
INITIAL DATA IDENTIFICATION FOR CONSERVATION LAWS
WITH SPATIALLY DISCONTINUOUS FLUX

FABIO ANCONA AND LUCA TALAMINI

Abstract. We consider a scalar conservation law with a spatially discontinuous flux at
a single point x = 0, and we study the initial data identification problem for AB-entropy
solutions associated to an interface connection (A,B). This problem consists in identifying
the set of initial data driven by the corresponding AB-entropy solution to a given target
profile ωT , at a time horizon T > 0. We provide a full characterization of such a set in terms
of suitable integral inequalities, and we establish structural and geometrical properties of this
set. A distinctive feature of the initial set is that it is in general not convex, differently from
the case of conservation laws with convex flux independent on the space variable. The results
rely on the properties of the AB-backward-forward evolution operator introduced in [3],
and on a proper concept of AB-genuine/interface characteristic for AB-entropy solutions
provided in this paper.
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1. Introduction

We are concerned with the initial value problem for a scalar conservation law in one space
dimension

ut + f(x, u)x = 0, x ∈ R, t ≥ 0, (1.1)

u(x, 0) = u0(x), x ∈ R, (1.2)
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where u = u(x, t) is the state variable, and the flux f is a space discontinuous function of
the form

f(x, u) =

{
fl(u), x < 0,

fr(u), x > 0 ,
(1.3)

with fl, fr : R → R twice continuously differentiable, uniformly convex maps that satisfy

f ′′
l (u), f ′′

r (u) ≥ a > 0 , (1.4)

and (up to a reparametrization)

fl(0) = fr(0), fl(1) = fr(1) . (1.5)

We assume also that the unique critical points θl, θr of fl, fr, respectively, satisfy

θl ≥ 0, θr ≤ 1 . (1.6)

It is well known that, because of the nonlinearity of the equation, in order to achieve global
in time existence and uniqueness results for problems of this type one has to consider weak
distributional solutions that satisfy the classical Kružkov entropy inequalities away from the
flux-discontinuity interface x = 0, augmented by an appropriate interface entropy condition
at x = 0. Here, we will consider entropy solutions of AB-type, associated to a so-called
interface connection (A,B) (cfr [1, 11] and see §2.1). Entropy solutions of AB-type form
an L1-contractive semigroup on the domain of L∞ initial data [11, 23]. Thus, we adopt the

semigroup notation u(x, t)
.
= S [AB]+

t u0(x), t ≥ 0, x ∈ R, for the unique AB-entropy solution
of (1.1)-(1.2), for every initial datum u0 ∈ L∞(R).

In this paper, we study the initial data identification problem (or inverse design problem)
for AB-entropy solutions of the equation (1.1). This problem consists in identifying the set
of initial data for which the corresponding AB-entropy solution coincides with a given target
profile ωT , at a time horizon T > 0. Observe that we cannot expect to reach any desired
profile ωT ∈ L∞(R). In fact, even in the case where fl = fr, since the work of Olĕınik [32]
it is well known that, because of the uniform convexity of the flux, the Kružkov entropy
conditions imply that every entropy weak solution u of (1.1) must satisfy (in the sense of
distributions) the one-sided Lipschitz estimate

∂xu(· , t) ≤
1

at
, in D ′, ∀ t > 0. (1.7)

Essentially, the nonlinearity of the flux forces characteristic lines to intersect which, together
with the entropy condition, produces a regularizing effect L∞ to BV encoded in the Olĕınik
inequality (1.7). In the case of equation (1.1) with discontinuous flux (1.3) where fl ̸= fr,
we have shown in [2, 3] that the set of reachable profiles at a time T > 0:

A[AB](T )
.
=
{
S [AB]+
T u0

∣∣ u0 ∈ L∞(R)
}
, (1.8)

is characterized in terms of suitable Olěınik-type estimates and unilateral pointwise con-
straints. Note that a “loss of information” takes place when characteristic lines intersect
into a shock: there are infinitely many ways to create the same shock discontinuity at a
given time T . Therefore the initial data identification problem for this type of equations is
highly ill-posed: multiple initial data can be stirred by (1.1) into the same attainable profile
ωT ∈ A[AB](T ) at time T .
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Our goal is to characterize and study the properties of the set of initial data leading to a
given profile ωT ∈ A[AB](T ) at time T :

I [AB]
T (ωT )

.
=
{
u0 ∈ L∞(R) | S [AB]+

T u0 = ωT
}
. (1.9)

In the case of conservation laws with flux independent on the space variable, the initial
data identification problem was firstly studied for the Burgers equation in [26, 29, 30], and
next for general uniformly convex flux in [14], where it is fully characterized the initial set
of data evolving to a given profile, and it is shown that such a set is convex. Similar results
were obtained in [20, 21] for Hamilton-Jacobi equations with convex Hamiltonian, and in [15]
for smoothly, space dependent, conservation laws or Hamilton-Jacobi equations.

When the flux is of the form (1.3) with fl ̸= fr, the initial data reconstruction problem
is more challenging because one has to deal with the richer and more complicated near-
interface wave structure of AB-entropy solutions. This is due to the presence in the solution
of waves that are reflected or refracted through the discontinuity interface x = 0, as well as of
shock discontinuities emerging from the interface at positive times (see the analysis in [3]).
Nonetheless, we are still able to provide a full characterization of the initial set (1.9) by
suitable integral inequalities, for every given ωT ∈ A[AB](T ), and we show that (1.9) shares
almost the same geometric and topological properties of the initial set for conservation
laws with uniformly convex flux independent on the space variable. Notably, a distinctive
difference from the classical smooth case is the lack of convexity of the initial set (1.9) as
shown in the Example 6.1. To establish these results we will rely on:

- a suitable definition of AB-backward evolution operator S [AB]−
T given in [3], and on the

structural properties of the range of S [AB]−
T therein analized;

- a proper concept of AB-genuine/interface characteristic for AB-entropy solutions which
can “travel” along the discontinuity interface x = 0 (see Definition 3.1).

Given an AB-entropy solution u, a time horizon T > 0, and a point x ∈ R, we will let C0(u, x)
denote the set of the initial positions ζ(0) of the AB-genuine characteristics ζ for u that reach
the point x = ζ(T ) at time T (cfr. (3.3)). We recall that any element ωT ∈ A[AB](T ) admits
one-sided limits ωT (x−), ωT (x+) at every point x ∈ R, and that has at most countably many
discontinuities (see [3]). Then, we summarize the main results of the paper in the following

Theorem 1.1. Given ωT ∈ A[AB](T ), set

u∗
0
.
= S [AB]−

T ωT , (1.10)

and

u∗(·, t) .
= S [AB]+

t u∗
0 ∀ t ∈ [0, T ] . (1.11)

Then, letting I [AB]
T (ωT ) be the set defined in (1.9), the following properties hold:

(i) u0 ∈ I [AB]
T (ωT ) if and only if, for every point x of continuity of ωT , there exists

y ∈ C0(u∗, x) such that there hold∫ y

y

u0(x) dx ≤
∫ y

y

u∗
0(x) dx, ∀ y < min C0(u∗, x), (1.12)

and ∫ y

y

u0(x) dx ≥
∫ y

y

u∗
0(x) dx, ∀ y > max C0(u∗, x). (1.13)



4 FABIO ANCONA AND LUCA TALAMINI

(ii) The set I [AB]
T (ωT ) is an infinite dimensional cone which has vertex u∗

0 and is in general
not convex.

We will establish further geometric and topological properties of the initial set (1.9) besides
the ones stated in Theorem 1.1-(ii), which are collected in Theorem 3.6 stated in § 4.

Initial data identification problems are often formulated as least square optimization
problems associated to observable states at a final time (also known in the literature as
data assimilation problems). These type of problems arise naturally in environmental sci-
ences [5, 6, 7, 8, 28], but also in life sciences (see [13] and references therein), to improve
the forecast of a model or to refine numerical simulations. Similar issues, also related to
parameter identification problems, arise in traffic flow modeling [27, 37, 38], in batch sedi-
mentation [9, 19], or in petroleum reservoir engineering [33].

Conservation laws with spatially discontinuous flux have many relevant applications in
physics and engineering including: porous media models with changing rock types (for oil
reservoir simulation) [24, 25]; sedimentation in waste-water treatment plants [10, 18]; traffic
flow dynamics with roads of variable width or surface conditions [31]; Saint Venant models
of blood flow in endovascular treatments [22, 12]; radar shape-from-shading models [34].

The paper is organized as follows.

- In § 2 we collect the definitions of interface connection (A,B), of AB-entropy solution
and of AB-backward solution operator.

- In § 3 we introduce the AB-genuine/interface characteristics and state the main re-
sults, Theorem 3.4 (integral inequalities) and Theorem 3.6 (structural and geometrical
properties), which yield Theorem 1.1.

- In § 4 we establish some basic properties enjoyed by the AB-genuine/interface charac-
teristics.

- In § 5 we prove Theorem 3.4.

- In § 6 we prove Theorem 3.6 and provide an example of non convex initial set I [AB]
T (ωT ).

2. Basic definitions and general setting

2.1. Connections and AB-entropy solutions. We recall here the definitions and prop-
erties of interface connection and of admissible solution satisfying an interface entropy con-
dition introduced in [1]. Throughout the paper, for the one-sided limits of a function u(x)
we will use the notation

u(x±)
.
= lim

y→x±
u(y). (2.1)

Definition 2.1 (Interface Connection). Let f be a flux as in (1.3) satisfying the assump-
tions (1.4)-(1.6). A pair of values (A,B) ∈ R2 is called a connection if

(1) fl(A) = fr(B),
(2) f ′

l (A) ≤ 0, f ′
r(B) ≥ 0.

We will say that a connection (A,B) is critical if f ′
l (A) = 0, or f ′

r(B) = 0, i.e. if A = θl or
B = θr.

Clearly, condition (1) of Definition 2.1 is equivalent to A ≤ θl, B ≥ θr. For sake of
uniqueness, it is employed in [11] the adapted entropy

ηAB(x, u) =
∣∣u− cAB(x)

∣∣, cAB(x)
·
=

{
A, x ≤ 0,

B, x ≥ 0,
(2.2)
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u

fl fr

A Bθl θr

Figure 1. An example of connection (A,B) with fl, fr strictly convex fluxes

to select the unique solution of the Cauchy problem (1.1)-(1.2) that satisfies the Kružkov-type
entropy inequality∣∣u− cAB

∣∣
t
+
[
sgn(u− cAB)(f(x, u)− f(x, cAB))

]
x
≤ 0, in D′ , (2.3)

in the sense of distributions, which leads to the following definition.

Definition 2.2 (AB-entropy solution). Let (A,B) be a connection and let cAB be the
function defined in (2.2). A function u ∈ L∞(R × [0,+∞[) is said to be an AB-entropy
solution of the problem (1.1),(1.2) if the following holds:

(1) u is a distributional solution of (1.1) on R× ]0,+∞[, that is, for all test functions ϕ ∈ C1
c

with compact support contained in R× ]0,+∞[, there holds∫ ∞

−∞

∫ ∞

0

{
uϕt + f(x, u)ϕx

}
dx dt = 0 .

(2) u is a Kružkov entropy weak solution of (1.1),(1.2) on (R \ {0})× ]0,+∞[, that is,
t 7→ u(·, t) is a continuous map from [0,+∞[ to L1

loc(R), the initial condition (1.2) is
satisfied almost everywhere, and:
(2.a) for any non-negative test function ϕ ∈ C1

c with compact support contained in
]−∞, 0[× ]0,+∞[, there holds∫ 0

−∞

∫ ∞

0

{
|u− k|ϕt + sgn(u− k) (fl(u)− fl(k))ϕx

}
dx dt ≥ 0, ∀k ∈ R ;

(2.b) for any non-negative test function ϕ ∈ C1
c with compact support contained in

]0,+∞[× ]0,+∞[, there holds∫ ∞

0

∫ ∞

0

{
|u− k|ϕt + sgn(u− k) (fr(u)− fr(k))ϕx

}
dx dt ≥ 0, ∀k ∈ R .

(3) u satisfies the interface entropy inequality relative to the connection (A,B), that is, for
any non-negative test function ϕ ∈ C1

c with compact support contained in R×]0,+∞[,
there holds∫ ∞

−∞

∫ ∞

0

{ ∣∣u− cAB
∣∣ϕt + sgn(u− cAB)

(
f(x, u)− f(x, cAB)

)
ϕx

}
dx dt ≥ 0 .

Remark 2.3. Since the fluxes fl, fr in (1.3) are uniformly convex, by Property (2) of Defini-
tion 2.2 it follows that, if u is an AB-entropy solution, then u(· , t) is a function of locally
bounded variation on R \ {0}, for any t > 0. On the other hand, relying on [35, 36], and
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because of the L1
loc-continuity of the map t 7→ u(·, t), we deduce that u admits left and right

strong traces at x = 0 for all t > 0, i.e. that there exist the one-sided limits

ul(t)
.
= u(0−, t), ur(t)

.
= u(0+, t), ∀ t > 0 . (2.4)

Moreover, by properties (1), (3) of Definition 2.2, and thanks to the analysis in [3], we deduce
that u must satisfy at almost any time t > 0 the interface conditions

fl(ul(t)) = fr(ur(t)) ≥ fl(A) = fr(B),(
ul(t) ≤ θl, ur(t) ≥ θr

)
=⇒ ul(t) = A, ur(t) = B .

