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RECTIFIABILITY AND PARAMETERIZATION OF INTRINSIC REGULAR

SURFACES IN THE HEISENBERG GROUP

BERND KIRCHHEIM AND FRANCESCO SERRA CASSANO

1. Introduction

In this paper we investigate Euclidean rectifiability of and existence of Hölder parameteriza-
tion for H -regular surfaces, a class of intrinsically regular surfaces in the Heisenberg group H1,
which can be represented as C×R ≡ R3 endowed with a left invariant metric d equivalent to its
Carnot- Carathéodory metric (see section 2 for a precise definition). This notion of intrinsically
regular surface was introduced in order to study in the setting of Carnot groups, of which H1

is the simplest example, the classical problem in Geometric Measure Theory (GMT) of defining
regular hypersurfaces (i.e. topological submanifold of codimension 1) and different reasonable
surface measures on them (see [45], [44], [43], [55], [10] [31], [33] [29], [13], [23], [28] [12] , [1],
[2], [24], [46], [41] [25],[35], [27] and [36]). Throughout this paper, we shall denote the points
of H1 by P = [z, t] = [x + iy, t], z ∈ C, x, y ∈ R, t ∈ R. If P = [z, t], Q = [ζ, τ ] ∈ H1 and
r > 0, following the notations of [54], where the reader can find an exhaustive introduction to
the Heisenberg group, we define the group operation

(1) P ·Q := [z + ζ, t+ τ + 2=m(zζ̄)]

and a family of non isotropic dilations

(2) δr(P ) := [rz, r2t], for r > 0.

Moreover H1 can be endowed with the homogeneous norm

(3) ‖P‖∞ := max{|z|, |t|1/2}
and the distance d we shall deal with will be defined as

(4) d(P,Q) := ‖P−1 ·Q‖∞.
It is known that H1 is a Lie group of topological dimension 3, whereas the Hausdorff dimension

of (H1, d) is 4 (see Proposition 2.1). This phenomenon is already evident from the intrinsic
isoperimetric inequality in H1 proved first by P. Pansu (see [45] and [44]), and then in a different
form but in the general framework of Carnot-Carathéodory spaces by several authors (see,
e.g.,[57], [58], [11], [21], [10], [28], [30] and for a general discussion on the geometry of Carnot-
Carathéodory spaces consult also [29] and [7]).

Since many equivalent distances can be defined in H1, it will be worthwhile to spend later a few
words in order to justify our choice. H1 provides the simplest example of a metric space that is
not Euclidean, even locally, but is still endowed with a sufficiently rich underlying structure, due
to the existence of intrinsic families of translations and dilations. Indeed, the geometry of H1 is
noneuclidean at every scale, since it was proved by S. Semmes ([51]) that there are no bilitschitz
maps from H1 to any Euclidean space. This fact relies on deep interlacing algebraic and metric
properties related to the non-commutativity of H1 through a Rademacher type theorem due to
P. Pansu ([43]). Our interest can be viewed in the framework of the general project meant to
develope GMT in the setting of metric spaces. Such a project, already embryonally contained
in Federer’s book [20], has been explicitly formulated and carried on in the last few years by De
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Giorgi [17], [18], [19], Preiss and Tisěr [47], Kirchheim [31], David & Semmes [13], Ambrosio &
Kirchheim [1], [2] and Lorent [34].

It is well known that the Lie algebra of left invariant vector fields in H1 is (linearly) generated
by

(5) X =
∂

∂x
+ 2y

∂

∂t
, Y =

∂

∂y
− 2x

∂

∂t
, T =

∂

∂t
,

the only non-trivial commutator relations being

(6) [X,Y ] = −4T.

Throughout this paper, we shall identify vector fields and associated first order differential
operators; thus the vector fields X, Y generate a vector bundle on H1, the so called horizontal
vector bundle HH1 according to the notation of Gromov, (see [29] and [33]), that is a vector
subbundle of TH1, the tangent vector bundle of H1. Since each fiber of HH1 can be canonically
identified with a vector subspace of R3, each section φ of HH1 can be identified with a map
φ : H1 → R3. At each point P ∈ H1 the horizontal fiber is indicated as HH1

P and each fiber
can be endowed with the scalar product 〈·, ·〉P and the associated norm | · |P that make the
vector fields X, Y orthonormal. Hence we shall also identify a section of HH1 with its canonical
coordinates with respect to this moving frame. In this way, a section φ will be identified with a
function φ = (φ1, φ2) : H1 → R2. Analogously, if f is a real function defined in an open subset
Ω ⊂ H1, its H -gradient is the section of HH1 defined by ∇Hf = (Xf, Y f).

To introduce our results, let us start by recalling some related notions already existing in the
literature.

The first key point we want to stress here deals with the meaning of rectifiability in H1.
Basically, in the Euclidean framework, a set F ⊂ Rn is (countably) (n−1)-rectifiable (from now
on, we shall say only ‘Euclidean rectifiable’) if, roughly speaking, it is, up to a Hn−1-negligible
set, a countable union of compact subsets Kj of good hypersurfaces (i.e. Lipschitz or continously
differentiable hypersurfaces) where Hm denotes the Euclidean m-dimensional measure on Rn.
Looking for a similar statement in the setting of the Heisenberg group (or, in general, of a metric
space), we must ask preliminarily what are the good hypersurfaces in H1. In fact, there is a
classical notion of rectifiability in a metric space that goes back to Federer (see [20] 3.2.14) that
has been recently used by Ambrosio & Kirchheim (see [1], [2]) in the framework of a theory of
currents in metric spaces (as for the rectifiability in metric spaces see for instance [31], [47] and
also the monograph [39] and the references therein). According to this notion, a good surface in
a metric space should be the image of an open subset of an Euclidean space via a Lipschitz map.
Unfortunately, such a notion does not fit the geometry of the Heisenberg group, that indeed
would be, according with this definition, purely unrectifiable (see [1]). On the other hand, in the
Euclidean setting Rn, a C1-hypersurface can be equivalently viewed as the (local) set of zeros
of a function f : Rn → R with non-vanishing gradient. Such a notion can be easily transposed
to the Heisenberg group, since there is an intrinsic notion of C1

H-functions: we can say that
a continuous real function f on H1 belongs to C1

H if ∇Hf (in the sense of distributions) is a
continuous vector-valued function. Thus, an H -regular surface S will be locally defined as the
set of points P ∈ H1 such that f(P ) = 0, provided that ∇Hf 6= 0 on S (see Definition 2.21).
A few comments are now in place to point out similar geometric properties (in the measure
theoretical sense) of the H -regular surfaces and classical (Euclidean) regular surfaces and to
mention some of their applications.

