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Abstract

The main topic of this thesis concerns some recent developments in Calculus of Variations and Geometric Measure
Theory that have been obtained in [MP21; MP24; PP24; Pas25].
After the introductory Chapter 1, where we present the main results, motivations and history on the topics consid-
ered in this thesis, in Chapter 2 we collect the preliminaries needed for the presentation.
Chapter 3 is dedicated to the proof of some quantitative isoperimetric inequalities for the classical capillarity
problem in a Euclidean halfspace. The results have been obtained in a joint work with M. Pozzetta and are based on
a novel combination of a quantitative ABP method with a selection-type method, after a symmetrization procedure.
In Chapter 4 we establish some existence and nonexistence results for the volume-constrained minimization prob-
lem of an energy functional given by the sum of a capillarity perimeter, a nonlocal interaction term and a gravi-
tational type energy. The strategy stems from an application of the quantitative isoperimetric inequalities for the
capillarity problem in a half-space.
Chapter 5 is devoted to study differentiability and integrability properties of weak solutions to some nonlinear ellip-
tic systems with growth coefficients in BMO. The results have been obtained in collaboration with G. Moscariello.
Moreover we derive some local Calderón–Zygmund estimates, which are relevant to provide upper bounds for the
Hausdorff dimension of the singular set of minima of general variational integrals.
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Notation and symbols

• ⟨⋅, ⋅⟩ denotes the scalar product in ℝ𝑛.
• | ⋅ | denotes both the Lebesgue measure in ℝ𝑛 and the modulus of a vector in ℝ𝑛, depending on the context.
• 𝐴𝑝, with 𝑝 ≥ 1, denotes the class of Muckenhoupt with exponent 𝑝.
• (𝑋) denotes the 𝜎-algebra of Borel subsets of a topological space 𝑋.
• 𝐵𝑟(𝑥) denotes the open ball of center 𝑥 and radius 𝑟 in ℝ𝑛.
• 𝐵𝑟 ∶= 𝐵𝑟(0) ⊂ ℝ𝑛 for 𝑟 > 0, 𝐵 ∶= 𝐵1.
• 𝐵𝜆 = {𝑥 ∈ 𝐵 ∶ ⟨𝑥, 𝑒𝑛⟩ > 𝜆}.

• 𝐵𝜆(𝑣) ∶= 𝑣
1
𝑛

|𝐵𝜆|
1
𝑛
(𝐵𝜆 − 𝜆𝑒𝑛), for any 𝑣 > 0.

• 𝐵𝜆(𝑣, 𝑥) ∶= 𝐵𝜆(𝑣) + 𝑥, for any 𝑥 ∈ {𝑥𝑛 = 0}. In particular 𝐵𝜆(𝑣) = 𝐵𝜆(𝑣, 0).
• 𝐵𝑀𝑂(Ω) denotes the space of functions with bounded mean oscillation in Ω ⊂ ℝ𝑛.
• 𝑐(⋅), 𝐶(⋅) denote strictly positive constants, that may change from line to line.
• 𝐶𝑘,𝛼(𝑋) denotes the space of real functions continuously derivable in the topological space𝑋 up to the order
𝑘 ∈ ℕ, with locally 𝛼-Hölder continuous derivatives in 𝑋.

• 𝐶𝑐(𝑋) denotes the space of real continuous functions with compact support on 𝑋.
• 𝐶0(𝑋) denotes the closure, in the sup norm, of 𝐶𝑐(𝑋).
• diam 𝑌 denotes the diameter of a set 𝑌 in a metric space.
• 𝑑 denotes Hausdorff distance in ℝ𝑛.
• dim(𝑌 ) denotes the Hausdorff dimension of a set 𝑌 .
• 𝒟𝐾 denotes the distance to 𝐿∞ space of a function 𝐾 in a weak-𝐿𝑝 space.
• Δ𝑠,ℎ𝑓 denotes the difference quotient of a function 𝑓 with respect to 𝑠-th axis and increment ℎ.
• 𝜕𝑒𝐸 denotes the essential boundary of a Lebesgue measurable set 𝐸.
• 𝜕∗𝐸 denotes the reduced boundary of a set of locally finite perimeter 𝐸.
• 𝐸Δ𝐹 denotes the symmetric difference between two sets 𝐸 and 𝐹 .
• 𝐆𝑘 denotes the set of unoriented 𝑘-dimensional subspaces of ℝ𝑛.
• 𝐻 ∶= {𝑥𝑛 ≤ 0}.
• 𝑑 denotes 𝑑-dimensional Hausdorff measure in ℝ𝑛, for 𝑑 ≥ 0.
• id denotes identity/inclusion map between given sets.
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• 𝑛 denotes the 𝜎-algebra of Lebesgue measurable sets in ℝ𝑛.
• 𝑛 denote the Lebesgue measure in ℝ𝑛.
• 𝐿𝑝 denotes the real valued 𝑝-integrable functions with respect to the Lebesgue measure on ℝ𝑛.
• 𝐿𝑝,∞ denotes the Marcinkiewicz class with exponent 𝑝 > 1, i.e. the weak-𝐿𝑝 space.
• 𝐿𝑝𝑤 denotes the real valued 𝑝-integrable functions with respect to the measure 𝑤𝑛 on ℝ𝑛, where 𝑤 is a

weight.
• [(𝑋)]𝑚 denotes the space of the finite ℝ𝑚-valued Radon measures on a locally compact and separable

metric space 𝑋.
• [

𝑙𝑜𝑐(𝑋)
]𝑚 denotes the space of the ℝ𝑚-valued Radon measures on a locally compact and separable metric

space 𝑋.
• 𝑀∗

𝑄0
(𝑓 ) denotes the Restricted Maximal Function Operator relative to a cube 𝑄0 for a function 𝑓 ∈ 𝐿1(𝑄0)

• 𝑀∗
𝑤,𝑄0

(𝑓 ) denotes the weighted Restricted Maximal Function Operator relative to a cube 𝑄0 for a function
𝑓 ∈ 𝐿1(𝑤,𝑄0)

• 𝑃𝜆(𝐵𝜆) ∶= 𝑃𝜆(𝐵𝜆(|𝐵𝜆|, 𝑥)) = 𝑃 (𝐵, {𝑥𝑛 > 𝜆}) − 𝜆𝑛−1(𝐵 ∩ {𝑥𝑛 = 𝜆}).
• 𝑄𝑟 ∶= [−𝑟, 𝑟]𝑛 ⊂ ℝ𝑛, for any 𝑟 > 0.
• 𝜈𝐸 denotes the generalized outer unit normal to a set of locally finite perimeter 𝐸.
• ℕ denotes the set of natural numbers.
• ℝ denotes the set of real numbers.
• ℝ𝑛 denotes the Euclidean 𝑛-dimensional space.
• ℝ denotes the extended real line ℝ ∪ {−∞,+∞}.
• 𝑟𝜆 ∶= min

{
√

1 − 𝜆2, 1 − 𝜆
}

, 𝑅𝜆 ∶= max
{
√

1 − 𝜆2, 1 − 𝜆
}

, for 𝜆 ∈ (−1, 1).
• 𝜏𝑠,ℎ denotes the finite difference operator with respect to 𝑠-th axis and increment ℎ.
• 𝑢Ω denotes the mean value of a function 𝑢 ∈ 𝐿1(Ω).
• 𝑉 ⊂⊂ 𝑈 denotes that the closure of the set 𝑉 is compact and it is contained in 𝑈 .
• 𝑊 𝑘,𝑝(Ω) denotes the Sobolev space on an open set Ω ⊂ ℝ𝑛, for 𝑘 ∈ ℕ, 𝑘 ≥ 1, and 𝑝 ∈ [1,+∞].
• 𝑊 𝑠,𝑝(Ω) denotes the fractional Sobolev space on an open set Ω ⊂ ℝ𝑛, for 𝑠 ∈ ℝ, 𝑠 > 0, and 𝑝 ∈ [1,+∞).
• 𝜔𝑛 denotes the volume of the 𝑛-dimensional unit ball in ℝ𝑛.
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Chapter 1

Introduction

The main topics of this thesis concern recent developments in the stability of minimizers for the classical capillarity
problem in a half-space, as well as existence issues under the presence of nonlocal interaction and gravity. The
results have been obtained in collaboration with Marco Pozzetta [Pas25; PP24]. Other results concerning regularity
theory and obtained during the PhD studies are described in the introduction and in the last chapter of the thesis.
These last results have been achieved in collaboration with Gioconda Moscariello [MP21; MP24].
The aim of this chapter is to review the motivations of the considered topics and to present the results, pointing out
briefly the new ideas necessary to prove them.

1.1 Isoperimetry for the classical capillarity problem

The classical isoperimetric problem in the Euclidean space ℝ𝑛, for 𝑛 ≥ 2, aims at minimizing the (𝑛 − 1)-
dimensional area of boundaries of sets having fixed finite volume. More precisely, given 𝑣 > 0, one aims to
characterize minimizers to the problem

inf {𝑃 (𝐸) ∶ 𝐸 ⊂ ℝ𝑛, |𝐸| = 𝑣} , (1.1.1)
where 𝑃 (𝐸) denotes the perimeter of 𝐸 and |𝐸| the Lebesgue measure of 𝐸. It is well-known that balls (uniquely)
minimize (1.1.1), cf. [De 58] or [Mag12, Chapter 14], and this is encoded in the classical isoperimetric inequality

𝑃 (𝐸) ≥ 𝑛𝜔
1
𝑛
𝑛 |𝐸|

𝑛−1
𝑛 , (1.1.2)

where 𝜔𝑛 denotes the measure of the unit ball in ℝ𝑛. To prove a quantitative version of (1.1.2) means to estimate
the distance of a competitor from the set of minimizers in terms of the energy deficit of the competitor with respect
to the infimum of the problem. The first quantitative isoperimetric inequality for (1.1.1) with sharp exponents was
proved in [FMP08], and it reads

𝛼(𝐸)2 ≤ 𝐶(𝑛)𝐷(𝐸), (1.1.3)
where 𝛼(𝐸) and 𝐷(𝐸) are respectively the Fraenkel asymmetry and the isoperimetric deficit of 𝐸, i.e.,

𝛼(𝐸) ∶= inf
{

𝐸Δ𝐵(|𝐸|, 𝑥)
|𝐸|

∶ 𝑥 ∈ ℝ𝑛
}

𝐷(𝐸) ∶=
𝑃 (𝐸) − 𝑃 (𝐵(|𝐸|))

𝑃 (𝐵(|𝐸|))
,

where 𝐵(𝑣, 𝑥) denotes the ball in ℝ𝑛 with volume 𝑣 centered at 𝑥, for 𝑣 > 0 and 𝑥 ∈ ℝ𝑛, and 𝐵(𝑣) ∶= 𝐵(𝑣, 0).
The underlying idea of the proof is to reduce the problem, by means of suitable geometric constructions, to the
case of suitable axially symmetric sets and then to apply an induction argument over the dimension 𝑛. The inequal-
ity (1.1.3) improves the previous non-sharp inequality proved in [Hal92], after [HHW91; Fug89]. In [FMP10]
a sharp quantitative version of the anisotropic isoperimetric inequality is established. The proof is based on a
quantitative study of certain transportation maps, through bounds that can be derived from Gromov’s proof of the
isoperimetric inequality. In [AFM13; CL12] a selection principle is used to prove sharp quantitative isoperimetric
inequalities. In a selection-type argument one argues by contradiction assuming existence of sets contradicting the
quantitative isoperimetric inequality. These sets are then replaced by the minimizers of suitable auxiliary penalized
minimization problems. Such minimizers are tailored in such a way that the quantitative isoperimetric inequality
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still fails. At the same time they are shown to be small perturbations of some isoperimetric set, contradicting the
inequality already proved for sets given by small perturbations of optimal sets. A new direct proof of the clas-
sical isoperimetric inequality was given in [Cab00; Cab08] by means of ABP techniques, which were originally
employed to derive regularity estimates for second order elliptic equations [GT01, Chapter 9]. We also mention
[FI13; FJ14; IN15] for further quantitative isoperimetric inequalities for possibly anisotropic perimeters, [BDS15;
CMM19; CES23] for quantitative isoperimetric inequalities on manifolds, and [Cia+11; BDR12; BBJ17; Cin+22;
FL23] about weighted quantitative isoperimetric inequalities.
In Chapter 3 we prove quantitative isoperimetric inequalities for the following classical capillarity problem. If 𝐸
is a measurable set in the half-space {𝑥𝑛 > 0} ⊂ ℝ𝑛 and 𝜆 ∈ (−1, 1), we define the weighted perimeter functional

𝑃𝜆(𝐸) ∶= 𝑃 (𝐸, {𝑥𝑛 > 0}) − 𝜆𝑛−1(𝜕∗𝐸 ∩ {𝑥𝑛 = 0}),

where 𝑘, for 𝑘 ≥ 0, denotes the 𝑘-dimensional Hausdorff measure in ℝ𝑛, and 𝜕∗𝐸 denotes the reduced boundary
of 𝐸 (see Chapter 2 for the definitions). Interpreting the perimeter as a measure of the surface tension of a liquid
drop, the constant 𝜆 basically represent the relative adhesion coefficient between a liquid drop and the solid walls
of the container given by {𝑥𝑛 > 0}.
If 𝑣 > 0, we consider the isoperimetric capillarity problem

inf
{

𝑃𝜆(𝐸) ∶ 𝐸 ⊂ {𝑥𝑛 > 0}, |𝐸| = 𝑣
}

. (1.1.4)
Minimizers for (1.1.4) are given by suitably truncated balls 𝐵𝜆(𝑣, 𝑥), 𝑥 ∈ {𝑥𝑛 = 0}, lying on the boundary of the
half-space.
The first variational results regarding capillarity problems go back to works by Giusti, Gonzalez, Massari and
Tamanini who established existence, symmetry and regularity results for the isotropic sessile drop problem, where
an additional potential energy representing gravity is added to the minimization of 𝑃𝜆 (see [Gon76; Gon77; GT77;
GMT80; Giu80; Giu81]; see also [Fin80] where uniqueness results for the symmetric sessile drop were established).
We refer to [Fin86] and [Mag12, Chapters 19, 20] for a more complete treatment regarding classical results.
More recently, in [Bae15] the shape of liquid drops and crystals, resting on a horizontal surface and under the
influence of gravity, are described in the anisotropic setting. The shape and the fine regularity of volume con-
trained minimizers of weighted perimeters like 𝑃𝜆, where the weight on the interface touching the boundary of the
container may be nonconstant and where an additional potential term is present, are addressed in [MM16; DM15;
CEL24]. In [DM15] the perimeter functional measuring the area of the interface that does not touch the container
is also possibly anisotropic. Recently, the isoperimetric problem for the relative perimeter of sets contained in the
complement of a convex set had been addressed in [CGR07], where a sharp isoperimetric inequality is established,
and in [FM23], where the rigidity of the inequality is addressed in the generality of measurable sets. Extensions
of [CGR07] to higher codimension have been considered in [LWW23; Kru17], while the case of capillary energy
outside convex cilinders has been considered in [FJM24].
The minimality of sets 𝐵𝜆(𝑣, 𝑥) for (1.1.4) comes with an isoperimetric inequality for 𝑃𝜆

𝑃𝜆(𝐸) ≥ 𝑐(𝑛, 𝜆)|𝐸|
𝑛−1
𝑛 .

In order to prove a quantitative isoperimetric inequality for (1.1.4), we define the corresponding Fraenkel asym-
metry and isoperimetric deficit by setting

𝛼𝜆(𝐸) ∶= inf
{

|𝐸Δ𝐵𝜆(𝑣, 𝑥)|
𝑣

∶ 𝑥 ∈ {𝑥𝑛 = 0}
}

, 𝐷𝜆(𝐸) ∶=
𝑃𝜆(𝐸) − 𝑃𝜆(𝐵𝜆(𝑣))

𝑃𝜆(𝐵𝜆(𝑣))
,

for any 𝐸 ⊂ {𝑥𝑛 > 0} with volume |𝐸| = 𝑣. The infimum defining the asymmetry is, in fact, a minimum.
The first main result is the following
Theorem 1.1.1 ([PP24]). Let 𝜆 ∈ (−1, 1) and 𝑛 ∈ ℕ with 𝑛 ≥ 2. There exists a constant 𝑐iso = 𝑐iso(𝑛, 𝜆) > 0 such
that for any measurable set 𝐸 ⊂ ℝ𝑛 ∩ {𝑥𝑛 > 0} with finite measure there holds

𝛼𝜆(𝐸)2 ≤ 𝑐iso𝐷𝜆(𝐸). (1.1.5)
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As for the classical quantitative isoperimetric inequality, perturbing the boundary of an optimal bubble only inside
the container {𝑥𝑛 > 0}, it is possible to check that exponents in (1.1.5) are sharp.
Observing that, roughly speaking, the minimization problem

inf
{

𝑃𝜆(𝐸) ∶ 𝐸 ⊂ {𝑥𝑛 > 0}, |𝐸| = 𝑣
}

is symmetric with respect to the first 𝑛 − 1 axes, it is possible to adapt arguments in the spirit of [FMP08] to see
that, in order to prove Theorem 1.1.1, it is sufficient to prove (1.1.5) in a class of suitable axially symmetric sets,
see Corollary 3.4.12. However, the arguments in [FMP08] require to symmetrize a competitor with respect to a
preferred axis depending on the competitor, while in our case it is only possible to symmetrize with respect to the
𝑛-th axis. The proof of (1.1.5) in this class of symmetric sets is then achieved here with a new combination of the
so-called selection principle [AFM13; CL12] with an Alexandrov–Bakelman–Pucci-type technique in the spirit of
[Cin+22].
In the context of these capillarity problems it is also spontaneous to consider a notion of asymmetry for the part of
the boundary of a set that touches the plane {𝑥𝑛 = 0}. For a measurable set 𝐸 ⊂ {𝑥𝑛 > 0}, we define

𝛽𝜆(𝐸) ∶= inf

{

𝑛−1 (𝜕∗𝐸 ∩ {𝑥𝑛 = 0} Δ 𝜕∗𝐵𝜆(|𝐸|, 𝑥) ∩ {𝑥𝑛 = 0}
)

𝑛−1
(

𝜕∗𝐵𝜆(|𝐸|, 𝑥) ∩ {𝑥𝑛 = 0}
) ∶ 𝑥 ∈ {𝑥𝑛 = 0}

}

.

The previous quantity measures the asymmetry of the set 𝜕∗𝐸 ∩{𝑥𝑛 = 0} with respect to (𝑛−1)-dimensional balls
in {𝑥𝑛 = 0} having volume equal to the one of the trace of the optimal bubble corresponding to the volume of 𝐸.
We establish the following second quantitative isoperimetric inequality, that provides a quantitative estimate on 𝛽𝜆.
Theorem 1.1.2 ([PP24]). Let 𝜆 ∈ (−1, 1) and 𝑛 ∈ ℕ with 𝑛 ≥ 2. There exists a constant 𝑐′iso = 𝑐′iso(𝑛, 𝜆) > 0 such
that for any measurable set 𝐸 ⊂ ℝ𝑛 ∩ {𝑥𝑛 > 0} with finite measure there holds

𝛽𝜆(𝐸) ≤ 𝑐′isomax
{

𝐷𝜆(𝐸), 𝐷𝜆(𝐸)
1
2𝑛

}

.

Theorem 1.1.2 follows by applying again a selection-type argument where now 𝛽𝜆 plays the role of the Fraenkel
asymmetry, together with a quantitative inequality that estimates the Hausdorff distance between the relative bound-
ary in {𝑥𝑛 > 0} of a suitable competitor 𝐸 and the relative boundary of some bubble in terms of the Fraenkel
asymmetry of 𝐸, see Lemma 3.6.4.

1.2 Capillarity in presence of nonlocal repulsion and gravity

The classical liquid drop model for the atomic nucleus in the Euclidean space ℝ𝑛, for 𝑛 ≥ 2, aims to characterize
minimizers of the functional

𝑃 (𝐸) + ∫𝐸 ∫𝐸
1

|𝑦 − 𝑥|𝛼
d𝑦 d𝑥

among sets of given volume, where 0 < 𝛼 < 𝑛 is a given parameter and 𝑃 (𝐸) denotes the perimeter of 𝐸 ⊂ ℝ𝑛.
There is a clear competition between the two terms in the energy, since the ball at the same time minimizes the
perimeter, by the isoperimetric inequality [De 58], [Mag12, Theorem 14.1] and maximizes the second term, by
the Riesz rearrangement inequality [Rie30], [LL01, Theorem 3.7]. The physically relevant case is when 𝛼 = 1
and 𝑛 = 3, that is when the second term is the Coulombic energy. This case goes back to Gamow’s liquid drop
model for atomic nuclei [Gam30], subsequently developed by von Weizsäcker [Wei35], Bohr [Boh36; BW39], and
many other researchers. This model is used to explain various properties of nuclear matter [CPS74; CS62; MS96;
PTM90], but it also arises in the Ohta-Kawasaki model for diblock copolymers [OK86] and in many other physical
situations, see [CM75; CK93; Gen79; EK93; GDM95; KN86; Mam94; Nag95; NKD94]. For a more specific
account on the physical background of this kind of problems, we refer to [Mur02].
In the last decades, the model for general 𝛼 and 𝑛 has gained renewed interest in mathematics literature, in order to
investigate existence and non-existence of minimizers and the minimality of the ball. In [KM13a; KM14], Knüpfer
and Muratov proved that balls are the only minimizers in the small mass regime when 𝑛 = 2 and when 3 ≤ 𝑛 ≤ 7
with 0 < 𝛼 < 𝑛 − 1. At the same time they obtained nonexistence results when 𝑛 ≥ 2 and 𝛼 ∈ (0, 2). See also
the alternative proofs [FKN16; LO14; Jul14] in the case 𝛼 = 1 and 𝑛 = 3 and [MZ14] in the case 𝑛 = 2 with 𝛼
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sufficiently small. Later on, Bonacini and Cristoferi [BC14] proved existence and uniqueness results for every 𝑛
and 0 < 𝛼 < 𝑛 − 1. Finally, Figalli, Fusco, Maggi, Millot and Morini [Fig+15] studied the case 0 < 𝛼 < 𝑛 for
every 𝑛, even replacing the perimeter 𝑃 (𝐸) by the fractional perimeter 𝑃𝑠(𝐸), 0 < 𝑠 ≤ 1. We refer to [CMT17;
NO23a] for a review on the topic and to [AFM13; Fra19; FL15; FN21; FNV18; Jul17; Mur10; Nam20; NO23b;
Ono22] and references therein for a more complete treatment. A variant of the problem with a constant background
has been studied by [ACO09; CS13; CP10; CP11; EFK20; FL19; KMN16]; see also [AFM13; Ala+19; CN17;
FNV18; GMS13; GMS14; Mur10; Nam20; Ono22; ST11] for further results on related problems.
In Chapter 4 we investigate, under a volume constraint and among sets contained in a Euclidean half-space, the
minimization problem of an energy functional given by the sum of the capillarity perimeter, a nonlocal interaction
term and a gravitational potential energy. In particular, if 𝑔 ∶ ℝ𝑛⧵{0} → (0,∞), we define the Riesz-type potential

ℛ(𝐸) ∶= ∫𝐸 ∫𝐸
𝑔(𝑦 − 𝑥) d𝑦 d𝑥,

and, given a function 𝐺 ∶ (0,∞) → (0,∞), we define the gravity-type potential
𝒢 (𝐸) ∶= ∫𝐸

𝐺(𝑥𝑛) d𝑥.

If 𝑣 > 0 and we denote
ℱ 𝜆(𝐸) ∶= 𝑃𝜆(𝐸) +ℛ(𝐸) + 𝒢 (𝐸),

we consider the nonlocal problem
inf{ℱ 𝜆(𝐸) ∶ 𝐸 ⊂ {𝑥𝑛 > 0}, |𝐸| = 𝑣}.

In the context of minimization of energies

𝑃 (𝐸) + ∫𝐸 ∫𝐸
𝑔(𝑦 − 𝑥) d𝑦 d𝑥

with general Riesz-type potential 𝑔 in the Euclidean space ℝ𝑛, Novaga and Pratelli in [NP21] showed the existence
of (generalized) minimizers for radially decreasing 𝑔. Later on, Carazzato, Fusco and Pratelli in [CFP23] showed
that the ball is the unique minimizer in the small mass regime. Pegon in [Peg21] showed that, if the kernel 𝑔 decays
sufficiently fast at infinity and if the volume is sufficiently large, then minimizers exist and converge to a ball as
the volume goes to infinity. Then, Merlet and Pegon [MP22] proved that in the planar case minimizers are actually
balls in the large mass regime. In [NO22], Novaga and Onoue obtained existence of minimizers for any volume
and convergence to a ball as volume goes to infinity, if the Riesz potential decays sufficiently fast and even if the
perimeter 𝑃 (𝐸) is replaced by the fractional perimeter 𝑃𝑠(𝐸), 0 < 𝑠 < 1. We refer to [CN18; MW21; MS19;
Rig00] and references therein for a more complete treatment on general nonlocal energies.
The first result is an existence result in the small mass regime, together with a bound on the Fraenkel asymmetry
and some qualitative properties of volume constrained minimizers. At the same time, under suitable conditions on
the potential energies, existence result extends to all masses.
Theorem 1.2.1 ([Pas25]). Let 𝑔 be a ℛ-admissible 𝑞-growing function, 𝑞 ≥ 0, and let 𝐺 be a 𝒢 -admissible
function. There exists a mass �̄� = �̄�(𝑛, 𝜆, 𝑔, 𝐺, 𝑞) > 0 such that, for every 𝑚 ∈ (0, �̄�), there exists a minimizer of
ℱ 𝜆 in the class

𝑚 ∶= {Ω ⊂ ℝ𝑛 ⧵𝐻 measurable ∶ |Ω| = 𝑚}

and it satisfies
𝛼𝜆(𝐸) ≤ 𝑐(𝑛, 𝜆, 𝑔, 𝐺)𝑚

1
2𝑛 .

