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Abstract. This paper investigates the existence and qualitative properties of minimizers
for a class of nonlocal micromagnetic energy functionals defined on bounded domains.
The considered energy functional consists of a symmetric exchange interaction, which
penalizes spatial variations in magnetization, and a magnetostatic self-energy term that
accounts for long-range dipolar interactions. Motivated by the extension of Brown’s
fundamental theorem on fine ferromagnetic particles to nonlocal settings, we develop a
rigorous variational framework in L2(Ω;S2) under mild assumptions on the interaction
kernel j, including symmetry, Lévy-type integrability, and prescribed singular behavior.
For spherical domains, we generalize Brown’s fundamental results by identifying critical
radii R∗ and R∗∗ that delineate distinct energetic regimes: for R ≤ R∗, the uniform
magnetization state is energetically preferable (small-body regime), whereas for R ≥
R∗∗, non-uniform magnetization configurations become dominant (large-body regime).
These transitions are analyzed through Poincaré-type inequalities and explicit energy
comparisons between uniform and vortex-like magnetization states.

Our results directly connect classical micromagnetic theory and contemporary non-
local models, providing new insights into domain structure formation in nanoscale mag-
netism. Furthermore, the mathematical framework developed in this work contributes to
advancing theoretical foundations for applications in spintronics and data storage tech-
nologies.

1. Introduction and Motivation

The study of nonlocal energy functionals is central in mathematical physics, offer-
ing a powerful framework for modeling systems governed by long-range interactions.
These functionals are particularly relevant in materials science, where phenomena such
as micromagnetics, phase transitions, and elasticity demand a nuanced treatment of in-
teractions across multiple scales. In the context of ferromagnetic materials, the in-
terplay between short-range quantum mechanical effects and long-range magnetostatic
forces dictates the formation of complex magnetization patterns—domain walls, vortices,
and skyrmions—that hold significant potential for applications in spintronics and high-
density data storage technologies.
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This work focuses on the variational analysis of a nonlocal micromagnetic energy
functional defined on bounded domains. Specifically, we investigate the energy func-
tional

EΩ(m) := JΩ(m) +WΩ(m), (1.1)

where the terms JΩ and WΩ are defined as

JΩ(m) :=

¨
Ω×Ω

j(x− y)|m(x)−m(y)|2 dx dy, (1.2)

and

WΩ(m) := −
ˆ
Ω

hd[m](x) ·m(x) dx. (1.3)

Here, JΩ(m) represents a symmetric nonlocal exchange interaction, while WΩ(m) ac-
counts for the so-called magnetostatic self-energy. The functional EΩ is defined over the
space L2(Ω;S2) of square-integrable magnetization fields m : Ω → S2 on a bounded
domain Ω ⊂ R3, reflecting the physical constraint of local saturation.

Our work is motivated by Brown’s fundamental theorem of fine ferromagnetic par-
ticles [10], a cornerstone in the variational theory of micromagnetism. Brown’s theorem
establishes a critical domain size below which uniform magnetization minimizes the clas-
sical micromagnetic energy. Specifically, for ferromagnetic particles shaped as spheres
or triaxial ellipsoids, the ground state is uniformly magnetized if the particle’s diameter
is below a critical size (small bodies regime). For larger particles, long-range dipole-
dipole interactions dominate, leading to non-uniform configurations, such as vortex-like
magnetization patterns (large bodies regime). While Brown’s result has already been rig-
orously formulated in Sobolev spaces, where the Dirichlet energy approximates nonlocal
Heisenberg-type energies in the limit of short-range interactions, its extension to nonlocal
settings remains unexplored. This gap is particularly relevant given the growing interest
in nonlocal models, which better capture nanoscale phenomena where long-range inter-
actions and geometric confinement play decisive roles.

A primary objective of this study is to identify physically meaningful conditions on
the exchange kernel j in (1.2) that enable the development of a robust variational frame-
work for micromagnetism directly inL2(Ω;S2). Specifically, we aim to establish assump-
tions on j that not only preserve the phenomenological insights of Brown’s theorem for
spherical domains but also ensure sufficient compactness, thereby enhancing the model’s
practical applicability for analyzing long-range interactions in complex geometries. This
approach is pivotal for extending the predictive power of classical micromagnetic models
to more general, nonlocal settings. Moreover, our proposed framework is highly relevant
for emerging applications in nanoscale magnetism, where nonlocal effects and intricate
domain structures critically shape magnetic behavior.

In this work, we begin by establishing compactness results for the energy functional
EΩ, where Ω is a generic bounded open set, thereby ensuring the existence of minimiz-
ers. The compactness result is presented in a more abstract setting, which applies to a
broader class of nonlocal exchange functionals JΩ and to the case where WΩ is replaced
by a functional that is bounded from below and continuous for the strong topology in L2.
Additionally, we extend the analysis to a more general framework, where Ω is a bounded
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open subset of Rn and the maps m take values in a compact set N ⊆ Rℓ. These re-
sults provide the necessary foundations for the subsequent investigation of the energy
functional in specific domains, ensuring the necessary conditions for the existence of
minimizers.

Following this, we focus on domains Ω shaped as balls with radius R. We establish
that Brown’s theorem remains valid in the nonlocal setting under physically reasonable
assumptions on the exchange kernel j. Specifically, we prove the existence of a critical
radiusR∗ such that, forR ≤ R∗ (small bodies regime), all minimizers of the nonlocal en-
ergy functional EΩ exhibit spatially uniform magnetization. Conversely, when R ≥ R∗∗,
for a second threshold radius R∗∗ ≥ R∗ (large bodies regime), the ground states tran-
sition to non-uniform configurations, often characterized by vortex-like structures. This
behavior underscores the intricate interplay between exchange interactions, which favor
uniform magnetization and magnetostatic interactions, which drive spatial variation, re-
sulting in a delicate energy balance that governs the observed transitions.

Before stating our results, we set the stage by introducing the proper functional back-
ground and providing a brief review of the physical context necessary to understand how
our results fit into the variational theory of micromagnetism. This includes a discus-
sion of the nonlocal exchange interaction, the magnetostatic self-energy, and the physical
principles underlying Brown’s theorem. By unifying these elements, we aim to provide a
comprehensive framework for analyzing nonlocal micromagnetic energy functionals and
their dependence on domain size.

Outline of the paper. The structure of the paper is as follows. The remainder of this
section provides an overview of the physical framework that motivated our study. In
Section 2, we review the state of the art in relation to our contributions, present a detailed
formulation of the problem, and state the main results. Sections 3 and 4 are devoted to the
proofs. Specifically, Section 3 focuses on the compactness argument and the existence
result for the general nonlocal model, while Section 4 extends Brown’s theorem to the
nonlocal setting.

1.1. Physics context: Micromagnetics. Micromagnetics is a continuum theory rooted
in the works of of Landau-Lifshitz [22] and Brown [9, 8], which describes magnetic
phenomena at the mesoscopic scale (1–1000 nm). At this intermediate resolution, for a
rigid ferromagnetic particle occupying a region Ω ⊆ R3, the magnetization is modeled
as a vector field M : Ω → R3 with constant magnitude Ms (spontaneous magnetiza-
tion), normalized here to unity. The theory balances competing energy contributions:
exchange interactions favoring alignment, magnetostatic forces promoting flux closure,
and anisotropy terms tied to crystalline structure. In this work, we focus on the interplay
between nonlocal exchange and magnetostatic energies, which govern domain structure
formation in the absence of lower-order contributions like magnetocrystalline anisotropy
and external fields, whose contributions do not affect neither the existence of minimizers
(see Corollary 2.10) nor the domain-dependence phenomena, since the leading contribu-
tions result to be the two nonlocal terms JΩ and WΩ (cf. Brown in [10]). In this setting,
the observable magnetization states are the minimizers of the micromagnetic energy func-
tional EΩ = JΩ +WΩ introduced in (1.1), defined on the metric space L2(Ω;S2).
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The nonlocal exchange interactionJΩ in (1.2) penalizes non-uniformities in the mag-
netization orientation. The kernel j : R3 → R+ encodes interaction strength between
magnetic moments at positions x and y, with symmetry (j(z) = j(−z)) ensuring energy
conservation. Physically, JΩ arises as the continuum limit of discrete Heisenberg-type
interactions, where j(x − y) corresponds to exchange constants between atomic spins.
Under localization (j(z) ∼ ρε(z)/|z|2 as ε → 0), JΩ recovers the classical Dirichlet
energy, as shown by Bourgain, Brezis, and Mironescu in [5].