First of all, we emphasise that the class of H -regular surfaces is different from the class of
Euclidean regular surfaces, in the sense that there are H -regular surfaces that are not Euclidean
continuously differentiable submanifolds, and conversely there are continuously differentiable
2-submanifolds in R3 that are not H-regular hypersurfaces (see [24], Remark 6.2 and Example
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2). We notice that Euclidean continuously differentiable 2-manifolds are H -regular surfaces
provided they do not contain characteristic points, i.e. points P such that the Euclidean tangent
space at P coincides with the horizontal fiber HH1

P at P . Frobenius theorem yields that, for a
general smooth manifold, the set of characteristic points has empty interior; in fact there are few
characteristic points ([12], [4], [36]). On the other hand the boundary of a smooth bounded set
with trivial topology in H1 does always contain characteristic points. The fact that these points
should not be allowed in H -regular submanifolds is not surprising: for example it is already
well known from the theory of subelliptic pde’s that characteristic points of the boundary can
behave like cusps for the Laplace operator.

Another important point supporting the choice of the notion added: of the notion of H -regular
surfaces is the fact that this definition fits with an Implicit Function Theorem, proved in [24]
for the Heisenberg group and in [25] for a general Carnot group, so that a H -regular manifold
S has a local continuous parameterization

(7) Φ : I ⊂ (R2, | · |) → (S, d)

for a suitable rectangle I ⊂ R2 (see Theorem 2.23 below). In general, such a parameterization is
not continuosly differentiable or even Lipschitz continuous (see [24], Example 3), but from Φ we
see that S is a topological submanifold of dimension 2 in (H1, d). On the other hand, by using
again the Implicit Function Theorem and the Blow-Up Theorem (see Theorem 2.24), an area
type formula for the 3-dimensional spherical Hausdorff measure S3

d in (H1, d) and the existence
of the tangent group in the sense of GMT for H -regular surfaces were established, see [24] and
[25].

More precisely, a local representation of S3
d(S) was given in terms of the parameterization

defined in (7) and with respect to the 2-dimensional Lebesgue measure on R2 (see Theorems
2.23 (vi) and 2.24 (ii)). In particular, we infer that the Hausdorff dimension of S in (H1, d)
equals 3. Moreover, if we define the tangent group T g

HS(P ) to S = {f = 0} at P as

T g
HS(P ) := {[x+ iy, t] ∈ H1 : Xf(P )x+ Y f(P )y = 0} ,

then it is a proper subgroup of H1 and

lim
r→0

S3
d(S ∩ U(P, r))

r3
= H2(T g

HS(P ) ∩ U(0, 1)) = 4

exists for every P ∈ S (see Theorem 2.24).
Based on this, also the notion of H-rectifiability was introduced : a set Γ ⊂ H1 is said 3-

dimensional H-rectifiable if there exists a sequence of H- regular surfaces (Si)i in H1 such that
S3

d(Γ \ ∪i∈NSi) = 0. This intrinsic notion of rectifiability has been proven particularly usefull to
obtain in [24] an analog of De Giorgi’s structure theorem for sets of intrinsic finite perimeter in
the setting of Heisenberg group, and more recently in the setting of a general Carnot group of
step 2 ([26] and [27]). The notions of Euclidean and H -rectifiability have been compared in [5],
generalitations of this notion of rectifiability recently have been studied by V. Magnani in [36]
for general Carnot groups.

In this paper we will stress another aspect of the deep difference between the Euclidean and
Carnot-Carathéodory geometry from GMT’s point of view. In fact, we will exhibit a H -regular
surface S0 ⊂ H1 ≡ R3 which looks as an Euclidean fractal set indeed it has Hausdorff dimension
2.5 in (R3, |·|) and, consequently, is not Euclidean 2-rectifiable (see Theorem 3.1). Notice that an
example of a set F ⊂ H1 having Hausdorff dimension 2 in (H1, d) which looks like an Euclidean
fractal set was already constructed by R. Strichartz ([55]) but it is not a topological surface set
because its topological dimension cannot be 2 (see Remark 3.2 and also [6]).

Finally, we will improve the regularity of the parameterization in (7) given by the Implicit
Function Theorem. We will actually prove it is locally Hölder continuous of order 1/2 and
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this result is in some sense sharp. Indeed, there are H -regular surfaces not admitting Hölder
parameterization of order better than 1/2 (see Theorem 4.1).

Let us recall that the problem of good parameterizations of hypersurface- type set in Euclidean
spaces was studied in [48], [49], [50], [56] (see also [51] and [52] for the problem in a general
metric space). In particular the problem of the best Hölder parameterization for an Ahlfors
regular subset of Rn has been studied in [37] and [38], while for a (Euclidean) submanifold in a
Carnot group it arose in [29]. Eventually, the problem of characterizing H -regular surfaces as
images under Lipschitz maps of a suitable “sample” metric space having 3-dimensional positive
and finite Hausdorff measure has been proposed in [24] and it is essentially open. A partial
answer has been given in [46] by S. Pauls for some hypersuperfaces of special Carnot groups but
it does not apply to the Heisenberg group H1.

We wish to thank R. Peirone for some hints on the construction of a prelimary version of
the example in Theorem 3.1. We also thank Z. Balogh, B. Franchi and R. Serapioni for useful
discussions on the subject.

2. Notations and preliminary results

In this section we introduce the basic notation and recall some known results.
We denote by τP : H1 → H1 the left-translation by P defined as

Q 7→ τP (Q) := P ·Q

for any fixed P ∈ H1 where ”·” denotes the group law defined in (1). We denote as P−1 :=
[−z,−t] the inverse of P and as 0 the origin of R3. For further reference, we explicitely state
that

Proposition 2.1. The function d defined by (4) is a distance in H1 and the usual invariance
and scaling properties related to translations and dilations hold, i.e. ∀P,Q,Q′ ∈ H1 and ∀r > 0

(8) d(τPQ, τPQ′) = d(Q,Q′) and d(δrQ, δrQ′) = r d(Q,Q′).

In addition, for any bounded subset Ω of H1 there exist positive constants c1(Ω), c2(Ω) such that

(9) c1(Ω)|P −Q|R3 ≤ d(P,Q) ≤ c2(Ω)|P −Q|1/2
R3

for P,Q ∈ Ω. In particular, the topologies defined by d and by the Euclidean distance coincide
on H1.

Remark 2.2. We stress that, because the topologies defined by d and by the Euclidean distance
coincide, the topological dimension of H1 is 3. On the contrary, the Hausdorff dimension of
(H1, d) is 4.

From now on, U(P, r) will be the open ball with centre P and radius r with respect to the
distance d.

It is well-known that the 3-dimensional Lebesgue measure L3 on H1 ≡ R3 is left (and right)
invariant and it is the Haar measure of the group. If E ⊂ H1 then we write |E| for its Lebesgue
measure.

Definition 2.3. We shall denote respectively by Hm and Sm the m-dimensional Hausdorff and
the spherical Hausdorff measure obtained from the Euclidean distance | · | in R3 ≡ H1 according
to their classical definitions (see [20]). Instead of, we shall denote respectively by Hm

d and Sm
d

the m-dimensional Hausdorff and the spherical Hausdorff measure obtained from the distance d
in H1 according to the definition given in [39] for a general metric space.

