w,u]

and the same for x[¢], ¥[¢] = x[€, 1], (€, 1].
The following proposition contains some structural results for the entropies x.

Proposition 3.2. There exists positive r,c > 0 such that, for every &, w € [w,w] and z € [z, Z]
such that £ < w < &+ 7, the following holds:

(1) Strict positivity of the entropies:
x[§)(w, z) = ¢>0

(2) If A1 is genuinely nonlinear, then we have the monotonicity of the kinetic speed:

((1:15)\1[5](10,2) >c>0
where
Al[ﬁ](w,z)i;ﬁggz:g VE<w < EHT. (3.7)

Proof. Fix £. Since the entropy x[¢] is uniformly positive along the boundary data curve
{(w,z) € W | w =&}, there exists 6(£) > 0,¢1 > 0 such that

x[§](w, 2) = 1 >0, vV (w,z) €W, E<w<EFT

Then, since the function (£, w, z) — O[¢](w, z) is in particular continuous and since £ € [w, w]
which is compact, there exists uniform r,¢ > 0 (not dependent on &) such that (1) holds.
Furthermore, for every w > &, the entropy flux [{] associated to x[£] can be computed as

lE)(w, 2) = A (w, 2)x(E](E, ) + /g (0 2)x €] (0, 2) do
w (3.8)
= Na(w, 2)x€] (w, ) — /5 A (0, 2)x(€] (0, 2) do.

where the first equality follows from the fundamental theorem of calculus and (2.3), and the
second follows by integrating by parts. Therefore, if the first eigenvalue is genuinely nonlinear
(Definition 2.2) the kinetic speed A;[¢](w, z) is monotonically increasing in & if £ is close to
w: in particular, for some ¢y > 0

d

d—g)\l[g](w,z)262>0 V(w,z) €W, E<w<E+T.
The existence of uniform r, ¢ such that (2) holds is again ensured by the smoothness of all
the functions involved. O

A completely symmetric construction can be made for entropies that can be cut along the
second Riemann invariant; for these entropies, for ¢ € [z,z], we let v[(](w, z) be entropy
corresponding to x[¢](w, z), and ¢[(](w, z) for the respective entropy flux, corresponding to

YlEl(w, 2).
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3.2. Kinetic Formulation. We can now prove the result of this section, Theorem 1.3,
according to which a function w : 2 — U is a finite entropy solution if and only if it satisfies
a suitable pair of kinetic-type equations. In the following, given a function u : @ — U, we
define the bounded function

Xalt.2.6) = xlel(ult,z)) ¥ (La.€) € Q x (w, @), o)
valto,Q) = o[(ultz)) ¥ (te.C) € O x (2,2) '
ol 2,6) = Plel(ult,n) Y (Lan€) € Q x (w,b),

oultr.0) = old(ult.) Y (t2.0) € Qx (2,2) (3.10)

where x, 1 and v, ¢ are the discontinuous entropy-entropy flux pairs defined in Subsection
3.1.

Remark 3.3. Defining
Xt 2, 6) = X[E)(u(t,2)), Pu(t,2,8) =P[(ut,2), V(tz,€€Qx (ww) (3.11)

and with obvious notation also v, ¢, one can make a symmetric statement to the one in
Theorem 1.3: in particular, w is an isentropic solution if and only if (recall (3.11))

X (t, 2, ) + Opthy (t,2,6) =0  in ' (2 xR) (3.12)

OyTu(t,,0) + 0@y (t,2,¢) =0  in Z'(Q x R) (3.13)

Notice that X,, %, are now supported on the epigraph {¢ > w(t,z)} of the first Riemann
invariant (recall equation 3.4), while U,, and @,, are supported on the epigraph {£ > z(¢,x)}
of the second Riemann invariant.

We now prove the Theorem.

Proof of Theorem 1.3. 1. Assume that u satisfies (1.7), (1.8). Let 1,q € C? be any smooth
entropy-entropy flux pair, and without loss of generality assume that n(w,z) = 0 = q(w, 2).
By the representation formula of [PT00, Theorem 3.4] we have that (recalling the construction
of singular entropies in Section 3.1)

ow) = | Xl (€) de + / T o[C](w)pa(€) d¢
v c (3.14)

z

g(u) = / " plelw)pn(€) dé + / Pl¢](w)pa(C) AC

where 01(€) = d%n(ﬁ',g), 02(¢) = d%n(w,g) € C'. Then we obtain

Am(u) + Daq(u) = / 01(6) dp(E,,1) — / &(€) dpur (6, 2.1)

T / " 0a(O) duo(C, 2, ) — / (O dn (Gt € Q)

where here, if y(v, z,t) € .4 (RxQ) and p(v) is a smooth function, we denote by [ p(v) dy(v,z,t) €
A (), with a slight abuse of notation, the measure defined by

