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Abstract. Consider a scalar conservation law with a spatially discontinuous flux at a single point
x = 0, and assume that the flux is uniformly convex when x ̸= 0. Given an interface connection
(A,B), we define a backward solution operator consistent with the concept of AB-entropy solu-

tion [4, 16, 19]. We then analyze the family A[AB](T ) of profiles that can be attained at time T > 0

by AB-entropy solutions with L∞-initial data. We provide a characterization of A[AB](T ) as fixed
points of the backward-forward solution operator. As an intermediate step we establish for the
first time a full characterization of A[AB](T ) in terms of unilateral constraints and Olěınik-type
estimates, valid for all connections. Building on such a characterization we derive uniform BV
bounds on the flux of AB-entropy solutions, which in turn yield the L1

loc-Lipschitz continuity in
time of these solutions.
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1. Introduction

Consider the initial value problem for the scalar conservation law in one space dimension

ut + f(x, u)x = 0, x ∈ R, t ≥ 0, (1.1)

u(x, 0) = u0(x), x ∈ R, (1.2)

where u = u(x, t) is the state variable and the flux f is a space discontinuous function given by

f(x, u) =

{
fl(u), x < 0,

fr(u), x > 0 .
(1.3)

We assume that fl, fr : R → R are twice continuously differentiable, uniformly convex maps that
satisfy

f ′′
l (u), f ′′

r (u) ≥ a > 0 . (1.4)

Conservation laws with discontinuous flux serve as mathematical models for: oil reservoir simu-
lation [30, 31]; traffic flow dynamics with roads of varying amplitudes or surface conditions [38];
radar shape-from-shading problems [39]; blood flow in endovascular treatments [28, 20]; and for
many other different applications (see [6] and references therein).

We recall that problems of this type do not posses classical solutions globally defined in time
(even in the continuous flux case when fl = fr), since, regardless of how smooth the initial data
are, they can develop discontinuities (shocks) in finite time because of the nonlinearity of the
equation. To achieve existence results, one has to look for weak distributional solution that, for
sake of uniqueness, satisfy the classical Kružkov entropy inequalities away from the point of flux
discontinuity, and a further interface entropy condition at the flux-discontinuity interface x = 0.

Various type of interface-entropy conditions have been introduced in the literature according with
the different physical phenomena modelled by (1.1) (see [11, 12]). Here, as in [6], for modellization
and control treatment reasons we employ an admissibility criterion involving the so-called interface
connection (A,B), which yields the Definition 2.2 of AB-entropy solution (cfr.[4, 19]). A connection
(A,B) is a pair of states connected by a stationary weak solution of (1.1), taking values A for x < 0,
and B for x > 0, which has characteristics diverging from (or parallel to) the flux-discontinuity
interface x = 0 (see Definition 2.1). The admissibility criterion for an AB-entropy solution can
be equivalently formulated in terms of an interface entropy condition or of Kružkov-type entropy
inequalities adapted to the particular connection (A,B) taken into account (cfr. [4, 16, 19]). Relying
on these extended entropy inequalities and using an adapted version of the Kružkov doubling
of variables argument, one can establish L1-stability and uniqueness of AB-entropy solutions to
the Cauchy problem (1.1)-(1.2) (see [19, 29]). We shall adopt the semigroup notation u(x, t)

.
=

S [AB]+
t u0(x) for the unique solution of (1.1)-(1.2).
In this paper we are concerned as in [2, 6] with a controllability problem for (1.1) where one

regards the initial data as controls and study the corresponding attainable set at a fixed time T > 0:

A[AB](T )
.
=
{
S [AB ]+
T u0 : u0 ∈ L∞(R)

}
. (1.5)

In the same spirit of [26, 27, 32, 36] we introduce a backward solution operator (see Definition 2.16)

S [AB]−
T : L∞(R) → L∞(R), ω 7→ S [AB]−

T ω , (1.6)

and we characterize the attainable targets for (1.1) at a time horizon T > 0 as fixed-points of the

composition backward-forward operator S [AB ]+
T ◦ S [AB]−

T , as stated in our first main result:

Theorem 1.1. Let f be a flux as in (1.3) satisfying the assumption (1.4), and let (A,B) be a
connection. Then, for every T > 0, and for any ω ∈ L∞(R), the following conditions are equivalent.

(1) ω ∈ A[AB](T ),

(2) ω = S [AB ]+
T ◦ S [AB]−

T ω .
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Moreover, if (A,B) is a non critical connection, i.e. if A ̸= θl, B ̸= θr, then the condition (2) is
equivalent to

(1)’ ω ∈ A[AB]
bv (T ), where

A[AB]
bv (T )

.
=
{
S [AB ]+
T u0 : u0 ∈ BVloc(R)

}
, (1.7)

and it holds true

A[AB](T ) = A[AB]
bv (T ) . (1.8)

Clearly the main content of Theorem 1.1 are the implication (1) =⇒ (2) and (1)’ =⇒ (2), since

the reverse implications are straightforward once we define the backward operator S [AB]−
T and verify

that, in the case of a non critical connection, one has S [AB]−
T u0 ∈ BVloc(R) for all u0 ∈ L∞(R).

This last property is an immediate consequence of the uniform BV bounds on AB-entropy solutions

established in Proposition 6.1, since the backward operator S [AB]−
T is defined in terms of the forward

operator S [BA ]+
t (see Definition 2.16).

The proof of (1) =⇒ (2) and (1)’ =⇒ (2) are obtained in two steps:

(I) First, we show that any attainable profile ω ∈ A[AB](T ) belongs to a class of functions
A ⊂ BVloc(R\{0}) which satisfy suitable Olěınik-type inequalities and pointwise constraints
related to the (A,B)-connection in intervals containing the origin (see Theorem 4.3, 4.9,
4.11, 4.14). We classify the different type of pointwise constraints satisfied by the attainable
profiles in A highlighting the ones that can be recovered as limiting cases (see Remarks 4.6,
4.10, 4.13, 4.15, 4.16).

(II) Next, we prove that any element of A is a fixed point of the composition backward-forward

operator S [AB ]+
T ◦ S [AB]−

T . Namely, for any given ω ∈ A we construct an initial datum

u0 ∈ L∞(R) such that ω = S [AB ]+
T u0, and then we show that indeed u0 = S [AB]−

T ω.

These two steps are firstly carried out in the case of a non critical connection (A,B) and of

attainable profiles ω ∈ A[AB](T )∩BVloc(R). The proofs are obtained exploiting as in [6] the theory
of generalized characteristics by Dafermos [24], applied to the setting of discontinuous flux, and
relying on the duality property of the backward and forward solution operators. Next, we address
the case of a critical connection and of attainable profiles ω ∈ A[AB](T ) relying on the L1

loc-stability

of the map (A,B, u0) 7→ S [AB]+
t u0 (see Theorem 2.8).

Some remarks are here in order.

• The results of Theorem 1.1 extend to the present setting of space discontinuous fluxes the similar
characterization of attainable profiles in terms of the backward solution operator obtained in [23,
Theorem 3.1, Corollary 3.2] and [32, Corollary 1] for conservation laws with strictly convex flux
independent on the space variable.

• The characterization of A[AB](T ) obtained in this paper unveils the presence of two classes of
attainable states for critical and non critical connections that were not detected in [2, 6], see
Remarks 4.7, 4.18.

• The characterization of attainable profiles for (1.1), (1.3) in terms of unilateral constraints
and Olěınik-type estimates provides a powerful tool to investigate regularity properties of the
solutions to (1.1), (1.3). In particular, we build on such a characterization to derive uniform BV
bounds onAB-entropy solutions with initial datum in L∞ (in the case of non critical connections),
and on the flux of AB-entropy solutions (for general connections). This is a fairly non-trivial
result since it is well known [1] that the total variation of AB-entropy solutions may well blow
up in a neighborhood of the flux-discontinuity interface x = 0. Thanks to these uniform BV
bounds, we can then establish the L1

loc-Lipschitz continuity in time of AB-entropy solutions.
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• The proof that Theorem 1.1 holds for critical connections once we know that Theorem 1.1 is
verified by non critical connections relies on a perturbation argument for attainable profiles.
This construction yields an approximate controllability result since it provides a general explicit
procedure to approximate an attainable profile for a critical connection by attainable profiles
for non critical connections.

Note furthermore that, by the backward non-uniqueness of (1.1) (due to the possible presence of
shocks in its solutions), there may exist in general multiple initial data u0 that are steered by (1.1)

to ω ∈ A[AB](T ). In fact, an important control problem related to the one considered in this paper
is the inverse design, which has the goal to reconstruct the set of initial data u0 evolving to a
given attainable target ω (see [23, 32, 36, 37] for conservation laws with convex flux independent
on the space variable, and [27] for Hamilton-Jacobi equations with convex Hamiltonian). On the
other hand, when a target state ω is not attainable at time T > 0, the image of ω through the

backward-forward operator S [AB ]+
T ◦S [AB]−

T represents a natural candidate to construct a reachable
function which is “as close as possible” (in an appropriate sense) to the observed state ω (see [26]
in the case of Hamilton-Jacobi and Burgers equations).

The results of the present paper provide a key building block to address both of these problems,
namely the characterization of the aforementioned set of initial data leading to a given attainable

target ω for (1.1), and the analysis of the properties of the backward-forward operator S [AB ]+
T ◦

S [AB]−
T related to optimization problems for unattainable target profiles, which are pursued in the

forthcoming paper [10].
In the case of non-convex flux, an explicit characterizations of the attainable set in terms of

Olěınik-type estimates seems difficult to obtain and only partial results are present in the literature,
see for example [14]. For systems of conservation laws, the problem has been considered in [13]
(triangular systems) and in [22] (chromatography system). For a characterization of the attainable
set in terms of fixed points of a backward-forward operator, a key point would be to provide a
proper definition of backward operator in these more general contexts, which is lacking at the
moment, making also the analysis of the inverse design problem nontrivial.

The paper is organized as follows. In § 2 we recall the definitions of interface connection (A,B), of
AB-entropy solution and of AB-backward solution operator. We also collect the stability properties
of the L1-contractive semigroup of AB-entropy solutions. In § 3 we establish the duality property
of the backward and forward solution operators, which constitutes a fundamental ingredient of the
proof of Theorem 1.1. § 4 collects the precise statements of the results on the characterization of
the attainable set A[AB](T ) via Olěınik-type inequalities and state constraints. We also include the
statement of Theorem 4.17 which contains the equivalence of conditions (1), (2) of Theorem 1.1 with

the characterization of A[AB](T ) in terms of Olěınik-type inequalities and unilateral constraints. In
§ 5 we carry out the rather technical and involved proof of Theorem 4.17. At the beginning of the
section, for reader’s convenience, we provide a roadmap of the proof of Theorem 4.17, where we
also highlight the key innovative parts of the paper. In § 6 we derive uniform BV bounds on AB-
entropy solutions in the case of non critical connections, and on the flux of AB-entropy solutions
for general connections. In Appendix A we establish the L1-stability properties of the semigroup of
AB-entropy solutions with respect to time and with respect to the connections. In Appendix B we
provide, for sake of completeness, a simple proof of the non existence of rarefactions emanating from
the interface x = 0, which is a distinctive feature of AB-entropy solutions. Finally, in Appendix C
we derive some lower/upper L1-semicontinuity property for solutions to conservation laws, used to
recover the proof of Theorem 4.17 in the case of critical connections once we know the validity of
Theorem 4.17 for non critical connections.
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u

fl fr

A Bθl θr

Figure 1. An example of connection (A,B) with fl, fr strictly convex fluxes

2. Basic definitions and general setting

2.1. Connections and AB-entropy solutions. We recall here the definitions and properties of
interface connection and of entropy admissible solution introduced in [4].

Definition 2.1 (Interface Connection). Let f be a flux as in (1.3) satisfying the assump-
tion (1.4), and let θl, θr denote the unique critical points of fl, fr, respectively. A pair of values
(A,B) ∈ R2 is called a connection if

(1) fl(A) = fr(B),
(2) A ≤ θl and B ≥ θr.

We will say that connection (A,B) is critical if A = θl or B = θr.

A B x

t

Figure 2. The stationary undercompressive solution cAB.

Observe that condition (2) is equivalent to: f ′
l (A) ≤ 0, f ′

r(B) ≥ 0. Therefore, if (A,B) is a
connection, then the function

cAB(x)
·
=

{
A, x ≤ 0,

B, x ≥ 0
(2.1)

is a weak stationary undercompressive (or marginally undercompressive) solution of (1.1), since the
characteristics diverge from, or are parallel to, the flux-discontinuity interface (see Figure 2). In
relation to the function cAB the adapted entropy ηAB(x, u) =

∣∣u− cAB(x)
∣∣ is introduced in [19].

Then, in the spirit of [17], the entropy ηAB is employed in [19] to select a unique solution of the
Cauchy problem (1.1)-(1.2) that satisfies the interface entropy inequality∣∣u− cAB

∣∣
t
+
[
sgn(u− cAB)(f(x, u)− f(x, cAB))

]
x
≤ 0, in D′ , (2.2)

in the sense of distributions, which leads to the following definition.

Definition 2.2 (AB-entropy solution). Let (A,B) be a connection and let cAB be the function
defined in (2.1). A function u ∈ L∞(R × [0,+∞[ ) ∩ C0([0,+∞), L1

loc(R)) is said to be an AB-
entropy solution of the problem (1.1),(1.2) if the following holds:
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(1) u is a distributional solution of (1.1) on R× ]0,+∞[, that is, for all test functions ϕ ∈ C1
c with

compact support contained in R× ]0,+∞[, it holds true∫ ∞

−∞

∫ ∞

0

{
uϕt + f(x, u)ϕx

}
dx dt = 0 . (2.3)

(2) u is a Kružkov entropy weak solution of (1.1),(1.2) on (R \ {0})× ]0,+∞[, that is the initial
condition (1.2) is satisfied almost everywhere, and:
(2.a) for any non-negative test function ϕ ∈ C1

c with compact support contained in ]−∞, 0[×
]0,+∞[, it holds true∫ ∞

0

∫ 0

−∞

{
|u− k|ϕt + sgn(u− k) (fl(u)− fl(k))ϕx

}
dx dt ≥ 0, ∀k ∈ R ; (2.4)

(2.b) for any non-negative test function ϕ ∈ C1
c with compact support contained in ]0,+∞[×

]0,+∞[, it holds true∫ ∞

0

∫ ∞

0

{
|u− k|ϕt + sgn(u− k) (fr(u)− fr(k))ϕx

}
dx dt ≥ 0, ∀k ∈ R . (2.5)

(3) u satisfies a Kružkov-type entropy inequality relative to the connection (A,B), that is, for
any non-negative test function ϕ ∈ C1

c with compact support contained in R×]0,+∞[, it holds
true ∫ ∞

−∞

∫ ∞

0

{ ∣∣u− cAB
∣∣ϕt + sgn(u− cAB)

(
f(x, u)− f(x, cAB)

)
ϕx

}
dx dt ≥ 0 . (2.6)

Remark 2.3. Since an AB-entropy solution u is in particular an entropy weak solution of a scalar
conservation law with uniformly convex flux, on ]−∞, 0[× ]0,+∞[, and on ]0,+∞[× ]0,+∞[ (by
property (2) of Definition 2.2 and assumption (1.4)), it follows that u(· , t) ∈ BV loc(R\{0}) for any
t > 0. Here BVloc(R \ {0}) denotes the set of functions that have finite total variation on compact
subsets of R \ {0}. On the other hand, relying on a result in [40] (see also [41]), we deduce that u
admits left and right strong traces at x = 0 for a.e. t > 0, i.e. that there exist the one-sided limits

ul(t)
.
= u(0−, t), ur(t)

.
= u(0+, t), for a.e. t > 0 . (2.7)

We point out that a consequence of the characterizatin of attainable profiles provided by our results
(Theorems 4.3, 4.9, 4.11, 4.14) will be that these limits are actually defined at every time t > 0 (not
only at almost every time). Moreover, since u is also a distributional solution of (1.1) on R× ]0,+∞[
(by property (1) of Definition 2.2), we deduce that u must satisfy the Rankine-Hugoniot condition
at the interface x = 0 :

fl(ul(t)) = fr(ur(t)), for a.e. t > 0. (2.8)

In (2.7) and throughout the paper, for the one-sided limits of a function u(x) we use the notation

u(x±)
.
= lim

y→x±
u(y). (2.9)

In relation to a connection (A,B) consider the function

IAB(ul, ur)
·
= sgn(ur −B) (fr(ur)− fr(B)) − sgn(ul −A) (fl(ul)− fl(A)) , ul, ur ∈ R , (2.10)

which is useful to characterize the interface entropy admissibility criterion. In fact, by the analysis
in [19, Lemma 3.2] and [16, Section 4.8], it follows that, because of condition (1) of Definition 2.2
and assumption (1.4), the following holds.

Lemma 2.4. Let u ∈ L∞(R×[0,+∞)) be a function satisfying conditions (1)-(2) of Definition 2.2.
Then, condition (3) is equivalent to the AB interface entropy condition
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(3)’

IAB(ul(t), ur(t)) ≤ 0 for a.e. t > 0 . (2.11)

Lemma 2.5. Let (A,B) be a connection. Then, for any pair (ul, ur) ∈ R2, the conditions

fl(ul) = fr(ur), IAB(ul, ur) ≤ 0 , (2.12)

are equivalent to the conditions

fl(ul) = fr(ur) ≥ fl(A) = fr(B),(
ul ≤ θl, ur ≥ θr

)
=⇒ ul = A, ur = B .

(2.13)

The first condition in (2.13) tells us that, when we choose a connection (A,B) and we employ
the concept of AB-entropy solution, we are imposing a constraint (from below) on the flux at the
interface x = 0. In order to achieve existence, we need to compensate for this constraint with an
additional freedom in the admissibility criteria. In fact, the second condition in (2.13) prescribes
the admissibility of exactly one undercompressive wave at the interface, given by cAB in (2.1). This
rule corresponds to the (A,B) characteristic condition in [19, Definition 1.4].

Remark 2.6. In view of (2.8), we can extend the classical concept of genuine characteristic for
solutions to conservation laws with continuous fluxes (see [24]) by considering also characteristics
that are refracted by the discontinuity interface x = 0. Thus, we will say that a polygonal line
ϑ : [0, T ] → R is a genuine characteristic for an AB-entropy solution u if one of the following cases
occurs:

(i) ϑ(t) < 0 for all t ∈ ]0, T [ , and ϑ is a characteristic for the restriction of u on ]−∞, 0[× ]0, T [ ;
(ii) ϑ(t) > 0 for all t ∈ ]0, T [ , and ϑ is a characteristic for the restriction of u on ]0,+∞[× ]0, T [ ;
(iii) there exists τ ∈ ]0, T [ , such that:

- ϑ(t) < 0 for all t ∈ ]0, τ [ , and ϑ is a characteristic for the restriction of u on ]−∞, 0[× ]0, τ [ ,
- ϑ(t) > 0 for all t ∈ ]τ, T [ , and ϑ is a characteristic for the restriction of u on ]0,+∞[× ]τ, T [ ,
or viceversa.

- fl(ul(τ)) = fr(ur(τ)) and IAB(ul(τ), ur(τ)) ≤ 0,

where we are using the term “characteristic” for a classical genuine characteristic of a solution to
the conservation law ut + fl(u)x = 0 on {x < 0}, or to the conservation law ut + fr(u)x = 0 on
{x > 0}.

Remark 2.7 (Local solutions). Throughout the paper we say that a function u ∈ L∞(Ω) is a (local)
AB-entropy solution of (1.1) on a domain

Ω
.
=
{
(t, x) | t ∈ [a, b], γ1(t) < x < γ2(t)

}
⊂ R× ]0,+∞[

where γ1 < γ2 : [a, b] → R are Lipschitz curves if it satisfies the conditions of Definition 2.2 localized
on Ω. Namely, if the following holds:

(1) For any test functions ϕ ∈ C1
c (Ω) with compact support contained in Ω, it holds true (2.3).

(2) The map t 7→ u(·, t) is continuous from I
.
= {t > 0 : (x, t) ∈ Ω} to L1

loc(Ωt), Ωt
.
= {x :

(x, t) ∈ Ω}, and it holds:
(2.a) for any non-negative test function ϕ ∈ C1

c (Ω) with compact support contained in
Ω ∩

(
]−∞, 0[× ]0,+∞[

)
, it holds true (2.4);

(2.b) or any non-negative test function ϕ ∈ C1
c (Ω) with compact support contained in

Ω ∩
(
]0,+∞[× ]0,+∞[

)
, it holds true (2.5).

(3) For any test functions ϕ ∈ C1
c (Ω) with compact support contained in Ω, it holds true (2.6).

We will sometimes implicitly use the following fact: assume that two local AB-entropy solu-
tions u1, u2, of (1.1) are given on two disjoint domains Ω1,Ω2, such that ∂Ω1 ∩ ∂Ω2 = Γ, where Γ
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is the graph of a Lipschitz curve γ : [a, b] → R, with Ω1 ⊂ {x ≤ γ(t)}, Ω2 ⊂ {x ≥ γ(t)}. Moreover,
assume that u1(t, γ(t)−) = u2(t, γ(t)+) for a.e. t ∈ [a, b] such that γ(t) ̸= 0, and that

fl(u1(0−, t)) = fr(u2(0+, t)), IAB(u1(0−, t), u2(0+, t)) ≤ 0,

for a.e. t ∈ [a, b] such that γ(t) = 0. Then, by standard arguments one can deduce that the function

u(x, t) =

{
u1(x, t) if (x, t) ∈ Ω1,

u2(x, t) if (x, t) ∈ Ω2

is an AB-entropy solution of (1.1) on Ω.

It was proved in [4, 19] (see also [16, 29]) that AB-entropy solutions of (1.1),(1.2) with bounded
initial data are unique and form an L1-contractive semigroup. Moreover, we will show that they
are L1-stable also with respect to the values A,B of the connection. This type of stability, beside
being used to extend our main results from the case of non critical connections to the critical
one, has an interest on its own. We will also prove that AB-entropy solutions of (1.1),(1.2) are
L1-Lipschitz continuous in time. This property is an immediate consequence of the BV regularity
of such solutions in the case of non critical connections. Instead, in the case of critical connections
where A = θl or B = θr, and fl(θl) ̸= fr(θr), the total variation of an AB-entropy solution may
well blow up in a neighborhood of the flux-discontinuity interface x = 0, as shown in [1]. However,
we recover the L1-Lipschitz continuity in time also in this case exploiting the BV regularity of the
flux of an AB-entropy solution, which is established relying on the analysis pursued in this paper.
We collect all these (old and new) results in the following statement:

Theorem 2.8. (Semigroup of AB-Entropy Solutions) Let f be a flux as in (1.3) satisfying
the assumption (1.4), and let (A,B) be a connection. Then there exists a map

S [AB]+ : [0,+∞[×L∞(R) → L∞(R), (t, u0) 7→ S [AB]+
t u0 , (2.14)

enjoying the following properties:

(i) For each u0 ∈ L∞(R), the function u(x, t)
.
= S [AB]+

t u0(x) provides the unique bounded,
AB-entropy solution of the Cauchy problem (1.1), (1.2).

(ii) S [AB]+
0 u0 = u0, S [AB]+

s ◦ S [AB]+
t u0 = S [AB]+

s+t u0, for all t, s ≥ 0, u0 ∈ L∞(R).
(iii) For any u0, v0 ∈ L∞(R), there exists a constant L > 0, depending on f and on ∥u0∥L∞ , ∥v0∥L∞,

such that, for any R > 0, it holds:∥∥S [AB]+
t u0 − S [AB]+

t v0
∥∥
L1([−R,R])

≤
∥∥u0 − v0

∥∥
L1([−R−Lt,R+Lt])

, for all t ≥ 0.

(iv) For any u0 ∈ L∞(R), and for any R > 0, it holds:∥∥S [AB]+
t u0 − S [A′B′]+

t u0
∥∥
L1([−R,R])

≤ 2 t
∣∣fr(B)− fr(B

′)
∣∣,

for all connections (A,B), (A′, B′), and for all t ≥ 0.

(v) For any u0 ∈ L∞(R), and for any R > 0, there exists a constant CR > 0 depending on f ,
∥u0∥L1, R, and on the connection (A,B), such that it holds:∥∥S [AB]+

t u0 − S [AB]+
s u0

∥∥
L1([−R,R])

≤ CR

t
|s− t|, for all s > t > 0.

The proof of the new properties (iv)-(v) is given in Appendix A.

Remark 2.9. Most of the literature on conservation laws with discontinuous flux as in (1.3) considers
fluxes fl, fr satisfying

fl(0) = fr(0), fl(1) = fr(1) , θl ≥ 0, θr ≤ 1. (2.15)

However the existence of an L1-contractive semigroup of AB-entropy solutions of the Cauchy prob-
lem (1.1), (1.2), remains valid also without this assumption as shown for example in [29]. On the
other hand, by a reparametrization of the fluxes, one can always reduce the problem to the setting
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where the critical points of fl, fr satisfy (2.15). In fact, given fl, fr, for any pair of invertible affine
maps ϕl, ϕr : R → R, we can observe that a map u(x, t) is an AB-entropy solution of (1.1), (1.3)
with fluxes fl, fr if and only if

ũ(x, t)
.
=

{
ϕ−1
l (u) if x < 0,

ϕ−1
r (u) if x > 0,

is an AB-entropy solution of (1.1), (1.3) with fluxes fl ◦ ϕl, fr ◦ ϕr.

Remark 2.10. By the analysis in [29, §3.1] (see also [6, Remark 4.1]) it follows that, for every

M > 0, there exists CM > 0 such that, if ∥u0∥L∞ ≤ M , and A,B ≤ M , then ∥S [AB]+
t u0∥L∞ ≤ CM ,

for all t > 0.

Corollary 2.11. Let {(An, Bn)}n be a sequence of connections that converges in R2 to a con-
nection (A,B), and let {un,0}n be a sequence of functions in L∞(R) that converges in L1

loc to
u0 ∈ L∞(R). Let un,l, un,r denote, respectively, the left and right traces at x = 0 of un(x, t)

.
=

S [AnBn]+
t un,0(x), defined as in (2.7). Similarly, let ul, ur denote the left and right traces at x = 0

of u(x, t)
.
= S [AB]+

t u0(x). Then, we have:

fl(un,l) ⇀ fl(ul), fr(un,r) ⇀ fr(ur) weakly in L1(R+) . (2.16)

The proof of the Corollary is given in Appendix A.

Remark 2.12. We point out that, differently from (2.16), in general the L1-convergence un,l → ul
and un,r → ur fails due to the possible formation of stationary boundary layers at the interface
x = 0, as one can see in the following

Example 2.13. Consider a non critical connection (A,B) and the sequence of initial data

un,0(x) =


A, if x ≤ −n−1,

A, if x ∈ ]− n−1, 0[,

B, if x ≥ 0,

with

A
.
= (fl|[θl,+∞[ )

−1 ◦ fl(A) , B
.
= (fr | ]−∞,θr])

−1 ◦ fr(B), (2.17)

where f| I denotes the restriction of the function f to the interval I. One can immediately check
that the AB-entropy solution of (1.1), (1.2), with initial datum un,0 is the stationary solution

un(t, x) = S [AB]+
t un,0(x) = un,0(x) and that un converges in L1 to

u(x, t) =

{
A if x < 0,

B if x > 0 .

Moreover, one has un,l(t) = A and ul(t) = A for every t > 0.

2.2. Backward solution operator. In this section we shall first review quickly the concept of
backward solution operator for conservation laws with flux depending only on the state variable,
and then we will introduce the definition of backward solution operator associated to a connec-
tion (A,B), for spatially discontinuous flux as in (1.3).
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2.2.1. Backward solution operator for conservation laws with space independent flux. The use of
the backward-forward method to characterize the attainable set for conservation laws was first
proposed in [32, 36] (see also [26] in the framework of Hamilton-Jacobi equations). Because of the
regularizing effect of the nonlinear dynamics of a conservation law

ut + f(u)x = 0, x ∈ R , (2.18)

with uniformly convex flux f(u), the only restriction to controllability of (2.18) at a fixed time
T > 0, when one regards as controls the initial data

u(x, 0) = u0(x), x ∈ R , (2.19)

is the decay of positive waves. Therefore it is by now well known the characterization of the
attainable set

A(T ) =
{
ω : ω = u(·, T ), u entropy weak solution of (2.18)-(2.19) with u0 ∈ L∞}, (2.20)

in terms of the Olěınik-type inequality

D+ω(x) ≤ 1

Tf ′′(ω(x))
, ∀x ∈ R , (2.21)

where D+ω denotes the upper Dini derivative of ω (see (4.9)). Similar results in the case of
boundary controllability were obtained in [3, 8, 9, 33]).

A different perspective to address this controllability problem was introduced in [32, 36], and
consists in constructing initial data leading to attainable targets ω at a time horizon T > 0, through
the definition of an appropriate concept of backward solution to (2.18). Namely, letting S+

t u0(x)
denote the (forward) entropy weak solution of the Cauchy problem (2.18)-(2.19) evaluated at (x, t),
it was defined in [36] an appropriate backward operator S−

T : L∞ → L∞, and proved that a profile

ω belongs to A(T ) if and only if ω = S+
T ◦S−

T ω, i.e. if and only if it is a fixed point of the backward-

forward operator S+
T ◦ S−

T (see [32, Corollary 1]). Moreover, for ω ∈ A(T ), the solution defined
as

u∗(x, t)
.
= S+

t (S−
T ω)(x), x ∈ R, t ∈ [0, T ] , (2.22)

is the unique solution to (2.18) that is locally Lipschitz on the strip R×]0, T [, and yields ω at time
T . Equivalently,

u∗0
.
= S−

T ω (2.23)

is the unique initial datum that produces a solution to (2.18) locally Lipschitz on ]0, T [, yielding ω
at time T . The operator S−

t , for t ≥ 0, is defined as follows

S−
t ω(x)

.
= S+

t

(
ω(− · )

)
(−x) x ∈ R, t ≥ 0 . (2.24)

In words, we use ω(− · ) as initial datum for the forward operator S+
t , we compute the (forward)

solution to (2.18), and then we reverse the space variable.

Remark 2.14 (Classical solutions). Throughout the paper by a classical solution to a conservation
law with space independent flux ut + f(u)x = 0 we mean a locally Lipschitz function u : Ω → R,
Ω ⊂ R× ]0,+∞[, such that

ut(t, x) + f(u(x, t))x = 0 for a.e. (t, x) ∈ Ω.

Any classical solution is an entropy admissible weak solution. The function (2.22) is a classical
solution to (2.18). Sometimes in the literature classical solutions are denoted as strong solutions.

Remark 2.15. One can easily verify that the function w(x, t)
.
= S−

t ω(x) is the entropy weak solution
of the Cauchy problem {

wt − f(w)x = 0, x ∈ R, t ≥ 0,

w(x, 0) = ω(x), x ∈ R.
(2.25)
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In fact, by definition (2.24) it follows that w(x, t) is a distributional solution of (2.25), since it
is obtained from the distributional solution S+

t

(
ω(− · )

)
(x) of (2.18) by the change of variable

x 7→ −x. On the other hand, since every shock discontinuity of S+
t

(
ω(− · )

)
(x), connecting a left

state u− with a right state u+, must satisfy the Lax condition u− > u+ (equivalent to the entropy
admissibility criterion since the flux f(u) in (2.18) is convex, e.g. see [25, 34]), it follows that the left
and right states u−, u+ of every shock discontinuity in w(x, t) must satisfy the reverse condition
u− < u+, which is the Lax admissibility condition for (2.25), since the flux −f(w) is concave.
Finally, we can observe that w(x, 0) = S+

0

(
ω(− · )

)
(−x) = ω(x), for all x ∈ R, which completes the

proof of our claim.

This procedure to characterize the attainable profiles is motivated by the following observation.
Given a target profile ω, if we know that for any t ∈ ]0, T [ , the map x 7→ v(x, t)

.
= S+

t

(
ω(− · )

)
(x)

is locally Lipschitz on R, it would follow that u(x, t)
.
= v(−x, T − t) = S−

T−t ω(x) is a classical
solution of (2.18) which attains the target profile ω at time t = T , and starts with the initial
datum u∗0 in (2.23). Since classical solutions of (2.18) are entropy admissible, by uniqueness of
entropy weak solutions of the Cauchy problem for (2.18) it would follow that u(x, t) = S+

t u∗0(x) =
u∗(x, t). However, if v admits shock discontinuities, the function v(−x, T − t) fails to be an entropy
admissible solution of (2.18), despite still being a weak distributional solution of (2.18). The one-
sided Lipschitz condition (2.21) is precisely equivalent to the property that the map x 7→ v(x, t)

.
=

S+
t

(
ω(− · )

)
(x) is locally Lipschitz on R, for all t ∈ ]0, T [ (e.g. see [7, 8]), and thus one obtains the

characterization of the elements of A(T ) as fixed points of the backward-forward operator.