Translation invariance and homogeneity under dilations of the Hausdorff measure follow as
usual from (8), more precisely we have
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Proposition 2.4. Let A ⊆ H1, P ∈ H1 and m,r ∈ (0,∞). Then

Hm
d (τPA) = Hm

d (A)

Hm
d (δr(A)) = rmHm

d (A).

In the following we shall identify the vector fields and the associated first order differential
operators. The vector fields X,Y define a vector bundle on H1 (the horizontal vector bundle
HH1) that can be canonically identified with a vector subbundle of the tangent vector bundle of
R3. Since each fiber of HH1 can be in a canonic way understood as a vector subspace of R3, each
section φ of HH1 is associated with a map φ : H1 → R3. At each point P ∈ H1 the horizontal
fiber is indicated as HH1

P and each fiber can be endowed with the scalar product 〈·, ·〉P and the
norm | · |P that make the vector fields X,Y orthonormal. Hence we shall also identify a section
of HH1 with its canonical coordinates with respect to this moving frame. In this way, a section
φ will be identified with a function φ = (φ1, φ2) : H1 → R2. As it is common in Riemannian
geometry, when dealing with two sections φ and ψ whose argument is not explicitely written,
we shall drop the index P in the scalar product writing 〈ψ, φ〉 for 〈ψ(P ), φ(P )〉P . The same
convention shall be adopted for the norm.

For sake of completness, let us recall here the definition of the Carnot–Carathéodory metric
associated with X,Y . In fact, this definition has been developed in a much more general setting
(see, e.g., [42]).

Definition 2.5. We say that an absolutely continuous curve γ : [0, T ] → H1 is a sub-unit curve
with respect to X,Y if there exist real measurable functions a1(s), a2(s), s ∈ [0, T ] such that
a2

1 + a2
2 ≤ 1 and

γ̇(s) = a1(s)X(γ(s)) + a2(s)Y (γ(s)), for a.e. s ∈ [0, T ].

If P1, P2 ∈ H1, their Carnot–Carathéodory distance dC(P1, P2) is

dC(P1, P2) = inf
{
T > 0 : there is a subunit curve γ : [0, T ] → H1, γ(0) = P1, γ(T ) = P2

}
.

Notice that the above set of curves joining P1 and P2 is not empty, by Chow’s theorem, since
by (6) the rank of the Lie algebra generated by X,Y is 3, and hence dC is a distance on H1.

Remark 2.6. Alternatively, sub-unit curves can be defined as absolutely continuous functions γ
such that γ̇ is a measurable section of HH1 such that |γ̇(s)|γ(s) ≤ 1 for a.e. s.

The following results are well known: see, for instance, [7], [58].

Proposition 2.7. The Carnot–Carathéodory distance dC is (globally and bilipschitzly) equiva-
lent to the distance d defined in (4).

Proposition 2.8.

(10) L3 = cS(d)S4
d = cH(d)H4

d.

In particular (as proved in [40] and [45]) the Hausdorff dimension of (H1, d) and (H1, dC) is 4.

Due to its definition and normalization, the Q- dimensional spherical measure always has on
a homogeneous group of dimension Q as the Heisenberg group density 1, so it easily follows that
cS(d) = L3(Ud(0, 1)). It is also well known that cH(d) ≥ cS(d), but a very interesting question,
related to the validity of Besicovitch’s 1

2 -conjecture in the realm of homogeneous metric spaces,
is whether 2cS(d) > cH(d). In the case of the Carnot–Carathéodory metric dC even less is known
about the relation between the corresponding normalization factors besides the trivial inequality
cS(dC) ≤ cH(dC). In particular, the question whether equality holds (which is equivalent to
the strong isodiametric inequality for dC and to the density of the Hausdorff measure on this
Euclideanly unrectifiable space being one) was not yet answered.

If Ω is an open subset of H1 and k ≥ 0 is a non negative integer, the symbols Ck(Ω), C∞(Ω)
indicate the usual spaces of real valued functions which are (sufficiently often) continuously
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differentiable in the Euclidean sense. We denote by Ck(Ω,HH1) the set of all Ck-sections of
HH1 where the Ck regularity is understood as regularity between smooth manifolds. The notions
of Ck

0(Ω,HH1), C∞(Ω,HH1) and C∞
0 (Ω,HH1) are defined analogously.

The similar structure of some statements in H1 with others in R3 becomes transparent using
the intrinsic notions of a gradient for functions H1 → R and of divergence for sections of HH1.

Definition 2.9. If Ω is an open subset of H1, f ∈ C1(Ω) and φ = (φ1, φ2) ∈ C1(Ω,HH1), define

(11) ∇Hf := (Xf, Y f)

and

(12) div Hφ := Xφ1 + Y φ2.

Alternatively ∇Hf can be defined as the section of HH1

∇Hf := Xf X + Y f Y

whose canonical coordinates are (Xf, Y f). This is consistent with the the already mentioned
identification of sections and their coordinates.

A natural definition of functions of bounded variation and of sets of finite perimeter in H1

was the first time introduced in [10]. There are, however, several ways to define functions of
bounded variation associated with a vector subbundle of TRd generated by a family of vector
fields; these definitions have been proposed independently over the last few years by different
authors (see [9], [8], [28], [22]). All these definitions are in fact equivalent, as it is proved in
[22]: see in particular the beginning of Section 2 in [22] for a discussion. Following one of these
definitions we shall say that E ⊂ H1 has locally finite H-perimeter (or, following De Giorgi, E
is a H-Caccioppoli set) if for any bounded open set Ω ⊆ H1

(13) |∂E|H(Ω) := sup
{∫

E
divH φ dL3 : φ ∈ C1

0(Ω,HH1), |φ(P )|P ≤ 1
}
<∞,

In such a way, |∂E|H defines a Radon measure in H1. If ∂E is an Euclidean regular manifold
with outward unit normal n, then

|∂E|H =
(
〈X,n〉2 + 〈Y, n〉2

)1/2 H2 ∂E,

see [10] and [22].
Now, Riesz’ representation theorem yields the existence of a |∂E|H-measurable section νE of

HH1 such that |νE(P )|P = 1 for |∂E|H-a.e. P and for all φ ∈ C1
0(H1,HH1) (13) ? we have

−
∫

E
divH φ dL3 =

∫
H1

〈νE , φ〉 d|∂E|H.

We shall call νE the generalized inward normal to E.

Definition 2.10. Let [z, t], P0 ∈ H1 with z = x+ iy be given. We set

πP0([z, t]) = xX(P0) + yY (P0).

The map P0 → πP0([z, t]) is a smooth section of HH1.

Let us give now some elementary definitions and results concerning intrinsic differentiability
in the Heisenberg group. These results are basically due to P. Pansu ([43]), or are inspirated
by his ideas. All proofs of the results below can be found in [24]. Extensions of these intrinsic
differentiability’s resuls to Carnot groups have been carried out in [31], [59], [35], [32], [3] and
[27].