(2.5)

It was proved in [1, 11] (see also [4, 23]) that AB-entropy solutions of (1.1),(1.2) with
bounded initial data are unique, and L1-contractive with respect to their initial data. Thus,
one can define a semigroup map

S [AB]+ : [0,+∞[×L∞(R) → L∞(R), (t, u0) 7→ S [AB]+
t u0 , (2.6)

where the function u(x, t)
.
= S [AB]+

t u0(x) provides the unique AB-entropy solution of the
Cauchy problem (1.1), (1.2). Such a map is L1-stable also with respect to the time t and
the values A,B of the connection, as shown in [3].

2.2. Backward solution operator. We review here the concept of backward solution op-
erator associated to a connection (A,B) introduced in [3], referring to [3] for further details
and properties.

Given a flux f as in (1.3) satisfying the assumptions (1.4)-(1.6), and a connection (A,B),
observe that, setting

B
.
= (fr | ]−∞,θr])

−1 ◦ fr(B), A
.
= (fl|[θl,+∞[ )

−1 ◦ fl(A) , (2.7)

where f| I denotes the restriction of the function f to the interval I, the pair (B,A ) provides
a connection for the symmetric flux

f(x, u) =

{
fr(u), x ≤ 0,

fl(u), x ≥ 0 ,
(2.8)

(see Figure 2). Then, letting S [BA ]+

t u0(x) denote the unique BA-entropy solution of

u

fl fr

A BAB

Figure 2. The connection (B,A) of the symmetric flux f(x, u) defined in
(2.8).
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tx

x

f(ul) = f(ur) = γ

x

tx

Figure 3. Example of a member of C(u, x).{
ut + f(x, u)x = 0 x ∈ R, t ≥ 0,

u(x, 0) = u0(x) x ∈ R,
(2.9)

evaluated at (x, t), we shall define the backward solution operator associated to the connection

(A,B) in terms of the operator S [BA ]+

t as follows.

Definition 2.4 (AB-Backward solution operator). Given a connection (A,B), the back-

ward solution operator associated to (A,B) is the map S [AB]−
(·) : [0,+∞)×L∞(R) → L∞(R),

defined by

S [AB]−
t ω(x)

.
= S [BA ]+

t

(
ω(− · )

)
(−x) x ∈ R, t ≥ 0 . (2.10)

3. Statement of the main results

In this section we introduce the fundamental concept of genuine/interface characteristic
for an AB-entropy solution, and we collect the statement of the main results of the paper.

3.1. Genuine/interface characteristics. The definition of genuine/interface characteris-
tic extends to the setting of AB-entropy solutions the classical definition of genuine charac-
teristic for a conservation law ut + f(u)x = 0 (see [16, 17]). Throughout the following we fix
a time T > 0, we consider a fixed connection (A,B), and we set

γ
.
= fl(A) = fr(B). (3.1)

Definition 3.1 (AB-genuine/interface characteristics). Let u ∈ L∞(R×[0,+∞[ ; R) be
an AB-entropy solution of (1.1). We say that a Lipschitz continuous function ζ : [0, T ] → R
is an AB-genuine/interface characteristic (AB-gic) for u if the following conditions hold:

(i) for a.e. t ∈ [0, T ] with ζ(t) ̸= 0 it holds

ζ̇(t) = f ′(u(ζ(t)−, t), ζ(t)) = f ′(u(ζ(t)+, t), ζ(t));

(ii) for a.e. t ∈ [0, T ] with ζ(t) = 0, it holds

fl(u(ζ(t)−, t) = γ = fr(u(ζ(t)+, t)).

Remark 3.2. Applying the classical theory of generalized characteristics [16] it follows that
any AB-gic ζ ∈ Lip([0, T ] ; R) is a piecewise affine function for which there exist 0 ≤ τ1 ≤
τ2 ≤ T , such that:

- ζ(t) = 0 and fl(ul(t)) = fr(ur(t)) = γ, for all t ∈ [τ1, τ2];
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- the restriction of ζ to [0, τ1[ and to ]τ2, T ] is either a classical genuine characteristic for
the conservation law ut+fl(u)x = 0 on {x < 0}, or it is a classical genuine characteristic
for the conservation law ut + fr(u)x = 0 on {x > 0}.

Note that, if τ1 = τ2 ∈ {0, T}, then a curve defined by a function ζ satisfying the above
conditions can cross the interface x = 0 only at its starting or terminal points. Thus, in
this case ζ is a a classical genuine characteristic for ut + fl(u)x = 0 on {x < 0} or for
ut + fr(u)x = 0 on {x > 0}, in the whole interval ]0, T [.

Remark 3.3. By Definition 3.1 an AB-gic can “travel” along the discontinuity interface
x = 0 in an interval [τ1, τ2] only if in such an interval the flux of the solution is the minimum
possible, i.e. if fl(ul(t)) = fr(ur(t)) = fl(A) = fr(B) for all t ∈ [τ1, τ2], with ul, ur as in (2.4).
This definition can be motivated by the following observation. Let f be a smooth convex
flux. Then, relying on the inequality

f(u)− f(v)− f ′(u)(v − u) ≥ 0 ∀ u, v ∈ R,

one can verify that a classical genuine characteristic ζ : [0, T ] → R for a solution u of the
conservation law ut + f(u)x = 0 satisfies at a.e. t ∈ [0, T ] the equality

f(u(ζ(t), t))− ζ̇(t)u(ζ(t), t) = min
v∈R

{
f(v)− ζ̇(t)v

}
.

Therefore if the characteristic is “vertical” (i.e. ζ̇ = 0) we simply obtain

f(u(ζ(t), t)) = min
v∈R

f(v), for a.e. t ∈ [0, T ].

In view of the interface constraint (2.5) for AB-entropy solutions, it is then natural to require
in this setting that a “characteristic” lying on the interface x = 0 be called “genuine” only if it
minimizes the admissible flux at the interface, i.e. if it satisfies condition (ii) of Definition 3.1.

Next, given an AB-entropy solution u of (1.1), we consider the set of AB-gic passing
through a point x ∈ R at time t = T , and the set of the corresponding initial points at time
t = 0, setting:

C(u, x) .
=
{
ζ ∈ Lip([0, T ] ; R) | ζ(T ) = x and ζ is an AB-gic for u

}
, (3.2)

and

C0(u, x)
.
=
{
ζ(0) | ζ ∈ C(u, x)

}
. (3.3)

The set C0(u, x) is a fundamental tool to analyze the set of initial data leading to an
attainable profile ωT . To this end, throughout this section we consider the initial datum u∗

0

in (1.10) defined as the image of ωT through the backward solution operator S [AB]−
T , and

we let u∗(x, t) denote the corresponding AB-entropy solution with initial datum u∗
0, defined

in (1.11). Moreover, we letA[AB](T ) denote the set of reachable profiles at time T > 0 defined
in (1.8). We recall that any element of A[AB](T ) has at most countably many discontinuities
(see [3]).
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3.2. Examples. We consider here different examples of AB-entropy solutions u that reach
the same attainable profile ωT ∈ A[AB](T ) at time T , which illustrate various structures
and properties of the sets C(u, x), C0(u, x). Although we choose a relatively simple profile,
it gives already the possibility to capture the essence and the key points of Definition 3.1.
Namely, given L0 < 0, we define

ω1(x) =


p x < L0,

A L0 < x < 0,

B 0 < x,

(3.4)

choosing
p > v

.
= v[L0, A, fl], (3.5)

where v[L0, A, fl] denotes the quantity defined in [3, § 3.2], that satisfies

A < v < A (3.6)

and A,B are defined as in (2.7). Here we are assuming that the connection (A,B) is not
critical. Moreover, we assume that

f ′
l (A) < L0/T < f ′

l (v) . (3.7)

Note that, since f ′
r(B) ≤ 0 it follows that R = R[ω1, fr] = 0, while (3.5), (3.7) imply

L = L[ω1, fl] = L0. One can readly verify that ω1 fulfills the conditions (i)-(ii) of [3, Theorem
4.7] characterizing a class of attainable profiles in A[AB](T ). By the analysis in [3, see
Remark 4.5] it follows that, because of (3.7), any AB-entropy solution reaching the profile ω1

at time T must necessary contain at least one shock, located in {x ≤ 0}, that produces at
time T the discontinuity occurring at x = L0. We shall now briefly describe four different
AB-entropy solutions driving (1.1), (1.3) to ω1 at time T , that are represented in Figures 4-7,
with the shock curves coloured in red.

• In Figure 4 it is represented the solution u∗ defined as in (1.10)-(1.11) by u∗(·, t) =
S [AB]+
t ◦ S [AB]−

T ω1. This solution contains in particular a compression wave that
creates a shock discontinuity at (L0, T ), which is located on the left of a rarefaction
wave centered at the point (L0 − T · f ′

l (v), 0). This rarefaction impinges (from the
left) on a shock curve emerging from the interface x = 0, at some time t = σ, which
has right state equal to A. The left trace of u∗ at x = 0 is equal to A in the interval
[0,σ[ , and it is equal to A in the interval ]σ, T ]. Instead the right trace of u∗ at
x = 0 is always equal to B. At any point (x, T ), x ∈ ]L0, 0[ , we can trace a unique
backward genuine characteristic with slope f ′

l (A), which meets the interface x = 0 at
time t = T − x/f ′

l (A). We can then define an AB-gic prolonging this characteristic
on the side {x > 0} with slope f ′

r(B). Another possible choice to backward define an
AB-gic is to travel along the interface x = 0 until some time τ , and then to prolong
it either on the right (again with slope f ′

r(B)), or on the left if τ ≤ σ (with slope
f ′
l (A)). Therefore we have two distinct minimal and maximal polygonal lines in the
set C(u∗, x), represented by the blue polygonal lines in Figure 4, while all the other
blue dashed lines are the segmens of the other elements in C(u∗, x). A more detailed
description of these sets for a profile similar to ω1 is given in Remark 3.8.

• The solution u1 represented in Figure 5 contains a shock located in {x < 0} which
has left state p and right state A. Here we are assuming that the corresponding
Rankine-Hugoniot speed λl(p,A) satisfy L0 − Tλl(p,A) < 0, which is certainly true
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Ap B

x

t

ω1

p B

L x

tūL

Figure 4. The solution u∗.

x

t

ω1

p A B

L x

Figure 5. The solution u1.

if we take p sufficiently close to A. In this case we cannot have AB-gics starting at
(x, T ), x ∈ ]L0, 0[ , that are backward prolonged on the side {x < 0} since the left
trace of u1 at x = 0 is always equal to A, and f ′

l (A) < 0 by Definition 2.1. Hence,
the set C(u1, x) is smaller than in the previous case and we have C(u1, x) ⊂ C(u∗, x).

• In the case of the solution u2 represented in Figure 6, two rarefaction waves coming
from both sides impinge on the interface x = 0 in the time interval [0,σ[ . Therefore,
in this interval the left trace of u2 at x = 0 has values u2,l > A, while the right
trace at x = 0 has values u2,r < B. As a consequence, the only AB-gic starting
at (x, T ), x ∈ ]L0, 0[ , that can be backward prolonged on the side {x < 0} after
traveling on the interface is the one that remains on the interface in the time interval
[σ, T −x/f ′

l (A)], and then continues with slope f ′
l (A) on the side {x < 0} in the time

interval [0,σ]. Similarly, the leftmost AB-gic starting at (x, T ), x ∈ ]L0, 0[ , that is
backward prolonged on the side {x > 0}, is the one that remains on the interface in
the time interval [σ, T − x/f ′

l (A)], and then continues with slope f ′
r(B) on the side

{x > 0} in the time interval [0,σ]. We deduce from this analysis that, differently
from the other cases, here the set C0(u2, x) is not an interval.

• Finally, we consider the solution u3 represented in Figure 6, where besides the shock
located in {x ≤ 0} reaching the point (x, T ), there is another a shock located in
{x ≥ 0}. This shock emerges from the interface x = 0 at some time τ1, and is
then reabsorbed by the interface at some later time τ2 > τ1, due to the interaction
with rarefaction and compression waves coming from the right. Here we see that,
differently from the previous cases, we have max C0(u3, x) < max C0(u∗, x).
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x

t

ω1

p B

L x̄

tūL

Figure 6. The solution u2.

x

t

ω1

p B

L x̄

tūL

Figure 7. The solution u3.

3.3. Main results. The first main result of the paper provides a characterization of the set

I [AB]
T (ωT ) in (1.9). By the analysis in [3] we know that if ωT ∈ A[AB](T ), then the AB-entropy

solution u∗ defined by (1.10)-(1.11) satisfies u∗(·, T ) = ωT , which means that u∗
0 ∈ I [AB]

T (ωT ).

Our next Theorem gives a characterization of the possible elements u0 ∈ I [AB]
T (ωT ) which

are different from u∗
0.

