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Abstract. In this paper, we study the problem of finding the optimal hole among all subsets
A ⊂ Ω that minimizes the α−Hölder seminorm [u]α among all functions u such that u = 1 on
∂Ω and u = 0 on A, plus a penalization on the volume of A. For a given set A ⊂ Ω, we will
also characterize the function that minimizes [u]α. In addition, we will study the limit when
p → ∞ of the “fractional” version of the Alt-Caffarelli problem.

1. Introduction

Let Ω be an open bounded domain in RN . In [2, 7, 6], the authors considered the problem
of minimizing

(1.1) min

{∫
Ω
|∇u|p + λ|{u > 0}| : u ∈ W 1,p(Ω), u ≥ 0, u = 1 on ∂Ω

}
where 1 < p < ∞ and λ > 0. Problems of this kind (known as Bernoulli-type problems) have
several applications in heat flows [1, 3] and electrochemical machining [10].

In [9], the authors studied the limit when p → ∞ of the minimizer up to the following
problem:

(1.2) min

{
1

p

∫
Ω

[
|∇u|
Λ

]p
+ λ|{u > 0}| : u ∈ W 1,p(Ω), u = 1 on ∂Ω

}
.

More precisely, they show that up to a subsequence, up converges uniformly to a function u∞
that solves

(1.3) min

{
|{u > 0}| : u ∈ Lip(Ω̄), |∇u| ≤ Λ, u = 1 on ∂Ω

}
.

In [5], the authors considered the following free boundary problem (which is the supremal
version of the Alt-Caffarelli minimization problem (1.1)):

(1.4) min{||∇u||∞ + λ|{u > 0}| : u ∈ Lip(Ω̄), u ≥ 0, u = 1 on ∂Ω}.

It is clear that

min (1.4) = min
Λ>0

[Λ + min (1.3)].

Notice that the minimizer u in Problem (1.4) will be constant (i.e. u = 1 on Ω) as soon as the
parameter λ is sufficiently small. Otherwise, they show that there is a constant r > 0 such

that ur := [1− d(x,∂Ω)
r ]+ is a minimizer (see [5, Theorem 1]).

In this paper, we will consider the fractional version of Problem (1.2), where the Lp norm
of ∇u is replaced by the W s,p−seminorm [u]s,p of u:

(1.5) min

{
1

pΛp

∫
Ω×Ω

|u(x)− u(y)|p

|x− y|αp
+ λ|{u > 0}| : u ∈ W s,p(Ω), u = 1 on ∂Ω

}
,

1
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where s = α− N
p and

W s,p(Ω) :=

{
u ∈ Lp(Ω), [u]ps,p :=

∫∫
Ω×Ω

|u(x)− u(y)|p

|x− y|N+sp
< ∞

}
.

In Section 2, we will study the limit of Problem (1.5) as p → ∞. We show that up to
a subsequence, the minimizers up converge to u∞ which turns out to be a solution to the
following minimization problem (which is the α−Hölder version of (1.3)):

min

{
|{u > 0}| : u ∈ C0,α(Ω), [u]α ≤ Λ, u = 1 on ∂Ω

}
where

[u]α := sup
x, y∈Ω, y ̸=x

|u(y)− u(x)|
|y − x|α

.

Moreover, we will see that u∞ is a viscosity solution to the fractional infinity Laplacian
−L∞u∞ = 0 in the positivity set {u∞ > 0}, where

L∞u := L+
∞u+ L−

∞u

and

L+
∞u(x) := sup

y∈Ω

u(y)− u(x)

|y − x|α
, L−

∞u(x) := inf
y∈Ω

u(y)− u(x)

|y − x|α
.

We note that the fractional infinity Laplacian has been studied in [4] where the authors prove
existence of a solution to L∞u = 0 using an approximation with the fractional p−Laplacian
when p → ∞.

In Section 3, we consider the problem of finding the best α−Hölder extension (with 0 <
α < 1) of the constant boundary condition (u = 1 on ∂Ω) in the presence of a hole A ⊂⊂ Ω,
i.e. we minimize the α−Hölder seminorm among all functions u that vanish on A while u = 1
on the boundary ∂Ω:

(1.6) Λ(A) := min{[u]α : u ∈ C0,α(Ω̄), u ≥ 0, u = 1 on ∂Ω, u = 0 on A}
where

[u]α = sup
x, y∈Ω̄, x ̸=y

|u(x)− u(y)|
|x− y|α

.