Definition 2.11. We shall say that a map L from H1 to R is H-linear if it is a homomorphism
and if it is positively homogeneous of degree 1 with respect to the dilations of H1.
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Definition 2.12. Let Ω be an open set in H1. We shall say f : Ω → R is Pansu-differentiable
(differentiable in the sense of Pansu: see [43] and [33]) at P0 if there exists a H-linear map L
from H1 to R such that

lim
P→P0

f(P )− f(P0)− L(P−1
0 · P )

d(P, P0)
= 0.

Remark 2.13. The above definition is equivalent to the following one: there exists a homomor-
phism L from Hn to R such that

lim
λ→0+

f(τP0(δλv))− f(P0)
λ

= L(v)

locally uniformly in H1. set in H1. In particular, L is unique and we shall write L = dHf(P0).

Proposition 2.14. A map L from H1 to R is H-linear if and only if there exists (a, b) ∈ R2

such that, if v = [x+ iy, t] ∈ H1, then L(v) = 〈(a, b), (x, y)〉R2.

Definition 2.15. With the notations of Definition 2.12 we shall say that f is differentiable along
X (Y ) at P0 if the map λ 7→ f(τP0(δλe1)) (respectively: λ 7→ f(τP0(δλe2))) is differentiable at
λ = 0, where ek is the k-th vector of the canonical basis of R3.

Clearly, if f ∈ C1(Ω) then f is differentiable along X and Y at all points of Ω. Hence, if we
set for each f differentiable along X and Y at P0 the horizontal gradient to be

(14) ∇Hf = Xf X + Y f Y

then this definition naturally extends the one given for (classically differentiable functions) in
(11) of Definition 2.9.

Proposition 2.16. With the notations of Definition 2.12 and Proposition 2.14, if f is Pansu-
differentiable at P0, then it is differentiable along X and Y at P0, and

(15) dHf(P0)(v) = 〈∇Hf, πP0(v)〉P0 .

Definition 2.17. If Ω ⊂ H1, we shall denote by C1
H(Ω) the set of continuous real functions in Ω

such that ∇Hf is continuous in Ω. Moreover, we shall denote by LipH(Ω) the set of all Lipschitz
functions f : (Ω, d) → R. Analogously, the space LipH,loc(Ω) is defined in the usual way.

Proposition 2.18. With the notations of Definition 2.17, a continuous function belongs to
C1

H(Ω) if and only if its distributional derivatives Xf , Y f are continuous in Ω.

Remark 2.19. C1(Ω) ⊂ C1
H(Ω), and the inclusion is strict (see [24], Remark 5.9).

Theorem 2.20. If f ∈ C1
H(Ω) then f is Pansu-differentiable at any point P0 ∈ Ω. Moreover

C1
H(U) ⊂ LipH,loc(Ω).

Definition 2.21. We shall say that S ⊂ H1 is a H-regular hypersurface if for every P ∈ S there
exist an open ball U(P, r) and a function f ∈ C1

H(U(P, r)) such that

S ∩ U(P, r) = {Q ∈ U(P, r) : f(Q) = 0};(i)

∇Hf(P ) 6= 0.(ii)

Definition 2.22. If S ⊂ H1 is a H -regular hypersurface and P ∈ S, we define the tangent
group T g

HS(P ) to S at P as follows

T g
HS(P ) := {Q : 〈∇H(f ◦ τP )(0), π0(Q)〉0 = 0}.
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By (ii) of Definition 2.21, T g
HS(P ) is a proper subgroup of H1. Then the tangent plane to S at

P is the lateral
THS(P ) := P · T g

HS(P ).

Once more, observe that this is a good definition. Indeed the tangent plane does not depend
on the particular function f defining the surface S because of points (i) and (iv) of Theorem
2.23 below.

Finally, let us recall three useful results on H - regular surfaces proved in [24] in the setting
of the Heisenberg group and in [25] and [27] in for general Carnot group.

Theorem 2.23. [Implicit Function Theorem] Let Ω be an open set in H1, 0 ∈ Ω, and let
f ∈ C1

H(Ω) be such that |Xf(0)| = Xf(0) > 0, f(0) = 0. Then, if we put

E = {[z, t] ∈ Ω : f([z, t]) < 0}, S = {[z, t] ∈ Ω : f([z, t]) = 0},
there exists a connected open neighbourhood U of 0, such that

E ∩ U is connected;(i)

E has finite H-perimeter in U ;(ii)

∂E ∩ U = S ∩ U ;(iii)

νE(P ) = ∇Hf(P )/|∇Hf(P )|P for all P ∈ S ∩ U .(iv)

If we put now I = [−δ, δ]× [−δ2, δ2], J = [−h, h], then there exists a unique continuous function

φ = φ(η, τ) : I → J

such that the following parameterization of S and integral representation of the perimeter hold

S ∩ Ū = {[x+ iy, t] ∈ Ū : y = η, x = φ(η, τ), t = 2φ(η, τ)η + τ, (η, τ) ∈ I};(v)

|∂E|H(U) =
∫

I

|∇Hf |
Xf

(Φ(η, τ)) dη dτ,(vi)

where

(16) Φ(η, τ) = (φ(η, τ), η, 2φ(η, τ)η + τ).

Theorem 2.24. [Blow-up Theorem] Let Ω be an open set in H1, let E ⊂ H1 be such that
∂E ∩ Ω = S ∩ Ω where S ⊂ H1 is a H -regular surface. If P0 ∈ H1 and r > 0 denote

EP0,r :=
{
P ∈ H1 : P0 · δr(P−1

0 · P ) ∈ E
}
.

Then

lim
r→0

|∂EP0,r|H(U(0, 1))
r3

= lim
r→0

|∂E|H(U(P0, r))
r3

= H2(T g
HS(P0) ∩ U(0, 1)) = 4 if P0 ∈ S ∩ Ω;(i)

|∂E|H Ω = 4S3
d (S ∩ Ω) .(ii)

Theorem 2.25. [Whitney Extension Theorem] Let F ⊂ H1 be a closed set, and assume
f : F → R, k : F → HH1 are continuous functions. We set

R(Q,P ) :=
f(Q)− f(P )− 〈k(P ), πP (P−1 ·Q)〉P

d(P,Q)
,

and, if K ⊂ F is a compact set,

(17) ρK(δ) := sup{|R(Q,P )| : P,Q ∈ K, 0 < d(P,Q) < δ}.
If ρK(δ) → 0 as δ → 0 for every compact set K ⊂ F , then there exist f̃ : H1 → R, f̃ ∈ C1

H(H1)
such that

f̃|F ≡ f, ∇Hf̃|F ≡ k.
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3. H -Regular surfaces as Euclidean fractal sets

In this section we construct an example of an H -regular surface in H1 wich has the Euclidean
Hausdorff dimension 5/2 and, hence, more of a fractal structure.

Theorem 3.1. There exists an H -regular surface S ⊂ H1 such that

(18) H(5−ε)/2(S) > 0 for all ε ∈ (0, 1)

In particular, S is not 2- Euclidean rectifiable.