The magnetostatic self-energy WΩ quantifies the long-range dipolar interactions
among the magnetic moments. For a magnetization m ∈ L2(Ω;R3) the magnetostatic
self-energy WΩ(m) is defined by (1.3). In the expression of WΩ(m), the field hd[m]
(commonly referred to as the demagnetizing field or stray field) is characterized as the
unique solution in L2(R3;R3) of the Maxwell–Ampére equations of magnetostatics (see,
e.g., [14]): {

div(mχΩ + hd[m]) = 0 in R3,
curl hd[m] = 0 in R3.

(1.4)

In the above,mχΩ denotes the extension ofm by zero outsideΩ, and hd acts as a nonlocal
operator on L2(R3;R3). It is well known that hd is a bounded, self-adjoint operator with
norm one and is negative definite; indeed, one may show that

WΩ(m) =

ˆ
R3

|hd[m](x)|2 dx, (1.5)

for all m ∈ L2(Ω;R3).
In the particular case where Ω is a bounded Lipschitz domain and m ∈ H1(Ω;S2),

the unique solution of (1.4) can be expressed as hd[m] = −∇Φ, with Φ ∈ H1(R3)
defined for x ∈ Ω by

Φ(x) =
1

4π

{ˆ
Ω

−divm(y)

|x− y|
dy +

ˆ
∂Ω

m(y) · n(y)
|x− y|

dS(y)

}
. (1.6)

Here, n denotes the outward unit normal on ∂Ω, and for simplicity, we omitted mathe-
matically irrelevant constants. For further properties and detailed discussions regarding
the demagnetizing field operator and the magnetostatic self-energy, we refer the reader
to [14, 27].

2. State of the art and contributions of the present work

2.1. State of the art. Nonlocal models have emerged as a prominent area of interest
in applied mathematics, largely because of their effectiveness in capturing intricate be-
haviors, microstructural changes, and interactions across different geometric scales, all
while remaining aligned with experimental observations. These models find extensive
application in continuum mechanics and phase transitions, as they inherently accommo-
date long-range interactions. While there is extensive literature on nonlocal models; this
discussion will focus on specific studies that are particularly relevant to our findings and
applications in micromagnetics.

In the classical theory of micromagnetism, the exchange energy is local and given
by the classical Dirichlet energy

´
Ω
|∇m|2. A cornerstone of the theory is the so-called
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Brown’s fundamental theorem of fine ferromagnetic particles [10]: there exists a criti-
cal diameter dc such that, for d < dc, uniform magnetization states are the sole global
minimizers of the micromagnetic free energy functional. The result explains the high
coercivity observed in fine ferromagnetic particles: in sufficiently small single-domain
particles, where inter-particle magnetostatic interactions are negligible; magnetization
reversal occurs through rigid rotation instead of domain wall displacement, resulting in
enhanced coercivity. In its rigorous form, in [10], the result has been rigorously estab-
lished for spherical particles, whereas real materials often possess elongated geometries.
Aharoni expanded upon Brown’s findings to include prolate spheroids [1], and further
extensions to general triaxial ellipsoidal particles have been provided in [15] (see also
[2]) where also an estimate of dc is given in terms of the so-called demagnetizing fac-
tors of the general ellipsoid [13]. The result was further extended in [3], where it was
proven that local minimizers are necessarily spatially uniform if the ferromagnetic par-
ticle occupies a sufficiently small ellipsoidal region, as well as a quantitative estimate of
the minimal exchange energy in sufficiently small (uniformly) convex particles, which
justify the Stoner-Wohlfarth approximation.

In the context of nonlocal interactions, to the best of authors’ knowledge, Rogers
introduced the first model for symmetric exchange energy in [28]; in there, the author
proposes a new model designed to describe macroscopic effects in ferromagnetic mate-
rials in which the nonlocal term

Enl(m) =

¨
Ω×Ω

m(x) ·m(y)k(x− y) dx dy, (2.1)

where, up to material-dependent constants, the kernel k(x − y) = e−γ|x−y|/|x − y| re-
places the Dirichlet energy. Also, in there, it is proved an existence result for measure-
valued magnetizations minimizing the nonlocal exchange energy. The drawback is that
there is no way of ensuring that the limit of minimizing sequence satisfies the nonconvex
constraint of m being S2-valued, i.e., the weak limit of the minimizing sequence is not a
solution to the problem, and one considers Young’s measure associated with the sequence
as a solution of the minimization problem. The results in [28] are inspired by the work
of [20], who studied measure-valued minimizers within the context of the theory when
the exchange energy is omitted; the study reveals that even in the absence of exchange
energy, minimizing sequences can accurately model many features of observed domain
structure.

One of the advantages of these nonlocal models is that they avoid the coercivity
paradox described by Brown (see [9]). This paradox stems from the observation that these
models tend to predict excessively wide hysteresis loops. In [6], the authors demonstrate
that the nonlocal model introduced in [28] does not suffer from the coercivity paradox.

In this direction, a central challenge in the study of nonlocal micromagnetics is the
identification of suitable mathematical conditions on the exchange kernels that guarantee
a well-posed variational framework in the weaker setting of L2(Ω,S2). Addressing this
issue, our work extends Brown’s theorem to a nonlocal setting, thereby establishing a cru-
cial theoretical link between classical micromagnetics and modern variational approaches
to nonlocal interactions that remain consistent with physical observations. This extension
provides a rigorous foundation for the class of admissible kernels required to guarantee
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the existence and qualitative properties of minimizers of nonlocal micromagnetic energy
functionals, offering new insights into the influence of long-range interactions on mag-
netic domain structures.

Our existence theorem is based on a compactness argument in L2(Ω;N ), where N
is a compact set, that generalizes the findings of [21], which established compactness in
L2
loc(Rn) under the same kernel assumptions. A related compactness result was previ-

ously obtained in [11], where additional assumptions on the interaction kernel—such as
radial symmetry, positivity, and controlled growth near the origin—were imposed (see
conditions (H1) and (H2) in [11]).

The interaction kernels considered in this work, as well as in the aforementioned
studies, belong to the class of Lévy kernels. They can be considered a generalization
of the fractional kernel (see, e.g., [16]), and indeed, in the literature, Lévy kernels are
frequently associated with nonlocal operators in the study of partial differential equations
(PDEs), including Dirichlet and Neumann problems (see, e.g., [17, 18] and references
therein). However, the nonlocal energies corresponding to these operators differ slightly
from those considered here, as they are typically defined for functions in the entire space
Rn but subject to nonlocal boundary conditions.

In contrast, energies of the type (1.2) have received less attention in this context
and are often analyzed from a probabilistic perspective, particularly in connection with
censored Lévy processes (see, e.g., [4]). These processes, which involve jumps and heavy
tails are particularly suited for modeling phenomena where abrupt changes or outliers are
significant.

Finally, we mention that a similar variational framework has been explored in the
study of nonlocal problems arising in peridynamics, where the governing equations are
formulated using nonlocal integral operators rather than classical local differential oper-
ators (see, e.g., [23, 24, 25]).

2.2. Contributions of the present work I: Existence of minimizers. A key objective
of this work is to establish a rigorous variational framework for nonlocal micromagnetics,
focusing on the interplay between exchange interactions and magnetostatic self-energy.
For that, we introduce a general class of nonlocal functionals characterized by an inter-
action kernel satisfying precise analytical properties.

We consider an exchange kernel j : Rn → [0,+∞] that adheres to the following
assumptions:

(J1) Symmetry: The kernel is symmetric, meaning

j(−z) = j(z) for all z ∈ Rn.

(J2) Lévy-type Condition: The kernel satisfies

Lj :=

ˆ
Rn

min{1, |z|2} j(z) dz < +∞.

(J3) Non-integrability Condition: To ensure the nonlocal nature of the interaction,
the kernel satisfies

j /∈ L1(BR) for every R > 0,
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where BR denotes the ball of radius R centered at the origin.

For a compact set N ⊆ Rℓ and a bounded open set Ω ⊆ Rn, we define the function
spaces L2(Ω;N ) := {m ∈ L2(Ω;Rℓ) : m ∈ N a.e. in Ω} and

X j(Ω;N ) :=
{
m ∈ L2(Ω;N ) : JΩ(m) < +∞

}
, (2.2)

where the nonlocal interaction energy JΩ is given by (1.2). The notation extends to cases
where m is not constrained to take values in the compact set N . Specifically, we use
X j(Ω;Rℓ) to denote the space of functions in L2(Ω;Rℓ) with finite JΩ-energy.