Theorem 3.4. Given ωT ∈ A[AB](T ), let C0(u∗, x) denote the set defined in (3.3) for the

AB-entropy solution u∗ defined by (1.10)-(1.11), and let u0 ∈ L∞(R). Then u0 ∈ I [AB]
T (ωT )

if and only if for every point x ∈ R there exists y ∈ C0(u∗, x) such that there hold∫ y

y

u0(x) dx ≤
∫ y

y

u∗
0(x) dx, ∀ y < min C0(u∗, x) (3.8)

and ∫ y

y

u0(x) dx ≥
∫ y

y

u∗
0(x) dx, ∀ y > max C0(u∗, x) (3.9)

Remark 3.5. Given ωT ∈ A[AB](T ), one can verify that the set of initial data I [AB]
T (ωT )

shares the same topological properties enjoyed by the set of initial data leading at time T
to an attainable profile for a conservation laws with uniformly convex flux independent on
the space variable (see [14, Proposition 5.1]). Namely, with respect to the L1

loc topology, we
have:

(i) for every M > 0, the set I [AB]
T (ωT ) ∩ {u0 : ∥u0∥L∞ ≤ M} is closed, and I [AB]

T (ωT ) is
an Fσ set;

(ii) the set I [AB]
T (ωT ) has empty interior.
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The first property follows immediately by the L1-contractivity of the semigroup of AB-
entropy solutions. Concerning property (ii), consider two points 0 < x1 < x2 of continuity
for ωT , such that the classical genuine characteristics ϑx1 , ϑx2 : [0, T ] → R for ut+fr(u)x = 0,
passing at time T through x1, x2, respectively, never cross the interface x = 0. Let u∗ be
the AB-entropy solution defined in (1.11). Then, by Remark 3.2, ϑx1 , ϑx2 are the unique
AB-gic for u∗ that reach at time T the points x1, x2, respectively. By definition (3.3) this
means that C0(u∗, xi) = {ϑxi

(0)}, i = 1, 2. Note that, by the non crossing property of
genuine characteristics, we have θx1(0) < θx2(0). Next, applying the inequality (1.12) for

x = x2, y = ϑx1(0), we find that any element u0 ∈ I [AB]
T (ωT ) satisfies∫ ϑx2 (0)

ϑx1 (0)

u0(x) dx ≤
∫ ϑx2 (0)

ϑx1 (0)

u∗
0(x) dx (3.10)

On the other hand, applying the inequality (1.13) for x = x1, y = ϑx2(0), we find that any

element u0 ∈ I [AB]
T (ωT ) satisfies∫ ϑx2 (0)

ϑx1 (0)

u0(x) dx ≥
∫ ϑx2 (0)

ϑx1 (0)

u∗
0(x) dx . (3.11)

The inequalities (3.10), (3.11) together imply that every element u0 ∈ I [AB]
T (ωT ) satisfies∫ ϑx2 (0)

ϑx1 (0)

u0(x) dx =

∫ ϑx2 (0)

ϑx1 (0)

u∗
0(x) dx. (3.12)

Then, letting G : L∞(R) → R be the linear map defined by G(u0) =
∫ ϑx2 (0)

ϑx1 (0)
u0(x) dx, we

deduce from (3.12) that

I [AB]
T (ωT ) ⊂ {u0 ∈ L∞(R) |G(u0) = G(u∗

0), }

which shows that I [AB]
T (ωT ) has an empty interior since is is contained in an hyperplane

of L∞(R)).

The second main contribution of this paper establishes some structural and geometrical

properties of the set I [AB]
T (ωT ).

Theorem 3.6. Given ωT ∈ A[AB](T ), with the same notations of Theorem 3.4 the following
properties hold.

(i) The set I [AB]
T (ωT ) reduces to the singleton {u∗

0} if and only if |C0(u∗, x)| = 1 for every

x ∈ R. In particular, if I [AB]
T (ωT ) = {u∗

0} then ωT is continuous on R \ {0}.
(ii) The set I [AB]

T (ωT ) is an affine cone having u∗
0 as its vertex (i.e. the set I

[AB]
T (ωT )−u∗

0

is a linear cone). Moreover, u∗
0 is the unique extremal point of the set I [AB]

T (ωT ).
(iii) If, setting

L
.
= L[ωT , fl]

.
= sup

{
L < 0 : x− T · f ′

l (ω
T (x)) ≤ 0 ∀ x ≤ L

}
,

R
.
= R[ωT , fr]

.
= inf

{
R > 0 : x− T · f ′

r(ω
T (x)) ≥ 0 ∀ x ≥ R

}
,

(3.13)

and

X .
= X (ωT )

.
=
{
x ∈ R

∣∣ |C0(u∗, x)| = 1
}
, (3.14)
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for every point x ∈ ]L,R[ of continuity of ωT there holds

C0(u∗, x̄) ∩ cl

(⋃
x∈X

C0(u∗, x)

)
̸= ∅, (3.15)

then, the set I [AB]
T (ωT ) is convex.

Theorem 3.4, together with Theorem 3.6-(ii) and Example in § 6.1 (showing that the set

I [AB]
T (ωT ) can well be non convex if condition (3.15) is not verified), yield Theorem 1.1 stated

in the Introduction.

Remark 3.7. Note that the stronger condition

|C0(u∗, x)| = 1 for every point x ∈ ]L,R[ of continuity of ωT , (3.16)

clearly implies (3.15) and thus ensures the convexity of I [AB]
T (ωT ). Actually, we will first

show that the set I [AB]
T (ωT ) is convex under condition (3.16). Next, we will extend the result

to the case where (3.15) is verified at every point x ∈ ]L,R[ of continuity of ωT .

Remark 3.8. In [3, Theorems 4.2, 4.7, 4.9] it is shown that the attainable set A[AB](T ) can be
partitioned in classes of attainable profiles ωT which depend on the quantities L,R defined
in (3.13) and on the relative positions of f ′

l (A)/T with respect to L, or of f ′
r(B)/T with

respect to R. These classes of profiles do not provide a finer partition than the one given by
the two sets{

ω ∈ A[AB](T ) | I [AB]
T (ω) is convex

}
,

{
ω ∈ A[AB](T ) | I [AB]

T (ω) is not convex
}
.

In fact, there are profiles ω2, ω3 ∈ A[AB](T ) that belong to one same class of attainable

profiles described in [3], but such that I [AB]
T (ω2) is convex while I [AB]

T (ω3) is not convex. For
example, we consider the profile defined in § 3.2, but replacing p with v, i.e. setting

ω2(x) =


v x < L0,

A x ∈ ]L0, 0[ ,

B x > 0.

(3.17)

As observed in § 3.2 we have R = R[ω2, fr] = 0, and L = L[ω2, fl] = L0. One can readly
verify that ω2 fulfills the conditions (i)-(ii) of [3, Theorem 4.7], as does the profile ω3 in (6.21)

considered in Example of § 6.1. We will show in § 6.1 that the set of initial data I [AB]
T (ω3)

is not convex. On the other hand, we will see here that, setting

u∗
0
.
= S [AB]−

T ω2, u∗(·, t) .
= S [AB]+

t u∗
0 ∀ t ∈ [0, T ] , (3.18)

at every point x ∈ ]L0, 0[ there holds (3.15). Thus, the set I [AB]
T (ω2) is convex because of

Theorem 3.6-(iii).
In order to determine the sets C0(u∗, x), x ∈ R (and then check (3.15)), we construct

explicitly the AB-entropy solution u∗ defined in (3.18), following the procedure described
in [3, § 5.4]. Namely, because of condition (3.6) the solution u∗ contains a shock curve
starting at the interface x = 0, and then lying in the semiplane {x < 0}, which reaches
the point x = L0 at the time T . In fact, according with the analysis in [3, § 3.5], there
exist a constant σ

.
= σ[L0, A, fl], and a map γ : [σ, T ] → ] − ∞, 0], with the properties

that γ(σ) = 0, γ(T ) = L0, and that t → (γ(t), t) is a shock curve for the conservation law
ut + fl(u)x = 0, which connects the left states (f ′

l )
−1
((
γ(t)− L0 + T · f ′

l (v)
)
/t
)
, t ∈ [σ, T ],
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L ω1

x

t
A B

A

v

u∗

Figure 8. The profile ω1 with its solution u∗ constructed in Remark 3.8

with the right state A. On the left of γ(t) there is a rarefaction wave, connecting the left
state v with the right state A, and centered at the point (L0 − T · f ′

l (v), 0). Moreover, there
holds

σ =
T · f ′

l (v)− L0

f ′
l (A)

. (3.19)

Then, setting
η−(t)

.
= L0 − (T − t) · f ′

l (v), t ∈ [0, T ],

η+(t)
.
= L0 − T · f ′

l (v) + t · f ′
l (A), t ∈ [0,σ],

we find that the function u∗ in (3.18) is given by (see Figure 8)

u∗(x, t) =



v if x < η−(t), t ∈ [0, T ],

(f ′
l )

−1
(x− L0 + T · f ′

l (v)

t

)
if

{
η−(t) < x < γ(t), t ∈ [σ, T ],

η−(t) < x < η+(t), t ∈ ]0,σ],

A if γ(t) < x < 0, t ∈ [σ, T ],

A if η+(t) < x < 0, t ∈ [0,σ],

B if x > 0, t ∈ [0, T ].

(3.20)

Observe that every AB-gic for u∗ that reaches a point x ∈ ]L0, 0[ at time T has either the
expression

ητ1
(t) =


x− (T − t) · f ′

l (A) if t ∈ [τ2, T ],

0 if t ∈ [τ1, τ2],

(t− τ1) · f ′
r(B) if t ∈ [0, τ1],

with τ2
.
= T − x/f ′

l (A), and τ1 ∈ [0, τ2], or the expression

η̃
τ̃1
(t) =


x− (T − t) · f ′

l (A) if t ∈ [τ2, T ],

0 if t ∈ [τ̃1, τ2],

(t− τ̃1) · f ′
l (A) if t ∈ [0, τ̃1],

with τ2 as above and τ̃1 ∈ [0,σ]. By definition (3.2) this means that

C(u∗, x) =
{
ητ1

| τ1 ∈ [0, τ2]
}
∪
{
η̃
τ̃1
| τ̃1 ∈ [0, σ]

}
.
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Since we have {
ητ1(0) | τ1 ∈ [0, τ2]

}
=
[
0, (x/f ′

l (A)− T ) · f ′
r(B)

]
,{

η̃τ̃1(0) | τ̃1 ∈ [0, σ]
}
=
[
− σ · f ′

l (A), 0
]
,

by definition (3.3) and by virtue of (3.19) we then find that

C0(u∗, x) =
[
L0 − T · f ′

l (v), (x/f
′
l (A)− T ) · f ′

r(B)
]

∀ x ∈ ]L0, 0[ . (3.21)

On the other hand, since ω2 is constant for x < L0, there exists a unique AB-gic for u∗ that
reaches a point x < L0 at time T , which is a classical genuine characteristic

ϑx(t) = x− (T − t) · f ′
l (v), t ∈ [0, T ],

because it never crosses the interface x = 0. Hence, we have

C0(u∗, x) = {x− T · f ′
l (v)} ∀ x < L0 . (3.22)

Therefore, from (3.21), (3.22), we deduce

C0(u∗, x) ∩ cl

( ⋃
x<L0

C0(u∗, x)

)
=
{
L0 − T · f ′

l (v)
}

∀ x ∈ ]L0, 0[ ,

which proves (3.15), and thus concludes the proof of the convexity of I [AB]
T (ω2).

4. Properties of genuine/interface characteristics

In this section we establish some basic properties enjoyed by the AB-genuine/interface
characteristics for an AB-entropy solution u, and by the sets C(u, x), C0(u, x), introduced
in § 3.

Proposition 4.1. Let u be an AB-entropy solution to (1.1). Then the following properties
hold.

(i) C(u, x) ̸= ∅ for all x ∈ R;
(ii) the map x 7→ C(u, x) has closed graph as a set-valued map from R into the power set

of the space Lip([0, T ] ;R) with the topology of uniform convergence;
(iii) the map x 7→ C0(u, x) has closed graph as a set-valued map from R into the power set

of R;
(iv) the maps x 7→ min C0(u, x), x 7→ max C0(u, x) are monotone nondecreasing.

Proof. Throughout the proof we set ωT (x)
.
= u(x, T ), x ∈ R, and we let ul(t), ur(t) denote

the one-sided traces of u(t, ·) at x = 0.
1. Proof of (i). Given x > 0, consider the minimal backward characteristic for the

conservation law ut + fr(u)x = 0, in the semiplane {x > 0}, starting from (x, T ), defined by
ϑx,−(t) = x− (T − t) · f ′

r(ω
T (x−)). If x−T · f ′

r(ω
T (x−)) ≥ 0, then ϑx,− is a classical genuine

characteristic for u in the whole interval [0, T ], since it never crosses the interface x = 0 but
at most at t = 0. Therefore, according with Definition 3.1, the map

ζ(t) = x− (T − t) · f ′
r(ω

T (x−)), t ∈ [0, T ],

is an AB-genuine/interface characteristic, and hence by (3.2) it holds ζ ∈ C(u, x). Otherwise,
we have x− T · f ′

r(ω
T (x−)) < 0, and thus ϑx,− impacts the interface at the time:

τ−(x)
.
= T − x

f ′
r(ω

T (x−))
> 0. (4.1)
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Then, consider the set

E
.
=
{
t ∈ [0, τ−(x)]

∣∣ either ul(t) > θl or ur(t) < θr

}
, (4.2)

and let

τ
.
= supE, (4.3)

where we understand that τ = 0 when E = ∅. Because of the non-intersection property of
classical genuine characteristics in the domains {x < 0}, {x > 0}, and since uniform limit of
classical genuine characteristics is a classical genuine characteristic as well (e.g. cfr. [3, proof
o Lemma C.1]), we deduce that

τ ∈ E if E ̸= ∅. (4.4)

Thus, when E ̸= ∅, if ul(τ) > θl we can consider the minimal backward characteristic for the
conservation law ut + fl(u)x = 0, in the semiplane {x < 0}, starting from (0, τ), defined by
ϑτ ,−(t) = (t− τ) · f ′

l (ul(τ)). Otherwise, if ur(τ) < θr we can consider the maximal backward
characteristic for the conservation law ut + fr(u)x = 0, in the semiplane {x > 0}, starting
from (0, τ), defined by ϑτ ,+(t) = (t − τ) · f ′

r(ur(τ)). On the other hand, by definition of E,
and recalling the interface condition (2.5), we find that

ul(t) = A, ur(t) = B ∀ t ∈ ] τ , τ−(x)]. (4.5)

Note in particular that

τ < τ−(x) =⇒ ur(τ−(x)) = ωT (x−) = B. (4.6)

Therefore, the piecewise affine map

ζ(t) =


x− (T − t) · f ′

r(ω
T (x−)), t ∈ [τ−(x), T ],

0, t ∈ ]τ , τ−(x)[,

(t− τ) · f ′
l (ul(τ)), t ∈ [0, τ ], if ul(τ) > θl,

(t− τ) · f ′
r(ur(τ)), t ∈ [0, τ ], if ur(τ) < θr,

(4.7)

satisfy the conditions of Definition 3.1, and thus it is an AB-gic belonging to the set C(u, x).
Note that it may well happen that τ = τ−(x), in which case there will be in (4.7) no nontrivial
interval where the characteristic is travelling along the interface x = 0. Instead, in the case
τ = 0, the AB-gic in (4.7) lies on the interface x = 0 in the whole interval [0, τ−(x)].