[ ettaa( [ o)) wa) = [ pltopw i,
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2. Conversely, assume that w is a finite entropy solution. Define a distribution T €
7'(Q x (w,w)) by

(T, p0) = /Q o) + Vap-quu)dzdt Vo e CHQ), o€ Cl((w,@))

where we define the entropy-entropy flux pair associated to o
mw = [ poxigwas qw = [ pewlew) de

Consider any open set U compactly contained in 2 and for any ¢ € Z(U) we define a linear
functional L, : C(R) — R by

Lo(0) = [ ) + Ve ay(u) daat
Each functional L, is bounded, and therefore also continuous, since it holds
|Ly(0)] < Cuy llollco

for some constant Cy,, depending only the set U and the C' norm of the function ¢. Since
u is a finite entropy solution, we deduce that the family of functionals L, is pointwisely
bounded on C', because

swp [Lo(o) < [ djm,| Vel
pe2(U) U

lel<1
Therefore, by the uniform boundedness principle, the family L, is uniformly (norm) bounded,
that is

sup |Ly(0)] = sup (T, po)| < Cy. (3.15)
pe2(U) pe2(U)
lellco<t, llefl g1 <1 lellco<t, llefl g1 <1

Therefore we obtained that the distribution T satisfies the bounds
(T, o) < Cu(llellco + llollcr) Ve e CO(U), o C(U).

By a standard application of the Riesz representation theorem we thus obtain the existence
of locally finite measures p1, po such that (1.7) holds.

Finally, if w is isentropic, then the distribution 7T defined in the previous step clearly
satisfies T' = 0, and this proves the result. O

3.3. Vanishing viscosity solutions. Here we prove that vanishing viscosity solutions en-
joy the following additional properties, which will be useful for future applications. This also
yields a different, more explicit derivation of the kinetic formulation, with a finer characteri-
zation of the dissipation measures pu;, v;.

Proposition 3.4. If u : Q — U is a vanishing viscosity solution and a uniformly convex
entropy exists, then uy and vy in (1.7), (1.8) can be taken to be positive measures, and for
some constant C' > 0, we have

(Pt,2)glo| + (Prz)tlvol < C (pre)tir + (Pra)ivi- (3.16)

Here p; . denotes the canonical projection on the t, x variables. We recall that given a measur-
able map f: X — Y between measure spaces X,Y, for any p € X the pushforward measure
fap € A(Y) is defined by

funn(A) = p(f71(A)) YV measurable A C'Y.
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Proof. 1. For every smooth & — o(£), we can consider a smooth entropy 7, where the entropy
x €] appears with density o(§):

No(1) = / Ewo(€) e, gylu) = / €] (w)ol€) dé. (3.17)

Then 75, g, is a smooth entropy-entropy flux pair. In fact, clearly is a solution of (3.1), since
each x[£],1[¢] is, and the equation is linear. The fact that it is smooth comes from the fact
that o is smooth since an explicit calculation yields that the gradient of 7, is

$1(u)
Vio(u) = / VO[¢](u)o(§) A€ + o(¢1(w)) - O[d1(w)](u) - Véi(u)  Vuel

where we recall that ¢1 : U — [w,w] is defined in (2.2).

2. Now multiply from the left equation (2.5) by Vn,(u€) to obtain
Vigo(u) [Bpu + f(Opu)] = eV, (u) 0}, uf

#1(uc)
e[ velewee) o2 (3.18)

w

+ eo(¢1(u)) O (u)] (u) Ve (u) I uf
where from now on the symbol V will be reserved to denote the gradient of a function in the

u variable. We calculate the first term:

#1(u)

6 /¢1(U€)V®[§] (w)ol€) de o, u = 0, / VOLe](u)o(€) dg d,u]

o (3.19)
= / " el d¢|o,us,

and the second term:
co(én (1) O 61 (u))(w) - Vo (u)02, " = [col 1 () @lgn (w)] () - Vb (w) |

~ |ee(@r(u) @1 (u)](u) - Vor (u)] duc.
(3.20)
The second term in the right hand side of (3.20) can be calculated as

[c0(61(u))@Lon ()] (u) - Vor (u)| Dy

= |0/ (61(u)) D1 (u) O [ (u)] (u) - Vb1 (u)] - D

+ e0(61(u)) (DO (u)] (u) - Vb1 (u) ) D, Oyu) (3.21)
— ¢(61(u)) Ol (w)](u) [Veduen (u)]

+ e0(61(u))(D(O[p1 (u)](u) - Vi (u) ) Do, D).
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Therefore we have