Remark 3.2. An interesting example of Euclidean fractal set F in (H1, d) with Hausdorff dimen-
sion 2 was constructed by R. Strichartz in [55]. However it cannot be a H- regular surface or
even a topological surface, i.e. a submanifold of topological dimension 2 in (H1, d) (see also [6]
for a simpler computation). In fact Gromov proved that a topological surface in (H1, d) always
has Hausdorff dimension larger or equal than 3 (see [29], section 2).

Remark 3.3. By Theorem 1.1 in [5] which states that for every α ≥ 0

Hmin{α,1+α
2
} << Hα

d on R3

it follows 5
2 is the smallest possible jump between the Euclidean and Carnot-Carathéodory

Hausdorff dimension of such subsets of R3.

In the proof of Theorem 3.1 we will use two auxiliary results. Before its proof we will need two
preliminar technical lemmas. The first is contained in a paper by Z. Balogh (see [4], Theorem
4.1), where its was used to construct euclidean surfaces with large sets of characteristic points.
The more precise modulus of continuity of the gradient which we state and use here can, however,
only be found at the end of the proof of this theorem in [4]. It states that the “pointwise curl”
of almost twice differentiable functions can be nonzero on a quite large set.

Lemma 3.4. There is a C1-function g = g : Q = [0, 1]2 → R and a constant K <∞ such that

L2(Ag) > 1/2 where Ag := {(x, y) ∈ Q : ∇g((x, y)) = (2y,−2x)}(19)

|∇g(z)−∇g(w)| ≤ K(1 + | log(|z − w|)|)K |z − w| for all z, w ∈ Q(20)

The other ingredient is a construction of functions of a prescribed Hölder type continuity
which have all level sets of maximal Hausdorff dimension.

Lemma 3.5. There is a function h : R → R such that
(i) for all t ∈ R is the (Euclidean) Hausdorff dimension of h−1(t) at least 1

2 .
(ii) for each m ≥ 1 we have

(21) lim
r→0+

log((1
r ))m

r1/2
sup{|h(x)− h(y)| , |x− y| ≤ r} = 0.

A variety of similar constructions can be found in the literatur, however, in order to obtain in
Theorem 3.1 an example which is indeed of maximal dimension, we need a very precise version of
such an construction which seems new. A question concerning the optimality of this construction
will be discussed after its presentation and the proof of Lemma 3.5 given below.

Construction 3.6. We consider the following construction whose only parameter is the se-
quence {pn}∞n=1 of integers satisfying 0 ≤ pn ≤ 2n− 2. Given this, we set

rn = 22n−2−pn for n ≥ 1(22)

ln =
22n−1 − 1

24n−2(2rn + 1)
ln−1 for n ≥ 1, with l0 = 1(23)

vn = 2−n2
for n ≥ 0,(24)
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and define the families Ck of “oriented” (closed) rectangles ((x1, y1), (x2, y2)) where x1, x2, y1, y2 ∈
[0, 1], x1 < x2 and which represents the rectangle [x1, x2]× {y1, y2}conv with “entrance” (x1, y1)
and “exit” (x2, y2). (The intuition behind this notation is that once we have finished our con-
struction, we will have found a function h : [0, 1] → [0, 1] whose graph enters and leaves these
rectangles at the corresponding points.)

We start out with C0 = {((0, 0), (1, 1))} and suppose that for some n ≥ 1 we are given a finite
family Cn−1 of oriented rectangles such that

• card([x1, x2] ∩ [x′1, x
′
2]) ≤ 1 if ((x1, y1), (x2, y2)), ((x′1, y

′
1), (x

′
2, y

′
2)) ∈ Cn−1 are different

and moreover if xi = x′3−i then yi = y′3−i if i = 1, 2;
• for ((x1, y1), (x2, y2)) ∈ Cn−1 either y1 = y2 or |y1 − y2| = vn−1 and then x2 − x1 = ln−1.

Now, fixing such an element R = ((x1, y1), (x2, y2)) of Cn−1, we define the next generation to
be Cn(R) = {R} if y1 = y2. In the nondegenerate case y1 6= y2 we first pick the two degenerate
rectangles

R− = ((x1, y1), (x1 + 2−2nln−1, y1)) and R+ = ((x2 − 2−2nln−1, y2), (x2, y2)),

and for
k = 22n−1m+ q where m ∈ {0, . . . , 2rn}, q ∈ {1, . . . , 22n−1}

we set Rk = ((xk
1, y

k
1 ), (xk

2, y
k
2 )) with

xk
1 = x1 + 2−2nln−1 + (k − 1)ln,

xk
2 = xk

1 + ln,

yk
1 =

{
(q − 1)2−2n+1(y2 − y1) + y1 if m is even
(q − 1)2−2n+1(y1 − y2) + y2 if m is odd , and

yk
2 = yk

1 + (−1)m2−2n+1(y2 − y1).

(Notice that |yk
2 − yk

1 | = 2−2n+1vn−1 = vn and yk
2 = yk+1

1 for all k). Then we set

Cn(R) = {R−,R+} ∪ {Rk : k = 1, . . . , 22n−1(2rn + 1)}.

Having this defined for all R ∈ Cn−1, we put

Cn =
⋃
{Cn(R) : R ∈ Cn−1}

and introduce also the compact union of rectangles

Cn =
⋃
{[x1, x2]× {y1, y2}conv : ((x1, y1), (x2, y2)) ∈ Cn}.

We observe that for nondegenerate rectangles R = ((x1, y1), (x2, y2)) ∈ Cn−1 the family Cn(R)
satisfies the properties stated for Cn−1 above and

• Cn(R) =
⋃
{[x′1, x′2]× {y′1, y′2}conv : ((x′1, y

′
1), (x

′
2, y

′
2)) ∈ Cn(R)} is a compact subset of

[x1, x2]× {y1, y2}conv ⊂ Cn−1

• proj1(Cn(R)) = [x1, x2] and [x1, x2] is covered in a non-overlapping way, note that
xk

2 = xk+1
1 and that due to (23) the last xk

2 is just the x-coordinate of the entrance into
R+.

• each vertical slice of Cn(R) is of diameter at most 2vn.

So Cn =
⋃
R∈Cn−1

Cn(R) is a compact subset of Cn−1 and proj1(Cn) = [0, 1] for each n. From
this it is clear that C∞ =

⋂∞
n=1Cn is the graph of a function h : [0, 1] → [0, 1], which is continuous

as its graph is compact. Now, we state the following crucial properties of this function.

Proposition 3.7. The function h = h{pn} constructed above satisfies:
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(i) if for some d > 0 the bound

lim inf
n→∞

n∑
k=1

[(1− 2d)(2k + 1)− (1− d)(pk + 3)] > −∞

holds then Hd(h−1(t)) > 0 for all t ∈ [0, 1].
(ii) if lim supn→∞ pn/n < 2 then for some c = c{pn} < ∞ and all n ≥ 1 with pk ≥ 2 for

k ≥ n we have the inequality

|h(x)− h(y)| ≤ c 2−
Pn

k=1(pk−2)/2
√
|x− y| if x, y ∈ [0, 1] and |x− y| ≤ ln.