Clearly, the same analysis can be carried out to show that C(u, x) ̸= ∅ also for x < 0. It
remains to consider the case x = 0. Notice that this case would follow from (ii) and from
(i) for x ̸= 0, however for clarity we write the construction explicitly. If we assume that
ωT (0−) > θl, then the minimal backward characteristic for ut + fl(u)x = 0, in the semiplane
{x < 0}, starting from (0, T ), is a classical genuine characteristic for u in the whole interval
]0, T ], and hence it it is an AB-gic belonging to the set C(u, 0). Similarly, if ωT (0+) < θr,
then the maximal backward characteristic for ut + fr(u)x = 0, in the semiplane {x > 0},
starting from (0, T ), is a classical genuine characteristic for u in the whole interval [0, T ], and
hence it is an AB-gic belonging to the set C(u, 0). Finally, if ωT (0−) ≤ θl and ωT (0+) ≥ θr,
by the interface condition (2.5), we deduce that ωT (0−) = A, ωT (0+) = B. Then, set

τ = supE, E
.
=
{
t ∈ [0, T ]

∣∣ either ul(t) > θl or ur(t) < θr

}
.
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x

L RA Bx̄ ω

Figure 9. There are no backward generalized characteristics with time of
existence [0, T ] from the point x̄ which reach time t = 0 if we use the classical
definition. If, instead, we consider elements in C(u, x̄) (the blue line), we see
that, also if at the time at which the characteristic reaches the interface it
cannot be prolonged on the other side in classical sense, there is at least an
element in C(u, x̄) that is defined on the whole [0, T ].

With the same type of analysis as above we find that τ ∈ E and that the map

ζ(t) =


0, t ∈ ]τ , T ],

(t− τ) · f ′
l (ul(τ)), t ∈ [0, τ ], if ul(τ) > θl,

(t− τ) · f ′
r(ur(τ)), t ∈ [0, τ ], if ur(τ) < θr,

(4.8)

is an AB-gic belonging to the set C(u, 0), thus completing the proof of (i).

2. Proof of (ii). The closed graph property of the map x 7→ C(u, x) is equivalent to(
xn → x, ζn ∈ C(u, xn), ζn → ζ uniformly

)
=⇒ ζ ∈ C(u, x). (4.9)

Then, let {xn}n be a sequence converging to x ≥ 0, and consider a sequence of AB-gic
ζn ∈ C(u, xn), that converge uniformly to some ζ ∈ Lip([0, T ] ;R). By Remark 3.2, for
every n there will be 0 ≤ τ1,n ≤ τ2,n ≤ T , such that

ζn(t) = 0, fl(ul(t)) = fr(ur(t)) = γ ∀ t ∈ [τ1,n, τ2,n], (4.10)

and such that the restriction of ζn to ]0, τ1,n[ and to ]τ2,n, T [ is either a classical genuine
characteristic for ut + fl(u)x = 0 on {x < 0}, or it is a classical genuine characteristic for
ut + fr(u)x = 0 on {x > 0}. This, in particular, implies that

ζ̇n(t) =


xn

T − τ2,n
∀ t ∈ ]τ2,n, T [ ,

−ζn(0)

τ1,n
∀ t ∈ ]0, τ1,n[ .

(4.11)

Possibly considering a subsequence we can assume that {τi,n}n converge to some τi ∈ [0, T ],
i = 1, 2, with τ1 ≤ τ2. Suppose that τ1 > 0, τ2 < T . The cases where τ1 = 0, or/and
τ2 = T can be treated with entirely similar and simpler arguments. Up to extracting a
further subsequence we may also assume that xn > 0 for all n, and that

ζn(t) < 0 ∀ t ∈ [0, τ1,n[ , ζn(t) > 0 ∀ t ∈ ]τ2,n, T ], ∀ n . (4.12)

Again, the cases where ζn(t) > 0 for all t ∈ [0, τ1,n[ , or/and xn < 0, ζn(t) < 0 for all
t ∈ ]τ2,n, T ], can be analyzed in an entirely similar way. By the uniform convergence of ζn
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to ζ and since τi,n → τi, i = 1, 2, it follows from (4.10) that

ζ(t) = 0, fl(ul(t)) = fr(ur(t)) = γ ∀ t ∈ ]τ1, τ2[ . (4.13)

and

ζ(t) ≤ 0 ∀ t ∈ [0, τ1], ζ(t) ≥ 0 ∀ t ∈ [τ2, T ]. (4.14)

Moreover, we have

ζ(T ) = x, (4.15)

since xn → x and xn = ζn(T ) → ζ(T ). Note also that, because of (4.11), there holds

ζ̇(t) = lim
n

ζ̇n(t) =


x

T − τ2
∀ t ∈ ]τ2, T [ ,

−ζ(0)

τ1
∀ t ∈ ]0, τ1[ .

(4.16)

Now, if we assume that x > 0, it follows from (4.16) that that ζ(t) > 0 for all t ∈ ]τ2, T ]. On
the other hand, since uniform limit of classical genuine characteristics is a classical genuine
characteristic as well, we deduce that the restriction of ζ to ]τ2, T ] is a classical genuine
characteristic for ut + fr(u)x.

Next, if we assume that x = 0, then the uniform convergence of ζn to ζ, together
with (4.12), (4.16), imply that

ζ(t) = ζ̇(t) = 0 ∀ t ∈ ]τ2, T [ , (4.17)

and

f ′
r(ur(t)) = lim

n
f ′
r(u(ζn(t), t)) = lim

n
ζ̇n(t) = 0 ∀ t ∈ ]τ2, T [ . (4.18)

In turn, (4.18) implies that ur(t) = θr = B for all t ∈ ]τ2, T [, and that (A,B) is a critical
connection. On the other hand, because of the interface condition (2.5), it follows that
fl(ul(t)) = fr(ur(t)) = γ for all t ∈ ]τ2, T [, which proves that the restriction of ζ to the
interval [τ2, T ] satisfies the condition (ii) of Definition 3.1. With entirely similar arguments
one can show that the restriction of ζ to the interval [0, τ1] satisfies the condition (i) or
(ii) of Definition 3.1, which, together with (4.13), completes the proof that ζ is an AB-gic
belonging to the set C(u, x). This completes the proof of (4.9) whenever {xn}n is a sequence
converging to x ≥ 0. The case where the limit point x of {xn}n is non positive can be treated
in entirely similar way.

3. Proof of (iii). Let {xn}n be a sequence converging to x ∈ R, and let {yn}n be a sequence
of elements of C0(u, xn) converging to some point y ∈ R. Then, there will be a sequence of
AB-gic ζn ∈ C(u, xn), such that yn = ζn(0) for all n. Observe that by Definition 3.1 it follows
that

|ζn(t)| ≤ |xn|+ LT, |ζ̇n(t)| ≤ L, ∀ t ∈ [0, T ], ∀ n , (4.19)

for some constant L > 0 depending on ∥u∥L∞ . Hence, applying Ascoli-Arzelà Theorem,
we deduce that up to a subsequence {ζn}n converges uniformly to some ζ ∈ Lip([0, T ] ;R).
Thus, in particular we have

ζ(0) = lim
m

ζn(0) = lim
n

yn = y. (4.20)

Then, in view of property (ii) established at previous point, we find that ζ ∈ C(u, x),
and (4.20) implies y ∈ C0(u, x), completing the proof of (iii).
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4. Proof of (iv). Given x1 < x2, let y1 = max C0(u, x1), and consider ζ1 ∈ C(u, x1) such
that ζ1(0) = y1. Choose any ζ2 ∈ C(u, x2) and define

ζ(t)
.
= max{ζ1(t), ζ2(t)} t ∈ [0, T ].

Observe that, by definition the maximum of two AB-gic is still an AB-gic, and ζ(T ) = x2,
so that one has ζ ∈ (u, x2). Moreover:

max C0(u, x1) = y1 = ζ1(0) ≤ ζ(0) ≤ max C0(u, x2).

This proves (iv), and thus concludes the proof of the proposition. □

The next Proposition states that the AB-entropy solution u∗ defined in (1.11) has always at
least an AB-gic in common with every AB-entropy solutions u satisfying u(· , T ) = u∗(· , T ).

Proposition 4.2. Given ωT ∈ A[AB](T ), let u∗ be the AB-entropy solution defined by (1.10)-

(1.11), and let u be any other AB-entropy solution to (1.1) with initial datum u0 ∈ I [AB]
T (ωT ).

Then, there holds

C(u∗, x) ∩ C(u, x) ̸= ∅ ∀ x ∈ R . (4.21)

Proof. To fix the ideas, we will assume that, letting L,R be the quantities defined in (3.13),
there holds L = 0, R ∈ ]0, T ·f ′

r(B)[ , and that ωT fulfills the conditions (i)’-(ii)’ of [3, Theorem
4.7] for a non critical connection (A,B), which in particular require

ωT (x−) ≥ ωT (x+) ∀ x ̸= 0, (4.22)

ωT (x) ≥ B ∀ x ∈ ]0,R[ . (4.23)

The cases where ωT belongs to other classes of reachable profiles described in [3, Theorems
4.2, 4.7, 4.9] can be analyzed with entirely similar arguments. Throughout the proof we let
ul(t), ur(t), and u∗

l (t), u
∗
r(t), denote the one-sided traces of u(t, ·) and u∗(t, ·), respectively, at

x = 0.

1. Relying on the fact that any sequence {ζn}n of AB-gic (for u∗ and u) admits a sub-
sequence uniformly convergent to some ζ ∈ Lip([0, T ] ;R) (see point 3. of the proof of
Proposition 4.1), and since the map x → C(u∗, x) ∩ C(u, x) has closed graph by Proposi-
tion 4.1-(ii), it will be sufficient to show that C(u∗, x) ∩ C(u, x) ̸= ∅ holds for all point x of
continuity for ωT . Moreover, for every point x ∈ ]− ∞, 0[ ∪ ]R,+∞[ of continuity for ωT ,
there exists a unique AB-gic for u∗ and u that reaches the point x at time T , which is a
classical genuine characteristic ϑx for u∗ and u (since it never crosses the interface x = 0, but
at most at t = 0, by definition (3.13)). Thus we have C(u∗, x) ∩ C(u, x) = {ϑx} for all point
x ∈ ]−∞, 0[ ∪ ]R,+∞[ of continuity for ωT . As a consequence, in order to establish (4.21)
it will be sufficient to show

C(u∗, x) ∩ C(u, x) ̸= ∅ for all x ∈ ]0,R[ of continuity for ωT . (4.24)

To this end, given any x ∈ ]0,R[ of continuity for ωT , we consider the AB-gic ζ ∈ C(u, x)
defined in (4.7), with τ as in (4.3) and

τ(x)
.
= T − x

f ′
r(ω

T (x))
, (4.25)

in place of τ−(x). We will show that ζ also belongs to C(u∗, x). Note that by definition of R
at (3.13) we have τ(x) > 0.
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2. We determine here explicitly the AB-entropy solution u∗ defined by (1.10)-(1.11) when
ωT satisfies the conditions (i)’-(ii)’ of [3, Theorem 4.7] for a non critical connection, with
L = 0, R ∈ ]0, T · f ′

r(B)[ . These conditions require in particular that

ωT (0−) ≥ π(ωT (0+)), (4.26)

ωT (x) ≥ B, ∀ x ∈ ]0,R[ , (4.27)

ωT (R+) ≤ u , (4.28)

where

π(u)
.
= (fl|[θl,+∞))

−1 ◦ fr(u), u ∈ R, (4.29)

and u
.
= u[R, B, fr] is the quantity defined in [3, § 3.1] that satisfies

B > u > B, f ′
r(u) < R/T, (4.30)

(with B defined as in (2.7)). Because of condition (4.27), according with the analysis in [3,
§ 5.4] the solution u∗ contains a shock curve starting at the interface x = 0 and reaching the
point R at time T , which is parametrized by a map γ : [τ , T ] → [0,∞[ , with the properties
that γ(τ ) = 0, γ(T ) = R, where τ

.
= τ [R, B, fr] is a quantity defined as in [3, § 3.4]. The

curve t → (γ(t), t) is the location of a shock for the conservation law ut + fr(u)x = 0, which
connects the left state B with the right states (f ′

r)
−1
((
γ(t)− R+ T · f ′

r(u)
)
/t
)
, t ∈ [τ , T ].