Moreover, if 𝑔 is also infinitesimal, minimizers are indecomposable and, if in addition 𝑔 is symmetric, minimizers
are essentially bounded.
Furthermore, if 𝑔 is also 0-growing, infinitesimal and symmetric and 𝐺 is coercive, minimizers have no holes, i.e.,
if 𝐸 is a minimizer of ℱ 𝜆 in 𝑚, there is no set 𝐹 ⊂ ℝ𝑛 ⧵ (𝐻 ∪ 𝐸) with |𝐹 | > 0 such that

𝑃𝜆(𝐸) = 𝑃𝜆(𝐸 ∪ 𝐹 ) + 𝑃 (𝐹 ,ℝ𝑛 ⧵𝐻) + 𝜆𝑛−1(𝜕∗𝐹 ∩ 𝜕𝐻).

Finally, if 𝑔 is ℛ-admissible and coercive and 𝐺 is 𝒢 -admissible and coercive, there exists a minimizer of ℱ 𝜆 in
𝑚 for any 𝑚 > 0.
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Let us make some comments on the definitions present in Theorem 1.2.1, while referring to Section 4.2 for their
precise enunciation. The “admissibility” requirements on the kernels just refer to some necessary integrability
conditions. The infinitesimality of 𝑔 and the coercivity of 𝑔 and 𝐺 concern the behavior of these functions as the
variable diverge, while the symmetry of 𝑔 is referred to the symmetry with respect to the origin. The 𝑞-growing
property is satisfied by rather general nonlocal interaction terms, not only by repulsive ones. Indeed, we point out
that classical radial decreasing kernels are 0-growing, but at the same time attractive-repulsive kernels of the type

𝑔(𝑥) = |𝑥|𝛽1 + 1
|𝑥|𝛽2

, 𝛽1 > 0, 𝛽2 ∈ (0, 𝑛), (1.2.1)
are 𝑞-growing for any 𝑞 ≥ 𝛽1, even if they diverge positively as |𝑥| → +∞, see Definition 4.2.1 and Remark 4.2.3.
In particular attractive-repulsive kernels as in (1.2.1) represent a possible choice in the definition of ℱ 𝜆 in Theo-
rem 1.2.1. Minimization problems for attractive-repulsive functionals have been widely studied in the last years.
Existence and nonexistence results are addressed in [BCT18; FL18; FL21]. Stability and uniqueness of minimiz-
ers have been respectively studied in [BCT24; Lop19]. We refer to [Car23; CP22; CPT23; CDM16] for a more
complete treatment on this kind of problems.
For large masses and for suitable choices of repulsive kernels 𝑔, the repulsive interaction dominates and the varia-
tional problem in Theorem 1.2.1 does not admit a minimizer.
Theorem 1.2.2 ([Pas25]). Let

𝑔(𝑥) = 1
|𝑥|𝛽

, 0 < 𝛽 < 𝑛, 𝑥 ∈ ℝ𝑛 ⧵ {0}

and let 𝐺 be 𝒢 -admissible. For every 𝛽 ∈ (0, 2], there exists �̃� > 0, depending on 𝑛, 𝜆, 𝛽, 𝐺, such that for all
𝑚 ≥ �̃� the minimization problem

inf{ℱ 𝜆(𝐸) ∶ 𝐸 ⊂ ℝ𝑛 ⧵𝐻, |𝐸| = 𝑚}

has no minimizers.

Therefore, for a general repulsive kernel 𝑔, existence may fail for masses large enough, since minimizers tend to
split in two or more components which then move apart one from the other in order to decrease the nonlocal energy.
To capture this phenomenon, it is convenient to introduce a generalized energy defined as

ℱ̃ 𝜆(𝐸) ∶= inf
ℎ∈ℕ

ℱ̃ 𝜆
ℎ (𝐸),

where
ℱ̃ 𝜆
ℎ (𝐸) ∶= inf

{ ℎ
∑

𝑖=1
ℱ 𝜆(𝐸𝑖) ∶ 𝐸 =

ℎ
⋃

𝑖=1
𝐸𝑖, 𝐸𝑖 ∩ 𝐸𝑗 = ∅ for 1 ≤ 𝑖 ≠ 𝑗 ≤ ℎ

}

.

Note that in this functional the interaction between different components is not evaluated, which corresponds to
consider them “at infinite distance” one from the other.
By considering ℱ̃ 𝜆 instead of ℱ 𝜆, we can prove the following generalized existence result.
Theorem 1.2.3 ([Pas25]). Let 𝑔 be a ℛ-admissible 𝑞-growing function, 𝑞 ≥ 0, and let 𝐺 be a 𝒢 -admissible
function. For every 𝑚 > 0 there exists a minimizer of ℱ̃ 𝜆 in the class

𝑚 = {Ω ⊂ ℝ𝑛 ⧵𝐻 measurable ∶ |Ω| = 𝑚} .

More precisely, there exist a set 𝐸 ∈  and a subdivision 𝐸 = ∪ℎ𝑗=1𝐸
𝑗 , with pairwise disjoint sets 𝐸𝑗 , such that

ℱ̃ 𝜆(𝐸) =
ℎ
∑

𝑗=1
ℱ 𝜆(𝐸𝑗) = inf

{

ℱ̃ 𝜆(Ω) ∶ Ω ∈ 
}

.

Moreover, for every 1 ≤ 𝑗 ≤ ℎ, the set 𝐸𝑗 is a minimizer of both the standard and the generalized energy for its
volume, i.e.

ℱ̃ 𝜆(𝐸𝑗) = ℱ 𝜆(𝐸𝑗) = min
{

ℱ̃ 𝜆(Ω) ∶ Ω ⊂ ℝ𝑛 ⧵𝐻, |Ω| = |𝐸𝑗
|

}

.

We remark that in previous theorems we heavily use the quantitative isoperimetric inequality (1.1.5) for the capil-
larity problem. Moreover, classical and inspiring arguments as in [FN21; KM14; NP21] must be modified to take
into account the presence of the gravitational energy and since the vertical direction must be treated separately.
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1.3 Further results: Regularity theory for systems with discontinuous coeffi-
cients

In Chapter 5 we consider nonlinear elliptic systems of the type
div𝐴(𝑥,𝐷𝑢(𝑥)) = div𝐹 (𝑥) (1.3.1)

in a bounded domain Ω ⊂ ℝ𝑛, 𝑛 > 2, and with 𝑢 ∶ Ω → ℝ𝑁 , 𝑁 > 1. We suppose that the vector field
𝐴 ∶ Ω ×ℝ𝑁×𝑛 → ℝ𝑁×𝑛 is a Carathéodory function, i.e.

• 𝑥→ 𝐴(𝑥, 𝜉) is measurable for all 𝜉 ∈ ℝ𝑁×𝑛,
• 𝜉 → 𝐴(𝑥, 𝜉) is continuous for a.e. 𝑥 ∈ Ω.

Furthermore, we assume that there exist a function 𝑏(𝑥) ≥ 𝜆0 > 0, belonging to the space 𝐵𝑀𝑂, and a function
𝐾(𝑥), belonging to the Marcinkiewicz space 𝐿𝑛,∞(Ω), such that 𝐹 ∈ 𝑊 1,2

𝑙𝑜𝑐 (𝑏,Ω;ℝ
𝑁×𝑛) and, for a.e. 𝑥, 𝑦 ∈ Ω,

|𝐴(𝑥, 𝜉) − 𝐴(𝑥, 𝜂)| ≤ 𝑘𝑏(𝑥)|𝜉 − 𝜂| (𝜇2 + |𝜉|2 + |𝜂|2)
𝑝−2
2 , (1.3.2)

1
𝑘
𝑏(𝑥)|𝜉 − 𝜂|2 (𝜇2 + |𝜉|2 + |𝜂|2)

𝑝−2
2 ≤ ⟨𝐴(𝑥, 𝜉) − 𝐴(𝑥, 𝜂), 𝜉 − 𝜂⟩ , (1.3.3)

|𝐴(𝑥, 𝜂) − 𝐴(𝑦, 𝜂)| ≤ |𝑥 − 𝑦| [𝐾(𝑥) +𝐾(𝑦)] (𝜇2 + |𝜂|2)
𝑝−1
2 (1.3.4)

𝐴(𝑥, 0) = 0 (1.3.5)
|𝑏(𝑥) − 𝑏(𝑦)| ≤ |𝑥 − 𝑦| [𝐾(𝑥) +𝐾(𝑦)], (1.3.6)

where 𝑘 is a positive constant, 𝜇 ∈ (0, 1], 𝑝 ≥ 2, 𝜉 and 𝜂 are arbitrary elements of ℝ𝑁×𝑛. In the account of the
typical functions of 𝐵𝑀𝑂 and 𝐿𝑛,∞ respectively, the functions

𝑏(𝑥) = e−|𝑥|
Λ

− Λ log |𝑥|

𝐾(𝑥) = e−|𝑥|
Λ

+ Λ 1
|𝑥|
,

defined for a positive Λ with 𝑥 ∈ 𝐵(0, 1) = {𝑦 ∈ ℝ𝑛 ∶ 0 < |𝑦| < 1}, satisfy assumption (1.3.6).
A vector field 𝑢 in the Sobolev space 𝑊 1,𝑟

𝑙𝑜𝑐 (𝑏,Ω;ℝ
𝑁 ), 𝑟 > 2𝑛

𝑛+2 , is a local solution of (1.3.1) if it verifies

∫supp𝜑
⟨𝐴(𝑥,𝐷𝑢(𝑥)), 𝐷𝜑(𝑥)⟩ d𝑥 = ∫supp𝜑

⟨𝐹 (𝑥), 𝐷𝜑(𝑥)⟩ d𝑥 ∀𝜑 ∈ 𝐶∞
0 (Ω,ℝ𝑁 ).

Our first goal is to study regularity properties of local solutions to (1.3.1) for 𝑟 close to 𝑝. The existence of second
derivatives is not clear due to the degeneracy of the problem; anyway, although the first derivatives of the solutions
may not be differentiable, the higher differentiability of solutions holds in the sense that the nonlinear expressions
𝑉𝜇(𝐷𝑢) ∶= (𝜇2 + |𝐷𝑢|2)

𝑝−2
4 𝐷𝑢 of their gradients, with 𝜇 ∈ (0, 1], are weakly differentiable. Therefore, the main

result is the following:
Theorem 1.3.1 ([MP24]). Let Ω be a regular domain, 𝐴(𝑥, 𝜉) a mapping verifying assumptions (1.3.2), (1.3.3),
(1.3.4) and (1.3.5), and 𝐹 ∈ 𝑊 1,2

𝑙𝑜𝑐 (𝑏,Ω;ℝ
𝑁×𝑛), with 𝑏(𝑥) as in (1.3.6). There exist 0 < 𝜀1 <

1
2
, depending on 𝑘, 𝑛,

𝜆0, 𝑝 and the 𝐵𝑀𝑂 - norm of 𝑏(𝑥), and 𝛼1 > 0, depending on 𝑝, 𝑛, 𝜆0, 𝜇 and 𝑘, such that, if 𝑢 ∈ 𝑊 1,𝑝−𝜀
𝑙𝑜𝑐 (𝑏,Ω;ℝ𝑁 ),

with 0 ≤ 𝜀 < 𝜀1, is a local solution of (1.3.1) and

𝒟𝐾 ∶= dist𝐿𝑛,∞(𝐾(𝑥), 𝐿∞) < 𝛼1,

then 𝐷(𝑉𝜇(𝐷𝑢)) ∈ 𝐿2
𝑙𝑜𝑐(𝑏,Ω) and the following estimate holds:

∫𝐵𝑅
|𝐷(𝑉𝜇(𝐷𝑢))|2𝑏 d𝑥 ≤ 𝑐 ∫𝐵2𝑅

((

1 + 1
𝑅2

)

(𝜇2 + |𝐷𝑢|2)
𝑝
2 + (𝜇2 + |𝐷𝐹 |2)

)

𝑏 d𝑥,

for every ball 𝐵2𝑅 ⊂⊂ Ω and for a constant 𝑐 depending on 𝑝, 𝑘, 𝜆0, 𝑛, 𝜇 and 𝒟𝐾 .
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The novelty of Theorem 1.3.1 is to consider nonlinear systems with growth coefficients in𝐵𝑀𝑂 and not uniformly
continuous in the spatial variable, whose feature is that they are allowed to be very irregular. Moreover we deal
with local solutions 𝑢 to (1.3.1) lying in 𝑊 1,𝑟 with 𝑟 ≤ 𝑝. In this case the energy functional

∫Ω
⟨𝐴(𝑥,𝐷𝑢(𝑥)), 𝐷𝑢(𝑥)⟩ d𝑥

could not be bounded. We refer to such a solution as a very weak solution as stated by Iwaniec and Sbordone in
[IS94]. We explicitly remark that, thanks to the embedding theorem, our results apply if the growth coefficients lie
in 𝑊 1,𝑛. Theorem 1.3.1 extends analogous results in [MP21], which deals with linear systems of the type

div𝐴(𝑥)𝐷𝑢(𝑥) = div𝐹 (𝑥) + 𝑔.

In the linear case, the regularity results for systems with continuous coefficients can be considered classical. The
first remarkable contribution is due to Agmon, Douglis and Nirenberg [ADN59; ADN64]. Later regularity results
of Schauder type in the class of Hölderian functions are proved by Campanato [Cam65] and Morrey [Mor54]. See
also [CC81]. A full discussion can be found in [GGM13; GM18].
The study of the second order regularity of solutions to linear equations with discontinuous coefficients goes back
to C. Miranda who, in [Mir53; Mir60], considered equations with coefficients in the Sobolev class 𝑊 1,𝑛. Then a
significant improvement has been given in [AT85; CFL91; CFL93]. Subsequently, a complete regularity theory for
equations in nondivergence form was developed by assuming coefficients in the vanishing mean oscillation space
𝑉𝑀𝑂 (see e.g. [CFL93; Chi94]). More recently, in connection with the regularity of minimizers of functionals
of the Calculus of Variations [AF89], the study of higher differentiability for solutions to problems of the type

div𝐴(𝑥,𝐷𝑢) = div𝐹 (𝑥) (1.3.7)
had a remarkable development. In particular, estimates of the type

∫𝐵𝑅
|𝐷2𝑢|2 d𝑥 ≤ 𝑐 ∫𝐵2𝑅

((

1 + 1
𝑅2

)

|𝐷𝑢|𝑝 + |𝐷𝐹 |2
)

d𝑥

are important elements to prove partial regularity properties of solutions to nonlinear elliptic systems with Uhlen-
beck structure. Linear equations having coefficients in 𝐵𝑀𝑂 with small norm have been addressed in [GMR09].
In [Str01] Stroffolini studied the Dirichlet problem for very weak solutions to a linear system with coefficients in
𝐵𝑀𝑂. More recently, a smallness condition on

𝒟(⋅) ∶= dist𝐿𝑛,∞(⋅, 𝐿∞)

has been considered in [GM18] to study the 𝐿𝑝 - regularity of a linear Dirichlet problem. In [DK11] linear systems
with coefficients having in some directions locally small mean oscillation have been studied. The case of a nonlinear
system with 𝑏(𝑥) ∈ 𝐿∞(Ω) has been considered in [GM23]. For a more complete treatment about smallness
conditions on 𝒟(⋅), we refer to [Far+23; Far+21]. In these papers a similar bound turned out to be necessary in
proving the existence of solutions to noncoercive PDEs having singularities in the coefficients of lower order terms.
We also mention the similar conditions in [Boc15; GMZ15; GMZ18]. Optimal second order regularity properties
of solutions to nonlinear 𝑝-Laplacian systems are given in [CM19], when the datum in the right hand side of (1.3.7)
is not in divergence form. We refer also to [KM13b; KM10; Min06] and reference therein. We point out that for
local solutions of homogeneous systems

div𝐴(𝑥,𝐷𝑢) = 0,

Theorem 1.3.1 also applies in the degenerate case, i.e. 𝜇 = 0, with constants independent of 𝜇. As a consequence,
in section we establish certain local Calderón and Zygmund type estimates without assuming any differentiability
condition on the datum. More precisely, for 𝐺 ∈ 𝐿𝑝𝑙𝑜𝑐(𝑏,Ω;ℝ

𝑁×𝑛) we consider the problem
div𝐴(𝑥,𝐷𝑢(𝑥)) = div |𝐺|𝑝−2𝐺 in Ω. (1.3.8)

Then we prove the following result:
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Theorem 1.3.2 ([MP24]). Let Ω be a regular domain and𝐴(𝑥, 𝜉) a mapping verifying assumptions (1.3.2), (1.3.3),
(1.3.4) and (1.3.5), with 𝑏(𝑥) as in (1.3.6). There exists 𝛼2 > 0, depending on 𝑝, 𝑛, 𝜆0 and 𝑘, such that, if 𝑢 ∈
𝑊 1,𝑝
𝑙𝑜𝑐 (𝑏,Ω;ℝ

𝑁 ) is a local solution of (1.3.8) and

𝒟𝐾 ∶= dist𝐿𝑛,∞(𝐾(𝑥), 𝐿∞) < 𝛼2,

then
𝐺 ∈ 𝐿𝑞𝑙𝑜𝑐(𝑏,Ω;ℝ

𝑁×𝑛) ⟹ 𝐷𝑢 ∈ 𝐿𝑞𝑙𝑜𝑐(𝑏,Ω;ℝ
𝑁×𝑛)

for any 𝑞 ∈ (𝑝, 𝑠), where 𝑠 ∶= 𝑛𝑝
𝑛−1 + 𝛿 for a suitable 𝛿 > 0, depending on 𝑝, 𝑘, 𝜆0, 𝑛, 𝒟𝐾 and the 𝐵𝑀𝑂-norm of

𝑏. Moreover, for every cube 𝑄2𝑅 ⊂⊂ Ω and 𝜇 ∈ [0, 1], we have

(

⨍𝑄𝑅

(

𝜇2 + |𝐷𝑢|2
)

𝑞
2 𝑏 d𝑥

)
1
𝑞
≤ 𝑐

(

⨍𝑄2𝑅

(

𝜇2 + |𝐷𝑢|2
)

𝑝
2 𝑏 d𝑥

)
1
𝑝
+

+ 𝑐
(

⨍𝑄2𝑅

(𝜇2 + |𝐺|2)
𝑞
2 𝑏 d𝑥

)
1
𝑞
,

where 𝑐 depends on 𝑝, 𝑠 − 𝑞, 𝑘, 𝜆0, 𝑛, 𝒟𝐾 and the 𝐵𝑀𝑂 - norm of 𝑏 and is independent of 𝜇.

Calderòn–Zygmund type estimates in the case of the 𝑝-Laplacian equation with 𝑝 > 2 were established in the
fundamental paper by T. Iwaniec [Iwa83]. Let us remark that such kind of estimate is relevant to provide upper
bounds for the Hausdorff dimension of the singular set of minima of general variational integrals [KM10; KM06;
Min03]. Additionally, the a priori knowledge of higher integrability of the gradient allows to implement better
schemes in the numerical treatment of problems modeled by energies like ∫Ω ⟨𝐴(𝑥,𝐷𝑢(𝑥)), 𝐷𝑢(𝑥)⟩ d𝑥, as e.g.
electrorheological fluids. Subsequently Iwaniec’s results were generalized to systems by DiBenedetto and Manfredi
[DM93]. Regarding equations of the type

div
(

(𝐴(𝑥) ∇𝑢 ⋅ ∇𝑢)
𝑝−2
2 𝐴(𝑥) ∇𝑢

)

= div|𝐺|𝑝−2𝐺, (1.3.9)

with 𝐴(𝑥) ∶ Ω → ℝ𝑛×𝑛 symmetric, local and global estimates for the gradient of a solution were considered by
Iwaniec and Sbordone [IS01; IS98] and by Kinnunen and Zhou [KZ99] when the coefficients of 𝐴(𝑥) are bounded
and in 𝑉𝑀𝑂. The condition about 𝐴(𝑥) in 𝑉𝑀𝑂 is relaxed to a small 𝐵𝑀𝑂 condition in [BW04] and [BWZ07].
Recently local and global estimates for degenerate equations of the type (1.3.9) are given in weighted spaces in
[Bal+23] and [Bal+22b] assuming a smallness condition for the𝐵𝑀𝑂 norm of log𝐴(𝑥) depending on the exponent
𝑞. This result is not strictly comparable with results in [MP21; MP24], where the exponent depends on the 𝐵𝑀𝑂
norm and on the bound on the distance 𝒟(⋅). Moreover, as mentioned earlier, we require no condition of smallness
of the norm.
New main estimates for the development of nonlinear Calderòn–Zygmund theory for equations and systems are due
to Mingione, starting from pioneering papers [Min07a; Min07b]. Regarding systems, weaker results are available
unless in the case of the 𝑝-Laplacian system (see [DM93; Uhl77]). Indeed, some bounds on exponent 𝑞 is necessary
according to the example exhibited in [ŠY02]. If the vector field 𝐴(𝜉) is sufficiently regular, then CZ-estimates
survive for 𝑞 ∈

(

𝑝, 𝑛𝑝
𝑛−2

)

(see [DKM07; Min17] and references therein). A significant extension of CZ-theory to
non-uniformly elliptic operators shaped on the 𝑝(𝑥)-Laplacian [AM05; CKP11] and to the double-phase problems
[CM15] were also established, following the fundamental paper [Mar89].
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Chapter 2

Preliminaries

In this chapter we recall the main definitions and tools we will need, with the aim of fixing the notation and making
the exposition self-contained, at least as far as the results are concerned.

2.1 Preliminaries in measure theory

In this section we present the basic notions of measure theory which are exlpoited in the text, while we refer to
[AFP00; Bre95; Fed69; Mag12; Rud87] for a complete treatment on the topic

Abstract measure theory

Definition 2.1.1 (𝜎-algebras and measure spaces). Let 𝑋 be a nonempty set and let  be a collection of subsets of
𝑋.

• We say that  is a 𝜎-algebra if ∅ ∈  , for any sequence {𝐸ℎ} ⊂  its union ⋃

ℎ𝐸ℎ belongs to  and
𝑋 ⧵ 𝐹 ∈  whenever 𝐹 ∈  .

• For any collection  of subsets of 𝑋, the 𝜎-algebra generated by  is the smallest 𝜎-algebra containing .
If (𝑋, 𝜏) is a topological space, we denote by (𝑋) the 𝜎-algebra of Borel subsets of 𝑋, i.e., the 𝜎-algebra
generated by the open subsets of 𝑋.

• If  is a 𝜎-algebra in 𝑋, we call the pair (𝑋, ) a measure space.
Since the intersection of any family of 𝜎-algebras is a 𝜎-algebra, the definition of generated 𝜎-algebra is well posed.
Definition 2.1.2 (Positive measures). Let (𝑋, ) be a measure space and 𝜇 ∶  → [0,∞].

• We say that 𝜇 is a positive measure if 𝜇(∅) = 0 and 𝜇 is 𝜎-additive on  , i.e. for any sequence {𝐸ℎ} of
pairwise disjoint elements of 

𝜇

( ∞
⋃

ℎ=0
𝐸ℎ

)

=
∞
∑

ℎ=0
𝜇(𝐸ℎ).

We say that 𝜇 is finite if 𝜇(𝑋) <∞.
• We say that a positive measure 𝜇 on 𝑋 is 𝜎-finite if 𝑋 is the union of an increasing sequence of sets with

finite measure.
A positive measure 𝜇 such that 𝜇(𝑋) = 1 is also called a probability measure.
Beside positive measures, it is also possible to define real- and vector-valued measures. Note that positive measures
are not a particular case of real measures, since real measures, according to the following definition, must be finite.
Definition 2.1.3 (Real and vector measures). Let (𝑋, ) is a measure space and let 𝑚 ∈ ℕ, 𝑚 ≥ 1.
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• We say that 𝜇 ∶  → ℝ𝑚 is a measure if 𝜇(∅) = 0 and for any sequence {𝐸ℎ} of pairwise disjoint elements
of 

𝜇

( ∞
⋃

ℎ=0
𝐸ℎ

)

=
∞
∑

ℎ=0
𝜇(𝐸ℎ). (2.1.1)

If 𝑚 = 1 we say that 𝜇 is a real measure, if 𝑚 > 1 we say that 𝜇 is a vector measure.
• If 𝜇 is a measure, we define its total variation |𝜇| for every 𝐸 ∈  as follows:

|𝜇|(𝐸) ∶= sup

{ ∞
∑

ℎ=0
|𝜇(𝐸ℎ)| ∶ 𝐸ℎ ∈  pairwise disjoint, 𝐸 =

∞
⋃

ℎ=0
𝐸ℎ

}

.