2.2.2. Backward solution operator in the spatially-discontinuous flux setting. Given a flux f as
in (1.3) satisfying the assumption (1.4), and a connection (A,B), let S [AB]+ be the forward semi-
group operator associated to the connection (A,B), as in Theorem 2.8. Observe that, letting A,B
be as in (2.17), the pair (B,A ) turns out to be a connection for the symmetric flux

f(x, u) =

{
fr(u), x ≤ 0,

fl(u), x ≥ 0 ,
(2.26)

(see Figure 3).

u

fl fr

A BAB

Figure 3. The connection (B,A) of the symmetric flux f(x, u) defined in (2.26).

Then, letting S [BA ]+
t u0(x) denote the unique BA-entropy solution of{

ut + f(x, u)x = 0 x ∈ R, t ≥ 0,

u(x, 0) = u0(x) x ∈ R,
(2.27)

evaluated at (x, t), we shall define the backward solution operator associated to the connection

(A,B) in terms of the operator S [BA ]+
t as follows.
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Definition 2.16 (AB-Backward solution operator). Given a connection (A,B), the backward

solution operator associated to (A,B) is the map S [AB]−
(·) : [0,+∞)×L∞(R) → L∞(R), defined by

S [AB]−
t ω(x)

.
= S [BA ]+

t

(
ω(− · )

)
(−x) x ∈ R, t ≥ 0 . (2.28)

Remark 2.17. One can show that the function w(x, t)
.
= S [AB]−

t ω(x) is the AB-entropy solution of
the Cauchy problem {

wt − f(x,w)x = 0, x ∈ R, t ≥ 0,

w(x, 0) = ω(x), x ∈ R.
(2.29)

Notice that in (2.29) the flux is −f(x,w), which is a discontinuous function that coincides with
the uniformly strictly concave maps −fl(w),−fr(w), on the left and on the right, respectively, of
x = 0. As observed in [6, §7], in the case of a two-concave flux as −f(x,w), one replaces the
≤ sign with the ≥ sign, and viceversa, in the Definition 2.1 of interface connection. Thus, (A, B)
is indeed a connection for the flux −f(x,w). The AB interface entropy admissibility condition
for w(x, t) is formulated as in (2.11). In order to verify the claim that w(x, t) is the AB-entropy
solution of the Cauchy problem (2.29) we proceed as in Remark 2.15. We first observe that w(x, t)
is a distributional solution of (2.29), and that it is entropy admissible in the regions {x < 0},
{x > 0}. In fact, by definition (2.28), w(x, t) is obtained from S [BA ]+

t

(
ω(− · )

)
(x) with the change

of variable x 7→ −x, and we have w(x, 0) = S [BA ]+
0

(
ω(− · )

)
(−x) = ω(x), for all x ∈ R. Next, we

check that w(x, t) satisfies the AB entropy condition (2.11) for the two-concave flux −f(x,w), i.e.
that, letting wl(t),wr(t) denote the left and right traces of w(x, t) at x = 0, it holds true

sgn(wr(t)−B )
(
−fr(wr(t)) + fr(B )

)
− sgn(wl(t)−A )

(
−fl(wl(t)) + fl(A )

)
≤ 0 for a.e. t > 0 .

(2.30)

Observe that the left and right traces ul(t), ur(t) of S
[BA ]+
t

(
ω(− · )

)
(x) at x = 0, satisfy the BA

entropy condition (2.11) for the flux f in (2.26), that reads

sgn(ur(t)−A )
(
fl(ur(t))− fl(A )

)
− sgn(ul(t)−B )

(
fr(ul(t))− fr(B )

)
≤ 0 for a.e. t > 0 .

(2.31)

On the other hand, since one obtains w(x, t) from S [BA ]+
t

(
ω(− · )

)
(x) reversing the space variables,

we have ul(t) = wr(t), ur(t) = wl(t) for all t > 0. Hence, we recover (2.30) from (2.31), thus
completing the proof of the claim.

Remark 2.18. We observe that if ω is an attainable state in A[AB](T ), it will follow from our results

that the solution v(x, t)
.
= S [BA ]+

t

(
ω(− · )

)
(x) related to the backward solution operator may well

contain a shock discontinuity exiting from the interface x = 0 at a time τ < T . As a consequence
here, differently from the space-independent flux setting, the map x 7→ v(x, t) is in general not

locally Lipschitz outside the interface {x = 0}. In turn, this implies that, for ω ∈ A[AB](T ), the
(forward) AB-entropy solution defined by

u∗(x, t)
.
= S [AB]+

t

(
S [AB]−
T ω

)
(x), x ∈ R, t ∈ [0, T ] , (2.32)

will be in general different from v(−x, T − t) on R × [0, T [ . However, exploiting the duality
property enjoyed by the forward and backward solution operators (see § 3), one can still prove
that u∗(x, T ) = v(−x, 0) = ω(x) for all x ∈ R, which shows that ω is a fixed point of the backward-

forward operator S [AB ]+
T ◦ S [AB]−

T as stated in Theorem 1.1.
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3. Technical tools for characterization of the near-interface wave structure

In this section we introduce some technical tools needed to characterize the pointwise constraints
satisfied by the attainable profiles of (1.1) in intervals containing the origin. Throughout the section,
f : R → R will be a twice continuously differentiable, uniformly convex map, and we let θ be its
unique critical point, f ′(θ) = 0. Set

λ(u, v)
.
=

f(v)− f(u)

v − u
, u, v ∈ R, u ̸= v , (3.1)

and observe that, by the convexity of f one has

f ′(u) < λ(u, v) < f ′(v) ∀ u < v ∈ R . (3.2)

3.1. Left backward shock (Figure 4, left). For every B > θ, 0 < R < T · f ′(B), we define
here:

- two constants t[R, B, f ], u[R, B, f ];

- a function t 7→ y[R, B, f ](t), t ∈ [t[R, B, f ], T ];

which enjoy the following properties that will be justified in the sequel (see § 3.4, 5.5), but that we
highlight here to clarify the purpouse of their introduction. Let (A,B) be a connection for a flux
as in (1.1), and let A,B be as in (2.17). Then, the map t 7→ y[R, B, fr](t) identifies the location of
a shock curve in a BA-entropy solution of ut + f(x, u)x = 0, with f as in (2.26), defined on some
domain Ω ⊂ ]−∞, 0]×[0,+∞[ . Since a BA-entropy solution of (2.27) is associated to the backward
solution operator (2.28), we will say that y[R, B, fr] identifies the location of a left backward shock.

This curve starts from the interface {x = 0} at time t = t[R, B, fr], and reaches the point
x = y[R, B, fr](T ) at time t = T . Such a shock discontinuity has, at time t = T , left state
u[R, B, fr] and right state B. The point (−R, 0) is the center of a rarefaction fan located on the
left of the curve x 7→ (y[R, B, fr](t), t).

We proceed to introduce these definitions as follows. Set

t[R, B, f ]
.
=

R

f ′(B)
, B

.
= (f| ]−∞,θ])

−1 ◦ f(B) . (3.3)

Then, consider the Cauchy problemy′(t) = λ
(
(f ′)−1

(y(t)+R
t

)
, B
)
, t ≥ t[R, B, f ] ,

y(t[R, B, f ]) = 0.
(3.4)

By (3.1), the differential equation in (3.4) ensures that, for all t ≥ t[R, B, f ], the pair(
(f ′)−1(y(t)+R

t ), B
)
satisfies the Rankine-Hugoniot condition with slope y′(t) for the conservation

law ut+f(u)x = 0. Observe that, since g(t, y)
.
= λ

(
(f ′)−1

(y+R
t

)
, B

)
is locally Lipschitz continuous

in y, by classical arguments it admits a unique solution y(t) defined on some maximal interval
[t[R, B, f ], τ [ . On the other hand, because of (3.2) we have

g(t, y) > f ′(B) ∀ t ∈
[
t[R, B, f ], min{τ, T}

[
, y > −R+ T · f ′(B) , (3.5)

and hence, since f ′(B) < 0, it follows that

y(t) >
(
min{τ, T} − t[R, B, f ]

)
· f ′(B)

≥ min{τ, T} · f ′(B)
∀ t ∈

[
t[R, B, f ], min{τ, T}

[
. (3.6)

In turn, (3.6) implies that τ > T . Then, we will denote by

y[R, B, f ] :
[
t[R, B, f ], T

]
→ ]−∞, 0[ , t 7→ y[R, B, f ](t) ,
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the unique solution to (3.4) defined on the interval
[
t[R, B, f ], T

]
. Notice that t 7→ d

dty[R, B, f ](t)

is strictly decreasing, and d
dty[R, B, f ](t) ≤ 0 for all t ∈ [t[R, B, f ], T ]. Hence, by (3.6) with

min{τ, T} = T , the terminal point satisfies y[R, B, f ](T ) ∈ ]T · f ′(B), 0[ . Next, we set

u[R, B, f ]
.
= (f ′)−1

(
R+ y[R, B, f ](T )

T

)
. (3.7)

Observe that, by construction, y[R, B, f ](T ) and u[R, B, f ] depend continuously on the parameters
R and B, and that we have

B < u[R, B, f ] < B . (3.8)

3.2. Right backward shock (Figure 5, right). Symmetrically to § 3.1, for every A < θ,
T · f ′(A) < L < 0, we define here:

- two constants s[L, A, f ], v[L, A, f ];

- a function t 7→ x[L, A, f ](t), t ∈ [s[L, A, f ], T ];

which enjoy the following properties that we highlight here as in § 3.1 to clarify the purpouse of
their introduction (but we will justify them in the sequel, see § 3.5, 5.5). The map t 7→ x[L, A, fl](t)
identifies the location of a shock curve in a BA-entropy solution of ut + f(x, u)x = 0, with f as
in (2.26), defined on some domain Ω ⊂ [0,+∞[×[0,+∞[ . Since a BA-entropy solution of (2.27)
is associated to the backward solution operator (2.28), we will say that x[L, A, fl] identifies the
location of a right backward shock.

This curves starts from the interface {x = 0} at time t = s[L, A, fl], and reaches the point
x = x[L, A, fl](T ) at time t = T . Such a shock discontinuity has, at time t = T , left state A and
right state v[L, A, fl]. The point (−L, 0) is the center of a rarefaction fan located on the right of
the curve t 7→ (x[L, A, fl](t), t).

We proceed to introduce these definitions as follows. Set

s[L, A, f ]
.
=

L

f ′(A)
, A

.
= (f| [θ,+∞[)

−1 ◦ f(A) . (3.9)

Then, let x[L, A, f ] : [s[L, A, f ], T ] → ]0,+∞[ denote the unique solution to the Cauchy problemx′(t) = λ
(
(f ′)−1

(x(t)+L
t

)
, A
)
, t ∈

[
s[L, A, f ], T

]
,

x(s[L, A, f ]) = 0.
(3.10)

By (3.1), the differential equation in (3.10) ensures that, for all t ≥ s[L, A, f ], the pair(
A, (f ′)−1(x(t)+L

t )
)
satisfies the Rankine-Hugoniot condition with slope x′(t) for the conservation

law ut+f(u)x = 0. The terminal point x[L, A, f ](T ) depends continuously on the parameters L, A,
and satisfies x[L, A, f ](T ) ∈

]
0, T ·f ′(A)

[
. Moreover, the map t 7→ d

dtx[L, A, f ](t) is strictly increas-
ing. Next, we define the quantity

v[L, A, f ]
.
= (f ′)−1

(
L+ x[L, A, f ](T )

T

)
, (3.11)

which depends continuously on L and A, and satisfies

A < v[L, A, f ] < A . (3.12)
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t[R, B, f ]

By[R, B, f ]

t = T

B

−R

t

x

B
x

t

B

−y[R, B, f ]

τ [R, B, f ]

t = TR

Figure 4. The dual solutions y[R, B, f ](·) (left) and x[y[R, B, f ](T ), B, f ](·) (right)
of the Cauchy problems (3.4), (3.10). This represents the statement of Lemma 3.1

σ[L, A, f ]

AL
t = T

A

−L

t

x

A

x

t

A

−x[L, A, f ](T )

s[L, A, f ]

t = T
x[L, A, f ](T )

Figure 5. The dual solutions x[L, A, f ](·) (right) and y[x[L, A, f ](T ), A, f ](·) (left)
of the Cauchy problems (3.4), (3.10). This represents the statement of Lemma 3.1

3.3. Duality of forward and backward shocks. The definitions of backward shocks given in
§ 3.1-3.2 turn out to be dual one of the other, as clarified by the following:

Lemma 3.1. With the notations introduced in § 3.1-3.2, for every B > θ, the following holds. The
maps

y[· , B, f ](T ) : ]0, T · f ′(B)[ → ]T · f ′(B), 0[ , R 7→ y[R, B, f ](T ),

x[· , B, f ](T ) : ]T · f ′(B), 0[ → ]0, T · f ′(B)[ , L 7→ x[L, B, f ](T )
(3.13)

are increasing, and one is the inverse of the other, i.e. it holds true

R = x
[
y[R, B, f ](T ), B, f

]
(T ), ∀ R ∈ ]0, T · f ′(B)[,

L = y
[
x[L, B, f ](T ), B, f

]
(T ), ∀ L ∈ ]T · f ′(B), 0[ .

(3.14)

Moreover, one has

lim
R→0+

y[R,B, f ](T ) = T · f ′(B), lim
R→T ·f ′(B)−

y[R, B, f ](T ) = 0,

lim
L→0−

x[L, B, f ](T ) = T · f ′(B), lim
L→T ·f ′(B)+

x[L, B, f ](T ) = 0.
(3.15)

Proof.
1. We will prove only the first equality in (3.14), the proof of the second one being entirely similar.
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Fix R ∈ ]0, T · f ′(B)[, and consider the polygonal region (the blue set in Figure 4) defined by

∆
.
= ∆1 ∪∆2,

∆1
.
=
{
(x, t) ∈ ]−∞, 0[× ]0, T [ : L−(T − t) · f ′(u) < x < L−(T − t) · f ′(B̄), t < t < T

}
,

∆2
.
=
{
(x, t) ∈ ]−∞, 0[× ]0, T [ : L−(T − t) · f ′(u) < x < (t− t) ·f ′(B ), 0 ≤ t ≤ t

}
,

(3.16)

where u
.
= u[R, B, f ] is the constant in (3.7), t

.
= t[R, B, f ] is defined as in (3.3) and L

.
=

y[R, B, f ](T ). Observe that the function v : ∆ → R defined by

v(x, t)
.
=


B if γ(t) < x < 0,

(f ′)−1

(
x+ R

t

)
otherwise,

(3.17)

is locally Lipschitz continuous and satisfies the equation (2.18) at every point (x, t) ∈ ∆ outside
the curve γ(·) .

= y[R, B, f ](·). Moreover, because of the construction of y[R, B, f ](·), u satisfies
the Rankine-Hugoniot conditions along the curve γ. Therefore v(x, t) is a distributional solution
of (2.18) on ∆. Hence, applying the divergence theorem to the piecewise smooth vector field
(v, f(v)) on ∆, and setting τ1

.
= T − y[R, B, f ]/f ′(B), we find

0 =
(
f(B)−Bf ′(B)

)
(T − τ1) +

(
u f ′(u)− f(u)

)
T+(

f(B )−Bf ′(B )
)
t+ f(B)(τ1 − t) .

Then, observing that f(B) = f(B) and that f ′(B )t = R, we find

B y[R, B, f ](T ) +B R−
(
u f ′(u)− f(u)

)
T − f(B)T = 0 . (3.18)

Since f ′(u) = (y[R, B, f ](T ) + R)/T , and because the Legendre transform f∗ of f satisfies the
identity

f∗(f ′(u)) = u f ′(u)− f(u) ∀ u ,

(e.g. see [§A.2][21]), we derive from (3.18) the identity

B y[R, B, f ](T )+B R−f∗
(
y[R, B, f ](T ) + R

T

)
T−f(B)T = 0 ∀ R ∈ ]0, T ·f ′(B))[ . (3.19)

2. Next, consider the polygonal region (the red set in Figure 5 with A = B and A = B) defined by

Γ
.
= Γ1 ∪ Γ2,

Γ1
.
=
{
(x, t) ∈ ]0,+∞[× ]0, T [ : x

[
y[R, B, f ](T ), B, f

]
(T )−(T − t) · f ′(B) < x <

< x
[
y[R, B, f ](T ), B, f

]
(T )−(T − t) · f ′(v), s < t < T

}
,

Γ2
.
=
{
(x, t) ∈ ]0,+∞[× ]0, T [ : (t− s) ·f ′(B ) < x <

< x
[
y[R, B, f ](T ), B, f

]
(T )−(T − t) · f ′(v), 0 ≤ t ≤ s

}
,

(3.20)
where v

.
= v

[
y[R, B, f ](T ), B, f

]
is the constant defined as in (3.11), with L = y[R, B, f ](T ), A = B

and s = s[L, A, f ]. Observe that the function u : Γ → R defined by

u(x, t)
.
=


B if 0 < x < γ(t),

(f ′)−1

(
x+ y[R, B, f ](T )

t

)
otherwise,

(3.21)
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with γ(t)
.
= x

[
y[R, B, f ](T ), B, f

]
(t), is a distributional solution of (2.18) on Γ for the symmetric

arguments of the previous point. Then, repeating the same type of analysis of above for the
piecewise smooth vector field (u, f(u)) on Γ, one finds the identity

B x
[
y[R, B, f ](T ), B, f

]
(T ) +B y[R, B, f ](T )+

− f∗

(
x
[
y[R, B, f ](T ), B, f

]
(T ) + y[R, B, f ](T )

T

)
T − f(B)T = 0

∀ R ∈ ]0, T · f ′(B))[ .

(3.22)
Notice that, by definition of the function y[R, B, f ](·) in § 3.1, the terminal value satisfies
y[R, B, f ](T ) ∈ ]T · f ′(B), 0[ , for all R ∈ ]0, T · f ′(B))[ . In turn, from the definition of x[L, A, f ] in
§3.2, with A = B, and L = y[R, B, f ](T ), it follows that

x
[
y[R, B, f ](T ), B, f

]
(T ) ∈ ]0, T · f ′(B)[ , ∀ R ∈ ]0, T · f ′(B))[ . (3.23)

3. We fix now R ∈ ]0, T · f ′(B))[ , and we consider the map Υ : ]0, T · f ′(B)[ → R, defined by

Υ(x)
.
= B y[R, B, f ](T ) +B x− f∗

(
y[R, B, f ](T ) + x

T

)
T − f(B)T . (3.24)

Observe that, by (3.19), (3.22), (3.23), one has

Υ(R) = Υ
(
x
[
y[R, B, f ](T ), B, f

]
(T )
)
= 0 . (3.25)

Hence, it is sufficient to show that Υ admits only one zero in the interval ]0, T · f ′(B)[ to conclude
the proof of the first equality in (3.14). To this end, differentiating Υ and recalling the well known
property of the Legendre transform (e.g. see [21, §A.2]),

(f∗)′(p) = (f ′)−1(p) ∀ p ,

we find

Υ′(x) = B − (f ′)−1

(
y[R, B, f ](T ) + x

T

)
= (f ′)−1

(
0 + Tf ′(B)

T

)
− (f ′)−1

(
y[R, B, f ](T ) + x

T

)
.

(3.26)

Since y[R, B, f ](T ) < 0, x < T · f ′(B), and because f ′ is strictly increasing as f ′, we deduce
from (3.26) that Υ′(x) > 0 for all x ∈ ]0, T · f ′(B))[ . Therefore Υ is strictly increasing in the
interval ]0, T · f ′(B))[ , completing the proof of of the first equality in (3.14).

4. We show now that the map R 7→ y(R)
.
= y[R, B, f ](T ) is strictly increasing in the interval

]0, T · f ′(B)[ . Differentiating (3.19) with respect to R, we obtain[
B − (f ′)−1

(y(R) + R

T

)]
y′(R) = (f ′)−1

(y(R) + R

T

)
−B ∀ R ∈ ]0, T · f ′(B))[ . (3.27)

Since T · f ′(B ) < y(R) < 0 and 0 < R < T · f ′(B), because f ′ is strictly increasing we deduce

B < (f ′)−1
(y(R)

T

)
< (f ′)−1

(y(R) + R

T

)
< (f ′)−1

(R
T

)
< B ,

which, together with (3.27), implies that y′(R) > 0 for all R ∈ ]0, T · f ′(B))[ , as wanted. In turn,
since L 7→ x[L, B, f ](T ) is the inverse of R 7→ y[R, B, f ](T ), this implies that L 7→ x[L, B, f ](T ) is
strictly increasing as well in its domain, and that the image of the maps y[· , B, f ](T ), x[· , B, f ](T ),
in (3.13) are the sets ]0, T · f ′(B))[ and ]0, T · f ′(B)[, respectively. This, together with the mono-
tonicity of the maps y[· , B, f ](T ), x[· , B, f ](T ), in particular implies the one-sided limits in (3.15),
thus concluding the proof of the Lemma. □
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Remark 3.2. As a consequence of Lemma 3.1 and of the monotonicity of f ′, we find that the maps

R 7→ u[R, B, f ], L 7→ v[L, A, f ], (3.28)

defined as in (3.7) and (3.11), are strictly increasing, and that we have

lim
R→0+

u[R, B, f ] = B, lim
R→T ·f ′(B)−

u[R, B, f ] = B,

lim
L→0−

v[L, A, f ] = A, lim
L→T ·f ′(A)+

v[L, A, f ] = A.
(3.29)

This implies that the functions

u[·, ·, f ] : ]0, T · f ′(B)[× ]θ,+∞[→ R,
v[·, ·, f ] : ]T · f ′(A), 0[× ]θ,+∞[→ R

can be extended to continuous function on [0, T ·f ′(B)]× ]θ,+∞[ and [T ·f ′(A), 0]× ]θ,+∞[, setting

u[0, B, f ] = B, u[T · f ′(B), B, f ] = B,

v[0, A, f ] = A, v[T · f ′(A), A, f ] = A.
(3.30)

Moreover, one has

u[R, B, f ] < B ∀ R ∈ ]0, T · f ′(B)[ ,

v[L, A, f ] > A ∀ L ∈ ]T · f ′(A), 0[ .
(3.31)

3.4. Right forward shock-rarefaction wave pattern (Figure 4, right). For every B > θ,
0 < R < T · f ′(B), we define now:

- a constant τ [R, B, f ];

- a function (x, t) 7→ u[R, B, f ](x, t), (x, t) ∈ Γ[R, B, f ];

with the following properties. When f = fr, the function u[R, B, f ](x, t) defines a (forward) solu-

tion associated to the operator S [AB]+, which contains a shock starting from the interface {x = 0} at
time t = τ [R, B, fr]. The location of such a shock is given by the map t 7→ x

[
y[R, B, fr](T ), B, fr

]
(t),

where y[R, B, fr] and x[L, B, fr] with L = y[R, B, fr](T ), are the backward shocks of a backward

solution associated to the operator S [AB]− introduced in § 3.1-3.2. Because of Lemma 3.1, the
shock t 7→ x

[
y[R, B, fr](T ), B, fr

]
(t) reaches the point x = R at time t = T . We can regard

x
[
y[R, B, fr](T ), B, fr

]
as the “dual shock” of the backward shock y[R, B, fr].

We proceed to introduce these definitions as follows. With the same notations of § 3.1-3.2, for
every B > θ, 0 < R < T · f ′(B), we set

τ [R, B, f ]
.
= s

[
y[R, B, f ](T ), B, f

]
=

y[R, B, f ](T )

f ′(B )
. (3.32)

Notice that, by the construction in § 3.1, and because of Lemma 3.1, τ [R, B, f ] depends continuously
on the parameters R, B, the image of the map R 7→ τ [R, B, f ], R ∈ ]0, T · f ′(B)[ , is the set ]0, T [ ,
and R 7→ τ [R, B, f ] is decreasing.

Next, we denote by Γ[R, B, f ] ⊂ (0, T )× R the polygonal set (the pink set in Figure 4)

Γ[R, B, f ]
.
= Γ1[R, B, f ] ∪ Γ2[R, B, f ] , (3.33)
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with

Γ1[R, B, f ]
.
=
{
(x, t) ∈ ]0,+∞[× ]0, T [ : R− (T − t) · f ′(B) < x < R− (T − t) · f ′(u[R, B, f ]),

τ [R, B, f ] < t < T
}
,

Γ2[R, B, f ]
.
=
{
(x, t) ∈ ]0,+∞[× ]0, T [ : −(τ [R, B, f ]− t) ·f ′(B ) < x < R−(T − t) · f ′(u[R, B, f ]),

0 ≤ t ≤ τ [R, B, f ]
}
.

(3.34)
Then, set γ(t)

.
= x

[
y[R, B, f ](T ), B, f

]
(t), and denote by u[R, B, f ] : Γ[R, B, f ] → R the function

defined by

u[R, B, f ](x, t)
.
=


B if 0 < x < γ(t),

(f ′)−1

(
x− R+ T · f ′(u[R, B, f ])

t

)
otherwise.

(3.35)

Notice that, by (3.10) and (3.14), one has γ(τ [R, B, f ]) = 0, γ(T ) = R. Moreover, by the same
arguments of the proof of Lemma 3.1 it follows that u[R, B, f ](x, t) is a distributional solution
of (2.18) on Γ[R, B, f ]. Furthermore, since t 7→ γ′(t) is strictly increasing as observed in § 3.2, it
follows that also the map

t 7→ γ(t)− R+ T · f ′(u[R, B, f ])

t
is strictly increasing. Therefore, by virtue of (3.14), and relying on (3.31), we find

lim
x→γ(t)+

u[R, B, f ](x, t) ≤ lim
x→γ(T )+

u[R, B, f ](x, T )

= lim
x→R+

u[R, B, f ](x, T )

= u[R, B, f ] < B

= lim
x→γ(t)−

u[R, B, f ](x, t) ∀ t ∈ [τ [R, B, f ], T ] ,

(3.36)

which shows that the Lax entropy condition is satisfied along the curve (t, γ(t)), t ∈ [τ [R, B, f ], T ].
Since the flux in (2.18) is strictly convex, this proves that u[R, B, f ](x, t) provides an entropy weak
solution of (2.18) on the region Γ[R, B, f ]. Notice that, by (3.2), from (3.36) we deduce in particular
that f ′(B) > λ

(
u[R, B, f ], B

)
= γ′(T ), which in turn, by the strict monotonicity of γ̇(t), yields

f ′(B) > γ′(t) ∀ t ∈ [τ [R, B, f ], T ] . (3.37)

Hence, relying on (3.37), we find

f ′(B) >
γ(T )− γ(τ [R, B, f ])

T − τ [R, B, f ]
=

R

T − τ [R, B, f ]
. (3.38)

3.5. Left forward rarefaction-shock wave pattern (Figure 5, left). Symmetrically to § 3.4,
for every A < θ, T · f ′(A) < L < 0, we define here:

- a constant σ[L, A, f ];

- a function (x, t) 7→ v[L, A, f ](x, t), (x, t) ∈ ∆[L, A, f ];

with the following properties. When f = fl, the function v[L, A, f ](x, t) defines a (forward) solution

associated to the operator S [AB]+, which contains a shock starting from the interface {x = 0} at
time t = σ[L, A, f ]. The location of such a shock is given by the map t 7→ y

[
x[L, A, fl](T ), A, fl

]
(t),

where x[L, A, fl] and y[R, A, fl] with R = x[L, A, fl](T ), are the backward shocks of a backward

solution associated to the operator S [AB]− introduced in § 3.1-3.2. Because of Lemma 3.1, the
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shock t 7→ y
[
x[L, A, fl](T ), A, fl

]
(t) reaches the point x = L at time t = T . We can regard

y
[
x[L, A, fl](T ), A, fl

]
as the “dual shock” of the backward shock x[L, A, fl].

We proceed to introduce these definitions as follows. With the same notations of § 3.1-3.2, for
every A < θ, T · f ′(A) < L < 0 we set

σ[L, A, f ]
.
= t
[
x[L, A, f ](T ), A, f

]
=

x[L, A, f ](T )

f ′(A )
. (3.39)

By the construction in § 3.2, and because of Lemma 3.1, σ[L, A, f ] depends continuously on the
parameters L, A, the image of the map L 7→ σ[L, A, f ], L ∈ ]T · f ′(A), 0[ , is the set ]0, T [ , and
L 7→ σ[L, A, f ] is increasing.

Next, we denote by ∆[L, A, f ] ⊂ (0, T )× R the polygonal set (the blue set in Figure 5)

∆[L, A, f ]
.
= ∆1[L, A, f ] ∪∆2[L, A, f ] , (3.40)

with

∆1[L, A, f ]
.
=
{
(x, t) ∈ ]−∞, 0[× ]0, T [ : L− (T − t) · f ′(v[L, A, f ]) < x < L− (T − t) · f ′(A),

σ[L, A, f ] < t < T
}
,

∆2[L, A, f ]
.
=
{
(x, t) ∈ ]−∞, 0[× ]0, T [ : L−(T − t) · f ′(v[L, A, f ]) < x < −(σ[L, A, f ]− t) ·f ′(A ),

0 ≤ t ≤ σ[L, A, f ]
}
.

(3.41)
Then, set γ(t)

.
= y

[
x[L, A, f ](T ), A, f

]
(t), and denote by v[L, A, f ] : ∆[L, A, f ] → R the function

defined by

v[L, A, f ](x, t)
.
=


A if γ(t) < x < 0,

(f ′)−1

(
x− L+ T · f ′(v[L, A, f ])

t

)
otherwise.

(3.42)

Observe that, by (3.4) and (3.14), one has γ(σ[L, A, f ]) = 0, γ(T ) = L. With the same arguments
of § 3.4, it follows that v[L, A, f ](x, t) provides an entropy weak solution of (2.18) on the region
∆[L, A, f ], and that we have

f ′(A) <
γ(T )− γ(σ[L, A, f ])

T − σ[L, A, f ]
=

L

T − σ[L, A, f ]
. (3.43)

Remark 3.3. The constant u[R, B, f ] defined in § 3.1 is crucial to characterize the jump of an

attainable profile ω ∈ A[AB](T ) at the point

R
.
= inf

{
R > 0 : x− T · f ′

r(ω(x+)) ≥ 0 ∀ x ≥ R
}
,

when R ∈ ]0, T · f ′
r(B)[. The state u[R, B, f ] is constructed so to be the largest right state that one

can achieve at (R, T ) with a shock that isolates the interface {x = 0} from the semiaxis {x > 0}.
In fact, the constant u[R, B, f ] with f = fr, identifies a unique state u < B that has the property:

- If ω = S [AB]+
T u0, and u(t, x) = S [AB]+

t u0(x) admits a shock generated in {x ≥ 0} at some
time t = τ , and reaching the point (R, T ), then letting γ(t), t ∈ [τ, T ], denote the location of
such a shock, one has

uγ
.
= lim

t→T−
u(t, γ(t)+) ≤ (f ′

r)
−1(R/T ) =⇒ uγ ≤ u . (3.44)
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In particular, one has uγ = u in (3.44) only in the case where S [AB]+
t u0 coincides in the polygonal

region Γ[R, B, f ] with the right forward shock-rarefaction pattern described in section 3.4. By
definition of uγ it follows that either ω(R+) = uγ , or else there is another jump connecting uγ with
ω(R+) which must satisfy the Lax entropy condition ω(R+) < uγ . Therefore, as a consequence
of (3.44) we find a necessary condition for the attainability of ω at time T given by

ω(R+) ≤ u[R, B, fr] , (3.45)

(see (4.13) of Theorem 4.3 and the proof in § 5.2.3). The interesting fact is that, in the case
R ∈ ]0, T · f ′

r(B)[, condition (3.45), together with the condition

ω(x) ≥ B ∀ x ∈ ]0,R[ , (3.46)

(see (4.14), (4.15), of Theorem 4.3), is also sufficient to guarantee the existence of an AB-entropy
solution u(x, t) that satisfies

u(x, T ) = ω(x) ∀ x ∈]0,R], u(R, T ) = ω(R+). (3.47)

To illustrate this claim, in view of the definitions introduced in the previous sections we proceed
as follows.

- By solving (3.4) one determines the end point y[R, B, fr](T ) of a “left backward shock” (Fig-
ure 4, left). The map t 7→ y[R, B, fr](t) represents the position of a shock in a BA-entropy

solution (which is associated to the backward solution operator S [AB]−, see Definition 2.16);
- given the final position y[R, B, fr] of the “backward shock” , one considers the solution t 7→
γ(t)

.
= x[y[R, B, fr], B, fr](t) to (3.10), when L = y[R, B, fr], A = B, f = fr (see Figure 4,

right). This map represents the position of a shock in a “forward solution”, i.e. in an AB-

entropy solution associated to the (forward) operator S [AB]+ in (2.14). Actually, we will show

in §5.5, using the results of this section, that (t, γ(t)) is the location of a shock of S [AB]+
t u0,

with u0 = S [AB]−
t ω.