Oino(u’) + 0xqp(u®) = Vno(u

~—

[Opu’ + O, f (uf)]
= —e@x{

— 0/(61(u))®[g ()] (u) | Veduhr () | ? (3.22)

— (61 (u))(D (O (u))(w) - Vb1 (u) ) Oy, D)
+ g5

where

¢1(u)
g = 0ue / VO] (u)o(€) A€ Dot + 0. [co(61(w)) O ()] (uF) - Vi () Dy

IS

We notice that g; is going to zero in distributions as € — 0T. In fact, since u admits a
uniformly convex entropy, using (2.6), we deduce that for every compact K C 2

¢1(uc)
: / VOIE](u)o(€) de Dyuc

w

=0(1) - lollco - ﬁllﬁazuellm(m
LY(K)

=0(1) - llellco - Ve[ Vedsuslpz g,
1
=0(1)|lollco - Ve-CE2 —0 ase—0".

where O(1) is a constant depending only on the compact set K. The same estimate shows
that also the second term in g€ is going to zero in distributions.

3. Define the distribution 7¢ € 2'(2 x (w,w))
T o) = = [ 0plt. o) (t:2.9) + duplt. o)t €)lo(€) € dat
= //ng(amg(ue) + Opqo(u®) da dt

for all smooth ¢(t, x), o(§) compactly supported C* functions, this is sufficient because finite
sums YN | 0i(t, ) s (€) are dense in C°(R?) (see e.g. [FJ99, Section 4.3]). Notice that since
u® — u in Llloc7 also X e, ¥, converge in Llloc t0 Xy, ¥, and T converges to the left hand
side of (1.7) in the sense of distributions.
Thanks to (3.22), we have that
T° = pg + Oepy + f°

where f€ is going to zero in distributions, p§, p] are locally uniformly bounded measures,
and in particular:

(1) f€is defined by
(f%00) = {gg:p) ¥ smooth ¢(,z), o();
(2) u§ accounts for the third line in (3.22) and

1S = (id, w)g[O[n (u))(u) (Vedoin (u))” - 22| € A, (3.23)
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where
(id,w®) : Rt x R = R" x R x [w, @], (id, w®) (t, x) = (t, x, w(t, x)).
In particular p§ is positive (because by definition @[¢;(u€)](u) > 0) and it satisfies
the bound
1§ (K x R) < sup|@| - sup |Vwl|? - /K (ﬁ@xug)Qd:L‘ dt =0(1)-Cxk (3.24)

where O(1) is independent on ¢, and the last equality follows from (2.6).
(3) uf accounts for the second and the forth lines of (3.22) and is given by

py = —e(id, w )y [ (D (O (w)] (u) - Vo (u) ) Dy, Do)
+(VO[g1 (u)](w) @ Vi (u) - dpu, dyu)| - 22
— (V2O (u),ut, dout) - LA > o (u)}-

The same type of estimate leading to (3.24) shows also that
|6l (K) = O(1) - Ck

independently of €. Therefore up to subsequences the measures pg, i weakly converge to
limiting measures o and p; > 0 that satisfy (1.7). O

We notice that the energy bound (2.7) translates into precise bounds for the kinetic mea-
sures.

Corollary 3.5. The measures u;,v;, i = 0,1 constructed in the proof of Theorem 1.3 satisfy
for all M, T >0

M+ L(T—t) M+LT

/ / /dmz <c w(0, 7)) dz (3.25)
M—L(T—-t) —M— LT
M+L(T—t) M+LT

/ / /d]uz] <c w(0, 7)) da. (3.26)
M— L T— t —M— LT

Proof. Recall that u§ is the weak limit of a sequence {u{*}r defined in (3.23). Then using
(3.24) with

K:={(t,2) |z € (~M —L(T —t),M + L(T —t)), te(0,T)}

we obtain
M+LT
pS(K x R) < C/ (Vedyu)? de dt < / E(u(0,7))dz
K —-M-LT
where in the last inequality we used (2.7). The corresponding inequality for vy is proved
symmetrically. Finally, the inequalities for ug, 1y immediately follow from (3.16). O

4. LAGRANGIAN TooLS IN KINETIC SETTING

In the following of this Section we assume that w is an isentropic solution to (2.1) defined
in O = R™ x R. Then, it satisfies the kinetic formulation of Theorem 1.3, i.e. it satisfies
(1.7), (1.8) with pu; = v; = 0. We assume that w is a non constant function; in particular, if
(¢1,¢2) : U — W is the change of coordinates of the Riemann invariants, letting

w(ta l‘) = le(u(ta l‘)), Z(ta l‘) = ¢2(u(ta l‘))
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at least one of w, z must be a non constant function. Therefore, from now on and without
loss of generality, we assume that w : RT x R — [w,w] is non constant. Then we have
Wmin < Wmax Where