The aim of this section is to give an explicit representation of the solution to Problem (1.6).
More precisely, we show that the function

u(x) =
d(x,A)α

d(x,A)α + d(x, ∂Ω)α

minimizes (1.6). Moreover, we will show that this minimizer u solves the fractional infinity
Laplacian

(1.7) L∞u = 0 in Ω\A.
In Section 4, we consider the α−Hölder version of Problem (1.4). To be more precise, we

study the problem of finding the optimal hole A that minimizes the functional Λ(A) among
all subsets A ⊂ Ω, i.e. we consider the following shape optimization problem:

(1.8) min{Λ(A)− λ|A| : A ⊂⊂ Ω}.
If λ ≤ 0, it is clear that the optimal set A in Problem (1.8) is empty. However, if λ > 0 the
situation becomes much complicated since on one side we need to take A small as much as
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possible so that Λ(A) will be small too but on the other side |A| is increasing in A. Yet, we
will show that there exists a constant λ⋆ > 0 such that for all λ ≤ λ⋆ the optimal set A is
empty, while if λ ≥ λ⋆ the optimal set A = {x ∈ Ω : d(x, ∂Ω) ≥ rλ}, where the constant rλ > 0
is such that

rα+1
λ HN−1(∂Arλ) =

α

λ
.

Moreover, λ⋆ satisfies

rαλ⋆ |Arλ⋆ | =
1

λ⋆
.

2. The limit of the fractional p−Laplacian free boundary problem

Let Ω be a bounded Lipschitz set in RN and λ, Λ > 0 are fixed. Then, we consider their
minimization problem:

(2.1) min

{
1

pΛp

∫
Ω×Ω

|u(x)− u(y)|p

|x− y|αp
+ λ|{u > 0}| : u ∈ W s,p(Ω), u = 1 on ∂Ω

}
.

Proposition 2.1. Problem (2.1) has a minimizer up. Moreover, we have Lpup = 0 (in the
weak sense) inside the positivity set {up > 0}, where

Lpu(x) := −
∫
Ω

|u(x)− u(y)|p−1

|x− y|αp
u(x)− u(y)

|u(x)− u(y)|
dy.

Proof. Let {un}n be a minimizing sequence in (2.1). So, there is a constant C (independent
of n) such that

1

pΛp

∫
Ω×Ω

|un(x)− un(y)|p

|x− y|αp
+ λ|{un > 0}| ≤ C, for all n.

Hence,

(2.2)

(∫
Ω×Ω

|un(x)− un(y)|p

|x− y|αp

) 1
p

≤ [Cp]
1
p Λ.

Yet, un = 1 on ∂Ω. By [8, Theorem 8.2], we get

||un||∞ ≤ C[un]s,p + 1.

Thanks to (2.2), this implies that {un}n is bounded in W s,p(Ω). Hence, up to a subsequence,
un converges uniformly to up in Ω̄. Thanks to Fatou’s Lemma, we see that

1

p

∫
Ω×Ω

[ |up(x)−up(y)|
|x−y|α

Λ

]p
+ λ|{up > 0}| ≤ lim inf

n

[
1

p

∫
Ω×Ω

[ |un(x)−un(y)|
|x−y|α

Λ

]p
+ λ|{un > 0}|

]
.

In particular, we have up = 1 on ∂Ω. Hence, up is a minimizer. Moreover, it is easy to see
that up ≥ 0. Assume this is not the case; consider the truncated function ũp := max{up, 0}.
Then, one has {up > 0} = {ũp > 0} and

|ũp(x)− ũp(y)| ≤ |up(x)− up(y)|, for all x, y ∈ Ω.

Fix φ ∈ C∞
0 (Ω) such that spt(φ) ⊂ {up > 0}. Then, we clearly have u + εφ ∈ W s,p(Ω),
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u+ εφ = 1 on ∂Ω and {up + εφ > 0} = {up > 0} for ε small enough. From the optimality of
up, we have ∫

Ω×Ω

[
|up(x)− up(y)|

|x− y|α

]p
≤

∫
Ω×Ω

[
|(up + εφ)(x)− (up + εφ)(y)|

|x− y|α

]p
.

Therefore, we get∫
Ω×Ω

|up(x)− up(y)|p−1

|x− y|αp
up(x)− up(y)

|up(x)− up(y)|
[φ(x)− φ(y)] = 0.