On the right of γ(t) there is a rarefaction wave, connecting the left state B with the right
state u, and centered at the point (R− T · f ′

r(u), 0). Moreover, there holds

τ =
T · f ′

r(u)− R

f ′
r(B)

. (4.31)

Following the procedure described in [3, § 5.4], in order to define u∗ we introduce some
notations for the polygonal lines along which u∗ takes constant values in each region {x < 0},
{x > 0} (that correspond to AB-gic for u∗). We define

ϑ0,−(t)
.
= (t− T ) · f ′

l (ω
T (0−)),

ϑ0,+(t)
.
= (t− T ) · f ′

l

(
π(ωT (0+))

)
,

ϑR,−(t)
.
=

{
R− (T − t) · f ′

r

(
ωT (R−), if τ−(R) ≤ t ≤ T,(

t− τ−(R)
)
· f ′

l ◦ π(ωT (R−)), if 0 ≤ t ≤ τ−(R),

ϑR,+(t)
.
= R− (T − t) · f ′

r

(
ωT (R+)

)
,

(4.32)

and, for every y ∈ ]−∞, 0 [∪ ]R,+∞[ , we define

ϑy,±(t)
.
=


y − (T − t) · f ′

l

(
ωT (y±)

)
, if y < 0, 0 ≤ t ≤ T ,

y − (T − t) · f ′
r

(
ωT (y±)

)
, if 0 < y < R, τ±(y) ≤ t ≤ T ,(

t− τ±(y)
)
· f ′

l ◦ π(ωT (y±)), if 0 < y < R, 0 ≤ t < τ±(y),

y − (T − t) · f ′
r

(
ωT (y±)

)
, if y > R, 0 ≤ t ≤ T ,

(4.33)

where

τ±(y)
.
= T − y

f ′
r(ω

T (y±))
, y > 0. (4.34)
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Moreover, letting {yn}n denote the (at most) countably many discontinuity points of ωT in
the intervals ]−∞, 0], ]R,+∞[, we set

In
0 = ]x−

n , x
+
n [ , x±

n = ϑyn,±(0), yn ∈ ]−∞, 0] ,

In
R = ]x−

n , x
+
n [ , x±

n = ϑyn,±(0), yn ∈ ]R,+∞[ ,

(here we consider the possibility of a jump of ωT in x = 0 when ωT (0−) > π(ωT (0+))). The
intervals In

0 , In
R , consist of the starting points of compression waves in u∗ that generate a

shock at (yn, T ).
Next, we introduce the polygonal lines connecting two points (z, 0), (y, T ) (that correspond

to compression fronts for u∗ generating a shock at the point (y, T )) defined by

ηy,z
.
=


y − (T − t) · (y−z)

T
, if y ∈ ]−∞, 0]∪ ]R,+∞[ , 0 ≤ t ≤ T,

y − (T − t) · f ′
r(uy,z) if 0 < y < R, T − y/f ′

r(uyz) ≤ t ≤ T,(
t− T + y/f ′

r(uyz)
)
· f ′

l ◦ π(uy,z) if 0 < y < R, 0 ≤ t < T − y/f ′
r(uyz),

(4.35)
where uy,z is the unique constant u ≥ (f ′

r)
−1(y/T ) satisfying( y

f ′
r(u)

− T
)
· f ′

l ◦ π(u) = z

(see [3, § 5.4.1]). Finally, we set

r−(t)
.
= R− T · f ′

r(u) + t · f ′
r(B), t ∈ [0, τ ],

r+(t)
.
= R− (T − t) · f ′

r(u), t ∈ [0, T ].

Then, the function u∗ defined by (1.10)-(1.11) is given by

u∗(x, t) =



ωT (y±), if x = ϑy,±(t) for some y ∈ ]−∞, 0[∪ ]R,+∞[ ,

ωT (y±), if x = ϑy,±(t) > 0 for some y ∈ ]0,R[ ,

π(ωT (y±)), if x = ϑy,±(t) < 0 for some y ∈ ]0,R[ ,

(f ′
r)

−1
(
yn−z
T

)
, if x = ηyn,z(t) for some z ∈ In

R ,

(f ′
l )

−1
(
yn−z
T

)
, if x = ηyn,z(t) for some z ∈ In

0 ,

B if

{
ϑR,−(t) ≤ x < γ(t), t ∈ [τ−(R), T ],

0 < x < γ(t), t ∈ [τ , τ−(R)],

A if ϑR,−(t) ≤ x < 0, t ∈ [0, τ−(R)],

B if 0 < x ≤ r−(t), t ∈ [0, τ ],

(f ′
r)

−1
(x− R+ T · f ′

r(u)

t

)
if

{
γ(t) < x < r+(t), t ∈ [τ , T ],

r−(t) < x < r+(t), t ∈ [0, τ ],

(f ′
r)

−1
(
R−x
T−t

)
if r+(t) ≤ x ≤ ϑR,+(t), t ∈ [0, T [ .

(4.36)
Observe that the left and right traces of u∗ satisfy



22 FABIO ANCONA AND LUCA TALAMINI
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Figure 10. The solution u∗

u∗
l (t) ≥ A, u∗

r(t) ≥ B, ∀ t ∈ ]τ−(R), T ],

u∗
l (t) = A, u∗

r(t) = B, ∀ t ∈ ]τ , τ−(R)],

u∗
l (t) = A, u∗

r(t) = B, ∀ t ∈ ]0, τ ].

(4.37)

Moreover, since x is a point of continuity for ωT , it follows that the restriction of ζ to
]τ(x), T ] is a (classical) genuine characteristic both for u and u∗ with slope f ′

r(ω
T (x)) > 0 so

that, recalling (2.5), there holds

ur(τ(x)) = ωT (x) = u∗
r(τ(x)) > θr, fl(ul(τ(x))) = fr(u

∗
r(τ(x))). (4.38)

Now, we will distinguish two cases according with the position of τ with respect to the time
τ−(R) defined as in (4.34). Note that by definition of R at (3.13) we have τ−(R) ≥ 0.

3. Assume that τ ≥ τ−(R), and suppose first that τ(x) = τ > τ−(R). Note that,
since τ > 0 is an element of the set E in (4.2), and because of (4.37), (4.38), we have
ul(τ(x)) = u∗

l (τ(x)) > θl. Therefore, also the restriction of ζ to [0, τ(x)[ is a (classical)
genuine characteristic both for u and u∗. Hence, when τ(x) = τ > τ−(R), the map ζ in (4.7)
is an AB-gic also for u∗, proving that ζ ∈ C(u∗, x) ∩ C(u, x).
Next, consider the subcase τ(x) > τ ≥ τ−(R), and observe that by (4.5), (4.6), (4.38), we

have
ul(t) = A, ur(t) = B ∀ t ∈ ] τ , τ(x)], u∗

r(τ(x)) = B . (4.39)

Moreover, we claim that

ωT (z) = B, ∀ z ∈ [x, x[ , x
.
= (T − τ) · f ′

r(B),

u∗
r(t) = B, ∀ t ∈ ] τ , τ(x)] .

(4.40)

Note that the first equality in (4.40) implies the second one by tracing the backward (genuine)
characteristics for u∗ at time T , from points z ∈ [x, x[ . In order to prove the first equality
in (4.40), we trace the minimal backward characteristic ϑz,− for the solution u, at time T ,
from points z ∈ [x, x]. Observe that ϑz,− impacts the interface x = 0 at time τ−(z)

.
=

T−z/f ′
r(ω

T (z−)). Moreover, since ωT (R−) ≥ B because of (4.23), we deduce from τ ≥ τ−(R)
that

x ≤ R. (4.41)

Furthermore, we have

τ−(z) ≥ T − z

f ′
r(B)

≥ τ ∀ z ∈ [x, x], (4.42)
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since ωT (z−) ≥ B by virtue of (4.23). On the other hand, by (4.25) we know that the
(genuine) characteristic ϑx for u, starting at time T from the point x, reaches the interface
x = 0 at time τ(x). Since ϑx, ϑz,− are (classical) genuine characteristics that cannot cross
in the domain {x > 0}, it follows that

τ(x) ≥ τ−(z) ∀ z ∈ [x, x] . (4.43)

Combining together (4.42), (4.43), we deduce that, for every z ∈ [x, x], the minimal backward
characteristics ϑz,− reaches the interface x = 0 at time τ−(z) ∈ [ τ , τ(x)]. Hence, because
of (4.39), we find that for all z ∈ [x, x] there holds ωT (z−) = ur(τ−(z)) = B, and this yields
the first equality in (4.40), concluding the proof of claim (4.40).

Relying on (4.40) we will show now that ζ satisfies the condition of an AB-gic also for u∗

on the interval [0, τ(x)]. To this end, observe that (4.37) (4.40) together imply

u∗
l (t) = A, ∀ t ∈ ] τ , τ(x)] . (4.44)

Hence, because of (4.40), (4.44), ζ satisfies the condition (ii) of Definition 3.1 of an AB-gic
for u∗ on the interval ]τ , τ(x)]. Moreover, let ϑ∗

tn denote the (classical genuine) backward
characteristic for u∗, on the region {x < 0}, starting at time tn ∈ ] τ , τ(x)] from x = 0, for a
sequence tn ↓ τ . Note that, because of (4.44), all ϑ∗

tn have slope f ′
l (A). Thus {ϑ∗

tn}n converges
uniformly to a function ϑ∗ : [0, τ ] → R that is as well a (classical) genuine characteristic
for u∗ with slope f ′

l (A) and such that ϑ∗(τ) = 0. This in turn implies that

u∗
l (τ) = A . (4.45)

Next, we will prove that

ul(τ) = A . (4.46)

To this end observe that (4.22), (4.23), (4.40), (4.41) together imply ωT (x−) = B = ωT (x+).
This means that the characteristic ϑx starting at time T from x, and reaching x = 0 at time τ ,
is a (classical) genuine characteristic for u (on the semiplane {x > 0}), and hence we deduce
that

ur(τ) = ωT (x) = B. (4.47)

Recalling (4.4) and the definition (4.2) of the set E, we derive from (4.47) and from condi-
tion (2) of Definition 2.1 that

ul(τ) > θl. (4.48)

In turn, condition (4.48), together with (4.39), implies (4.46) by a blow-up argument as in [3,
§ 5.2.6]. Namely, we can consider the blow ups of u at the point (0, τ ):

un(x, t)
.
= u

(
x/n, τ + (t− τ)/n

)
x ∈ R, t ≥ 0 , n ∈ N, (4.49)

and observe that, because of (4.39), the left and right traces of un(·, t) at x = 0 satisfy

(un,l(t), un,r(t)) = (A,B) ∀ t ∈
]
τ , τ + n

(
τ(x)− τ

)[
. (4.50)

When n → ∞, up to a subsequence, the blow ups un(·, t) converge in L1
loc to a limiting AB

entropy solution v(·, t), for all t > 0, and there holds

v(x, τ ) =

{
ul(τ), if x < 0,

ur(τ), if x > 0,
(4.51)

v(0−, t) ∈ {A,A }, v(0+, t) ∈ {B,B }, ∀ t > τ . (4.52)
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Then, by a direct inspection we find that, if an AB entropy solution of a Riemann problem
for (1.1), with initial datum (4.51) at time τ , enjoys the properties (4.48), (4.52), it follows
that the left initial datum at time τ must be

v(x, τ) = ul(τ) = A, ∀ x < 0,

thus proving (4.46).
The two conditions equalities (4.45), (4.46) and the definition (4.7) imply that the re-

striction of ζ to [0, τ [ is a (classical) genuine characteristic both for u and u∗ with slope
f ′
l (A) > 0. Therefore we can conclude that ζ satisfies the condition of an AB-gic also for u∗

on the interval [0, τ(x)], and hence on the whole interval [0, T ] by the analysis in the point
2. This completes the proof that ζ ∈ C(u∗, x) ∩ C(u, x) when τ ≥ τ−(R).

4. Assume that τ < τ−(R), with τ−(R) as in (4.34). If we suppose that (4.48) holds,
since (4.39) is still verified we can deduce as above that (4.46) holds as well, and then we
conclude that ζ ∈ C(u∗, x) ∩ C(u, x) with the same arguments of point 3.

Therefore, let us assume that ul(τ) ≤ θl and that ζ(t) > 0 for all t ∈ [0, τ [ . Observe that
because of (4.4), and by definition (4.2) of the set E, we have

ur(τ) < θr. (4.53)

Then, relying on (4.39), we deduce with the same blow up argument of above that

ur(τ) = B . (4.54)

On the other hand, if we show that

τ ≤ τ , (4.55)

it would follow from (4.37) that

u∗
r(τ) = B . (4.56)

The two conditions (4.54), (4.56) and the definition (4.7) imply that the restriction of ζ
to [0, τ [ is a (classical) genuine characteristic both for u and u∗ with slope f ′

r(B) < 0.
Therefore, if (4.55) holds, we can conclude that ζ satisfies the condition of an AB-gic also
for u∗ on the interval [0, τ(x)], and hence on the whole interval [0, T ] by the analysis in the
point 2. Hence, in order to completes the proof that ζ ∈ C(u∗, x) ∩ C(u, x) when τ < τ−(R),
it remains to establish (4.55).