To consider more general interaction mechanisms that can be of some relevance in
physical contexts, even different from micromagnetics (see also Remark 2.4), we intro-
duce a function ψ : N ×N → [0,+∞) and a measurable kernel K : Ω×Ω → [0,+∞]
satisfying, for some constant Λ ≥ 1, the following growth conditions:

1

Λ
|p− q|2 ≤ ψ(p, q) ≤ Λ|p− q|2 for all p, q ∈ N , (2.3)

and
1

Λ
j(x− y) ≤ K(x, y) for a.e. x, y ∈ Ω. (2.4)

These conditions ensure that K controls the nonlocal interaction strength while ψ can
be tough as modeling specific geometric or energetic properties of the target manifold.
Then, for every m ∈ X j(Ω;N ) we define the functionals

KΩ(m) :=

¨
Ω×Ω

K(x, y)|m(x)−m(y)|2 dx dy (2.5)

and
FΩ(m) :=

¨
Ω×Ω

K(x, y)ψ(m(x),m(y)) dx dy. (2.6)

From (2.3) and (2.4), we deduce the energy bounds

JΩ(m) ≤ ΛKΩ(m) ≤ Λ2FΩ(m) ≤ Λ3KΩ(m), (2.7)

which establish a fundamental connection between these functionals: FΩ bounded is
equivalent to havingKΩ bounded, and both situations imply a bound onJΩ. In particular,
the functional FΩ(m) is finite if and only if m belongs to the space

XK(Ω;N ) :=
{
m ∈ L2(Ω;N ) : KΩ(m) < +∞

}
,

and we have the inclusion XK(Ω;N ) ⊆ X j(Ω;N ).
Our first result is a compactness theorem, which is crucial for the variational analysis

of the minimizers of the nonlocal energy functionals we are interested in; in primis, the
energy functional (1.1) issuing from the variational theory of micromagnetism.

Theorem 2.1 (Compactness). Let (mk)k ⊆ XK(Ω;N ) be such that

sup
h∈N

FΩ(mh) < +∞. (2.8)

Then, there exist a subsequence (mkh)h and a function m ∈ XK(Ω;N ) such that

lim
h→∞

∥mkh −m∥L2(Ω;Rℓ) = 0.
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This result extends the compactness arguments developed in [21, Theorem 1.1], provid-
ing a foundational step for establishing existence theorems for minimizers of nonlocal
micromagnetic energies. The proof is presented in Section 3.

Remark 2.2 (On the necessity of Assumption (J3)). Assumption (J3) (which ensures the
non-integrability of j) plays a key role in establishing strong compactness. Indeed, as
observed in [21], if j ∈ L1(Rn), then for any m ∈ L2(Ω;Rℓ), the nonlocal energy
satisfies the estimate¨

Ω×Ω

|m(x)−m(y)|2j(x− y) dx dy ≤ 4 ∥m∥2L2(Ω;Rℓ)∥j∥L1(Rn).

As a consequence, the space X j(Ω;Rℓ) reduces to L2(Ω;Rℓ), leading to a loss of com-
pactness.

Remark 2.3 (About Assumption (J2)). The Lévy-type condition (J2) places two require-
ments on the kernel j: first, it prevents j from being too singular near zero, and second,
it ensures that j is integrable away from the origin, including at infinity. If we restrict our
attention to a fixed bounded open set Ω of diameter R, we may equivalently replace (J2)
with ˆ

BR

|z|2j(z)dz < +∞.

However, the integrability of j at infinity becomes essential when examining the be-
havior of minimizers in balls of growing radius, as treated in Theorem 2.12 (see also
Lemma 2.8).

Remark 2.4 (Motivation for the function ψ). The motivation for considering a general
function ψ satisfying (2.3), rather than |p − q|2, arises when the target space N is a
compact Riemannian submanifold of Rℓ. In this setting, N is naturally endowed with its
intrinsic geodesic distance dN , which is equivalent to the Euclidean distance induced by
the ambient space, meaning that there exists a constant CN ≥ 1 such that

|p− q| ≤ dN (p, q) ≤ CN |p− q| for all p, q ∈ N . (2.9)

This equivalence suggests that choosing ψ = d2N in the definition of the nonlocal en-
ergy FΩ provides a more faithful measure of interaction between valuesm(x) andm(y),
preserving the intrinsic geometry of N . A similar reasoning applies whenever a com-
pact subset N ⊆ Rℓ is equipped with a distance dN that is equivalent to the Euclidean
distance.

Our second result concerns the existence of minimizers for the nonlocal energy func-
tional (1.1). In fact, we can prove the existence of minimizers for a broader class of
nonlocal energy functionals. Specifically, we consider the following functional:

IΩ(m) := FΩ(m)+PΩ(m) =

¨
Ω×Ω

K(x, y)ψ(m(x),m(y)) dx dy + PΩ(m), (2.10)

which is defined for every m ∈ XK(Ω;N ). The first term represents the functional FΩ

introduced in (2.6), while the second term PΩ : L2(Ω;N ) → R is a functional that is
bounded from below and continuous for the strong topology in L2.
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Minimizing the functional FΩ by itself is trivial, as it does not require any conditions
on the kernel K (other than its non-negativity and its being finite almost everywhere),
since FΩ ≥ 0 and FΩ(m) = 0 whenever m is a constant configuration. On the other
hand, given the non-convex constraint of m being N -valued, minimizing the functional
IΩ, which is the sum of the nonlocal interaction FΩ and the energy PΩ (of which the
magnetostatic self-energy PΩ = WΩ, as defined in (1.3), is an example), requires addi-
tional considerations. In this context, we establish the following general existence result,
whose proof is provided in Section 3 as a direct consequence of the compactness result
stated in Theorem 2.1.

Theorem 2.5 (Existence of minimizers). The functional IΩ defined in (2.10), admits at
least a minimizer in the class XK(Ω;N ).

It is worth noting that the existence of a minimizer for IΩ, at least in some spe-
cific cases, can be established through alternative methods, without relying on the direct
method of the Calculus of Variations, and thus without invoking Theorem 2.1. An exam-
ple of this approach is given in Theorem 2.13.

Remark 2.6. The continuity of the functionalPΩ with respect to the strong topology inL2

can be replaced by continuity in Lp for any p ∈ [1,∞), since Ω is bounded and m ∈ N
almost everywhere.

2.3. Contributions of the present work II: Applications to Micromagnetics. In this
section, we explore the feasibility of developing a variational framework for Micromag-
netics within the solely L2 setting. Specifically, we focus on the nonlocal model in three
dimensions (n = ℓ = 3). Let Ω ⊆ R3 be a bounded domain, and consider the target
set N = S2 which encodes the locally saturated constraint imposed by Micromagnetic
Theory.

For each m ∈ X j(Ω;S2), we study the associated energy functional EΩ(m) =
JΩ(m) +WΩ(m) given by (1.1), where we recall, the term JΩ(m) represents the nonlo-
cal exchange energy functional as defined in (1.2), while the term WΩ(m) represents the
magnetostatic self-energy already introduced in (1.3). This latter term aligns well with
our existence result (see Theorem 2.5), as it is always non-negative and continuous for
the strong topology in L2 (see Section 1.1).

The interaction kernel j is always assumed to satisfy Assumptions (J1)-(J3). In spe-
cific parts of the analysis, additional conditions on j are required to derive sharper results.
We list them below.

(J4) We assume that
QΩ := ess inf

|z|<diam(Ω)
j(z) > 0, (2.11)

(J5) There exist R0 > 0, C > 0 and s ∈ (0, 1) such that

j(z) ≥ C

|z|3+2s
for every z ∈ BR0 . (2.12)

where, we recall, BR0 denotes the ball centered at the origin with radius R0.

Later on, we specify in which cases Assumptions (J4)-(J5) are needed.
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Remark 2.7. In Assumption (J5), we require a lower bound within a given ball provided
by the function |z|−(3+2s), which is precisely the kernel that appears in the definition of the
classical Hs-seminorm. It is important to note that Assumption (J5) is stronger than the
non-integrability condition in Assumption (J3), which is the minimal assumption to get
strong compactness results in the relevant function spaces. Moreover, if R0 ≥ diam(Ω),
then Assumption (J5) clearly implies also Assumption (J4).

The Lévy-type condition (J2) directly implies the following integral growth estimate.

Lemma 2.8. Let j : Rn → [0,+∞] be a Borel-measurable function satisfying condition
(J2). Then

lim
R→∞

1

R2

ˆ
BR

|z|2j(z) dz = 0.

Proof. For R > 1, decompose the integral over BR as:ˆ
BR

|z|2j(z) dz =
ˆ
B1

|z|2j(z) dz +
ˆ
BR\B1

|z|2j(z) dz.

By condition (J2), the first term is finite. Consequently,

lim
R→∞

1

R2

ˆ
B1

|z|2j(z) dz = 0.