Then, we have

Lpup = 0 in {up > 0} (in the weak sense).

□

Proposition 2.2. Up to a subsequence, up → u∞ uniformly in Ω. Moreover, u∞ minimizes
the following problem:

min

{
|{u > 0}| : u ∈ C0,α(Ω), [u]α ≤ Λ, u = 1 on ∂Ω

}
.

Proof. From the optimality of up in Problem (2.1), we have

1

p

∫
Ω×Ω

[ |up(x)−up(y)|
|x−y|α

Λ

]p
+ λ|{up > 0}| ≤ λ|Ω|, for all p.

Hence, [ ∫
Ω×Ω

|up(x)− up(y)|p

|x− y|αp

] 1
p

≤ [pλ|Ω|]
1
pΛ, for all p.

Fix m < p, one has[ ∫∫
Ω×Ω

|up(x)− up(y)|m

|x− y|αm

] 1
m

≤
[ ∫∫

Ω×Ω

|up(x)− up(y)|p

|x− y|αp

] 1
p

|Ω|2(1−
m
p
) ≤ C.

Consequently, (up)p is bounded in W s,m(Ω) (with s = α − N
m). If m > 2N

α , then one has the
following estimate

||up||C0,γ(Ω) ≤ C[up]W s,m(Ω),

with γ = s − N
m > 0. Therefore, up to a subsequence, up converges uniformly to u∞ in Ω̄.

Moreover, we have u∞ ∈ C0,α(Ω) and

[u∞]α ≤ Λ.

Fix u ∈ C0,α(Ω) such that [u]α ≤ Λ and u = 1 on ∂Ω. Thanks again to the optimality of up,
we have

λ|{up > 0}| ≤ 1

p

∫
Ω×Ω

[ |up(x)−up(y)|
|x−y|α

Λ

]p
+ λ|{up > 0}| ≤ |Ω|2

p
+ λ |{u > 0}|.

Passing to the limit when p → ∞, we get

λ|{u∞ > 0}| ≤ λ lim inf
p

|{up > 0}| ≤ lim inf
p

|Ω|2

p
+ λ |{u > 0}| = λ|{u > 0}|.

□
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In order to show that u∞ is a viscosity solution to the fractional infinity Laplacian in
the positivity set, we need to introduce first the definition of a viscosity supersolution (resp.
subsolution).

Definition 2.1. We say that u is a viscosity supersolution of −Lpu = 0 in E if the following
holds: for every x0 ∈ E and ϕ ∈ C1(Ω) ∩ C(Ω̄) such that

ϕ(x0) = u(x0) and ϕ(x) ≤ u(x) for all x ∈ Ω̄,

then we have
−Lpϕ(x0) ≥ 0.

The requirement for a viscosity subsolution is symmetric: the test function is touching from
above and the inequality is reversed. Finally, a viscosity solution is defined as being both a
viscosity supersolution and a viscosity subsolution.

Proposition 2.3. For all p > 1, up is a viscosity solution to −Lpup = 0 in {up > 0}.

Proof. In order to prove that up is a viscosity solution, we will use some technical points from
the proof of [4, Proposition 6.4], where more details can be found there. First, we show that
up is a viscosity subsolution. Assume that there is a function φ ∈ C1(Ω) ∩ C(Ω) touching up
from above at some point x0 ∈ {up > 0} such that

−Lpφ(x0) > 0.

First, we claim that one can assume that up < ϕ in Ω\{x0}. Fix δ > 0 small enough and set
φδ(x) := φ(x) + δ|x− x0|2, for every x ∈ Ω. We have

|φδ(x)− φδ(y)|p−2[φδ(x)− φδ(y)]

= |φ(x)− φ(y) + δ[|x− x0|2 − |y − x0|2]|p−2[φ(x)− φ(y) + δ[|x− x0|2 − |y − x0|2]].

Yet, ∣∣∣∣|φδ(x)− φδ(y)|p−2[φδ(x)− φδ(y)]− |φ(x)− φ(y)|p−2[φ(x)− φ(y)]

∣∣∣∣
=

∣∣∣∣(p− 1)

(∫ 1

0
|φ(x)− φ(y) + δt[|x− x0|2 − |y − x0|2]|p−2 dt

)
δ[|x− x0|2 − |y − x0|2]

∣∣∣∣
≤ Cδ|x− y|p−1.