Note that the absolute convergence of the series in (2.1.1) is a requirement on the set function 𝜇: in fact, the sum
of the series cannot depend on the order of its terms, as the union does not. Moreover, by [AFP00, Theorem 1.6]
|𝜇| is a positive finite measure.
Definition 2.1.4 (𝜇-negligible sets). Let 𝜇 be a positive measure on the measure space (𝑋, ).

• We say that 𝑁 ⊂ 𝑋 is 𝜇-negligible if there exists 𝐸 ∈  such that 𝑁 ⊂ 𝐸 and 𝜇(𝐸) = 0.
• We say that a property 𝑃 (𝑥) depending on the point 𝑥 ∈ 𝑋 holds 𝜇-a.e. in 𝑋 if the set where 𝑃 fails is a
𝜇-negligible set.

• Let 𝜇 be the collection of all the subsets of 𝑋 of the form 𝐹 = 𝐸 ∪𝑁 , with 𝐸 ∈  and 𝑁 𝜇-negligible;
then 𝜇 is a 𝜎-algebra which is called the 𝜇-completion of  , and we say that 𝐸 ⊂ 𝑋 is 𝜇-measurable if
𝐸 ∈ 𝜇. The measure 𝜇 extends to 𝜇 by setting, for 𝐹 as above, 𝜇(𝐹 ) = 𝜇(𝐸).

If 𝜇 is a real or vector measure, we call the completion of  with respect to the total variation |𝜇| of 𝜇 the 𝜇-
completion 𝜇 of  . Then, the measure 𝜇 can be extended to 𝜇 as above. Unless otherwise indicated, from now
on each measure 𝜇 is tacitly extended to the completion 𝜇.
Definition 2.1.5 (Measurable functions). Let (𝑋, ) be a measure space and (𝑌 , 𝑑) a metric space.

• A function 𝑓 ∶ 𝑋 → 𝑌 is said to be -measurable if 𝑓−1(𝐴) ∈  for every open set 𝐴 ⊂ 𝑌 .
• If 𝜇 is a positive measure on (𝑋, ) the function 𝑓 is said to be 𝜇-measurable if it is 𝜇-measurable.

In particular, if 𝑓 is -measurable then 𝑓−1(𝐵) ∈  for every 𝐵 ∈ (𝑌 ).
Definition 2.1.6 (Integrals). Let (𝑋, ) be a measure space.

• For 𝐸 ⊂ 𝑋 we define the characteristic function of 𝐸, denoted by 𝜒𝐸 , by

𝜒𝐸(𝑥) ∶=

{

1 if 𝑥 ∈ 𝐸
0 if 𝑥 ∉ 𝐸.

We say that 𝑓 ∶ 𝑋 → ℝ is a simple function if the image of 𝑓 is finite.
• Let 𝜇 be a positive measure on (𝑋, ); the integral of a simple 𝜇-measurable function 𝑢 ∶ 𝑋 → [0,∞) is

defined by
∫𝑋

𝑢 d𝜇 ∶=
∑

𝑧∈im(𝑢)
𝑧𝜇(𝑢−1(𝑧)),

where we adopt the convention that whenever 𝑧 = 0 and 𝜇(𝑢−1(𝑧)) = ∞ the product 𝑧𝜇(𝑢−1(𝑧)) is set equal
to zero. The definition is extended to any 𝜇-measurable function 𝑢 ∶ 𝑋 → [0,∞] by setting:

∫𝑋
𝑢 d𝜇 ∶= sup

{

∫𝑋
𝑣 d𝜇 ∶ 𝑣 𝜇−measurable, simple, 𝑣 ≤ 𝑢

}

.
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We say that a 𝜇-measurable map 𝑢 ∶ 𝑋 → ℝ is 𝜇-integrable if either

∫𝑋
𝑢+ d𝜇 <∞ or ∫𝑋

𝑢− d𝜇 <∞.

If 𝑢 is 𝜇-integrable, we set
∫𝑋

𝑢 d𝜇 ∶= ∫𝑋
𝑢+ d𝜇 − ∫𝑋

𝑢− d𝜇.

• Let 𝜇 be a measure on (𝑋, ) and 𝑢 ∶ 𝑋 → ℝ a |𝜇|-measurable function; we say that 𝑢 is 𝜇-integrable if 𝑢
is |𝜇|-integrable and, if 𝜇 is real, we set

∫𝑋
𝑢 d𝜇 ∶= ∫𝑋

𝑢 d𝜇+ − ∫𝑋
𝑢 d𝜇−.

If 𝜇 is an ℝ𝑚-valued vector measure then we set

∫𝑋
𝑢 d𝜇 ∶=

(

∫𝑋
𝑢 d𝜇1,… ,∫𝑋

𝑢 d𝜇𝑚

)

.

Note that an immediate consequence of the above definition is the inequality
|

|

|

|

∫𝑋
𝑢 d𝜇

|

|

|

|

≤ ∫𝑋
|𝑢| d|𝜇|,

which holds for every extended real or vector valued function 𝑢 with finite integral and for every positive, real or
vector measure 𝜇. More generally, let us recall
Theorem 2.1.7 (Jensen inequality, [AFP00, Lemma 1.15]). Let Φ ∶ ℝ𝑘 → ℝ∪{+∞} be a convex lower semicon-
tinuous function, 𝜇 a probability measure on (𝑋, ) and 𝑢 ∶ 𝑋 → ℝ𝑘 a 𝜇-summable function; then

Φ
(

∫𝑋
𝑢 d𝜇

)

≤ ∫𝑋
Φ(𝑢) d𝜇.

When 𝐸 is a 𝜇-measurable set the integral of a function 𝑢 on 𝐸 is defined by

∫𝐸
𝑢 d𝜇 ∶= ∫𝑋

𝑢𝜒𝐸 d𝜇,

provided that the right-hand side makes sense. Note also that, if 𝑢 has finite integral, for any 𝜀 > 0 there is a
measurable set 𝐴 with finite measure such that ∫𝑋⧵𝐴 |𝑢| d|𝜇| < 𝜀.
Definition 2.1.8 (𝐿𝑝 spaces). Let (𝑋, ) be a measure space, 𝜇 a positive measure on it and 𝑢 ∶ 𝑋 → ℝ a
𝜇-measurable function. We set

‖𝑢‖𝐿𝑝 ∶=
(

∫𝑋
|𝑢|𝑝 d𝜇

)
1
𝑝

if 1 ≤ 𝑝 <∞, and
‖𝑢‖𝐿∞ ∶= inf{𝐶 ∈ [0,∞] ∶ |𝑢(𝑥)| ≤ 𝐶 for 𝜇−a.e. 𝑥 ∈ 𝑋}

We say that 𝑢 ∈ 𝐿𝑝(𝑋, 𝜇) if ‖𝑢‖𝐿𝑝 <∞. The set 𝐿𝑝(𝑋, 𝜇) is a real vector space and ‖ ⋅ ‖𝐿𝑝 is a semi-norm.
When dealing with measure-theoretic or functional-analytic properties of functions and 𝐿𝑝 spaces, it is often con-
venient to consider functions that agree a.e. as identical, thinking of the elements of 𝐿𝑝 spaces as equivalence
classes; in particular, this makes ‖ ⋅ ‖𝐿𝑝 a norm. However we shall not consider functions agreeing a.e. to be
identical if we are concerned with fine properties of the single function.
For 1 < 𝑝 < ∞ the Banach space 𝐿𝑝 = 𝐿𝑝(𝑋, 𝜇) is uniformly convex (hence reflexive) and its dual is 𝐿𝑝′ , with
𝑝′ = 𝑝

𝑝−1
; if 𝜇 is 𝜎-finite, the dual of 𝐿1 is 𝐿∞. Accordingly, the weak convergence of sequences is defined:
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Definition 2.1.9 (Convergence in 𝐿𝑝 spaces). Given 𝑓 , {𝑓ℎ} ∈ 𝐿𝑝, we say that 𝑓ℎ → 𝑓 weakly if

∫𝑋
𝑓ℎ𝑔 d𝜇 → ∫𝑋

𝑓𝑔 d𝜇

forr any 𝑔 ∈ 𝐿𝑝′ if 1 ≤ 𝑝 <∞, and that 𝑓ℎ → 𝑓 weakly∗ in 𝐿∞ if 𝑝 = ∞ and

∫𝑋
𝑓ℎ𝑔 d𝜇 → ∫𝑋

𝑓𝑔 d𝜇

for any 𝑔 ∈ 𝐿1.
We state here some relevant theorems concerning convergence of integrals.
Theorem 2.1.10 (Fatou’s lemma, [AFP00, Theorem 1.20]). Let 𝑢ℎ ∶ 𝑋 → ℝ be a 𝜇-measurable function and
𝑔 ∈ 𝐿1(𝑋, 𝜇). Then

∫𝑋
lim inf
ℎ→∞

𝑢ℎ d𝜇 ≤ lim inf
ℎ→∞ ∫𝑋

𝑢ℎ d𝜇

if 𝑢ℎ ≥ 𝑔 for any ℎ ∈ ℕ and

∫𝑋
lim sup
ℎ→∞

𝑢ℎ d𝜇 ≥ lim sup
ℎ→∞ ∫𝑋

𝑢ℎ d𝜇

if 𝑢ℎ ≤ 𝑔 for any ℎ ∈ ℕ.

Theorem 2.1.11 (Dominated convergence theorem, [AFP00, Theorem 1.21]). Let 𝑢, 𝑢ℎ ∶ 𝑋 → ℝ be 𝜇-
measurable functions, and assume that 𝑢ℎ(𝑥) → 𝑢(𝑥) for 𝜇-a.e. 𝑥 ∈ 𝑋 as ℎ→ ∞. If

∫𝑋
sup
ℎ

|𝑢ℎ| d𝜇 <∞

then
lim
ℎ→∞∫𝑋

𝑢ℎ d𝜇 = ∫𝑋
𝑢 d𝜇.

Now we introduce the notion of Borel and Radon measures.
Definition 2.1.12 (Borel and Radon measures). Let 𝑋 be a locally compact and separable metric space, (𝑋) its
Borel 𝜎-algebra, and consider the measure space (𝑋,(𝑋)).

• A positive measure on (𝑋,(𝑋)) is called a Borel measure. If a Borel measure is finite on the compact sets,
it is called positive Radon measure.

• A (real or vector) set function defined on the relatively compact Borel subsets of 𝑋 that is a measure on
(𝐾,(𝐾)) for every compact set𝐾 ⊂ 𝑋 is called a (real or vector) Radon measure on𝑋. If 𝜇 ∶ (𝑋) → ℝ𝑚

is a measure then we say that is a finite Radon measure. We denote by [𝑙𝑜𝑐(𝑋)]𝑚 (resp. [(𝑋)]𝑚) the
space of the ℝ𝑚-valued Radon (resp. finite ℝ𝑚-valued Radon) measures on 𝑋.

Note that if 𝜇 is a Radon measure and sup{|𝜇|(𝐾) ∶ 𝐾 ⊂ 𝑋 compact} <∞ then it can be extended to the whole
of (𝑋) and the resulting set function, which we still denote 𝜇, is a finite Radon measure.
Definition 2.1.13 (Borel functions). Let 𝑋, 𝑌 be metric spaces, and let 𝑓 ∶ 𝑋 → 𝑌 . We say that 𝑓 is a Borel
function if 𝑓−1(𝐴) ∈ (𝑋) for every open set 𝐴 ⊂ 𝑌 .
We now present the definition of outer measures in metric spaces, which embodies an additivity condition on
separated sets.
Definition 2.1.14 (Outer measures). Let 𝑋 be a metic space and 𝜇 a function defined on all the subset of 𝑋 with
values in [0,∞]; we say that 𝜇 is an outer measure if 𝜇(∅) = 0, the following subadditivity condition holds

𝐸 ⊂
∞
⋃

ℎ=0
𝐸ℎ ⟹ 𝜇(𝐸) ≤

∞
∑

ℎ=0
𝜇(𝐸ℎ)

for any 𝐸, {𝐸ℎ} ⊂ 𝑋, and moreover the following additivity condition holds:
dist(𝐸, 𝐹 ) > 0 ⟹ 𝜇(𝐸 ∪ 𝐹 ) = 𝜇(𝐸) + 𝜇(𝐹 )

for any 𝐸, 𝐹 ⊂ 𝑋.
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Theorem 2.1.15 (Carathéodory criterion, [AFP00, Theorem 1.49]). Let 𝜇 be an outer measure on the metric space
𝑋; then 𝜇 is 𝜎-additive on (𝑋), hence the restriction of 𝜇 to the Borel sets of 𝑋 is a positive measure.

Example 2.1.16 (Lebesgue measure). Let ◦
𝑄𝑟(𝑥) = {𝑦 ∈ ℝ𝑛 ∶ max𝑖 |𝑥𝑖 − 𝑦𝑖| < 𝑟} be the open cube with side 2𝑟

centered at 𝑥 and set
𝜇(𝐸) ∶= inf

{ ∞
∑

ℎ=0
(2𝑟ℎ)𝑛 ∶ 𝐸 ⊂

∞
⋃

ℎ=0

◦
𝑄𝑟ℎ(𝑥ℎ)

}

for any 𝐸 ⊂ ℝ𝑛. Then 𝜇 is an outer measure, that we call Lebesgue outer measure and we denote by 𝑛. Since it
is finite on compact sets, according to Carathéodory criterion 2.1.15 its restriction to (ℝ𝑛) is a Radon measure.
We say that 𝐸 ⊂ ℝ𝑛 is Lebesgue measurable if 𝐸 belongs to the completion 𝑛(ℝ𝑛). The 𝜎-algebra of Lebesgue
measurable sets is denoted by 𝑛 and we write |𝐸| for 𝑛(𝐸) for any 𝐸 ⊂ ℝ𝑛.
Definition 2.1.17 (Restriction). Let 𝜇 be a positive, real or vector measure on the measure space (𝑋, ). If 𝐸 ∈ 
we set 𝜇 𝐸(𝐹 ) ∶= 𝜇(𝐸 ∩ 𝐹 ) for every 𝐹 ∈  .
Note that the restriction of 𝜇 to 𝐸 can be also defined as 𝜇 𝐸 = 𝜒𝐸𝜇; moreover, if 𝜇 is a Borel (resp. Radon)
measure and 𝐸 is a Borel set, then the measure 𝜇 𝐸 is a Borel (resp. Radon) measure, too.
Given a measure space (𝑋, ) and a measure on it, we see how it can be carried on another set 𝑌 through a function
𝑓 ∶ 𝑋 → 𝑌 .
Definition 2.1.18 (Push-forward). Let (𝑋, ) and (𝑌 , ) be measure spaces, and let 𝑓 ∶ 𝑋 → 𝑌 be such that
𝑓−1(𝐹 ) ∈  whenever 𝐹 ∈  . For any positive, real, or vector measure 𝜇 on (𝑋, ) we define a measure 𝑓# in
(𝑌 , ) by

𝑓#𝜇(𝐹 ) ∶= 𝜇
(

𝑓−1(𝐹 )
)

∀𝐹 ∈  .

From the previous definition the corresponding change of variable formula for integrals follows immediately: if 𝑢
is a (real- or vector-valued) function on 𝑌 summable with respect to 𝑓#𝜇, then 𝑢◦𝑓 is summable with respect to 𝜇
and we have the equality

∫𝑌
𝑢 d(𝑓#𝜇) = ∫𝑋

𝑢◦𝑓 d𝜇.

We now consider two measure spaces and see the resulting structure on their Cartesian product.
Definition 2.1.19 (Product 𝜎-algebra). Let (𝑋1, 1) and (𝑋2, 2) be measure spaces. The product 𝜎-algebra of 1
and 2, denoted by 1 × 2, is the 𝜎-algebra generated in 𝑋1 ×𝑋2 by

 = {𝐸1 × 𝐸2 ∶ 𝐸1 ∈  , 𝐸2 ∈ 2}.

Let 𝐸 ∈ 1 × 2; then for every 𝑥 ∈ 𝑋1 the section 𝐸𝑥 = {𝑦 ∈ 𝑋2 ∶ (𝑥, 𝑦) ∈ 𝐸} belongs to 2, and for every
𝑦 ∈ 𝑋2 the section 𝐸𝑦 = {𝑥 ∈ 𝑋1 ∶ (𝑥, 𝑦) ∈ 𝐸} belongs to 1.
Theorem 2.1.20 (Fubini, [AFP00, Theorem 1.74]). Let (𝑋1, 1), (𝑋2, 2) be measure spaces and 𝜇1, 𝜇2 be positive
𝜎-finite measures in 𝑋1, 𝑋2 respectively. Then, there is a unique positive 𝜎-finite measure 𝜇 on (𝑋1 ×𝑋2, 1 × 2)
such that

𝜇(𝐸1 × 𝐸2) = 𝜇1(𝐸1) ⋅ 𝜇2(𝐸2) ∀𝐸1 ∈ 1, ∀𝐸2 ∈ 2.

Furthermore, for any 𝜇-measurable function 𝑢 ∶ 𝑋1 ×𝑋2 → [0,∞] we have that

𝑥↦ ∫𝑋2

𝑢(𝑥, 𝑦) d𝜇2(𝑦) and 𝑦↦ ∫𝑋1

𝑢(𝑥, 𝑦) d𝜇1(𝑥)

are respectively 𝜇1-measurable and 𝜇2-measurable and

∫𝑋1×𝑋2

𝑢 d𝜇 = ∫𝑋1

(

∫𝑋2

𝑢(𝑥, 𝑦) d𝜇2(𝑦)
)

d𝜇1(𝑥) = ∫𝑋2

(

∫𝑋1

𝑢(𝑥, 𝑦) d𝜇1(𝑥)
)

d𝜇2(𝑦).

Once the product measure 𝜇 has been introduced on 𝑋1 ×𝑋2, 𝜇-measurability refers to (1 × 2)𝜇, the completion
of 1 × 2 with respect to 𝜇. Moreover, if 𝑋1, 𝑋2 and 𝑌 are metric spaces and 𝑓 ∶ 𝑋1 × 𝑋2 → 𝑌 is a Borel
function, then all its sections are Borel.
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Weak∗ convergence

We fix a measure space (𝑋, ). Now we introduce a notion of convergence for Radon measures.
Definition 2.1.21 (Weak∗ convergence of measures). Let 𝜇 ∈ [𝑙𝑜𝑐(𝑋)]𝑚 and let {𝜇ℎ} ⊂ 𝑙𝑜𝑐(𝑋)]𝑚; we say
that {𝜇ℎ} locally weakly∗ converges to 𝜇 if

lim
ℎ→∞∫𝑋

𝑢 d𝜇ℎ = ∫𝑋
𝑢 d𝜇

for every 𝑢 ∈ 𝐶𝑐(𝑋); if 𝜇 and the 𝜇ℎ are finite, we say that {𝜇ℎ} weakly∗ converges to 𝜇 if

lim
ℎ→∞∫𝑋

𝑢 d𝜇ℎ = ∫𝑋
𝑢 d𝜇

for every 𝑢 ∈ 𝐶0(𝑋).
The weak∗ convergence of a sequence {𝜇ℎ} of finite Radon measures is equivalent to the local weak∗ convergence
together with the condition supℎ |𝜇ℎ|(𝑋) <∞.
Now we state some properties regarding the lower semicontinuity and the continuity under weak∗ convergence of
the functionals

∫Ω
𝑓
(

𝑥,
𝜇
|𝜇|

(𝑥)
)

d|𝜇|(𝑥)

depending on vector valued Radon measures 𝜇 in an open subset Ω of ℝ𝑛, first studied by Y. G. Reshetnyak in
[Res68].
Theorem 2.1.22 (Reshetnyak lower semicontinuity, [AFP00, Theorem 2.38]). Let Ω be an open set of ℝ𝑛 and 𝜇,
𝜇ℎ be ℝ𝑚-valued finite Radon measures in Ω; if 𝜇ℎ → 𝜇 weakly∗ in Ω then

∫Ω
𝑓
(

𝑥,
𝜇
|𝜇|

(𝑥)
)

d|𝜇|(𝑥) ≤ lim inf
ℎ→∞ ∫Ω

𝑓
(

𝑥,
𝜇ℎ
|𝜇ℎ|

(𝑥)
)

d|𝜇ℎ|(𝑥)

for every lower semicontinuous function 𝑓 ∶ Ω×ℝ𝑚 → [0,∞], positively 1-homogeneous and convex in the second
variable.

Theorem 2.1.23 (Reshetnyak continuity, [AFP00, Theorem 2.39]). LetΩ, 𝜇ℎ, 𝜇 as in Theorem 2.1.22; if |𝜇ℎ|(Ω) →
|𝜇|(Ω) then

lim
ℎ→∞∫Ω

𝑓
(

𝑥,
𝜇ℎ
|𝜇ℎ|

(𝑥)
)

d|𝜇ℎ|(𝑥) = ∫Ω
𝑓
(

𝑥,
𝜇
|𝜇|

(𝑥)
)

d|𝜇|(𝑥)

for every continuous and bounded function 𝑓 ∶ Ω × 𝐒𝑚−1 → ℝ.

Disintegration

In this section we define a generalized notion of product of measures, where one of the factors is allowed to vary
from a point to another, and we state a disintegration theorem, which allows us to decompose a measure on a
product space as a generalized product of this kind.
Definition 2.1.24 (Measurable measure-valued maps). Let 𝐸 ⊂ ℝ𝑛, 𝐹 ⊂ ℝ𝑚 be open sets, 𝜇 a positive Radon
measure on 𝐸, and 𝑥 ↦ 𝜈𝑥 a function which assigns to each 𝑥 ∈ 𝐸 a ℝ𝑚-valued finite Radon measure 𝜈𝑥 on 𝐹 .
We say that this map is 𝜇-measurable if 𝑥↦ 𝜈𝑥(𝐵) is 𝜇-measurable for any 𝐵 ∈ (𝐹 ).
Proposition 2.1.25 ([AFP00, Proposition 2.26]). Let 𝐸, 𝐹 , 𝜇 and 𝜈𝑥 be as in Definition 2.1.24. If 𝑥 ↦ 𝜈𝑥(𝐴)
is 𝜇-measurable for any open set 𝐴 ⊂ 𝐹 , then 𝑥 ↦ 𝜈𝑥 is 𝜇-measurable. Moreover, 𝑥 ↦ ∫𝐹 𝑔(𝑥, 𝑦) d𝜈𝑥(𝑦) is
𝜇-measurable for any bounded 𝜇(𝐸) × (𝐹 )-measurable function 𝑔 ∶ 𝐸 × 𝐹 → ℝ.

As a consequence of Proposition 2.1.25 we have the implication
𝜈𝑥 𝜇 − measurable ⟹ |𝜈𝑥| 𝜇 − measurable.

Measurable measure-valued functions give rise to the following notion of integral of measures, which generalizes
the product of two measures.
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Definition 2.1.26 (Generalized product). Let 𝐸, 𝐹 , 𝜇 and 𝜈𝑥 be as in Definition 2.1.24 and assume that

∫𝐸′
|𝜈𝑥|(𝐹 ) d𝜇(𝑥) <∞ ∀𝐸′ ⊂⊂ 𝐸 open.