For the second term, define uR(z) := 1
R2χBR\B1(z)|z|2j(z). Observe that 0 ≤ uR(z) ≤

χRn\B1(z)j(z) for all z ∈ Rn, and uR(z) → 0 pointwise as R → ∞. Since χRn\B1j ∈
L1(Rn) because of assumption (J2), Lebesgue’s Dominated Convergence Theorem im-
plies:

lim
R→∞

1

R2

ˆ
BR\B1

|z|2j(z) dz = lim
R→∞

ˆ
Rn

uR(z) dz = 0.

Combining both limits completes the proof. □

Notice that, by choosing N = S2 ⊆ R3, K = j, ψ(p, q) = |p − q|2 and PΩ = WΩ,
the functional IΩ defined in (2.10) is exactly IΩ = EΩ. Thus, Theorem 2.5 directly
provides the following existence result.

Theorem 2.9 (Existence of magnetic equilibrium configurations). Assume that the ker-
nel j satisfies (J1)–(J3). Then, the micromagnetic energy EΩ admits a minimizer in
X j(Ω;S2).

As a direct corollary of Theorem 2.5 we can also investigate the existence of minimiz-
ers in the presence of additional contributions to the micromagnetic functional. Specifi-
cally, we consider the anisotropy energy

AΩ(m) :=

ˆ
Ω

φ(m) dx, (2.13)

where φ : S2 → R+ is a Lipschitz function with some preferred vanishing directions,
and the nonlocal antisymmetric exchange energy

DΩ(m) :=

¨
Ω×Ω

µ(x− y) · (m(x)×m(y)) dx dy, (2.14)
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where µ ∈ L1(R3;R3) is an odd vector-valued interaction kernel, i.e. µ(−z) = −µ(z)
for every z ∈ R3. The functional DΩ represents the nonlocal counterpart of the
Dzyaloshinskii-Moriya interaction energy (see [12] for formal justification) which arises
in certain ferromagnetic crystals with broken inversion symmetry.

Corollary 2.10 (Existence in the presence of the anisotropy energy and the antisymmetric
exchange). Assume that the kernel j satisfies (J1)–(J3). Then, the total micromagnetic
energy

JΩ(m) +WΩ(m) +AΩ(m) +DΩ(m)

admits a minimizer in X j(Ω;S2).

Proof. By Theorem 2.5, it suffices to prove that the perturbation term

PΩ(m) := WΩ(m) +AΩ(m) +DΩ(m), m ∈ L2(Ω;S2),

is continuous with respect to the strong L2(Ω;S2) topology and bounded from below so
that it can be viewed as a continuous perturbation of JΩ.

We treat each term separately. The micromagnetic self-energy WΩ is both bounded
and continuous by the properties detailed in Section 1.1. The anisotropy energy AΩ

is nonnegative, and its continuity follows directly from the Lipschitz continuity of the
anisotropy density φ. For the antisymmetric exchange term DΩ, we first note the estimate

|DΩ(m)| ≤ ∥µ∥L1(R3;R3)∥m∥2L2(Ω;S2) ≤ |Ω| ∥µ∥L1(R3;R3),

where we have used the fact that |m(x)| = 1 almost everywhere in Ω. Moreover, for any
m1,m2 ∈ L2(Ω;S2), the integrability of µ yields

|DΩ(m1)−DΩ(m2)| ≤
¨

Ω×Ω

|µ(x− y)| |m1(x)×m1(y)−m2(x)×m2(y)| dx dy

≤ 2

¨
Ω×Ω

|µ(x− y)| |m1(x)| |m1(y)−m2(y)| dx dy

≤ 2 |Ω|
1
2∥µ∥L1(R3;R3) ∥m1 −m2∥L2(Ω;S2).

In the second inequality, we have used the antisymmetry of µ, and then applied stan-
dard estimates. This shows that DΩ is Lipschitz continuous for the strong L2-topology.
Collecting these estimates, we conclude that PΩ is a bounded-from-below, L2(Ω;S2)-
continuous perturbation of JΩ, which completes the proof. □

We now return to the functional EΩ defined in (1.1), which comprises solely the
nonlocal exchange term JΩ (see (1.2)) and the magnetostatic self-energy WΩ (see (1.5)).
The subsequent Theorems 2.11 and 2.12 characterize the minimizers of EΩ as a function
of the size of the domainΩ. In our analysis, we focus on spherical domains by settingΩ =
BR, where BR denotes the ball of radius R > 0 centered at the origin. We examine the
qualitative behavior of the minimizers for both small and large values of R. Extensions
to the case in which Ω is a triaxial ellipsoid can be obtained with minor modifications
following [15]; however, we do not address that case further here.

The proofs of the next two results (Theorems 2.11 and 2.12) are provided in Section
4.



NONLOCAL MICROMAGNETICS 12

Theorem 2.11 (Small bodies). Assume that the kernel j satisfies (J1),(J2) and (J5). Then
there exists a critical radius R∗ = R∗(j) ∈ (0, R0/2) such that, for R ≤ R∗, every
minimizer m∗ ∈ X j(BR;S2) of the energy EBR

defined in (1.1) is constant.

Theorem 2.12 (Large bodies). Assume that the kernel j satisfies (J1)–(J3). Then there
exists a critical radius R∗∗ = R∗∗(j) > 0 such that if R ≥ R∗∗, every minimizer m∗ ∈
X j(BR;S2) of the energy EBR

defined in (1.1) is non-constant.

Theorem 2.11 follows as a direct corollary of a more general result, stated below,
whose proof is provided in Section 4.

Theorem 2.13. Consider j : R3 → [0,+∞] a Borel-measurable function, finite almost
everywhere, and satisfying (J4). Let CR := 1/(QBR

|BR|) > 0 be the constant of the
Poincaré-type inequality (4.1). If CR < 3, then the energy EBR

defined in (1.1) has a
minimizer in X j(BR; S2). Moreover, the minimizers are exactly the constant functions.

Remark 2.14 (On Assumption (J4) in Theorem 2.11). Hypothesis (J4) is required to es-
tablish a Poincaré-type inequality for the nonlocal exchange term JΩ in (1.2), where the
associated constant explicitly depends on the size of the domain (see Lemma 4.1 for fur-
ther details). This inequality plays a fundamental role in the proof of Theorem 2.11, as
outlined in Section 4.

In general, the existence of minimizers in Theorem 2.9 relies on the kernel j satisfy-
ing conditions (J1)–(J3). In particular, as highlighted in Remark 2.2, the non-integrability
condition (J3) is crucial to ensure strong compactness in L2 (see Theorem 2.1). On the
other hand, Theorem 2.13 presents a scenario in which, even in the absence of assump-
tions (J1)–(J3), the existence of minimizers can still be established by leveraging the
size-dependent properties of EBR

rather than compactness arguments.

Remark 2.15 (On the condition CR < 3 in Theorem 2.13). In Theorem 2.13, the spe-
cific choice of j significantly influences the range of radii for which minimizers remain
constant, leading to a completely different scenario from the small bodies regime. This
variation arises from the fact that assumptions (J1)–(J3) are no longer imposed. In par-
ticular, the kernel j may no longer be singular at the origin. For instance, if j ≡ 1, a
minimizer exists and is necessarily constant whenever R > (4π)−

1
3 . We thus obtain that

the minimizers are constant in the case of large bodies.
On the other hand, for a kernel of the form j(z) = 4e−|z|2 , the range of radii for

which minimizers are constant is confined to a bounded interval, approximately R ∈
(0.28, 2.61).

Remark 2.16 (Example of the co-existence of both phenomena). The co-existence of
both phenomena, namely the small bodies regime in Theorem 2.11 and the large bodies
regime in Theorem 2.12, is certainly ensured for a kernel j : R3 → [0,+∞] that is a
Borel-measurable, symmetric, and such that for some function f ∈ L1(R3\B1), constant
λ ≥ 1, and fractional indexes s, σ ∈ (0, 1), with σ ≥ s, there holds

1

λ

1

|z|3+2s
χB1

(z) ≤ j(z) ≤ λ
1

|z|3+2σ
χB1

(z) + f(z)χR3\B1
(z) for every z ∈ R3,
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Remark 2.17 (On Assumption (J5) in Theorem 2.11). Although Assumption (J5) may
initially appear restrictive, it arises naturally from the analytical requirements of Theorem
2.11. In particular, the proof requires that the exchange kernel j satisfies two critical
conditions. First, one must have

ess inf
z∈B2R

j(z) >
1

4πR3
for sufficiently small R, (2.15)

and second, the Poincaré constant CR in the inequality

∥m− ⟨m⟩BR
∥2L2(BR;R3) ≤ CR

¨
BR×BR

j(x− y) |m(x)−m(y)|2 dx dy (2.16)

must decay as R → 0. Kernels of the form j(z) = |z|−3 fail to satisfy this latter re-
quirement. Indeed, a simple scaling argument shows that the inequality (2.16) can be
reformulated as

∥m− ⟨m⟩BR
∥2L2(BR;R3) ≤

C1

R3

¨
BR×BR

j

(
x− y

R

)
|m(x)−m(y)|2 dx dy,

which clearly indicates that with j(z) = |z|−3 the Poincaré constant becomes 0-
homogeneous (i.e., CR = C1 is independent ofR). Consequently, |z|−3 does not provide
the necessary decay in singularity. Combining this with (2.15), we understand that j
must satisfy j(z) ≥ c|z|−3−2s for R < R0, where c > 0 and s ∈ (0, 1). The exponent
2s strengthens the singularity, while the condition s < 1 preserves j as a Lévy kernel,
ensuring compatibility with conditions (J1)–(J3). Of course, this argument is a heuristic
motivation rather than a rigorous necessity proof for Assumption (J5), since condition
(2.15) is obtained by means of an explicit Poincaré constant which is not the optimal one.