Then, we get
|Lpφδ(x)− Lpφ(x)| ≤ Cδ.

Therefore, −Lpφδ(x0) > 0 provided that δ > 0 is small enough. For ε > 0 small enough, we
define

φε := min{up, φ− ε} and φε := max{up, φ− ε}.

Since 0 ≤ up < ϕ in Ω\{x0}, φ(x0) = up(x0) > 0 and φ ∈ C(Ω), then we have φε = up on ∂Ω
and φ− ε > 0 on Ω, for all ε > 0 small enough. Yet, up is a minimizer and so, one has

(2.3)
1

p

∫
Ω×Ω

[ |up(x)−up(y)|
|x−y|α

Λ

]p
+ λ|{up > 0}| ≤ 1

p

∫
Ω×Ω

[ |φε(x)−φε(y)|
|x−y|α

Λ

]p
+ λ|{φε > 0}|.

For p ≥ 1, we have the following convexity inequality (see [11]):

|min{a, c} −min{b, d}|p + |max{a, c} −max{b, d}|p ≤ |a− b|p + |c− d|p.
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So, we have∫
Ω×Ω

|φε(x)− φε(y)|p

|x− y|αp
+

∫
Ω×Ω

|φε(x)− φε(y)|p

|x− y|αp
≤

∫
Ω×Ω

|up(x)− up(y)|p

|x− y|αp
+

∫
Ω×Ω

|φ(x)− φ(y)|p

|x− y|αp
.

But, it is clear that
|{φε > 0}| = |{up > 0}|.

Recalling (2.3), this yields that∫
Ω×Ω

|φε(x)− φε(y)|p

|x− y|αp
≤

∫
Ω×Ω

|φ(x)− φ(y)|p

|x− y|αp
.

Now, set

J (t) :=

∫
Ω×Ω

|(1− t)φ(x) + tφε(x)− (1− t)φ(y)− tφε(y)|p

|x− y|αp
, for all t ∈ [0, 1].

Yet, we have

J (t) ≤ (1− t)

∫
Ω×Ω

|φ(x)− φ(y)|p

|x− y|αp
+ t

∫
Ω×Ω

|φε(x)− φε(y)|p

|x− y|αp

≤
∫
Ω×Ω

|φ(x)− φ(y)|p

|x− y|αp
= J (0).

Hence, t = 0 maximizes J (t). Therefore, J ′(0) ≤ 0. But, we have

J ′(0) = p

∫
Ω×Ω

|φ(x)− φ(y)|p−1

|x− y|αp
φ(x)− φ(y)

|φ(x)− φ(y)|
[φε(x)− φ(x) + ε− (φε(y)− φ(y) + ε)] ≤ 0.

So, we get ∫
Ω
[−Lpφ(x)][φ

ε(x)− φ(x) + ε] ≤ 0,

which yields to a contradiction as soon as ε > 0 is small enough. In the same way we prove
that up is a viscosity supersolution. □

Proposition 2.4. The limit function u∞ is a viscosity solution to −L∞u∞ = 0 in the positivity
set {u∞ > 0}.

Proof. Fix x0 ∈ {u∞ > 0}. Let ϕ ∈ C1(Ω) ∩ C(Ω) be such that u∞ ≥ ϕ on Ω̄ and u∞(x0) =
ϕ(x0). Recall that one can assume that x0 is the unique minimizer of u∞ − ϕ. Set mp =
min[up − ϕ]. So, one has xp → x0 with up(xp) = ϕ(xp) +mp. Since up is a viscosity solution
in {up > 0}, then we have

−Lpϕ(xp) ≥ 0.

Hence, ∫
Ω

[ϕ(y)− ϕ(xp)]
p−1
−

|x− y|αp
dy ≥

∫
Ω

[ϕ(y)− ϕ(xp)]
p−1
+

|x− y|αp
dy.

Letting p → ∞ and thanks to [4, Lemma 6.5], we get the following inequality:

−L−
∞ϕ(x0) ≥ L+

∞ϕ(x0).
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Now, let us show that u∞ is a viscosity subsolution (so, it is a viscosity solution). Fix x0 ∈
{u∞ > 0}. Let ϕ ∈ C1(Ω) ∩ C(Ω̄) be such that u∞ ≤ ϕ on Ω̄ and u∞(x0) = ϕ(x0). Assume
again that x0 is the unique minimizer of u∞ − ϕ. Set Mp = max[up − ϕ] and xp ∈ Ω is such
that up(xp) = ϕ(xp) + Mp. We note again that xp → x0. Since up is a viscosity solution in
{up > 0}, then one has

−Lpϕ(xp) ≤ 0.