Wax = €SS SUP W (4.1)
t,x

Wpin = ess inf w (4.2)
t.x

Let 7,¢ > 0 be fixed by Proposition 3.2; up to taking a smaller r < 7, we can, in addition to
(1), (2) of Proposition 3.2, assume that r satisfies also

Win + 7 < Wmax — T (43)
We define (recall Remark 3.3, and (3.11))
Xmax(tv L, 5) = Xu(tv €, 5) ) 1{(t,x,§) | wmax—rgggwmx}(t, Zz, 5)

min LI (44)

X (tv z, 5) = Xu (t7 €z, f) : 1{(t,m,§) | Wmin <E<wWmin+7} (t> €, 5)

Recalling the definitions (3.3), (3.4) and (3.9), (3.11), notice that we have
supp x™* = hyp ¢1 (w) N (R x R x (w™ — 7, ™)) (4.5)
supp x™™ = epi ¢ (u) N (R+ X R x (™ qp™in r)) (4.6)

where hyp ¢1(u) and epi ¢1(u) denote the hypograph and epigraph, respectively, of the func-
tion ¢1(u):

hyp ¢1(w) = {(t,2,) [ £ < d(u(t, )}, epigi(u) ={(t,2,8) [ § = ¢1(u(t,2))}
With obvious notation, we also consider 1p™?*, ¥)™". We have
XM + 0™ =0 in 2'(Q x R) (4.7)
AX™ 4 9pp™n =0 in Z'(Q x R). (4.8)
Notice that we can write
YU 2, €) = ME](u(t, 2))x (2, €)
P (t, 2, €) = M€ (ult, 2)) X 7, €)

max

where A1[¢](u) is as in (3.7); moreover, since the support of x™** is contained in the strip

R? X [Wmax — T, Wimax], we deduce that for a.e. (¢,x,¢)

X" (2, &) #0 = Wiax — T < & < Wax- (4.9)
Therefore from Proposition 3.2 we deduce that x™#* is uniformly positive in its support
X" (L, x, &) > ¢ Loupp ymax(t, z, §) for a.e. t,x,& (4.10)

The same holds for x™". Next, we want to apply the Ambrosio superposition principle

[Amb08, Theorem 3.2] to the continuity equation in R; x R?:
Ox™ +divg e (A1[€](w),0) - x™*) = 0. (4.11)

Our measure x™** does not quite satisfy the assumption of [Amb08, Theorem 3.2] since it is
only locally finite, however our vector field is bounded. Therefore we will use the following
version of the superposition principle, which follows with the same proof of [Amb08], or by a
standard localization argument using finite speed of propagation.
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Theorem 4.1. Let {p}ier+ C 4 (R?) be a family of positive Radon measures satisfying
Opee + div(b(t, z)p) = 0 in 9,

where b : RT x RY — R? is a Borel vector field satisfying ||b||L~ < +o00. Then there is a
measure 1 € M ('), concentrated on characteristic curves of b, such that

pe = (e0)gm
where e (7y) = ().

Then we apply Theorem 4.1 to (4.11), and we obtain a positive measure w € .#*(T),
where

I — {7 = (72, 7¢) : RT = R?, vz Lipschitz curve, Ve € LOO(R+)}

such that
(1) w is concentrated on curves v € I' such that
(a) ¢ is a constant function v¢(t) =&, € R for all t € RT;
(b) . is characteristic for A;[¢](w):

Yz (t) = X&) (u(t, z)) for a.e. t € RT. (4.12)

(2) Up to redefining x™* on a set of times of measure zero, we can recover it by super-
position of the curves:

X" (b, 0) - L7 = (er)yw for all t € RT. (4.13)

where ¢; : I' — R? is the evaluation map e;(y) = ().
Entirely similar considerations hold for x™"; we thus call 17 the corresponding measure
given by the Ambrosio superposition satisfying the same type of properties of (1), (2) above.

We now prove a preliminary lemma, which is a version of [Mar22, Lemma 4] in the setting

of Burgers equation.

Lemma 4.2. For w almost every v = (v;,&y) € I, for L almost every t € RY it holds
(1) (t,7.(t)) is a Lebesgue point of u;
(2) it holds w(t,vz(t)) —r < & < w(t,vx(t)).
Similarly, for n almost every o = (04,&,) €T, for £1-almost every t € RT it holds
(1°) (t,04(t)) is a Lebesgue point of w,
(2°) it holds w(t,o.(t)) < & < w(t,o.(t)) + 7.

We denote by T™a% '™ the respective set of curves satisfying (1), (2) and (1°), (2).