We denote by 𝜇 ⊗ 𝜈𝑥 the ℝ𝑚-valued Radon measure on 𝐸 × 𝐹 defined by

𝜇 ⊗ 𝜈𝑥(𝐵) ∶= ∫𝐸

(

∫𝐹
𝜒𝐵(𝑥, 𝑦) d𝜈𝑥(𝑦)

)

d𝜇(𝑥) ∀𝐵 ∈ (𝐾 × 𝐹 ).

where 𝐾 ⊂ 𝐸 is any compact set.
The measure 𝜇 ⊗ 𝜈𝑥 is well defined, thanks to Proposition 2.1.25. Note that the integration formula

∫𝐸×𝐹
𝑓 (𝑥, 𝑦) d(𝜇 ⊗ 𝜈𝑥)(𝑥, 𝑦) = ∫𝐸

(

∫𝐹
𝑓 (𝑥, 𝑦) d𝜈𝑥(𝑦)

)

d𝜇(𝑥)

holds for every bounded Borel function 𝑓 ∶ 𝐸 × 𝐹 → ℝ with supp 𝑓 ⊂ 𝐸′ × 𝐹 , with 𝐸′ ⊂⊂ 𝐸, due to the fact
that any bounded Borel function can be uniformly approximated by a sequence of simple functions.
The following theorem shows that under suitable conditions a measure 𝜈 on the product 𝐸 × 𝐹 can be written as
𝜇⊗𝜈𝑥, where 𝜇 is the push-forward of |𝜈| under the projection on𝐸. This decomposition is known as disintegration
of 𝜈, or layerwise decomposition.
Theorem 2.1.27 (Disintegration, [AFP00, Theorem 2.28]). Let 𝑚 ≥ 1, 𝐸 ⊂ ℝ𝑛 and 𝐹 ⊂ ℝ𝑚 open sets, 𝜈 an
ℝ𝑚-valued Radon measure on 𝐸 × 𝐹 , 𝜋 ∶ 𝐸 × 𝐹 → 𝐸 the projection on the first factor and 𝜇 = 𝜋#|𝜈|. Let
us assume that 𝜇 is a Radon measure, i.e. that |𝜈|(𝐾 × 𝐹 ) < ∞ for any compact set 𝐾 ⊂ 𝐸. Then there exist
ℝ𝑚-valued finite Radon measures 𝜈𝑥 in 𝐹 such that 𝑥↦ 𝜈𝑥 is 𝜇-measurable,

|𝜈𝑥|(𝐹 ) = 1 𝜇 − a.e.in𝐸

and
𝑓 (𝑥, ⋅) ∈ 𝐿1(𝐹 , |𝜈𝑥|) for 𝜇 − a.e. 𝑥 ∈ 𝐸

𝑥 ↦ ∫𝐹
𝑓 (𝑥, 𝑦) d𝜈𝑥(𝑦) ∈ 𝐿1(𝐸, 𝜇) (2.1.2)

∫𝐸×𝐹
𝑓 (𝑥, 𝑦) d𝜈(𝑥, 𝑦) = ∫𝐸

(

∫𝐹
𝑓 (𝑥, 𝑦) d𝜈𝑥(𝑦)

)

d𝜇(𝑥) (2.1.3)

for any 𝑓 ∈ 𝐿1(𝐸 × 𝐹 , |𝜈|). Moreover, if 𝜈′𝑥 is any other 𝜇-measurable map satisfying (2.1.2), (2.1.3) for every
bounded Borel function with compact support and such that 𝜈′𝑥(𝐹 ) ∈ 𝐿1

𝑙𝑜𝑐(𝐸, 𝜇), then 𝜈𝑥 = 𝜈′𝑥 for 𝜇-a.e. 𝑥 ∈ 𝐸.

Hausdorff measures

If 𝑘 ∈ [0,∞), in the following we denote by 𝜔𝑘 the constant 𝜋
𝑘
2

Γ
(

1+ 𝑘
2

) , where Γ(𝑡) ∶= ∫ ∞
0 𝑠𝑡−1𝑒−𝑠 d𝑠 is the Euler

Γ function. In particular, this constant coincides with the Lebesgue measure of the unit ball of ℝ𝑘 if 𝑘 ≥ 1 is an
integer.
Definition 2.1.28 (Hausdorff measures). Let 𝑘 ∈ [0,∞) and 𝐸 ⊂ ℝ𝑛. The 𝑘-dimensional Hausdorff measure of
𝐸 is given by

𝑘(𝐸) ∶= lim
𝛿↓0

𝑘
𝛿 (𝐸)

where, for 0 < 𝛿 ≤ ∞, 𝑘
𝛿 (𝐸) is defined by

𝑘
𝛿 (𝐸) ∶=

𝜔𝑘
2𝑘

inf

{

∑

𝑖∈𝐼
[diam(𝐸𝑖)]𝑘 ∶ diam(𝐸𝑖) < 𝛿, 𝐸 ⊂

⋃

𝑖∈𝐼
𝐸𝑖

}

for finite or countable covers {𝐸𝑖}𝑖∈𝐼 , with the convention diam(∅) = 0.
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Since 𝛿 ↦ 𝑘
𝛿 (𝐸) is decreasing in (0,∞] the limit defining 𝑘(𝐸) exists, finite or infinite. It is also worth noticing

that the measure 0 corresponds to the counting measure.
Proposition 2.1.29 (Properties of Hausdorff measures, [AFP00, Proposition 2.49]). The measures 𝑘 are outer
measures in ℝ𝑛 and, in particular, they are 𝜎-additive on (ℝ𝑛). Moreover 𝑘(⋅) is invariant by translations and
is positively 𝑘-homogeneous. In addition, 𝑘(⋅) is identically zero if 𝑘 > 𝑛, while if 𝑘′ > 𝑘′′ ≥ 0 then

𝑘′(𝐸) > 0 ⟹ 𝑘′′(𝐸) = ∞.

Finally if 𝑓 ∶ ℝ𝑛 → ℝ𝑚 is a Lipschitz function then

𝑘(𝑓 (𝐸)) ≤ [Lip(𝑓 )]𝑘𝑘(𝐸) ∀𝐸 ⊂ ℝ𝑛.

Note that for 𝑘 < 𝑛 the Borel measure 𝑘 is not even 𝜎-finite in ℝ𝑛. The theory of integration outlined in Defini-
tion 2.1.6, in which no 𝜎-finiteness assumption was made, can be use to integrate with respect to 𝑘.
Definition 2.1.30 (Hausdorff dimension). The Hausdorff dimension of 𝐸 ⊂ ℝ𝑛 is given by

dim(𝐸) ∶= inf
{

𝑘 ≥ 0 ∶ 𝑘(𝐸) = 0
}

.

By Proposition 2.1.29 𝑘(𝐸) = ∞ if 𝑘 < dim(𝐸) and 𝑘(𝐸) = 0 if 𝑘 >dim(𝐸). If 𝑘 = dim(𝐸) nothing can
be said, in general.

Rectifiable sets

In this section we introduce a mild regularity property of 𝑘-measurable sets.
Definition 2.1.31 (Rectifiable sets). Let 𝐸 ⊂ ℝ𝑛 be an 𝑘-measurable set, with 𝑘 ∈ [0, 𝑛] integer. We say that 𝐸
is countably 𝑘-rectifiable if there exist countably many Lipschitz functions 𝑓𝑖 ∶ ℝ𝑘 → ℝ𝑛 such that

𝐸 ⊂
∞
⋃

𝑖=0
𝑓𝑖(ℝ𝑘).

We say that 𝐸 is countably 𝑘-rectifiable if there exist countably many Lipschitz functions 𝑓𝑖 ∶ ℝ𝑘 → ℝ𝑛 such
that

𝑘

(

𝐸 ⧵
∞
⋃

𝑖=0
𝑓𝑖(ℝ𝑘)

)

= 0.

Finally, we say that 𝐸 is 𝑘-rectifiable if 𝐸 is countably 𝑘-rectifiable and 𝑘(𝐸) <∞.
For 𝑘 = 0 countably 𝑘-rectifiable and countably 𝑘-rectifiable sets correspond to finite or countable sets, while
𝑘-rectifiable sets correspond to finite sets. An immediate consequence of Proposition 2.1.29 is the fact that
rectifiable sets are stable under Lipschitz transformations.
Given a Radon measure 𝜇 in an open set Ω ⊂ ℝ𝑛, we define the rescaled measures around 𝑥 ∈ Ω

𝜇𝑥,𝜚(𝐵) = 𝜇(𝑥 + 𝜚𝐵) 𝐵 ∈ (ℝ𝑛), 𝐵 ⊂ Ω − 𝑥
𝜚

.

Definition 2.1.32 (Approximate tangent space to a measure). Let 𝜇 be an ℝ𝑚-valued Radon measure in an open
set Ω ⊂ ℝ𝑛 and 𝑥 ∈ Ω. We say that 𝜇 has approximate tangent space 𝜋 ∈ 𝐆𝑘 with multiplicity 𝜗 ∈ ℝ𝑚 at 𝑥, and
we write

Tan𝑘(𝜇, 𝑥) = 𝜗𝑘 𝜋

if 𝜚−𝑘𝜇𝑥,𝜚 locally weakly∗ converge to 𝜗𝑘 𝜋 in ℝ𝑛 as 𝜚 ↓ 0.
It is possible to define an approximate tangent space Tan𝑘(𝐸, 𝑥) to countably 𝑘-rectifiable sets as follows.
Definition 2.1.33 (Approximate tangent space to a set). Let 𝐸 ⊂ ℝ𝑛 be a countably 𝑘-rectifiable set and let {𝐸𝑖}
be a partition of 𝑘-almost all of 𝐸 into 𝑘-rectifiable sets; we define Tan𝑘(𝐸, 𝑥) to be the approximate tangent
space to 𝑘 𝐸𝑖 at 𝑥 for any 𝑥 ∈ 𝐸𝑖 where the latter is defined.
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In the following proposition we compare our definition of approximate tangent space with a parametric one which
is often useful in applications.
Proposition 2.1.34 ([AFP00, Proposition 2.88]). Let 𝜑 ∶ ℝ𝑘 → ℝ𝑛 be a one-to-one Lipschitz function and let
𝐷 ⊂ ℝ𝑘 be a 𝑘-measurable set. Then 𝐸 = 𝜑(𝐷) satisfies

Tan𝑘(𝐸, 𝑥) = d𝜑𝜑−1(𝑥)(ℝ𝑘) for𝑘 − a.e. 𝑥 ∈ 𝐸.

Definition 2.1.35 (Tangential differential of Lipschitz functions). Let 𝐸 be a countably 𝑘-rectifiable set in ℝ𝑛

and 𝑓 ∶ ℝ𝑛 → ℝ𝑚 a Lipschitz function. We say that 𝑓 is tangentially differentiable at 𝑥 ∈ 𝐸 if the restriction of
𝑓 to the affine space 𝑥+ Tan𝑘(𝐸, 𝑥) is differentiable at 𝑥. The tangential differential is denoted by d𝐸𝑓𝑥 and is a
linear map between the spaces Tan𝑘(𝐸, 𝑥) and ℝ𝑚.
Clearly, if 𝑓 is differentiable at 𝑥 ∈ 𝐸, then d𝐸𝑓𝑥 is the restriction of the differential d𝑓𝑥 to Tan𝑘(𝐸, 𝑥), provided
that the approximate tangent space exists. Definition 2.1.35 is motivated by the following natural extension of
Rademacher’s differentiability theorem.
Theorem 2.1.36 (Tangential differentiability, [AFP00, Theorem 2.90]). With the notation of Definition 2.1.35,
𝑑𝐸𝑓𝑥 exists for 𝑘-a.e. 𝑥 ∈ 𝐸.

Area and coarea formulas

Area formula shows how the 𝑘-dimensional Hausdorff measure of sets 𝐵 = 𝑓 (𝐸) parametrized by a Lipschitz map
𝑓 ∶ ℝ𝑘 → ℝ𝑛 can be computed.
Definition 2.1.37 (𝑘-dimensional Jacobian). Let 𝑉 , 𝑊 be Hilbert spaces with dim(𝑉 ) = 𝑘 ≤ 𝑛 = dim(𝑊 ) and let
𝐿 ∶ 𝑣→ 𝑊 be a linear map. The 𝑘-dimensional Jacobian is defined by

𝐉𝑘𝐿 ∶=
√

det(𝐿∗◦𝐿)

where 𝐿∗ ∶ 𝑊 ∗ → 𝑉 ∗ is the transpose of 𝐿.
Note that 𝐉𝑘𝐿 = 0 if and only if the rank of 𝐿 is strictly less than 𝑘. Given a matrix representation 𝐿𝑖𝑗 of 𝐿 with
respect to orthonormal bases of 𝑉 and 𝑊 , it follows directly from the definition that

𝐉𝑘𝐿 =
√

det(𝐶) with 𝐶𝑗𝑙 ∶=
𝑁
∑

𝑖=1
𝐿𝑖𝑗𝐿𝑖𝑙.

Theorem 2.1.38 (Area formula, [AFP00, Theorem 2.91]). Let 𝑓 ∶ ℝ𝑚 → ℝ𝑛 be a Lipschitz function and 𝐸 ⊂ ℝ𝑚

a countably 𝑘-rectifiable set. Then, the multiplicity function 0 (𝐸 ∩ 𝑓−1(𝑦)
)

is 𝑘-measurable in ℝ𝑛 and

∫ℝ𝑛
0 (𝐸 ∩ 𝑓−1(𝑦)

)

d𝑘(𝑦) = ∫𝐸
𝐉𝑘d𝐸𝑓𝑥 d𝑘(𝑥).

The set 𝑓 (𝐸) is 𝑘-measurable, being the support of the multiplicity function. If 𝑓 is one-to-one on 𝐸 we obtain

𝑘(𝑓 (𝐸)) = ∫𝐸
𝐉𝑘d𝐸𝑓𝑥 d𝑥.

Finally, representing any Borel function 𝑔 ∶ 𝐸 → [0,∞] as a series of characteristic function one immediately
obtains the general change of variables formula

∫ℝ𝑛

∑

𝑥∈𝐸∩𝑓−1(𝑦)

𝑔(𝑥) d𝑘(𝑦) = ∫𝐸
𝑔(𝑥)𝐉𝑘d𝐸𝑓𝑥 d𝑥.

Given a Lipschitz function 𝑓 ∶ ℝ𝑚 → ℝ𝑘 and an 𝑛-dimensional domain 𝐸 ⊂ ℝ𝑚 with 𝑛 ≥ 𝑘, in many applications
it is useful to reduce an integral on 𝐸 to a double integral, where the first integral is computed on the level set
𝐸∩{𝑓 = 𝑡} with respect to 𝑛−𝑘 and the result is integrated in 𝑡with respect to 𝑘. If𝑚 = 𝑛 and 𝑓 is an orthogonal
projection, the level sets of 𝑓 are (𝑛−𝑘)-planes and this procedure corresponds to Fubini’s Theorem 2.1.20. Coarea
formula is the natural extension of Fubini’s theorem to the above mentioned more general setting, first proved by
H. Federer in [Fed59].
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Definition 2.1.39 (𝑘-dimensional coarea factor). Let 𝑉 , 𝑊 be Hilbert spaces with dim(𝑉 ) = 𝑛 ≥ 𝑘 = dim(𝑊 )
and let 𝐿 ∶ 𝑉 → 𝑊 be a linear map. The 𝑘-dimensional coarea factor 𝐂𝑘𝐿 is given by

𝐂𝑘𝐿 ∶=
√

det(𝐿◦𝐿∗)

where 𝐿∗ ∶ 𝑊 ∗ → 𝑉 ∗ is the transpose of 𝐿.
By Definition 2.1.37, 𝐂𝑘𝐿 corresponds to 𝐉𝑘𝐿∗. As a consequence, 𝐂𝑘𝐿 > 0 if and only if rank(𝐿) = 𝑘.
Theorem 2.1.40 (Coarea formula, [AFP00, Theorem 2.93]). Let 𝑓 ∶ ℝ𝑚 → ℝ𝑘 be a Lipschitz function and let
𝐸 be a countably 𝑛-rectifiable subset of ℝ𝑚. Then the function 𝑡 ↦ 𝑛−𝑘(𝐸 ∩ 𝑓−1(𝑡)) is 𝑘-measurable in ℝ𝑘,
𝐸 ∩ 𝑓−1(𝑡) is countably 𝑛−𝑘-rectifiable for 𝑘-a.e. 𝑡 ∈ ℝ𝑘 and

∫𝐸
𝐂𝑘d𝐸𝑓𝑥 d𝑛(𝑥) = ∫ℝ𝑘

𝑛−𝑘 (𝐸 ∩ 𝑓−1(𝑡)
)

d𝑡.

We can obtain the more general formula

∫𝐸
𝑔(𝑥)𝐂𝑘d𝐸𝑓𝑥 d𝑛(𝑥) = ∫ℝ𝑘

(

∫𝐸∩{𝑓=𝑡}
𝑔(𝑦) d𝑛−𝑘(𝑦)

)

d𝑡 (2.1.4)

for any Borel function 𝑔 ∶ ℝ𝑚 → [0,∞]. In the particular case 𝑘 = 1 and 𝑚 = 𝑛, (2.1.4) becomes

∫𝐸
𝑔(𝑥) |∇𝑓 (𝑥)| d𝑥 = ∫

∞

−∞

(

∫𝐸∩{𝑓=𝑡}
𝑔(𝑦) d𝑛−1(𝑦)

)

d𝑡.

2.2 Preliminaries in functional analysis

Sobolev spaces

The aim of this section is to give a brief introduction to the theory of weak derivatives and Sobolev spaces. We
refer to the treatises [Ada75; LM68; Mal82; Maz85; Zie89] for a detailed presentation of these topics.
Definition 2.2.1 (Weak derivatives). Let Ω ⊂ ℝ𝑛 be an open set, and let 𝑖 ∈ {1,… , 𝑛}, 𝑢 ∈ 𝐿1

𝑙𝑜𝑐(Ω); if there is
𝑔 ∈ 𝐿1

𝑙𝑜𝑐(Ω) such that

∫Ω
𝑢
𝜕𝜑
𝜕𝑥𝑖

d𝑥 = −∫Ω
𝜑𝑔 d𝑥 ∀𝜑 ∈ 𝐶∞

𝑐 (Ω)

then we say that 𝑢 has weak 𝑖-th derivative given by 𝑔. The 𝑖-th weak derivative, if exists, is unique and is denoted
by ∇𝑖𝑢 or 𝜕𝑢

𝜕𝑥𝑖
.

The weak derivatives coincide with the classical ones if 𝑢 ∈ 𝐶1(Ω).
Definition 2.2.2 (Sobolev spaces). Let Ω ⊂ ℝ𝑛 be an open set, and 1 ≤ 𝑝 ≤ ∞; we say that 𝑢 ∈ 𝑊 1,𝑝(Ω) if
𝑢 ∈ 𝐿𝑝(Ω) and has weak derivatives in 𝐿𝑝(Ω) for every 𝑖 = 1,… , 𝑛. For any 𝑢 ∈ 𝑊 1,𝑝(Ω) we set

∇𝑢 ∶= (∇1𝑢,… ,∇𝑛𝑢).

We recall that 𝑊 1,𝑝(Ω) becomes a Banach space (Hilbert for 𝑝 = 2) when endowed with the norm ‖ ⋅ ‖𝑊 1,𝑝(Ω)
defined by

‖𝑢‖𝑊 1,𝑝(Ω) =

(

‖𝑢‖𝑝𝐿𝑝(Ω) +
𝑛
∑

𝑖=1
‖∇𝑖𝑢‖

𝑝
𝐿𝑝(Ω)

)
1
𝑝

if 1 ≤ 𝑝 <∞; for 𝑝 = ∞ the norm is given by

‖𝑢‖𝑊 1,∞(Ω) = ‖𝑢‖𝐿∞(Ω) +
𝑛
∑

𝑖=1
‖∇𝑖𝑢‖𝐿∞(Ω).

The space 𝑊 1,𝑝(Ω) is separable for 1 ≤ 𝑝 <∞ and reflexive for 1 < 𝑝 <∞.
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Definition 2.2.3. We denote by 𝑊 1,𝑝
0 (Ω) the closure of 𝐶∞

𝑐 (Ω) in 𝑊 1,𝑝(Ω).
Definition 2.2.4 (Weak convergence in 𝑊 1,𝑝). Let Ω ⊂ ℝ𝑛, 1 ≤ 𝑝 ≤ ∞ and 𝑢, 𝑢ℎ ∈ 𝑊 1,𝑝(Ω); then, we say that
𝑢ℎ → 𝑢 weakly in 𝑊 1,𝑝(Ω) (weakly∗ if 𝑝 = ∞) if ∇𝑢ℎ weakly converges in 𝐿𝑝(Ω) (weakly∗ if 𝑝 = ∞) to ∇𝑢 and
𝑢ℎ → 𝑢 strongly in 𝐿𝑝(Ω).
Higher order weak derivatives ∇𝛼𝑢 (with 𝛼 multiindex) can be introduced, giving rise to the space 𝑊 𝑘,𝑝. If 𝑢 ∈
𝐿1
𝑙𝑜𝑐(Ω) we say that 𝑔 ∈ 𝐿1

𝑙𝑜𝑐(Ω) is the 𝛼-th weak derivative of 𝑢 if

∫Ω
𝑢∇𝛼𝜑 d𝑥 = (−1)|𝛼| ∫Ω

𝑔𝜑 d𝑥 ∀𝜑 ∈ 𝐶∞
𝑐 (Ω).

Given an integer 𝑘 > 1 and 1 ≤ 𝑝 ≤ ∞ the Sobolev space𝑊 𝑘,𝑝(Ω) is thus defined as the set of functions 𝑢 ∈ 𝐿𝑝(Ω)
such that all weak derivatives ∇𝛼𝑢 belong to 𝐿𝑝(Ω) for any |𝛼| ≤ 𝑘. It can be endowed with a norm, setting for
1 ≤ 𝑝 <∞

‖𝑢‖𝑊 𝑘,𝑝(Ω) =

(

‖𝑢‖𝑝𝐿𝑝(Ω) +
𝑘
∑

𝑖=1

∑

|𝛼|=𝑖
‖∇𝛼𝑢‖𝑝𝐿𝑝(Ω)

)

1
𝑝

and for 𝑝 = ∞

‖𝑢‖𝑊 𝑘,∞(Ω) = ‖𝑢‖𝐿∞(Ω) +
𝑘
∑

𝑖=1

∑

|𝛼|=𝑖
‖∇𝛼𝑢‖𝐿∞(Ω).

If 0 < 𝑠 < 1 and 1 ≤ 𝑝 <∞, we define

𝑊 𝑠,𝑝(Ω) ∶=

{

𝑢 ∈ 𝐿𝑝 ∶
|𝑢(𝑥) − 𝑢(𝑦)|

|𝑥 − 𝑦|𝑠+
𝑛
𝑝

∈ 𝐿𝑝(Ω × Ω)

}

,

i.e. an intermediary Banach space between 𝐿𝑝(Ω) and 𝑊 1,𝑝(Ω), endowed with the norm

‖𝑢‖𝑊 𝑠,𝑝(Ω) ∶=
(

∫Ω
|𝑢|𝑝 + ∫Ω ∫Ω

|𝑢(𝑥) − 𝑢(𝑦)|𝑝

|𝑥 − 𝑦|𝑛+𝑠𝑝
d𝑥 d𝑦

)
1
𝑝
.

If 𝑠 > 1, we write 𝑠 = 𝑚 + 𝜎, with 𝑚 = ⌊𝑠⌋, and we define
𝑊 𝑠,𝑝(Ω) ∶= {𝑢 ∈ 𝑊 𝑚,𝑝 ∶ 𝐷𝛼𝑢 ∈ 𝑊 𝜎,𝑝(Ω) ∀𝛼 with |𝛼| = 𝑚} .

BMO spaces

In this section we define 𝐵𝑀𝑂 spaces, introduced by John and Nirenberg [Joh61; JN61] in connection with prob-
lems arising from elasticity theory.
Definition 2.2.5 ([BN95], [JN61]). Let Ω be a cube or the entire space ℝ𝑛. The 𝐵𝑀𝑂(Ω) space consists of all
functions 𝑏 which are integrable on every cube 𝑄 ⊂ Ω with sides parallel to those of Ω and satisfy:

‖𝑏‖∗ = sup
𝑄

{

1
|𝑄| ∫𝑄

|𝑏 − 𝑏𝑄| d𝑥
}

<∞,

where 𝑏𝑄 = 1
|𝑄|

∫𝑄 𝑏(𝑦) 𝑑𝑦 and |𝑄| denotes the Lebesgue measure of 𝑄.
It is clear that the functional ‖ ⋅ ‖∗ does not define a norm since it vanishes on constant functions. However 𝐵𝑀𝑂
becomes a Banach space provided we identify functions which differ almost everywhere from a constant.
Bounded functions clearly belong to 𝐵𝑀𝑂. On the other hand, 𝐵𝑀𝑂 contains suitable unbounded functions and
it is contained in 𝐿𝑝𝑙𝑜𝑐 spaces [JN61]. The standard example of unbounded 𝐵𝑀𝑂 function is

𝑓 (𝑥) = log|𝑥|, 𝑥 ∈ 𝐵1(0) ⧵ 0.

We also recall the following property.
Theorem 2.2.6 ([BN95]). For any cube 𝑄 ⊂ ℝ𝑛 the following inclusion holds with continuous embedding:

𝑊 1,𝑛(𝑄) ↪ 𝐵𝑀𝑂(𝑄).
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Muckenhoupt weights

In this section we define Muckenhoupt weights, introduced in ’70s in [FM74; Muc74; Str79]. See also the treatises
[GR85; Tor86].
Definition 2.2.7 ([GR85]). Given a weight 𝑤, i.e. a nonnegative function locally integrable in ℝ𝑛, we say that 𝑤
belongs to the 𝐴𝑝 class of Muckenhoupt, with 1 < 𝑝 <∞, if

𝐴𝑝(𝑤) ∶= sup
𝑄

(

⨍𝑄
𝑤
)(

⨍𝑄
𝑤− 1

𝑝−1

)𝑝−1

<∞

where the supremum is taken all over cubes 𝑄 of ℝ𝑛. We say 𝑤 belongs to the 𝐴1 class of Muckenhoupt if
𝐴1(𝑤) ∶= sup

𝑄

(

⨍𝑄
𝑤
)(

ess sup
𝑄

(

𝑤−1)
)

<∞,

where the supremum is taken all over cubes 𝑄 of ℝ𝑛. The number 𝐴𝑝(𝑤) is called the 𝐴𝑝 constant of 𝑤.
Note that, if 1 ≤ 𝑝 < 𝑞, then 𝐴𝑝 ⊂ 𝐴𝑞. In fact, if 𝑝 > 1, by Hölder’s inequality, we have

(

⨍𝑄
𝑤
)(

⨍𝑄
𝑤− 1

𝑞−1

)𝑞−1

≤
(

⨍𝑄
𝑤
)

(

∫𝑄 1
)𝑞−𝑝

(

∫𝑄𝑤
− 1
𝑝−1

)𝑝−1

|𝑄|𝑞−1
=

=
(

⨍𝑄
𝑤
)(

⨍𝑄
𝑤− 1

𝑝−1

)𝑝−1

≤ 𝐴𝑝(𝑤).