Hence,

−
∫
Ω

[ϕ(y)− ϕ(xp)]
p−1
+

|x− y|αp
dy +

∫
Ω

[ϕ(y)− ϕ(xp)]
p−1
−

|x− y|αp
dy ≤ 0.

Then, we get that

−L+
∞ϕ(x0)− L−

∞ϕ(x0) ≤ 0. □

3. Characterization of the best Hölder extension

Let Ω be a bounded domain in RN . For a subset A ⊂⊂ Ω, we consider the following
minimization problem:

(3.1) Λ(A) := min{[u]α : u ∈ C0,α(Ω̄), u ≥ 0, u = 1 on ∂Ω, u = 0 on A}.

Proposition 3.1. The following function u(x) = d(x,A)α

d(x,A)α+d(x,∂Ω)α minimizes Problem (3.1).

Proof. Clearly, this function u satisfies the boundary conditions u = 0 on A and u = 1 on ∂Ω.
Moreover, we have the following:

sup
y∈∂Ω∪A

u(y)− u(x)

|y − x|α
= sup

y∈∂Ω

1− u(x)

|y − x|α
= sup

y∈∂Ω

1− d(x,A)α

d(x,A)α+d(x,∂Ω)α

|y − x|α

=
d(x, ∂Ω)α

d(x,A)α + d(x, ∂Ω)α
sup
y∈∂Ω

1

|y − x|α
=

1

d(x,A)α + d(x, ∂Ω)α

and

inf
y∈∂Ω∪A

u(y)− u(x)

|y − x|α
= inf

y∈A

−u(x)

|y − x|α
= − sup

y∈A

d(x,A)α

d(x,A)α+d(x,∂Ω)α

|y − x|α

= − d(x,A)α

d(x,A)α + d(x, ∂Ω)α
sup
y∈A

1

|y − x|α
= − 1

d(x,A)α + d(x, ∂Ω)α
.

Hence,

sup
y∈∂Ω∪A

u(y)− u(x)

|y − x|α
+ inf

y∈∂Ω∪A

u(y)− u(x)

|y − x|α
= 0.

For every x ∈ Ω, we claim that

sup
y∈Ω̄, y ̸=x

u(y)− u(x)

|y − x|α
= sup

y∈∂Ω

u(y)− u(x)

|y − x|α

and

inf
y∈Ω̄, y ̸=x

u(y)− u(x)

|y − x|α
= inf

y∈A

u(y)− u(x)

|y − x|α
.
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Fix x1, x2 ∈ Ω. Assume that S+
x1

:= supy∈∂Ω
u(y)−u(x1)
|y−x1|α ≥ supy∈∂Ω

u(y)−u(x2)
|y−x2|α := S+

x2
. Let

y+1 ∈ ∂Ω be such that

S+
x1

=
1− u(x1)

|y+1 − x1|α
.

Yet, we have

S+
x2

≥ 1− u(x2)

|y+1 − x2|α
.

Hence,

u(x1)− u(x2) ≤ S+
x2

|y+1 − x2|α − S+
x1
|y+1 − x1|α ≤ S+

x2
|x2 − x1|α.

Consequently,
u(x1)− u(x2)

|x1 − x2|α
≤ S+

x2
if S+

x1
≥ S+

x2
.

On the other side, we denote by S−
x := infy∈A

u(y)−u(x)
|y−x|α . Since S+

x1
≥ S+

x2
and S+

x1
+ S−

x1
=

S+
x2

+ S−
x2

= 0 then we have S−
x1

≤ S−
x2

≤ 0. Let y−1 ∈ A be such that

S−
x1

= − u(x1)

|y−1 − x1|α
.

One has

S−
x2

≤ − u(x2)

|y−1 − x1|α
.

Then, we get

u(x1)−u(x2) ≥ −S−
x1

|y−1 −x1|α+S−
x2

|y−1 −x2|α ≥ S−
x2
[|y−1 −x2|α−|y−1 −x1|α] ≥ S−

x2
|x2−x1|α.