Proof. We prove the first half of the lemma, the second one being entirely symmetric. Let
S C R? be the set of non-Lebesgue points of u; by the Lebesgue differentiation theorem we
have #2(S) = 0. Denote by e¥ : I' — R the map e¥(y) = v, (t); then from (4.13) we deduce
that for every ¢ € R it holds (ef)yw < £, therefore

L@ (ef yw < L2
Tonelli’s theorem gives
/F.zl ({teR| (t7(t) € 5)) dw(y) = /Rw ((ver | (tr) e s))at
= (Z' @ (e))w) (5) = 0.
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To prove (2), we first observe by Definition 4.4 that for every t € R,

w({reri& ¢ it w®) - rwtwm)})
= (e ({(2,€) | € ¢ (w(t,x) = rw(t,2))}) =0

and then we proceed as before using Tonelli’s theorem to deduce
/F 2 ({teR & ¢ (w(t,7®) = rw(t, (1)) }) dw(y)
= [w({rerie ¢ @t rn®) - ruano)})a=o.

O

For the proof of the following lemma we refer to [Mar22, Lemma 5], in which the Lemma
is proved for scalar functions, and the Lemma below follows by applying [Mar22, Lemma 5]
twice on the components u = (u, uz).

Lemma 4.3. Assume that v, : (t1,t2) C R — R is a Lipschitz curve and that for £*-a.e.
t € (t1,t2) the point (t,7.(t)) is a Lebesgue point of u € L>®°(R?; R?). Then

t2 1 ’Yz(t)+5
lim / lu(t, x) — u(t,v4(t))| dzdt = 0. (4.14)
=0 tl (5 'Y:c(t)_(s

The following Lemma states that curves representing x™™ do not cross curves representing

XM, up to sets of measure zero.

Lemma 4.4. Let 6 € T™", where T™, T'™3X gre the sets of curves defined in Lemma /.2.
Then

w ({’Y € [max | 30 <ty <ty with (’Vﬂc(tl) — 5'x(t1)) . (790(752) _ 5'90(752)) < 0}) — 0.

Proof. Let 6 > 0 be fixed, and 0 < t; < 9. Let

0 ifx <ao(t)—9,
¢ (t,x) = T=TWEif 54y — 5 <z < 5(t),
1 if & > G (t) + 6.

Consider
() = [ 6t () dulo)
and observe that ¥(t;) = O(1) - §, where O(1) is independent of §, while

lim U0 (t2) = w(B}?)

6—0t

where

(B2) = {7 €T | qu(t) < a(t). valta) > 5(t2) .
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Then we have

VO (ty) = WO(t1) + /ttz /max (11{%(t)e(az(t)—5,az(t))}(’Y) (B (t) — G2(1)) ) dw(y)
5+//:2 ! /U: () - (1200 = 52(0)) dade g

t2 1 a(t)
1+ 01 / l{w £.2)>Wmax—7} dx dt.
31
By Lemma 4.2 applied for ¢ € '™, we deduce that for almost every ¢, (t,5(t)) is a Lebesgue
point of w (because it is a.e. a Lebesgue point of w and w = ¢1(u) where ¢ is a smooth
function) and
w(t,o(t)) <& < Wmin + 7 < Wmax — T for a.e. t.

Therefore, by Lemma 4.3 and Chebyshev’s inequality we deduce that

to 1
/ / 1{w (t,x)>Wmax—7r} dx dt

t2 1 a(t)
< / w(t, 5(t)| dzdt — 0 as § — 0%

- ’wmax — Wmin — 2T| t1 (t)— 5

therefore we obtain
w ((BR)) =0.

A symmetric argument also shows w ((Bff)’“) = 0, where

(BE)' = {7 €T [ () > 5(t),  lts) < 3(t2) }.

By taking countable unions
. l
B= | (B U(BH)
q1<q2
q1,42€Q*

we see that since w is concentrated on curves such that 7y, is Lipschitz, it holds
B={yerm™[30<t <t with (va(tr) — 5(1)) - (va(ta) — Gu(ta)) < 0}

and this concludes the proof. ]

5. LIOUVILLE TYPE THEOREM AND VMO POINTS
In this section we prove Theorem 1.4.

Proof of Theorem 1.j. To prove Theorem 1.4, we proceed by contradiction: assume that u
is a non constant isentropic solution; we can assume that (say) the first Riemann invariant
w is non constant, with
Wmin < Wmax

where Wpin, Wmax are as in (4.1), (4.2).