By contradiction, assume that τ > τ . Define the curve

ξ(t)
.
= inf

{
R > 0

∣∣ x− t f ′
r(u(x, t)) ≥ 0 ∀ R > 0

}
t ∈ [τ , T ].

Notice that, because of (4.54), we have ξ(τ) = 0, while the definition (3.13) yields ξ(T ) = R.
But now using a comparison argument between ξ(t) and the map γ(t) defining the shock
curve of u∗ at point 2, we obtain as in [3, §5.2.3] that ξ(t) < γ(t) for all t ∈ [τ , T ]. Thus,
we find in particular that ξ(T ) < γ(T ) = R, which gives a contradiction. This concludes the
proof of the proposition.

□

The next Lemma shows that the initial positions of the AB-gics of the AB-entropy solu-
tion u∗ defined in (1.11) provide a partition of R.
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Lemma 4.3. Given ωT ∈ A[AB](T ), let u∗ be the AB-entropy solution defined by (1.10)-
(1.11). Then, there holds

R =
⋃
x∈R

C0(u∗, x). (4.57)

Proof. By the analysis in [3, §5.4.3] we deduce that R can be partitioned as the union of sets
containing points of three types:

- starting points of compression fronts (possibly refracted by the interface x = 0) which
meet together generating a shock at time T ;

- starting points of classical genuine characteristics or of polygonal lines made of two
segments consisting of classical genuine characteristics in each semiplane {x < 0},
{x > 0}, which reach at time T a point of continuity of ωT .

- starting points y of polygonal lines ξ : [0, T ] → R with ξ(0) = y, composed of three
segments of the form

ξ(t) =


y + t f ′(u(t, ξ(t)), ξ(t)), if 0 ≤ t ≤ t1,

0, if t1 ≤ t ≤ t2,

(t− t2)f
′(u(t, ξ(t)), ξ(t)) if t2 ≤ t ≤ T

where

f(u(t, 0±)) = γ ∀t ∈ (t1, t2).

Notice that these polygonal lines may belong to the near-interface regions ∆L,ΓR defined
in ([3], §5.4.4).

In all cases they are starting points of segments or of polygonal lines which are AB-gics for
u∗, and the result follows. □

We introduce now a functional that, for any given function v(x, t), measures the total
amount of flux of the vector field

(
f(x, v(x, t)), v(x, t)

)
passing through a curve t 7→ (α(t), t),

from each side of the curve.

Definition 4.4. Given a function v ∈ L∞(R×[0, T ] ; R) that admits one-sided limits v(x±, t)
at every point (t, x) ∈ ]0, T ]× R, and α ∈ Lip([0, T ] ; R), we define

Ft(α±, v)
.
=

∫ T

t

{
f
(
α(t)±, v(α(t)±, t)

)
− α̇(t) v(α(t)±, t)

}
dt, t ∈ [0, T ], (4.58)

where f(x, u) is the flux (1.3). We also set

F(α±, v)
.
= F0(α±, v). (4.59)

Remark 4.5. Notice that if u is an AB-entropy solution of (1.1), since u is in particular a dis-
tributional solution of (1.1) on R× ]0,+∞[, it follows that for any curve α ∈ Lip([0, T ] ; R),
the Rankine-Hugoniot conditions yield, for a.e. t ∈ [0, T ], the equality

f
(
α(t)−, u(α(t)−, t)

)
− α̇(t)u(α(t)−, t) = f

(
α(t)+, u(α(t)+, t)

)
− α̇(t)u(α(t)+, t). (4.60)

Therefore, in this case we have F(α+, u) = F(α−, u). Hence, since there is no ambiguity,
whenever u is an AB-entropy solution of (1.1), we will simply write

Ft(α, u)
.
= Ft(α+, u) ≡ Ft(α−, u) ∀ t, F(α, u)

.
= F(α+, u) ≡ F(α−, u).
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Lemma 4.6. Let u, u∗ ∈ L∞(R × [0, T ] ; R) be AB-entropy solutions to (1.1), and let ζ ∈
C(u∗, x), x ∈ R. Then, there holds

Ft(ζ, u) ≥ Ft(ζ, u
∗), ∀ t ∈ [0, T ]. (4.61)

Moreover, one has

F(ζ, u) = F(ζ, u∗) ⇐⇒ ζ ∈ C(u∗, x) ∩ C(u, x). (4.62)

Proof. Let 0 ≤ τ1 ≤ τ2 ≤ T , be the partition of [0, T ] for ζ ∈ C(u∗, x) given by Remark 3.2,
so that there holds

ζ(t) = 0, fl(u
∗
l (t)) = fr(u

∗
r(t)) = γ ∀ t ∈ [τ1, τ2].

To fix the ideas we assume that

ζ(t) < 0 ∀ t ∈ [0, τ1[ , ζ(t) > 0 ∀ t ∈ ]τ2, T ]. (4.63)

The cases where ζ(t) > 0 for all t ∈ [0, τ1[ , or ζ(t) < 0 for all t ∈ ]τ2, T ] are entirely similar.
Then, setting

g(t)
.
=


fr(u(ζ(t)+, t))− ζ̇(t)u(ζ(t)+, t) if t ∈ ]τ2, T ],

fr(ur(t)) if t ∈ [τ1, τ2],

fl(u(ζ(t)+, t))− ζ̇(t)u(ζ(t)+, t) if t ∈ [0, τ1[ ,

g∗(t)
.
=


fr(u

∗(ζ(t), t))− ζ̇(t)u∗(ζ(t), t) if t ∈ ]τ2, T ],

γ if t ∈ [τ1, τ2],

fl(u
∗(ζ(t), t))− ζ̇(t)u∗(ζ(t), t) if t ∈ [0, τ1[ ,

(4.64)

we write

Ft(ζ, u) =

∫ T

t

g(t) dt, Ft(ζ, u
∗) =

∫ T

t

g∗(t) dt, ∀ t ∈ [0, T ]. (4.65)

Note that, because of (4.60), in the definition of g we may equivalently take u(ζ(t)−, t)
instead of u(ζ(t)+, t), while in the definition of g∗ we take u∗ continuous at (ζ(t), t) since ζ
is a classical genuine characteristic for u∗ when t ∈ ]0, τ1[∪ ]τ2, T [ . Observe that, since u is
an AB-entropy solutions to (1.1), by the interface condition (2.5) we have

fr(ur(t)) ≥ γ ∀ t ∈ [τ1, τ2]. (4.66)

On the other hand, because of the convexity of fr there holds

fr(v)− f ′
r(w) v ≥ fr(w)− f ′

r(w)w, ∀ v, w ∈ R. (4.67)

Moreover, since ζ is an AB-gic for u∗, and because of (4.63), note that the restriction
of ζ to [0, τ1[ is a classical genuine characteristic for u∗ as solution of ut + fl(u)x = 0,
and the restriction of ζ to ]τ2, T ] is a classical genuine characteristic for u∗ as solution of
ut + fr(u)x = 0. Hence, it follows that

ζ̇(t) =


f ′
l (u

∗(ζ(t), t)) if t ∈ ]0, τ1[ ,

0 if t ∈ ]τ1, τ2[ ,

f ′
r(u

∗(ζ(t), t)) if t ∈ ]τ2, T [ .

(4.68)
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Thus, (4.67)-(4.68) together imply

fl(u(ζ(t)+, t))− ζ̇(t)u(ζ(t)+, t) ≥ fl(u
∗(ζ(t), t))− ζ̇(t)u∗(ζ(t), t) ∀ t ∈ ]0, τ1[ ,

fr(u(ζ(t)+, t))− ζ̇(t)u(ζ(t)+, t) ≥ fr(u
∗(ζ(t), t))− ζ̇(t)u∗(ζ(t), t) ∀ t ∈ ]τ2, T [ .

(4.69)

Therefore, from (4.66), (4.69) we deduce that

g(t) ≥ g∗(t) ∀ t ∈ [0, T ], (4.70)

which, because of (4.65), yields (4.61).
Concerning (4.62), if ζ ∈ C(u∗, x)∩C(u, x), then the inequality (4.61) is verified also when

u and u∗ switch their places, so that we have Ft(u, ζ) ≥ Ft(u
∗, ζ) for all t ∈ [0, T ], thus

proving
ζ ∈ C(u∗, x) ∩ C(u, x) =⇒ F(u, ζ) = F(u∗, ζ). (4.71)

Next, given ζ ∈ C(u∗, x), assume that

F(ζ, u) = F(ζ, u∗). (4.72)

Since, by the above analysis we have (4.66), it follows from (4.72) that g(t) = g∗(t) for a.e.
t ∈ [0, T ]. Because of (4.64), (4.68), this in particular implies that, for a.e. t ∈ [0, T ], there
holds

fr(ur(t)) = γ if t ∈ [τ1, τ2] , (4.73)

and
fl(u(ζ(t)+, t))− f ′

l (u
∗(ζ(t), t))u(ζ(t)+, t) =

= fl(u
∗(ζ(t), t))− f ′

l (u
∗(ζ(t), t))u∗(ζ(t), t) if t ∈ ]0, τ1[ ,

fr(u(ζ(t)+, t))− f ′
r(u

∗(ζ(t), t))u(ζ(t)+, t) =

= fr(u
∗(ζ(t), t))− f ′

r(u
∗(ζ(t), t))u∗(ζ(t), t) if t ∈ ]τ2, T [ .

(4.74)

Since fl, fr are strictly convex functions, we deduce from (4.74) that u(ζ(t)+, t) = u∗(ζ(t), t)
for a.e. t ∈ ]0, τ1[∪ ]τ2, T [ . If we repeat the same analysis taking u(ζ(t)−, t) instead of
u(ζ(t)+, t) in the definition (4.64) of g, we find that also u(ζ(t)−, t) = u∗(ζ(t), t) for a.e.
t ∈ ]0, τ1[∪ ]τ2, T [ . This shows that the restriction of ζ to [0, τ1[ and to ]τ2, T ] is a classical
genuine characteristic for u as well, as solution of ut + fl(u)x = 0, and of ut + fr(u)x = 0,
respectively. Hence, by Remark 3.2 we deduce that ζ is an AB-igc also for u, which means
that ζ ∈ C(u, x), completing the proof of

F(ζ, u) = F(ζ, u∗) =⇒ ζ ∈ C(u∗, x) ∩ C(u, x), (4.75)

and thus concluding the proof of the Lemma. □

5. Proof of Theorem 3.4

In this section we provide a proof of the initial data identification Theorem 3.4. To this
end we first state a technical Lemma that we are going to use repeatedly in the proof of
Theorem 3.4.

Lemma 5.1. Let u be an AB-entropy solution to (1.1), (1.3), and let α, β : [τ, T ] → R,
τ < T , be two Lipschitz continuous maps such that α(t) ≤ β(t) for all t ∈ [τ, T ]. Then it
holds ∫ β(T )

α(T )

u(x, T ) dx−
∫ β(τ)

α(τ)

u(x, τ) dx = Fτ (α−, u)−Fτ (β+, u) . (5.1)
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Proof. Observe that, by property (1) of Definition 2.2, u is a weak distributional solution
to (1.1), (1.3). Moreover, by Remark 2.3, u(t, ·) is a function of locally bounded variation
on {x < 0}, {x > 0}, and it admits left and right strong traces at x = 0, for all t > 0.
Thus, we can recover the equality (5.1) recalling definition (4.58), applying the divergence
theorem to the vector field (f(x, u), u) on each domain ∆ ∩ {x < ρ}, ∆ ∩ {x > ρ}, with
∆

.
= {(x, t) | α(t) ≤ x ≤ β(t), t ∈ [t0, T ]}, and then taking the limit as ρ → 0. □

Proof of Theorem 3.4. Given ωT ∈ A[AB](T ), let u∗ be the AB-entropy solution defined
by (1.10)-(1.11).

1. We will show that if u0 ∈ I [AB]
T (ωT ), then for every point x ∈ R there exists y ∈ C0(u∗, x)

such that there hold (3.8). The proof of (3.9) is entirely similar. By Proposition 4.2, choose
ζx ∈ C(u∗, x) ∩ C(u, x), with u

.
= S [AB]+u0(·), and set y

.
= ζx(0). Then, consider any

y < min C0(u∗, x). By Lemma 4.3, and because of Proposition 4.1-(iv), there will be some
x < x̄, and some ζx ∈ C(u∗, x), such that y = ζx(0). Hence, applying Lemma 4.6, we deduce
that

F(u, ζx) ≥ F(u∗, ζx). (5.2)

Moreover, since ζx̄ ∈ C(u∗, x) ∩ C(u, x), by the second part of Lemma 4.6 we have

F(u∗, ζx̄) = F(u, ζx̄). (5.3)

On the other hand, applying Lemma 5.1 to the solution u∗ with α = ζx, β = ζx, τ = 0, and
recalling Remark 4.5, one obtains∫ x̄

x

ωT (ξ) dξ −
∫ ȳ

y

u∗
0(ξ) dξ = F(u∗, ζx)−F(u∗, ζx̄). (5.4)

With the same arguments, applying Lemma 5.1 to the solution u, and relying on (5.2), (5.3),
we find∫ x

x

ωT (ξ) dξ −
∫ y

y

u0(ξ) dξ = F(u, ζx)−F(u, ζx) ≥ F(u∗, ζx)−F(u∗, ζx). (5.5)

Combining (5.4), (5.5) we deduce

−
∫ ȳ

y

u0(ξ) dξ ≥ −
∫ y

y

u∗
0(ξ) dξ,

which yields (3.8).