Therefore,

u(x2)− u(x1) ≤ −S−
x2
|x2 − x1|α = S+

x2
|x2 − x1|α.

Interchanging x1 and x2, we get

u(x1)− u(x2)

|x1 − x2|α
≤ S+

x1
if S+

x1
≤ S+

x2
.

Hence,

sup
x1∈Ω̄, x1 ̸=x2

u(x1)− u(x2)

|x1 − x2|α
≤ sup

y∈∂Ω

u(y)− u(x2)

|y − x2|α
.

In the same way, we show that

inf
y∈Ω̄, y ̸=x

u(y)− u(x)

|y − x|α
= inf

y∈A

u(y)− u(x)

|y − x|α
.

Thus, we infer that

(3.2) sup
y∈Ω̄, y ̸=x

u(y)− u(x)

|y − x|α
+ inf

y∈Ω̄, y ̸=x

u(y)− u(x)

|y − x|α
= 0.

Finally, assume that there is a function v ∈ C0,α(Ω) such that v = 0 on A and v = 1 on ∂Ω
with

[v]α < [u]α.
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This implies that there is a point x0 ∈ Ω such that

[v]α < sup
y∈Ω̄, y ̸=x0

u(y)− u(x0)

|y − x0|α
= sup

y∈∂Ω

u(y)− u(x0)

|y − x0|α
= sup

y∈∂Ω

v(y)− u(x0)

|y − x0|α
.

If u(x0) ≥ v(x0), we get that

[v]α < sup
y∈∂Ω

v(y)− u(x0)

|y − x0|α
≤ sup

y∈∂Ω

v(y)− v(x0)

|y − x0|α
,

which is a contradiction. Finally, assume that u(x0) < v(x0). Then, thanks to (3.2), we have

[v]α < sup
y∈Ω̄, y ̸=x0

u(y)− u(x0)

|y − x0|α
= − inf

y∈Ω̄, y ̸=x0

u(y)− u(x0)

|y − x0|α
= − inf

y∈A

u(y)− u(x0)

|y − x0|α

= − inf
y∈A

v(y)− u(x0)

|y − x0|α
≤ − inf

y∈A

v(y)− v(x0)

|y − x0|α
.

But, this is again a contradiction. □

4. Optimal hole

Fix λ > 0. Then, we consider the problem of minimizing the optimal α−Hölder semi-norm
Λ(A), among all nonnegative functions u in C0,α(Ω̄) with a prescribed Dirichlet boundary
condition u = 1 on ∂Ω and u = 0 on A, plus a penalization on the volume of the set A. More
precisely, we study the following shape optimization problem:

(4.1) min{Λ(A)− λ|A| : A ⊂⊂ Ω},
where

Λ(A) := min{[u]α : u ∈ C0,α(Ω̄), u ≥ 0, u = 1 on ∂Ω, u = 0 on A}.

First, we start by proving the existence of a solution to Problem (4.1).

Proposition 4.1. There exists an optimal set A⋆ that minimizes Problem (4.1).

Proof. Let {An}n be a minimizing sequence in Problem (4.1). For every n ∈ N, we may assume
that An is closed since it is clear that Λ(An) = Λ(An) while |An| ≤ |An|. For all n ∈ N, let un
be a minimizer of Problem (3.1), i.e. Λ(An) = [un]α. Then, there is a constant C < ∞ such
that for all n ∈ N,

Λ(An)− λ|An| = [un]α − λ|An| ≤ C.

In particular, [un]α ≤ C + λ|Ω|. Yet, un = 1 on ∂Ω. Hence, {un}n is uniformly bounded since

|un(x)| ≤ 1 + C diam(Ω)α, for all x ∈ Ω̄.

So, up to subsequences, un → u uniformly in Ω̄ and An converges to A in the Hausdorff
distance. Clearly, u = 1 on ∂Ω and u = 0 on A. But, one has

(4.2) |un(x)− un(y)| ≤ [un]α |x− y|α, for all x, y ∈ Ω̄.

Passing to the limit in (4.2) when n → ∞, this yields that

|u(x)− u(y)| ≤ lim inf
n

[un]α |x− y|α, for all x, y ∈ Ω̄.
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Thus,

(4.3) Λ(A) ≤ [u]α ≤ lim inf
n

[un]α = lim inf
n

Λ(An).