If 𝑝 = 1 then
(

1
|𝑄| ∫𝑄

𝑤− 1
𝑞−1

)𝑞−1

≤ ess sup
𝑥∈𝑄

(

𝑤−1(𝑥)
)

= ess sup
𝑥∈𝑄

(

𝑤−1(𝑥)
)

(

⨍𝑄
𝑤
)(

⨍𝑄
𝑤
)−1

≤

≤ 𝐴1(𝑤)
(

|𝑄|
𝑤(𝑄)

)

,

where we have set, for every measurable set 𝐸 ⊂ ℝ𝑛,
𝑤(𝐸) ∶= ∫𝐸

𝑤 d𝑥. (2.2.1)
Note that, if 𝑤 is a Muckenhoupt weight, the measure defined in (2.2.1) is doubling (see [Tor86, Chapter IX,
Theorem 2.1]).
Definition 2.2.8 ([Str01]). Let 𝑘(𝑥) ∶ ℝ𝑛 → ℝ𝑛. We will call 𝑘 a Calderon–Zygmund kernel (CZ kernel) if 𝑘
satisfies the following properties

• 𝑘(𝑥) ∈ 𝐶∞(ℝ𝑛 ⧵ {0}),
• 𝑘(𝑥) is homogeneous of degree −𝑛, i.e. 𝑘(𝑡𝑥) = 𝑡−𝑛𝑘(𝑥) for any 𝑡 > 0 and 𝑥 ∈ ℝ𝑛 ⧵ {0},
• ∫Σ 𝑘(𝑥) 𝑑𝜎𝑥 = 0 where Σ is the unit sphere of ℝ𝑛.

Given such a kernel, one can define a bounded operator in 𝐿𝑝, 1 < 𝑝 < ∞, called Calderon–Zygmund singular
operator, as follows

𝐾𝑓 (𝑥) = 𝑃 .𝑉 .(𝑘 ⋆ 𝑓 )(𝑥) ∶= 𝑃 .𝑉 .∫ℝ𝑛
𝑘(𝑥 − 𝑦)𝑓 (𝑦) 𝑑𝑦.

Given a measurable subset 𝐸 of ℝ𝑛, we will denote by 𝐿𝑝(𝑤,𝐸;ℝ𝑁 ), 1 < 𝑝 < ∞, the Banach space of all
measurable functions 𝑓 defined on 𝐸 for which

‖𝑓‖𝐿𝑝𝑤(𝐸) =
(

∫𝐸
|𝑓 (𝑥)|𝑝𝑤(𝑥) d𝑥

)
1
𝑝
<∞.

It is well known that the singular integral operators are bounded on weighted 𝐿𝑝 spaces for weights belonging to
the 𝐴𝑝 class. A theorem due to Buckley explicitly gives the dependence of the 𝐿𝑝(𝑤,ℝ𝑛) - norm of a singular
integral operator on the 𝐴𝑝 constant of 𝑤.
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Theorem 2.2.9 ([Buc93]). Let 𝑤 be an 𝐴𝑝 weight and 𝐾 a singular integral operator. Then, for every 𝑓 ∈
𝐿𝑝(𝑤,𝐸;ℝ𝑁 ), there exists a constant 𝑐 = 𝑐(𝑛, 𝑝) such that

‖𝐾𝑓‖𝑝
𝐿𝑝𝑤(𝐸)

≤ 𝑐𝐴𝑝(𝑤)𝑝+𝑝
′
‖𝑓‖𝑝

𝐿𝑝𝑤(𝐸)

where 𝑝′ = 𝑝
𝑝−1

.

Since both 𝐴𝑝 condition and the definition of 𝐵𝑀𝑂 deal with the averaging of functions it is natural to consider
the connections between these two classes. Among a lot of results in this direction, we point out the following
Lemma 2.2.10 ([JN93]). Let 𝑏(𝑥) be a function such that 𝑏, 1

𝑏
both belong to 𝐵𝑀𝑂(ℝ𝑛). Then

𝑏 ∈
⋂

𝑝>1
𝐴𝑝

and
𝐴𝑝(𝑏) ≤ 𝑐 + 𝑐‖𝑏‖∗

where 𝑐 is a constant depending only on 𝑝.

We can state the following weighted versions of Imbedding Theorem and Sobolev – Poincaré inequality:
Theorem 2.2.11 ([FKS82]). Given 1 < 𝑝 <∞ and 𝑤 ∈ 𝐴𝑝, there exist constants 𝑐, depending on 𝑛, 𝑝 and the 𝐴𝑝
constant of 𝑤, and 𝜁 > 0, depending on 𝑛 and 𝑝, such that for all balls 𝐵𝑅, all 𝑢 ∈ 𝐶∞

0 (𝐵𝑅) and all numbers 𝑘
satisfying 1 ≤ 𝑘 ≤ 𝑛

𝑛−1 + 𝜁 ,

(

1
𝑤(𝐵𝑅) ∫𝐵𝑅

|𝑢|𝑘𝑝𝑤 d𝑥
)

1
𝑘𝑝
≤ 𝑐𝑅

(

1
𝑤(𝐵𝑅) ∫𝐵𝑅

|∇𝑢|𝑝𝑤 d𝑥
)

1
𝑝
.

Theorem 2.2.12 ([FKS82]). Let 1 < 𝑝 < ∞ and 𝑤 ∈ 𝐴𝑝. Then there are constants 𝑐, depending on 𝑛, 𝑝 and the
𝐴𝑝 constant of 𝑤, and 𝜁 > 0, depending on 𝑛 and 𝑝, such that for all Lipschitz continuous functions 𝑢 defined on
𝐵𝑅 and for all 1 ≤ 𝑘 ≤ 𝑛

𝑛−1
+ 𝜁 ,

(

1
𝑤(𝐵𝑅) ∫𝐵𝑅

|

|

|

𝑢(𝑥) − 𝐴𝐵𝑅
|

|

|

𝑘𝑝
𝑤 d𝑥

)
1
𝑘𝑝
≤ 𝑐𝑅

(

1
𝑤(𝐵𝑅) ∫𝐵𝑅

|∇𝑢|𝑝𝑤 d𝑥
)

1
𝑝
,

where either 𝐴𝐵𝑅 = 1
𝑤(𝐵𝑅)

∫𝐵𝑅 𝑢(𝑥)𝑤(𝑥) d𝑥 or 𝐴𝐵𝑅 = 1
|𝐵𝑅|

∫𝐵𝑅 𝑢(𝑥) d𝑥.

Hodge decomposition

We shall now briefly discuss the Hodge decomposition of vector fields; for a more complete treatment see [IS92]
and [IS94]. For a given vector field 𝐿 = (𝑙1,… , 𝑙𝑛) ∈ 𝐿𝑝(ℝ𝑛;ℝ𝑛), 1 < 𝑝 < ∞, the Poisson equation Δ𝑢 = div𝐿
can be solved by using the Riesz transforms in ℝ𝑛,  = (𝑅1,… , 𝑅𝑛),

∇𝑢 = −(⊗)(𝐿) =∶ 𝒦 (𝐿).

Here the tensor product operator 𝒦 = −⊗ = −[𝑅𝑖𝑗] is the 𝑛× 𝑛 matrix of the second order Riesz transforms
𝑅𝑖𝑗 = 𝑅𝑖◦𝑅𝑗 , 𝑖, 𝑗 = 1, … , 𝑛. Notice that the range of the operator

ℋ ∶= Id −𝒦 ∶ 𝐿𝑝(ℝ𝑛;ℝ𝑛) → 𝐿𝑝(ℝ𝑛;ℝ𝑛)

consists of the divergence free vector fields. We then arrive at the familiar Hodge decomposition of 𝐿
𝐿 = ∇𝑢 +𝐻, div𝐻 = 0.

Hence, 𝐿𝑝-estimates for Riesz transform yield an uniform estimate
‖∇𝑢‖𝐿𝑝(ℝ𝑛) + ‖𝐻‖𝐿𝑝(ℝ𝑛) ≤ 𝑐(𝑝)‖𝐿‖𝐿𝑝(ℝ𝑛).

21



For this result and other dimension free estimates see [IM90].
Let Ω ⊂ ℝ𝑛 be a domain and 𝐺 = 𝐺(𝑥, 𝑦) the Green’s function. For ℎ ∈ 𝐶∞

0 (Ω) the integral

𝑢(𝑥) = ∫Ω
𝐺(𝑥, 𝑦)ℎ(𝑦) 𝑑𝑦

defines a solution of the Poisson equation Δ𝑢 = ℎ with 𝑢 vanishing on the boundary of Ω. If ℎ has a divergence
form, say ℎ = div𝐿 with 𝐿 = (𝑙1,… , 𝑙𝑛) ∈ 𝐶∞

0 (Ω;ℝ𝑛), then integration by parts yields

𝑢(𝑥) = −∫Ω
∇𝑦𝐺(𝑥, 𝑦)𝐿(𝑦) 𝑑𝑦.

Hence the gradient of 𝑢 is expressed by a singular integral

∇𝑢(𝑥) = −∫Ω
∇𝑥∇𝑦𝐺(𝑥, 𝑦)𝐿(𝑦) 𝑑𝑦 =∶ (𝒦Ω𝐿)(𝑥).

By Theorem 2.2.9 and Lemma 2.2.10, if 𝑏 ∈ 𝐵𝑀𝑂 and 1
𝑏
∈ 𝐵𝑀𝑂, we have

‖𝒦Ω𝐿‖
𝑝
𝐿𝑝𝑏

≤ 𝑐(1 + ‖𝑏‖∗)𝑝+𝑝
′
‖𝐿‖𝑝

𝐿𝑝𝑏

If 1 < 𝑝 <∞, let 𝑝(𝑏,Ω;ℝ𝑛) denote the closure of the range of the gradient operator ∇ ∶ 𝐶∞
0 (Ω)→ 𝐿𝑝(𝑏,Ω;ℝ𝑛),

i.e.
𝑝(𝑏,Ω;ℝ𝑛) ∶=

{

∇𝑣 ∶ 𝑣 ∈ 𝐶∞
0 (Ω)

}
𝐿𝑝𝑏 .

If Ω is smooth, then 𝒦Ω extends continuously to all 𝐿𝑝(𝑏,Ω;ℝ𝑛) spaces. Consequently the formula ∇𝑢 = 𝒦Ω𝐿
extends to all 𝐿 ∈ 𝐿𝑝(𝑏,Ω;ℝ𝑛) giving a solution with ∇𝑢 ∈ 𝑝(𝑏,Ω;ℝ𝑛), 1 < 𝑝 <∞.
Definition 2.2.13 ([IS94]). A domain Ω ⊂ ℝ𝑛 will be called regular if the operator 𝒦Ω acts boundedly in all
𝐿𝑝(𝑏,Ω;ℝ𝑛)-spaces, for 1 < 𝑝 <∞.
For Ω a regular domain we introduce, as before, the operator

ℋΩ ∶= Id −𝒦Ω ∶ 𝐿𝑝(𝑏,Ω;ℝ𝑛) → 𝐿𝑝(𝑏,Ω;ℝ𝑛).

Obviously, the range of ℋΩ consists of the divergence free vector fields on Ω. We have the Hodge decomposition
of 𝐿 ∈ 𝐿𝑝(𝑏,Ω;ℝ𝑛),

𝐿 = ∇𝑢 +𝐻, div𝐻 = 0, ∇𝑢 ∈ 𝑝(𝑏,Ω;ℝ𝑛).

We deduce the following stability property in our decomposition
Lemma 2.2.14 ([CMP02]). Let Ω be a regular domain of ℝ𝑛 and consider 𝑏 ∈ 𝐵𝑀𝑂 such that 1

𝑏
∈ 𝐵𝑀𝑂. If

𝑢 ∈ 𝑊 1,𝑟−𝜀
0 (𝑏,Ω;ℝ𝑁 ), 1 < 𝑟 < ∞, −1 < 2𝜀 < 𝑟 − 1, there exist 𝜑 ∈ 𝑊

1, 𝑟−𝜀1−𝜀
0 (𝑏,Ω;ℝ𝑁 ) and a divergence free

vector field 𝐻 ∈ 𝐿
𝑟−𝜀
1−𝜀 (𝑏,Ω;ℝ𝑁×𝑛) such that

|𝐷𝑢|−𝜀𝐷𝑢 = 𝐷𝜑 +𝐻.

Moreover
‖𝐷𝜑‖

𝐿
𝑟−𝜀
1−𝜀
𝑏 (Ω)

≤ 𝑐(𝑛, 𝑟)(1 + ‖𝑏‖∗)𝛾(𝑟)‖𝐷𝑢‖1−𝜀𝐿𝑟−𝜀𝑏 (Ω)

‖𝐻‖

𝐿
𝑟−𝜀
1−𝜀
𝑏 (Ω)

≤ 𝑐(𝑛, 𝑟)(1 + ‖𝑏‖∗)𝛾(𝑟)|𝜀| ‖𝐷𝑢‖1−𝜀𝐿𝑟−𝜀𝑏 (Ω)

where 𝛾(𝑟) is an exponent depending only on 𝑟.
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Lorentz spaces

Let Ω be a bounded domain in ℝ𝑛. Given 1 < 𝑝, 𝑞 < ∞, the Lorentz space 𝐿𝑝,𝑞(Ω) consists of all measurable
functions 𝑔 defined on Ω for which the quantity

||𝑔||𝑞𝐿𝑝,𝑞 = 𝑝∫

∞

0
|Ω𝑡(𝑔)|

𝑞
𝑝 𝑡𝑞−1 𝑑𝑡

is finite, where Ω𝑡(𝑔) = {𝑥 ∈ Ω ∶ |𝑔(𝑥)| > 𝑡} and |Ω𝑡| is the Lebesgue measure of Ω𝑡. Note that || ⋅ ||𝐿𝑝,𝑞 is
equivalent to a norm and 𝐿𝑝,𝑞 becomes a Banach space when endowed with it. For 𝑝 = 𝑞, the Lorentz space 𝐿𝑝,𝑝
reduces to the standard Lebesgue space 𝐿𝑝. For 𝑞 = ∞, the class 𝐿𝑝,∞ consists of all measurable functions 𝑔
defined on Ω such that

||𝑔||𝑝𝐿𝑝,∞ = sup
𝑡>0

𝑡𝑝|Ω𝑡(𝑔)| <∞

and it coincides with the Marcinkiewicz class, weak - 𝐿𝑝. For Lorentz spaces the following inclusions hold
𝐿𝑟(Ω) ⊂ 𝐿𝑝,𝑞(Ω) ⊂ 𝐿𝑝,𝑟(Ω) ⊂ 𝐿𝑝,∞(Ω) ⊂ 𝐿𝑞(Ω),

whenever 1 ≤ 𝑞 < 𝑝 < 𝑟 ≤ ∞
Fundamental to us will be the Sobolev embedding theorem in Lorentz spaces.
Theorem 2.2.15 ([Alv77]). Let us assume that 1 < 𝑝 < 𝑛, 1 ≤ 𝑞 ≤ 𝑝, then any function 𝑢 ∈ 𝑊 1,1

0 (Ω) such that
|∇𝑢| ∈ 𝐿𝑝,𝑞(Ω) actually belongs to 𝐿𝑝∗,𝑞(Ω) and

||𝑢||𝐿𝑝∗ ,𝑞 ≤ 𝑆𝑛,𝑝||∇𝑢||𝐿𝑝,𝑞 .

Here 𝑝∗ = 𝑛𝑝
𝑛−𝑝 and 𝑆𝑛,𝑝 = 𝜔

− 1
𝑛

𝑛
𝑝
𝑛−𝑝 , where 𝜔𝑛 is the Lebesgue measure of the unit ball in ℝ𝑛.

We define the distance of a given 𝑓 ∈ 𝐿𝑝,∞ to 𝐿∞ as
dist𝐿𝑝,∞(𝑓, 𝐿∞) = inf

𝑔∈𝐿∞
||𝑓 − 𝑔||𝐿𝑝,∞ .

To find a formula for the distance, we consider the truncation operator. For 𝑘 > 0 and 𝑦 ∈ ℝ, we set
𝑇𝑘(𝑦) = min{𝑘,max{−𝑘, 𝑦}}.

Then
dist𝐿𝑝,∞(𝑓, 𝐿∞) = lim

𝑘→∞
||𝑓 − 𝑇𝑘𝑓 ||𝐿𝑝,∞ .

Indeed, ∀𝑔 ∈ 𝐿∞, ∀𝑘 ≥ ||𝑔||𝐿∞ , we have for almost every 𝑥 ∈ Ω,
|𝑓 (𝑥) − 𝑔(𝑥)| ≥ |𝑓 (𝑥) − 𝑇𝑘𝑓 (𝑥)|.

Let Ω be the unit ball of ℝ𝑛. The function
𝑓 (𝑥) = 1

|𝑥|
belongs to 𝐿𝑛,∞. Setting 𝜔𝑛 = |Ω|, we have

||𝑓 − 𝑇𝑘𝑓 ||𝐿𝑝,∞ = 𝜔1∕𝑛
𝑛

and it does not depend on 𝑘. For more details, see [GGM13].
We recall the following relevant properties.
Lemma 2.2.16 ([BBC75]). If 𝐸 ∈ 𝐿𝑝,∞(ℝ𝑛), 1 < 𝑝 <∞, and 𝑓 ∈ 𝐿1(ℝ𝑛), then 𝐸 ⋆ 𝑓 ∈ 𝐿𝑝,∞(ℝ𝑛) and

||𝐸 ⋆ 𝑓 ||𝐿𝑝,∞ ≤ ||𝐸||𝐿𝑝,∞||𝑓 ||𝐿1 .

Theorem 2.2.17 (Hölder’s inequality in Lorentz spaces, [ONe65]). If 0 < 𝑝1, 𝑝2, 𝑝 < ∞ and 0 < 𝑞1, 𝑞2, 𝑞 ≤ ∞
obey 1

𝑝
= 1

𝑝1
+ 1

𝑝2
and 1

𝑞
= 1

𝑞1
+ 1

𝑞2
then

||𝑓𝑔||𝐿𝑝,𝑞 ≤ ||𝑓 ||𝐿𝑝1 ,𝑞1 ||𝑔||𝐿𝑝2 ,𝑞2

whenever the right - hand side norms are finite.
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Maximal Operators

Let 𝑄0 ⊂ ℝ𝑛 be a cube. We shall consider, in the following, the Restricted Maximal Function Operator relative to
𝑄0. This is defined as

𝑀∗
𝑄0
(𝑓 )(𝑥) ∶= sup

𝑄⊂𝑄0
𝑥∈𝑄

⨍𝑄
|𝑓 (𝑦)| 𝑑𝑦, 𝑥 ∈ 𝑄0,

whenever 𝑓 ∈ 𝐿1(𝑄0), where 𝑄 denotes any cube contained in 𝑄0 with sides parallel to those of 𝑄0, as long as
𝑥 ∈ 𝑄. We recall the following weak type (𝑝, 𝑝) estimate for 𝑀∗

𝑄0
, valid for any 𝑝 ∈ [1,∞):

|

|

|

|

{

𝑥 ∈ 𝑄0 ∶𝑀∗
𝑄0
(𝑓 )(𝑥) ≥ 𝑡

}

|

|

|

|

≤ 𝑐(𝑛, 𝑝)
𝑡𝑝 ∫𝑄0

|𝑓 (𝑦)|𝑝 𝑑𝑦 𝑡 > 0 (2.2.2)

which is valid for any 𝑓 ∈ 𝐿𝑝(𝑄0). For this and related issues we refer to [Ste93].
If 𝑤 is a weight and 𝑄0 ⊂ ℝ𝑛 is a cube, we define the weighted Restricted Maximal Function Operator relative to
𝑄0 as

𝑀∗
𝑤,𝑄0

(𝑓 )(𝑥) ∶= sup
𝑄⊂𝑄0
𝑥∈𝑄

∫𝑄|𝑓 (𝑦)|𝑤(𝑦) 𝑑𝑦
𝑤(𝑄)

, 𝑥 ∈ 𝑄0,

whenever 𝑓 ∈ 𝐿1(𝑤,𝑄0), where 𝑄 denotes any cube contained in 𝑄0 with sides parallel to those of 𝑄0, as long
as 𝑥 ∈ 𝑄. We have the following weighted generalization of (2.2.2):
Theorem 2.2.18 ([Tor86]). Suppose 𝑤 ∈ 𝐴𝑝, 1 < 𝑝 < ∞. Then 𝑀∗

𝑤,𝑄0
maps 𝐿𝑝(𝑤,𝑄0) into weak-𝐿𝑝(𝑤,𝑄0),

with norm independent in 𝐴𝑝.

Difference quotients

Definition 2.2.19 ([Giu03]). Let 𝑓 (𝑥) be a function defined in an open set Ω ⊂ ℝ𝑛, and let ℎ be a real number. We
shall call a difference quotient of 𝑓 with respect to 𝑥𝑠 the function

Δ𝑠,ℎ𝑓 (𝑥) =
𝑓 (𝑥 + ℎ𝑒𝑠) − 𝑓 (𝑥)

ℎ
≡
𝜏𝑠,ℎ 𝑓 (𝑥)

ℎ
,

where 𝑒𝑠 denotes the direction of the 𝑥𝑠 axis and 𝜏𝑠,ℎ is the finite difference operator.
When no confusion can arise, we shall omit the index 𝑠, and we shall write simply Δℎ instead of Δ𝑠,ℎ.
The function Δ𝑠,ℎ𝑓 is defined in the set

Δ𝑠,ℎΩ ∶= {𝑥 ∈ Ω ∶ 𝑥 + ℎ𝑒𝑠 ∈ Ω},

and hence in the set
Ω
|ℎ| = {𝑥 ∈ Ω ∶ dist(𝑥, 𝜕Ω) > |ℎ|}.

The following properties of the difference quotients are immediate:
• If 𝑓 ∈ 𝑊 1,𝑝(Ω), then Δℎ𝑓 ∈ 𝑊 1,𝑝(Ω

|ℎ|), and
𝐷𝑖(Δℎ𝑓 ) = Δℎ(𝐷𝑖𝑓 ).

• If at least one of the functions 𝑓 or 𝑔 has support contained in Ω
|ℎ|, then

∫Ω
𝑓Δℎ𝑔 d𝑥 = −∫Ω

𝑔Δ−ℎ𝑓 d𝑥. (2.2.3)

• We have
Δℎ(𝑓𝑔)(𝑥) = 𝑓 (𝑥 + ℎ𝑒𝑠)Δℎ𝑔(𝑥) + 𝑔(𝑥)Δℎ𝑓 (𝑥).
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Remark 2.2.20. It follows immediately from (2.2.3) that the derivatives 𝐷𝑠𝑔 of a Lipschitz - continuous function
𝑔, which exist almost everywhere as limits of the difference quotient Δ𝑠,ℎ𝑔, coincide with its weak derivatives.
Indeed, if 𝑓 is a test function, we can pass to the limit in (2.2.3), getting

∫ 𝑓𝐷𝑠𝑔 d𝑥 = −∫ 𝑔𝐷𝑠𝑓 d𝑥.

In other words, we have Lip(Ω) = 𝑊 1,∞(Ω).
Lemma 2.2.21 ([Giu03]). There exists a constant 𝑐(𝑛) such that, if 𝑣 ∈ 𝑊 1,𝑝(Ω), Σ ⊂⊂ Ω, 1 < 𝑝 < ∞, 𝑠 ∈
{1,… , 𝑛} and |ℎ| < ℎ0 =

1
10
√

𝑛
dist(Σ, 𝜕Ω), then

||Δ𝑠,ℎ𝑣||𝐿𝑝(Σ) ≤ 𝑐||𝐷𝑠𝑣||𝐿𝑝(Ω).

Moreover, if 0 < 𝜚 < 𝑅, |ℎ| < 𝑅 − 𝜚,

∫𝐵𝜚
|𝑣(𝑥 + ℎ𝑒𝑠)|𝑝 d𝑥 ≤ 𝑐(𝑛, 𝑝)∫𝐵𝑅

|𝑣(𝑥)|𝑝 d𝑥.

2.3 Sets of finite perimeter

The modern notion of sets of finite perimeter is due to Caccioppoli [Cac52] and De Giorgi [De 54; De 55; De 58;
De 61]. See also [Fed58; Fed69]. The starting point of the theory of sets of finite perimeter is a generalization of
the Gauss-Green theorem based on the notion of vector-valued Radon measure.