Proof. Throughout the whole proof, the corners of the rectangles constructed above will play an
important rôle, therefore we need some special notations for them. For this purpose let

Gn =
⋃

((x1,y1),(x2,y2))∈Cn

{(x1, y1), (x2, y2)}, Gi
n = proji(Gn) for i = 1, 2.

Thus Gk ⊂ Gk+1 ⊂ C∞ and
⋃

k Gk is dense in C∞.
We turn to the proof of (i). Given a d satisfying the assumption it is easy to check that

d ≤ 1/2. We set fn = rn(ln/ln−1)d, and using (23) we compute

fn = rn

(
22n−1 − 1

24n−2(2rn + 1)

)d

≥ r1−d
n

(
22n−1 − 1

24n

)d

= 2(2n+1)(1−2d)−(pn+3)(1−d)(1− 21−2n)d.

Because
∏∞

n=1(1− 21−2n) > 0, we see that our assumption on d and {pn}∞1 ensures

(25) lim inf
n→∞

n∏
k=1

fk > 0

Following the usual pattern of lower estimates for Hausdorff measure, we establish (i) by
turning (25) into a Frostman type estimate for a suitably choosen measure on h−1(t) (see,
for instance, Theorem 8.8 in [39]). We can of course suppose that t /∈

⋃
k G

2
k because the

construction of h implies that for t ∈ G2
k there are x1 < x2 with ((x1, t), (x2, t)) ∈ Cl for all

l > k and hence (x1, x2) ⊂ h−1(t). It is also clear from the way we selected the Ck’s that we
can construct a sequence of subsets Cn(t) ⊂ {x ∈ [0, 1] : (x, t) ∈ Cn} (n = 1, 2, . . . ) such that
h−1(t) ⊃

⋂∞
k=0Ck(t) where

a) C0(t) = [0, 1] ⊃ C1(t) ⊃ C2(t) ⊃ . . .
b) each Cn(t) is the union of a finite system Cn(t) of disjoint intervals of length ln.
c) for each n ≥ 1 and I ∈ Cn−1(t) Cn(t, I) is the family of all J ∈ Cn(t) that are contained

in I of cardinality rn and the distance between any two different intervals in Cn(t, I) is
at least (22n − 1)ln.

We consider the canonical “uniformly” distributed probabilities

µn = (
n∏

k=1

rk)−1
∑

J∈Cn(t)

1
ln

(H1 J)

and note that µn(I) = rn(
∏n

k=1 rk)
−1 = µn−1(I) for I ∈ Cn−1(t), so µn ⇀∗ µ, a probability

measure living on h−1(t). We will show that

(26)

(
inf

m≥n

m∏
k=1

fk

)
µ(I) ≤ 2|I|d if I is a compact interval with |I| ≤ ln.

The considerations of covers approximating the d-dimensional Hausdorff measure of
⋂

nCn(t)
then gives, using a constant cd > 0 determined by our choice of normalization of the Hausdorff
measure, that Hd(h−1(t)) ≥ cd lim infn→∞

∏n
k=1 fk, so (i) would follow from (25).
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To verify (26), we first note that due to the distance required in c) it is enough to establish
this inequality assuming that I ⊂ J ∈ Cn(t). Obviously, we can also suppose the following to
hold, as it can always be achieved by modifications making the inequality (26) even sharper

d) min I,max I ∈
⋂

k Ck(t)
e) n ≥ 1 is the largest number of all ñ for which an Ĩ ∈ Cñ(t) containing I does exist.

We claim that
µ(I)|I|−d ≤ 2µn(J)|J |−d.

Indeed, d) and e) ensure that for some q ∈ {2, . . . , rn+1} the interval I intersects precisely q
intervals from Cn+1(t, J). This yields

• µ(I) ≤ qµn+1(J ′) = qµn(J)/rn+1 for any J ′ ∈ Cn+1(t)
• diam(I) ≥ (q − 1)(22n+2 − 1)ln+1, compare with c) above

and allows us to estimate that
µ(I)
|I|d

≤ µn(J)
|J |d

q

(q − 1)d

ldn
rn+1((22n+2 − 1)ln+1)d

≤ µn(J)
|J |d

2r1−d
n+1

ldn
rn+1(ln/rn+1)d

≤ 2
µn(J)
|J |d

.

It remains to observe that

µn(J)
|J |d

=

 n∏
j=1

r−1
j

 n∏
j=1

(
lj−1

lj

)d

=
n∏

j=1

ldj−1

ldj rj
=

 n∏
j=1

fj

−1

and (26) follows.
So we can turn to the proof of statement (ii) in the proposition, without loss of generality

x < y. First, we assume in addition that

(27) there is a k ≥ n with G1
k ∩ (x, y) = ∅ but card(G1

k+1 ∩ [x, y]) ≥ 2.

Let x′ = min(G1
k+1 ∩ [x, y]), y′ = max(G1

k+1 ∩ [x, y]), thus y′ = x′ + q0lk+1, q0 ≥ 1. We also
notice that there are a, b ∈ G1

k with b − a = lk and [x, y] ⊂ (a, b). Since the construction of h
implies that

osc(h, [s1, s2]) ≤ vm if s1, s2 ∈ G1
m and s2 − s1 = lm,

we infer

|h(x)− h(y)| ≤ min(vk, (2 + q0)vk+1) ≤ min(vk, 3q0vk+1) ≤ min
(
vk, 3

|x− y|
lk+1

vk+1

)
.

This implies

|h(x)− h(y)|√
y − x

≤ min

(
vk√
|x− y|

,
3
√
|x− y|
lk+1

vk+1

)
≤
√

3
vkvk+1

lk+1

≤
√

3
vk+1

lk+1
≤

k∏
m=1

(
vm+1

vm−1

lm
lm+1

)1/2√
3
v0 v1
l1

≤ c1

k∏
m=1

(
2−(m+1)2+(m−1)224m+2(2rm+1 + 1)

(22m+1 − 1)

)1/2

≤ c1

k∏
m=1

(
(2−4m)24m+2(22m−pm+1+1 + 1)

22m+1 − 1

)1/2

≤ c2

k∏
m=1

(
22−pm+1

1 + 2−1−2m+pm+1

1− 2−2m−1

)1/2

≤ c32−
Pk

m=1(pm+1−2)/2 ≤ c32−
Pn

m=1(pm−2)/2,
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because our assumption in statement (ii) implies for c4 sufficienly large and m > c4 the estimate
1 + 2−1−2m+pm+1 < 1 + 2−m/c4 , we see that c3 = c{pn} <∞.