On the other hand, if x ∈ An for all n large enough then we also have x ∈ A and so, we get
that

(4.4) lim sup
n

|An| ≤ |A|.

Combining (4.3) & (4.4), we get

(4.5) Λ(A)− λ|A| ≤ lim inf
n

[Λ(An)− λ|An|].

This implies that A is an optimal set. □

In the next proposition, we show that we can always find an explicit optimal set to Problem
(4.1). Let RΩ be the inradius of Ω (the radius of the largest ball that can be contained in Ω),
i.e.

RΩ = max
x∈Ω

d(x, ∂Ω).

Proposition 4.2. For every λ > 0, at least one of the following two statements holds: A = ∅
is an optimal set or there exists r ∈ (0, RΩ] such that Ar := {x : d(x, ∂Ω) ≥ r} is an optimal
set. Moreover, the function

ur(x) =

[
1− d(x, ∂Ω)α

rα

]
+

minimizes Λ(Ar). More precisely, if there is an optimal set A such that Λ(A) < 1
Rα

Ω
then

A = ∅, while if Λ(A) ≥ 1
Rα

Ω
then for r := 1

Λ(A)1/α
∈ (0, RΩ], Ar is an optimal set.

Proof. Let A ⊂⊂ Ω and u be a minimizer in Problem (3.1). Let us denote by P (x) any
projection point of x onto the boundary. Since u = 1 on ∂Ω, then we have that

|u(x)− 1| = |u(x)− u(P (x))| ≤ [u]α |x− P (x)|α = [u]α d(x, ∂Ω)
α.

For every x ∈ A, one has u(x) = 0. Then, we must have

d(x, ∂Ω) ≥ 1

[u]
1/α
α

.

This implies that

(4.6)

{
x : d(x, ∂Ω) <

1

[u]
1/α
α

}
⊂ {u > 0}.

If RΩ < 1
Λ(A)1/α

= 1

[u]
1/α
α

then {u > 0} = Ω, since for every x ∈ Ω one has

d(x, ∂Ω) ≤ RΩ <
1

[u]
1/α
α

and then, A = ∅ (so, u = 1).
Finally, assume that RΩ ≥ 1

Λ(A)1/α
= 1

[u]
1/α
α

. So, there is a r ∈ (0, RΩ] such that [u]α = 1
rα .

Now, consider the function ur. It is clear that ur ∈ C0,α(Ω̄) with [ur]α = 1
rα . From the

definition of Ar, we also have ur = 1 on ∂Ω and ur = 0 on Ar. Hence, Λ(A) = [u]α = [ur]α.
Recalling (4.6), one has

(4.7) Ω\Ar =

{
x : d(x, ∂Ω) < r

}
⊂ {u > 0}.
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Yet, u = 0 on A. Hence, A ⊂ Ar. Thus, we have the following:

|A| ≤ |Ar|.
From the optimality of A, we infer that

Λ(A)− λ|A| ≤ Λ(Ar)− λ|Ar| ≤ [ur]α − λ|Ar| ≤ [ur]α − λ|A| = Λ(A)− λ|A|.
This yields that Ar is an optimal set in Problem (4.1), ur is also a minimizer in Λ(Ar) and,
A = Ar almost everywhere. □

Proposition 4.3. Assume Ω is convex. Then, there exists λ⋆ > 0 such that for all λ < λ⋆,
A = ∅ is the unique optimal set. For λ = λ⋆, there exists a unique rλ⋆ ∈ (0, RΩ) such that
Arλ⋆ is an optimal set (while A = ∅ is always optimal). And for λ > λ⋆, there is a rλ ∈ (0, RΩ)
such that Arλ is optimal. Moreover, we have the following characterization:

rα+1
λ HN−1(∂Arλ) =

α

λ
, for all λ ≥ λ⋆,

and

rαλ⋆ |Arλ⋆ | =
1

λ⋆
.

Proof. First, we define
fλ(r) := Λ(Ar)− λ|Ar|.

Thanks to Proposition 4.2, we have

fΛ(r) = [ur]α + λ|Ω\Ar| − λ|Ω|, for all r ∈ (0, RΩ].

Hence, one has

fΛ(r) =
1

rα
+ λ|{x : d(x, ∂Ω) < r}| − λ|Ω|.

Using the coarea formula, we have

fλ(r) =
1

rα
+ λ

∫ r

o
HN−1({x : d(x, ∂Ω) = t}) dt− λ|Ω|.