- once determined the point y[R, B, fr](T ), one defines u[R, B, fr] as the state realizing the slope
(y[,B, fr](T ) + R)/T (see (3.7)):

f ′
r(u[R, B, fr]) =

y[R, B, fr](T ) + R

T
;

- thanks to Lemma 3.1, we know that the final position at time T of the shock γ(t) satisfies

γ(T ) = R.

Using this procedure, if a profile ω satisfies the conditions (3.45)-(3.46), we will show in § 5.4-
5.5 that we can construct admissible AB-shocks that produce at time T the given jump in
the profile ω at position R.

Entirely symmetric considerations hold for the state v[L, A, f ] defined in § 3.2 (see Figure 5). As a
byproduct of this analysis we will obtain that attainable profiles are fixed points of the backward
forward solution operator, as stated in Theorem 1.1.

4. Statement of the main results

Conditions (1), (2) of Theorem 1.1 will be shown to be equivalent by proving that they are both

equivalent to a characterization of the attainable set A[AB](T ) in (1.5) via Olěınik-type inequalities
and state constraints. To present these results we need to introduce some furhter notations.

Given a flux f(x, u) as in (1.3), we will use the notations f−1
l,−

.
= (fl|(−∞,θl]

)−1, f−1
r,−

.
= (fr |(−∞,θr])

−1,

for the inverse of the restriction of fl, fr to their decreasing part, respectively, and f−1
l,+

.
= (fl|[θl,+∞))

−1,
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f−1
r,+

.
= (fr |[θr,+∞))

−1, for the inverse of the restriction of fl, fr to their increasing part, respectively.
Then, we set

πl,±
.
= f−1

l,± ◦ fl , πr,±
.
= f−1

r,± ◦ fr , πr
l,±

.
= f−1

l,± ◦ fr , πl
r,±

.
= f−1

r,± ◦ fl . (4.1)

Moreover, in connection with a function ω : R → R we define the quantities

R[ω, fr]
.
= inf

{
R > 0 : x− T · f ′

r(ω(x)) ≥ 0 ∀ x ≥ R
}
,

L[ω, fl]
.
= sup

{
L < 0 : x− T · f ′

l (ω(x)) ≤ 0 ∀ x ≤ L
}
,

(4.2)

and, if L[ω, fl] ∈ ]T · f ′
l (A), 0[ , we set

R̃[ω, fl, fr, A,B]
.
=
(
T − σ

[
L[ω, fl], A, fl

])
· f ′

r(B), (4.3)

while, if R[ω, fr] ∈ ]0, T · f ′
r(B)[ , we set

L̃[ω, fl, fr, A,B]
.
=
(
T − τ

[
R[ω, fr], B, fr

])
· f ′

l (A). (4.4)

where σ[L, A, fl], τ [R, B, fr], denote the shock starting times introduced in § 3.4-3.5. Recall-
ing (3.15), (3.32), (3.39), we can extend by continuity the definitions (4.3), (4.4), setting

R̃[ω, fl, fr, A,B]
.
= 0, if L[ω, fl] = 0 ,

L̃[ω, fl, fr, A,B]
.
= 0, if R[ω, fr] = 0 .

(4.5)

Such quantities are used to express the pointwise constraints satisfied by ω in intervals containing
the origin whenever ω is attainable. Next, to express the Olěınik-type inequalities satisfied by the
attainable profiles it is useful to introduce the functions,

g[ω, fl, fr](x)
.
=

f ′
l (ω(x))

[
f ′
r ◦ πl

r,−(ω(x))
]2[

f ′′
r ◦ πl

r,−(ω(x))
][
f ′
l (ω(x))

]2(
T ·f ′

l (ω(x))− x
)
+ x
[
f ′
r ◦ πl

r,−(ω(x))
]2
f ′′
l (ω(x))

,

h[ω, fl, fr](x)
.
=

f ′
r(ω(x))

[
f ′
l ◦ πr

l,+(ω(x))
]2[

f ′′
l ◦ πr

l,+(ω(x))
]
[f ′

r(ω(x))]
2 (T ·f ′

r(ω(x))− x
)
+ x
[
f ′
l ◦ πr

l,+(ω(x))
]2
f ′′
r (ω(x))

,

(4.6)
defined for x ∈ ]L[ω, fl], 0[ , ω(x) ≤ A, and for x ∈ ]0,R[ω, fr][ , ω(x) ≥ B, respectively.

Remark 4.1. The definitions of the functions g, h are meaningful in their domains. In fact, the
maps πl

r,−, π
r
l,+ in (4.1) (that appear in the definitions of g, h) are well defined if ω(x) ≤ A, and

ω(x) ≥ B, respectively. Moreover, by definition (4.2), we have

Tf ′
l (ω(x))− x < 0, f ′

l (ω(x)) < 0 ∀ x ∈ ]L[ω, fl], 0[ ,

T f ′
r(ω(x))− x > 0, f ′

r(ω(x)) > 0 ∀ x ∈ ]0, R[ω, fr][ .

Hence, relying also on (1.4), we deduce that the denominator of g is strictly negative for
x ∈ ]L[ω, fl], 0[ , while the denominator of h is strictly positive for x ∈ ]0,R[ω, fr][ . The functions
g, h will provide a one-sided upper bound for the derivative of ω only in the interval ]L[ω, fl], 0[,
assuming ω(x) ≤ A, and on the interval ]0,R[ω, fr][ , assuming ω(x) ≥ B, respectively.

Since by Remark 2.3 we know that A[AB](T ) ⊂ BVloc(R \ {0}), we can partition the attainable
set as

A[AB](T ) =
⋃

L≤0,R≥0

(
A[AB](T ) ∩ A L,R

)
, (4.7)

where

A L,R .
=
{
ω ∈ (L∞ ∩BVloc)(R \ {0}) : L[ω, fl] = L, R[ω, fr] = R

}
. (4.8)

The characterization of the attainable profiles in A L,R will be given in:
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- Theorem 4.3, if L < 0, R > 0 , and (A,B) is non critical;

- Theorem 4.9, if L < 0, R > 0 , and (A,B) is critical;

- Theorem 4.11, if L < 0, R = 0 or L = 0, R > 0;

- Theorem 4.14, if L = 0, R = 0.

Remark 4.2. Any element of A L,R is an equivalence class of functions that admit one-sided limit
at any point x ∈ R, and that have at most countably many discontinuities. Therefore, for any
element of A L,R, we can always choose a representative which is left or right continuous. For sake
of uniqueness, throughout the paper we will consider a representative of ω that is right continuous.

Throughout the following

D−ω(x) = lim inf
h→0

ω(x+ h)− ω(x)

h
, D+ω(x) = lim sup

h→0

ω(x+ h)− ω(x)

h
, (4.9)

will denote, respectively, the lower and the upper Dini derivative of a function ω at x.

Theorem 4.3. In the same setting of Theorem 1.1, let (A,B) be a non critical connection, let

A[AB](T ), T > 0, be the set in (1.5), and let ω be an element of the set A L,R in (4.8), with L < 0,

R > 0. Then, ω ∈ A[AB](T ) if and only if the limits ω(0±) exist, and there hold:

(i) the following Olěınik-type inequalities are satisfied

D+ω(x) ≤ 1

T · f ′′
l (ω(x))

∀ x ∈ ]−∞, L[ ,

D+ω(x) ≤ 1

T · f ′′
r (ω(x))

∀ x ∈ ]R,+∞[ .

(4.10)

Moreover, letting g, h be the functions in (4.6), and letting L̃
.
= L̃[ω, fl, fr, A,B],

R̃
.
= R̃[ω, fl, fr, A,B], be the constants in (4.3), (4.4), if R ∈ ]0, T · f ′

r(B)[ , and if L̃ > L,
then one has

D+ω(x) ≤ g[ω, fl, fr](x) ∀ x ∈ ]L, L̃ [ , (4.11)

while, if L ∈ ]T · f ′
l (A), 0[ , and if R̃ < R, then one has

D+ω(x) ≤ h[ω, fl, fr](x) ∀ x ∈ ]R̃, R[ . (4.12)

(ii) letting u[R, B, fr], v[L, A, fl], be constants defined as in (3.7), (3.11), the following pointwise
state constraints are satisfied

L ∈ ]T · f ′
l (A), 0[ =⇒ ω(L−) ≥ v[L, A, fl] ≥ ω(L+) ,

R ∈ ]0, T · f ′
r(B)[ =⇒ ω(R+) ≤ u[R, B, fr] ≤ ω(R−) .

(4.13)

[
L ∈ ]T · f ′

l (A), 0[ and R ≤ R̃
]

or L ≤ T ·f ′
l (A) =⇒ ω(x) = B ∀ x ∈ ]0,R[ ,[

R ∈ ]0, T · f ′
r(B)[ and L̃ ≤ L

]
or R ≥ T ·f ′

r(B) =⇒ ω(x) = A ∀ x ∈ ]L, 0[ ,

(4.14)
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L ∈ ]T · f ′
l (A), 0[ and R̃ < R =⇒


ω(x) = B ∀ x ∈ ]0, R̃ ],

ω(R̃+) = B,

ω(x) ≥ B ∀ x ∈ ] R̃, R[ ,

(4.15)

R ∈ ]0, T · f ′
r(B)[ and L < L̃ =⇒


ω(x) = A ∀ x ∈ [ L̃, 0[ ,

ω(L̃−) = A,

ω(x) ≤ A ∀ x ∈ ]L, L̃ [ ,

(4.16)

L ≤ T · f ′
l (A) =⇒ ω(L−) ≥ ω(L+),

R ≥ T · f ′
r(B) =⇒ ω(R−) ≥ ω(R+).

(4.17)

L ω

x

t
R

τ [R, B, fr]

A BL̃

Figure 6. Case 1.

L ω

x

t
R

τ [R, B, fr]

A BL̃ R̃

σ[L, A, fl]

A B

Figure 7. Case 2.

Remark 4.4. Notice that conditions (4.14), (4.15) imply ω(R−) ≥ B. On the other hand, if
R < T · f ′

r(B), by virtue of (4.13), and because of (3.31), we have ω(R+) ≤ B. Hence, because
of (4.17), it follows that the inequality ω(R−) ≥ ω(R+) is always satisfied. With similar arguments
we deduce that also the inequality ω(L−) ≥ ω(L+) is always verified.

Remark 4.5. If R[ω, fr] ∈ ]0, T · f ′
r(B)[ , applying (3.38) with fr in place of f and R = R[ω, fr], and

recalling (4.3), we derive

R[ω, fr]

f ′
r(B)

< T − τ
[
R[ω, fr], B, fr

]
=

L̃[ω, fl, fr, A,B]

f ′
l (A)

. (4.18)
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L ω

x

t
R

τ [R, B, fr]

A BL̃ R̃

σ[L, A, fl]

A B

Figure 8. Case 3.

RA BL

t

x

ω

Figure 9. Case 4.

Similarly, if L[ω, fl] ∈ ]T · f ′
l (A), 0[ , applying (3.43) with fl in place of f and L = L[ω, fl], and

recalling that f ′
l (A) < 0 we find

L[ω, fl]

f ′
l (A)

< T − σ
[
L[ω, fl], A, fl

]
. (4.19)

Hence, if L̃[ω, fl, fr, A,B] ≥ L[ω, fl], combining (4.18), (4.19), we deduce

R[ω, fr]

f ′
r(B)

< T − σ
[
L[ω, fl], A, fl

]
, (4.20)

which, in turn, by (4.3) yields

R[ω, fr] < R̃[ω, fl, fr, A,B] . (4.21)

With entirely similar arguments one can show that, if R̃[ω, fl, fr, A,B] ≤ R[ω, fr], then one has

L[ω, fl] > L̃[ω, fl, fr, A,B] . (4.22)

Therefore, when L[ω, fl] ∈ ]T · f ′
l (A), 0[ , and R[ω, fr] ∈ ]0, T · f ′

r(B)[ , we have

L̃[ω, fl, fr, A,B] ≥ L[ω, fl] =⇒ R̃[ω, fl, fr, A,B] > R[ω, fr] ,

R̃[ω, fl, fr, A,B] ≤ R[ω, fr] =⇒ L̃[ω, fl, fr, A,B] < L[ω, fl] .
(4.23)

These implications, in particular, show that it can never occur the case where

L̃[ω, fl, fr, A,B] ≥ L[ω, fl] and R̃[ω, fl, fr, A,B] ≤ R[ω, fr] . (4.24)
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Remark 4.6. Notice that by condition (4.14) in Theorem 4.3, and because of (4.3), it follows that if

L[ω, fl] ∈ ]T ·f ′
l (A), 0[ , and R[ω, fr] ≤ R̃[ω, fl, fr, A,B], then one has R[ω, fr] < T ·f ′

r(B). Therefore,
we have[

L[ω, fl] ∈ ]T · f ′
l (A), 0[ and R[ω, fr] ≥ T · f ′

r(B)
]

=⇒ R[ω, fr] > R̃[ω, fl, fr, A,B] . (4.25)

Similarly, one can show that, by (4.3), (4.14), we have[
R[ω, fr] ∈ ]0, T · f ′

r(B)[ and L[ω, fl] ≤ T · f ′
l (A)

]
=⇒ L[ω, fl] < L̃[ω, fl, fr, A,B] . (4.26)

Then, relying on (4.23), (4.25), (4.26), we deduce that, for non critical connections, we can distin-
guish six cases of pointwise constraints prescribed by condition (ii) of Theorem 4.3, which depend

on the reciprocal positions of the points L = L[ω, fl], R = R[ω, fr], and L̃ = L̃[ω, fl, fr, A,B],

R̃ = R̃[ω, fl, fr, A,B]:

Case 1: If L ≤ T · f ′
l (A) < 0, 0 < R < T · f ′

r(B) (Figure 6), then L̃ > L, and it holds true

ω(L−) ≥ ω(L+) , ω(x) ≤ A ∀ x ∈ ]L, L̃ [ , ω( L̃−) = A, ω(x) = A ∀ x ∈ ]L̃, 0[ ,
(4.27)

ω(x) = B ∀ x ∈ ]0,R[ , ω(R+) ≤ u[R, B, fr] ≤ B ; (4.28)

Case 2: If T · f ′
l (A) < L < 0, 0 < R < T · f ′

r(B), and L̃ > L, R̃ > R (Figure 7), then it holds
true (4.28) and

ω(L−) ≥ v[L, A, fl] ≥ A , ω(x) ≤ A ∀ x ∈ ]L, L̃ [ , ω( L̃−) = A, ω(x) = A ∀ x ∈ ]L̃, 0[ ;
(4.29)

the symmetric ones:

Case 1b: If T · f ′
l (A) < L < 0, 0 < T · f ′

r(B) ≤ R, then R̃ < R and it holds true that

ω(x) = A ∀ x ∈ ]L, 0[ , ω(L−) ≥ v[L, A, fl] ≥ A , (4.30)

ω(x) = B ∀ x ∈ ]0, R̃ [ , ω( R̃+) = B, ω(x) ≥ B ∀ x ∈ ]R̃,R[ ; (4.31)

Case 2b: If T · f ′
l (A) < L < 0, 0 < R < T · f ′

r(B), and L̃ < L, R̃ < R, then it holds true (4.30) and

ω(x) = B ∀ x ∈ ]0, R̃ [ , ω( R̃+) = B, ω(x) ≥ B ∀ x ∈ ]R̃,R[ ω(R+) ≤ u[R, B, fr] ≤ B ;
(4.32)

and the remaining ones:

Case 3: If T · f ′
l (A) < L < 0, 0 < R < T · f ′

r(B), and L̃ ≤ L, R̃ ≥ R (Figure 8), then it holds
true (4.28), (4.30);

Case 4: If L ≤ T · f ′
l (A) < 0 and R ≥ T · f ′

r(B) > 0 (Figure 9), then it holds true

ω(x) = A ∀ x ∈ ]L, 0[ , ω(L−) ≥ ω(L+) ,

ω(x) = B ∀ x ∈ ]0,R[ , ω(R−) ≥ ω(R+) .
(4.33)

The six cases are depicted in Figure 10. One can regard the intervals ]T ·f ′
l (A), 0[ and ]0, T ·f ′

r(B)[
as “active zones” for the presence of shocks in an AB-entropy solution that attains ω at time T :
as soon as L belongs to ]T ·f ′

l (A), 0[ or R belongs to ]0, T ·f ′
r(B)[ , it is needed a shock located in

{x < 0} or in {x > 0}, respectively, in order to produce the discontinuity occurring in ω at L or R.

Remark 4.7. When the connection is not critical and L
.
= L[ω, fl] < 0, R

.
= R[ω, fr] > 0, the analysis

of attainable profiles ω ∈ AAB(T ) pursued in [2] catches only the profiles described in Cases 3 and 4
of Remark 4.6. In fact, the characterization of AAB(T ) established in [2, Theorem 6.1] requires
that all profiles ω ∈ AAB(T ) satisfy the equalities

ω(x) = A ∀ x ∈ ]L, 0[ , ω(x) = B ∀ x ∈ ]0,R[ .
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Tf ′
r(B)

Tf ′
l (A)

(2), (2B)

(3)
(1B)

(1) (4)

L

R0

Figure 10. The different cases of Remark 4.5.

Therefore, such a characterization in particular excludes all attainable profiles ω that either satisfy
conditions (4.27) or (4.29), of Cases 1 and 2, with

ω(x) < A for some x ∈ ]L, L̃[ ,

or satisfy conditions (4.31), (4.32), of Cases 1B and 2B, with

ω(x) > B for some x ∈ ]R̃,R[ .

Remark 4.8. Notice that, if A = θl, or R = 0, by definition (4.4), and because of (4.5), it follows

that L̃ = 0. Similarly, if B = θr, or L = 0, we have R̃ = 0. Thus, in the case of critical connections,
or whenever L = 0 or R = 0 (for critical and non critical connections), the characterization of the

profiles ω ∈ AAB(T ) ∩ A L,R will not involve the constants L̃, R̃.

Theorem 4.9. In the same setting of Theorem 4.3, let ω be an element of the set A L,R in (4.8),
with L < 0, R > 0, and assume that (A,B) = (θl, B) (connection critical from the left). Then,

ω ∈ A[AB](T ) if and only if B ̸= θr, the limits ω(0±) exist and there hold:

(i) the following Olěınik-type inequalities are satisfied

D+ω(x) ≤ 1

T · f ′′
l (ω(x))

∀ x ∈ ]−∞, L[ ,

D+ω(x) ≤ 1

T · f ′′
r (ω(x))

∀ x ∈ ]R,+∞[ .

(4.34)

Moreover, letting g be the function in (4.6), then one has

D+ω(x) ≤ g[ω, fl, fr](x) ∀ x ∈ ]L, 0 [ . (4.35)

(ii) letting u[R, B, fr], τ [R, B, fr], be constants defined as in (3.7), (3.32), respectively, the following
pointwise state constraints are satisfied

(f ′
l )

−1

(
x

T − τ [R, B, fr]

)
≤ ω(x) < θl, ∀ x ∈ ]L, 0[ , (4.36)

ω(L−) ≥ ω(L+), ω(0−) = θl , (4.37)

ω(x) = B ∀ x ∈ ]0,R[ , R ∈ ]0, T · f ′
r(B)[ , (4.38)

ω(R+) ≤ u[R, B, fr] ≤ ω(R−) . (4.39)
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L ω

x

t
R

τ [R, B, fr]

θl B

Figure 11. Typical profile of Theorem 4.9 for connections critical at the left (θl, B).

Symmetrycally, assume that (A,B) = (A, θr) (connection critical from the right). Then, ω ∈
A[AB](T ) if and only if A ̸= θl, the limits ω(0±) exist and there hold:

(i)’ the following Olěınik-type inequalities are satisfied

D+ω(x) ≤ 1

T · f ′′
l (ω(x))

∀ x ∈ ]−∞, L[ ,

D+ω(x) ≤ 1

T · f ′′
r (ω(x))

∀ x ∈ ]R,+∞[ .

(4.40)

Moreover, letting h be the function in (4.6), then one has

D+ω(x) ≤ h[ω, fl, fr](x) ∀ x ∈ ]0,R[. (4.41)

(ii)’ letting v[R, B, fr], σ[L, A, fl], be constants defined as in (3.11), (3.39), respectively, the following
pointwise state constraints are satisfied

ω(L−) ≥ v[L, A, fl] ≥ ω(L+) , (4.42)

ω(x) = A ∀ x ∈ ]L, 0[ , L ∈ ]T · f ′
l (A), 0[ , (4.43)

ω(0+) = θr , ω(R−) ≥ ω(R+) , (4.44)

θr < ω(x) ≤ (f ′
r)

−1

(
x

T − σ[L, A, fl]

)
∀ x ∈ ]0,R[ . (4.45)

Remark 4.10. For critical connections, whenever L < 0 < R we can distinguish two cases of pointwise
constraints prescribed by Theorem 4.9 on an attainable profile ω, which depend on the side in which
the connection is critical.
Case 1: If A = θl, and L < 0 < R < T · f ′

r(B) (Figure 11), then it holds true

(f ′
l )

−1

(
x

T − τ [R, B, fr]

)
≤ ω(x) < θl, ∀ x ∈ ]L, 0[ , ω(0−) = θl ,

ω(x) = B ∀ x ∈ ]0,R[ , ω(R+) ≤ u[R, B, fr] ≤ B ;

Case 2: If B = θr, and T · f ′
l (A) < L < 0 < R, then it holds true

ω(x) = A ∀ x ∈ ]L, 0[ , A ≥ v[L, A, fl] ≥ ω(L+) ;

θr < ω(x) ≤ (f ′
r)

−1

(
x

T − σ[L, A, fl]

)
∀ x ∈ ]0,R[ , ω(0+) = θr .
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In both cases an AB-entropy solution that attains ω at time T must contain a shock located in
{x > 0} (in Case 1), or in {x < 0} (in Case 2), in order to produce the discontinuity occurring
in ω at R or L.

Theorem 4.11. In the same setting of Theorem 4.3, let ω be an element of the set A L,R in (4.8),
let g, h be the functions in (4.6), and let u[R, B, fr], v[L, A, fl], be constants defined as in (3.7),

(3.11). Then, if L < 0, R = 0, ω ∈ A[AB](T ) if and only if the limits ω(0±) exist, and it holds:

(i) the following Olěınik-type inequalities are satisfied

D+ω(x) ≤ 1

T · f ′′
l (ω(x))

∀ x ∈ ]−∞, L[ ,

D+ω(x) ≤ 1

T · f ′′
r (ω(x))

∀ x ∈ ]0,+∞[ ,

(4.46)

D+ω(x) ≤ g[ω, fl, fr](x) ∀ x ∈ ]L, 0[ . (4.47)

(ii) the following pointwise state constraints are satisfied:{
ω(x) ≤ A if A < θl,

ω(x) < A if A = θl,
∀ x ∈ ]L, 0[ , (4.48)

ω(0+) ≤ πl
r,−(ω(0−)) , (4.49)

and

L ∈ ]T · f ′
l (A), 0[ =⇒ ω(L−) ≥ v[L, A, fl] ≥ ω(L+) , (4.50)

L ≤ T · f ′
l (A) =⇒ ω(L−) ≥ ω(L+). (4.51)

Symmetrically, if L = 0, R > 0, then ω ∈ A[AB](T ) if and only if it holds true:

(i) ′ the following Olěınik-type inequalities are satisfied

D+ω(x) ≤ 1

T · f ′′
l (ω(x))

∀ x ∈ ]−∞, 0[ ,

D+ω(x) ≤ 1

T · f ′′
r (ω(x))

∀ x ∈ ]R,+∞[ ,

(4.52)

D+ω(x) ≤ h[ω, fl, fr](x) ∀ x ∈ ]0,R[ . (4.53)

(ii) ′ the following pointwise state constraints are satisfied:{
ω(x) ≥ B if B > θr,

ω(x) > B if B = θr,
∀ x ∈ ]0,R[ , (4.54)

ω(0−) ≥ πr
l,+(ω(0+)) , (4.55)

and

R ∈ ]0, T · f ′
r(B)[ =⇒ ω(R+) ≤ u[R, B, fr] ≤ ω(R−) , (4.56)

R ≥ T · f ′
r(B) =⇒ ω(R+) ≤ ω(R−). (4.57)



30 FABIO ANCONA AND LUCA TALAMINI

L ω

x

t

A

Figure 12. Theorem 4.11 when L < 0, R = 0 and L ∈ ]T · f ′
l (A), 0[.

L ω

x

t

Figure 13. Theorem 4.11 when L < 0, R = 0 and L ≤ T · f ′
l (A).

Remark 4.12. Notice that the implications (4.50)-(4.51), (4.56)-(4.57) can be extended
to L = T · f ′

l (A) and to R = T · f ′
r(B), respectively. In fact, by definition (4.2) of L = L[ω, fl],

one has f ′
l (ω(L−)) ≥ L/T . Hence, if L = T · f ′

l (A) it follows that f ′
l (ω(L−)) ≥ f ′

l (A) which yields
ω(L−) ≥ A by the monotonicity of f ′

l . Thus, recalling that by (3.30) we have v[T ·f ′(A), A, f ] = A,
we derive

ω(T · f ′
l (A)−) ≥ v[T · f ′

l (A), A, fl] . (4.58)

On the other hand, since (4.48) implies ω(T · f ′
l (A+) ≤ A, we deduce from (4.58) that

ω(T · f ′
l (A)−) ≥ ω(T · f ′

l (A)+) . (4.59)

With entirely similar arguments one can show that we have

ω(T · f ′
l (B)+) ≤ u[T · f ′

l (B), B, fr] , (4.60)

ω(T · f ′
r(B)+) ≤ ω(T · f ′

r(B)−) . (4.61)

Hence, relying on (4.48), (4.50), (4.51), (4.54), (4.56), (4.57), and on (4.59), (4.61), with the same
arguments of Remark 4.4 we deduce that the inequalities ω(L−) ≥ ω(L+), ω(R−) ≥ ω(R+) are
always satisfied.

Remark 4.13. Relying on Remark 4.8, we can view the conditions that characterize the pointwise
constraints of attainable profiles in Theorem 4.11 as limiting cases of the conditions of Theorems 4.3,
4.9, classified in Remarks 4.6, 4.10. Namely:

- For non critical connections, the case L ∈ ]T · f ′
l (A), 0[ , R = 0 (Figure 12), is the limiting

situation as R → 0 of Case 2 in Remark 4.6. For critical connections with A < θl, B = θr,
if the constraint (4.48) is satisfied with the equality, the case L ∈ ]T · f ′

l (A), 0[ , R = 0, is the
limiting situation as R → 0 of Case 2 in Remark 4.10.
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ω

x

t

Figure 14. Structure of profiles described by Theorem 4.14.

- For non critical connections, the case L ≤ T · f ′
l (A), R = 0 (Figure 13), is the limiting situation

as R → 0 of Case 1 in Remark 4.6. For critical connections with A = θl, B > θr, the case
L ≤ T · f ′

l (A), R = 0, is the limiting situation as R → 0 of Case 1 in Remark 4.10

Symmetrically, we have:

- For non critical connections, the case L = 0, R ∈ ]0, T · f ′
r(B)[ , is the limiting situation as

L → 0 of Case 2B in Remark 4.6. For critical connections with A = θl, B > θr, if the
constraint (4.54) is satisfied with the equality, the case L = 0, R ∈ ]0, T · f ′

r(B)[ is the limiting
situation as L → 0 of Case 1 in Remark 4.10.

- For non critical connections, the case L = 0, R ≥ T · f ′
r(B), is the limiting situation as L → 0 of

Case 1B in Remark 4.6. For critical connections with A < θl, B = θr, the case R ≥ T · f ′
r(B)

is the limiting situation as L → 0 of Case 2 in Remark 4.10.

Notice that, for non critical connections, no limiting situation of Case 3 or of Case 4 in Remark 4.6
arises as characterizing the pointwise constraints of attainable profiles in Theorem 4.11.
The same type of conditions discussed in Remark 4.6 require the presence of shocks in an AB-
entropy solution that attains at time T a profile satisfying the conditions of Theorem 4.11. In fact,
for such profiles it is needed a shock located in {x < 0} (in {x > 0}) to produce the discontinuity
in ω at x = L (at x = R) if and only if L ∈ ]T · f ′

l (A), 0[, and R = 0 (L = 0 and R ∈ ]0, T · f ′
r(B)[ ).

Theorem 4.14. In the same setting of Theorem 4.3, let ω be an element of the set A L,R in (4.8),

with L = 0, R = 0. Then ω ∈ A[AB](T ) if and only if the limits ω(0±) exist, and it holds true:

(i) the following Olěınik-type inequalities are satisfied

D+ω(x) ≤ 1

T · f ′′
l (ω(x))

∀ x ∈ ]−∞, 0[ ,

D+ω(x) ≤ 1

T · f ′′
r (ω(x))

∀ x ∈ ]0,+∞[ .

(4.62)

(ii) the following pointwise state constraints are satisfied:

ω(0−) ≥ A, ω(0+) ≤ B , (4.63)

Remark 4.15. Recalling that by (3.30) we have v[0, A, fl] = A, u[0, B, fr] = B, we can rephrase
the constraint (4.63) as

ω(0−) ≥ v[0, A, fl], ω(0+) ≤ u[0, B, fr] . (4.64)

Any profile ω satisfying the conditions of Theorem 4.14 is attainable by AB-entropy solutions that
don’t contain shocks in {x < 0} or in {x > 0}.

Since by Lemma 3.1 we have

lim
R→0+

u[R, fr, B] = B, lim
R→0−

v[L, fl, A] = A,
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and because of Remark 4.8, we can recover the conditions that characterize the pointwise constraints
of attainable profiles in Theorem 4.14 as limiting cases of the conditions of Theorems 4.3, 4.9,
classified in Remarks 4.6, 4.10. Namely:

- For a non critical connection, the condition (4.63) is the limit situation as L,R → 0 of the
CASE 2 of Remark 4.6.

- For a critical connection with A = θl, B > θr, the second condition of (4.63) is is the limiting
situation as R → 0 of Case 1 in Remark 4.10. The first condition of (4.63) is trivially satisfied,
because A = θl, and since L = 0 by definition (4.2) implies ω(0−) ≥ θl. The case of a critical
connection with A < θl, B = θr is symmetric, and can be recovered as limiting situation as
L → 0 of Case 2 in Remark 4.10.

Remark 4.16. By Remarks 4.13, 4.15, the conditions that characterize the pointwise constraints
of attainable profiles provided by Theorems 4.3, 4.9 are essentially “dense” in the set of all con-
ditions characterizing the pointwise constraints of any profile ω ∈ A[AB](T ) (in the sense that the
further conditions provided by Theorems 4.11, 4.14 can be recovered via a limiting procedure as
the parameters L,R → 0).

Combining Theorems 4.3, 4.9, 4.11, 4.14, with Theorem 1.1, we obtain:

Theorem 4.17. In the same setting of Theorem 1.1, let (A,B) be a connection. Then, for every
T > 0, and for any ω ∈ L∞(R), the following conditions are equivalent.

(1) ω ∈ AAB(T ).

(2) S [AB ]+
T ◦ S [AB]−

T ω = ω .

(3) ω is an element of the set A L,R in (4.8), with L ≤ 0, R ≥ 0, that satisfies the conditions of
Theorem 4.3, 4.9, 4.11, or 4.14.

Moreover, if (A,B) is a non critical connection, i.e. if A ̸= θl, B ̸= θr, then the conditions (2)
and (3) are equivalent to

(1)’ ω ∈ A[AB]
bv (T ), where

A[AB]
bv (T )

.
=
{
S [AB ]+
T u0 : u0 ∈ BVloc(R)

}
, (4.65)

and it holds true

A[AB](T ) = A[AB]
bv (T ) . (4.66)

Remark 4.18 (Comparison with previous results). Theorems 4.3, 4.9, 4.11, 4.14 yield the first
complete characterization of the attainable set at time T > 0 in terms of Olěınik-type inequalities
and unilateral constraints, for critical and non critical connections. Partial results in this direction
have been recently obtained for strict subsets of AAB(T ). In particular, we refer to:

• the work [6], where it is characterized only the subset AAB
L (T ) ⊂ AAB(T ) given by

A[AB]
L (T ) = {ω ∈ A[AB](T ) | ∃ AB-entropy solution u ∈ Liploc((0, T )×R\{0}) : u(T, x) = ω}.

In particular, all the profiles ω for which L ∈ ]T · f ′
l (A), 0[ or R ∈ ]0, T · f ′

r(B)[ are missing in
the characterization provided in [6]. In fact, as observed in Remarks 4.6, 4.10, 4.13, an AB-
entropy solutions leading to such profiles at time T must contain a shock located in {x < 0} or
in {x > 0}, respectively, in order to produce the discontinuity occurring in ω at L or R.