2. Now we prove that if u0 ∈ L∞(R) satisfies (3.8), (3.9), then S [AB ]+
T u0 = ωT . Namely,

we are going to prove that under the conditions (3.8), (3.9), there hold∫ x2

x1

(
ωT (x)− S [AB ]+

T u0(x)
)
dx = 0, ∀ x1 < x2, (5.6)

which clearly implies that S [AB ]+
T u0 = ωT .

Towards a proof of (5.6) we will first show that∫ x2

x1

(
ωT (x)− S [AB ]+

T u0(x)
)
dx ≥ 0, ∀ x1 < x2, (5.7)

distinguishing two cases.
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ξ1

ξ2

ξ1 ξ2

τ

x1 x2x1 x2 ωω

Figure 11. Case 1: max C0(u, x1) ≥ min C0(u∗, x2) (right); Case 2:
max C0(u, x1) < min C0(u∗, x2) (left)

Case 1. max C0(u, x1) ≥ min C0(u∗, x2) (see Figure 11, right). Then we can choose ζ1 ∈
C(u, x1) and ζ2 ∈ C(u∗, x2) such that ζ1(0) ≥ ζ2(0). By continuity there will be a point
τ ∈ [0, T [ such that ζ1(τ) = ζ2(τ), ζ1(t) < ζ2(t) for all t ∈ ]τ, T ]. Applying Lemma 5.1 to the
solution u∗, with the curves α = ζ1, β = ζ2, and using the first part of Lemma 4.6 for ζ1, we
obtain ∫ x2

x1

ωT (x) dx = Fτ (u
∗, ζ1)−Fτ (u

∗, ζ2) ≥ Fτ (u, ζ1)−Fτ (u
∗, ζ2). (5.8)

Next, applying again Lemma 5.1 to the solution u, with the curves α = ζ1, β = ζ2, and then
Lemma 4.6 for ζ2, we obtain∫ x2

x1

S [AB ]+
T u0(x) dx = Fτ (u, ζ1)−Fτ (u, ζ2) ≤ Fτ (u, ζ1)−Fτ (u

∗, ζ2). (5.9)

Taking the difference of the above two inequalities, we derive (5.7). Note that in this case
we are not using the conditions (3.8), (3.9) to establish (5.7).

Case 2. max C0(u, x1) < min C0(u∗, x2) (see Figure 11, left). Choose any ζ1 ∈ C0(u, x1), and

set y
·
= ζ1(0). Since y < min C0(u∗, x2), invoking condition (3.8) we find that there exists

ζ2 ∈ C(u∗, x2) such that, setting y2 = ζ2(0), there holds∫ y2

y

u0(x) dx ≤
∫ y2

y

u∗
0(x) dx . (5.10)

Note that, since max C0(u, x1) < min C0(u∗, x2), we have ζ1(t) < ζ2(t) for all t ∈ [0, T ].
Hence, applying Lemma 5.1 to u∗, with the curves α = ζ1, β = ζ2, and using the first part
of Lemma 4.6 for ζ1, we obtain∫ x2

x1

ωT (x) dx = F(u∗, ζ1)−F(u∗, ζ2) +

∫ y2

y

u∗
0(x) dx

≥ F(u, ζ1)−F(u∗, ζ2) +

∫ y2

y

u∗
0(x) dx .

(5.11)



30 FABIO ANCONA AND LUCA TALAMINI

Next, applying Lemma 5.1 to u, with the curves α = ζ1, β = ζ2, and using the first part of
Lemma 4.6 for ζ2, we obtain∫ x2

x1

S [AB ]+
T u0(x) dx = F(u, ζ1)−Fτ (u, ζ2) +

∫ y2

y

u0(x) dx

≤ F(u, ζ1)−F(u∗, ζ2) +

∫ y2

y

u0(x) dx .

(5.12)

Taking the difference of the above two inequalities, and using (5.10), we derive∫ x2

x1

ωT (x) dx−
∫ x2

x1

S [AB]+
t u0(x) dx ≥

∫ y2

y

u∗
0(x) dx−

∫ y2

y

u0(x) dx ≥ 0 (5.13)

which proves (5.7) also in Case 2.

The proof of the opposite inequality of (5.7) is entirely symmetric and is accordingly
omitted. Thus the proof of (5.6) is completed, and this concludes the proof of the Theorem.

□

Remark 5.2. By the proof of Theorem 3.4 it follows that it is sufficient to assume:

for every point x ∈ R of continuity of ωT , there exists y ∈ C0(u∗, x)

such that there hold (3.8), (3.9),

to conclude that u0 ∈ I [AB]
T (ωT ). In fact, in order to show that ωT = S [AB ]+

T u0, it is sufficient
to prove that (5.6) is verified whenever x1, x2 are points of continuity for ωT , since they are
dense in R.

6. Proof of Theorem 3.6

Proof. Given ωT ∈ A[AB](T ), let u∗ be the AB-entropy solution defined by (1.10)-(1.11). We
prove the Theorem point by point, in order.

1. Proof of (i). First assume that |C0(u∗, x)| = 1 for every x ∈ R. We will show that any

initial data u0 ∈ I [AB]
T (ωT ) satisfies∫ y2

y1

u0(x) dx =

∫ y2

y1

u∗
0(x) dx, ∀ y1 < y2, (6.1)

and this uniquely identifies u0 as an element of L∞(R), thus proving that I [AB]
T (ωT ) = {u∗

0}.
Given any two points y1 < y2, by Lemma 4.3 and because of Proposition 4.1-(iv), there exist
x1 < x2, and ζi ∈ C(u∗, xi), i = 1, 2, such that ζi(0) = yi, i = 1, 2. Then, applying (3.8) of
Theorem 3.4 we find ∫ y2

y1

u0(x) dx ≤
∫ y2

y1

u∗
0(x) dx . (6.2)

Next, if we exchange the role of y1 and y2, applying this time (3.9) of Theorem 3.4 we find
the opposite inequality ∫ y2

y1

u0(x) dx ≥
∫ y2

y1

u∗
0(x) dx . (6.3)

Combining together the above two inequalities we obtain (6.1).

Conversely, assume that I [AB]
T (ωT ) = {u∗

0}, and by contradiction suppose that there is
some x̃ ∈ R such that |C0(u∗, x̃ )| ≠ 1. Using the characterization of Theorem 3.4 we will
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then show that there exist infinitely many initial data u0 ̸= u∗
0 such that S [AB ]+

T u0 = ωT . To
this end, set

conv C0(u∗, x̃ )
.
= [min C0(u∗, x̃ ), max C0(u∗, x̃ )] ,

and let L∞(conv C0(u∗, x̃ )) denote the space of L∞(R) function with essential support in
conv C0(u∗, x̃ )). Note that conv C0(u∗, x̃ ) is a non trivial interval because |C0(u∗, x̃ )| ̸= 1,
and hence L∞(conv C0(u∗, x̃ )) is an infinite dimensional space. Next, consider the infinite
dimensional cone V0 ⊂ L∞(conv C0(u∗, x̃ )) consisting of all v0 ∈ L∞(conv C0(u∗, x̃ )) that
satisfy ∫ max C0(u∗,x̃ )

y

v0(x) dx ≤ 0, ∀ y ∈ conv C0(u∗, x̃ ),∫ y

min C0(u∗,x̃ )

v0(x) dx ≥ 0, ∀ y ∈ conv C0(u∗, x̃ ).

(6.4)

Note that (6.4) in particular imply∫ max C0(u∗,x̃ )

min C0(u∗,x̃ )

v0(x) dx = 0 . (6.5)

We will show that

V
.
= u∗

0 + V0 ⊂ I [AB]
T (ωT ). (6.6)

Relying on Theorem 3.4 this is equivalent to prove that, for any v0 ∈ V0, and for every
x ∈ R, there exists y ∈ C0(u∗, x) such that (3.8), (3.9) hold for u0

.
= u∗

0 + v0. We will verify
only (3.8), the proof of the other inequality being entirely symmetric.

Then, consider first any x ≤ x̃, and choose y = min C0(u∗, x). Observe that, for ev-
ery y < min C0(u∗, x), we have u0 = u∗

0 on the interval [y, y] since x ≤ x̃, together with
Proposition 4.1-(iv), implies

y ≤ min C0(u∗, x̃),

and hence v0 = 0 on [y, y], because the essential support of v0 is contained in conv C0(u∗, x̃ )).
This implies that, for every y < min C0(u∗, x), we have∫ y

y

u0(x) dx =

∫ y

y

u∗
0(x) dx , (6.7)

which proves (3.8) as an equality.
Next, consider any x > x̃, and choose y = max C0(u∗, x). Then, for every y < min C0(u∗, x),

one of the following three cases occurs:

Case 1. If y ∈ ] max C0(u∗, x̃),min C0(u∗, x̄)[ , then (3.8) holds again as an equality, because
u0 coincides with u∗

0 in the interval [y, y] as in the case x ≤ x̃ considered above,
and thus (6.7) is verified.

Case 2. If y ∈ conv C0(u∗, x̃), then by (6.4) we have∫ y

y

u0(x) dx =

∫ max C0(u∗,x̃)

y

u0(x) dx+

∫ y

max C0(u∗,x̃)

u∗
0(x) dx

≤
∫ y

y

u∗
0(x) dx ,

which proves (3.8).
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Case 3. If y < min C0(u∗, x̃), we obtain (3.8) relying on (6.5), since∫ y

y

u0(x) dx =

∫ min C0(u∗,x̃)

y

u∗
0(x) dx+

∫ max C0(u∗,x̃)

min C0(u∗,x̃)

u0(x) dx+

∫ ȳ

max C0(u∗,x̃)

u∗
0(x) dx

=

∫ ȳ

y

u∗
0(x) dx .

Thus, for all u0 = u∗
0 + v0, v0 ∈ V0, and for every x ∈ R, there exists y ∈ C0(u∗, x) such

that (3.8), (3.9) hold. Hence (6.6) is verified, which contradicts the assumption I [AB]
T (ωT ) =

{u∗
0}, and thus completes the proof of the first part of property (i).
Finally, observe that if x is a point of discontinuity for ωT , then one can consider the

AB-gics ϑx,−, ϑx,+ : [0, T ] → R that are the minimal and maximal AB-gics for u∗ reaching at
time T the point x (e.g. see point 2 of the proof of Proposition 4.2). Since ϑx,−(0) ̸= ϑx,+(0) if
x ̸= 0, and because {ϑx,−(0), ϑx,+(0)} ⊂ C0(u∗, x̃), this implies |C0(u∗, x )| ≠ 1, thus proving

by contradiction that if I [AB]
T (ωT ) is a singleton, then ωT must be continuous at any point

x ̸= 0. This concludes the proof of property (i).

2. Proof of (ii). To prove that the set I [AB]
T (ωT )− u∗

0 is a linear cone, we will show that,

for every u0 ∈ I [AB]
T (ωT ) and λ ≥ 0, it holds u∗

0 + λ(u0 − u∗
0) ∈ I [AB]

T (ωT ). To see this,
applying Theorem 3.4 it’s sufficient to prove that, given any x ∈ R, there exists y ∈ C0(u∗, x)

such that (3.8), (3.9) hold with u∗
0 + λ(u0 − u∗

0) in place of u0. Since u0 ∈ I [AB]
T (ωT ), by

Theorem 3.4 we know that there is some y ∈ C0(u∗, x) such that (3.8) holds. Then, for all
y < min C0(u∗, x), one finds∫ y

y

(
u∗
0(x) + λ(u0(x)− u∗

0(x))
)
dx ≤

∫ y

y

(
u∗
0(x) + λ(u∗

0(x)− u∗
0(x))

)
dx =

∫ y

y

u∗
0(x) dx .

This proves that (3.8) is verified with u∗
0 + λ(u0 − u∗

0) in place of u0. The proof that also
(3.9) holds, is entirely symmetric.

Next, we prove that u∗
0 is an extremal point of I [AB]

T (ωT ). Assume by contradiction that

there exist u0,i ∈ I [AB]
T (ωT ), u0,i ̸= u∗

0, i = 1, 2, and λ ∈ ]0, 1[ , such that

u∗
0 = λu0,1 + (1− λ)u0,2 . (6.8)

Take any x ∈ R for which C0(u∗, x) is a singleton (one can choose x as a point of continuity
for ωT belonging to the set ]−∞, L[∪ ]R,+∞[, with L,R as in (3.13)), and call y the unique
element of C0(u∗, x). Because of (6.8) it holds∫ y

ȳ

u∗
0(x) dx = λ

∫ y

ȳ

u0,1(x) dx+ (1− λ)

∫ y

ȳ

u0,2(x) dx, ∀ y ∈ R . (6.9)

Then, since u0,1, u0,2 are different from u∗
0, there must be some y ∈ R such that one of the

following three cases occurs:

Case 1.∫ y

y

u0,1(x) dx ̸=
∫ y

y

u∗
0(x) dx and

∫ y

y

u0,2(x) dx =

∫ y

y

u∗
0(x) dx. (6.10)

Case 2.∫ y

y

u0,1(x) dx =

∫ y

y

u∗
0(x) dx and

∫ y

y

u0,2(x) dx ̸=
∫ y

y

u∗
0(x) dx. (6.11)
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Case 3.∫ y

y

u0,1(x) dx ̸=
∫ y

y

u∗
0(x) dx and

∫ y

y

u0,2(x) dx ̸=
∫ y

y

u∗
0(x) dx. (6.12)

Assume thatCase 1 holds, with y ̸= y. Then, applying conditions (3.8), (3.9) of Theorem 3.4
to u1

0, we find that ∫ y

y

u0,1(x) dx >

∫ y

y

u∗
0 dx. (6.13)

But (6.13), together with the equality in (6.10), is in contradiction with (6.9). The analysis
of the other two cases is entirely similar, thus it is omitted. This proves that u∗

0 is an

extremal point of I [AB]
T (ωT ) (and of course it is unique since u∗

0 is the vertex of the affine

cone I [AB]
T (ωT )), and thus concludes the proof of property (ii).