Functions of bounded variation

The idea of function of bounded variation developed along different streams, both in analytical and in a geometrical
vein. From the point of view of the classical analysis, 𝐵𝑉 functions were singled out as those for which a control
on the oscillation is possible, suitable to ensure the convergence of the Fourier series. The geometric counterpart
is that rectifiable curves are precisely those parametrized by 𝐵𝑉 functions. Functions of bounded variation in ℝ
have been introduced by C. Jordan in 1881 [Jor81] in connection with Dirichlet’s test for the convergence of Fourier
series. Later developments on 𝐵𝑉 functions are due to Vitali [Vit05], Levi [Lev06], Lebesgue [Leb10], Fichera
[Fic54], De Giorgi [De 54; De 55], Federer [Fed69], Vol’pert [Vol67; HV85]. We refer to [AFP00] for a complete
treatment on the topic.
Definition 2.3.1. Let 𝑢 ∈ 𝐿1(Ω), Ω being an open set in ℝ𝑛; we say that 𝑢 is a function of bounded variation in Ω
if the distributional derivative of 𝑢 is representable by a finite Radon measure in Ω, i.e. if

∫Ω
𝑢
𝜕𝜑
𝜕𝑥𝑖

d𝑥 = −∫Ω
𝜑 d𝐷𝑖𝑢 ∀𝜑 ∈ 𝐶∞

𝑐 (Ω), 𝑖 = 1,… , 𝑛 (2.3.1)

for some ℝ𝑛-valued measure 𝐷𝑢 = (𝐷1𝑢,… , 𝐷𝑛𝑢) in Ω. The vector space of all functions of bounded variation in
Ω is denoted by 𝐵𝑉 (Ω).
A smoothing argument shows that the integration by parts formulae (2.3.1) are still true for any 𝜑 ∈ 𝐶1

𝑐 (Ω), or even
Lipschitz functions 𝜑 with compact support in Ω. These formulae can be summarized in a single one by writing

∫Ω
𝑢 div𝜑 d𝑥 = −

𝑛
∑

𝑖=1
∫Ω

𝜑𝑖 d𝐷𝑖𝑢 ∀𝜑 ∈
[

𝐶1
𝑐 (Ω)

]𝑛 .

We use the same notation also for functions 𝑢 ∈ [𝐵𝑉 (Ω)]𝑚; in this case 𝐷𝑢 is an 𝑚 × 𝑛 matrix of measures 𝐷𝑖𝑢𝛼
in Ω satisfying

∫Ω
𝑢𝛼
𝜕𝜑
𝜕𝑥𝑖

d𝑥 = −∫Ω
𝜑 d𝐷𝑖𝑢

𝛼 ∀𝜑 ∈ 𝐶1
𝑐 (Ω), 𝑖 = 1,… , 𝑛, 𝛼 = 1,… , 𝑚
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or, equivalently,
𝑚
∑

𝛼=1
∫Ω

𝑢𝛼div𝜑𝛼 d𝑥 = −
𝑚
∑

𝛼=1

𝑛
∑

𝑖=1
∫Ω

𝜑𝛼𝑖 d𝐷𝑖𝑢
𝛼 ∀𝜑 ∈ [𝐶1

𝑐 (Ω)]
𝑚𝑛.

The Sobolev space 𝑊 1,1(Ω) is contained in 𝐵𝑉 (Ω); indeed, for any 𝑢 ∈ 𝑊 1,1(Ω) the distributional derivative is
given by ∇𝑢𝑛. This inclusion is strict: there exist functions 𝑢 ∈ 𝐵𝑉 (Ω) such that 𝐷𝑢 is singular with respect to
𝑛. For instance, the distributional derivative of the Heaviside function 𝜒(0,∞) is the Dirac measure 𝛿0.
Theorem 2.3.2 ([AFP00, Theorem 3.44]). Let Ω ⊂ ℝ𝑛 be a bounded connected open set with Lipschitz boundary
and let 𝑢Ω ∶= ⨍Ω 𝑢(𝑥) d𝑥. Then

∫Ω
|𝑢 − 𝑢Ω| d𝑥 ≤ 𝑐 |𝐷𝑢|(Ω) ∀𝑢 ∈ 𝐵𝑉 (Ω)

for some real constant 𝑐 depending only on Ω

Remark 2.3.3. We remark that Theorem 2.3.2 holds for a wider class of domains, i.e. if Ω is a bounded connected
extension domain, see [AFP00, Definition 3.20, Theorem 3.44]. Extension domains are useful when one needs to
extend a function 𝑢 ∈ [𝐵𝑉 (Ω)]𝑚 to a function �̃� ∈ [𝐵𝑉 (ℝ𝑛)]𝑚, in order to deduce global statements in Ω from
local ones in ℝ𝑛. However any open set Ω with compact Lipschitz boundary is an extension domain [AFP00,
Proposition 3.21].
Theorem 2.3.4 (Boundary trace theorem, [AFP00, Theorem 3.87]). Let Ω ⊂ ℝ𝑛 be an open set with bounded
Lipschitz boundary and 𝑢 ∈ [𝐵𝑉 (Ω)]𝑚. Then, for 𝑛−1-almost every 𝑥 ∈ 𝜕Ω there exists 𝑢Ω(𝑥) ∈ ℝ𝑚 such that

lim
𝜚↓0

𝜚−𝑛 ∫Ω∩𝐵𝜚(𝑥)
|𝑢(𝑦) − 𝑢Ω(𝑥)| d𝑦 = 0.

Moreover, ‖𝑢Ω‖𝐿1(𝜕Ω) ≤ 𝑐‖𝑢‖𝐵𝑉 for some constant 𝑐 depending only on Ω, the extension �̃� of 𝑢 to 0 out of Ω
belongs to 𝑢 ∈ [𝐵𝑉 (ℝ𝑛)]𝑚 and, viewing 𝐷𝑢 as a measure on the whole of ℝ𝑛 and concentrated on Ω, 𝐷�̃� is given
by

𝐷�̃� = 𝐷𝑢 +
(

𝑢Ω ⊗ 𝜈Ω
)

𝑛−1 𝜕Ω.

E. Gagliardo proved in [Gag57] that any function 𝑢 ∈ [𝐿1(𝜕Ω,𝑛−1 𝜕Ω)]𝑚 is the trace of a suitable function in
[𝑊 1,1(Ω)]𝑚, and this proves that the trace operator in Theorem 2.3.4 is onto.
Now we introduce the so-called weak∗ convergence and strict convergence in 𝐵𝑉 (Ω).
Definition 2.3.5 (Weak∗ convergence). Let 𝑢, 𝑢ℎ ∈ [𝐵𝑉 (Ω)]𝑚. We say that {𝑢ℎ} weakly∗ converges in [𝐵𝑉 (Ω)]𝑚
to 𝑢 if {𝑢ℎ} converges to 𝑢 in [𝐿1(Ω)]𝑚 and {𝐷𝑢ℎ} weakly∗ converges to 𝐷𝑢 in Ω, i.e.

lim
ℎ→∞∫Ω

𝜑 d𝐷𝑢ℎ = ∫Ω
𝜑 d𝐷𝑢 ∀𝜑 ∈ 𝐶0(Ω).

Definition 2.3.6 (Strict convergence). Let 𝑢, 𝑢ℎ ∈ [𝐵𝑉 (Ω)]𝑚. We say that {𝑢ℎ} strictly converges in [𝐵𝑉 (Ω)]𝑚 to
𝑢 if {𝑢ℎ} converges to 𝑢 in [𝐿1(Ω)]𝑚 and the variations |𝐷𝑢ℎ|(Ω) converge to |𝐷𝑢|(Ω) as ℎ→ ∞.
The trace operator is not continuous if [𝐵𝑉 (Ω)]𝑚 is endowed with the topology of weak∗ convergence: for instance
the sequence (1 ∧ ℎ𝑡) weakly∗ converges in 𝐵𝑉 (0, 1) to 1 as ℎ → ∞ but the traces at 0 do not converge to 1. We
have continuity, however, under strict convergence.
Theorem 2.3.7 (Continuity of the trace operator, [AFP00, Theorem 3.88]). Let Ω be an open subset of ℝ𝑛 with
bounded Lipschitz boundary. Then, the trace operator 𝑢 ↦ 𝑢Ω is continuous between [𝐵𝑉 (Ω)]𝑚, endowed with
the topology induced by strict convergence, and [𝐿1(𝜕Ω,𝑛−1 𝜕Ω)]𝑚.
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Perimeter

We recall basic definitions and properties regarding sets of finite perimeter, referring to [AFP00; Mag12] for a
complete treatment on the subject.
Let 𝐸 be a Lebesgue measurable set in ℝ𝑛. We say that 𝐸 is a set of locally finite perimeter in ℝ𝑛 if for every
compact set 𝐾 ⊂ ℝ𝑛 we have

sup
{

∫𝐸
div 𝑇 (𝑥) d𝑥 ∶ 𝑇 ∈ 𝐶1

𝑐 (ℝ
𝑛;ℝ𝑛), spt 𝑇 ⊂ 𝐾, sup

ℝ𝑛
|𝑇 | ≤ 1

}

<∞.

If this quantity is bounded independently of 𝐾 , then we say that 𝐸 is a set of finite perimeter in ℝ𝑛.
Proposition 2.3.8 ([Mag12, Proposition 12.1]). If 𝐸 is a Lebesgue measurable set in ℝ𝑛, then 𝐸 is a set of locally
finite perimeter if and only if there exists a ℝ𝑛-valued Radon measure 𝜇𝐸 on ℝ𝑛 such that

∫𝐸
div 𝑇 = ∫ℝ𝑛

𝑇 ⋅ d𝜇𝐸 , ∀𝑇 ∈ 𝐶1
𝑐 (ℝ

𝑛;ℝ𝑛). (2.3.2)

Moreover, 𝐸 is a set of finite perimeter if and only if |𝜇𝐸|(ℝ𝑛) <∞.

Of course (2.3.2) is equivalent to

∫𝐸
∇𝜑 = ∫ℝ𝑛

𝜑 d𝜇𝐸 , ∀𝜑 ∈ 𝐶1
𝑐 (𝐸). (2.3.3)

We call 𝜇𝐸 the Gauss–Green measure of 𝐸, and define the relative perimeter of 𝐸 in 𝐹 ⊂ ℝ𝑛, and the perimeter
of 𝐸, as

𝑃 (𝐸, 𝐹 ) = |𝜇𝐸|(𝐹 ), 𝑃 (𝐸) = |𝜇𝐸|(ℝ𝑛).

By the fundamental lemma of the Calculus of Variations, 𝜇𝐸 is uniquely determined as a Radon measure on ℝ𝑛.
We note that a Lebesgue measurable set 𝐸 ⊂ ℝ𝑛 is a set of locally finite perimeter if and only if the distributional
gradient𝐷𝜒𝐸 of 𝜒𝐸 ∈ 𝐿1

𝑙𝑜𝑐(ℝ
𝑛) can be represented as the integration with respect to the ℝ𝑛-valued Radon measure

−𝜇𝐸 . Therefore we speak of distributional perimeter and we refer to (2.3.3) as the distributional Gauss-Green
theorem.
Example 2.3.9. By the Gauss–Green theorem, if 𝐸 ⊂ ℝ𝑛 is an open set with 𝐶1 boundary and 𝜈𝐸 is the outer
unit normal to 𝐸, then 𝜈𝐸𝑛−1 𝜕𝐸 is a ℝ𝑛-valued Radon measure on ℝ𝑛 such that (2.3.3) holds true. Hence
𝐸 is a set of locally finite perimeter, with Gauss–Green measure 𝜇𝐸 = 𝜈𝐸𝑛−1 𝜕𝐸, 𝑃 (𝐸) = 𝑛−1(𝜕𝐸) and
𝑃 (𝐸, 𝐹 ) = 𝑛−1(𝐹 ∩ 𝜕𝐸) for every 𝐹 ⊂ ℝ𝑛.
Theorem 2.3.10 ([Mag12, Theorem 12.26]). If 𝑅 > 0 and {𝐸ℎ}ℎ∈ℕ are sets of finite perimeter in ℝ𝑛, with

sup
ℎ∈ℕ

𝑃 (𝐸ℎ) <∞, (2.3.4)

𝐸ℎ ⊂ 𝐵𝑅, ∀ℎ ∈ ℕ,

then there exist 𝐸 of finite perimeter in ℝ𝑛 and ℎ(𝑘) → ∞ as 𝑘→ ∞, with

𝐸ℎ(𝑘) → 𝐸, 𝜇𝐸ℎ(𝑥)
∗
⇀ 𝜇𝐸 , 𝐸 ⊂ 𝐵𝑅.

We cannot conclude the compactness of sets from the perimeter bound (2.3.4) only. For example, if {𝑥ℎ} ⊂ ℝ𝑛 is
such that |𝑥ℎ| → ∞, then the sequence𝐸ℎ = 𝐵1(𝑥ℎ) satisfies 𝑃 (𝐸ℎ) = 𝑛𝜔𝑛 for every ℎ ∈ ℕ, while |𝐸Δ𝐸ℎ| → 2𝜔𝑛
as ℎ → ∞ for every Lebesgue measurable set 𝐸 with |𝐸| = 𝜔𝑛. Thus, {𝐸ℎ} does not admit any converging
subsequence. It is clear, however, that {𝐸ℎ} locally converges to the empty set, so that compactness with respect
to the local convergence still holds.
The following isoperimetric-type inequality is related to the relative isoperimetric problem

inf
{

𝑃 (𝐸,𝐵𝑟(𝑥)) ∶ 𝐸 ⊂ 𝐵𝑟(𝑥), |𝐸| = 𝑣
}

.

For this reason, it is usually called the relative isoperimetric inequality on a ball.
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Proposition 2.3.11 (Local perimeter bound on volume, [Mag12, Proposition 12.37]). If 𝑛 ≥ 2, 𝑡 ∈ (0, 1), 𝑥 ∈ ℝ𝑛

and 𝑟 > 0, then there exists a positive constant 𝑐(𝑛, 𝑡) such that

𝑃 (𝐸,𝐵𝑟(𝑥)) ≥ 𝑐(𝑛, 𝑡) |𝐸 ∩ 𝐵𝑟(𝑥)|
𝑛−1
𝑛 ,

for every set of locally finite perimeter 𝐸 such that |𝐸 ∩ 𝐵𝑟(𝑥)| ≤ 𝑡|𝐵𝑟(𝑥)|.

We recall the classical Euclidean isoperimetric inequality.
Theorem 2.3.12 ([De 58], [Mag12, Theorem 14.1]). If 𝐸 is a Lebesgue measurable set in ℝ𝑛 with |𝐸| <∞, then

𝑃 (𝐸) ≥ 𝑛𝜔
1
𝑛
𝑛 |𝐸|

𝑛−1
𝑛 .

Equality holds if and only if |𝐸Δ𝐵𝑟(𝑥)| = 0 for some 𝑥 ∈ ℝ𝑛, 𝑟 > 0.

The following approximation theorem shows that the sets of finite perimeter in ℝ𝑛 can be approximated in measure
by open sets with smooth boundaries in an optimal way, i.e. also getting convergence of perimeters to perimeters.
Theorem 2.3.13 (Density of smooth sets, [AFP00, Theorem 3.42]). Let 𝐸 be a set of finite perimeter in ℝ𝑛, 𝑛 ≥ 2.
Then, there exists a sequence {𝐸ℎ} of open sets with smooth boundaries converging in measure to 𝐸 and such that

lim
ℎ→∞

𝑃 (𝐸ℎ,ℝ𝑛) = 𝑃 (𝐸,ℝ𝑛).

We define the reduced boundary 𝜕∗𝐸 of a set of locally finite perimeter 𝐸 in ℝ𝑛 as

𝜕∗𝐸 ∶=
{

𝑥 ∈ spt|𝐷𝜒𝐸| ∶ ∃ 𝜈𝐸(𝑥) ∶= − lim
𝑟→0

𝐷𝜒𝐸(𝐵𝑟(𝑥))
|𝐷𝜒𝐸(𝐵𝑟(𝑥))|

with |𝜈𝐸(𝑥)| = 1
}

.

The vector 𝜈𝐸 is called the generalized outer unit normal to 𝐸. By Example 2.3.9, if 𝐸 is an open set with 𝐶1

boundary, then 𝜕∗𝐸 = 𝜕𝐸 and the generalized outer unit normal coincides with classical notion of outer unit
normal.
Theorem 2.3.14 (De Giorgi’s structure theorem, [Mag12, Theorem 15.9]). If 𝐸 is a set of locally finite perimeter
in ℝ𝑛, then the Gauss-Green measure 𝜇𝐸 of 𝐸 satisfies

𝜇𝐸 = 𝜈𝐸𝑛−1 𝜕∗𝐸, |𝜇𝐸| = 𝑛−1 𝜕∗𝐸,

and the generalized Gauss-Green formula holds true:

∫𝐸
∇𝜑 = ∫𝜕∗𝐸

𝜑𝜈𝐸 d𝑛−1, ∀𝜑 ∈ 𝐶1
𝑐 (ℝ

𝑛).

Introducing the sets of density 𝑡 ∈ [0, 1] points for 𝐸 defined by

𝐸(𝑡) ∶=
{

𝑥 ∈ ℝ𝑛 ∶ lim
𝑟→0

|𝐸 ∩ 𝐵𝑟(𝑥)|
|𝐵𝑟(𝑥)|

= 𝑡
}

,

we define the essential boundary 𝜕𝑒𝐸 of a Lebesgue measurable set 𝐸 ⊂ ℝ𝑛

𝜕𝑒𝐸 = ℝ𝑛 ⧵
(

𝐸(0) ∪ 𝐸(1)) .

Theorem 2.3.15 (Federer’s theorem, [Mag12, Theorem 16.2]). If 𝐸 is a set of locally finite perimeter in ℝ𝑛, then
𝜕∗𝐸 ⊂ 𝐸(1∕2) ⊂ 𝜕𝑒𝐸, with

𝑛−1 (𝜕𝑒𝐸 ⧵ 𝜕∗𝐸
)

= 0.

Now we state some properties of sets of finite perimeter under the action of diffeomorphisms.
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Proposition 2.3.16 (Diffeomorphic images of sets of finite perimeter, [Mag12, Proposition 17.1]). If 𝐸 is a set of
locally finite perimeter in ℝ𝑛 and 𝑓 is a diffeomorphism of ℝ𝑛 with 𝑔 = 𝑓−1, then 𝑓 (𝐸) is a set of locally finite
perimeter in ℝ𝑛 with

𝑛−1(𝑓 (𝜕∗𝐸)Δ𝜕∗𝑓 (𝐸)) = 0,

∫𝜕∗𝑓 (𝐸)
𝜑𝜈𝑓 (𝐸) d𝑛−1 = ∫𝜕∗𝐸

(𝜑◦𝑓 )𝐉𝑓 (∇𝑔◦𝑓 )∗𝜈𝐸 d𝑛−1,

for every 𝜑 ∈ 𝐶𝑐(ℝ𝑛). In particular, for every Borel set 𝐹 ⊂ ℝ𝑛,

𝑛−1(𝐹 ∩ 𝜕∗𝑓 (𝐸)) = ∫𝜑(𝐹 )∩𝜕∗𝐸
𝐉𝑓 |

|

|

(∇𝑔◦𝑓 )∗𝜈𝐸||
|

d𝑛−1.

A one parameter family of diffeomorphisms of ℝ𝑛 is a smooth function
(𝑥, 𝑡) ∈ ℝ𝑛 × (−𝜀, 𝜀) ↦ 𝑓 (𝑡, 𝑥) = 𝑓𝑡(𝑥) ∈ ℝ𝑛, 𝜀 > 0,

such that, for each fixed |𝑡| < 𝜀, 𝑓𝑡 ∶ ℝ𝑛 → ℝ𝑛 is a diffeomorphism of ℝ𝑛. Given an open set 𝐴 in ℝ𝑛, we say that
{𝑓𝑡}|𝑡|<𝜀 is a local variation in 𝐴 if it defines a one parameter family of diffeomorphisms such that

𝑓0(𝑥) = 𝑥, ∀𝑥 ∈ ℝ𝑛,

{𝑥 ∈ ℝ𝑛 ∶ 𝑓𝑡(𝑥) ≠ 𝑥} ⊂⊂ 𝐴, ∀|𝑡| < 𝜀.

Lemma 2.3.17 ([Mag12, Lemma 17.9]). If 𝐸 is a set of locally finite perimeter in ℝ𝑛, 𝐴 is open and {𝑓𝑡}|𝑡|<𝜀
is a local variation in 𝐴, then there exist positive constants 𝐶 and 𝜀0 < 𝜀 such that, if 𝐾 is a compact set with
{𝑥 ≠ 𝑓𝑡(𝑥)} ⊂ 𝐾 ⊂ 𝐴, then

|𝑓𝑡(𝐸)Δ𝐸| ≤ 𝐶|𝑡|𝑃 (𝐸,𝐾).

Lemma 2.3.18 (Volume-fixing variations, [Mag12, Lemma 17.21]). If 𝐸 is a set of finite perimeter and 𝐴 is an
open set such that 𝑛−1(𝐴 ∩ 𝜕∗𝐸) > 0, then there exist 𝜎0 = 𝜎0(𝐸,𝐴) > 0 and 𝐶 = 𝐶(𝐸,𝐴) < ∞ such that for
every 𝜎 ∈ (−𝜎0, 𝜎0) we can find a set of finite perimeter 𝐹 with 𝐹Δ𝐸 ⊂⊂ 𝐴 and

|𝐹 | = |𝐸| + 𝜎, |𝑃 (𝐹 ,𝐴) − 𝑃 (𝐸,𝐴)| ≤ 𝐶|𝜎|.

Finally we recall the following
Proposition 2.3.19 ([Mag12, Proposition 12.20]). If 𝐸 is a set of locally finite perimeter in ℝ𝑛, then

(𝜇𝐸)𝜀 = −∇(1𝐸 ⋆ 𝜚𝜀)𝑛, ∀𝜀 > 0,

−∇(1𝐸 ⋆ 𝜚𝜀)𝑛
∗
⇀ 𝜇𝐸 , |∇(1𝐸 ⋆ 𝜚𝜀)𝑛|

∗
⇀ |𝜇𝐸|

as 𝜀→ 0+. If, conversely, 𝐸 is a Lebesgue measurable set in ℝ𝑛 such that

lim sup
𝜀→0+ ∫𝐾

|∇(1𝐸 ⋆ 𝜚𝜀)(𝑥)| d𝑥 <∞,

for every compact set 𝐾 , then 𝐸 is of locally finite perimeter.

Slicing

Let us introduce the following notation: when we need to decompose ℝ𝑛 as the Cartesian product ℝ𝑘 × ℝ𝑛−𝑘, we
denote by 𝐩 ∶ ℝ𝑛 → ℝ𝑘 × {0} = ℝ𝑘 and 𝐪 ∶ ℝ𝑛 → {0} ×ℝ𝑛−𝑘 = ℝ𝑛−𝑘 the horizontal and vertical projections, so
that 𝑥 = (𝐩𝑥,𝐪𝑥), 𝑥 ∈ ℝ𝑛. If we write ℝ𝑛 = ℝ𝑛−1 ×ℝ, we denote by 𝐸𝑡 the horizontal slice of 𝐸 ⊂ ℝ𝑛 with 𝑡 ∈ ℝ

𝐸𝑡 =
{

𝑧 ∈ ℝ𝑛−1 ∶ (𝑧, 𝑡) ∈ 𝐸
}

, 𝑡 ∈ ℝ.

By the coarea formula for rectifiable sets 2.1.40 we can study the slicing by hyperplanes of a set of finite perimeter.
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Theorem 2.3.20 (Slicing boundaries by hyperplanes, [Mag12, Theorem 18.11], [FMP08, Theorem 6.1]). If 𝐸 is
a set of locally finite perimeter in ℝ𝑛 then, for a.e. 𝑡 ∈ ℝ, the horizontal section 𝐸𝑡 of 𝐸 is a set of locally finite
perimeter in ℝ𝑛−1, with

𝑛−2(𝜕∗𝐸𝑡Δ(𝜕∗𝐸)𝑡) = 0,

𝐩𝜈𝐸(𝑧, 𝑡) ≠ 0, for𝑛−2 − a.e. 𝑧 ∈ (𝜕∗𝐸)𝑡,

and
𝜇𝐸𝑡 =

𝐩𝜈𝐸(⋅, 𝑡)
|𝐩𝜈𝐸(⋅, 𝑡)|

𝑛−2 (𝜕∗𝐸)𝑡.

Moreover, if 𝐸 has finite Lebesgue measure and

𝑛−1 ({𝑥 ∈ 𝜕∗𝐸 ∶ 𝜈𝐸(𝑥) = ±𝑒𝑛
})

= 0,

then 𝑣𝐸(𝑡) = 𝑛−1(𝐸𝑡), 𝑡 ∈ ℝ is such that 𝑣𝐸 ∈ 𝑊 1,1
𝑙𝑜𝑐 (ℝ), with

𝑣′𝐸(𝑡) = −∫(𝜕∗𝐸)𝑡

𝐪𝜈𝐸(𝑧, 𝑡)
|𝐩𝜈𝐸(𝑧, 𝑡)|

d𝑛−2(𝑧), for a.e. 𝑡 ∈ ℝ.

2.4 Capillarity functional

Definitions and main results

In this section we prove some preparatory results on the capillarity functional. From now on,𝐻 denotes the closed
half-space 𝐻 ∶= {𝑥𝑛 ≤ 0}. If 𝐸 is a measurable set in the half-space {𝑥𝑛 > 0} ⊂ ℝ𝑛 and 𝜆 ∈ (−1, 1), we define
the weighted perimeter functional

𝑃𝜆(𝐸) ∶= 𝑃 (𝐸, {𝑥𝑛 > 0}) − 𝜆𝑛−1(𝜕∗𝐸 ∩ {𝑥𝑛 = 0}).