• the work [2], in which, whenever either L = 0, or R = 0, the set A[AB](T ) is fully character-
ized in terms of triples (a monotone function and a pair of points) related to the Lax-Oleinik
representation formula of solutions (obtained in [5] via the Hamiton-Jacobi dual formulation).
Instead, in the case of critical connections, all attainable profiles with L < 0 and R > 0 described
by Theorem 4.9 are missing in [2]. On the other hand, when L < 0, R > 0 and (A,B), is a non
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critical connection, only the profiles of Cases 3, 4, discussed in Remark 4.5, are characterized
in [2], while the ones of Cases 1, 2, 1b, 2b are missing. In fact, the profiles constructed in [2]
with L < 0, R > 0 for non critical connections, satisfy always the condition ω(x) = A for all
x ∈ (L, 0), and ω(x) = B for all x ∈ (0,R), which is in general not fulfilled by profiles of Cases
1, 2, 1b, 2b (cfr. Remark 4.7).

We point out that, as a byproduct of the characterization of AAB(T ) via Olěınik-type estimates,
one can establish uniform BV bounds on solutions to (1.1), (1.3) in the case of non critical con-
nections, and on the flux of solutions to (1.1), (1.3) for general connections (see. Proposition 6.1
in Appendix A). In turn such bounds yield the L1

loc-Lipschitz continuity in time of AB-entropy
solutions (see the proof of Theorem 2.8-(v)) in Appendix A).

5. Proof of Theorem 4.17

5.1. Proof roadmap. Observe that if (A,B) is a non critical connection, then recalling Defini-

tion 2.16, and relying on Proposition 6.1 in Appendix A, we deduce that S [AB]−
T ω ∈ BVloc(R) for

all ω ∈ L∞(R). Hence setting u0
.
= S [AB]−

T ω, we deduce immediately the implication (2) ⇒ (1)′.

On the other hand, since A[AB]
bv (T ) ⊂ A[AB](T ), from the implication (1) ⇒ (3), one deduces that

(1)′ ⇒ (3) holds as well.
Therefore, in order to establish Theorem 4.17 it will be sufficient to prove the equivalence of the

conditions (1), (2), (3). We provide here a road map of the proof of (1) ⇒ (2) ⇒ (3) ⇒ (1). There
are three main parts, which are somewhat independent one from the other.

Part 1. The case of a non critical connection (1) ⇒ (3). In Sections 5.2-5.3 we prove the
implication (1) ⇒ (3) of Theorem 4.17 when (A,B) is a non critical connection. The
proof has a bootstrap-like structure, and it is divided in two steps. We first prove that
(1) ⇒ (3) under the regularity assumption (H) formulated below, and next we show that
this regularity property always holds true.
• Part 1.a - (1) ⇒ (3) for non critical connections assuming (H). This is the first
fundamental block of our proof. We prove in § 5.2 the implication (1) ⇒ (3) for profiles

ω ∈ A[AB](T ) that satisfy the BV condition:

∃ u0 ∈ L∞(R) : ω = S [AB ]+
T u0 , and S [AB]+

t u0 ∈ BVloc(R) ∀ t > 0 . (H)

The derivation of the conditions of Theorem 4.3, 4.11, and 4.14 is obtained exploiting as
in [6] the non crossing property of genuine characteristics in the domains {x > 0, t > 0},
{x < 0, t > 0}, together with the non existence of rarefactions emanating from the
interface (cfr. Appendix B and [2]). Two key novel points of the analysis here are:
- a blowup argument, possible thanks to assumption (H), to derive the Olěınik-type
inequalities satisfied by ω in regions comprising points with characteristics reflected by
the interface x = 0, and points with characteristics refracted by x = 0.
- a comparison argument (based on the duality of forward and backward shocks of § 3.3,
and on the property of the states u[R, B, fr], v[L, A, fl], defined in § 3.1, 3.2) to establish
the unilateral inequalities satisfied by ω at points of discontinuity generated by shocks
that isolate the interface {x = 0} from the semiaxes {x < 0}, {x > 0} (cfr. Remark 3.3).

• Part 1.b - (1) ⇒ (3) for non critical connections without assuming (H). We prove
in § 5.3 the implication (1) ⇒ (3) for every ω ∈ AAB(T ) by showing that every
ω ∈ AAB(T ) actually satisfies condition (H), and then the conclusion follows by Part 1.a.
This is achieved: considering a sequence of functions un,0 ∈ BV (R) that

L1
loc-converge to u0 ∈ L∞(R); observing that S [AB]+

t un,0 ∈ BV (R) (see [1, 29]); deriv-

ing uniform BV bounds on S [AB ]+
T un,0 based on the Olěınik-type inequalities enjoyed

by S [AB ]+
T un,0 because of Part 1.a; relying on the L1

loc-stability of the semigroup map
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u0 7→ S [AB ]+
T u0 (see Theorem 2.8-(iii)) and on the lower semicontinuity of the total

variation with respect to L1-convergence.

Part 2. The case of a non critical connection (3) ⇒ (2) ⇒ (1). The implication (2) ⇒ (1)
of Theorem 4.17 immediately follows observing that, by virtue of (2), one has ω =

S [AB ]+
T u0 ∈ A[AB](T ), with u0

.
= S [AB]−

T ω. Hence, in Sections 5.4-5.5 we prove only
the implication (3) ⇒ (2) of Theorem 4.17, in the case of a non critical connection (A,B).
This is the second fundamental block of our proof, which consists in first showing that
(3) ⇒ (1), and next in proving that (3) ⇒ (2).
• Part 2.a - (3) ⇒ (1) for non critical connections. Given ω ∈ A L,R satisfying the condi-
tion of Theorem 4.3, we construct explicitly in § 5.4 an AB-entropy admissible solution

u(x, t)
.
= S [AB]+

t u0(x), u0 ∈ L∞(R), such that u(·, T ) = ω. The case where ω ∈ A L,R

satisfies the condition of Theorem 4.11, or 4.14 is entirely similar or simpler. The con-
struction of u0 and u follows a by now standard procedure (see [6], [8]) in regions of
{x < 0} or of {x > 0} that are not influenced by waves reflected or refracted by the
interface x = 0. Namely, in these regions, one construct the solution u along two type of
lines that correspond to its characteristics: genuine characteristics ϑy ending at points
(y, T ), where u = ω(y), in the case ω is continuous at y; compression fronts ηy,z con-

necting points (z, 0) and (y, T ), where u = (f ′
l )

−1(y−x
T ), if y < 0, and u = (f ′

r)
−1(y−x

T ),
if y > 0, in the case ω is discontinuous at y. A key novel point of the analysis here is
the construction of u in two polygonal regions around the interface x = 0, which relies
on the properties of the shock-rarefaction/rarefaction-shock wave patterns established in
§ 3.4-3.5, which in turn are based on the duality properties of forward/backward shocks
derived in 3.3. Thanks to this construction, one can in particular explicitly produce
AB-entropy solutions that attain at time T the profiles of Cases 1, 2, 1b, 2b discussed
in Remark 4.5, that are not present in [2] (cfr. Remark 4.18).

• Part 2.b - (3) ⇒ (2) for non critical connections. Given ω ∈ A L,R satisfying the
conditions of Theorem 4.3, we show in § 5.5 that ω is a fixed point of the backward-

forward operator S [AB ]+
T ◦ S [AB]−

T . The case where ω ∈ A L,R satisfies the condition
of Theorem 4.11, or 4.14 is entirely similar. Building on the analysis pursued in the

previous part, in order to prove that ω = S [AB ]+
T ◦S [AB]−

T ω it is sufficient to show that,
if u0 is the initial datum of the AB-entropy solution u(x, t) constructed in Part 2.a,

then one has u0 = S [AB]−
T ω. This is again achieved exploiting the duality properties

of forward/backward shocks derived in 3.3, and the structural properties of the shock-
rarefaction/rarefaction-shock wave patterns established in § 3.4-3.5.

Part 3. The case of a critical connection (1) ⇔ (2) ⇔ (3). In Sections 5.6, 5.7, 5.8 we recover
the equivalence of the conditions (1), (2), (3) of Theorem 4.17 in the case of critical con-
nections, invoking the validity of this equivalence for non critical connections established
in Parts 1-2. The proof is divided in three steps.
• Part 3.a - (1) ⇔ (2) for critical connections. In § 5.6 we prove the implication (1) ⇒ (2),

relying on the L1
loc-stability of the maps (A,B, u0) 7→ S [AB ]+

T u0, (A,B, u0) 7→ S [AB]−
T u0

(see Theorem 2.8-(iv) and Definition 2.16). The reverse implication is immediate as
observed in Part 2.

• Part 3.b - (1) ⇒ (3) for critical connections. In § 5.7 we prove the implication (1) ⇒ (3),
relying on the L1-weak stability of the maps (A,B) 7→ fl(ul), (A,B) 7→ fr(ur), where

ul, ur denote, respectively the left and right states of u(x, t)
.
= S [AB]+

t u0(x) at x = 0
(see Corollary 2.11), and on the lower/upper L1-semicontinuity property of solutions to
conservation laws with uniformly convex flux (see Lemma C.1 in Appendix C).



BACKWARD-FORWARD CHARACTERIZATION OF ATTAINABLE SET FOR CONSERVATION LAWS 35

• Part 3.c - (3) ⇒ (1) for critical connections. In § 5.8 we prove the implication (3) ⇒ (1)
exploiting again the L1

loc-stability of the semigroup map of Theorem 2.8-(iv), and using
a perturbation argument. Namely, given ω ∈ A L,R satisfying the conditions of Theo-
rem 4.9, 4.11, or 4.14, we construct a sequence {ωn}n of perturbations of ω with the

property that ωn
L1

→ ω, and ωn ∈ A[AnBn](T ), for a sequence of non critical connections
{(An, Bn)}n. This is another key point of our analysis, since it provides a general explicit
procedure to approximate an attainable profile for a critical connection by attainable
profiles for non critical connections.

Remark 5.1. In the case of critical connections, one may provide a direct proof of the implications
(2) ⇒ (1), (3) ⇒ (1), (3) ⇒ (2) of Theorem 4.17 with similar arguments as the ones used in the case
of non critical connections. Only the implication (1) ⇒ (3) in the case of critical connections cannot
be directly established with the same line of proof followed in § 5.2 for non critical connection. The
reason is twofold. On one hand we cannot rely on the property of non existence of rarefactions
emanating from the interface, since we establish in Appendix B this property only in the case
of non critical connections. On the other hand we cannot exploit the uniform BVloc bounds to
perform the blowup argument of § 5.2.6, since they are enjoyed by AB-entropy solutions only when
the connection is non critical (see § 6). An alternative, direct proof of (1) ⇒ (3) can be obtained
relying on the property of preclusion of rarefactions emanating from the interface derived in [2]
for general connections. Using this property, it seems reasonable that one may then establish the
Olěınik-type estimates that characterize the attainable profiles for critical connections performing
a longer, technical analysis of the structure of characteristics that avoids the blow up argument
of § 5.2.6.

5.2. Part 1.a - (1) ⇒ (3) for non critical connections assuming (H). In this Subsection, given

an element ω of the set A[AB](T ) for a non critical connection (A,B), assuming that ω satisfies (H),
we will show that ω fulfills condition (3) of Theorem 4.17. Recalling (4.7), this is equivalent to
show that, letting

L
.
= L[ω, fl] , R

.
= R[ω, fr], (5.1)

be quantities defined as in (4.2), it holds true that:

2a-i) If L < 0, R > 0, and if ω satisfies (H), then ω satisfies the conditions of Theorem 4.3;
2a-ii) If L = 0, R > 0 or viceversa, and if ω satisfies (H), then ω satisfies the conditions

of Theorem 4.11;
2a-iii) If L = 0, R = 0, then ω satisfies the conditions of Theorem 4.14.

We will prove 2a-i) in § 5.2.1-5.2.6, while 2a-ii) is proven in § 5.2.7, and 2a-iii) is discussed in § 5.2.8.
The further assumption that ω satisfies (H) is needed only to ensure the existence of the one-sided
limits ω(0±), and to show that ω satisfies (4.11)-(4.12) in case 2a-i), and (4.47), (4.53) in case
2a-ii).

Throughout the subsection we will assume that

ω = S [AB]+
T u0, u0 ∈ L∞(R) , (5.2)

and we set u(x, t)
.
= S

[AB]+
t u0(x), x ∈ R, t ≥ 0. Under assumption (H) there exist the limits

u(0±, t), for all t > 0. We let ul(t), ur(t) denote the left and right traces at x = 0 of u(x, t), t > 0.

5.2.1. (L < 0, R > 0, proof of (4.17)). The inequalities ω(L−) ≥ ω(L+), ω(R−) ≥ ω(R+) are the
Lax conditions which are satisfied since u is an entropy admissible solution of the conservation law
ut + fl(u)x = 0, on x < 0, and of ut + fr(u)x = 0, on x > 0, and the fluxes fl, fr are convex.
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5.2.2. (L < 0, R > 0, proof of (4.10)). By definition (4.2), (5.1) of L, R, it follows that backward
characteristics for u starting at (x, T ), with x ∈]−∞, 0[∪ ]R,+∞[, never crosses the interface x = 0.
Thus, we recover the Olěınik estimates (4.10) as a classical property of solutions to conservation laws
with strictly convex flux, which follows from the fact that genuine characteristics never intersect in
the interior of the domain (e.g. see [6, Lemma 3.2]).

5.2.3. (L < 0, R > 0, first part of the proof of (4.13)). Letting u[R, B, fr] be the constant defined
as in (3.7) with f = fr, we will prove the implication

R ∈]0, T · f ′(B)[ =⇒ ω(R+) ≤ u[R, B, fr], (5.3)

assuming

R ∈]0, T · f ′(B)[ , ω(R+) > u[R, B, fr] , (5.4)

and showing that (5.4) leads to a contradiction. To complete the proof of (4.13) we will show in
§ 5.2.5 that

R ∈]0, T · f ′(B)[ =⇒ u[R, B, fr] ≤ ω(R−). (5.5)

The proof of the first implication in (4.13) is obtained in entirely similar way.
We divide the proof of (5.3) in two steps. In the first step we construct the leftmost characteristic

curve ξ
R
that starts on the interface x = 0 and reaches the point (R, T ), remaining in the region

{x > 0}, with the property that all maximal backward characteristics starting on ξ
R
don’t cross

the interface x = 0. In the second step, we show that ξ
R
is located on the left of the shock curve

x constructed as in § 3.4 that emanates from the interface x = 0 and reaches the point (R, T ).
Thanks to the assumption (5.4) this leads to a contradiction in accordance with the characterizing
property of u[R, B, fr] discussed in Remark 3.3.

Step 1 Consider the map ξ
R
: [τ

R
, T ] → [0,+∞[ defined by setting

ξ
R
(t)

.
= inf

{
R > 0 : x− t · f ′

r(u(x, t)) ≥ 0 ∀ x ≥ R
}
, t ≥ 0 ,

τ
R

.
= inf

{
t ∈ [0, T ] : ξ

R
(s) > 0 ∀ s ∈ [t, T ]

}
.

(5.6)

Notice that by definition (5.6) we have

ξ
R
(τ

R
) = 0, ξ

R
(T ) = R, ξ

R
(t) > 0 ∀ t ∈ ]τ

R
, T ], (5.7)

and that ξ
R
is a backward characteristic for u starting at (R, T ), so that it holds true (e.g. see [24])

ξ′
R
(t) =

f ′
r(u(ξR(t)±, t) if u(ξ

R
(t)−, t) = u(ξ

R
(t)+, t),

λr

(
u(ξ

R
(t)−, t), u(ξ

R
(t)+, t))

)
if u(ξ

R
(t)−, t) ̸= u(ξ

R
(t)+, t) ,

(5.8)

where

λr(u, v)
.
=

fr(v)− fr(u)

v − u
, u, v ∈ R, u ̸= v . (5.9)

We shall provide now a lower bound on the slope of ξ
R
. Let t0 ∈ ]τ

R
, T ], and observe that by

definition (5.6) it follows that the minimal backward characteristic starting at (ξ
R
(t0), t0) must

cross the interface x = 0 at some non-negative time. Since such a characteristic is genuine and
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has slope f ′
r(u(ξR(t0)−, t0)) ≥ 0, and because of the AB-entropy condition (2.13), it follows that

fr(u(ξR(t0)−, t0)) ≥ fr(B) and u(ξ
R
(t0)−, t0) ≥ θr. Hence, it holds true

u(ξ
R
(t0)−, t0) ≥ B . (5.10)

On the other hand, by definition (5.6) we have

f ′
r(u(ξR(t0)+, t0)) ≤ ξ

R
(t0)/t0 . (5.11)

Thus, letting ϑξR(t0),+ denote the maximal backward characteristic starting at (ξ
R
(t0), t0), because

of (5.11) it holds true

ϑξR(t0),+(0) = ξ
R
(t0)− t0 · f ′

r(u(ξR(t0)+, t0)) ≥ 0 , (5.12)

and (5.7) implies
ϑξR(t0),+(t) > 0 ∀ t ∈ ]0, t0] . (5.13)

Moreover, observe that by the properties of backward characteristics, and by definition (5.6), the
maximal backward characteristics ϑR,+ starting at (R, T ) satisfies

ξ
R
(t) ≤ ϑR,+(t) ∀ t ∈ [τ

R
, T ] ,

and, in particular, one has
ξ
R
(t0) ≤ ϑR,+(t0) . (5.14)

Since maximal genuine? backward characteristics cannot intersect in the interior of the domain, it
follows from (5.14) that

ξ
R
(t0)− t0 · f ′

r(u(ξR(t0)+, t0)) = ϑξR(t0),+(0) ≤ ϑR,+(0) = R− T · f ′
r(ω(R+)) . (5.15)

In turn, (5.15) yields

ξ
R
(t)− R+ T · f ′

r(ω(R+)) ≤ t0 · f ′
r(u(ξR(t0)+, t0)) . (5.16)

Moreover, one has
ξ
R
(t0)− ϑR,+(0)

t0
≤ ϑ′

R,+ = f ′
r(ω(R+)) . (5.17)

Since the definition (4.2) of R and (5.4) imply f ′
r(ω(R+)) ≤ R/T < f ′

r(B), we deduce from (5.17)
that

ξ
R
(t0)− R+ T · f ′

r(ω(R+))

t0
< f ′

r(B). (5.18)

By the monotonicity of f ′
r, in turn the estimates (5.16), (5.18) yield

(f ′
r)

−1

ξ
R
(t0)− R+ T · f ′

r(ω(R+))

t0

 ≤ u(ξ
R
(t0)+, t0),

(f ′
r)

−1

ξ
R
(t0)− R+ T · f ′

r(ω(R+))

t0

 < B.

(5.19)

Therefore, recalling (5.8), (5.9), and because of the convexity of fr, we derive from (5.4),(5.10),
(5.19), that

ξ′
R
(t0) > λr

(f ′
r)

−1

ξ
R
(t0)− R+ T · f ′

r(u[R, B, fr])

t0

, B

 ∀ t0 ∈ ]τ
R
, T ] . (5.20)
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ω

x

t

ζR,+(0) ζ0,+(0)

τR

ξR(t)

s

R

x

−L

Figure 15. Illustration of the proof in § 5.2.3. The black lines are characteristics
of the solution u, that cross inside the domain and therefore lead to a contradiction.
The blue lines are the comparison curves.

Step 2 (Comparison with an extremal shock). Let y[R, B, fr](·) be the function defined in § 3.1
with f = fr, set

L
.
= y[R, B, fr](T ), (5.21)

and consider the function

x[L, B, fr](t), t ∈
[
s[L, B, fr], T

]
, (5.22)

defined as in § 3.2, with A = B (B as in (2.17)), and f = fr. By definition (3.10), and applying
Lemma 3.1, it holds true

x[L, B, fr](s[L, B, fr]) = 0, x[L, B, fr](T ) = R, (5.23)

and

d

dt
x[L, B, fr](t) = λr

(
(f ′

r)
−1

(
x[L, B, fr](t) + L

t

)
, B

)
, t ∈

[
s[L, B̄, f ], T

]
. (5.24)

Moreover, because of (3.7), (5.21), we have

L = T · f ′
r(u[R, B, fr])− R . (5.25)

Recall that by (5.7), (5.23), it holds

ξR(T ) = R = x[L, B, fr](T ).

Then, by virtue of (5.20), (5.24), a comparison argument yields

ξ
R
(t) < x[L, B, fr](t), ∀ t ∈

[
max

{
τ
R
, s[L, B, fr]

}
, T
[
. (5.26)

Notice that, if s[L, B, fr] ≥ τ
R
, then because of (5.23), (5.26), and since ξ

R
(t) ≥ 0, for all t ∈ [τ

R
, T ],

we find the contradiction 0 ≤ ξ
R
(s[L, B, fr]) < 0. Hence it must be

s[L, B, fr] < τ
R
. (5.27)

Next, observe that by definition (5.6) and because of (5.7), we have u(0+, τ
R
) ≤ θr. Thus,

by virtue of the AB-entropy condition (2.13), it follows that u(0+, τ
R
) ≤ B. Then, letting
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ζ0,+ : [0, τ
R
] → [0,+∞[ denote the maximal backward characteristic starting at (0, τ

R
), one has

ζ0,+(0) = −τ
R
· f ′

r(u(0+, τ
R
)) ≥ −τ

R
· f ′

r(B). (5.28)

On the other hand, by virtue of (5.4), (5.21), (5.27), and recalling the definitions (3.7), (3.9) of
u[R, B, fr], s[L, B, fr], we find that the maximal backward characteristic ϑR,+ : [0, T ] → [0,+∞[
from (R, T ) satisfies

ϑR,+(0) = R− T · f ′
r(ω(R+)) < R− T · f ′

r(u[R, B, fr])

= −y[R, B, fr](T )

= −s[L, B, fr] · f ′
r(B)

< −τ
R
· f ′

r(B) .

(5.29)

Thus, we deduce from (5.28)-(5.29) that

ϑR,+(0) < ζ0,+(0), (5.30)

while (5.14) yield
ϑR,+(τR) > 0 = ζ0,+(τR). (5.31)

The inequalities (5.30)-(5.31) imply that the genuine characteristics ζ0,+, ϑR,+ intersect each other
in the interior of the domain, which gives a contradiction and thus completes the proof of the
implication (5.3).

5.2.4. (L < 0, R > 0, proof of (4.15)-(4.16)). We will prove only the implication (4.16), the proof

of (4.15) being entirely similar. Let L̃
.
= L̃[ω, fl, fr, A,B] be the constant in (4.4), and assume that

R ∈ ]0, T · f ′
r(B)[ , L < L̃ . (5.32)

Step 1.
(
proof of: ω(x) ≤ A in ]L, 0[

)
.

By definition (4.2), (5.1) of L, it follows that backward genuine characteristics starting at points
(x, T ), with x ∈ ]L, 0[ of continuity for ω, must cross the interface x = 0 at some non-negative time.
Since such characteristics have slope f ′

l (ω(x)) ≤ 0, and because of the AB-entropy condition (2.13),
it follows that fl(ω(x)) ≥ fl(A) and ω(x) ≤ θl at any point x ∈ ]L, 0[ of continuity for ω. Hence, we
have ω(x±) ≤ A for all x ∈ ]L, 0[ .

Step 2.
(
proof of: ω(x) = A in ]L̃, 0[

)
.

In a similar way to (5.6), consider the map ξ
L
: [τ

L
, T ] →]−∞, 0[ defined symmetrically by setting

ξ
L
(t)

.
= sup

{
L < 0 : x− t · f ′

l (u(x, t)) ≤ 0 ∀ x ≤ L
}
, t ≥ 0 ,

τ
L

.
= inf

{
t ∈ [0, T ] : ξ

L
(s) < 0 ∀ s ∈ [t, T ]

}
.

(5.33)

Notice that by definition (5.33) we have

ξ
L
(τ

L
) = 0, ξ

L
(T ) = L, ξ

L
(t) < 0 ∀ t ∈ ]τ

L
, T ].

We claim that
τ
L
≤ τ

R
=⇒ τ

R
≤ τ [R, B, fr], (5.34)

where τ [R, B, fr] is the constant defined as in (3.32), with f = fr. We will prove the implica-
tion (5.34) with similar arguments to the proof of (4.13) in § 5.2.3, assuming

τ
L
≤ τ

R
, τ

R
> τ [R, B, fr] , (5.35)
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and showing that (5.35) lead to a contradiction.

Since τ
L
≤ τ

R
, by definitions (5.6), (5.33), and by virtue of the AB-entropy condition (2.13), it

follows
(ul(t), ur(t)) = (A,B) ∀ t ∈ ]τ

R
, T ] , (5.36)

which in turn implies
u(ξ

R
(t)−, t) = B ∀ t ∈ ]τ

R
, T ] . (5.37)

Let ζ0,+, ϑξR(t),+ , be the maximal backward characteristic starting at (0, τ
R
), and at (ξ

R
(t), t),

t ∈ ]τ
R
, T ], respectively. Relying on (5.12), (5.28), and since maximal backward characteristics

cannot intersect in the interior of the domain, we find

−τ
R
· f ′

r(B) ≤ ζ0,+(0) ≤ ϑξR(t),+(0) = ξ
R
(t)− t · f ′

r(u(ξR(t)+, t)) . (5.38)

In turn, (5.38) together with (5.35), yields

t · f ′
r(u(ξR(t)+, t)) ≤ ξ

R
(t) + τ [R, B, fr] · f ′

r(B) ∀ t ∈ ]τ
R
, T ], (5.39)

since f ′
r(B) < 0. By the monotonicity of f ′

r we deduce from (5.39) that

u(ξ
R
(t)+, t) ≤ (f ′

r)
−1

ξ
R
(t) + τ [R, B, fr] · f ′

r(B)

t

 . (5.40)

Therefore, recalling (5.8), (5.9), and because of the convexity of fr, we derive from (5.37), (5.40)
that

ξ′
R
(t) ≤ λr

(f ′
r)

−1

ξ
R
(t) + τ [R, B, fr] · f ′

r(B)

t

, B

 ∀ t ∈ ]τ
R
, T ] . (5.41)

On the other hand, letting x[L, B, fr](·) be the function defined in § 3.2, with L as in (5.21), A = B,
and f = fr, we have (5.23), (5.24). Moreover, because of (3.32), (5.21), it holds true

L = τ [R, B, fr] · f ′
r(B), s[L, B, fr] = τ [R, B, fr] . (5.42)

Then, by virtue of (5.7), (5.41), and because of (5.23), (5.24), (5.35), (5.42), with a comparison
argument we deduce

ξ
R
(t) ≥ x[L, B, fr](t) ∀ t ∈ [τ

R
, T ] . (5.43)

But (5.43), together with (5.7), (5.35), (5.42), and recalling (3.10), implies

0 = ξ
R
(τ

R
) ≥ x[L, B, fr](τR) > x[L, B, fr](τ [R, B, fr]) = 0 , (5.44)

which gives a contradiction, proving the claim (5.34).

Relying on the implication (5.34), we show now that ω(x) = A in ]L̃, 0[ , considering two cases:

Case 1: τ
R

< τ
L
. Then, by definitions (5.6), (5.33), and by virtue of the AB-entropy condi-

tion (2.13), it follows
(ul(t), ur(t)) = (A,B) ∀ t ∈ ]τ

L
, T ] . (5.45)

Observe that the maximal backward characteristic ϑL,+ starting at (L, T ) crosses the interface x = 0
at time T − L/f ′

l (ω(L+). Since ξ
L
is a backward characteristic starting at the same point (L, T )

and crossing the interface x = 0 at time τ
L
, one has τ

L
≤ T − L/f ′

l (ω(L+). This implies that

the backward genuine characteristics from points (x, T ), x ∈ ]L, 0[, impact the interface x = 0
at times tx ≥ T − L/f ′

l (ω(L+) ≥ τ
L
. Since the value of the solution u is constant along genuine
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characteristics, we deduce from (5.45) that ω(x) = A for all x ∈ ]L, 0[. Hence, by (5.32) in particular

it follows that ω(x) = A for all x ∈ ]L̃, 0[ .

Case 2: τ
L
≤ τ

R
. Then, because of (5.34) we have τ

R
≤ τ [R, B, fr]. Observe that by Step 1 we

have ω(x) ≤ A for all x ∈ ]L, 0[. Relying on the monotonicity of f ′
l , this implies that the backward

genuine characteristics starting from points (x, T ), x ∈ ]L, 0[, impacts the interface x = 0 at times

τ(x)
.
= T − x

f ′
l (ω(x))

≥ T − x

f ′
l (A)

. (5.46)

On the other hand, recalling definitions (4.4), (5.1), we have

T − x

f ′
l (A)

≥ T −
(T − τ [R, B, fr]) · f ′

l (A)

f ′
l (A)

= τ [R, B, fr] ≥ τ
R
, (5.47)

for all x ∈ ]L̃, 0[ . Combining (5.46), (5.47), we deduce that the backward genuine characteristics

starting from points (x, T ), x ∈ ]L̃, 0[, cross the interface x = 0 at times τ(x) ≥ τ
R
. Hence,

relying again on the property that the solution u is constant along genuine characteristics, we infer

from (5.36) that ω(x) = A for all x ∈ ]L̃, 0[ also in this case, thus completing the proof of Step 2.

Step 3.
(
proof of: ω(L̃−) = A

)
.

We know by Step 1 and Step 2 that ω(L̃−) ≤ A and ω(L̃+) = A. On the other hand the Lax entropy

condition (see § 5.2.1) implies ω(L̃−) ≥ ω(L̃+) = A. Therefore one has A ≥ ω(L̃−) ≥ ω(L̃+) = A

which yields ω(L̃−) = A. This concludes the proof of (4.16).

5.2.5. (L < 0, R > 0, proof of (4.14) and completion of the proof of (4.13)). We will prove only the
second implication in (4.14), the proof of the first one being entirely symmetric. Assume that[

R ∈ ]0, T · f ′
r(B)[ and L̃ ≤ L

]
or R ≥ T · f ′

r(B), (5.48)

and let τ
L
, τ

R
be the constants defined in (5.6), (5.33), in connection with the characteristics ξ

L
, ξ

R
.

As observed in Step 2 of § 5.2.4, the fact that ξ
L
is a backward characteristic starting at (L, T ) and

crossing the interface x = 0 at time τ
L
implies

τ
L
≤ τ+(L)

.
= T − L

f ′
l (ω(L+)

. (5.49)

We claim that (5.48) implies

τ
R
≤ τ+(L) . (5.50)

Since (5.49) clearly implies (5.50) when τ
R
≤ τ

L
, it will be sufficient to prove the claim under the

assumption τ
L
< τ

R
. Let’s consider first the case that

R ∈ ]0, T · f ′
r(B)[ and L̃ ≤ L . (5.51)

Observe that, because of (5.34), τ
L
< τ

R
implies

τ
R
≤ τ [R, B, fr]. (5.52)

Moreover, by Step 1 of § 5.2.4, one has ω(L+) ≤ A. Therefore, recalling the definition (4.4), and

because of the monotonicity of f ′
l , we deduce from L̃ ≤ L that

(T − τ [R, B, fr]) · f ′
l (ω(L+) ≤ L , (5.53)
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which, together with (5.52), yields (5.50), under the assumption (5.51). Next, consider the case
that

R ≥ T · f ′
r(B) . (5.54)

Observe that by the analogous argument of Step 1 of § 5.2.4 for (4.15), one has ω(R−) ≥ B.
Moreover, if ω(R−) = B, by definition (4.2) of R it follows that f ′

r(B) ≥ R/T , which together
with (5.54), implies f ′

r(B) = R/T . In turn, f ′
r(B) = R/T implies that the minimal characteristic

starting at (R, T ) reaches the interface x = 0 at time t = 0, and by definition (5.6), it coincides with
ξ
R
. Therefore, one has τ

R
= 0, which proves (5.50). Hence, it remains to consider the case (5.54)

when ω(R−) > B. Notice that, if

L

f ′
l (ω(L+))

>
R

f ′
r(ω(R−))

, (5.55)

it follows that the minimal backward characteristic ϑR,− from (R, T ) crosses the interface x = 0 at
a time

τ−(R)
.
= T − R

f ′
r(ω(R−))

(5.56)

strictly greater than the time τ+(L) at which the maximal backward characteristic ϑL,+ from (L, T )
crosses the interface x = 0. On the other hand, since ϑR,− is a genuine characteristic, it follows
that ur(τ−(R)) = ω(R−) > B. Because of the AB-entropy condition (2.13) this implies that
ul(τ−(R)) > θl. Thus we can trace the minimal backward characteristic starting at (0, τ−(R)) and
lying in {x < 0}, which has slope f ′

l (ul(τ−(R)) > 0, and hence it will intersect the characteristic
ϑL,+ at a positive time t∗ ≥ τ+(L), giving a contradiction. Therefore, ω(R−) > B implies

L

f ′
l (ω(L+))

≤ R

f ′
r(ω(R−))

. (5.57)

On the other hand, since ξ
R
is a backward characteristic starting at (R, T ) and crossing the interface

x = 0 at time τ
R
, it holds true

τ
R
≤ τ−(R) . (5.58)

Hence, (5.56), (5.57), (5.58) together yield (5.50). This completes the proof of the Claim that (5.48)
implies (5.50). Then, by definitions (5.6), (5.33), relying on (5.49), (5.50), and by virtue of the
AB-entropy condition (2.13), we find that

(ul(t), ur(t)) = (A,B) ∀ t ∈ ]τ+(L), T ] . (5.59)

Since backward genuine characteristics starting from points (x, T ), x ∈ ]L, 0[, cross the interface
x = 0 at times tx ≥ τ+(L), we infer from (5.59) that ω(x) = A for all x ∈ ]L, 0[ . This concludes the
proof of the second implication in (4.14).