Then, by the previous section, without loss of generality, up to the change of time direction
t + —t, there is an isentropic solution u : RT x R such that there exist two curves 7, & in
[max Tmin pegpectively (recall Lemma 4.2), such that (see Figure 2)

~2(0) < 7,(0), b=¢& > Wnax — T = a > Wnin +7 > &5, yeTmax g epmn (5.1)
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(3.0, &)

V() 0.() X

FIGURE 2. The gray area is proportional to the functional Q. Due to genuine
nonlinearity the rate of decrease Foyt of this area is bounded from below by a
quantity independent on time.

with r > 0 so that r < 7, where 7 is defined in Proposition 3.2 and
Fe(t) < T.(t)  Vit>0. (5.2)

In fact, if the first condition of (5.1) is not satisfied for w, it is sufficient to consider the
isentropic solution v(t,x) = u(—t, —x).

A contradiction will be reached by introducing a suitable interaction functional Q(t), con-
structed as follows. We define

b paa(t)
o) = [ [ Xm0 (53)
a Jyz(t)
We now use the following Proposition (that we prove immediately after this proof), which is

a key point of the paper and it shows that the functional Q is uniformly decreasing in time.

Proposition 5.1. Assume that u : (0,+00) X R — U is an isentropic solution, and that there
exist curves 7,0 satisfying (5.1), (5.2). Then if Q is as in (5.3), there is C > 0 such that for
every t > 0 it holds

Q(t) — Q(0) < —tC (5.4)
Assuming the proposition, we thus have
—-9(0) < 9(t) — Q(0) < —tC Vt>0

which leads to a contradiction letting ¢ — 400, since Q(0) < oo. This proves Theorem
1.4. O

Now we prove Proposition 5.1.
We take a few lines to explain the heuristic behind the proof. Define

plt,z) = /]R X (2, €)1 ) (€) .
We notice that
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and therefore that the variation of the functional Q(t) is related to the outward flux Fou(t)
of p through the line x = 4, (¢) (i.e. the amount of mass of p passing through 7,(¢) per unit
time), as well as to its inward flux Fi,(¢) through the line x = 7,(t):

0Q(t) = Fin(t) — Fout(t).
By genuine nonlinearity (in particular by (2) of Proposition 3.2) the outward flux Fout(t)
through 7, (t) is strictly positive, and bounded below independently of time (see Figure 2):
Fout(t) >C>0 vVt >O0.

In fact we will prove that

b
Fous(t) = | (xl€)(u(s.72(5)) a5, 3a(9) — M) s, 7a(5)))) ) e

and the integrand is uniformly positive if the map & +— A;[¢](u(s, 7z (s))) is strictly increasing
(recall (3.7)): this is the only point where the genuinely nonlinearity assumption comes into
play. On the other hand, since along the curve 7, we have, by Lemma 4.2, that w(t, 5, (t)) < a,
we will deduce

b
Fin(t) = / x[€](u(t, a(t))(A[b](u(s, 02(1))) — Aal€](u(t, 72(t))dz =0 Vi >0.

In turn this implies that the functional Q(t) is uniformly decreasing for all positive times,
but since Q(0) is finite, this yields a contradiction.

Proof of Proposition 5.1. 1. We consider appropriate regularizations of the interaction func-
tional @ defined in the following way. Define first

0, if © <7,(t) =4,
MW iy, (1) — 6 < @ < (t),
, if Y. (t) < < 7.(t),

P tr) =<1
1—22%W  if 5 () < 2 < 6,(t) + 6
0

; if © > 0,(t) +6
and ¢°(t,x,€) = QO (t,x) - Lap) (&). We define

b
1) . ) T max x T )
Q(t)—/a /qu(t, )X (. €) dar e (5.5)

We observe that Q7 is Lipschitz continuous and we compute its derivative: notice that we
can rewrite the functional as

5@=/¢%wﬂd@w@@=£@@w@&ﬂww

therefore
S(t+h) — Q%(t Gt + hyve(t+ D), &) — % (£, 72 (2),
hliO+Q( }z Q°(t) hh0+/ ( ¥z )}?) ( 7()67)(1;’(7).

Since there is L > 0 such that v, is L-Lipschitz for w-a.e. v € I', we have

¢ (t+h,va(t + 1)) — (L, 72 (2))
h

< L sup ]V¢5|
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Therefore, we conclude by the dominated convergence theorem that Q° is Lipschitz in time
and that

GO0 = [ (08000.6) +3:0 00 (1 (0.6) ) dwlr). 66)

Using the definition of ¢°, by (4.13), we now rewrite
d 6 1 = .
790 =- A 5100t 0-57 ) x @) (V) (=) = 12()) | dw(v)

- /F ((151{’}’(t)€(0z(t),az(t)+5)><(a,b)}(7) ((Fra(t) — A () ) dw(7)
Fgut( ) + Flén (t)

Therefore we found
t

Q(t) = Q(0) + lim [ —F2 . (s)+ F) (s)ds. (5.7)

§—0* Jo

2. In this step we prove that for a constant C' independent of time, we have

t
5grg+ ; Fo.(s)ds > Ct. (5.8)
In fact, using that
Fe(s) = A1 [b](u(s, 7z(s))) for a.e. s >0

we deduce

/ out( ds—/ /( L{o(5)€ (50 (5) 670 () x (ab)} (1) (Fz(8) — ()))dw(V)dS

- / /0 ! /_7;)5 (xl€](uls, ) (M [B] (w(s, 7 () = Arlg] (u(s, 7)) ) dz dsde.