3. Compactness and existence of minimizers (proofs of Theorem 2.1 and
Theorem 2.5)

The proof of Theorem 2.1 is an extension of [21, Theorem 1.1]. We first state a few
technical lemmas.

Lemma 3.1. Assume that the kernel j satisfies the Assumptions (J1)-(J2). Let m ∈
X j(Ω;Rℓ), i.e., let m ∈ L2(Ω;Rℓ) be such that

JΩ(m) =

¨
Ω×Ω

j(x− y)|m(x)−m(y)|2 dx dy < +∞.

Also, assume that m vanishes outside an open set and is compactly contained in Ω, i.e.,
that there exists an open set Ω′ ⋐ Ω such thatm = 0 almost everywhere in Ω \Ω′. Then,
for the extension m̃ defined by

m̃ :=

{
m in Ω,

0 in Rn \ Ω,
the following estimate holds

JRn(m̃) ≤ JΩ(m) + C Lj ∥m∥2L2(Ω),

for some constant C = C(Ω′,Ω) > 0, and with Lj being the constant defined by the
Lévy-type condition in Assumption (J2).
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Remark 3.2. From the proof will be evident that one can take, e.g., C(Ω′,Ω) = 2(1+d2)
d2

where d := dist(Ω′, ∂Ω).

Proof. We only need to prove thatˆ
Ω

( ˆ
Rn\Ω

j(x− y)|m(x)|2 dy
)
dx ≤ C Lj ∥m∥2L2(Ω),

for some constant C = C(Ω′,Ω) > 0. For that, let d := dist(Ω′, ∂Ω) and notice thatˆ
Ω

( ˆ
Rn\Ω

j(x− y)|m(x)|2 dy
)
dx =

ˆ
Ω′
|m(x)|2

( ˆ
Rn\Ω

j(x− y) dy

)
dx

=
1

d2

ˆ
Ω′
|m(x)|2

( ˆ
Rn\Ω

min{d2, |x− y|2} j(x− y) dy

)
dx

≤ 1 + d2

d2

ˆ
Ω′
|m(x)|2

( ˆ
Rn

min{1, |z|2} j(z) dz
)
dx

≤ 1 + d2

d2
Lj ∥m∥2L2(Ω),

with Lj < +∞ from (J2). This concludes the proof. □

Lemma 3.3. Assume that the kernel j satisfies Assumptions (J1)-(J2). Let φ ∈ C0,1(Ω)
and let m ∈ X j(Ω;Rℓ) i.e., let m ∈ L2(Ω;Rℓ) be such that

JΩ(m) =

¨
Ω×Ω

j(x− y)|m(x)−m(y)|2 dx dy < +∞.

Then

JΩ(φm) ≤ C (1 + Lj) ∥φ∥2C0,1(Ω̄)

(
∥m∥2L2(Ω) + JΩ(m)

)
for some constant C = C(Ω) > 0, and with Lj being the constant defined by the Lévy-
type condition in Assumption (J2). Here we set

∥φ∥C0,1(Ω̄) := ∥φ∥C0(Ω̄) + [φ]C0,1(Ω), with [φ]C0,1(Ω) := sup
x,y∈Ω, x ̸=y

|φ(x)− φ(y)|
|x− y|

.

Remark 3.4. From the proof, it will be evident that one can take, e.g., C(Ω) = 2 (1 +
diam2(Ω)).

Proof. First, we note that since Ω is bounded, for every y ∈ Ω there holdsˆ
Ω

|x− y|2j(x− y) dx =

ˆ
Ω∩{|x−y|≤1}

min{1, |x− y|2}j(x− y) dx

+

ˆ
Ω∩{|x−y|>1}

|x− y|2j(x− y) dx

≤
ˆ
Ω∩{|x−y|≤1}

min{1, |x− y|2}j(x− y) dx

+ diam2(Ω)

ˆ
Ω∩{|x−y|>1}

j(x− y) dx
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≤ (1 + diam2(Ω))

ˆ
Ω

min{1, |x− y|2}j(x− y) dx

≤ Lj(1 + diam2(Ω)),

with Lj < +∞ from (J2). Then, we estimate JΩ(φm) as follows

JΩ(φm) =

¨
Ω×Ω

j(x− y)|φ(x)m(x)− φ(y)m(y)|2 dx dy

≤ 2

¨
Ω×Ω

j(x− y)|m(y)|2|φ(x)− φ(y)|2 dx dy

+ 2

¨
Ω×Ω

j(x− y)|φ(x)|2|m(x)−m(y)|2 dx dy

≤ 2 [φ]2
C0,1(Ω)

ˆ
Ω

|m(y)|2
( ˆ

Ω

|x− y|2j(x− y) dx

)
dy + 2 ∥φ∥2L∞(Ω)JΩ(m)

≤ 2 (1 + diam2(Ω)) (1 + Lj) ∥φ∥2C0,1(Ω̄)

(
∥m∥2L2(Ω) + JΩ(m)

)
with Lj < +∞ from (J2). This proves the claim. □

Compactness argument: Proof of Theorem 2.1. We are now in a position to prove our
first main result.

Proof of Theorem 2.1. By equations (2.3) and (2.4), we obtain the uniform upper bound

sup
h∈N

JΩ(mh) < +∞, (3.1)

and since N is compact, we also have

sup
h∈N

∥mh∥L∞(Ω,N ) ≤ cN (3.2)

for some constant cN that depends only on the diameter of N and its distance from the
origin, e.g., cN := diam(N )+dist(0,N ). Let (Ωk)k∈N be an exhaustion ofΩ by relatively
compact open sets, meaning that Ωk ⋐ Ωk+1 ⋐ Ω for every k ∈ N and ∪k∈NΩk = Ω. We
denote by (φk)k ⊆ C∞

c (Ω) the associated family of cut-off functions: for every k ∈ N,

0 ≤ φk ≤ 1, φk ≡ 1 in Ωk and φk ≡ 0 in Ω \ Ωk+1.

For the proof, we will use the following scheme. For fixed k ∈ N and an increasing se-
quence of natural numbers (ν(k, h))h∈N we define the sequence of functions (m̃ν(k,h))h∈N
as

m̃ν(k,h) :=

{
mν(k,h)φk in Ω,
0 in Rn \ Ω.

Note that, by construction, m̃ν(k,h)|Ωk = mν(k,h)|Ωk. By first applying Lemma 3.3 and
then Lemma 3.1, we derive the estimate

JRn(m̃ν(k,h)) ≤ JΩ(mν(k,h)φk) + C Lj∥φk∥2C0,1(Ω̄) ∥mν(k,h)∥2L2(Ω)

≤ C (1 + Lj) ∥φk∥2C0,1(Ω̄)

(
2 ∥mν(k,h)∥2L2(Ω) + JΩ(mν(k,h))

)
,
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for some C = C(Ω,N , k) > 0. Hence, from (3.1) and (3.2), we obtain that for any fixed
k ∈ N the following uniform bound holds:

sup
h∈N

JRn(m̃ν(k,h)) < +∞. (3.3)

Thus, for each fixed k ∈ N, we use the compactness of the embedding X j(Rn;Rℓ) ↪→
L2
loc(Rn;Rℓ) (see [21, Theorem 1.1], which trivially extends to our vectorial case), from

which we infer the existence of a subsequence (ν̃(k, h))h∈N of (ν(k, h))h∈N and a function
m̃k ∈ L2

loc(Rn;Rℓ) such that

m̃ν̃(k,h) → m̃k strongly in L2
loc(Rn;Rℓ) and a. e. in Rn.

In particular, since m̃ν̃(k,h)|Ωk = mν̃(1,h)|Ωk, we have m̃k ∈ L∞(Ωk;N ).
We apply iteratively this argument, starting with k = 1 and ν(1, h) = h, i.e., we

consider the functions

m̃ν(1,h) :=

{
mν(1,h)φ1 in Ω,
0 in Rn \ Ω.