Concerning (4.13), we prove now the implication (5.5). To this end observe that, because of (4.14)
and (4.15) (established in § 5.2.4), we have

R ∈]0, T · f ′(B)[ =⇒ ω(x) ≥ B ∀ x ∈ ]0,R[ ,

and hence

R ∈]0, T · f ′(B)[ =⇒ ω(R−) ≥ B . (5.60)

Thus, relying on (3.8) with f = fr, we deduce (5.5) from (5.60), which completes the proof of the
second implication in (4.13).
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5.2.6. (L < 0, R > 0, proof of (4.11)-(4.12)). We will prove only (4.11), the proof of (4.12) being
entirely similar. Then, assume that (5.32) holds as in § 5.2.4.

Step 1. For every point x ∈ ]L, L̃[ where ω is continuous, consider the map

ϑx(t)
.
=

{
x− (T − t) · f ′

l (ω(x)), if τ(x) ≤ t ≤ T ,

(t− τ(x)) · f ′
r ◦ πl

r,−(ω(x)), if 0 ≤ t < τ(x),
(5.61)

with

τ(x)
.
= T − x

f ′
l (ω(x))

, (5.62)

and set

ϕ(x)
.
= ϑx(0) = −τ(x) · f ′

r ◦ πl
r,−(ω(x)) . (5.63)

Observe that

ϑx| ]τ(x),T ] is a genuine characteristic for u in the halfplane {x < 0} ,

ϑx| ]0,τ(x)[ is a genuine characteristic for u in the halfplane {x > 0} if ur(τ(x)) ≤ B ,
(5.64)

and thus ϑx is a genuine characteristic for u as AB-solution (see Remark 2.6) only in the case where
ur(τ(x)) ≤ B. Note also that τ(x) is the impact time of ϑx with the interface x = 0, and that
the function τ has at most countably many discontinuity points as ω. Since genuine characteristics
cannot intersect in the interior of the domain, it follows that the right continuous extension of τ is
a nondecreasing map. On the other hand, because we are assuming that ω satisfies (H) and that
(A,B) is a non critical connection, we know by Proposition B.3 in Appendix B that no pair of
genuine characteristics can meet together on the interface x = 0. Hence, we deduce that the right

continuous extension of the map τ is actually increasing on ]L, L̃[ .

We will next show that the right continuous extension of the map ϕ is nondecreasing on ]L, L̃[ .

Step 2. Consider two points L < x1 < x2 < L̃ of continuity for ω. By Step 1 we know that

τ(x1) < τ(x2). Moreover, by (4.16) (established in § 5.2.4) we have ω(x) ≤ A for all x ∈ ]L, L̃[ .
Then, we shall provide a proof of

ϕ(x1) ≤ ϕ(x2) (5.65)

considering different cases according to the fact that ω(xi) = A or ω(xi) < A, i = 1, 2.
Case 1: ω(xi) < A, i = 1, 2. Since u is constant along genuine characteristics, and because of

the AB-entropy condition (2.13), it follows that ur(τ(xi)) = πl
r,−(ω(xi)) < B, i = 1, 2. Therefore,

by (5.64) ϑxi | ]0,τ(xi)[ , i = 1, 2, are genuine characteristics in the half plane {x > 0} starting at
(0, τ(xi)), which cannot intersect at positive times. This implies ϕ(x1) = ϑx1(0) ≤ ϑx2(0) = ϕ(x2).

Case 2: ω(xi) = A, i = 1, 2. By definition (5.61) we know that ϑxi | ]0,τ(xi)[ , i = 1, 2, are parallel

lines (possibly not characteristics for u) with slope f ′
r

(
πl
r,−(A)

)
= f ′

r(B), starting at (0, τ(xi)).
Hence, τ(x1) < τ(x2) implies ϕ(x1) = ϑx1(0) < ϑx2(0) = ϕ(x2).

Case 3: ω(x1) = A, ω(x2) < A. Notice that, by the monotonicity of f ′
l , f

′
r, the map]

−∞, (f ′
l )

−1(x1/T )
]
∋ u 7→ −

(
T − x1

f ′
l (u)

)
· f ′

r ◦ πl
r,−(u)

is decreasing. Then we have

ϕ(x1) ≤ −
(
T − x1

f ′
l (ω(x2))

)
· f ′

r ◦ πl
r,−(ω(x2))

≤ −
(
T − x2

f ′
l (ω(x2))

)
· f ′

r ◦ πl
r,−(ω(x2)) = ϕ(x2) .

(5.66)
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Case 4: ω(x2) = A, ω(x1) < A. Since ω(x2) = A, it follows with the same arguments as above
that ul(τ(x2)) = A and that either ur(τ(x2)) = B or ur(τ(x2)) = B. In the first case, because
of (5.64) one can proceed as in Case 1 to deduce that ϕ(x1) ≤ ϕ(x2). Then, assume ur(τ(x2)) = B,
and set (see Figure 16)

t
.
= inf

{
t ≤ τ(x2)

∣∣ (ul(s), ur(s)) = (A,B) ∀s ∈ [t, τ(x2)]
}
. (5.67)

Notice that since τ(x1) < τ(x2) and because ul(τ(x1)) < A implies ur(τ(x1)) < B, it follows that
t ∈ ]τ(x1), τ(x2)]. We claim that it must hold

ur( t ) = B . (5.68)

Towards a proof of (5.68), notice first that, since ω(x) ≤ A for all x ∈ ]L, L̃[ , it follows that ul(t) ≤ A
for all t ∈ [τ(x1), τ(x2)]. Because of the AB-entropy condition (2.13) and by definition of t, this
implies that there exists a sequence of times tn ↑ t such that ur(tn) ≤ B. Then, since (A,B)
is a non critical connection, we trace the backward characteristics from points (0, tn), with slope
f ′
r(ur(tn)) ≤ f ′

r(B). Using the stability of characteristics with respect to uniform convergence (see
for example the proof of Lemma C.1), we thus find that there is a backward characteristic with
slope ≤ f ′

r(B) starting from (0, t). This immediately implies that

ur( t ) ≤ B . (5.69)

Then, consider the blow ups

uρ(x, t)
.
= u(ρx, t+ ρ(t− t)) x ∈ R, t ≥ 0 , (5.70)

of u at the point (0, t ), as in the proof of Proposition B.3. When ρ ↓ 0, the blow-ups uρ(·, t)
converge in L1

loc, up to a subsequence, to a limiting AB-entropy solution v(·, t), for all t > 0.
Moreover, we have

v(x, t ) =

{
ul( t ), if x < 0,

ur( t ), if x > 0.
(5.71)

By definitions (5.67), (5.70), it holds true

(uρ,l(t), uρ,r(t)) = (A,B) ∀ t ∈
]
t, t+

τ(x2)− t

ρ

[
, (5.72)

where uρ,l(t), uρ,r(t) denote the left and right traces of uρ(·, t) at x = 0. Taking the limit as ρ ↓ 0
in (5.72), and invoking Corollary 2.11 (with (An, Bn) = (A,B) for all n), we deduce that

v(0−, t) ∈ {A,A } v(0+, t) ∈ {B,B }, ∀ t > t, (5.73)

while (5.69), (5.71) imply

v(x, t ) = ur(t ) ≤ B, ∀ x > 0 . (5.74)

By a direct inspection we find that, if an AB-entropy solution of a Riemann problem for (1.1)
with initial datum (5.71) at time t, enjoys the properties (5.73)-(5.74), then the initial datum on
{(x, t ), x > 0} must be v(x, t ) = ur(t ) = B, thus proving (5.68).
Relying on (5.68) we can now complete the proof of (5.65). Since ur(τ(x1)) < B, we know by (5.64)
that ϑx1 is a genuine characteristic in the halfplane {x > 0} starting at (0, τ(x1)). On the other
hand, because of (5.68) and since (A,B) is a non critical connection, we can trace the maximal
backward characteristic from (0, t ) in {x > 0}, which has slope f ′

r(B) and reaches the x-axis at the
point −t · f ′

r(B). Such a (genuine) characteristic cannot intersect at a positive time the genuine
characteristic ϑx1 . Therefore, one has

ϕ(x1) = ϑx1(0) ≤ −t · f ′
r(B). (5.75)
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x

t

ω

t

τ(x1)

τ(x2)

x1 x2

−t · f ′
r(B)ϕ(x1) ϕ(x2)

Figure 16. The situation described in Case 4.

Moreover, since t ≤ τ(x2), and because πl
r,−(ω(x2)) = πl

r,−(A) = B, we deduce

−t · f ′
r(B) ≤ −τ(x2) · f ′

r(B) = ϕ(x2),

which together with (5.75), yields (5.65). This concludes the proof of the nondecreasing mono-

tonicity of ϕ on ]L, L̃[ . Invoking Lemma 4.4 in [6], this is equivalent to the inequality

D+ω(x) ≤ g[ω, fl, fr](x), ∀ x ∈ ]L, L̃[ ,

where g is the function in (4.6). This concludes the proof of (4.11), and thus the proof that ω
satisfies conditions (i)-(ii) of Theorem 4.3 is completed.

5.2.7. (L < 0, R = 0 or viceversa, proof of conditions (i)-(ii), or (i)′-(ii)′, of Theorem 4.11). We
consider only the case L < 0, R = 0, the other case L = 0, R > 0 being symmetrical. The proofs
of (4.46), (4.47), (4.48), (4.50), (4.51) in this case, are entirely similar to the proofs of (4.10),
(4.11), (4.16), (4.13), (4.17), respectively, in the case L < 0, R > 0. We provide here only the
proof of (4.49), which is the only new constraint arising in the case L < 0, R = 0, that was not
present in the case L < 0, R > 0. Notice first that by (4.16) (established in § 5.2.4) we know that
ω(x) ≤ A for all x ∈ ]L, 0[ . Hence, since the connection (A,B) is non critical, tracing the backward
characteristics (with negative slope) in the half plane {x < 0} from any sequence of points (xn, T ),
xn ∈ ]L, 0[ , xn ↑ 0, we deduce that there exists the one-sided limit ul(T−) and it holds true

ul(T−) = ω(0−) ≤ A . (5.76)

Then, we will distinguish two cases.

Case 1: Assume that ur(t) ≥ B for all t ∈ ]τ, T [ , for some τ < T . Then, by the AB-entropy
condition (2.13), and because of (5.76), we deduce that ω(0−) = ul(T−) = A. On the other
hand, since (A,B) is a non critical connection, by definition (4.2) it follows that R = 0 implies
f ′
r(ω(0+)) < 0. Therefore we have ω(0+) ≤ B = πl

r,−(A) = πl
r,−(ω(0−)), proving (4.49).

Case 2: Assume that there exists a sequence of times tn ↑ T such that ur(tn) ≤ B for all
n, and such that limn ur(tn) = u∗, for some u∗ ≤ B. By the AB-entropy condition (2.13) we
may also assume that ur(tn) = πl

r,−(ul(tn)) for all n. Therefore, relying on (5.76), we find u∗ =

limn π
l
r,−(ul(tn)) = πl

r,−(ω(0−)). On the other hand we have ω(0+) ≤ u∗, since otherwise backward
genuine characteristics issuing from points (xn, T ), xn ↓ 0, would eventually cross backward genuine
characteristics in the half plane {x > 0} starting from points (0, tn). In fact, if ω(0+) > u∗ then
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we can find points (xn, T ), xn > 0 (xn point of continuity for ω), and (0, tn), tn < T (tn point of
continuity for ur), such that ω(xn) > ur(tn), which would imply that the backward characteristic
starting from (xn, T ) with negative slope f ′

r(ω(xn, T )) intersect the backward characteristic starting
from (0, tn) with slope f ′

r(ur(tn)) < f ′
r(ω(xn, T )). Therefore it must be ω(0+) ≤ u∗, which together

with u∗ = πl
r,−(ω(0−)), yields (4.49).

This concludes the proof of (4.49), and thus the proof that ω satisfies conditions (i)-(ii)
(or (i)′-(ii)′) of Theorem 4.11 is completed.

5.2.8. (L = 0, R = 0, proof of conditions (i)-(ii) of Theorem 4.14). The proofs of (4.62), (4.64), are
entirely similar to the proofs of (4.10), (4.13), in the case L < 0, R > 0, and of (4.49), in the case
L = R = 0, respectively. Further, (4.63) can be established with the same arguments of the proof
of (4.13) in the case L < 0, R > 0, recalling Remark 4.15. This completes the proof that ω satisfies
conditions (i)-(ii) of Theorem 4.14.

5.3. Part 1.b - (1) ⇒ (3) for non critical connections without assuming (H). In this

Subsection, given an element ω of the set A[AB](T ) for a non critical connection (A,B), we will
show that ω satisfies (H). In view of the analysis in § 5.2, this will imply that ω fulfills condition (3)
of Theorem 4.17, thus completing the proof of the implication (1) ⇒ (3) of Theorem 4.17.

Then, given ω ∈ A[AB](T ) with

ω = S [AB]+
T u0, u0 ∈ L∞(R) , (5.77)

set u(x, t)
.
= S

[AB]+
t u0(x), x ∈ R, t ≥ 0. Next, let {un,0}n be a sequence of functions in BV (R)

such that

un,0 → u0 in L1
loc(R) ,

and define un(x, t)
.
= S [AB]+

t un,0(x). Then, by Theorem 2.8-(iii) it follows

un(·, t) → u(·, t) in L1
loc(R) ∀ t ≥ 0 . (5.78)

Since (A,B) is a non critical connection and because the initial data un,0 are in BV , invoking the
BV bounds on AB-entropy solutions provided in [29, Lemma 8] (see also [1, Theorem 2.13-(iii)]),
we deduce that un(·, t) ∈ BV (R) for all t > 0, and for all n. Therefore,

un(·, t) ∈ A[AB](t) , and satisfies (H) ∀ t > 0 , ∀ n .

Hence, relying on the analysis in § 5.2, and recalling (4.7), we know that, setting

Ln(t)
.
= L[un(·, t), fl] , Rn(t)

.
= R[un(·, t), fr] , (5.79)

each un(·, t) satisfies the conditions stated in:

- Theorem 4.3 if Ln(t) < 0, Rn(t) > 0;
- Theorem 4.11 if Ln(t) < 0, Rn(t) = 0 or viceversa;
- Theorem 4.14 if Ln(t) = 0, Rn(t) = 0.

Thus, in particular, un(·, t) satisfies the Olěınik-type inequalities

D+un(x, t) ≤
1

t · f ′′
l (un(x, t))

in ]−∞, Ln(t)[ ,

D+un(x, t) ≤ g[un(·, t), fl, fr](x) in ]Ln(t), 0[ , if Ln(t) < 0 ,

D+un(x, t) ≤ h[un(·, t), fl, fr](x) in ]0,Rn(t)[ , if Rn(t) > 0 ,

D+un(x, t) ≤
1

t · f ′′
r (un(x, t))

in ]Rn(t),+∞[ ,

(5.80)
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and the constraints
un(x, t) ≤ A ∀ x ∈ ]Ln(t), 0[ ,

un(x, t) ≥ B ∀ x ∈ ]0,Rn(t)[ ,
(5.81)

for all t > 0. Since (5.81) implies f ′
r(un(x, t)) ≥ f ′

r(B) for all x ∈ ]0,Rn(t)[ , by the monotonicity of
f ′
r, we find

t · f ′
r(un(x, t))− x ≥ t · f ′

r(B)

2
∀ x ∈

[
0, min

{
Rn(t),

t · f ′
r(B)

2

}[
. (5.82)

Therefore, recalling definition (4.6), setting Λ
.
= sup|z|≤M max{|f ′

l (z)|, |f ′
r(z)|}, with M being a

uniform L∞ bound for un, and letting a be the lower bound on f ′′
l , f

′′
r given in (1.4), we deduce

from (5.82), that, if

Rn(t) ≤
t · f ′

r(B)

2
,

then for all n it holds true

h[un(·, t), fl, fr](x) ≤
Λ

2

a f ′
r(B)

(
t · f ′

r(un(x, t))− x
) ≤ 2

a t
·
(

Λ

f ′
r(B)

)2
∀ x ∈ [0,Rn(t)[ ,

(5.83)
while if

Rn(t) >
t · f ′

r(B)

2
,

then for all n it holds true

h[un(·, t), fl, fr](x) ≤


Λ

2

a f ′
r(B)

(
t · f ′

r(un(x, t))− x
) ≤ 2

a t
·
(

Λ

f ′
r(B)

)2
∀ x ∈

[
0, t·f ′

r(B)
2

]
,

Λ

x a
≤ 2Λ

a t·f ′
r(B)

∀ x ∈
[
t·f ′

r(B)
2 , Rn(t)

[
.

(5.84)
Hence, we derive from (5.80), (5.83), (5.84), the uniform bounds

D+un(x, t) ≤
2Λ

a t·f ′
r(B)

·max

{
1,

Λ

f ′
r(B)

}
in ]0,Rn(t)[ , if Rn(t) > 0 ,

D+un(x, t) ≤
1

t · a
in ]Rn(t),+∞[ ,

(5.85)

for all n. Since (A,B) is a non critical connection, for every fixed δ > 0, the one-sided uniform
upper bounds provided by (5.85) yield uniform bounds on the total increasing variation (and hence
on the total variation as well) of un(t) , t ≥ δ, on bounded subsets of [0,+∞[. Thus, by the lower-
semicontinuity of the total variation with respect to the L1

loc convergence, and because of (5.78),
we find that

u(·, t) ∈ BVloc([0,+∞[ ), ∀ t ≥ δ . (5.86)

With the same type of arguments, relying on (5.80), (5.81), we can show that

u(·, t) ∈ BVloc( ]−∞, 0]), ∀ t ≥ δ . (5.87)

Therefore, we deduce from (5.86), (5.87), that

u(·, t) ∈ BVloc(R) ∀ t > 0 , (5.88)

which shows that the function ω in (5.77) satisfies condition (H), thus completing the proof of the
implication (1) ⇒ (3) of Theorem 4.17 in the case of a non critical connection.
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5.4. Part 2.a - (3) ⇒ (1) for non critical connections. In this Subsection, given

ω ∈ A L,R, L
.
= L[ω, fl] < 0, R

.
= R[ω, fr] > 0 , (5.89)

(A L,R being the set in (4.8)), assuming that

ω satisfies conditions (i)-(ii) of Theorem 4.3, (5.90)

we will show that ω ∈ AAB(T ) by explicitly constructing an AB-entropy solution attaining ω at
time T . With entirely similar arguments one can show that the same conclusion hold assuming
that ω ∈ A L,R:

- satisfies the conditions of Theorem 4.11, if L = 0, R > 0 or viceversa;
- satisfies the conditions of Theorem 4.14, if L = 0, R = 0.

Then, consider ω satisfying (5.89), (5.90). By Remark 4.5 we can distinguish six cases of pointwise
constraints on ω, prescribed by condition (ii) of Theorem 4.3, which depend on the reciprocal

positions of the points L, R, and L̃, R̃, defined in (4.2)-(4.4). We shall consider here only the Cases
1 and 2 discussed in Remark 4.5. The Cases 1b, 2b are symmetrical to Cases 1, 2, up to a
change of variables x 7→ −x, while the Cases 3, 4 are entirely similar or simpler.

Notice that, by Remark 4.5, in Case 1 it holds true (4.27), (4.28), and in particular we shall
assume that

ω(R+) < u[R, B, fr] , (5.91)

while in Case 2 it holds true (4.28), (4.29), and we shall assume that (5.91) is verified together
with

ω(L−) > v[L, A, fl] . (5.92)

The cases in which ω(R+) = u[R, B, fr] or ω(L−) = v[L, A, fl] can be treated with entirely similar
or simpler arguments. Moreover, in both Cases 1 and 2 we have

L̃ > L , ω( L̃−) = ω( L̃+) . (5.93)

The construction of the initial datum u0 so that the corresponding AB-entropy solution solution

u(x, t)
.
= S [AB]+

t u0(x) attains the value ω at time T follows a by now standard procedure (see [6],
[8]), that we describe in § 5.4.4-5.4.5 below. To this end we first introduce some technical notations
in § 5.4.1-5.4.3.

5.4.1. Characteristics of compression waves. We introduce a class of curves connecting two points
(z, 0), (y, T ), that will be treated as characteristics of compression waves generating a shock at
the point (y, T ). In particular, in the case y < 0 < z, such curves will be characteristics of a
compression wave that starts at time t = 0 on the half plane {z ≥ 0}, and generates a shock at
time t = T after being refracted at the discontinuity interface. Given any y < 0, consider the
continuous function

]−∞, (f ′
l )

−1(y/T )] ∋ u 7→ hy(u)
.
= −

(
T − y

f ′
l (u)

)
· f ′

r ◦ πl
r,−(u).

Notice that, by definition (4.1) and since f ′
l , f

′
r are increasing functions, it follows that

u 7→ −(T − y/f ′
l (u)), u 7→ f ′

r ◦ πl
r,−(u) are decreasing maps, and hence the map hy is decreas-

ing as well. On the other hand we have lim
u→−∞

hy(u) = +∞, hy((f
′
l )

−1(y/T )−) = 0. Therefore by a

continuity and monotonicity argument, it follows that, for every z > 0, there exists a unique state
uy,z ≤ (f ′

l )
−1(y/T ), such that

hy(uy,z) = z . (5.94)
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Moreover, the map z 7→ uy,z, z > 0 is continuous. Then, for every pair y < 0 < z, we denote by
ηy,z : [0, T ] 7→ R the polygonal line given by

ηy,z(t)
.
=

{
y − (T − t) · f ′

l (uy,z), if τ(y, z) < t ≤ T ,

(t− τ(y, z)) · f ′
r ◦ πl

r,−(uy,z), if 0 ≤ t ≤ τ(y, z),
(5.95)

where

τ(y, z)
.
= T − y

f ′
l (uy,z)

. (5.96)

Next, for every pair y, z < 0, or y, z > 0, we denote by ηy,z : [0, T ] → R the segment

ηy,z(t)
.
= y − (T − t) · (y − z)

T
∀ 0 ≤ t ≤ T . (5.97)

Notice that, in the case y < 0 < z, if we consider a function u(x, t) that assumes the values

u = uy,z on the segment ηy,z(t), τ(y, z) < t ≤ T,

u = πl
r,−(uy,z) on the segment ηy,z(t), 0 ≤ t ≤ τ(y, z),

then the states ul = uy,z, ur = πl
r,−(uy,z) satisfy the interface entropy condition (2.13) at time

t = τ(y, z), and ηy,z enjoys the properties of a (genuine) characteristic for u as an AB-entropy
solution (see Remark 2.6). Similar observations hold for ηy,z in the case y, z < 0, considering a
function u(x, t) that assumes the value (f ′

l )
−1((y− z)/T ) = uy,z along the segment ηy,z, and in the

case y, z > 0, considering a function u(x, t) that assumes the value (f ′
r)

−1((y − z)/T ) = uy,z along
the segment ηy,z.

5.4.2. Maximal/minimal backward characteristics. We introduce a class of curves with end point (y, T )
that will be treated as maximal and minimal backward characteristics starting at (y, T ). For every

y ∈ ]−∞, L̃ ]∪ ]R,+∞[ , we denote by ϑy,± : [0, T ] → R the segments or polygonal lines

ϑy,±(t)
.
=


y − (T − t) · f ′

l

(
ω(y±)

)
, if y < L, 0 ≤ t ≤ T ,

y − (T − t) · f ′
l

(
ω(y±)

)
, if L ≤ y ≤ L̃, τ±(y) ≤ t ≤ T ,(

t− τ±(y)
)
· f ′

r ◦ πl
r,−(ω(y±)), if L ≤ y ≤ L̃, 0 ≤ t < τ±(y),

y − (T − t) · f ′
r

(
ω(y±)

)
, if y > R, 0 ≤ t ≤ T ,

(5.98)

where

τ±(y)
.
= T − y

f ′
l (ω(y±))

. (5.99)

We will write ϑy(t)
.
= ϑy,±(t) for all t ∈ [0, T ], whenever ω(y−) = ω(y+). In particular, because

of (5.93), we have ϑ
L̃
(t)

.
= ϑ

L̃,±(t). Further, for y = R, we denote by ϑR,+ : [0, T ] → R the segment

ϑR,+(t)
.
= R− (T − t) · f ′

r

(
ω(R+)

)
∀ 0 ≤ t ≤ T . (5.100)

Notice that, because of definition (4.2), (5.89), whenever y ∈ ] −∞, L [∪ ]R,+∞[, the curves ϑy,±
are segments that never cross the interface {x = 0}, instead for all y ∈ ]L, L̃], ϑy,± are polygonal
lines that are refracted at {x = 0} . Moreover, at every point of discontinity y ∈ ]−∞, L [∪ ]R,+∞[
of ω, conditions (4.10), (4.11) imply the Lax condition ω(y−) > ω(y+), which in turn, by the
monotonicity of f ′

l , f
′
r, implies

ϑy,−(0) < ϑy,+(0) ∀ y ∈ ]−∞, L [∪ ]R,+∞[ . (5.101)

As in § 5.4.1, observe that in the case L < y ≤ L̃, if we consider a function u(x, t) that assumes
the values

u = ω(y±) on the segment ϑy,±(t), τ±(y) < t ≤ T,

u = πl
r,−(ω(y±)) on the segment ϑy,±(t), 0 ≤ t ≤ τ±(y),
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than ϑy,± enjoys the properties of a maximal/minimal backward characteristic for u as an AB-
entropy solution that attains the value ω at time T . Similar observations hold for ϑy,± in the case
y < L or y ≥ R, considering a function u(x, t) that assumes the value ω(y±) along ϑy,±.

5.4.3. Partition of R. The initial datum will be defined in a different way on different intervals of
the following partition of R (see Figure 18):

IL
.
=
{
x ∈ R

∣∣ ϑL,−(0) < x < ϑL,+(0)
}
,

IR
.
=
{
x ∈ R

∣∣ − y[R, B, fr](T ) < x < R− T · f ′
r(ω(R+))

}
,

IC
.
=
{
x ∈ R \ (IL ∪ IR)

∣∣ ∄ y ∈ R : ϑy,+(0) = x or ϑy,−(0) = x
}
,

IRa
.
=
{
x ∈ R \ (IL ∪ IR)

∣∣ ∃ y < z : ϑy,+(0) = ϑz,−(0) = x
}
,

IW
.
=
{
x ∈ R \ (IL ∪ IR)

∣∣ ∃! y ∈ R : ϑy,+(0) = x or ϑy,−(0) = x
}
,

(5.102)

where y[R, B, fr](T ) is defined as in § 3.1 with f = fr. Notice that the set IR is non empty because
the increasing monotonicity of f ′

r, together with (3.7), (5.91), implies

f ′
r(ω(R+)) < f ′

r

(
u[R, B, fr]

)
=

R+ y[R, B, fr](T )

T
.

x

L RA B

IL IR ICIW

L̃ ω

Figure 17. Partition of R in Case 1. The picture displays some connected compo-
nents in IL ∪ IR ∪ IC ∪ IW .

x

L RA B

IL IR

L̃ ω

IW IC

Figure 18. Partition of R in Case 2. The picture displays some connected compo-
nents in IL ∪ IR ∪ IC ∪ IW .

The elements of this partition enjoy the following properties.
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- In the Case 1, the set IL consists of the starting points of a compression wave that is partly
refracted by the interface, and that generates a shock at the point (L, T ). In theCase 2, only
the subsets of IL given by ]ϑL,−(0), −σ[L, A, fl]·f ′

l (A)[, and ](L/f ′
l (A)−T )·f ′

r(B), ϑL,+(0)[,
consist of the starting points of compression waves with center at the point (L, T ). In the
complementary sets of IL: ] − σ[L, A, fl] · f ′

l (A), 0[ and ]0, (L/f ′
l (A) − T ) · f ′

r(B)[, the

initial datum will assume the constant values A and B, respectively. Here σ[L, A, fl] is the
constant defined as in § 3.5, with f = fl.

- The set IR consists of the starting points of a compression wave that generates a shock at
the point (R, T ).

- The set IC consists of the starting points of compression waves that generate a shock at

points (y, T ), y ∈ ] − ∞, L[∪ ]L, L̃[∪ ]R,+∞[ . The set IC is a disjoint union of at most
countably many open intervals of the form

In
L = ]x−n , x

+
n [ , x±n = ϑyn,±(0), yn ∈ ]−∞, L[ ,

In
R = ]x−n , x

+
n [ , x±n = ϑyn,±(0), yn ∈ ]R,+∞[ ,

Ĩn
L = ]x−n , x

+
n [ , x±n = ϑyn,±(0), yn ∈ ]L, L̃[ ,

(5.103)

which are non empty because of (5.101).
- The set IRa consists of at most countably many points that are the centers of rarefaction
waves originated at time t = 0.

- The set IW consists of the starting points of all genuine characteristics reaching points

(y, T ), y ∈ ]−∞, L[∪ ]L, L̃[∪ ]R,+∞[ .

5.4.4. Construction of AB-entropy solution on two regions with vertexes at (L, T ) and at (R, T ).
Consider the two polygonal regions

∆L
.
=
{
(x, t) ∈ R× [0, T ] : ϑL,−(t) < x < ϑL,+(t)

}
,

ΓR
.
=
{
(x, t) ∈ R× [0, T ] : ϑ

L̃
(t) < x < ϑR,+(t)

}
.

(5.104)

In the Case 2 (see Figure 7), letting ∆[L, A, fl] be the region defined as in § 3.5, with f = fl, we
can express ∆L as

∆L = ∆[L, A, fl] ∪
4⋃

i=1

∆L,i, (5.105)

where

∆L,1
.
=
{
(x, t) ∈ ]−∞, 0[×[0, T ] : ϑL,−(t) < x ≤ L− (T − t) · f ′

l (v[L, A, fl])
}
,

∆L,2
.
=
{
(x, t) ∈ ]−∞, 0] × [0, T ] : x ≥ (t− σ[L, A, fl]) · f ′

l (A )
}
,

∆L,3
.
=
{
(x, t) ∈ ]0,+∞[× [0, T ] : x < ηL, x(A,B)(t)

}
,

∆L,4
.
=
{
(x, t) ∈ R × [0, T ] : ηL, x(A,B)(t) ≤ x < ϑL,+(t)

}
,

(5.106)

with v[L, A, fl] as in (3.11) taking f = fl, and

x(A,B)
.
=
(
L/f ′

l (A)− T
)
· f ′

r(B) > 0 . (5.107)

Similarly, in both Cases 1, 2 (see Figures 6-7), letting Γ[R, B, fr], be the region defined as in § 3.4,
with f = fr, we can express ΓR as

ΓR = Γ[R, B, fr] ∪
3⋃

i=1

ΓR,i, (5.108)
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where

ΓR,1
.
=
{
(x, t) ∈ ]−∞, 0] × [0, T ] : ϑ

L̃
(t) < x

}
,

ΓR,2
.
=
{
(x, t) ∈ ]0,+∞[× [0, T ] : x ≤ R− (T − t) · f ′

r(B)
}
,

ΓR,3
.
=
{
(x, t) ∈ ]0,+∞[× [0, T ] : R− (T − t) · f ′

r(u[R, B, fr]) ≤ x < ϑR,+(t)
}
,

(5.109)

with u[R, B, fl] as in (3.7), taking f = fr.

Now, consider the function uL : ∆L → R defined by setting for every (x, t) ∈ ∆L :
in Case 1:

uL(x, t) =

{
(f ′

l )
−1
(
L−x
T−t

)
, if x ≤ 0,

πl
r,−(uL,z), if x = ηL,z(t), for some z > 0,

(5.110)

where uL,z is defined as in § 5.4.1, with y = L;

in Case 2:

uL(x, t) =



(f ′
l )

−1
(
L−x
T−t

)
, if (x, t) ∈ ∆L,1 ∪∆L,4, x ≤ 0,

πl
r,−(uL,z), if (x, t) ∈ ∆L,4, x = ηL,z(t), for some z > 0

v[L, A, fl](x, t), if (x, t) ∈ ∆[L, A, fl],

A, if (x, t) ∈ ∆L,2,

B, if (x, t) ∈ ∆L,3.