(5.9)
We claim that by Lemma 4.3, we have that for every £ € (a,b), it holds
lim (s,2)) (A [b](u(s, 72 (5)) — M[é](u(s, 2)) ) ) dzds
=0 / / ) (5.10)
- /0 (3] (s, 32 (5)) (A (s, Ta(5)) — Aale] (s, Ta(5))))) ds.

If x[€¢](w) was Lipschitz, (5.10) would follow easily from Lemma 4.3, but x[£](w) has a jump
along the curve {¢1(u) = &} (recall that ¢; is the first Riemann invariant (2.2)). Therefore
we need to proceed in two steps: if L > 0 is an upper bound for the Lipschitz constant of
U > ur— Ai[€](u) and of {¢1(u) > &} 5 u — x[€](u), first, using Lemma 4.3, we estimate

Ya (8)
/ L. \Al (5.2) ~ Ml o, 7(5))] s
(5.11)

(
‘1 +,
s z) — u(s,7x(s))|deds -0 asd —0
Yo
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[y

_
H

1{w(s,z>>g}<s, )| X[€)(u(s. 7)) — X[€)(u(s,7a(5)))] dz ds
(5.12)

'Yz(s
/ / 1{w(sx)>§} s,z)|u(s,z) — u(s,7;(s))|dzds -0 asd— 0*.

Moreover, another apphcatlon of Lemma 4.3 together with Chebyshev’s inequality yields

/t 1 A%(s) L fu(s,) <€} (S5 m)‘x[&](u(s, 7)) — x[€] (u(s,%(s)))‘ dz ds

<28upx / / 1{wsx<§}(s x)dxds
7:(5

1 () (5.13)

<2supxle / Juls.) = (s 7o) deds

0 |w(8 'Yx( €|6 Yo (8)—

'Yz
<2supx / / w(s,¥z(s))|dzds -0 asd— 0"
|£w 3 o

where in the second inequality we used the Chebyshev’s inequality (recall { < & = b <

w(s,Ye(s))):

/’y_z(s) ( ) 1 /q‘/z(s) | ( ) 5 ’
1 w(s,Yz(s))—w(s,x)>w(s,Vz(s))— 5, T ds < — w s, T) — Gx ds
Yo (8)—0 {wlsia(e)) (s.2)>w(s3e(2))~€} |U}(S, 713(8)) é| Yz (s)—6

and in the last inequality the fact that w(s,¥,(s)) > &. Summing (5.12), (5.13) we deduce
that
t 1 Y () 3 n
/O 5[ s x[€)(us, 2)) = x[)(uls, 32 (s))) | dzds — 0 as § — 0*. (5.14)

Finally, (5.10) follows just by lengthy but trivial triangular inequalities:

/ ) u(s,2)) (b (u(s, 7)) = Mi[€](u(s, 2)) )
_ (X[g](u(s, #(5))) (b (s, 7a()) = A1[€)(u(s,72(5)) ) ) dw ds| da ds
(5.15)
< supA; / / o 5 J(u(s, 2)) - x[€](u(s, 7a(5)))]
+ supxl¢] /0 : / C e, 2) - el (s, 7o (5)) | dads 5 0 as 6 - 0*

where all the terms in the last two lines the limit as § — 07 is zero thanks to (5.11), (5.14).
This proves (5.10).
Next, using (4.9), (4.10), and Proposition 3.2, we estimate the right hand side in (5.10) by

| (et ) Bl 30(6) = Mgl (s, 72(51))) ) ds = 420 = ). (5.16)
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Integrating also in & we finally obtain, combining (5.9), (5.16), and the dominated convergence
theorem,

: - o [ 2(b—a)
52%1+ ; Fout(s)ds > te a(b—f)Zt-c 5
so that (5.8) is proved.
3. This steps concludes the proof by showing that
t
lim [ F9(s)ds=0. (5.17)

d—07* Jo
We have, as above,

/Ot Fin(s)ds = /F <;1{7(5)6(01(5),095(5)—1-6)x(a,b)}(’Y) (3 (8) = A (s)) ) dw ()
bt Tz (8)+0
- / / 1/_ . (X[ﬂ(u(svw))(w(u(s,&x<s>> — M€ (uls,2))) ) deds d