We thus obtain a subsequence (ν̃(1, h))h∈N extracted from (ν(1, h) = h)h∈N and a func-
tion m̃1 ∈ L2

loc(Rn;Rℓ), whose restriction to Ω1 is N -valued, such that m̃ν̃(1,h) → m̃1

strongly in L2
loc(Rn;Rℓ) and a.e. in Rn. However, m̃ν̃(1,h)|Ω1 = mν̃(1,h), so that we obtain

a subsequence (mν̃(1,h))h∈N of (mh)h∈N such that

mν̃(1,h) → m̃1 strongly in L2(Ω1;N ) and a.e. in Ω1.

Next, we set ν(2, h) := ν̃(1, h) and we reapply the argument to the sequence (m̃ν(2,h))h∈N.
Again, arguing as before, we obtain a subsequence (ν̃(2, h))h∈N of (ν(2, h))h∈N and a
function m̃2 ∈ L2

loc(Rn;Rℓ), whose restriction toΩ2 isN -valued, such that m̃ν̃(2,h) → m̃2

strongly in L2(Rn;Rℓ) and a.e. in Rn. However m̃ν̃(2,h)|Ω2 = mν̃(2,h)|Ω2, so that we
obtain a subsequence (mν̃(2,h))h∈N of (mν̃(1,h))h∈N such that

mν̃(2,h) → m̃2 strongly in L2(Ω2;N ) and a.e. in Ω2.

Moreover, by the uniqueness of the limit, since Ω1 ⋐ Ω2, we have
m̃ν̃(2,h)|Ω1 = mν̃(1,h)|Ω1.

Proceeding iteratively in k ∈ N, we deduce the existence of further subsequences
(mν(k,h))h∈N of (mν(1,h))h∈N = (mh)h∈N, such that (mν(k,h))h∈N is extracted from
(mν(k−1,h))h∈N, as well as a sequence (m̃k)k∈N of L2

loc(Rn;Rl)-functions, such that

mν̃(k,h) → m̃k strongly in L2(Ωk;N ) and a.e. in Ωk ,

and such that
m̃ν̃(k,h)|Ωj = mν̃(j,h)|Ωj for every 1 ⩽ j ⩽ k.

The previous compatibility condition assures that is well-defined the function m(x) =
m̃k(x) if x ∈ Ωk, that m is N -valued and that (mν̃(h,h))h∈N converges a.e. to m in Ω.
Therefore, by the uniform bound (3.2) and the Dominated Convergence Theorem, we
can conclude that the diagonal sequence (mν̃(h,h))h∈N strongly converges to m in L2(Ω).
Indeed, for every k ∈ N and for every h ⩾ k we haveˆ

Ω

|mν̃(h,h) −m|2 =
ˆ
Ωk

|mν̃(h,h) −m|2 +
ˆ
Ω\Ωk

|mν̃(h,h) −m|2
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=

ˆ
Ωk

|mν̃(k,h) −m|2 +
ˆ
Ω\Ωk

|mν̃(h,h) −m|2

⩽
ˆ
Ωk

|mν̃(k,h) −m|2 + 2cN |Ω\Ωk|,

so that by first taking the limit superior as h → ∞, and then the limit as k → ∞, we
conclude (mν̃(h,h))h∈N strongly converges to m in L2(Ω).

It remains to show that m ∈ XK(Ω;N ). To this end, we use Fatou’s Lemma and
(3.1) to obtain

FΩ(m) ⩽ lim inf
h→∞

FΩ(mν̃(h,h)) ⩽ sup
h∈N

FΩ(mh) < +∞.

Thus, m ∈ XK(Ω;Rl). Finally, as mν̃(h,h) ∈ XK(Ω;N ) for every h ∈ N, and N is
compact, the almost everywhere convergence yieldsm ∈ XK(Ω;N ), and this concludes
the proof of the theorem. □

Existence argument: Proof of Theorem 2.5.

Proof of Theorem 2.5. Given the compactness result stated in Theorem 2.1, in essence, it
remains to show that FΩ is lower semicontinuous on the space XK(Ω;N ) endowed with
the strong L2 topology.

Let (mk)k∈N ⊂ XK(Ω;N ) be a minimizing sequence for the functional IΩ = FΩ +
PΩ. SincePΩ is bounded from below, there exists a constantC > 0 such that |IΩ(mk)| ≤
C for all k ∈ N. By Theorem 2.1, there exists, after possibly passing to a subsequence,
an element m∗ ∈ XK(Ω;N ) such that mk → m∗ strongly in L2(Ω;Rℓ). The continuity
of ψ, together with Fatou’s lemma, then yields

FΩ(m∗) ≤ lim inf
k→∞

FΩ(mk).

Furthermore, by our hypothesis, the term PΩ is continuous for the strong L2 topology, so
that we also have

IΩ(m∗) ≤ lim inf
k→∞

IΩ(mk) = inf
m∈XK(Ω;N )

IΩ(m) ≤ IΩ(m∗).

This chain of inequalities shows thatm∗ is indeed a minimizer of IΩ inXK(Ω;N ), which
completes the proof. □

4. Micromagnetic case (Proofs of Theorem 2.11, Theorem 2.12 and
Theorem 2.13)

Before proceeding with the proofs, we state a few preliminary ingredients.
In what follows, we will often refer to the following Poincaré-type inequality (see [16,

Theorem 8.2]), whose proof is a straightforward application of Jensen inequality.

Lemma 4.1 (Poincaré-type Inequality). Let Ω ⊆ R3 be an open bounded set and
dΩ := diam(Ω). Consider j : R3 → [0,+∞] a Borel-measurable function, finite al-
most everywhere, and such that (J4) holds, i.e., that QΩ := ess inf |z|<diam(Ω) j(z) > 0.
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Then

∥m− ⟨m⟩Ω∥2L2(Ω;R3) ≤
1

QΩ |Ω|

¨
Ω×Ω

j(x− y)|m(x)−m(y)|2 dx dy, (4.1)

for every function m ∈ L2(Ω;R3).

Proof. It is enough to observe thatˆ
Ω

|m− ⟨m⟩Ω|2 dx ≤ 1

|Ω|

¨
Ω×Ω

|m(x)−m(y)|2dx dy

=
1

|Ω|

¨
Ω×Ω

j(x− y)

j(x− y)
|m(x)−m(y)|2dx dy

≤ 1

QΩ |Ω|

¨
Ω×Ω

j(x− y)|m(x)−m(y)|2 dx dy.

This completes the proof. □

We also need two fundamental properties of the demagnetizing field, which play a
pivotal role in characterizing the minimizers of the micromagnetic functional (1.1).

(P1) (Magnetostatic Inequality) Let Ω ⊆ R3 be an open set. For every m,u ∈
L2(Ω;R3) vanishing outside of Ω, the magnetostatic self-energy satisfies

−
ˆ
Ω

hd[m] ·mdx ≥ −2

ˆ
Ω

hd[u] ·mdx+

ˆ
Ω

hd[u] · u dx . (4.2)

Equivalently, in terms of the bilinear form

WΩ(m,u) = −
ˆ
Ω

hd[u] ·mdx , (4.3)

we have that

WΩ(m,m) +WΩ(u, u)− 2WΩ(u,m) ⩾ 0. (4.4)

The inequality (4.2) follows from the bilinearity and symmetry of WΩ(m,u),
which stem from the self-adjointness of hd inL2 and the positive semidefiniteness
of −hd. Indeed, one has

−
ˆ
R3

hd[m− u] · (m− u) dx = WΩ(m,m) +WΩ(u, u)− 2WΩ(m,u),

from which, rearranging terms, (4.2) follows. Equality holds if, and only if,m−u
is in the kernel of hd. For further details, see [14, Theorem 2] and [19].

(P2) (Uniform Single-Domain Property) Let Ω ⊆ R3 be an ellipsoid. If m ∈
L2(R3;R3) is constant within Ω, then hd[m] ∈ L2(R3;R3) is also constant within
Ω. In particular, if Ω is a ball of radius R and m is constant in Ω, then

hd[m]χBR
= −1

3
⟨m⟩BR

χBR
and WΩ(m) =

1

3
∥m∥2L2

Ω
. (4.5)

This result is a direct consequence of the quadratic behavior of the Newtonian
potential of a uniform distribution of charges or masses. Comprehensive details
can be found in [13, 26, 29].
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Existence in the absence of compactness: Proof of Theorem 2.13.