To finish, we drop our additional assumption (27) and choose the maximal k such that (x, y)∩
G1

k = ∅. If k satisfies (27) anyhow, then we are done. Otherwise, we pick z ∈ G1
k+1 ∩ (x, y) and

notice that necessarily {z} = G1
k+1 ∩ (x, y) as else lk+1 < |x − y| would imply k ≥ n and (27)

would hold true. We consider now the interval [x, z] and it is easily checked that the maximal k′

with (x, z) ∩G1
k′ = ∅ satisfies (27) and therefore gives the desired inequality for x, z. Since the

same argument works for z, y and as
√
z − x+

√
y − z ≤

√
2
√
y − x, our proof is finished �.

Proof of Lemma 3.5. We choose the sequence {pn}∞n=1 by the simple rule pn = 4 for all n ≥ 3
and consider on [0, 1] the function h = h{pn} as obtained in Construction 3.6. We note that
h(0) = 0, h(1) = 1 and extend the function to all of R by requiring h(x+ k) = h(x) + k for all
k ∈ Z and x ∈ [0, 1]. Now it is easy, that in order to verify the statements (i) and (ii) we can
restrict to the cases when t, x, y ∈ [0, 1].

Concerning (i), each d < 1/2 obviously satisfies the assumption of Proposition 3.7.(i) and so
Hd(h−1(t)) > 0 for all t ∈ [0, 1], d < 1/2 which just says dimH (h−1(t)) ≥ 1/2.

Considering (ii), we have
∑n

3 (pk − 2)/2 = n − 2 and we see from (23) that 1 > ln/ln−1 ≥
22n−2/24n−24rn ≥ 2−4n and thus ln ≥ 2−2n(n+1). Hence, if r ∈ [ln+1, ln) then log(1/r) ≤
log(2)2(n+ 2)2. Now, given the m ≥ 1 we infer from Proposition 3.7.(ii) that for |x− y| ≤ r ∈
[ln+1, ln)

|h(x)− h(y)| ≤ c
√
r2−n ≤

√
r

1
n(2 log(2)(n+ 2)2)m

≤ 1
n

√
r

(log(1/r))m

provided n is sufficiently large. This finishes the proof of the lemma. �

Remark 3.8. The construction presented above looks quite complicated, but as a compensation
it does not only allow to controll the modulus of continuity of the 1

2 -Hölder-functions involved up
to the order of logarithmic terms but it also gives examples with optimal level set dimension for
any Hölder exponent between 1

2 and 1. Indeed, choosing pk to be the integer part of c k with fixed
c ∈ (0, 2) we easily calculate from Proposition 3.7 that the resulting h has an Hölder exponent

2
4−c and all level sets of dimension at least 2−c

4−c . On the other hand, if f : [0, 1] → [0, 1] is α-
Hölder, then it is lipschitz on the 1

α -dimensional space [0, 1] with the metric %(x, y) = α
√
|x− y|.

Hence by the Eilenberg-Fubini type result given in 2.10.25 of [20] we see that almost all level sets
of f are of dimension at most α−1 − 1 metric % and at most 1− α dimensional in the euclidean
distance.

However, even our fine tuned construction could not answer the following natural question.
Can one find α-Hölder functions such that all level sets f−1(t) (or at least for
all t from a set of positive measure) are of positive 1− α-dimensional Hausdorff
measure?

In the main application of our construction the 1
2 -dimensional measure is obviously zero since

we have a “better” modulus of continuity then
√
|x− y|. But we were not able to improve the

construction for the case of general 1
2 -Hölder functions nor to give a (presumably more likely)

proof that level sets are always zero.

Proof of Theorem 3.1. Let g be a function as in Lemma 3.4, so we have

(28) |g(z)− g(w)− 〈∇g(w) , z − w〉| ≤ K ′ |z − w|2(1 + | log(|z − w|)|)K ∀z, w ∈ Q .

Next we choose the function h from Corollary 3.5 and set F ∗ := Ag × [0, 1]. Now we can define
the function
f∗ : F ∗ → R by

f∗([z, t]) := h(t− g(z)) if [z, t] ∈ F ∗
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and the section k∗ : F ∗ → HH1 ≡ R2 as

k∗([z, t]) := (0, 0) if [z, t] ∈ F ∗ .

We claim now that the hypotheses of Theorem 2.25 are satisfied for F = F ∗, f = f∗ and k = k∗.
As the continuity of f∗ and k is straightforward, we only have only to that

(29) lim
δ→0

ρF (δ) = 0

where ρF is the function defined in (17) just without localization to compact subsets. For this
purpose consider any P = [z, t], P ′ = [w, s] in F and observe first that

|g(w)− g(z) + 2=m(wz̄)| = |g(w)− g(z)− 2=m(−wz̄)|
= |g(w)− g(z)−=m(−2z̄(w − z))|
= |g(w)− g(z)− 〈∇g(z), w − z〉R2 |, as z ∈ Ag,

≤ K ′ |z − w|2(1 + | log(|z − w|)|)K .

Moreover, (P ′)−1 ·P = (z−w, t− s− 2=m(wz̄) and hence our definition of norm as given in (3)
and (4) ensures that

|g(w)− g(z) + 2=m(wz̄)|, |t− s− 2=m(wz̄)| ≤ K ′d(P, P ′)2(1 + | log(d(P,Q))|)K .

This shows that also

|(t− g(z))− (s− g(w))| ≤ 2K ′d(P, P ′)2(1 + | log(d(P, P ′))|)K ,

and now (21) implies that

|f∗(P )− f∗(P ′)| = |h(t− g(z))−h(s− g(w))| ≤ K̃
d(P, P ′)(1 + | log(d(P, P ′))|)(K/2)

| log(d(P, P ′)(1 + | log(d(P, P ′))|)(K/2))|(K+1)

and therefore
|f∗(P )− f∗(P ′)|

d(P, P ′)
→ 0 if P, P ′ ∈ F and d(P, P ′) → 0,

thus (29) follows.
Therefore applying Theorem 2.25 we can extend f∗ : F ∗ → R to a function f̃∗ : H1 → R,

f̃∗ ∈ C1
H(H1) such that

(30) ∇Hf̃|F ∗ ≡ 0.

Define now f : H1 → R as

f(x, y, t) := f̃∗(x, y, t)− x .

Then by construction and (30), since

|∇Hf |P = |(−1, 0)|R2 = 1 ∀P ∈ F ∗

there is an open set Ω ⊃ F ∗ such that

|∇Hf |P 6= 0 ∀P ∈ Ω .

Let
S := Ω ∩ {f = 0} ,

then S is a H- regular surface. Let us prove (18).
Observe that

(31) S ⊃ A :=
⋃

(x,y)∈Ag

(
{(x, y)} × (h−1(x) + g((x, y))

)
.

By the coarea inequality (see [20] 2.10.27)
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(32)
∫

Ag

H(1−ε)/2(h−1(x)) dxdy =
∫

Ag

H(1−ε)/2(h−1(x) + g(x, y)) dxdy ≤ H(5−ε)/2(A) .