(5.111)

where v[L, A, fl] denotes the function defined in (3.42), with f = fl.

By construction, because of (1.4), and relying on the analysis in 3.5, it follows that in both
Cases 1, 2, the function uL(x, t):

- is locally Lipschitz continuous on
(
∆L \∆[L, A, fl]

)
∩
(
(R \ {0})× ]0, T [

)
, and it is continuous

on the boundary ∂∆[L, A, fl] \
(
{0}× ]0, T [

)
;

- is a classical solution of ut + fl(u)x = 0 on
(
∆L \ ∆[L, A, fl]

)
∩
(
] − ∞, 0[× ]0, T [

)
, and of

ut + fr(u)x = 0 on ∆L ∩
(
]0,+∞[× ]0, T [

)
;

- is an entropy weak solution of ut + fl(u)x = 0 on ∆[L, A, fl];
- satisfies the interface entropy condition (2.13) at any point (0, t), t ≤ τ+(L).

Therefore, by Definition 2.2, we deduce that uL is an AB-entropy solution of (1.1) on ∆L.
Next, consider (for both Cases 1, 2) the function uR : ΓR → R defined by setting for every

(x, t) ∈ ΓR :

uR(x, t) =


A, if (x, t) ∈ ΓR,1,

B, if (x, t) ∈ ΓR,2,

u[R, A, fr](x, t), if (x, t) ∈ Γ[R, B, fr],

(f ′
r)

−1
(
R−x
T−t

)
, if (x, t) ∈ ΓR,3,

(5.112)

where u[R, A, fr] denotes the function defined in (3.35), with f = fr. By construction and relying
on the analysis in § 3.4, we deduce as above that uR provides an AB-entropy solution of (1.1)
on ΓR. Moreover, because of (4.27), (4.28), (4.29), we have

uR(x, T ) = ω(x) ∀ x ∈ ]L̃,R[ . (5.113)
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5.4.5. Construction of AB-entropy solution on whole R×[0, T ]. Observing that, because of (5.102),
(5.104), we have ∆L ∩ {x = 0} = IL, ΓR ∩ {x = 0} = IR, we define the initial datum on IL ∪ IR as

u0(x) =

{
uL(x, 0) if x ∈ IL,
uR(x, 0) if x ∈ IR.

(5.114)

where, in Case 1,

uL(x, 0) =

{
(f ′

l )
−1
(
L−x
T

)
, if x ∈ IL, x ≤ 0,

πl
r,−(uL,z), if x ∈ IL, x = ηL,z(0), for some z > 0,

(5.115)

while, in Case 2,

uL(x, 0) =


(f ′

l )
−1
(
L−x
T

)
, if x ∈ ]ϑL,−(0), L− T · f ′

l (v[L, A, fl])[,

A, if x ∈ ]L− T · f ′
l (v[L, A, fl]), 0[ ,

B, if x ∈ ]0, ηL, x(A,B)(0)[,

πl
r,−(uL,z), if x ∈ [ηL, x(A,B)(0), ϑL,+(0)[ , x = ηL,z(t), for some z > 0,

(5.116)

and, in both Cases 1, 2,

uR(x, 0) = (f ′
r)

−1
(
R−x
T

)
, if x ∈ IR. (5.117)

In view of the observations in § 5.4.1-5.4.2, the construction of the AB-entropy solution on
(
R ×

[0, T ]
)
\
(
∆L ∪ ΓR

)
, and the corresponding definition of the initial datum on R \

(
IL ∪ IR

)
, proceed

as follows:

- For any y ∈ ] − ∞, L[∪ ]L, L̃[∪ ]R,+∞[ , we trace the lines ϑy,± starting at (y, T ) until they
reach the x-axis at the point ϕ±(y)

.
= ϑy,±(0). Since conditions (4.10), (4.11) of Theorem 4.3

is equivalent to the monotonicity of the map ϕ(y)
.
= ϑy(0) (see [6, Lemma 4.4]), it follows that

ϑy,± never intersect each other in the region R× ]0, T [ . Then, if y ∈ ] − ∞, L[∪ ]R,+∞[ , we

define a function u(x, t) that is equal to ω(y±) along the segment ϑy,±. Instead if y ∈ ]L, L̃[ we
define u to be equal to ω(y±) along the segment ϑy,±(t), τ±(y) ≤ t ≤ T , and to be equal to

πl
r,−(ω(y±)) along the segment ϑy,±(t), 0 ≤ t ≤ τ±(y).

- For any z ∈ In
L ∪ In

R , we trace the line ηyn,z, yn ∈ ] − ∞, L[∪ ]R,+∞[ . By construction the
lines ηyn,z never cross each other in the region R× ]0, T [ . Then, if yn ∈ ] − ∞, L[ , we define
u(x, t) to be equal to (f ′

l )
−1((y−z)/T ) = uy,z along the segment ηyn,z, instead if yn ∈ ]R,+∞[ ,

we define u(x, t) to be equal to (f ′
r)

−1((y − z)/T ) = uy,z along the segment ηyn,z.

- For any z ∈ Ĩn
L , we trace the polygonal line ηyn,z, yn ∈ ]L, L̃[ . By construction the lines

ηyn,z never cross each other in the region R× ]0, T [ . Then, we define u(x, t) to be equal to
(f ′

l )
−1((yn − x)/(T − t)) = uy,z along the segment ηyn,z, τ(y, z) < t ≤ T , and to be equal to

πl
r,−(uy,z) along the segment ηyn,z, 0 ≤ t ≤ τ(y, z).
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Therefore, we define the the function

u(x, t)
.
=



ω(y±), if x = ϑy,±(t) for some y ∈ ]−∞, L[∪ ]R,+∞[ ,

ω(y±), if x = ϑy,±(t) < 0 for some y ∈ ]L, L̃[ ,

πl
r,−(ω(y±)), if x = ϑy,±(t) > 0 for some y ∈ ]L, L̃[ ,

(f ′
l )

−1
(yn−z

T

)
, if x = ηyn,z(t) for some z ∈ In

L ,

(f ′
r)

−1
(yn−z

T

)
, if x = ηyn,z(t) for some z ∈ In

R ,

(f ′
l )

−1
(
L−x
T−t

)
, if x = ηyn,z(t) < 0 for some z ∈ Ĩn

L ,

πl
r,−(uyn,z), if x = ηyn,z(t) > 0 for some z ∈ Ĩn

L ,

uL(x, t), if (t, x) ∈ ∆L,

uR(x, t), if (t, x) ∈ ΓR,

(5.118)

and the initial datum

u0(x)
.
=



ω(y±), if x ∈ IW , x = θy,±(0) for some y ∈ ]−∞, L[∪ ]R,+∞[ ,

πl
r,−(ω(y±)), if x ∈ IW , x = θy,±(0), y ∈ ]L, L̃[ ,

(f ′
l )

−1
(yn−x

T

)
, if x ∈ In

L ,

(f ′
r)

−1
(yn−x

T

)
, if x ∈ In

R ,

πl
r,−(uyn,x), if x ∈ Ĩn

L ,

uL(x, 0), if x ∈ IL,
uR(x, 0), if x ∈ IR.

(5.119)

Notice that u0 is not defined on the countable set IRa which is of measure zero, and clearly
u0 ∈ L∞(R). By construction, the function u(x, t):

- is locally Lipschitz continuous on
(
R× ]0, T [

)
\
(
∆L ∪ ΓR ∪ ({0}× ]0, T [ )

)
, and it is continuous

on the boundary ∂
(
∆L ∪ ΓR

)
\
(
{0}× ]0, T [

)
;

- is a classical solution of ut + fl(u)x = 0 on
(
]−∞, 0[× ]0, T [

)
\ ∆L ∪ ΓR ;

- is a classical solution of ut + fr(u)x = 0 on
(
]0,+∞[× ]0, T [

)
\ ∆L ∪ ΓR ;

- is an AB-entropy solution of (1.1) on ∆L ∪ ΓR;
- satisfies the interface entropy condition (2.13) at any point (0, t), t ∈ ]0, T [ .

Thus, by Definition 2.2, it follows that the function u(x, t) in (5.118) provides an AB-entropy
solution to (1.1) on R× [0, T ]. Moreover, because of (5.113), (5.118), (5.119), we have

u(x, 0) = u0(x), u(x, T ) = ω(x) for a.e. x ∈ R . (5.120)

This proves that

ω = S [AB]+
T u0, (5.121)

and thus ω ∈ AAB(T ), which completes the proof of the implication (3) ⇒ (1) of Theorem 4.17 in
the case of a non critical connection.

5.5. Part 2.b - (3) ⇒ (2) for non critical connections. As a byproduct of the construction
described in § 5.4, we show in this Subsection that, if ω satisfies (5.89), (5.90), then ω verifies

condition (2) of Theorem 4.17, i.e. ω is a fixed point of the map ω 7→ S [AB ]+
T ◦ S [AB]−

T ω. We shall
assume that ω satisfies the pointwise constraints of Case 1 discussed in Remark 4.5, the other
cases being simmetric, or entirely similar, or simpler.
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In order to verify that S [AB ]+
T ◦ S [AB]−

T ω = ω, because of (5.121) it is sufficient to prove that,
letting u0 be the function defined by (5.115), (5.117), (5.119), it holds true

u0 = S [AB]−
T ω . (5.122)

In turn, recalling the definition (2.28) of AB backward solution operator, the equality (5.122) is
equivalent to the equality

u0(−x) = S [BA ]+
T

(
ω(− · )

)
(x) x ∈ R, (5.123)

where

(x, t) 7→ S [BA ]+
t

(
ω(− · )

)
(x) (5.124)

denotes the unique BA-entropy solution of{
vt + f(x, v)x = 0 x ∈ R, t ≥ 0,

v(x, 0) = ω(−x) x ∈ R,
(5.125)

f(x, v) being the symmetric flux in (2.26).
Towards a proof of (5.123), we will determine the solution of (5.125) on R × [0, T ] relying on

the construction in § 5.4 and on the properties of the left forward rarefaction-shock wave pattern
derived in § 3.5. Observe that the function u(x, t) defined by (5.118) for Case 1, with uL, uR
defined by (5.110), (5.112), respectively, is:

- locally Lipschitz continuous in the region

L
.
=
(
R× ]0, T [

)
\
(
({0}× ]0, T [ ) ∪ Γ[R, B, fr]

)
where Γ[R, B, fr], is defined as in § 3.4, with f = fr (the region L is the complement of the
pink region and of the axis {x = 0} in Figure 6);

- a classical solution of ut + fl(u)x = 0 on ]−∞, 0[× ]0, T [ ;

- a classical solution of ut + fr(u)x = 0 on
(
]0,+∞[× ]0, T [

)
\ Γ[R, B, fr] ;

- satisfies the interface entropy condition (2.13) at any point (0, t), t ∈ ]0, T [ .

Therefore, if we define the transformation (x, t) 7→ α(x, t)
.
= (−x, T − t), the function

v(x, t)
.
= u(−x, T − t), (x, t) ∈ α(L ) \ ({0}× ]0, T [ ), (5.126)

is:

- an entropy weak solution of vt + fr(v)x = 0 in the open set α(L ) ∩ {x < 0};
- an entropy weak solution of vt + fl(v)x = 0 in the open set α(L ) ∩ {x > 0}.

On the other hand, letting ∆[y[R, B, fr], B, fr] denote the region defined in (3.40) with L =
y[R, B, fr], A = B, and f = fr. one can directly verify that

α
(
Γ[R, B, fr]

)
= ∆[y[R, B, fr], B, fr] ⊂ ]− inf, 0[× ]0, T [ . (5.127)

Notice that (R × [0, T ]) \ ({0}× ]0, T [ ) is the disjoint union of α(L ) \ ({0}× ]0, T [ ) and of
α
(
Γ[R, B, fr]

)
. Then, letting v[y[R, B, fr], B, fr](x, t) denote the function defined in (3.42), with

L = y[R, B, fr], A = B, and f = fr, consider the function v : R× [0, T ] → R defined by setting

v(x, t)
.
=

{
u(−x, T − t), if (x, t) ∈ α(L ) \ ({0}× ]0, T [ ),

v[y[R, B, fr], B, fr](x, t), if (x, t) ∈ ∆[y[R, B, fr], B, fr] .
(5.128)

By construction and because of the analysis in § 3.5, the function v(x, t) :

- is locally Lipschitz continuous on
(
R× ]0, T [

)
\
(
∆[y[R, B, fr], B, fr] ∪ ({0}× ]0, T [ )

)
, and it

is continuous on the boundary ∂
(
∆[y[R, B, fr], B, fr]

)
\
(
{0}× ]0, T [

)
;

- is a classical solution of vt + fr(v)x = 0 on
(
]−∞, 0[× ]0, T [

)
\ ∆[y[R, B, fr], B, fr] ;
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- is an entropy weak solution of vt + fr(v)x = 0 on ∆[y[R, B, fr], B, fr];

- is a classical solution of vt + fl(v)x = 0 on ]0,+∞[× ]0, T [ ;

- satisfies the BA interface entropy condition, namely, setting vl(t)
.
= v(0−, t), vr(t)

.
= v(0+, t),

and considering the function

IBA(vl, vr)
·
= sgn(vr −A )

(
fl(vr)− fl(A )

)
− sgn(vl −B )

(
fr(vl)− fr(B )

)
,

it holds true

fr(vl(t)) = fl(vr(t)), IBA
(
vl(t), vr(t)

)
≤ 0, for a.e. t ∈ ]0, T [ . (5.129)

Notice also that, because of (5.120), (5.127), (5.128), it follows

v(x, 0) = u(−x, T ) = ω(−x) for a.e. x ∈ R . (5.130)

Therefore, by Definition 2.2, we deduce that the function v(x, t) in (5.128) provides the BA-entropy
solution to (5.125) on R× [0, T ], and hence we have

v(x, t) = S [BA ]+
t

(
ω(− · )

)
(x) x ∈ R, t ∈ [0, T ] . (5.131)

Moreover, by (5.120), (5.128), it holds true

S [BA ]+
T

(
ω(− · )

)
(x) = u(−x, 0) = u0(−x) x ∈ R ,

which proves (5.123), and thus concludes the proof of the implication (3) ⇒ (2) of Theorem 4.17
in the case of a non critical connection.

5.6. Part 3.a - (1) ⇔ (2) for critical connections. In this Subsection we rely on the fact that the
equivalence of conditions (1), (2) of Theorem 4.17 holds for connections which are non critical (by
the proofs in § 5.2, 5.3, 5.4, 5.5), and we will show that it remains true also for critical connections.
To fix the ideas, throughout this and the following subsections we shall assume that the connection
(A,B) is critical at the left, i.e. that

A = θl , (5.132)

the case where one assumes that B = θr being symmetric. Notice that the assumption A = θl
does not prevent the connection to be critical also at the right, i.e. B = θr: it might or might not
happen. Notice that there exists a sequence {An, Bn}n of non critical connections that satisfy

lim
n
(An, Bn) = (A,B) . (5.133)

We will show only that (1) ⇒ (2), since the reverse implication is clear (see § 5.1). Then, given

ω ∈ A[AB](T ) with

ω = S [AB]+
T u0, u0 ∈ L∞(R) , (5.134)

set
ωn

.
= S [AnBn]+

T u0 . (5.135)

Hence, since ωn ∈ A[AnBn](T ), by the validity of Theorem 4.17 in the non critical case it holds

ωn = S [AnBn]+
T ◦ S [AnBn]−

T ωn ∀ n . (5.136)

Notice that by definition (2.28) it follows that the L1
loc stability property (iv) of Theorem 2.8 holds

also for the AB-backward solution operator S [AB]−
T , so that we have

S [AnBn]−
T ωn → S [AB]−

T ω in L1
loc(R) . (5.137)

Hence, we deduce that

ω
[Thm 2.8-(iv)]

= lim
n

ωn
[(5.136)]

= lim
n

S [AnBn]+
T ◦ S [AnBn]−

T ωn
[Thm 2.8-(iv) and (5.137)]

= S [AB]+
T ◦ S [AB]−

T ω ,

which proves (1) ⇒ (2). □
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5.7. Part 3.b - (1) ⇒ (3) for critical connections. In this Subsection we rely on the fact that
the implication (1) ⇒ (3) of Theorem 4.17 holds for connections which are non critical, and in
particular we know (by § 5.2, 5.3, 5.4) that Theorems 4.3, 4.11, 4.14, are verified for non critical
connections. We will prove that, for a critical connection (A,B), any element ω ∈ AAB(T ) satisfies
the conditions of Theorem 4.9, or of Theorem 4.11, or of Theorem 4.14. We divide the proof in
nine steps.

Step 1. Let {An, Bn}n be a sequence of non critical connections as in Part 3.a. Given ω ∈ AAB(T )
as in (5.134), and ωn, as in (5.135), set

u(x, t)
.
= S [AB]+

t u0(x), t ≥ 0, x ∈ R , (5.138)

and consider the sequence un of AnBn-entropy weak solutions defined by

un(x, t)
.
= S [AnBn]+

t u0(x), t ≥ 0, x ∈ R . (5.139)

Let un,l, un,r denote, respectively, the left and right traces of un at x = 0 defined as in (2.7), and
let ul, ur be the left and right traces of u at x = 0 (whose existence is derived in Steps 5, 8). Then,
by Theorem 2.8 and Corollary 2.11, and because of (5.133), it follows

un(·, t) → u(·, t) in L1
loc(R) ∀ t ∈ [0, T ] , (5.140)

fl(un,l) ⇀ fl(ul) in L1([0, T ]) , (5.141)

fr(un,r) ⇀ fr(ur) in L1([0, T ]) , (5.142)

and hence, in particular, we have

ωn → ω in L1
loc(R) . (5.143)

In order to prove that ω satisfies condition (3) of Theorem 4.17, letting

L
.
= L[ω, fl] , R

.
= R[ω, fr], (5.144)

be quantities defined as in (4.2), we need to show that:

- If L = 0, R > 0 or viceversa, then ω satisfies the conditions of Theorem 4.11;
- If L = 0, R = 0, then ω satisfies the conditions of Theorem 4.14.
- If L < 0, R > 0, then ω satisfies the conditions of Theorem 4.9.

We shall first address the two cases L = 0,R > 0, and L = 0, R = 0 (the analysis of the case
L < R = 0 being entirely similar to the one of L = 0 < R). Next, we shall analyze the third case
L < 0 < R. Throughout the subsection we let Ln,. Rn, denote the objects defined as in (5.144) for
ωn:

Ln
.
= L[ωn, fl] , Rn

.
= R[ωn, fr] . (5.145)

Observe that by Remark 2.10, and because of (5.143), the functions ωn have a uniform bound

∥ωn∥L∞ ≤ C ∀ n, (5.146)

for constant C > 0. Hence, by definition (4.2), the constant |Ln| are bounded by T ·sup|u|≤C |f ′
l (u)|,

and the constant Rn are bounded by T · sup|u|≤C |f ′
r(u)|. Thus, up to a subsequence, we can define

the limits

L̂
.
= lim

n→∞
Ln , R̂

.
= lim

n→∞
Rn . (5.147)

We claim that

L̂ ≤ L, R̂ ≥ R . (5.148)

By definition (4.2), (5.144) of R, in order to prove the second inequality in (5.148), it is sufficient
to show that

R̂− T · f ′
r(ω(R̂+)) ≥ 0 . (5.149)
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Observe that by Definition 2.2 un and u are entropy weak solutions of

ut + fr(u)x = 0 x > 0, t ∈ [0, T ], (5.150)

that, because of (5.140), (5.142), satisfy the assumptions (C.2), (C.3) of Lemma C.1 in Appendix C.
Thus, applying (C.4), and recalling (5.134), (5.135), we find

ω(R̂+) ≤ lim inf
n→∞

y→R̂, y>0

ωn(y+) . (5.151)

Since (5.147) and the liminf property imply

lim inf
n→∞

y→R̂, y>0

ωn(y+) ≤ lim inf
n

ωn(Rn+) , (5.152)

we derive from (5.151) that

ω(R̂+) ≤ lim inf
n

ωn(Rn+) . (5.153)

On the other hand, by definition (4.2), (5.145) of Rn, it holds

ωn(Rn+) ≤ (f ′
r)

−1

(
Rn

T

)
. (5.154)

Hence, from (5.153), (5.154) and (5.147) we deduce

ω(R̂+) ≤ lim
n→∞

(f ′
r)

−1

(
Rn

T

)
= (f ′

r)
−1

(
R̂

T

)
, (5.155)

which yields (5.149). This completes the proof of the second inequality in (5.148), while the proof
of the first one is entirely similar.

Relying on (5.148), we will show in Steps 2-7 the existence of ω(0±), and that ω satisfies the
conditions (i)’, (ii)’ of Theorem 4.11 in the case L = 0, R > 0. Namely, in Step 2 we prove (4.54),
in Step 3 we prove (4.56), in Step 4 we prove (4.57), in Step 5 we prove (4.53) and the existence
of ω(0±), while in Step 6 we prove (4.55). Finally, in Step 7 we prove (4.52), concluding the proof
of conditions (i)’, (ii)’ of Theorem 4.11. The proof of the existence of ω(0±), and that ω satisfies
conditions (i), (ii) of Theorem 4.11 in the case L < 0, R = 0 is entirely similar to the case L = 0,
R > 0, although the symmetry is broken (because of assumption (5.132)), and it is briefly discussed
in Step 8. Next, in Step 9 we will show that ω satisfies conditions (i), (ii) of Theorem 4.14 in
the case L = 0, R = 0. Finally, in Steps 10-13 we will show that ω satisfies conditions (i), (ii) of
Theorem 4.9.

Step 2.
(
L = 0, R > 0, proof of (4.54): ω(x) ≥ B in ]0,R[

)
.

Applying (4.14), (4.15) of Theorem 4.3-(ii) or (4.54) of Theorem 4.11-(ii)’ for ωn, in the case of the
non critical connections (An, Bn), we deduce that

ωn(x) ≥ Bn ∀ x ∈ ]0,Rn[ , ∀ n . (5.156)

On the other hand, by virtue of (5.143), (5.148), we can extract a subsequence of {ωn} that
converges to ω for almost every x ∈ ]0,R[. Then, taking the limit in (5.156), relying on (5.133), and
because of the normalization of ω as a right continuous function (see Remark 4.2), we derive (4.54).

Step 3.
(
L = 0, R > 0, proof of (4.56): R ∈ ]0, T · f ′

r(B)[ ⇒ ω(R+) ≤ u[R, B, fr] ≤ ω(R−)
)
.

Observe first that, in the case R̂ = R, by the continuity of the function u[R, B, fr] with respect to
R, B (see § 3.1), and because of (5.133), we find

lim
n→∞

u[Rn, Bn, fr] = u[R, B, fr] . (5.157)
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On the other hand, if R = R̂ ∈ ]0, T · f ′
r(B)[ , we may assume that Rn ∈ ]0, T · f ′

r(Bn)[ , for n
sufficiently large. Hence, applying either (4.13) of Theorem 4.3-(ii), or (4.56) of Theorem 4.11-(ii)’
for the corresponding ωn in the case of the non critical connections (An, Bn), we deduce

lim inf
n→∞

ωn(Rn+) ≤ lim
n→∞

u[Rn, Bn, fr] . (5.158)

Then, combining (5.157), (5.158), with (5.153), and recalling (3.8) with f = fr, we derive

ω(R+) ≤ u[R, B, fr] < B , (5.159)

which, together with (4.54) (established in Step 2), proves (4.56) in the case R̂ = R.

Thus, because of (5.148), it remains to analyze the case R̂ > R. Let ϑ−
n denote the minimal

backward characteristic for un starting from (Rn, T ) and lying in the domain x > 0. Recalling the
definition (4.2), (5.145) of Rn this is a map ϑ−

n : ]τn, T ] → ]0,+∞[ , τn ≥ 0, with the property
that limt→τn ϑ

−
n (t) = 0. By possibly taking a subsequence, we may assume that {τn}n converges

to some τ ≥ 0. Observe that ϑ−
n are genuine characteristics which, up to a subsequence, converge

to a genuine characteristic ϑ− : ]τ , T ] → ]0,+∞[ for u, starting from (ϑ−(T ), T ) = (R̂, T ) (see

proof of Lemma C.1 in Appendix C). The trajectory of ϑ− is a segment with slope f ′
r(u(R̂−, T )) =

f ′
r(ω(R̂−)). Therefore, if τ > 0, it follows that f ′

r(ω(R̂−)) > R̂/T , which by definition of R implies

R ≥ R̂, contradicting the assumption R̂ > R. Hence, it must be τ = 0, limt→0 ϑ
−(t) = 0, and the

trajectory of ϑ− is a segment joining the point (R̂, T ) with the origin (0, 0). Since R < R̂ and because
backward characteristics cannot intersect in the domain x > 0, t > 0, this in turn implies that the
slope f ′

r(ω(R+)) of the maximal backward characteristic for u starting at (R, T ) must be greater or
equal than R/T . On the other hand, by definition (4.2), (5.144) of R, we have f ′

r(ω(R+)) ≤ R/T ,
and hence it follows that

f ′
r(ω(R+)) = R/T. (5.160)

Observe now that, applying Theorem 4.3-(ii) or Theorem 4.11-(ii)’ for ωn, in the case of the non

critical connections (An, Bn), we know that (5.156) is verified. Moreover, because of R < R̂ =
limn Rn we may assume that R < Rn for n sufficiently large. Hence, by virtue of (5.143), we can
extract a subsequnce of {ωn} that converges to ω for almost every x ∈ ]0,R[, and thus we derive
from (5.133), (5.156) that ω(R+) ≥ B. This inequality, together with (5.160), yields

R ≥ T · f ′
r(B) , (5.161)

proving the implication (4.56) also in the case R̂ > R.

Step 4.
(
L = 0, R > 0, proof of (4.57): R > T · f ′

r(B) ⇒ ω(R+) ≤ ω(R−)
)
.

By virtue of (5.133), (5.148), we may assume that

Rn > T · f ′
r(Bn) ∀ n . (5.162)

Then, applying (4.17) of Theorem 4.3-(ii) or (4.57) of Theorem 4.11-(ii)’ for ωn and the non critical
connections (An, Bn), we derive

ωn(Rn−) ≥ ωn(Rn+) ∀ n . (5.163)

On the other hand, if R̂ = R, invoking (C.4), (C.5) of Lemma C.1 in Appendix C, we deduce as in
Step 3 that

ω(R−) ≥ lim sup
n

ωn(Rn−) , ω(R+) ≤ lim inf
n

ωn(Rn+) . (5.164)

Then, (5.163)-(5.164) together yield ω(R−) ≥ ω(R+), proving (4.57) in the case R̂ = R. Instead, if

R̂ > R, we can assume that Rn > R for all n sufficiently large. Then, observe that applying (4.12),
(4.14), (4.15), of Theorem 4.3, or (4.53) of Theorem 4.11, for ωn and the non critical connections
(An, Bn), we deduce

ωn(R−) ≥ ωn(R+) ∀ n . (5.165)
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Hence, with the same arguments of above we find that

ω(R−) ≥ lim sup
n

ωn(R−) , ω(R+) ≤ lim inf
n

ωn(R+) , (5.166)

which, together with (5.165), yields ω(R−) ≥ ω(R+), completing the proof of (4.57).

Step 5.
(
L = 0, R > 0, proof of (4.53): D+ω(x) ≤ h[ω, fl, fr](x) in ]0,R[ , and of the existence

of ω(0±)
)
.

Applying Theorem 4.3-(i) or Theorem 4.11-(i)’ for ωn in the case of the non critical connections
(An, Bn), we know that

D+ωn(x) ≤ h[ωn, fl, fr](x) ∀ x ∈ ]0,Rn[ . (5.167)

As shown in [6, Lemma 4.4], the inequality (5.167) is equivalent to the fact that the maps

ϕn(x)
.
= −τn(x) · f ′

l ◦ πr
l,+(ωn(x)), τn(x)

.
= T − x

f ′
r(ωn(x))

, x ∈ ]0,Rn[ , (5.168)

are, respectively, nondecreasing and decreasing. Since by (5.148) it holds limn Rn ≥ R, relying
on (5.143) we deduce that, up to a subsequence, {ωn}n converges to ω for almost every x ∈ ]0,R[ .
In turn, this implies that the sequences {ϕn}n, {τn}n, converges for almost every x ∈ ]0,R[ to the
maps

ϕ(x)
.
= −τ(x) · f ′

l ◦ πr
l,+(ω(x)), τ(x)

.
= T − x

f ′
r(ω(x))

, x ∈ ]0,R[ . (5.169)

Then, the monotonicity of each map ϕn(x) and τn(x), imply the same monotonicity of the maps
ϕ(x), τ(x) defined in (5.169). Namely, ϕ is a nondecreasing map and τ is a decreasing map. But
this is equivalent to the inequality (4.53), relying again on [6, Lemma 4.4]. Next, we observe that
the monotonicity of the maps x 7→ ϕ(x), x 7→ τ(x), readily implies the existence of the one-sided
limit ω(0+). In fact, since ϕ and τ are monotone, it follows that the limits ϕ(0+), τ(0+) do exist.
On the other hand, observing that the map ω 7→ f ′

l ◦ πr
l,+(ω), ω ≥ B, is invertible, by (5.169) we

can write

ω(x) =
[
f ′
l ◦ πr

l,+

]−1
(
− ϕ(x)

τ(x)

)
∀ x ∈ ]0,R[ .

Therefore, since the limit for x → 0+ of the right hand side exists, it follows that the limit ω(0+)
exists as well. Finally, concerning the existence of ω(0−), given any sequence {xn}n ⊂ ]−∞, 0[ of
points of continuity for ω such that xn → 0, consider the backward genuine characteristics ϑn for u
starting at (xn, T ). Because of the assumption L = 0, and by definition (4.2), (5.144) of L, it follows
that ϑn never cross the interface x = 0. Observe that {ϑn}n is a sequence of Lipschitz continuous
functions with a uniform Lipschitz constant, defined on [0, T ] and lying in the semiplane {x < 0}.
Hence, by Ascoli-Arzelà Theorem, we can assume that, up to a subsequence, {ϑn}n converges
uniformly to some Lipschitz continuous function ϑ : [0, T ] → ]−∞, 0[ . Therefore, with the same
arguments of the proof of Lemma C.1 in Appendix C, since uniform limit of genuine characteristics
is a genuine characteristic, and because genuine characteristics cannot intersect in {x < 0}, we
deduce that ϑ is the minimal backward characteristic for u in {x ≤ 0} starting at (0, T ). Moreover,
ϑ has slope ϑ′ = limn ϑ

′
n = limn f

′
l (ω(xn)). In turn, this implies that limn ω(xn) = (f ′

l )
−1(θ′). Since

this limit is independent on the choice of xn we deduce that the one-sided limit ω(0−) exists and
ω(0−) = (f ′

l )
−1(θ′).

Step 6.
(
L = 0, R > 0, proof of (4.55): ω(0−) ≥ πr

l,+(ω(0+)
)
.

Let x ∈ ]0,R[ be a point of continuity for ω, and consider the backward genuine characteristics
for u starting at (x, T ), defined by

ϑx(t)
.
= x− (T − t) · f ′

r((ω(x)) t ∈ ]τ(x), T ] , (5.170)
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with

τ(x)
.
= T − x

f ′
r(ω(x))

, (5.171)

so that one has limt→τ(x) ϑx(t) = 0. Observe that the inequality (4.53) (established at Step 3)
implies that the function τ(x) is decreasing. On the other hand, because of (5.146), the slopes of
ϑx are uniformly bounded by sup|u|≤C |f ′

r(u)|. Therefore, letting {xn}n ⊂ ]0,R[ be a sequence of

points of continuity for ω, such that xn → 0, it follows that

lim
n

τ(xn) = T . (5.172)

Notice that, since ϑxn are genuine characteristics, we have

ω(xn) = ur(τ(xn)) ∀ n . (5.173)

Since, by definition (4.1) one has πr
l,+(u) ≥ θl for any u, we may assume that, up to a subsequence,

either
πr
l,+(ω(xn)) = θl ∀ n , (5.174)

or
πr
l,+(ω(xn)) > θl ∀ n . (5.175)

In the first case (5.174) we deduce that

πr
l,+(ω(0+)) = lim

n
πr
l,+(ω(xn)) = θl , (5.176)

which yields (4.55) observing that, by definition (4.2), (5.144), L = 0 implies f ′
l (ω(0−)) ≥ 0, which

is equivalent to ω(0−) ≥ θl. In the second case (5.175) observe that, since the map τ in (5.171) is
decreasing, and because xn are points of continuity for ω, then τ(xn) are points of continuity for
ur. Hence, by the interface entropy condition (2.13) it follows that τ(xn) are points of continuity
also for ul. Then, we can trace the backward genuine characteristics for u starting at (0, τ(xn)),
that, because of (5.173), are defined by

ϑn(t)
.
= (t− τ(xn)) · f ′

l ◦ πr
l,+(ω(xn)), t ∈ [0, τ(xn)] . (5.177)

Notice that {ϑn}n is a sequence of Lipschitz continuous functions with a uniform Lipschitz con-
stant, defined on uniformly bounded intervals [0, τ(xn)]. Hence, by Ascoli-Arzelà Theorem, and
because of (5.172), we can assume that, up to a subsequence, {ϑn}n converges uniformly to some
Lipschitz continuous function ϑ : [0, T ] → [0,+∞[ . Therefore, with the same arguments of
the proof of Lemma C.1 in Appendix C, since uniform limit of genuine characteristics is a gen-
uine characteristic we deduce that ϑ is a backward genuine characteristic starting at (0, T ), that
has slope f ′

l ◦ πr
l,+(ω(0+)). On the other hand the minimal backward characteristic starting at

(0, T ) has slope f ′
l (ω(0−)). Since the slope of the minimal backward characteristic is larger than

the slope of any other backward characteristic passing through the same point, it follows that
f ′
l (ω(0−)) ≥ f ′

l ◦ πr
l,+(ω(0+)), which implies (4.55). This concludes the proof of this step.