Interpreting the perimeter as a measure of the surface tension of a liquid drop, the constant 𝜆 basically represent
the relative adhesion coefficient between a liquid drop and the solid walls of the container given by {𝑥𝑛 > 0}.
If 𝑣 > 0, we consider the isoperimetric capillarity problem

inf
{

𝑃𝜆(𝐸) ∶ 𝐸 ⊂ {𝑥𝑛 > 0}, |𝐸| = 𝑣
}

. (2.4.1)
Minimizers for (2.4.1), below called isoperimetric sets for (2.4.1), are given by suitably truncated balls lying on
the boundary of the half-space. More precisely, if 𝐵𝜆 = {𝑥 ∈ 𝐵1(0) ⊂ ℝ𝑛 ∶ ⟨𝑥, 𝑒𝑛⟩ > 𝜆}, and for 𝑣 > 0 we set

𝐵𝜆(𝑣) ∶= 𝑣
1
𝑛

|𝐵𝜆|
1
𝑛

(𝐵𝜆 − 𝜆𝑒𝑛)

then minimizers for (2.4.1) are sets of the form
𝐵𝜆(𝑣, 𝑥) ∶= 𝐵𝜆(𝑣) + 𝑥, (2.4.2)

for 𝑥 ∈ {𝑥𝑛 = 0}. Explicitly
Theorem 2.4.1 (Liquid drops in the absence of gravity, [Mag12, Theorem 19.21]). For every 𝜆 ∈ (−1, 1) and
𝑚 > 0, there exists a unique 𝜎(𝜆, 𝑚) with the following property: a set of finite perimeter 𝐸 ⊂ ℝ𝑛 ⧵ 𝐻 with
|𝐸| = 𝑚 is a minimizer in the variational problem (2.4.1) if and only if, up to horizontal translation, is equivalent
to the set

𝐵𝜆(𝑚) = 𝐵𝑟(𝑠 𝑒𝑛) ∩ (ℝ𝑛 ⧵𝐻),

where 𝑠 ∈ ℝ and 𝑟 > 0 are uniquely determined by the constraints

|𝐵𝜆(𝑚)| = 𝑚, 𝑃 (𝐵𝜆(𝑚), 𝜕𝐻) = 𝜎.

Moreover,
⟨

𝜈𝐵
𝜆(𝑚), 𝑒𝑛

⟩

= 𝜆 on the boundary of the hypersurface 𝜕𝐵𝜆(𝑚) ∩ (ℝ𝑛 ⧵𝐻).
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∙ −𝜆1𝑒𝑛

𝑥𝑛

𝑥𝑛 = 𝜆1

𝑥𝑛 = 𝜆2

𝑥𝑛

∙ −𝜆2𝑒𝑛

𝑥𝑛

Figure 2.1: Left: 𝐵𝜆1(|𝐵𝜆1|) for some 𝜆1 > 0. Middle: Diagonally striped set = 𝐵𝜆1 , Gray set = 𝐵𝜆2 , for some
𝜆1 > 0, 𝜆2 < 0. Right: 𝐵𝜆2(|𝐵𝜆2|) for some 𝜆2 < 0.

We remark that the problem is trivial if 𝜆 ≥ 1, and that it reduces to the Euclidean isoperimetric problem if 𝜆 ≤ −1.
The minimality of sets 𝐵𝜆(𝑣, 𝑥) for (2.4.1) comes with an isoperimetric inequality for 𝑃𝜆

𝑃𝜆(𝐸) ≥ 𝑛|𝐵𝜆|
1
𝑛
|𝐸|

𝑛−1
𝑛 ,

see Theorem 3.2.3 below.
Remark 2.4.2. Let 𝐸 ⊂ ℝ𝑛 ⧵𝐻 be a measurable set. We observe that

𝑃𝜆(𝐸) = ∫𝜕∗𝐸⧵𝐻
1 − 𝜆

⟨

𝑒𝑛, 𝜈
𝐸⟩ d𝑛−1,

where 𝜈𝐸 is the generalized outer normal to 𝐸. In particular, since |𝜆| < 1, we have that 𝑃𝜆(𝐸) ≥ 0. The previous
identity follows from the divergence theorem, indeed

0 = ∫𝐸
div 𝑒𝑛 d𝑥 = −𝑛−1(𝜕∗𝐸 ∩ 𝜕𝐻) + ∫𝜕∗𝐸⧵𝐻

⟨

𝑒𝑛, 𝜈
𝐸⟩ d𝑛−1.

We now aim at proving an approximation result for sets of finite perimeter contained in ℝ𝑛 ⧵𝐻 by sequences of
sets having smooth boundary relative in ℝ𝑛 ⧵𝐻 . We need the following lemma first.
Lemma 2.4.3. Let 𝐸 ⊂ ℝ𝑛 ⧵ 𝐻 be a set of finite perimeter with finite measure. For any 𝑡 ≥ 0 define the
diffeomorphism 𝜑𝑡 ∶ {𝑥𝑛 ≥ 0} → {𝑥𝑛 ≥ 0} given by 𝜑𝑡(𝑥′, 𝑥𝑛) ∶= (𝑥′, 𝑥𝑛(1 + 𝑡𝑒−|𝑥′|2)), where we wrote
𝑥 = (𝑥′, 𝑥𝑛) ∈ ℝ𝑛−1 ×ℝ for any 𝑥 ∈ {𝑥𝑛 ≥ 0} ⊂ ℝ𝑛. Then

1. for at most countably many 𝑡 ∈ [0,+∞) there holds

𝑛−1 ({𝑥 ∈ 𝜕∗(𝜑𝑡(𝐸)) ⧵𝐻 ∶ 𝜈𝜑𝑡(𝐸)(𝑥) = ±𝑒𝑛
})

> 0;

2. for at most countably many 𝜈 ∈ 𝕊𝑛−1 there holds

𝑛−1 ({𝑥 ∈ 𝜕∗𝐸 ∶ 𝜈𝐸(𝑥) = ±𝜈
})

> 0.

Proof. We begin by proving (1). Define 𝑓𝑡 ∶ ℝ𝑛−1 → ℝ by 𝑓𝑡(𝑥′) ∶= 1 + 𝑡𝑒−|𝑥′|2 , and let

𝐴𝑡 ∶=
{

(𝑥′, 𝑥𝑛) ∈ 𝜕∗𝐸 ∩ℝ𝑛 ⧵𝐻 with 𝑥′ ∈ ℝ𝑛−1 ⧵ {0} ∶ 𝜈𝐸(𝑥′, 𝑥𝑛) is proportional to (𝑥𝑛∇𝑓𝑡(𝑥′), 𝑓𝑡(𝑥′))
}

.

We claim that, if 𝑠, 𝑟 > 0, with 𝑠 ≠ 𝑟, then𝐴𝑟∩𝐴𝑠 = ∅. Indeed, if𝐴𝑟∩𝐴𝑠 ≠ ∅, there exist (�̄�′, �̄�𝑛) ∈ 𝜕∗𝐸∩ℝ𝑛 ⧵𝐻
and �̄� ∈ ℝ ⧵ {0} such that

(�̄�𝑛∇𝑓𝑟(�̄�′), 𝑓𝑟(�̄�′)) = �̄�(�̄�𝑛∇𝑓𝑠(�̄�′), 𝑓𝑠(�̄�′)).
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Since 𝑥𝑛 > 0 and 𝑥′ ≠ 0, then �̄�𝑛∇𝑓𝑟(�̄�′) = �̄��̄�𝑛∇𝑓𝑠(�̄�′) implies 𝑟 = �̄� 𝑠. Thus 𝑓𝑟(�̄�′) = �̄�𝑓𝑠(�̄�′) implies 1 = �̄�,
which in turn implies 𝑟 = 𝑠, contradiction.
For 𝑘 ∈ ℕ≥1 let us define

𝑀𝑘 ∶=
{

𝑡 > 0 ∶ 𝑛−1(𝐴𝑡) >
1
𝑘

}

.

We want to prove that 𝑀𝑘 is finite. Let 𝑡1, … , 𝑡𝑙 ∈𝑀𝑘, with 𝑡𝑖 ≠ 𝑡𝑗 if 𝑖 ≠ 𝑗. Since 𝐴𝑡𝑖 ≠ 𝐴𝑡𝑗 = ∅, then

𝑃 (𝐸) ≥
𝑙
∑

𝑖=1
𝑛−1(𝐴𝑡𝑖) ≥

1
𝑘
𝑙,

and then #𝑀𝑘 ≤ 𝑘𝑃 (𝐸). Therefore the set
{

𝑡 > 0 ∶ 𝑛−1(𝐴𝑡) > 0
}

=
⋃

𝑘
𝑀𝑘,

is countable.
Since the differential of 𝜑𝑡 is represented by the matrix

d𝜑𝑡(𝑥′, 𝑥𝑛) =
(

Idℝ𝑛−1 0
𝑥𝑛∇𝑓𝑡(𝑥′) 𝑓𝑡(𝑥′)

)

,

requiring that 𝜈𝜑𝑡(𝐸)(𝜑𝑡(𝑥)) = ±𝑒𝑛 for some 𝑥 = (𝑥′, 𝑥𝑛) means that
𝜈𝐸(𝑥′, 𝑥𝑛) is proportional to (𝑥𝑛∇𝑓𝑡(𝑥′), 𝑓𝑡(𝑥′)),

see Proposition 2.3.16 and Proposition 2.1.34. Therefore for any 𝑡 ∉ ∪𝑘𝑀𝑘 there holds
𝑛−1 ({𝑥 ∈ 𝜕∗(𝜑𝑡(𝐸)) ⧵𝐻 ∶ 𝜈𝜑𝑡(𝐸)(𝑥) = ±𝑒𝑛

})

= 0.

The proof of (2) is analogous. For 𝑘 ∈ ℕ≥1 let

𝑁𝑘 ∶=
{

𝜈 ∈ 𝕊𝑛−1 ∶ 𝑛−1 ({𝑥 ∈ 𝜕∗𝐸 ∶ 𝜈𝐸 = 𝜈
})

> 1
𝑘

}

.

As above one gets that ∪𝑘𝑁𝑘 is at most countable, and (2) follows.
We are now ready to prove
Lemma 2.4.4 (Approximation with regular sets). Let 𝐸 ⊂ ℝ𝑛 ⧵𝐻 be a set of finite perimeter with finite measure.
Then there exists a sequence of sets 𝐸𝑖 ⊂ ℝ𝑛 ⧵𝐻 such that

1. 𝐸𝑖 is a bounded set such that 𝜕𝐸𝑖 ⧵ 𝜕𝐻 is a smooth hypersurface (possibly with smooth boundary) such that
either 𝜕𝐸𝑖 ∩ 𝜕𝐻 = ∅ or 𝜕𝐸𝑖 ⧵ 𝜕𝐻 intersects 𝜕𝐻 orthogonally;

2. 𝐸𝑖 → 𝐸 in 𝐿1, 𝑃 (𝐸𝑖,ℝ𝑛 ⧵𝐻) → 𝑃 (𝐸,ℝ𝑛 ⧵𝐻), 𝑛−1(𝜕𝐸𝑖 ∩ 𝜕𝐻) → 𝑛−1(𝜕∗𝐸 ∩ 𝜕𝐻), as 𝑖→ +∞.
In particular, 𝑃 (𝐸𝑖) → 𝑃 (𝐸) and 𝑃𝜆(𝐸𝑖) → 𝑃𝜆(𝐸) as 𝑖→ +∞, for any 𝜆 ∈ (−1, 1);

3. 𝑛−1({𝑥 ∈ 𝜕∗𝐸𝑖 ∶ 𝜈𝐸𝑖(𝑥) = ±𝑒𝑗}) = 0 for any 𝑗 = 1,… , 𝑛 − 1;

4. 𝑛−1({𝑥 ∈ 𝜕∗𝐸𝑖 ⧵𝐻 ∶ 𝜈𝐸𝑖(𝑥) = ±𝑒𝑛}) = 0.

Proof. Since𝑃 (𝐸), |𝐸| < +∞, by a diagonal argument we can assume without loss of generality that𝐸 is bounded.
Step 1. We first construct a sequence 𝐹𝑖 ⊂ ℝ𝑛⧵𝐻 such that 1. and 2. hold with 𝐹𝑖 in place of𝐸𝑖. Let us denote by 𝐹
the union of𝐸 with the reflection of𝐸 with respect to the hyperplane {𝑥𝑛 = 0}. There exists a sequence of smooth
sets 𝐹𝑖 ⊂ ℝ𝑛, symmetric with respect to {𝑥𝑛 = 0}, such that they converge to 𝐹 in 𝐿1(ℝ𝑛) and 𝑃 (𝐹𝑖) → 𝑃 (𝐹 )
(see Theorem 2.3.13). The fact that 𝐹𝑖 is symmetric with respect to {𝑥𝑛 = 0} follows as 𝐹𝑖 can be obtained as
superlevel set of a convolution of 𝜒𝐹 with a symmetric mollifier. In particular, if 𝜕𝐹𝑖∩𝜕𝐻 ≠ ∅, then 𝜕𝐹𝑖 intersects
𝐻 orthogonally, and thus 𝜕𝐹𝑖 ∩ 𝜕𝐻 is a smooth (𝑛 − 2)-dimensional manifold. Let 𝐹𝑖 ∶= 𝐹𝑖 ⧵𝐻 . Then 𝐹𝑖 → 𝐸
in 𝐿1 and

𝑃 (𝐹𝑖,ℝ𝑛 ⧵𝐻) = 1
2
𝑃 (𝐹𝑖) →

1
2
𝑃 (𝐹 ) = 𝑃 (𝐸,ℝ𝑛 ⧵𝐻).
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Let us define the function
𝑓 ∶ ℝ𝑛 → [0,+∞)
𝑓 (𝑣) = |𝑣| − 𝜆 ⟨𝑒𝑛, 𝑣⟩ .

Note that 𝑓 is continuous; moreover 𝑓 (𝑡𝑣) = 𝑡𝑓 (𝑣) for any 𝑡 ≥ 0 and 𝑓 is convex. Let us set
𝜇𝑖 ∶= 𝜈𝐹𝑖𝑛−1 (𝜕∗𝐹𝑖 ∩ (ℝ𝑛 ⧵𝐻))

𝜇 ∶= 𝜈𝐸𝑛−1 (𝜕∗𝐸 ∩ (ℝ𝑛 ⧵𝐻)).

Since 𝜈𝐹𝑖𝑛−1 𝜕∗𝐹𝑖 → 𝜈𝐸𝑛−1 𝜕∗𝐸 weakly∗ inℝ𝑛, then 𝜇𝑖 → 𝜇weakly∗ inℝ𝑛⧵𝐻 . Since we already know that
|𝜇𝑖|(ℝ𝑛 ⧵𝐻) → |𝜇|(ℝ𝑛 ⧵𝐻), by Reshetnyak continuity theorem 2.1.23 we deduce 𝑃𝜆(𝐹𝑖) = ∫ 𝑓 (𝜇𝑖∕|𝜇𝑖|) d|𝜇𝑖| →
∫ 𝑓 (𝜇∕|𝜇|) d|𝜇| = 𝑃𝜆(𝐸).
Step 2. Let us consider the flow 𝜑𝑡 ∶ ℝ𝑛 ⧵𝐻 → ℝ𝑛 ⧵𝐻 such that

𝜑𝑡(𝑥′, 𝑥𝑛) ∶= (𝑥′, 𝑥𝑛(1 + 𝑡𝑒−|𝑥
′
|

2)),

for 𝑡 ≥ 0. By Lemma 2.4.3 for a.e. 𝑡 we have that 𝜑𝑡(𝐹𝑖) satisfies (4). Moreover, for any 𝑡 ≥ 0 there exists a
sequence of rotations 𝑗,𝑡 ∶ (𝑥′, 𝑥𝑛) ↦ (𝑅𝑗,𝑡(𝑥′), 𝑥𝑛) along the 𝑛-th axis converging to the identity such that

𝑛−1({𝑥 ∈ 𝜕∗(𝑗,𝑡(𝜑𝑡(𝐹𝑖)) ∶ 𝜈𝑗,𝑡(𝜑𝑡(𝐹𝑖))(𝑥) = ±𝑒𝑙}) = 0

for all 𝑙 = 1, … , 𝑛 − 1. By a diagonal argument, since 𝜑𝑡(𝐹𝑖) maintains orthogonal intersection with 𝜕𝐻 , one
extract the desired sequence 𝐸𝑖.
Corollary 2.4.5. Let 𝐸 ⊂ ℝ𝑛 ⧵𝐻 be a set of finite perimeter with finite measure. Then

𝑃𝜆(𝐸) ≥
1 − 𝜆
2

𝑃 (𝐸).

Proof. Let {𝐸𝑖}𝑖 be the sequence of smooth sets in ℝ𝑛 ⧵𝐻 given by Lemma 2.4.4. Since the orthogonal projection
on 𝜕𝐻 is a 1-Lipschitz and surjective map from 𝜕𝐸𝑖 ∩ (ℝ𝑛 ⧵𝐻) onto 𝜕𝐸𝑖 ∩ 𝜕𝐻 , then by Proposition 2.1.29

𝑃 (𝐸𝑖,ℝ𝑛 ⧵𝐻) ≥ 𝑛−1(𝜕∗𝐸𝑖 ∩ 𝜕𝐻).

Since
𝑃𝜆(𝐸𝑖) =

1 + 𝜆
2

(𝑃 (𝐸𝑖,ℝ𝑛 ⧵𝐻) −𝑛−1(𝜕∗𝐸𝑖 ∩ 𝜕𝐻)) + 1 − 𝜆
2

𝑃 (𝐸𝑖), (2.4.3)
the claim follows by passing to the limit 𝑖→ ∞.

2.5 Regularity of (Λ, 𝑟0)-minimizers

We recall definitions and basic properties of local (Λ, 𝑟0)-minimizers of the perimeter. A detailed account on the
theory of (Λ, 𝑟0)-minimizers can be found in [Mag12].
Definition 2.5.1. Let Ω ⊂ ℝ𝑛 be an open set and let 𝐸 ⊂ ℝ𝑛 be a set of finite perimeter. We say that 𝐸 is a local
(Λ, 𝑟0)-minimizer of the perimeter in Ω, with Λ, 𝑟0 > 0, if

𝑃 (𝐸,𝐵𝑟(𝑥)) ≤ 𝑃 (𝐹 ,𝐵𝑟(𝑥)) + Λ|𝐸Δ𝐹 |,

whenever 𝐸Δ𝐹 ⊂⊂ 𝐵𝑟(𝑥) ⊂⊂ Ω and 𝑟 ≤ 𝑟0.
It is well-known that local (Λ, 𝑟0)-minimizers have bounded mean curvature in a generalized sense. We provide a
proof of this fact in the following lemma.
Lemma 2.5.2. Let Ω ⊂ ℝ𝑛 be an open set and let 𝐸 ⊂ ℝ𝑛 be a local (Λ, 𝑟0)-minimizer of the perimeter in Ω. Then
there exists 𝐻 ∈ 𝐿∞(𝑃 (𝐸, ⋅),ℝ𝑛) such that ‖𝐻‖𝐿∞ ≤ Λ and

∫𝜕∗𝐸
div𝑇𝑋 = −∫𝜕∗𝐸

⟨𝑋,𝐻⟩ ∀𝑋 ∈ 𝐶1
𝑐 (Ω,ℝ

𝑛),

where div𝑇𝑋 is the tangential divergence of 𝑋 along the (𝑛−1-a.e. defined) tangent space of 𝜕∗𝐸. We shall refer
to 𝐻 as to the (generalized) mean curvature of 𝐸.
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Proof. Let𝑋 ∈ 𝐶1
𝑐 (𝐵𝑟(𝑥)), with 𝐵𝑟(𝑥) ⊂⊂ Ω and 𝑟 ≤ 𝑟0. Let {𝑔𝑡}𝑡<|𝜂| be the flow of the vector field𝑋, and define

𝐹𝑡 = 𝑔𝑡(𝐸). Then 𝐸Δ𝐹𝑡 ⊂⊂ 𝐵𝑟(𝑥). Let 𝑓𝑡 = 𝑔−1𝑡 = 𝑔−𝑡. If 𝑢 ∈ 𝐶1(Ω) then

∫𝐵𝑟(𝑥)
|𝑢(𝑓𝑡(𝑦)) − 𝑢(𝑦)| d𝑦 = ∫𝐵𝑟(𝑥)

|

|

|

|

|

∫

𝑡

0
𝜕𝑠[𝑢(𝑓𝑠(𝑦))] d𝑠

|

|

|

|

|

d𝑦

≤ ∫𝐵𝑟(𝑥) ∫

𝑡

0
|∇𝑢(𝑓𝑠(𝑦))| |𝑋(𝑓𝑠(𝑦))| d𝑠 d𝑦

= ∫

𝑡

0 ∫𝐵𝑟(𝑥)
|∇𝑢(𝑓𝑠(𝑦))| |𝑋(𝑓𝑠(𝑦))|

𝐽𝑓𝑠(𝑦)
𝐽𝑓𝑠(𝑦)

d𝑦 d𝑠

≤ (1 + 𝑜(1))∫

𝑡

0 ∫𝐵𝑟(𝑥)
|∇𝑢(𝑓𝑠(𝑦))| |𝑋(𝑓𝑠(𝑦))| 𝐽𝑓𝑠(𝑦) d𝑦 d𝑠

= (1 + 𝑜(1))∫

𝑡

0 ∫𝐵𝑟(𝑥)
|∇𝑢(𝑧)| |𝑋(𝑧)| d𝑧 d𝑠

= (1 + 𝑜(1))𝑡∫𝐵𝑟(𝑥)
|∇𝑢(𝑧)| |𝑋(𝑧)| d𝑧,

(2.5.1)

where 𝑜(1) → 0 as 𝑡→ 0.
Setting 𝑢 = 𝑢𝜀 = 𝜒𝐸 ⋆ 𝜚𝜀, then |∇𝑢𝜀|𝑛 → 𝑃 (𝐸, ⋅) as 𝜀 → 0 by Proposition 2.3.19. Also

∫𝐵𝑟(𝑥)
|

|

|

𝑢𝜀(𝑓𝑡(𝑦)) − 𝜒𝑓−𝑡(𝐸)(𝑦)
|

|

|

𝐽𝑓𝑡
𝐽𝑓𝑡

d𝑦 ≤ 2∫𝐵𝑟(𝑥)
|𝑢𝜀(𝑧) − 𝜒𝐸(𝑧)| d𝑧.

Hence setting 𝑢 = 𝑢𝜀 in (2.5.1) and letting 𝜀→ 0 implies

|𝐸Δ𝐹𝑡| = ∫𝐵𝑟(𝑥)
|𝜒𝐹𝑡 − 𝜒𝐸| ≤ (1 + 𝑜(1))𝑡∫𝐵𝑟(𝑥)

|𝑋| d𝑃 (𝐸, ⋅).

By (Λ, 𝑟0)-minimality we deduce

𝑃 (𝐸,𝐵𝑟(𝑥)) − 𝑃 (𝐹𝑡, 𝐵𝑟(𝑥)) ≤ (1 + 𝑜(1))Λ𝑡∫𝐵𝑟(𝑥)
|𝑋| d𝑃 (𝐸, ⋅).

Dividing by 𝑡 > 0 and letting 𝑡→ 0+ we get

−∫𝜕∗𝐸
div𝑇𝑋 d𝑃 (𝐸, ⋅) ≤ Λ∫𝜕∗𝐸

|𝑋| d𝑃 (𝐸, ⋅).

Up to changing 𝑋 with −𝑋 we obtain
|

|

|

|

∫𝜕∗𝐸
div𝑇𝑋 d𝑃 (𝐸, ⋅)

|

|

|

|

≤ Λ∫𝜕∗𝐸
|𝑋| d𝑃 (𝐸, ⋅),

that implies the existence of the generalized mean curvature 𝐻 ∈ 𝐿∞(𝑃 (𝐸, ⋅) 𝐵𝑟(𝑥)) for 𝐸 in 𝐵𝑟(𝑥) with
‖𝐻‖𝐿∞ ≤ Λ. Since 𝐵𝑟(𝑥) was arbitrary in Ω, by a partition of unity argument the claim follows.
Let us further recall the following fundamental regularity properties of local (Λ, 𝑟0)-minimizers.
Theorem 2.5.3 ([Tam84], [Mag12, Theorem 26.3, Theorem 26.6]). Let Ω ⊂ ℝ𝑛 be an open set. Let 𝐸 ⊂ Ω
be a local (Λ, 𝑟0)-minimizer in Ω. Then the set 𝐸(1) of points of density 1 for 𝐸 is an open representative for 𝐸.
Moreover, representing 𝐸 with 𝐸(1), we have that 𝜕∗𝐸 ∩Ω is a 𝐶1, 12 manifold and 𝑑(𝜕𝐸 ∩Ω ⧵ 𝜕∗𝐸) = 0 for any
𝑑 > 𝑛 − 8.
Let 𝐸𝑖 ⊂ Ω be a sequence of local (Λ, 𝑟0)-minimizers in Ω that converges to 𝐸 in 𝐿1(Ω). If 𝜕𝐸 ∩ 𝐵𝑟(𝑥) is of class
𝐶2, for some 𝐵𝑟(𝑥) ⊂ Ω, then 𝜕𝐸𝑖 ∩ 𝐵𝑟∕2(𝑥) is of class 𝐶1, 12 for large 𝑖 and converges to 𝜕𝐸 ∩ 𝐵𝑟∕2(𝑥) in 𝐶1,𝛼 for
any 𝛼 ∈ (0, 1∕2).