Since L2(Ag) > 0, if Ag,y := {x ∈ [0, 1] : (x, y) ∈ Ag}, then L1(Ag,y) > 0 for y ∈ I being
I ⊂ [0, 1] a suitable measurable set with L1(I) > 0. Then by statement (i) in Corollary 3.5 and
since ε > 0

(33)
∫

Ag

H(1−ε)/2(h−1(x))dxdy ≥
∫ 1

0
dy

∫
Ag,y

H(1−ε)/2(h−1(x)) dx > 0 .

Thus (31), (32) and
(33) yield (18). �

4. Hölder Parameterization of H - regular surfaces.

In this section we will prove that each H - regular surface S ⊂ H1 can be locally parameterized
by means a Hölder continuous map of order 1

2 and this parameterization is in some sense sharp.
More precisely

Theorem 4.1. Let S ⊂ H1 be an H - regular surface then for each P0 ∈ S there exist constants
δ, r0, L > 0, an open neigborhood U of P0 and a 1-to-1 map Φ : I := [−δ, δ] × [−δ2, δ2] → H1

such that, if
α = 1

2 ,

d(Φ(u),Φ(v)) ≤ L |u− v|α ∀u, v ∈ I ;(i)

Φ(I) = S ∩ Ū .(ii)

Moreover the H - regular surface S = {(x, y, t) : x = 0} cannot be locally parameterized by
means any Hölder continuos map of order 1

2 < α ≤ 1 (i.e. by any map Φ satisfying (i) with
1
2 < α ≤ 1).

Remark 4.2. In particular H - regular surfaces cannot be seen as image through Lipschitz maps
of a subspace of (R2, | · |2/3).

Lemma 4.3. Let P, v = (v1, v2, v3) ∈ H1 and denote by γP,v : [0, 1] → H1 the curve

γP,v(s) = P · (s v1, s v2, v3) .
Then

γP,v is a horizontal curve;(i)

if P, Q ∈ U(P0,
r0
4

) and v := P−1 ·Q then γP,v([0, 1]) ⊂ U(P0, r0);(ii)

for every g ∈ C1
H(U(P0, 2 r0)), and P, Q ∈ U(P0,

r0
4

) with v := P−1 ·Q,(iii)

there is some s̄ ∈ [0, 1] such that

g(γP,v(1))− g(γP,v(0)) = v1Xg(γP,v(s̄)) + v2 Y g(γP,v(s̄)) .

Proof of Lemma 4.3. Observe that for every s ∈ [0, 1]

(34) γ̇P,v(s) = (v1, v2, 2 (v1P2 − v2P1)) = v1X(γP,v(s)) + v2 Y (γP,v(s)) ∈ HH1
γP,v(s)

then the statement (i) follows at once. Statment (ii) easily follows by means a simple calculations
too. Thus let us prove (iii). First suppose the g ∈ C1(U(P0, r0)) and put G(s) := g(γP,v(s)) if
0 ≤ s ≤ 1. Now observe that by

(34)

(35) G′(s) = 〈∇g(γP,v(s)), v1X(γP,v(s)) + v2 Y (γP,v(s))〉R3 = v1Xg(γP,v(s)) + v2 Y g(γP,v(s)) .



16 BERND KIRCHHEIM AND FRANCESCO SERRA CASSANO

On the other hand there exists s̄ ∈ [0, 1] such that

G(1)−G(0) = G′(s̄)

and then by (35) the thesis follows in the case when g ∈ C1(U(P0, r0)). In the general case we
can approximate g ∈ C1

H(U(P0, 2 r0)) by a family of functions gε ∈ C1(U(P0, r0) such that

(36) gε → g , Xgε → Xg, Y gε → Y g uniformly in B(P0, r0)

(see, for instance,[24], step 1 of proof of Theorem 6.5). Then we can apply previous step to gε

and then there exists s̄ε ∈ (0, 1) such that

(37) gε(γP,v(1))− gε(γP,v(0)) = v1Xgε(γP,v(s̄ε)) + v2 Y gε(γP,v(s̄ε)) .

On the other hand we can suppose that s̄ε → s̄ ∈ [0, 1] and so (36) and (37) yield the the thesis.
�

Proof of Theorem 4.1. Whithout loss of generality we can assume that P0 = 0 and

S ∩ Ω = {f = 0} ∩ Ω
with Ω = U(0, r0

4 ), f ∈ C1
H(U(0, 2 r0)), f(0) = 0,

Xf > 0 on U(0, 2 r0). Then applying Theorem 2.23 and using the same notations there exists
a 1-to-1, onto and continuous parameterization Φ : I := Iδ → U ∩ S of the type (16) with
φ : I → J .

Let us prove that there exists a positive constant L such that

(38) |φ(u)− φ(u′)| ≤ L1 |u− u′|1/2 ∀u, u′ ∈ I .
Let u = (η, τ), u′ = (η′, τ ′) ∈ I, P = Φ(η, τ), Q = Φ(η′, τ ′) ∈ U ∩ S. Applying Lemma 4.3

with g = f and

v = (v1, v2, v3) = P−1 ·Q =
(
φ(η′, τ ′)− φ(η, τ), η′ − η, τ ′ − τ + 2(φ(η′, τ ′) + φ(η, τ))(η′ − η)

)
0 = f(Q)− f(P ) = (f(γP,v(1))− f(γP,v(0)) + (f(γP,v(0))− f(P )) =

= Xf(γP,v(s̄)) v1 + Y f(γP,v(

s)) v2 + (f(P · (0, 0, v3))− f(P ))and then

(39) |v1| ≤
∣∣∣∣Y f(γP,v(s̄))
Xf(γP,v(s̄))

∣∣∣∣ |v2|+ 1
|Xf(γP,v(s̄))|

|f(P · (0, 0, v3))− f(P )| .

Notice now because Xf, Y f ∈ C0(U(0, 2 r0)), φ : I → R is continuous, by Theorem 2.20 and
(9)

M1 = sup
U(0,r0)

|Y f |
|Xf |

< ∞ ,

M2 = supU(0,r0)

1
|Xf |

< ∞M3 = supR 6=S∈

U(0,r0)
|f(R)− f(S)|
|R− S|

1
2

< ∞ , M4 = supI |φ| < ∞ .> From(39)

|φ(u′)− φ(u)| ≤ M1 |η′ − η|+M2M3

(
|τ ′ − τ |+ 4M4 |η′ − η|

) 1
2

and then (38) for a suitable constant L1 > 0. So far a simple calculations yield the estimate (i)
for a suitable constant L > 0.

Let us prove now the remaining part of the Theorem. By
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contradiction, suppose there was a mapping Φ = (φ1, φ2, φ3) : I → H1 satisfying (i) and (ii)
with 1

2 < α ≤ 1 and S = {(0, y, t) : y, t ∈ R} being now I ⊂ R2 a general open set. Then from
(ii) φ1 ≡ 0 in I. On the other hand (i) yields by a simple calculations

|φ3(v)− φ3(u) + 2(φ1(u)φ2(v)− φ1(v)φ2(u))| ≤ L2|u− v|2α ∀u, v ∈ I
whence φ3 : I → R would be constant and then a contradiction arises. �
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