< max (2|x||A1]) / / / 1{w tz)>b}(s x)dxdsdg

< (b—a) - max (2|x||A1]) / / 1{wtx)>b}(s x)dzds

By Lemma 4.2 applied for o € ¥, we deduce that (s, a(s)) is a Lebesgue point of w (because
it is a Lebesgue point of U and w = ¢1(U) where ¢ is a smooth function) and

w(s,o(s)) <& <a for a.e. s.
Therefore, by Lemma 4.3 and Chebyshev’s inequality we deduce that

oz (s)+
/ / o l{w t2)>by (8, 7) dz ds

+4
S/ / lw(s,z) —w(s,a(t))|dzds =0 asd— 0.
la =&l Jo 0 Js,s
This proves (5.17), and ultimately it proves the proposition. O

5.1. VMO regularity outside of J.

Theorem 5.2. Let u : RY x R — U be a finite entropy solution to (2.1) and let J be
the set in (1.10). Assume that the eigenvalues are genwinely nonlinear. Then every point
(t,7) € (0,400) x R\ J is of vanishing mean oscillation, i.e.

.1 /
lim — u(y) — ][ u
N T ( By((E.2) )
Proof. Let (t,z) € (0,+00) x R\ J. Define u, : R?> = U by

dy =0 V (t,z) € (0,400) x R\ J.

wn(t, ) = ult+r(t—1t),z+r(x—z) ift> t"_ 1,
0 otherwise.
Assume by contradiction that at some point (¢,7) € R\ J, i.e. that
B, (t,x
lim sup M —0. (5.18)

r—0+ r
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and also that for some subsequence {r;}; it holds

lim lu(t, z) — @y, (t, )| dzdt > 0 (5.19)
It B, (8,)

where u,.(t, ) is defined by

u,(t,z) = ]i . 7)u(t,w) dz dt.

Up to a further subsequence, we can also assume that
w,,(t,z) —weld (5.20)
u,, — v strongly in L}, .(R?). (5.21)
Indeed, the sequence u,; is strongly compact in Llloc thanks to compensated compactness.
For this well known fact we refer to [Ser00], but for convenience of the reader we write
more precisely how to combine the various statements in [Ser00]. In particular by [Ser00,
Chapter 9, Proposition 9.1.5], up to a further sequence, the limit of u,; exists in the sense of
Young measures, i.e. there is a measurable map (t,z) — o, € Z(U) (the set of probability
measures on ) such that for every smooth function ¢ : i/ — R there holds

’U,r]

/1/) )day . (q weakly”™ in L™ as j — +oo0.

Then, by [Ser00, Chapter 9, Proposition 9.1.7] the sequence u,; converges strongly in Ll e
if and only if ay, has support in a single point for a.e. (t,z) € R% But this follows from
[Ser00, Chapter 9, Proposition 9.2.2 and Proposition 9.51].

Next, we show that v is a global isentropic solution. Let 7, ¢ be a smooth entropy-entropy
flux pair and ¢ € C}(R?), and consider R > 0 so that suppyp C Br C R%2. We compute,
using (5.18) in the last line,

‘// e (v) + paq(v )dxdt‘ lim ’// wtn(urj)%—soxq(u”)dmdt‘

Jj—+oo

= lim // om(u) + @zq(u )dazdt‘
Jj—+oo T] R2

= li o d e (t,
J—E‘Poo T] //RQ 14 'un x

< lim // |o|dv(t, x)
Jj——+oo T‘J R2

v(B,,(t,7) .
< [l¢|lco limsup ————= — 0 as j — 400
j—+o0 T
where here -
~ . - t—-t _ x—=Z - _
@(t,w)=¢<t+ T+ — ) supp ¢ C By, (t,7)
J J

and p, is as in (1.6).
Applying Theorem 1.4 we deduce that v must be a constant: v(t,x) = @ for a.e. (t,x) € R?,
for some © € U. Now notice that v = w, because

u = lim u(t, x) dz dt = lim U, (s,y)dyds =
7 JB.(t2) JJB1(0)
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so that
u=v=uv(tzx) for a.e. (t,x) € R% (5.22)
But then we have a contradiction because
0 = lim [, (t, ) — 0| drdt = lim [ (t, ) —u|dzdt
JJB1(0) J JB1(0)
= lim |lu(t,z) —u|dxdt > 0
7 JBy,(t7)

where we used (5.21), (5.22) in the first and second equality, and (5.19) in the last inequality.
U
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