Proof. In view of (4.2) and (4.5), let us choose u := ⟨m⟩BR
χBR

, wherem ∈ L2(BR;R3)
is arbitrary. We immediately deduce that

WBR
(m) ≥ 1

3
|BR| |⟨m⟩BR

|2 . (4.6)

Let CR := 1/(QR|BR|) > 0 denote the constant appearing in the Poincaré-type inequal-
ity (4.1). Then, for any m ∈ X j(BR;S2), inequality (4.6) yields the lower bound

EBR
(m) ≥ 1

CR

∥m− ⟨m⟩BR
∥2L2(BR;R3) +

1

3
|BR| |⟨m⟩BR

|2. (4.7)

Now, let (mh)h ⊆ X j(BR;S2) be a minimizing sequence. For any ε > 0, there exists
h(ε) ∈ N such that for every h ≥ h(ε) the following estimate holds

EBR
(mh) ≤

ε

3
|BR|+ inf

m∈X j(BR;S2)
EBR

(m) ≤ ε

3
|BR|+ EBR

(σ) =
1 + ε

3
|BR| ,

where σ is some constant function in BR. In the last inequality, we used (4.5). Substitut-
ing this estimate into (4.7) yields that for every h ≥ h(ε) there holds

1

CR

∥mh − ⟨mh⟩BR
∥2L2(BR;R3) +

1

3
|BR| |⟨mh⟩BR

|2 ≤ 1 + ε

3
|BR|,

and rearranging the terms, we obtain
1

CR

∥mh − ⟨mh⟩BR
∥2L2(BR;R3) ≤

1

3
|BR|(1− |⟨mh⟩BR

|2 + ε) . (4.8)

Due to the unitary-norm constraint |mh| ≡ 1, it follows that
∥mh − ⟨mh⟩BR

∥2L2(BR;R3) = |BR|(1− |⟨mh⟩BR
|2). (4.9)

Thus, combining (4.8) and (4.9) we deduce that for every h ≥ h(ε)

∥mh − ⟨mh⟩BR
∥2L2(BR;R3)

(
1

CR

− 1

3

)
≤ ε

3
|BR| .

Since by assumption CR < 3, we conclude that for every h ≥ h(ε)

∥mh − ⟨mh⟩BR
∥2L2(BR;R3) ≤

CR

3− CR

|BR| ε,

which implies that
lim
h→∞

∥mh − ⟨mh⟩BR
∥2L2(BR;R3) = 0.

Now notice that since |mh| ≡ 1, we have |⟨mh⟩BR
| ≤ 1, i.e., the sequence (⟨mh⟩BR

)h,
takes values in the unit ball of R3. Hence there exist a point m0 ∈ R3, with |m0| ≤ 1,
such that, maybe up to a subsequence, ⟨mh⟩BR

→ m0. Clearly, we have also
∥⟨mh⟩BR

−m0∥2L2(BR;R3) = |BR| · |⟨mh⟩BR
−m0|2 → 0.

Therefore, by the triangle inequality
∥mh −m0∥L2(BR;R3) ≤ ∥mh − ⟨mh⟩BR

∥L2(BR;R3) + ∥⟨mh⟩BR
−m0∥L2(BR;R3),

we find that, up to a subsequence, mh → m0 strongly in L2(BR;R3) and mh → m0

almost everywhere in BR. Since |mh| ≡ 1, this implies that |m0| = 1. Hence, the
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constant functionm0 belongs to the spaceX j(BR; S2) and is thus an admissible candidate
for the minimization of EBR

. By Fatou’s Lemma and recalling that WBR
is continuous

with respect to the strong L2-convergence, we conclude that
inf

m∈X j(BR;S2)
EBR

(m) ≤ EBR
(m0) ≤ lim inf

h→∞
EBR

(mh) = inf
m∈X j(BR;S2)

EBR
(m).

We have thus proved that there exists at least a minimizer of EBR
in X j(BR;S2), which

is given by a constant function.
We are left to prove that any other minimizer must also be constant. For this, it is

enough to observe that if m̃ ∈ X j(BR;S2) is a minimizer of EBR
, then we can choose the

constant sequencemh = m̃ as a minimizing sequence. The above argument then ensures
that m̃ must be constant, thus concluding the proof of the theorem. □

We can now derive Theorem 2.11 as a consequence of Theorem 2.13.

Small bodies case: Proof of Theorem 2.11.

Proof. Under Assumption (J5), there exist parameters R0 > 0, s ∈ (0, 1), and C > 0
such that the interaction kernel j satisfies

j(z) ≥ C

|z|3+2s
for all |z| < R0.

For any radius R ≤ 1
2
R0, the kernel j also satisfies Assumption (J4) within the spheri-

cal domain Ω = BR. Specifically, the essential infimum QBR
defined in (2.11) can be

bounded from below as

QBR
≥ ess inf

z∈B2R

C

|z|3+2s
=

C

23+2s
· 1

R3+2s
.

To apply Theorem 2.13, we require the Poincaré constantCR := 1
QBR

|BR| to satisfyCR <

3. This condition is equivalent to

QBR
>

1

4πR3
.

To guarantee this inequality, we define the critical radius

R∗ := min

{
1

2
R0,

(
4πC

23+2s

)1/2s
}
.

For all R ≤ R∗, the lower bound on QBR
yields

QBR
≥ C

23+2s
· 1

R3+2s
>

1

4πR3
.

This ensures CR < 3, thereby satisfying the hypothesis of Theorem 2.13. Consequently,
all minimizers of the energy functional EBR

must be constant configurations. The critical
radius R∗ explicitly depends on the parameters R0, C, and s characterizing the kernel j,
reflecting the interplay between nonlocal exchange interactions and domain size in the
small-body regime.

This concludes the proof that uniform magnetization states are energetically favor-
able for spherical domains with radii below the critical threshold R∗. □
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Large bodies case: Proof of Theorem 2.12. We conclude with the proof of Theorem
2.12 by adopting an approach similar to the one used by Brown in [10, Sec. 5], suitably
modified to fit our total nonlocal framework.

Before proceeding with the proof, we state a preliminary lemma in which we demon-
strate that vortex-type configurations are always energetically preferred by the stray field
over constant configurations. In what follows, we denote by (e1, e2, e3) an orthonormal
frame, and for every x ∈ R3 we write x = x⊥ + x3e3, where x⊥ is the projection of x
onto the plane spanned by (e1, e2), i.e., x⊥ = x1e1 + x2e2.

Lemma 4.2. For every R > 0, consider the vortex-type configuration
m = m1e1 +m2e2 +m3e3

defined on BR by

m1(x) = −x2
R

√
2− |x⊥|2

R2
, m2(x) =

x1
R

√
2− |x⊥|2

R2
, m3(x) = 1− |x⊥|2

R2
. (4.10)

There exists a constant c2 > 0 such that, for any constant configuration σ ∈ L2(BR;S2),
the following holds:

WBR
(m)−WBR

(σ) = −c2R3, (4.11)
where WBR

represents the magnetostatic self-energy, as defined in (1.3).

Proof. For any configuration m∗ ∈ C1(B̄R;S2) such that divm∗ = 0, we obtain from
Divergence Theorem that

WBR
(m∗) = −

ˆ
BR

m∗(x) · (−∇Φ(x)) dx =

ˆ
∂BR

Φ(x)m∗(x) · n dS(x), (4.12)

where, by (1.6),

Φ(x) =
1

4π

ˆ
∂BR

m∗(y) · n(y)
|x− y|

dS(y), for every x ∈ BR. (4.13)

Therefore

WBR
(m∗) =

1

4π

¨
∂BR×∂BR

(m∗(x) · n(x)) (m∗(y) · n(y))
|x− y|

dS(y) dS(x). (4.14)

Consequently, the configurationm in (4.10) and any constant configuration satisfy the in-
tegral representation (4.14). Additionally, by the Uniform Single-Domain Property (P2),
every configuration that is constant in BR has the same energy, i.e., for any σ ∈ S2 there
holds

WBR
(σ) =

4

9
πR3. (4.15)

It is then sufficient to prove (4.11) for at least one constant configuration. Consider σ =
e3, and from (4.14) we infer that

WBR
(e3) =

1

4π

¨
∂BR×∂BR

1

R2

x3y3
|x− y|

dS(y) dS(x)

=
R3

4π

¨
S2×S2

x3y3
|x− y|

dS(y) dS(x)

= R3WB1(e3),

(4.16)
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where in (4.16) we applied the change of variables (x, y) 7→ (Rx,Ry) for (x, y) ∈ BR×
BR.