Step 7.
(
L = 0, R > 0, proof of (4.52): D+ω(x) ≤ 1

T ·f ′′
l (ω(x))

in ]−∞, 0[, and D+ω(x) ≤ 1
T ·f ′′

r (ω(x))

in ]R,+∞[
)
.

Observe that, by definition (4.2), (5.144) of L,R, and since L = 0, backward characteristics starting
at points (x, T ), with x ∈]−∞, 0[∪ ]R,+∞[ do no intersect the interface x = 0. Hence, we recover
the Olěınik estimates (4.52) as a classical property of solutions to conservation laws with strictly
convex flux, which follows from the fact that genuine characteristics never intersect at positive
times. This completes the proof of the existence of ω(0±) and that ω satisfies conditions (i)’-(ii)’
of Theorem 4.11.

Step 8.
(
L < 0, R = 0, proof of the existence of ω(0±), and of conditions (i)-(ii) of Theorem 4.11

)
.

The Olěınik-type inequalities (4.46), (4.47), and the existence of ω(0±) can be established with
the same arguments of Steps 5, 7. The proofs of (4.48), (4.49), are entirely similar to the proofs
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of (4.54), (4.55), in Steps 2 and 6, respectively. Since A = θl, and hence f ′
l (A) = 0, the implica-

tion (4.50) is trivially verified. Finally, with the same arguments of the proof of (4.57) in Step 4
one can recover the inequality ω(L−) ≥ ω(L+), thus proving the implication (4.51). Therefore
the proof of the existence of ω(0±) and that ω satisfies the conditions (i)-(ii) of Theorem 4.11 is
completed.

Step 9.
(
L = 0, R = 0, proof of (4.62): D+ω(x) ≤ 1

T ·f ′′
l (ω(x))

in ]−∞, 0[, andD+ω(x) ≤ 1
T ·f ′′

r (ω(x)) in

]0,+∞[ , of the existence of ω(0±): ω(0−) ≥ πr
l,+(ω(0+), and of (4.63): ω(0−) ≥ A, ω(0+) ≤ B

)
.

Since L = 0, R = 0, by definition (4.2) it follows that backward characteristics starting at (x, T ),
x ∈ ]−∞, 0[∪ ]0,+∞[, never intersect the interface x = 0. Thus, as observed in Step 7, the Olěınik
estimates in (4.62) are a classical property of solutions. Moreover, with the same arguments of
Step 5 one deduces the existence of ω(0±). Furhter, the inequality ω(0−) ≥ πr

l,+(ω(0+) can be

established with the same proof of (4.55) in Step 6. Finally, the inequality ω(0+) ≤ B is obtained
with the same arguments of the proof of (4.56) in Step 3, observing that by Remark 3.2 we have
u[0, B, fr] = u[0+, B, fr] = B. The other inequality ω(0−) ≥ A can derived in entirely similar
way. Therefore the proof of the existence of ω(0±) and that ω satisfies the conditions (i)-(ii) of
Theorem 4.14 is completed.

Step 10.
(
L < 0 < R, proof of condition (i) of Theorem 4.9 and of the existence of ω(0−)

)
.

The Olěınik inequalities (4.34) are a classical property of solutions to conservation laws with strictly
convex flux as observed in Step 7. The proof of the Olěınik type inequality (4.35) can be recovered
with the same limiting procedure of Step 5, passing to the limit the monotonicity of the maps

ϕn(x)
.
= −τn(x) · f ′

r ◦ πl
r,−(ωn(x)), τn(x)

.
= T − x

f ′
l (ωn(x))

, x ∈ ]Ln, 0[ , (5.178)

ensured by the Olěınik type inequalities satisfied by ωn ∈ A[AnBn](T ), and relying on (5.143),
(5.148). This also shows that the one-sided limit ω(0−) exists, using the monotonicity of the
limiting maps ϕ(x) = limn ϕn(x), τ(x) = limn τn(x), x ∈ ]L, 0[ , as in Step 5.

Step 11.
(
L < 0 < R, proof of (4.37): ω(L−) ≥ ω(L+), ω(0−) = θl

)
.

The proof of the first constraint in (4.37) can be obtained with the same procedure of Step 4 (with
L in place of R). Concerning the second constraint in (4.37), notice first that we have ω(0−) ≤ θl,
since otherwise we may consider a sequence {xn}n of continuity points for ω, such that xn ↑ 0, and
for n sufficiently large the backward characteristics for u from (xn, T ) would intersect in {x < 0}
the maximal backward characteristic for u from the point (L, T ), which gives a contradiction. Next,
assume that the strict inequality ω(0−) < θl holds. Then, let x < 0 be a continuity point of ω
sufficiently close to 0 so that ω(x) < θl, and consider the time

τ(x) = T − x

f ′
l (ω(x))

at which the backward (genuine) characteristic for u from (x, T ) impacts the interface x = 0. Since
x is a continuity point for ω, by the strict monotonicity of the map τ on ]L, 0[ (derived in Step 9
as in Step 5) it follows that ul(τ(x)) = ω(x) < θl. Using also the AB-entropy conditions (2.13)
we then deduce that ur(τ(x)) = πl

r,−(ω(x)) < θr. But this implies that the maximal backward
characteristic for u from (0, τ(x)) intersects in {x > 0} the minimal backward characteristic for u
from (R, T ), which again gives a contradiction, and thus completes the proof of (4.37).

Step 12.
(
L < 0 < R, proof of (4.38): ω(x) = B in ]0,R[ , R ∈]0, T · f ′

r(B)[ , of B ̸= θr, and

of (4.39): ω(R+) ≤ u[R, B, fr] ≤ ω(R−)
)
.

Towards a proof of (4.38), first notice that the maximal backward characteristic for u from (L, T )
must intersect the interface x = 0 at a time

τ
L

.
= T − L

f ′
l (L+)

< T − R

f ′
r(R−)

. (5.179)
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In fact otherwise, we could consider a point x > L of continuity for ω sufficiently close to L, so that
τ(x) > T − R/f ′

r(R−). But then, by the analysis in Step 11, the maximal backward characteristic
for u from (0, τ(x)) would intersect in {x > 0} the minimal backward characteristic for u from (R, T ),
thus giving a contradiction. Next, observe that at any point x ∈ ]0,R[ of continuity for ω we have
ω(x) ≥ θr, since otherwise the backward characteristic for u from (x, T ) would intersect in {x > 0}
the minimal backward characteristic for u from the point (R, T ), which gives a contradiction. By
the AB-entropy conditions, and because of the strict monotonicity of the map

τ(x) = T − x

f ′
r(ω(x))

, x ∈ ]0,R[ ,

(that can be established with the same limiting procedure of Steps 5, 10), it then follows that
ω(x) ≥ B for all x ∈ ]0,R[ . Assume now that ω(x) > B for some x ∈ ]0,R[ continuity point for ω.
Observe that, because of the non crossing property of characteristics in {x > 0}, and by (5.179),
the backward characteristic for u from (x, T ) impacts the interface x = 0 at time

τ(x) ≥ T − R

f ′
r(R−)

> τ
L
. (5.180)

Then, relying on the strict monotonicity of the map τ , and using the AB-entropy conditions (2.13),
we deduce that ur(τ(x)) = ω(x) > B, ul(τ(x)) = πr

l,+(ω(x)) > θl. But, because of (5.180), this

implies that the minimal backward characteristic for u from (0, τ(x)) intersects in {x < 0} the
maximal backward characteristic for u from (L, T ) which again gives a contradiction. Hence we
have shown that ω(x) = B in ]0,R[ . By definition (4.2) of R, and because of (5.180), this implies
that R ∈ ]0, T · f ′

r(B)[ , and thus completes the proof of (4.38). This also shows that we must have
B ̸= θr. Furthermore, we can derive (4.39) with exactly the same arguments contained in the proof
of (4.56) in Step 3.

Step 13.
(
L < 0 < R, proof of (4.36): (f ′

l )
−1( x

T−τ [R,B,fr]
) ≤ ω(x) < θl in ]L, 0[

)
.

Let Ln,Rn be the constants defined at (5.145) as in (4.2) and, according with (4.4), define

L̃n
.
=
(
T − τ [Rn, Bn, fr]

)
· f ′

l (An). (5.181)

Since (5.132), (5.133) imply limn f
′
l (An) = 0, and recalling that Rn are bounded (see Step 1), it

follows that limn L̃n = 0. Thus, recalling also that the limit R̂ of a subsequence of {Rn}n satis-

fies (5.148), we may assume that Ln < L̃n < 0 < Rn for n sufficiently large. Then, applying (4.14)
or (4.16) of Theorem 4.3 for ωn in the case of the non critical connections (An, Bn), we deduce that

ωn(x) ≤ An ∀ x ∈ ]L̃n, Ln[ , ωn(L̃n±) = An . (5.182)

Therefore, by (5.181) the backward characteristic for un starting at (L̃n, T ) reaches the interface

x = 0 at time τn
.
= τ [Rn, Bn, fr]. In turn, this implies that, for every x ∈ ]Ln, L̃n[ point of

continuity for ωn, the backward characteristic starting at (x, T ) must cross the interface x = 0 at
a time smaller or equal than τn

.
= τ [Rn, Bn, fr], since otherwise it would intersect the backward

characteristic for un starting at (L̃n, T ) in the domain {x < 0}, which gives a contradiction. Thus
we have

T − x

f ′
l (ωn(x))

≤ τn , (5.183)

for every x ∈ ]Ln, L̃n[ point of continuity for ωn. On the other hand, recall that by Lemma 3.1 the
map R 7→ y[R, B, fr](T ) < 0 is strictly increasing, and hence by (3.32) the map R → τ [R, B, fr]
is strictly decreasing. Therefore, since τ [R, B, fr] depends continuously on the parameters R, B
(see § 3.4), and because of (5.148), we deduce that

lim
n

τn = τ [ R̂, B, fr] ≤ τ [R, B, fr] . (5.184)
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Hence, taking the limit in (5.183) as n → ∞, and relying again on (5.143), (5.148), we derive

T − x

f ′
l (ω(x))

≤ τ [R, B, fr] for a.e. x ∈ ]L, 0[ . (5.185)

In turn, the inequality (5.185) yields the first inequality in (4.36). On the other hand, if ω(x) ≥ θl
for some x ∈ ]L, 0[ , with the same arguments of Step 11 one deduces that the backward characteristic
for u starting from (x, T ) must intersect in {x < 0} the maximal backward characteristic for u from
the point (L, T ), which gives a contradiction. This shows that also the second inequality in (4.36) is
satisfied. Therefore, the proof of the existence of ω(0±) and that ω satisfies the conditions (i)-(ii)
of Theorem 4.9 is completed. This concludes the proof of the implication (1) ⇒ (3) for critical
connections.

5.8. Part 3.c - (3) ⇒ (1) for critical connections. In this Subsection we rely on the fact that
Theorem 4.17 holds for connections which are non critical, and in particular we know (by § 5.2,
5.3, 5.4) that Theorems 4.3, 4.11, 4.14, are verified for non critical connections. We will prove that

if ω ∈ A L,R satisfies the conditions of Theorem 4.9, 4.11, or of Theorem 4.14, then ω ∈ A[AB](T )
also for a critical connection (A,B) satisfying (5.132).

Step 1. Given an element ω of the set A L,R in (4.8), assuming that:

- if L < 0, R > 0 or viceversa, ω satisfies the conditions of Theorem 4.9;
- if L = 0, R > 0 or viceversa, ω satisfies the conditions of Theorem 4.11;
- if L = 0, R = 0, ω satisfies the conditions of Theorem 4.14;

we will construct a sequence {ωn}n of suitable perturbations of ω with the property that:

ωn ∈ A[AnBn](T ) ∀ n, ωn → ω in L1
loc(R), (5.186)

for a sequence of non critical connections {(An, Bn)}n satisfying (5.133) and

An < A, Bn > B ∀ n . (5.187)

The conditions in (5.186) in turn will imply that ω ∈ A[AB](T ). In fact, by the validity of Theo-
rem 4.17 in the non critical case, and because of (5.186), it holds

ωn = S [AnBn]+
T ◦ S [AnBn]−

T ωn ∀ n . (5.188)

On the other hand, relying on the stability property (iv) of Theorem 2.8, and thanks to (5.186),
one finds as in § 5.6 that

S
[AnBn]+
T ◦ S [AnBn]−

T ωn → S [AB]+
T ◦ S [AB]−

T ω in L1
loc(R) . (5.189)

Hence, combining together (5.186), (5.188), (5.189), we derive

ω = S [AB]+
T ◦ S [AB]−

T ω ,

which clearly yields ω ∈ A[AB](T ). Therefore, to establish the implication (3) ⇒ (1) of Theo-
rem 4.17 for non critical connections, it remains to produce a family {ωn}n that satisfies (5.186).
We shall construct such perturbations of ω ∈ A L,R as suitable “(An, Bn) admissible envelopes”
of ω.

We will first consider in Steps 2-8 the case L = 0, R ≥ 0, while the symmetric case L < 0, R = 0
is entirely similar. Next, we will consider separately the case L < 0,R > 0, in Step 9.
Step 2. We shall assume throughout Steps 2-8 that

L = L[ω, fl] = 0, R = R[ω, fr] ≥ 0 , (5.190)

and that: ω satisfies the conditions of Theorem 4.11 if R > 0; ω satisfies the conditions of Theo-
rem 4.14 if R = 0.
We will perturb ω to obtain an attainable profile ωn for the (An, Bn) connection by:

- shifting ω on the right of x = 0 by a size δ1,n, and on the left of x = 0 by a size δ2,n;
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R R+ δn1
−δn2

ω, ωn

Figure 19. The “candidate” characteristics of ω and of its admissible AnBn en-
velopes ωn (dashed).

- choosing δ1,n so to satisfy the admissibility condition (4.56) at x = R+δ1,n (if R+δ1,n > 0);
- lifting ω to the value Bn of the connection when it is below, in the interval ]0,R+ δ1,n[, so
to satisfy the admissibility condition (4.54) (if R+ δ1,n > 0);

- inserting a profile of a rarefaction in the interval ] − δ2,n, 0[, so to satisfy the Lax-type
admissibility condition (4.55) at x = 0.

Namely, consider the function

ωn(x)
.
=



ω(x− δ1,n), if x ≥ R+ δ1,n,

max{ω(R+), Bn}, if x ∈ ]R,R+ δ1,n[,

max{ω(x), Bn}, if x ∈ ]0,R[,

(f ′
l )

−1

(
x+ T · f ′

l

(
max{ω(0−), An}

)
T

)
, if x ∈ ]− δ2,n, 0[,

ω(x+ δ2,n), if x ≤ −δ2,n.

(5.191)

with

δ1,n
.
= inf

{
δ ≥ 0 : either R+ δ ≥ T · f ′

r(Bn),

or R+ δ < T · f ′
r(Bn) and ω(R+) ≤ u[R+ δ,Bn, fr]

}
,

δ2,n
.
= T · f ′

l

(
max{ω(0−), An}

)
− T · f ′

l (ω(0−)),

(5.192)

where An is defined as in (2.17). Recalling the definitions (4.2), and because of (5.190), we deduce
that

Ln
.
= L[ωn, fl] = 0, Rn

.
= R[ωn, fr] = R+ δ1,n ∀ n . (5.193)

Notice that the assumption that ω satisfies conditions (ii)’ of of Theorem 4.11 or conditions (ii) of
Theorem 4.14, together with (5.133), imply that

lim
n→∞

δ1,n = lim
n→∞

δ2,n = 0 . (5.194)

In fact, if R ≤ T ·f ′
r(B), relying on conditions (4.56), (4.60) of Theorem 4.11 or on condition (4.64) of

Theorem 4.14 we deduce that ω(R+) ≤ u[R, B, fr]. Moreover, we know by Remark 3.2 that u[·, ·, fr]
is continuous in the first two entries. Therefore, because of (5.133), we derive from definition (5.192)
that, if R ≤ T · f ′

r(B), then limn δ1,n = 0. On the other hand, if R > T · f ′
r(B), then it follows

from definition (5.192) and (5.133), that δ1,n = 0 for sufficiently large n. Next, observe that, since
L = 0, by definition (4.2) one has ω(0−) ≥ θl. On the other hand by assumptions (5.132), (5.133)
it follows that limnAn = θl. Therefore, by definition (5.192) we deduce that limn δ2,n = 0.

Because of (5.133), and relying on conditions (ii) of Theorem 4.11 or of Theorem 4.14, we deduce
that the limit (5.194) implies the L1

loc convergence of ωn to ω as n → ∞. Hence, in order to show

that ωn satisfy (5.186) it remains to prove that ωn ∈ A[AnBn](T ) for all n. Since we are assuming
in particular the validity of the implication (2) ⇒ (1) of Theorem 4.17 for non critical connections,
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in order to establish ωn ∈ A[AnBn](T ) it will be sufficient to show that: if Rn = 0 then ωn satisfies
conditions (i)-(ii) of Theorem 4.14; if Rn > 0 then ωn satisfies conditions (i)’-(ii)’ of Theorem 4.11.
This is established in the steps below distinguishing the cases where R = 0 or R > 0 and Rn = 0 or
Rn > 0. Notice that, by definition (5.191), we always have

ωn(Rn−) ≥ ωn(Rn+) . (5.195)

Step 3.
(
Rn > 0, R = 0, proof that ωn satisfies condition (ii)’ of Theorem 4.11

)
.

By definition (5.191) one has

ωn(0−) = max{ω(0−), An} , ωn(0+) = max{ω(0+), Bn}, ωn(Rn+) = ω(0+) , (5.196)

and

ωn(x) ≥ Bn ∀x ∈ ]0,Rn[ , (5.197)

while definition (5.192), together with (5.193), (5.196), (5.197), and (3.8) with f = fr, yield

Rn ∈ ]0, T · f ′
r(Bn)[ =⇒ ωn(Rn+) ≤ u[Rn, Bn, fr] ≤ ωn(Rn−) . (5.198)

Since πr
l,+(Bn) = An, from (5.196) we deduce

πr
l,+(ωn(0+)) = max{πr

l,+(ω(0+)), An}. (5.199)

Hence (5.196), (5.199), imply

ωn(0−) ≥ πr
l,+(ωn(0+)) . (5.200)

Therefore, if Rn > 0 and R = 0, then conditions (5.195), (5.197), (5.198), (5.200) show that ωn

satisfies condition (ii)’ of Theorem 4.11.
Step 4.

(
Rn > 0, R > 0, proof that ωn satisfies condition (ii)’ of Theorem 4.11

)
.

By definition (5.191) one has

ωn(0−) = max{ω(0−), An} , ωn(0+) = max{ω(0+), Bn}, ωn(Rn+) = ω(R+) , (5.201)

and

ωn(x) ≥ Bn ∀x ∈ ]0,Rn[ , (5.202)

while definition (5.192), together with (5.193), (5.201), (5.202), and (3.8) with f = fr, yield the
implication (5.198). Since we are assuming that ω satisfies condition (4.55) of Theorem 4.11, relying
on (5.201) we deduce as in Step 4 that (5.199), (5.200) hold. Therefore, if Rn > 0 and R > 0, then
(5.195), (5.198), (5.200), (5.202) show that ωn satisfies condition (ii)’ of Theorem 4.11.

Step 5.
(
Rn = R = 0, proof that ωn satisfies condition (ii) of Theorem 4.14

)
.

By definition (5.191), we have

ωn(0−) = max{ω(0−), An} ≥ An, ωn(0+) = ω(0+) , (5.203)

while definition (5.192) yields ω(0+) ≤ u[0, Bn, fr]. Since by Remark 3.2 we have u[0, Bn, fr] = Bn

(Bn as in (2.17)), it follows that

ωn(0+) ≤ Bn. (5.204)

Moreover, by virtue of (5.203) we deduce (5.200). Hence, if Rn = 0 and R = 0, then condi-
tions (5.200), (5.203), (5.204) show that ωn satisfies condition (ii) of Theorem 4.14.

Step 6.
(
Rn > 0, R ≥ 0, proof that ωn satisfies (4.52) of Theorem 4.11

)
.

Since we are assuming that ω satisfies either the Olěınik estimates (4.62) of Theorem 4.14 (in case
R = 0), or the Olěınik estimates (4.52) of Theorem 4.11 (in case R > 0), computing the Dini
derivative of ωn in (5.191), we find
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D+ωn(x) = D+ω(x− δ1,n) ≤
1

T · f ′′
r (ω(x− δ1,n))

=
1

T · f ′′
r (ωn(x))

∀ x > Rn ,

D+ωn(x) = D+ω(x+ δ2,n) ≤
1

T · f ′′
l (ω(x+ δ2,n))

=
1

T · f ′′
l (ωn(x))

∀ x < −δ2,n ,

D+ωn(x) =
1

T · f ′′
l (ωn(x))

∀ x ∈ [−δ2,n, 0[ .

(5.205)

Observing that ωn is continuous at x = −δ2,n, we deduce from (5.205) that ωn satisfies the Olěınik
estimates (4.52) of Theorem 4.11.

Step 7.
(
Rn > 0, R ≥ 0, proof that ωn satisfies (4.53) of Theorem 4.11

)
.

Observe that by definition (5.191) ωn is constant in ]R,Rn[. Therefore, since it holds (5.195), in
order to show that ωn satisfies the estimate (4.53) on ]0,Rn[ it will be sufficient to show that (4.53)
is verified on ]0,R[ , assuming that R > 0.

As observed in Step 5 of § 5.7, the assumption that ω satisfies condition (4.53) of Theorem 4.11
is equivalent to the fact that the maps

ϕ(x)
.
= −τ(x) · f ′

l ◦ πr
l,+(ω(x)), τ(x)

.
= T − x

f ′
r(ω(x))

, x ∈ ]0,R[ . (5.206)

are, respectively, nondecreasing and decreasing. Then consider the corresponding maps for ωn

ϕn(x)
.
= −τn(x) · f ′

l ◦ πr
l,+(ωn(x)), τn(x)

.
= T − x

f ′
r(ωn(x))

, x ∈ ]0,R[ , (5.207)

and compare their values in two points 0 < x1 < x2 < R, of continuity for ω and ωn:
- if ωn(xi) = ω(xi) for i = 1, 2, then one clearly has that ϕn(x1) = ϕ(x1) ≤ ϕ(x2) = ϕn(x2),
τn(x1) = τ(x1) > τ(x2) = τn(x2);
- if ωn(xi) ̸= ω(xi) for i = 1, 2, then by definition (5.191) we have ωn(xi) = Bn for i = 1, 2 and
therefore one has ϕn(x1) < ϕn(x2), τn(x1) > τn(x2);
- if ωn(x1) = ω(x1) and ωn(x2) ̸= ω(x2), then by definition (5.191) we have ωn(x1) ≥ Bn,
ωn(x2) = Bn, which implies f ′

r(ωn(x2)) ≤ f ′
r(ωn(x1)). Moreover, since ω(x) ≥ θr, ωn(x) ≥ θr,

it follows that f ′
l ◦ πr

l,+(ωn(x1)) ≥ f ′
l ◦ πr

l,+(ωn(x2)). Hence, we derive that ϕn(x1) ≤ ϕn(x2)

τn(x1) > τn(x2);
- if ωn(x1) ̸= ω(x1) and ωn(x2) = ω(x2), then by definition (5.191) we have ωn(x1) = Bn > ω(x1),
which implies f ′

r(ωn(x1)) > f ′
r(ω(x1)). Notice that by definition (4.2) of R it follows that ω(x1) ≥ θr.

Since also ωn(x1) ≥ θr, we deduce that f ′
l ◦ πr

l,+(ωn(x1)) > f ′
l ◦ πr

l,+(ω(x1)). Thus, it follows that

ϕn(x1) < ϕ(x1) ≤ ϕ(x2) = ϕn(x2), τn(x1) > τ(x1) > τ(x2) = τn(x2).
Hence, extending the above estimates to the right limits of ωn in its points of discontinuity, we
have shown that it holds true

ϕn(x1) ≤ ϕn(x2), τn(x1) > τn(x2) ∀ 0 < x1 < x2 < R . (5.208)

In turn, the monotonicity (5.208) of ϕn, τn is equivalent to the fact that ωn satisfies (4.53), by the
same arguments of Step 5 of § 5.7.

Step 8.
(
Rn = R = 0, proof that ωn satisfies (4.62) of Theorem 4.14

)
.

The proof is entirely similar to the one of Step 6, under the assumption that ω satisfies the Olěınik
estimates (4.62) of Theorem 4.14.

Step 9. Finally, let us assume

L = L[ω, fl] < 0, R = R[ω, fr] > 0 , (5.209)
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and (because of (5.132)) that ω satisfies the conditions (i), (ii) of Theorem 4.9. Hence, by virtue
of (5.133) we may assume also that, for n sufficiently large there hold

L < T · f ′
l (An), R < T · f ′

r(Bn) . (5.210)

In a similar way to what is done in Step 2, we will perturb ω to obtain an attainable profile ωn for
the (An, Bn) connection by:

- shifting ω on the right of x = 0 by a size δ1,n
- choosing δ1,n so to satisfy the admissibility condition (4.13) at x = R+ δ1,n;
- dropping ω to the value An of the connection when it is above, in the interval ]L, 0[, so to
satisfy the admissibility condition (4.16).

Namely, consider the function

ωn(x)
.
=


ω(x− δ1,n), if x ≥ R+ δ1,n,

Bn if x ∈ ]0,R+ δ1,n[,

min{An, ω(x)} if x ∈]L, 0[,
ω(x) if x ≤ L,

(5.211)

with

δ1,n
.
= inf

{
δ ∈ R : τ [R+ δ,Bn, fr] = τ [R, B, fr]

}
. (5.212)

Notice that the definition (5.212) is meaningful since the map R 7→ τ [R, Bn, fr] is strictly monotone
and continuous, and because the image of the maps

τ [ · , B, fr] : ]0, T · f ′(B)[ → ]0,+∞[ ,

τ [ · , Bn, fr] : ]0, T · f ′(Bn)[ → ]0,+∞[ ,

is the set ]0, T [ (see § 3.4). Then, recalling the definitions (4.2), (4.4), and because of (5.210), we
deduce that

Ln
.
= L[ωn, fl] = L, Rn

.
= R[ωn, fr] = R+ δ1,n, (5.213)

and
L̃n

.
= L̃[ωn, fl] = (T − τn) · f ′

l (An) = (T − τ ) · f ′
l (An), (5.214)

where
τn

.
= τ [R+ δ1,n, Bn, fr], τ

.
= τ [R, B, fr]. (5.215)

Relying on (5.133) and since τ [R, B, fr] depends continuously on the parameters R, B (see § 3.4),

one deduces that limn δ1,n = 0, that limn L̃n = 0, and that ωn converges to ω in L1
loc as n → ∞.

Hence, as in Step 2 above we conclude that, in order to show the validity of (5.186) it remains to
prove that ωn satisfies conditions (i)-(ii) of Theorem 4.3.

Assuming that L̃n ∈ ]L, 0[ for n sufficiently large, in order to show that ωn satisfies (4.16) of
Theorem 4.3 it will be sufficient to prove that

An ≤ ω(x) ∀ x ∈ ]L̃n, 0[ , An ≤ ω( L̃n−) . (5.216)

To this end observe that, by definition (5.214), we have (f ′
l )

−1( x
T−τ [R,B,fr]

) > An for all x ∈ ]L̃n, 0[ .

Thus, the first inequality in (4.36) satisfied by ω implies that ω(x) > An for all x ∈ ]L̃n, 0[ , which

proves the first condition in (5.216). Next observe that, since L̃n ∈ ]L, 0[, from the first inequality
in (4.36) and by definition (5.214) it follows

f ′
l (ω( L̃n−)) ≥ L̃n

T − τ
≥ f ′

l (An),

which implies ω( L̃n−) ≥ An. This completes the proof of (5.216) and thus that ωn satisfies (4.16).
The verification that ωn satisfies the remaining conditions in (i)-(ii) of Theorem 4.3 is entirely
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similar to the one performed in Steps 4, 6, 7 above, and is accordingly omitted. This concludes the
proof of the implication (3) ⇒ (1) for critical connections.

Remark 5.2. Whenever Tot.Var.(ω) < +∞, the perturbed profiles ωn approximating ω constructed
in Step 2 and in Step 9 of § 5.8 may possibly have larger total variation than the one of ω.
However, ωn have always local bounded variation, even in the case where Tot.Var.(ω) = +∞. In
fact, assuming (5.190) and that ω satisfies the conditions of Theorem 4.14, suppose that ω has
unbounded total variation on a right neighborhood of x = 0. Then, letting {(An, Bn)}n be a
sequence of non critical connections satisfying (5.133), (5.187), there should exist a sequence of
positive values ρn ↓ 0, so that

ω(x) ≤ Bn, ∀ x ∈ ]0, ρn] , (5.217)

for all n sufficiently large. If this is not the case, then there should exist ρ > 0 and n so that
ω(x) ≥ Bn > θr for all x ∈ ]0, ρ]. But this in turn would yield uniform upper bounds on D+ω (and
hence on the total variation of ω as well) on bounded subsets K of [0,+∞[, with the same type of
analysis of § 5.3. Therefore, because of (5.217), by definition (5.191) we have

ωn(x) = Bn, ∀ x ∈ ]0, ρn] , (5.218)

for all n sufficiently large. The property (5.218) has precisely the effect to cut the possible
large oscillation of ω occurring in a right neighborhood of x = 0, and hence to ensure that
Tot.Var.(ωn, K) < +∞ for all n large. Clearly, we will have that limnTot.Var.(ωn, K) = +∞.
With entirely similar arguments one can show that, if ω satisfies the conditions (i), (ii) of Theo-
rem 4.9, then the profile ωn defined by (5.211) has always local bounded variation.

6. BV bounds for AB-entropy solutions

We collect in this section the BV bounds for solutions, and for the flux of the solutions, that
arise as a corollary of our analysis.

Proposition 6.1. In the same setting of Theorem 2.8, for every u0 ∈ L∞(R), and for any bounded
set K ⊂ R, the following properties are verified.

(i) For any non critical connection (A,B), there exists a constant C1 = C1(A,B, ∥u0∥L∞ ,K) > 0
such that it holds true

Tot.Var.
(
S [AB]+
t u0, K

)
≤ C1

t
∀ t > 0 . (6.1)

In particular, any attainable profile ω
.
= S [AB ]+

T u0, u0 ∈ L∞(R), T > 0, enjoy the prop-
erty (H) stated in § 5.1-Part 1.

(ii) There exists a constant C2 = C2(∥u0∥L∞ ,K) > 0 such that, for any connection (A,B), it
holds true

Tot.Var.
(
fl ◦ S

[AB]+
t u0, K∩ ]−∞, 0]

)
≤ C2

t
,

Tot.Var.
(
fr ◦ S [AB]+

t u0, K ∩ [0,+∞[
)
≤ C2

t
,

∀ t > 0 , (6.2)

where the inequalities are understood to be verified whenever K ∩ ] − ∞, 0] ̸= ∅, or
K ∩ [0,+∞[ ̸= ∅, respectively.

Proof. Since S [AB]+
t u0 ∈ A[AB](t) and thanks to the implication (1) ⇒ (3) of Theorem 4.17, we

know that S [AB]+
t u0 satisfies the conditions stated in Theorem 4.3, 4.9, 4.11, or 4.14, that cover

all possible cases. We divide the proof in four steps.