Then,

f ′
λ(r) = − α

rα+1
+ λHN−1({x : d(x, ∂Ω) = r}).

So,

f ′
λ(r) ≤ 0 ⇐⇒ α

rα+1
≥ λHN−1(∂Ar) ⇐⇒ α

1
N−1

r
α+1
N−1

≥ λ
1

N−1 HN−1(∂Ar)
1

N−1 .

For simplicity of notation, we set

Ψ(r) = HN−1(∂Ar)
1

N−1 and G(r) =
α

1
N−1

r
α+1
N−1

.

Since Ω is convex, thanks to the Brunn-Minkowski inequality, Ψ is decreasing and concave.
However, G is decreasing and strictly convex. Moreover, one has limr→0+ G(r) = +∞. First,
assume that Ψ(RΩ) = 0 (we note that this is not the case in general; consider the case when Ω
is a stadium or simply a rectangle). Then, thanks to these properties on G and Ψ, it is clear
that there is a constant λi such that the following statements hold:

• G(r) > λ
1

N−1Ψ(r) on [0, RΩ], for all λ < λi.
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• There exists ri ∈ (0, RΩ] such that G(ri) = λ
1

N−1

i Ψ(ri) and G(r) > λ
1

N−1

i Ψ(r) for all r ̸= ri.

• There exist rλ, Rλ ∈ (0, RΩ] such that G(rλ) = λ
1

N−1Ψ(rλ), G(Rλ) = λ
1

N−1Ψ(Rλ) and,

G(r) < λ
1

N−1Ψ(r) ⇐⇒ rλ < r < Rλ.

For all λ < λi, we have f ′
λ(r) < 0 for every 0 < r ≤ RΩ. Hence, we get the following:

min
r∈(0,RΩ]

fλ(r) = fλ(RΩ) =
1

Rα
Ω

> 0.

Then,

Λ(Ar)− λ|Ar| > 0, for all r ∈ (0, RΩ].

Recalling Proposition 4.2, this implies that for any optimal set A, we must have Λ(A) < 1
Rα

Ω

and so, A = ∅. If λ = λi, f
′
λ(r) ≤ 0 and so, we get again that

min
r∈(0,RΩ]

fλ(r) = fλ(RΩ) =
1

Rα
Ω

> 0

and so, A = ∅ is the unique minimizer.
Now, assume λ > λi. Then, one has

min
r∈(0,RΩ]

fλ(r) = min{fλ(rΛ), fλ(RΩ)} = min

{
fλ(rλ),

1

Rα
Ω

}
.

Yet, minr∈(0,RΩ] f0(r) = 1
Rα

Ω
> 0 while minr∈(0,RΩ] fλ(r) < 0 for λ > λi sufficiently large.

Moreover, it is easy to see that λ 7→ minr∈(0,RΩ] fλ(r) is continuous and decreasing. Hence,
there is a unique λ⋆ > λi such that minr∈(0,RΩ] fλ⋆(r) = 0. Thus, fλ⋆(rλ⋆) = 0 for some
rλ⋆ ∈ (0, RΩ] and so, we get that

Λ(Arλ⋆ )− λ⋆|Arλ⋆ | = 0 < Λ(Ar)− λ⋆|Ar|, r ̸= rλ⋆ .

This implies that Arλ⋆ is an optimal set (while A = ∅ is always optimal). If λ > λ⋆, then there
exists rλ such that fλ(rλ) = minr∈(0,RΩ] fλ(rλ) < 0. Hence, ArΛ is a minimizer.

Finally, we note that if λi < λ < λ⋆ then we have

min
r∈(0,RΩ]

fλ(r) = min

{
fλ(rλ),

1

Rα
Ω

}
> 0.

Hence,

Λ(Ar)− λ|Ar| > 0, for all r ∈ (0, RΩ].

So, A = ∅ is again the unique minimizer.

In the same way, we treat the case when Ψ(RΩ) > 0; the only difference now is that for λ

large there exists a unique rλ ∈ (0, RΩ] such that G(rλ) = λ
1

N−1Ψ(rλ) and G(r) < λ
1

N−1Ψ(r)
when r > rλ. This yields that minr∈(0,RΩ] fλ(r) = fλ(rλ) < 0 and so, Arλ is an optimal set. □
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