3. Proof of (iii). We first show that, if condition (3.16) is verified than the set I [AB]
T (ωT )

is convex. Given u0,1, u0,2 ∈ I [AB]
T (ωT ), and λ ∈ ]0, 1[ , let x ∈ ]L, R[ be a point of continuity

for ωT . By Theorem 3.4, and because C0(u∗, x) is a singleton {y}, we know that there hold∫ y

y

u0,1(x) dx ≤
∫ y

y

u∗
0(x) dx,

∫ y

y

u0,2(x) dx ≤
∫ y

y

u∗
0(x) dx, ∀ y < y. (6.14)

Then, using (6.14), we derive∫ y

y

(
λu0,1(x) + (1− λ)u0,2(x)

)
dx ≤

∫ y

y

u∗(x) dx, ∀ y < y, ∀ λ ∈ ]0, 1[ , (6.15)

so that λu0,1 + (1 − λ)u0,2 satisfies (3.8) for all λ ∈ ]0, 1[ , and y ∈ C0(u∗, x) with x ∈ ]L, R[
of continuity for ωT . The proof that also (3.9) holds for the same y is entirely similar and is
accordingly omitted. Next, consider a point x ∈ ] −∞, L[ ∪ ]R,+∞[ of continuity for ωT .
Notice that by definition (3.13) the classical backward characteristics starting from (x, T )
never cross the interface x = 0 at positive times. Therefore the unique AB-gic reaching
the point x at time t = T is a classical genuine characteristic starting say at y at time
t = 0. Hence C0(u∗, x) = {y}, and we can proceed as above to show that λu0,1 + (1− λ)u0,2

satisfies (3.8), (3.9) for all λ ∈ ]0, 1[ , also when y ∈ C0(u∗, x) with x ∈ ]−∞, L[ ∪ ]R,+∞[ of

continuity for ωT . Then, by Remark 5.2 we can conclude that λu0,1+(1−λ)u0,2 ∈ I [AB]
T (ωT ),

for all λ ∈ ]0, 1[ .
Now assume that condition (3.15) is verified. By the above analysis it is clear that in

order to prove the convexity of I [AB]
T (ωT ) it is sufficient to show that, for any x ∈ ]L, R[ of

continuity for ωT there exists y ∈ C0(u∗, x) such that there holds∫ y

y

(
λu0,1(x) + (1− λ)u0,2(x)

)
dx ≤

∫ y

y

u∗(x) dx, ∀ y < min C0(u∗, x) , ∀ λ ∈ ]0, 1[ .

(6.16)
The problem in this case is the following. Since C0(u∗, x) may not be a singleton, by The-
orem 3.4 we know that there will be in general yi ∈ C0(u∗, x), i = 1, 2, y1 ̸= y2, such that
there hold∫ y1

y

u0,1(x) dx ≤
∫ y1

y

u∗
0(x) dx,

∫ y2

y

u0,2(x) dx ≤
∫ y2

y

u∗
0(x) dx, ∀ y < min C0(u∗, x).

(6.17)
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Here the choice of yi depends on the initial datum u0,i ∈ C0(u∗, x), i = 1, 2. Hence, we
cannot rely on (6.17) to derive immediately the existence of y ∈ C0(u∗, x) such that (6.16)
holds. However, thanks to the assumption (3.15) we can show that, for every point x ∈ ]L, R[
of continuity for ωT , there exists y ∈ C0(u∗, x), independent on the initial datum u0 taken
in consideration, such that (3.8), (3.9) are verified. In fact, given any point x ∈ ]L, R[ of
continuity for ωT , let {xn}n be a sequence of points in X (ωT ) such that xn → x. Letting
{yn} = C0(u∗, xn), we may assume that, up to a subsequence, {yn}n converges to some point
y ∈ R. Since x 7→ C0(u∗, x) has closed graph by Proposition 4.1 it follows that y ∈ C0(u∗, x).
Hence, applying Theorem 3.4 we find that, for any y < min C0(u∗, x), and for n sufficiently
large, there hold∫ yn

y

u0,1(x) dx ≤
∫ yn

y

u∗
0(x) dx,

∫ yn

y

u0,2(x) dx ≤
∫ yn

y

u∗
0(x) dx . (6.18)

taking the limit as n → ∞ in (6.18) we derive∫ y

y

u0,1(x) dx ≤
∫ y

y

u∗
0(x) dx,

∫ y

y

u0,2(x) dx ≤
∫ y

y

u∗
0(x) dx, ∀ y < min C0(u∗, x) ,

which yields (6.16). This completes the proof of property (iii), and thus concludes the proof
of the theorem.

□

6.1. A nonconvex set of initial data. We provide here an example of attainable profile

ωT ∈ A[AB](T ) for which the set I [AB]
T (ωT ) is not convex. Let f

.
= fl = fr = u2/2, and set

A
.
= 4L0, B

.
= −4L0, (6.19)

for some constant L0 < 0. By definition (2.7) we have

A = −4L0, B = 4L0. (6.20)

Then, consider the profile

ω3(x) =


A x ≤ L0,

A x ∈ ]L0, 0[ ,

p x > 0,

(6.21)

with
p < 12L0 . (6.22)

0bserve that, by definition (3.13) we have L = L[ω3, f ] = L0, and R = R[ω3, f ] = 0 since
f ′(p) = p < 0. Moreover, recall that the quantity v

.
= v[L0, A, f ] defined in [3, § 3.2] satisfies

A > v > A. (6.23)

Then, one can readly verify that ω3 fulfills the conditions (i)-(ii) of [3, Theorem 4.7]. To
simplify the analysis we shall consider a time horizon T = 1. With this choice, by a direct
computation one finds that v = A− 2

√
AL0 = 0. Following the same type of procedure of

Remark 3.8 we now construct explicitly the AB-entropy solution u∗ defined by

u∗
0
.
= S [AB]−

T ω3, u∗(·, t) .
= S [AB]+

t u∗
0 ∀ t ∈ [0, 1] . (6.24)

Observe that condition (6.23) ensures the existence in u∗ of a shock curve parametrized by
a map γ : [σ, 1] → ] −∞, 0], with σ = −L0/A = 1/4, such that γ(σ) = 0, γ(1) = L0. The
curve t → (γ(t), t), t ∈ [1/4, 1], is a shock curve for the conservation law ut + f(u)x = 0,
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t

L

5L −4L −p

A p

A

A

B

Figure 12. The solution produced by the initial datum u∗
0.

which connects the left states (γ(t)− L0)/t with the right state A. On the left of γ(t) there
is a rarefaction wave connecting the left state 0 with the right state A, and centered at the
point (L0, 0). Then, u

∗ is defined by (see Figure 12)

u∗(x, t) =



A if x < L0 − (1− t) · A, t ∈ [0, 1],

L0 − x

1− t
if L0 − (1− t) · A ≤ x ≤ L0, t ∈ [0, 1[ ,

x− L0

t
if

{
L0 < x < γ(t), t ∈ [1/4, 1],

L0 < x < L0 + t · A, t ∈ ]0, 1/4],

A if γ(t) < x < 0, t ∈ [1/4, 1],

A if L0 + t · A < x < 0, t ∈ [0, 1/4],

B if 0 < x < (t− 1) ·B, t ∈ [0, 1],

x

t− 1
if (t− 1) ·B ≤ x ≤ (t− 1) · p, t ∈ [0, 1[ ,

p if x > (t− 1) · p, t ∈ [0, 1] ,

(6.25)

and the corresponding initial datum is given by

u∗
0(x) =



A if x < 5L0,

L0 − x if 5L0 < x < L0,

A if L0 < x < 0,

B if 0 < x < −4L0,

−x if − 4L0 < x < −p,

p if − p < x.

(6.26)

Our goal is to find two initial data u0,1, u0,2 ∈ I [AB]
T (ω3) such that for some λ ∈ ]0, 1[ , we have

λu0,1 + (1− λ)u0,2 /∈ I [AB]
T (ω3). Then, consider the following two initial data (see Figure 13

and Figure 14):

u0,1(x) =


A if x < L0,

A if L0 < x < 0,

B if 0 < x < −λ(B, p),

p if − λ(B, p) < x,

(6.27)
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Figure 13. The solution produced by the initial datum u1
0.

t
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Figure 14. The solution produced by the initial datum u2
0.

where λ(B, p) = (B+p)/2 = (−4L0+p)/2 denotes the Rankine-Hugoniot speed of the jump
with left state B and right state p,

u0,2(x) =



A if x < 5L0,

L0 − x if 5L0 < x < L0,

2A if L0 < x < 0,

2B if 0 < x < −L0,

B if − L0 < x < −4L0,

−x if − 4L0 < x < −p,

p if x > −p.

(6.28)

With similar arguments as for the construction of u∗ above, one can easily see that the AB-
entropy solutions to (1.1), (1.3), with initial data u0,1, u0,2, reach at time T = 1 the profile ω3

in (6.21) (see Figures 13, 14). Hence, we have u0,i ∈ I [AB]
T (ω3), i = 1, 2. We will now show

that

uλ
0
.
= λu0,1 + (1− λ)u0,2 /∈ I [AB]

T (ω3) ∀ λ ∈ ]0, 1[ . (6.29)

Toward this end, we will first show that, if uλ
0 ∈ I [AB]

T (ω3) for some λ ∈ ]0, 1[, then there
exists y ∈ [L0,−3L0] such that there holds∫ y

5L0

uλ
0(x) dx ≤

∫ y

5L0

u∗
0(x) dx . (6.30)

In fact, observe first that with the same analysis in Remark 3.8 we deduce that (3.21) is
verified also for u∗ defined in (6.25). Since here we have v = 0, T = 1, one thus finds that
there holds

C0(u∗, x) = [L0, (x/A− 1) ·B ] = [L0, x− 4L0], ∀ x ∈ ]L0, 0[ . (6.31)
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Then, considering a sequence of points xn ↓ L0, and applying Theorem 3.4 with uθ
0 in place

of u0, we deduce that for every n there exists yn ∈ C0(u∗, xn) = [L0, xn − 4L0] such that
there holds ∫ yn

5L0

uλ
0(x) dx ≤

∫ yn

5L0

u∗
0(x) dx . (6.32)

We may assume that, up to a subsequence, {yn}n converges to some point y ∈ [L0,−3L0].
Then, taking the limit in (6.32) as n → ∞, we derive that (6.30) holds for such y.

We will now show that, by definitions of u∗
0, u0,i, i = 1, 2, in (6.26), (6.27), (6.28), it follows∫ y

5L0

(
uλ
0(x)− u∗

0(x)
)
dx > 0, ∀ y ∈ [L0,−3L0] , (6.33)

which is in contrast with (6.30), thus proving (6.29) by contradiction. We distinguish three
cases:

Case 1. y ∈ [L0, 0]. By direct computations we find that∫ y

5L0

u0,1(x) dx = 12L2
0 + 4L0 y,

∫ y

5L0

u0,2(x) dx = 16L2
0 − 8L0 y, (6.34)

and ∫ y

5L0

u∗
0(x) dx = 12L2

0 − 4L0 y . (6.35)

Thus, for every y ∈ [L0, 0], we derive∫ y

5L0

(
uλ
0(x)− u∗

0(x)
)
dx = 8λL0 y + 8(1− λ)L0(L0 − y) > 0, ∀ λ ∈ [0, 1]. (6.36)

Case 2. y ∈ [0,−L0]. Observe that, because of (6.22), we have λ(B, v) > −4L0, which
implies that u0,1(x) = B for all x ∈ ]0, y]. Then, by computations as in previous case, for
y ∈ [0,−L0] we find∫ y

5L0

u0,1(x) dx = 12L2
0 − 4L0 y,

∫ y

5L0

u0,2(x) dx = 16L2
0 + 8L0 y, (6.37)

and ∫ y

5L0

u∗
0(x) dx = 12L2

0 + 4L0 y . (6.38)

Thus, for every y ∈ [0,−L0], we derive∫ y

5L0

(
uλ
0(x)− u∗

0(x)
)
dx = −8λL0 y + 4(1− λ)L0(L0 + y) > 0, ∀ λ ∈ [0, 1]. (6.39)

Case 3. y ∈ [−L0,−3L0]. Note that, as in Case 2, we have u0,1(x) = B for all x ∈ ]0, y].
Then, by computations as in previous cases, for y ∈ [−L0,−3L0] we find∫ y

5L0

u0,1(x) dx = 12L2
0 − 4L0 y,

∫ y

5L0

u0,2(x) dx = 12L2
0 + 4L0 y, (6.40)

and ∫ y

5L0

u∗
0(x) dx = 12L2

0 + 4L0 y . (6.41)
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Hence, for every y ∈ [−L0,−3L0], we derive∫ y

5L0

(
uλ
0(x)− u∗

0(x)
)
dx = −8λL0 y > 0, ∀ λ ∈ [0, 1]. (6.42)

The analysis of all three cases shows that (6.33) is verified, and thus concludes the proof

that I [AB]
T (ω3) is not convex since (6.29) holds.
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