Step 1. (proof of (i)).
In the case of a non critical connection (A,B), it is well known that for initial data u0 ∈ BV (R),
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one has S [AB]+
t u0 ∈ BV (R) for all t > 0 (see [29, Lemma 8] and [1, Theorem 2.13-(iii)]). On

the other hand, for initial data u0 ∈ L∞(R), we know that S [AB]+
t u0 satisfies the Olěınik-type

inequalities stated in Theorem 4.3, 4.11, or 4.14. Thus, since (A,B) is a non critical connection,

by the analysis in § 5.3 we deduce that D+(S [AB]+
t u0) satisfies one-sided uniform upper bounds as

the ones provided by (5.85). In turn, such bounds yield the existence of uniform bounds on the

total increasing variation (and hence on the total variation as well) of S
[AB]+
t u0 on bounded subsets

K of [0,+∞[, which depend on the connection (A,B), on the set K, and on ∥u0∥L∞ . By similar

arguments we derive bounds on the total variation of S
[AB]+
t u0 on bounded subsets of ] − ∞, 0],

which yields (6.1), completing the proof of (i).

Step 2. (proof of (ii) when S
[AB]+
t u0 satisfies the conditions of Theorem 4.14).

Since S
[AB]+
t u0 satisfies the Olěınik-type inequalities (4.62) of Theorem 4.14, we immediately deduce

a uniform bound on the total increasing variation of S
[AB]+
t u0 on bounded sets, which does not

depend on the values f ′
l (A), f

′
r(B). In turn, such bounds yield the existence of uniform bounds on

the total increasing variation (and hence on the total variation as well) of S
[AB]+
t u0 on bounded

subsets K of [0,+∞[, which depend on the set K and on ∥u0∥L∞ . By similar arguments we derive

bounds on the total variation of S
[AB]+
t u0 on bounded subsets of ]−∞, 0], which yields (6.1), with

a constant C1 that depends only on the set K and on ∥u0∥L∞ . In turn, (6.1) yields (6.2) relying
on the Lipschitzianity of fl, fr on the set [−M,M ], with M

.
= ∥u0∥L∞ . This completes the proof

of (ii) in the case where S
[AB]+
t u0 satisfies the conditions stated in Theorem 4.14.

Step 3. (proof of (ii) when S
[AB]+
t u0 satisfies the conditions of Theorem 4.11).

To fix the ideas, we assume that ω
.
= S

[AB]+
t u0 satisfies the inequalities (i)’ and the pointwise

constraints-(ii)’ stated in Theorem 4.11. Notice that, by the same arguments of above, (4.52) yields
the estimate (6.1) (and hence also (6.2)) for bounded set K ⊂ ]−∞, 0] or K ⊂ [R,+∞[ . Then con-
sider a set K ⊂ [0,R], with R = R[ω, fr] defined as in (4.2), and assume that the inequalities (4.53),
(4.54), are satisfied. Observe that, by the uniform convexity (1.4) of fl, fr, we have

f ′′
l ◦ πr

l,+(u)[
f ′
l ◦ πr

l,+(u)
]2 ≥ c1, f ′′

r (u) ≥ c1, ∀ |u| ≤ ∥ω∥L∞ , (6.3)

for some constant c1 > 0 depending on ∥ω∥L∞ . Moreover, by definition (4.2) of R it holds true

t · f ′
r(ω(x)) > x ∀ x ∈ [0,R[ , t > 0 . (6.4)

Hence, recalling the definition (4.6) of the function h, and relying on (4.53), (4.54), (6.3), (6.4), we
derive

D+(fr ◦ ω)(x) = f ′
r(ω(x))D

+ω(x)

≤ f ′
r(ω(x))h[ω, fl, fr](x)

≤ [f ′
r(ω(x))]

2

c1 [f ′
r(ω(x))]

2
(
t · f ′

r(ω(x))− x
)
+ c1 x

∀ x ∈ [0,R[ . t > 0 .

(6.5)

Towards an estimate of (6.5), consider the map

Φ(x, t, u)
.
=


[f ′

r(u)]
2

[f ′
r(u)]

2
(
t · f ′

r(u)− x
)
+ x

, if u > θr,

0, if u = θr,

x ∈ [0,R[ , t > 0 . (6.6)
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By direct computations one finds

Φu(x, t, u) =
f ′
r(u) f

′′
r (u)

(
2x− t [f ′

r(u)]
3
)(

[f ′
r(u)]

2
(
t · f ′

r(u)− x
)
+ x
)2 .

Hence, since f ′
r(u) ≥ 0 for all u ≥ θr, and because f ′′

r (u) > 0 for all u, we deduce that, setting

ux,t
.
= (f ′

r)
−1

(
3

√
2x

t

)
, (6.7)

for all x, t > 0 it holds true

ux,t > θr, Φu(x, t, u)

{
≥ 0 if u ∈ [θr, ux,t],

≤ 0 if u ≥ ux,t .
(6.8)

In turn, (6.7), (6.8) imply that ux,t is a point of global maximum for the map u 7→ Φ(x, t, u), u ≥ θr.
On the other hand, because of (6.8) we have

t · f ′
r(ux,t) > x =⇒ x <

√
2 t . (6.9)

Thus we find

Φ(x, t, u) ≤ Φ(x, t, ux,t) =
1

3
√
x
(
3
(
t
2

) 2
3 − x

2
3

) <
1
3
√
x

(
2

t

)2
3

, ∀ x <
√
2 t, u ≥ θr , (6.10)

and

Φ(x, t, u) ≤ [f ′
r(u)]

2

x
≤ c2

t
, ∀ x ≥

√
2 t, θr ≤ u ≤ ∥ω∥L∞ , (6.11)

for some constant c2 depending on ∥ω∥L∞ . Then, relying on (6.4), (6.5), (6.6), (6.9), (6.10), (6.11),
we derive

D+(fr ◦ ω)(x) ≤


c3

3
√
x t

2
3

if x <
√
2 t, x ∈ [0,R[ ,

c3
t

if x ≥
√
2 t, x ∈ [0,R[ ,

(6.12)

for some other constant c3 depending on ∥ω∥L∞ . Hence, recalling Remark 2.10, we deduce that,
given a bounded set K ⊂ [0,R], we have∫

K
D+
(
fr ◦ S [AB]+

t u0
)
(x) dx ≤ C

t
,

for some constant C depending only on ∥u0∥L∞ ,K, which yields (6.2). This completes the proof of

(ii) in the case where S
[AB]+
t u0 satisfies the conditions stated in Theorem 4.11.

Step 4. (proof of (ii) when S
[AB]+
t u0 satisfies the conditions of Theorem 4.3 or of Theorem 4.9).

Since S
[AB]+
t u0 satisfies the Olěınik-type inequalities (4.10) of Theorem 4.3 (or (4.34), (4.40) of

Theorem 4.9), with the same analysis of Step 2 we deduce the uniform bound in (6.2) for bounded
subset K of ]−∞, L] or of [R,+∞[. Next, for sets K ⊂ [0,R] or K ⊂ [L, 0], relying on the Olěınik-
type inequalities (4.11), (4.12), of Theorem 4.3 (or (4.35), (4.41) of Theorem 4.9), we recover the
bound in (6.2) performing the same analysis of Step 3. This completes the proof of (ii) in the case

where S
[AB]+
t u0 satisfies the conditions stated in Theorem 4.3 or in Theorem 4.9, and concludes

the proof of the proposition. □
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Appendix A. Stability of solutions with respect to connections and BV bounds

We provide here a proof of Properties (iv)-(v) of Theorem 2.8, which seems to be absent in the
literature. To this end we first recall a by now classical technical lemma, useful for the analysis
of stability of discontinuous conservation laws (e.g. see [17], [29, Proposition 1]). For sake of
completeness we provide a proof below.

Lemma A.1. Fix a connection (A,B) and let IAB be the map in (2.10). Then, for any couple of
pairs (ul, ur), (vl, vr) ∈ R2 that verify

IAB(ul, ur) ≤ 0, IAB(vl, vr) ≤ 0 , (A.1)

and

fl(ul) = fr(ur), fl(vl) = fr(vr) , (A.2)

setting

α(ul, ur, vl, vr)
.
= sgn(ur − vr) · (fr(ur)− fr(vr))− sgn(ul − vl) · (fl(ul)− fl(vl)) , (A.3)

it holds true

α(ul, ur, vl, vr) ≤ 0 . (A.4)

Proof. Observe that, if ur = vr or ul = vl, then the left hand side of (A.4) is zero and (A.4) is
verified. Hence, without loss of generality, we may assume that ur > vr and ul ̸= vl. If ul > vl, the
left hand side of (A.4) is again zero, because of (A.2). Thus, assuming that ul < vl, we have

α(ul, ur, vl, vr) = 2(fr(ur)− fr(vr)) . (A.5)

If we suppose, by contradiction, that (A.4) is not verified, it would follow by (A.5), that fr(ur) >
fr(vr). Moreover, because of assumptions (A.1)-(A.2), and applying Lemma 2.5, we know that
fr(ur), fr(vr) ≥ fr(B). Since ur > vr, these inequalities together imply that ur ≥ B. On the
other hand, by (A.2), it also holds fl(ul) > fl(vl). Relying again on (A.1)-(A.2) and Lemma-2.5,
we deduce that fl(ul), fl(vl) ≥ fl(A), which, coupled with ul < vl, fl(ul) > fl(vl), implies ul ≤ A.
Hence, by Lemma 2.5 it follows that ur = B and ul = A, and then we would have

α(ul, ur, vl, vr) = α(A,B, vl, vr)

= sgn(B − vr) · (fr(B)− fr(vr))− sgn(A− vl) · (fl(A)− fl(vl))

= IAB(vl, vr) ≤ 0

(A.6)

which is a contradiction. Therefore (A.4) is satisfied, and the proof is concluded. □

In order to obtain stability with respect to perturbations of the connection, the following quan-
titative version of Lemma A.1 will be useful. A general version of this Lemma can be found in [16,
Proposition 3.21] (see also [15, Proposition 2.10] for the case fl = fr).

Lemma A.2. Let (A,B), (A′, B′) be two connections. Then, for any couple of pairs (ul, ur),
(vl, vr) ∈ R2 that verify

IAB(ul, ur) ≤ 0, IA
′B′

(vl, vr) ≤ 0 , (A.7)

and (A.2), it holds true

α(ul, ur, vl, vr) ≤ 2
∣∣fr(B′)− fr(B)

∣∣ . (A.8)

Proof. With no loss of generality assume that B′ > B. Then, applying Lemma 2.5, one deduces
that B′ > B, together with (A.2) and IA

′B′
(vl, vr) ≤ 0, implies that one of the following two holds:

(1) IAB(vl, vr) ≤ 0,

(2) (vl, vr) = (A′, B′).
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If (1) holds, then by Lemma A.1 we have α(ul, ur, vl, vr) ≤ 0, and therefore (A.8) is verified.
Otherwise, (2) holds. In this case, we can add and subtract the non positive quantity IAB(ul, ur),
and rewrite α as

α(ul, ur, A
′, B′) = αr(ur)− αl(ul) + IAB(ul, ur) ≤ αr(ur)− αl(ul), (A.9)

where
αr(ur)

.
= sgn(ur −B′) · (fr(ur)− fr(B

′))− sgn(ur −B) · (fr(ur)− fr(B)),

αl(ul)
.
= sgn(ul −A′) · (fl(ul)− fl(A

′))− sgn(ul −A) · (fl(ul)− fl(A)).

We provide separately an estimate on αr(ur) and on αl(ul). We consider first the term αr, and we
distinguish three cases.

(1) ur > B′. Then one has

αr(ur) = fr(ur)− fr(B
′)− fr(ur) + fr(B) = fr(B)− fr(B

′).

(2) ur ∈ [B,B′]. Observe that, applying Lemma 2.5 and relying on (A.2) and IAB(ul, ur) ≤ 0,
we deduce fr(ur) ≥ fr(B). Then one has

αr(ur) = −fr(ur) + fr(B
′)− fr(ur) + fr(B)

= (fr(B) + fr(B
′)− 2fr(ur)) ≤ (fr(B

′)− fr(B)).

(3) ur < B. Then one has

αr(ur) = −fr(ur) + fr(B
′) + fr(ur)− fr(B) ≤ fr(B

′)− fr(B).

In every case, we obtain
αr(ur) ≤

∣∣fr(B′)− fr(B)
∣∣ . (A.10)

Analogously, and thanks to (A.2), we can prove that

αl(ul) ≥ −
∣∣fl(A′)− fl(A)

∣∣ = −
∣∣fr(B′)− fr(B)

∣∣ (A.11)

which in turn, together with (A.10), implies

α(ul, ur, A
′, B′) ≤ 2

∣∣fr(B′)− fr(B)
∣∣ , (A.12)

and this concludes the proof of the lemma. □

Proof of Theorem 2.8-(iv)-(v). Set

u(x, t)
.
= S [AB]+

t u0(x), v(x, t)
.
= S [A′B′]+

t u0(x). (A.13)

Relying on property (2) of Definition 2.2, with standard doubling of variable arguments (e.g. see [18,
§6.3]) one obtains that, for every non-negative test function ϕ ∈ C1

c with compact support contained
in ]−∞, 0[× ]0,+∞[, it holds true∫ 0

−∞

∫ ∞

0

{
|u− v|ϕt + sgn(u− v) (fl(u)− fl(v))ϕx

}
dx dt ≥ 0, (A.14)

and, for for every non-negative test function ϕ ∈ C1
c with compact support contained in ]0,+∞[×

]0,+∞[, it holds true∫ ∞

0

∫ ∞

0

{
|u− v|ϕt + sgn(u− v) (fr(u)− fr(v))ϕx

}
dx dt ≥ 0. (A.15)

Hence, with the same arguments, one deduces that, for every non-negative test function ϕ ∈ C1
c

with compact support contained in R× ]0,+∞[, it holds true∫ +∞

0

∫ +∞

−∞

{
|u− v|ϕt + sgn(u− v)(f(x, u)− f(x, v))ϕx

}
dx dt ≥ −E , (A.16)
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where E is the extra boundary term at x = 0 (due to the fact that, differently from (A.14)-(A.15),
ϕ will not vanish in general at x = 0 ) given by

E =

∫ +∞

0

[
sgn(u(x, t)− v(x, t))(f(x, u(x, t))− f(x, v(x, t)))

]x=0+

x=0− ϕ(0, t) dt ,

with [·]x=0+
x=0− denoting the limit from the right minus the limit from the left at x = 0. Observe

that, letting ul, ur denote the one-sided limit of u in x = 0 as in (2.7), and denoting vl, vr, the
corresponding ones for v, recalling (A.3) we can rewrite the quantity E as

E =

∫ +∞

0
α(ul(t), ur(t), vl(t), vr(t))ϕ(0, t) dt . (A.17)

On the other hand, since ul, ur, and vl, vr satisfy the Rankine-Hugoniot condition (2.8), together
with the inequality (2.11) related to the (A,B), and (A′, B′) connection, respectively, applying
Lemma A.2 we deduce that it holds true

α
(
ul(t(, ur(t), vl(t), vr(t)

)
≤ 2

∣∣fr(B′)− fr(B)
∣∣ for a.e. t > 0 . (A.18)

Thus, combining (A.16) with (A.17), (A.8), we find∫ +∞

0

∫ +∞

−∞

{
|u− v|ϕt+sgn(u−v)(f(x, u)−f(x, v))ϕx

}
dx dt ≥ −2|fr(B)−fr(B

′)|
∫ +∞

0
ϕ(0, t) dt .

(A.19)
Now fix τ > τ0 > 0, R > 0, and consider the trapezoid Ω

.
= {(x, t) : τ0 ≤ t ≤ τ, |x| ≤ R+L(τ−t)},

where L
.
= sup|z|≤M max{|f ′

l (z)|, |f ′
r(z)|}, with M being a uniform L∞ bound for u and v. Then,

by a standard technique (e.g. see [18, §6.3]), one can construct a sequence of test functions ϕn ∈ C1
c ,

with compact support contained in R× ]0,+∞[, that approximate the characteristic function of Ω
when n → ∞. Employing (A.19) with ϕn, and letting n → ∞ we obtain∫

|x|≤R

∣∣u(x, τ)− v(x, τ)
∣∣dx ≤

∫
|x|≤R+L(τ−τ0)

∣∣u(x, τ0)− v(x, τ0)
∣∣ dx+ 2(τ − τ0)|

∣∣fr(B)− fr(B
′)
∣∣ .

(A.20)
Relying on the L1-continuity of u and v at τ0 = 0 (property (2) of Definition 2.2), and letting
R → ∞ in (A.20), we obtain the estimate of Theorem 2.8-(iv) for t = τ .

To establish property (v) of Theorem 2.8 observe that, if (A,B) is a non critical connection,
then by Lemma 6.1-(i) one has SAB

t u0 ∈ BVloc(R) for all t > 0, and for any u0 ∈ L∞(R). There-
fore, in this case, relying on this property we immediately recover the L1

loc-Lipschitz continuity of

t 7→ SAB
t u0 by standard arguments (e.g. see [18, proof of Theorem 9.4]). On the other hand, in the

case of a critical connection (A,B), we derive the L1
loc-Lipschitz continuity of t 7→ SAB

t u0 applying
Lemma 6.1-(ii) and following the same arguments in [25, proof of Theorem 4.3.1]. □

Proof of Corollary 2.11. Relying on Theorem 2.8-(iv) we deduce that

un(·, t) → u(·, t) in L1
loc(R) ∀ t ≥ 0 , (A.21)

which in turn implies that there exists x > 0 such that

fr(un(x, ·)) → fr(u(x, ·)) in L1
loc([0,+∞[) . (A.22)

Then, observe that by Definition 2.2 un and u are entropy weak solutions of ut + fr(u)x = 0 on
]0,+∞[× [0,+∞[ . Hence, by a general property of weak solutions (e.g. see [18, Remark 4.2]), for
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every fixed s > 0 one has∫ s

0
fr(ur(s))ds =

∫ s

0
fr(u(x, ·))ds+

∫ x

0
u(z, T )dz −

∫ x

0
u(z, 0)(z)dz ,∫ s

0
fr(un,r(s))ds =

∫ s

0
fr(un(x, ·))ds+

∫ x

0
un(z, T )dz −

∫ x

0
un(z, 0)dz ∀ n .

(A.23)

Since we are assuming that {un(·, 0)}n converges to u(·, 0) in L1
loc, taking the limit as n → ∞

in (A.23) we deduce from (A.21), (A.22), (A.23) by standard arguments that

fr(un,r) ⇀ fr(ur) weakly in L1(R+). (A.24)

With entirely similar arguments one derives also the other convergence in (2.16). □

Appendix B. Preclusion of rarefactions emanating from the interface

A distinctive feature of the structure of AB-entropy solutions is the fact that no rarefaction
wave can emerge at positive times from the interface x = 0. This property was established in [2]
exploiting an explicit representation formula for AB-entropy solutions a la Lax-Olěınik. A different,
rather technical proof, based on a detailed analysis of the structure of AB-entropy solutions was
derived in [6], under the additional assumption that the traces of the solution at x = 0 admit
one sided limits. Here, we provide a much simpler proof that establishes this fact in the case of
a non critical connection (A,B), and for a BVloc AB-entropy solution. The proof relies on the
properties of solutions of Riemann problems and on a blow-up argument. Namely, the key point
is to show that Riemann-type initial data from which rarefaction waves emerge are not attainable
by an AB-entropy solution at any positive time t > 0. Next, by contradiction and performing
a blow-up analysis, we prove that if a rarefaction emerges from an AB-entropy solution at some
time t > 0, then there exists a Riemann-type datum u that generates a rarefaction and which is
attainable by an AB-entropy solution at time t.

One can recover this property of preclusion of rarefactions emanating from the interface (for any
AB-entropy solution and general connections) as a byproduct of the characterization of attainable

profiles ω ∈ A[AB](T ) provided by Theorems 4.3, 4.9, 4.11, 4.14 (see Remark B.4).

Definition B.1. We say that an AB-entropy solution u(x, t) to (1.1) has a rarefaction fan emerging
at the right (at the left) from the interface x = 0 at time t̄, if there exists δ > 0 and two continuity
points 0 < x1 < x2 for u(·, t+ δ) such that

x1 − δf ′
r(u(x1, t+ δ)) = x2 − δf ′

r(u(x2, t+ δ)) = 0.

Notice that Definition B.1 does no require to know that the solution u admits one-sided limits at
x = 0, and it is invariant with respect to the scaling (x, t) → (ρx, t+ρ(t− t)), ρ > 0. This definition
is equivalent to say that there exists an outgoing rarefaction fan emerging at time t, at the right,
if there exist two distinct genuine characteristics located in {x > 0} for times t ∈ ]t, t + δ], δ > 0,
that emerge from the point (0, t).

Proposition B.2. Let (A,B) be a connection, consider a Riemann data

u =

{
u−, x < 0,

u+, x > 0 ,
(B.1)

and assume that the solution S [AB]+
t u(x) contains a rarefaction wave located in the left halfplane

{x ≤ 0}, or in the right one {x ≥ 0}. Then for every T > 0 it holds u /∈ A[AB](T ).
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Proof. By contradiction, suppose that S [AB]+
t u(x) contains a rarefaction wave located in {x ≥ 0},

and assume that u ∈ A[AB](T ), i.e. that there exists an AB-entropy solution solution u(x, t)

of (1.1),(1.2), such that u(· , T ) = u. Then, by uniqueness, one has u(x, T + t) = S [AB]+
t u(x) for all

x ∈ R, t ≥ 0. Since S [AB]+
t u(x) is a solution of a Riemann problem containing a rarefaction with

nonnegative characteristic speeds, and because of the admissibility conditions (2.13), it then follows
that the right trace ur of u at x = 0 satisfies B ≤ ur(t) < u(T, x) = u+ for every t > T , x > 0.
Tracing the backward characteristics from points (T, x), x > 0, we find that ur(t) = u+ > B for
every t ∈ ]0, T [ . Therefore, because of the admissibility conditions (2.13), one has ul(t) = πr

l,+(u
+)

(with πr
l,+ defined as in (4.1)), for every t ∈ ]0, T [ . Then, letting ξ−, ξ+ denote the minimal and

maximal backward characteristics starting at (0, T ), we deduce that f ′
l (u

−) = ξ̇−(T ) > ξ̇+(T ) =

f ′
l (π

l
r,+(u

+)), which in turn implies u− > πr
l,+(u

+), πl
r,+(u

−) > u+. Observe now that the AB-

entropy solution of a Riemann problem with initial data (B.1) satisfying u− > πl
r,+(u

+), and

u+ > B, consists of a single shock located in the halfplane {x ≥ 0}, and connecting the left state

πl
r,+(u

−) with the right state u+. This is in contrast with the assumption made on S [AB]+
t u(x),

thus completing the proof.
□

Proposition B.3. Let (A,B) be a non critical connection, and let u be an AB-entropy solution
to (1.1) that satisfies u(·, t) ∈ BVloc(R), for all t > 0. Then u does not contain rarefaction waves
emerging from the interface x = 0 at times t > 0.

Proof. Assume by contradiction that the solution u has a rarefaction wave, say located in {x ≥ 0},
which emerges from the interface at some time t > 0. Let 0 < ρ < t/3, and for any ρ > 0, set

Iρ
.
= {x ∈ R : |x| ≤ ρ} . (B.2)

Observe that the domain of dependence of u(x, t), for (x, t) ∈ Iρ × [t − ρ, t + ρ], is the trapezoid
Ω

.
= {(x, t) : |x| ≤ ρ+ Λ · (t+ ρ− t), t ∈ [t− 2ρ, t+ ρ]}, where Λ

.
= sup|z|≤M max{|f ′

l (z)|, |f ′
r(z)|},

with M being a uniform L∞ bound for u. Therefore, since the total variation of u(t, ·) on Ilt ,
lt

.
= |x| ≤ ρ + Λ · (t + ρ − t), is bounded, and because (A,B) is a non critical connection, we can

invoke the uniform BV bounds on AB-entropy solutions established in [29, Lemma 8] (see also [1,
Theorem 2.13-(iii)]) to deduce that

Tot.Var.(u(·, t), Iρ) ≤ C
(
M +Tot.Var.(u(·, t− 2ρ), I(1+2Λ)ρ)

)
∀ t ∈ t+ Iρ , (B.3)

for some constant C > 0. Next, consider the blow-up of u at the point (0, t ):

uρ(x, t)
.
= u(ρx, t+ ρ(t− t)) x ∈ R, t ≥ 0 , (B.4)

with 0 < ρ < ρ/t, and observe that it holds true

Tot.Var.(uρ(·, t), Iρ/ρ) ≤ sup
τ ∈ t+Iρ

Tot.Var.(u(·, τ), Iρ) ∀ 0 ≤ t < t+
ρ

ρ
. (B.5)

Combining (B.3), (B.5), we find a uniform bound on the total variation of ur(·, t) on the interval
Iρ/ρ, for all t < t + ρ/ρ, and 0 < ρ < ρ/t. Moreover, observe that because of the finite speed of
propagation Λ, by standard arguments (e.g. see [18, §7.4]) one deduces that

∥uρ(·, t)− uρ(·, s)∥L1(Iρ/ρ)
≤ Λ · (t− s) ∀ 0 ≤ s < t < t+

ρ

ρ
, (B.6)

for all 0 < ρ < ρ/t, and for some constant Λ. Notice that the sets Iρ/ρ × [0, t + ρ/ρ[ invade
R× [0,+∞[ as ρ → 0. Therefore we can apply Helly’s compactness theorem [18, Theorem 2.4] to
the sequence {uρ}0<ρ<ρ/t, and deduce the existence of a function v ∈ L∞(R× [0,+∞[), so that, up
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to a subsequence, uρ(·, t) converges to v(·, t) in L1
loc, as ρ → 0, for all t > 0. By Definition 2.2 it

follows that also v is an AB-entropy solution of (1.1)-(1.2), with u0
.
= v(·, 0). Notice that

lim
ρ→0

uρ(x, t ) = u(x)
.
=

{
u(0+, t ) if x > 0 ,

u(0−, t ) if x < 0 ,
(B.7)

and thus we find
v(·, t ) = u ,

which implies

u ∈ A[AB]( t) . (B.8)

On the other hand, observe that the rarefaction wave which emerges in the solution u at
time t is preserved by the blow-ups uρ in (B.4), because it is self similar for the scaling
(x, t) 7→ (ρx, t̄ + ρ(t − t̄)). Therefore there will be a rarefaction wave emerging at time t, and
located in {x ≥ 0}, also in the solution v. This in turn implies that the solution SAB

t u(x) to
the Riemann problem with initial datum u contains a rarefaction emerging at t = 0 and located
in {x ≥ 0}, since SAB

t u(x) = v(t̄ + t, x) for all x ∈ R, t ≥ 0. This, together with (B.8), is in
contradiction with Proposition B.2, thus completing the proof. □

Remark B.4. In the case of a general connection (A,B), relying on the characterization of A[AB](t),
t > 0, provided by Theorems 4.3, 4.9, 4.11, 4.14, we can show that no rarefaction can emerge from
the interface x = 0 at any time t > 0 for any AB-entropy solution u to (1.1), as follows. Suppose,
by contradiciton, that a rarefaction is generated in a time interval [ t, t+δ], for some δ > 0, and that
lies in the semiplane {x ≥ 0}. In particular this means that there exist two genuine characteristics
ξ1, ξ2 : [ t̄, t̄ + δ ] → [0,+∞[ , such that ξ1( t̄ ) = ξ2( t̄ ) = 0, x1

.
= ξ1( t̄ + δ) < x2

.
= ξ2( t̄ + δ). We

may also assume that ξ′i = f ′
r(ω(xi)), i = 1, 2. Let ω

.
= u(·, t+ δ), R

.
= R[ω, fr] (see def (4.2)), and

consider the time τ(x) = (t + δ) − x/f ′
r(ω(x)), x ∈ ]0,R[ , at which the characteristic starting at

(x, t+δ), with slope f ′
r(ω(x)) impacts the interface x = 0. Notice that τ(x1) = τ(x2) = t. Moreover,

thanks to Lemma 4.4 in [6], the Olěınik estimates satisfied by ω (because of condition (i) or (i)’
of Theorems 4.3, 4.9, 4.11, 4.14) imply the strict monotonicity of the map x → τ(x), x ∈ ]0,R[ .
In turn, the strict monotonicity of τ implies τ(x1) ̸= τ(x2), thus contradicting the assumption
τ(x1) = τ(x2) = t.

Appendix C. Semicontinuity properties of solutions to convex conservation laws

Solutions to conservation laws with convex flux enjoy a lower and upper semicontinuity property
with respect to the L1 convergence as stated in the following

Lemma C.1. Given a uniformly convex map f , and T > 0, let {un}n be a sequence of entropy
weak solutions of

ut + f(u)x = 0 x > 0, t ∈ [0, T ], (C.1)

that admit a strong trace un(0+, t) = limx→0+ un(x, t) at x = 0, for all t ∈ [0, T ], and let u be an
entropy weak solution of (C.1) that admits a strong trace u(0+, t) = limx→0+ u(x, t) at x = 0, for
all t ∈ [0, T ]. Assume that {un}n are uniformly bounded in L∞, that

un(·, t) → u(·, t) in L1
loc( ]0,+∞[), ∀ t ∈ [0, T ] , (C.2)

and that
f(un(0+, ·)) ⇀ f(u(0+, ·)) weakly in L1([0, T ]) . (C.3)

Then, for every x ≥ 0, it holds true

u(x+, T ) ≤ lim inf
n→∞

y→x, y>0

un(y+, T ) . (C.4)
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If we assume that un, u, are entropy weak solutions of ut+ f ′(u)x = 0 on x < 0, t ∈ [0, T ], and that
the convergences (C.2), (C.3), hold in L1

loc( ]−∞, 0[), and for the left traces in x = 0, respectively,
then for every x ≤ 0, it holds true

u(x−, T ) ≥ lim sup
n→∞

y→x, y<0

un(y−, T ) . (C.5)

Proof. We will establish only the inequality (C.4), the proof of (C.5) being entirely similar. Given
x ≥ 0, T > 0, consider a sequence {yn}n, yn > 0, converging to x, and such that

lim
n

un(yn+, T ) = lim inf
n→∞
y→x

un(y+, T ) . (C.6)

Let ϑ+
n : ]τn, T ] → ]0,+∞[ , τn ≥ 0, denote the maximal backward characteristic for un starting

from (yn, T ), with the property that either τn = 0, or limt→τn ϑ
+
n (t) = 0. By possibly taking a

subsequence, we can assume that either τn = 0 for all n, or that limt→τn ϑ
+
n (t) = 0 for all n. We

recall that a maximal backward characteristic for un passing through (yn, T ), y > 0, is a genuine
(shock free) characteristics whose trajectory is a segment with constant slope f ′(un(yn+, T )) (e.g.
see [25]). Notice that {ϑ+

n }n is a sequence of Lipschitz continuous functions with a uniform Lipschitz
constant sup|u|≤M f ′(u) (M being a uniform L∞ bound on un), defined on uniformly bounded

intervals ]τn, T ]. Hence, by Ascoli-Arzelà Theorem we can assume that, up to a subsequence,
{ϑ+

n }n converges uniformly to some Lipschitz continuous function ϑ : ]τ, T ] → ]0,+∞[ , such that

τ = 0, if τn = 0 ∀ n ,

τ = lim
n→∞

τn , lim
t→τ

ϑ(t) = 0, if lim
t→τn

ϑ+
n (t) = 0 ∀ n ,

(C.7)

and such that ϑ(T ) = x. By a general property of characteristics, the uniform limit of genuine
characteristics is also a genuine characteristic. This can be easily verified in this context observing
that the trajectory of a genuine characteristic passing through a point (y, t), y > 0, is a segment
connecting (y, t) with the point (0, τ(y, t)) or with the point (z(y, t), 0), where τ(y, t) and z(y, t) de-
notes the points of minimum for the functionals involved in the Lax-Olěınik representation formula
of solutions for the boundary value problem (see [35]), and that such functionals are L1 continuous
with respect to the initial datum and and weakly continuous in L1 with respect to the flux-trace
of the solution at x = 0. Therefore it follows that ϑ is a genuine characteristic with constant slope
ϑ′ satisfying

ϑ′ = lim
n→∞

(ϑ+
n )

′ = lim
n→∞

f ′(un(yn+, T )), ϑ′ ≥ f ′(u(x+, T )) . (C.8)

Since f ′ is increasing, we deduce from (C.8) that

lim
n

un(yn+, T ) ≥ u(x+, T ) , (C.9)

which, together with (C.6), yields (C.4).
□
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[20] S. Čanić. Blood flow through compliant vessels after endovascular repair: wall deformations induced by the
discontinuous wall properties. Computing and Visualization in Science, 4(3):147–155, 2002.

[21] Piermarco Cannarsa and Carlo Sinestrari. Semiconcave functions, Hamilton-Jacobi equations, and optimal con-
trol, volume 58 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Boston, Inc.,
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