Looking now at the configuration m, we have

WBR
(m) =

1

4π

¨
∂BR×∂BR

(m(x) · n(x)) (m(y) · n(y))
|x− y|

dS(y) dS(x)

=
R3

4π

¨
S2×S2

(m(Rx) · n(Rx)) (m(Ry) · n(Ry))
|x− y|

dS(y) dS(x)

=
R3

4π

¨
S2×S2

(m•(x) · n(Rx)) (m•(y) · n(Ry))
|x− y|

dS(y) dS(x)

=
R3

4π

¨
S2×S2

x33y
3
3

|x− y|
dS(y) dS(x)

= WB1(m•), (4.17)

where in (4.17) we applied again the change of variables (x, y) 7→ (Rx,Ry) for (x, y) ∈
BR × BR and m• is the rescaled configuration m•(x) = m(Rx) for every x ∈ B1 with
coefficients

m•,1(x) = −x2
√
2− |x⊥|2, m•,2(x) = x1

√
2− |x⊥|2, m•,3(x) = 1− |x⊥|2.

(4.18)
Here m•(x) · n(Rx) = x3(1 − |x⊥|2) = x33 and, analogously, m•(y) · n(Ry) = y33 . We
introduce

S2
+ = {ξ ∈ S2 : ξ3 ≥ 0} and S2

− = {ξ ∈ S2 : ξ3 ≤ 0}, (4.19)

and we decompose WB1(m•) as follows:

WB1(m•) =
1

4π

¨
S2×S2

x33y
3
3

|x− y|
dS(y) dS(x)

=
1

4π

ˆ
S2+

ˆ
S2

x33y
3
3

|x− y|
dS(y) dS(x) +

1

4π

ˆ
S2−

ˆ
S2

x33y
3
3

|x− y|
dS(y) dS(x)

=
1

4π

ˆ
S2+

ˆ
S2

x33y
3
3

|x− y|
dS(y) dS(x)

+
1

4π

ˆ
S2+

ˆ
S2

x33y
3
3

|x⊥ − x3e3 − y⊥ + y3e3|
dS(y) dS(x)

=
2

4π

ˆ
S2+

ˆ
S2

x33y
3
3

|x− y|
dS(y) dS(x), (4.20)

where we applied first the change of variable (x1, x2, x3) 7→ (x1, x2,−x3) =: x̂ for
x ∈ S2

− and then (y1, y2, y3) 7→ (y1, y2,−y3) =: ŷ for y ∈ S2. Note that x⊥ − x3e3 = x̂
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and y⊥ − y3e3 = ŷ. We apply the same strategy for the second integral, and we infer

WB1(m•) =
2

4π

ˆ
S2+

ˆ
S2

x33y
3
3

|x− y|
dS(y) dS(x)

=
2

4π

ˆ
S2+

ˆ
S2+

x33y
3
3

|x− y|
dS(y) dS(x) +

2

4π

ˆ
S2+

ˆ
S2−

x33y
3
3

|x− y|
dS(y) dS(x)

=
2

4π

¨
S2+×S2+

x33y
3
3

(
1

|x− y|
− 1

|x− y⊥ + y3e3|

)
dS(y) dS(x),

(4.21)

where in (4.21) for the second integral we applied (y1, y2, y3) 7→ (y1, y2,−y3) for y ∈ S2
−.

We then observe that
1

|x− y|
− 1

|x− y⊥ + y3e3|
=

|x− y⊥ + y3e3|2 − |x− y|2

ω(x, y)
=

4x3y3
ω(x, y)

, (4.22)

with
ω(x, y) := |x− y| |x− y⊥ + y3e3| (|x− y⊥ + y3e3|+ |x− y|) .

Finally, from (4.17), (4.21) and (4.22), we obtain that

WBR
(m) =

2R3

π

¨
S2+×S2+

x43y
4
3

ω(x, y)
dS(y) dS(x). (4.23)

Operating analogously for the constant configuration σ = e3 in (4.16), we also infer

WBR
(e3) = R3WB1(e3)

=
R3

4π

¨
S2×S2

x3y3
|x− y|

dS(y) dS(x)

=
2R3

π

¨
S2+×S2+

x23y
2
3

ω(x, y)
dS(y) dS(x). (4.24)

Since (x, y) ∈ S2
+ × S2

+, we have that x43y43 ≤ x23y
2
3 in (x, y) ∈ S2

+ × S2
+ and therefore,

by setting c2 := WB1(e3)−WB1(m•) > 0 we get (4.11). This concludes the proof. □

We are now ready to prove Theorem 2.12.

Proof of Theorem 2.12. By Theorem 2.9, we know that for any radiusR > 0, there exists
at least one minimizer of the energy functional EBR

. Our objective is to demonstrate that
for sufficiently large ferromagnetic particles, a non-uniform magnetization configuration
attains lower energy than any constant magnetization state.

To this end, we consider the vortex-type configuration introduced in Lemma 4.2.
Specifically, we define the magnetization field m : BR → S2 as

m1(x) = −x2
R

√
2− |x⊥|2

R2
, m2(x) =

x1
R

√
2− |x⊥|2

R2
, m3(x) = 1− |x⊥|2

R2
. (4.25)

We will also work with the rescaled configuration m• : B1 → S2, defined as

m•(x) = m(Rx), (4.26)
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Figure 1. On the left, the rescaled configurationm• restricted to the equa-
torial plane. On the right, a vector plot of m• over the slice coordinate
planes stacked along the z-axis.

which explicitly reads as

m•,1(x) = −x2
√

2− |x⊥|2, m•,2(x) = x1
√

2− |x⊥|2, m•,3(x) = 1− |x⊥|2,
(4.27)

whose plot is represented in Figure 1. It is readily verified thatm is S2-valued and belongs
to C∞(BR). Also, a straightforward computation shows that divm = 0. However, since
m is not tangential to ∂BR, the associated demagnetizing field hd[m] does not vanish due
to surface magnetic charges. By Property (P2), the energy associated with any constant
configuration σ ∈ L2(BR;S2) is given by

EBR
(σ) = WBR

(σ) =
4

9
πR3. (4.28)

We use this as our reference energy and compare it with the energy of m.
To estimate the nonlocal exchange energy JBR

(m) without computing the double
integral explicitly, we utilize the following estimate

JBR
(m) = R6

¨
B1×B1

j(Rx−Ry) |m(Rx)−m(Ry)|2 dx dy (4.29)

= R6

¨
B1×B1

j(Rx−Ry) |m•(x)−m•(y)|2 dx dy (4.30)

= R6

ˆ
B1

(ˆ
B1−x

j(Rh) |m̃•(x+ h)− m̃•(x)|2 dh
)
dx (4.31)

≤ R6

ˆ
B2

j(Rh)

(ˆ
R3

|m̃•(x+ h)− m̃•(x)|2 dx
)
dh, (4.32)

where we applied the change of variables (x, y) 7→ (Rx,Ry) for (x, y) ∈ BR × BR in
(4.29) and y 7→ x−h for fixed x ∈ B1 in (4.31), and we used the fact that j is symmetric
by Assumption (J1). Since from definition (4.26)–(4.27) m• is not well-defined outside
B√

2, here we denote by m̃• an appropriate extension on H1(R3;R3). For the inner in-
tegral in (4.32), we apply the Fundamental Theorem of Calculus for Sobolev functions
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(see, e.g., [7, Prop. 9.3]), yieldingˆ
R3

|m̃•(x+ h)− m̃•(x)|2 dx ≤ |h|2∥∇m̃•∥2L2(R3;R3×3) (4.33)

≤ c̃ |h|2∥m•∥2H1(B1;R3), (4.34)

for some c̃ > 0, where in (4.34) we used an extension result for Sobolev functions (see,
e.g., [7, Theorem 9.7]). From (4.32) and (4.34), we deduce that

JBR
(m) ≤ c̃

(
R4

ˆ
B2

j(Rh)|Rh|2dh
)
∥m•∥2H1(B1;R3)

= c̃ R

(ˆ
B2R

j(h)|h|2dh
)
∥m•∥2H1(B1;R3). (4.35)

The nonlocal exchange energy JBR
is then estimated as

JBR
(m) ≤ c1R

(ˆ
B2R

j(h)|h|2dh
)
, (4.36)

with c1 = c̃ ∥m•∥2H1(B1;R3) — a simple computation gives ∥m•∥2H1(B1;R3) = |B1| +
4
15
(68−15π)π = 4

15
π(73−15π). From Lemma 4.2, we know thatWBR

(m)−WBR
(σ) =

−c2R3 for some c2 > 0. Hence, comparing the total energy with the reference state
(4.28), we get

EBR
(m)− EBR

(σ) ≤ c1R

(ˆ
B2R

j(h)|h|2dh
)
− c2R

3.

For sufficiently large R, the right-hand side is negative due to Lemma 2.8, implying that
the non-uniform configuration has a lower energy than the constant state. Thus, there
exists a critical radius R∗∗, which depends on the interaction kernel j, beyond which
every minimizer is non-constant. □
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