Thanks to Theorem 2.5.3, we will always identify a local (Λ, 𝑟0)-minimizer 𝐸 with the open set 𝐸(1).
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2.6 Schwarz symmetrization and axially symmetric hypersurfaces

We introduce an important class of axially symmetric hypersurfaces.
Definition 2.6.1. Let 𝐸 ⊂ ℝ𝑛 be a Borel set. Then its Schwarz symmetrization (with respect to the 𝑛-th axis) is
the set

𝐸∗ ∶= {(𝑥′, 𝑡) ∈ ℝ𝑛−1 ×ℝ ∶ 𝜔𝑛−1|𝑥
′
|

𝑛−1 < 𝑛−1(𝐸 ∩ {𝑥𝑛 = 𝑡}), 𝑡 ∈ ℝ}.

A Borel set 𝐸 ⊂ ℝ𝑛 is said to be Schwarz-symmetric if it coincides with its Schwarz symmetrization, up to
negligible sets. The profile function of a Schwarz-symmetric set 𝐸 is the a.e. defined map 𝑓 ∶ ℝ → ℝ given by

𝑓 (𝑡) ∶=
(

𝑛−1(𝐸 ∩ {𝑥𝑛 = 𝑡})
𝜔𝑛−1

)

1
𝑛−1

.

Remark 2.6.2. Let 𝐸 ⊂ {𝑥𝑛 > 0} be a set of finite perimeter. Let 𝐸 be Schwarz-symmetric with profile function
𝑓 . Assume that 𝑛−1({𝑥 ∈ 𝜕∗𝐸 ∶ 𝜈𝐸(𝑥) = ±𝑒𝑛} = 0.
Then 𝑓 is differentiable almost everywhere by Theorem 2.3.20 with derivative

𝑓 ′(𝑡) = −

(

1

𝜔𝑛−1
(

𝑛−1(𝐸 ∩ {𝑥𝑛 = 𝑡})
)𝑛−2

)
1
𝑛−1

∫𝜕∗𝐸∩{𝑥𝑛=𝑡}

⟨

𝜈𝐸(𝑧, 𝑡), 𝑒𝑛
⟩

|

|

𝜈𝐸(𝑧, 𝑡) − ⟨𝜈𝐸(𝑧, 𝑡), 𝑒𝑛⟩ 𝑒𝑛||
d𝑛−2(𝑧),

at a.e. 𝑡 ∈ ℝ such that 𝑓 (𝑡) > 0. The generalized outer normal to 𝐸 can be written as

𝜈𝐸(𝑓 (𝑡)𝑒, 𝑡) = 1
√

1 + (𝑓 ′)2
(𝑒,−𝑓 ′),

for any 𝑒 = (𝑒1,… , 𝑒𝑛−1) ∈ ℝ𝑛−1 with |𝑒| = 1 and for a.e. 𝑡 ∈ ℝ such that 𝑓 (𝑡) > 0.
Moreover by area formula 2.1.38 we have

𝑃𝜆(𝐸) = ∫𝜕∗𝐸⧵𝐻
1 − 𝜆

⟨

𝑒𝑛, 𝜈
𝐸⟩ d𝑛−1

= ∫

+∞

0

(

(𝑛 − 1)𝜔𝑛−1
√

1 + (𝑓 ′)2𝑓 𝑛−2 − 𝜆∫𝜕∗𝐸∩{𝑥𝑛=𝑡}

⟨

𝑒𝑛, 𝜈
𝐸⟩

√

1 + (𝑓 ′)2 d𝑛−2
)

d𝑡

= (𝑛 − 1)𝜔𝑛−1 ∫

+∞

0

(
√

1 + (𝑓 ′)2𝑓 𝑛−2 + 𝜆𝑓 ′𝑓 𝑛−2
)

d𝑡.

We recall the following properties of Schwarz rearrangement.
Proposition 2.6.3 (Contractivity of Schwarz rearrangement, [Mag12, Exercise 19.14]). If 𝐸 and 𝐹 are Lebesgue
measurable sets, then |𝐸∗Δ𝐹 ∗

| ≤ |𝐸Δ𝐹 |.

Proof. Let us recall the definition of horizontal slice of a Lebesgue measurable set 𝐸 as
𝐸𝑡 ∶=

{

𝑧 ∈ ℝ𝑛−1 ∶ (𝑧, 𝑡) ∈ 𝐸
}

.

Note that by Fubini’s Theorem 2.1.20

|𝐸Δ𝐹 | = ∫ℝ
𝑛−1

(

𝐸𝑡Δ𝐹𝑡
)

d𝑡 ≥ ∫ℝ

|

|

|

𝑛−1(𝐸𝑡) − 𝑛−1(𝐹𝑡)
|

|

|

= |𝐸∗Δ𝐹 ∗
|.

Theorem 2.6.4 (Schwarz inequality, [Mag12, Theorem 19.11]). If𝐸 is a set of finite perimeter inℝ𝑛 with |𝐸| <∞,
then 𝐸∗ is a set of finite perimeter in ℝ𝑛 and

𝑃 (𝐸) ≥ 𝑃 (𝐸∗). (2.6.1)
If equality holds in (2.6.1), then, for a.e. 𝑡 ∈ ℝ, 𝐸𝑡 is 𝑛−1-equivalent to an (𝑛 − 1)-dimensional ball, and 𝐪𝜈𝐸 is
𝑛−2-a.e. constant on 𝜕∗𝐸𝑡.
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Proposition 2.6.5 ([Mag12, Proposition 19.17]). If 𝐸 ⊂ ℝ𝑛 ⧵𝐻 is of locally finite perimeter, then 𝑃 (𝐸, 𝜕𝐻) =
𝑃 (𝐸∗, 𝜕𝐻).

We recall a formula for the mean curvature of axially symmetric hypersurfaces of class 𝑊 2,𝑝.
Lemma 2.6.6. Let 𝑎 < 𝑏. Let 𝛼, 𝛽 ∶ (𝑎, 𝑏) → (0,∞) be 𝑊 2,𝑝 functions, with 𝑝 ∈ (1,∞], parametrizing the
curve 𝛾 ∶ (𝑎, 𝑏) → span{𝑒1, 𝑒𝑛} ⊂ ℝ𝑛 given by 𝛾(𝑡) = (𝛼(𝑡), 0,… , 0, 𝛽(𝑡)), and assume that |𝛾 ′(𝑡)| = 1 and that
inf (𝑎,𝑏) 𝛼 > 0. Let 𝑆 be the axially symmetric hypersurface around the 𝑛-th axis parametrized by

𝜑𝑆 ∶ 𝕊𝑛−2 × (𝑎, 𝑏) → ℝ𝑛

𝜑𝑆(𝜗, 𝑡) = (𝛼(𝑡)𝜗, 𝛽(𝑡)).

Then the vector
𝐻 =

(

⟨

𝑘𝛾 , 𝜈
⟩

− (𝑛 − 2)
𝛽′

𝛼

)

(

−𝛽′𝜗, 𝛼′
)

,

for every 𝜗 and a.e. 𝑡, where 𝑘𝛾 is the curvature of 𝛾 and 𝜈(𝑡) = (−𝛽′, 0,… , 0, 𝛼′), is the (generalized) mean
curvature of 𝑆. More precisely

∫𝑆
div𝑇𝑋 = −∫𝑆

⟨𝑋,𝐻⟩ ,

for any 𝑋 ∈ 𝐶1
𝑐 (ℝ

𝑛,ℝ𝑛) such that spt𝑋 ∩ 𝜕𝑆 = ∅, where div𝑇𝑋 is the tangential divergence of 𝑋 along 𝑆.

Proof. Let 𝛼𝑖, 𝛽𝑖 ∶ (𝑎, 𝑏) → (0,+∞) be smooth functions converging in𝑊 2,𝑝 to 𝛼, 𝛽 respectively ([Eva94, Section
5.3, Theorem 2]). Up to reparametrization, we can also assume (𝛼′𝑖 )

2 + (𝛽′𝑖 )
2 = 1. Then the tangent vector to the

curve
𝛾𝑖(𝑡) ∶= (𝛼𝑖(𝑡), 0,… , 0, 𝛽𝑖(𝑡))

is
𝜏𝑖 ∶= (𝛼′𝑖 , 0,… , 0, 𝛽′𝑖 )

and the curvature is
𝑘𝛾𝑖 = (𝛼′′𝑖 , 0,… , 0, 𝛽′′𝑖 ).

Also, fix the normal vector
𝜈𝑖 ∶= (−𝛽′𝑖 , 0,… , 0, 𝛼′𝑖 ).

The corresponding choice of unit normal on the hypersurface 𝑆𝑖 parametrized by 𝜑𝑆𝑖 given by the rotation of 𝛾𝑖 is
𝑁𝑖(𝜗, 𝑡) = (−𝛽′𝑖𝜗, 𝛼

′
𝑖 ),

for 𝜗 ∈ 𝕊𝑛−2. The second fundamental form of 𝑆𝑖 in direction 𝑁𝑖 is given by
II𝑁𝑖

(𝜕𝜇, 𝜕𝜂) = −
⟨

𝜕𝜇, 𝜕𝜂𝑁𝑖
⟩

,

where 𝜕𝜇, 𝜕𝜂 denote coordinate vector fields on 𝕊𝑛−2 × (𝑎, 𝑏).
If 𝜇, 𝜂 ≠ 𝑡, then

II𝑁𝑖
(𝜕𝜇, 𝜕𝜂) = −

⟨

𝜕𝜇, 𝜕𝜂(−𝛽′𝑖𝜗, 𝛼
′
𝑖 )
⟩

= 𝛽′𝑖
⟨

(𝛼𝑖𝜕𝜇𝜗, 0), (𝜕𝜂𝜗, 0)
⟩

= −𝛼𝑖𝛽′𝑖 II
𝕊𝑛−2
𝜗 (𝜕𝜇, 𝜕𝜂),

where II𝕊𝑛−2𝜗 denotes second fundamental form of 𝕊𝑛−2 with respect to the inner normal given by 𝜗.
If 𝜇 ≠ 𝑡 and 𝜂 = 𝑡, then

II𝑁𝑖
(𝜕𝜇, 𝜕𝑡) = −

⟨

𝜕𝜇, 𝜕𝑡(−𝛽′𝑖𝜗, 𝛼
′
𝑖 )
⟩

= −
⟨

𝜕𝜇𝜑𝑆 , (−𝛽′′𝑖 𝜗, 𝛼
′′
𝑖 )
⟩

= 0,

hence by symmetry II𝑁𝑖
(𝜕𝑡, 𝜕𝜇) = 0 for 𝜇 ≠ 𝑡 as well.

If 𝜇 = 𝜂 = 𝑡 then
II𝑁𝑖

(𝜕𝑡, 𝜕𝑡) = −
⟨

𝜕𝑡, (−𝛽′′𝑖 𝜗, 𝛼
′′
𝑖 )
⟩

= −
⟨

𝜕𝑡𝜑𝑆𝑖 , (−𝛽
′′
𝑖 𝜗, 𝛼

′′
𝑖 )
⟩

= −
⟨

(𝛼′𝑖𝜗, 𝛽
′
𝑖 ), (−𝛽

′′
𝑖 𝜗, 𝛼

′′
𝑖 )
⟩

= 𝛼′𝑖𝛽
′′
𝑖 − 𝛽′𝑖𝛼

′′
𝑖 .

36



In local coordinates, the metric on 𝑆𝑖 is given by

𝑔𝑙𝑘 =
⟨

𝜕𝑙𝜑𝑆𝑖 , 𝜕𝑘𝜑𝑆𝑖
⟩

,

then 𝑔𝑡𝑡 = 1 and 𝑔ℎ𝑗 = 𝛼2𝑖 (𝑔𝕊𝑛−2)ℎ𝑗 for ℎ, 𝑗 ≠ 𝑡. Hence the mean curvature of 𝑆𝑖 is determined by
⟨𝐻𝑖, 𝑁𝑖⟩ = 𝑔𝜇𝜂II𝑁 (𝜕𝜇, 𝜕𝜂)

= 𝑔𝑡𝑡II𝑁𝑖
(𝜕𝑡, 𝜕𝑡) + 𝑔ℎ𝑡II𝑁𝑖

(𝜕ℎ, 𝜕𝑡) + 𝑔ℎ𝑗II𝑁𝑖
(𝜕ℎ, 𝜕𝑗)

= (𝛼′𝑖𝛽
′′
𝑖 − 𝛽′𝑖𝛼

′′
𝑖 ) − 𝛼

−2
𝑖 𝑔ℎ𝑗𝕊𝑛−2𝛼𝑖𝛽

′
𝑖 II

𝕊𝑛−2
𝜗 (𝜕ℎ, 𝜕𝑗)

=
⟨

𝑘𝛾𝑖 , 𝜈𝑖
⟩

− (𝑛 − 2)
𝛽′𝑖
𝛼𝑖
,

where indices ℎ, 𝑗 are understood to be different from 𝑡. Since 𝜑𝑆𝑖 converges in 𝐶1-sense to 𝜑𝑆 and ⟨𝐻𝑖, 𝑁𝑖⟩𝑁𝑖
𝑛−1 𝑆𝑖 converges in duality with bounded continuous vector fields, then the identity defining the generalized
mean curvature passes to the limit on 𝑆, and the claimed formula also follows.
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Chapter 3

Quantitative isoperimetry for the classical
capillarity problem

3.1 Main results

In order to prove a quantitative isoperimetric inequality for
inf

{

𝑃𝜆(𝐸) ∶ 𝐸 ⊂ {𝑥𝑛 > 0}, |𝐸| = 𝑣
}

, (3.1.1)
we define the corresponding Fraenkel asymmetry and isoperimetric deficit by setting

𝛼𝜆(𝐸) ∶= inf
{

|𝐸Δ𝐵𝜆(𝑣, 𝑥)|
𝑣

∶ 𝑥 ∈ {𝑥𝑛 = 0}
}

, 𝐷𝜆(𝐸) ∶=
𝑃𝜆(𝐸) − 𝑃𝜆(𝐵𝜆(𝑣))

𝑃𝜆(𝐵𝜆(𝑣))
,

for any 𝐸 ⊂ {𝑥𝑛 > 0} with volume |𝐸| = 𝑣. The infimum defining the asymmetry is, in fact, a minimum. The
first main result of the chapter is the following
Theorem 3.1.1 ([PP24]). Let 𝜆 ∈ (−1, 1) and 𝑛 ∈ ℕ with 𝑛 ≥ 2. There exists a constant 𝑐iso = 𝑐iso(𝑛, 𝜆) > 0 such
that for any measurable set 𝐸 ⊂ ℝ𝑛 ∩ {𝑥𝑛 > 0} with finite measure there holds

𝛼𝜆(𝐸)2 ≤ 𝑐iso𝐷𝜆(𝐸). (3.1.2)
As for the classical quantitative isoperimetric inequality [FMP08], perturbing the boundary of an optimal bubble
only inside the container {𝑥𝑛 > 0}, it is possible to check that exponents in (3.1.2) are sharp.
In the context of these capillarity problems it is also spontaneous to consider a notion of asymmetry for the part of
the boundary of a set that touches the half-plane {𝑥𝑛 = 0}. For a measurable set 𝐸 ⊂ {𝑥𝑛 > 0}, we define

𝛽𝜆(𝐸) ∶= inf

{

𝑛−1 (𝜕∗𝐸 ∩ {𝑥𝑛 = 0} Δ 𝜕∗𝐵𝜆(|𝐸|, 𝑥) ∩ {𝑥𝑛 = 0}
)

𝑛−1
(

𝜕∗𝐵𝜆(|𝐸|, 𝑥) ∩ {𝑥𝑛 = 0}
) ∶ 𝑥 ∈ {𝑥𝑛 = 0}

}

.

The previous quantity measures the asymmetry of the set 𝜕∗𝐸 ∩{𝑥𝑛 = 0} with respect to (𝑛−1)-dimensional balls
in {𝑥𝑛 = 0} having volume equal to the one of the trace of the optimal bubble corresponding to the volume of 𝐸.
We establish the following second quantitative isoperimetric inequality, that provides a quantitative estimate on 𝛽𝜆.
Theorem 3.1.2 ([PP24]). Let 𝜆 ∈ (−1, 1) and 𝑛 ∈ ℕ with 𝑛 ≥ 2. There exists a constant 𝑐′iso = 𝑐′iso(𝑛, 𝜆) > 0 such
that for any measurable set 𝐸 ⊂ ℝ𝑛 ∩ {𝑥𝑛 > 0} with finite measure there holds

𝛽𝜆(𝐸) ≤ 𝑐′isomax
{

𝐷𝜆(𝐸), 𝐷𝜆(𝐸)
1
2𝑛

}

. (3.1.3)

Strategy of the proof and comments. Observing that, roughly speaking, the minimization problem
inf

{

𝑃𝜆(𝐸) ∶ 𝐸 ⊂ {𝑥𝑛 > 0}, |𝐸| = 𝑣
}
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is symmetric with respect to the first 𝑛 − 1 axes, it is possible to adapt arguments in the spirit of [FMP08] to
see that, in order to prove Theorem 3.1.1, it is sufficient to prove (3.1.2) in the class of Schwarz-symmetric sets,
see Corollary 3.4.12. However, we point out that it seems not possible to push the strategy of [FMP08] to the
very end to prove Theorem 3.1.1. Indeed the arguments in [FMP08] require to Schwarz-symmetrize a competitor
with respect to a preferred axis depending on the competitor, while in our case it is only possible to symmetrize
with respect to the 𝑛-th axis. One finds an analogous obstruction also in a possible adaptation of the proof via
symmetrization revised in [Mag08] (see also [Fus15]); in [Mag08] the quantitative isoperimetric inequality for
Schwarz-symmetric sets is eventually obtained performing a quantitative version of Gromov’s proof [MS86] of the
isoperimetric inequality, but again after having symmetrized a competitor with respect to a convenient axis.
The proof of (3.1.2) in the class of Schwarz-symmetric sets is achieved here with a new combination of the so-
called selection principle [AFM13; CL12] with an Alexandrov–Bakelman–Pucci-type technique in the spirit of
[Cin+22].
In the recent [Cin+22], the authors prove sharp quantitative isoperimetric inequalities for a class of isoperimetric
problems in cones where volume and perimeter are weighted in terms of a function satisfying suitable homogeneity
and concavity properties. The proof in [Cin+22] stems from the fact that the isoperimetric inequality for the
corresponding problem was proved in [CRS16] by a so-called ABP argument. The methods that go under the
name of ABP techniques were originally employed to derive regularity estimates for second order elliptic equations
[GT01, Chapter 9] and they were applied to give a new direct proof of the classical isoperimetric inequality in
[Cab00; Cab08] (see [Cab17] for a detailed account on the method). More precisely, for the classical isoperimetric
problem, if 𝐸 ⊂ ℝ𝑛 is a smooth connected open set, one would consider a solution 𝑢 to

{

Δ𝑢 = 𝑃 (𝐸)
|𝐸|

on 𝐸,
𝜕𝜈𝑢 = 1 on 𝜕𝐸, (3.1.4)

where 𝜕𝜈𝑢 denotes outward normal derivative. It is immediate to check that ∇𝑢(𝐸′) ⊃ 𝐵1(0) where 𝐸′ ∶= {𝑥 ∈
𝐸 ∶ ∇2𝑢(𝑥) ≥ 0}, hence the area formula together with the arithmetic-geometric mean inequality readily imply
the Euclidean isoperimetric inequality, indeed

𝜔𝑛 = |𝐵1(0)| ≤ ∫𝐸′
det ∇2𝑢 ≤ ∫𝐸

(Δ𝑢
𝑛

)𝑛
=

𝑃 (𝐸)𝑛

𝑛𝑛|𝐸|𝑛−1
.

Now the rough idea is that a control on the energy deficit should control the "asymmetry" of the solution 𝑢 with
respect to the solution corresponding to the optimal shape 𝐵1(0), that is the radially symmetric parabola |𝑥|2∕2.
In fact, this is achieved in [Cin+22] by controlling the asymmetry of a coupling function which is defined as a
suitable convex envelope of 𝑢. Adapting arguments from [FMP10], in [Cin+22] the authors then show that it is
possible to employ trace-type theorems to estimate the asymmetry of a competitor set in terms of the asymmetry
of the coupling function, which is in turn estimated by the energy deficit.
In Theorem 3.2.3 below we will give an ABP proof of the isoperimetric inequality for the problem (3.1.1) by
analyzing an elliptic problem analogous to (3.1.4), see (3.2.4). We are then in position to consider a coupling
function as done in [Cin+22] and we can quantitatively estimate its asymmetry, which will be achieved in Propo-
sition 3.5.5. Moreover, Schwarz-symmetric sets that are sufficiently small 𝐶1-perturbations (in the sense of Defi-
nition 3.5.11) of an optimal bubble (2.4.2) readily verify the needed trace-type inequalities that relate asymmetry
of the competitor with the asymmetry of the coupling. Hence this establishes the quantitative inequality (3.1.2)
for Schwarz-symmetric 𝐶1-perturbations of optimal bubbles, see Corollary 3.5.12. Observe that, in our setting,
isoperimetric sets are just Lipschitz-regular and a set𝐸 is𝐶1-close to an optimal bubble if just the relative boundary
𝜕𝐸 ∩ {𝑥𝑛 > 0} is close to the relative boundary of an optimal bubble as 𝐶1-hypersurfaces with boundary.
Once (3.1.2) is proved for 𝐶1-perturbations of optimal bubbles (Corollary 3.5.12), we want apply a selection-type
argument in the spirit of [AFM13; CL12] in the class of Schwarz-symmetric sets in order to extend the validity
of the quantitative inequality to the whole class of Schwarz-symmetric sets. In this way we also avoid the imple-
mentation of further technical results that in [FMP10; Cin+22] allow to reduce to just consider sets that enjoy the
required trace-type inequalities.
Roughly speaking, in a selection-type argument one argues by contradiction assuming existence of sets contradict-
ing the quantitative isoperimetric inequality and one uses such sets to define an auxiliary minimization problem,
cf. (3.5.19). Minimizers to the previous problem still contradict the quantitative isoperimetric inequality, but at
the same time they are shown to be small 𝐶1-perturbations of some isoperimetric set, contradicting the inequality
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already proved for sets given by small perturbations of optimal ones.
In our case, we will prove that minimizers 𝐸 to the auxiliary minimization problem are 𝐶1-perturbations of opti-
mal bubbles up to the boundary of the half-space {𝑥𝑛 > 0} as a consequence of the classical interior regularity of
(Λ, 𝑟0)-minimizers of the perimeter (Definition 2.5.1), see [Tam84] and [Mag12, Chapter 26], together with a sim-
ple variational argument that allows us to propagate the regularity up to the boundary of the half-space {𝑥𝑛 > 0}.
This essentially follows from the fact that a Schwarz-symmetric local (Λ, 𝑟0)-minimizer 𝐸 in {𝑥𝑛 > 0} is locally
of class 𝐶1 and has bounded mean curvature (in a generalized sense, see Lemma 2.5.2); hence a uniform bound on
the whole second fundamental form on a portion of boundary 𝜕𝐸 ∩ {0 < 𝑥𝑛 < 𝜀} follows just by showing that the
set 𝜕𝐸 ∩ {0 < 𝑥𝑛 < 𝜀} is far from the axis of revolution of 𝐸 (see Lemma 2.6.6), and the latter holds in the proof
of Theorem 3.1.1 by an energy estimate holding for minimizers to the auxiliary minimization problems.
We stress that in our case it is not clear how to apply a Fuglede-type argument [CL12; Fug89] to prove the quanti-
tative inequality for sets given by small 𝐶1-perturbations of optimal ones. Indeed, the classical Fuglede’s method
relies on the precise knowledge of the eigenvalues of the Laplace–Beltrami operator, which is not available for the
operator on spherical caps corresponding to optimal bubbles (2.4.2) for generic 𝜆 ∈ (−1, 1). Moreover, observe
that in our case it is not possible to globally parametrize 𝐶1-close boundaries one on the other as normal graphs in
general, introducing a further nontrivial technical difficulty in the implementation of a Fuglede-type argument.
Once Theorem 3.1.1 is proved, for the proof of Theorem 3.1.2 we argue as follows. First we establish a quantitative
inequality that estimates the Hausdorff distance between the relative boundary in {𝑥𝑛 > 0} of a competitor 𝐸 and
the relative boundary of some bubble in terms of the Fraenkel asymmetry of 𝐸, under the assumption that 𝐸 is
a so-called (𝐾, 𝑟0)-quasiminimal set, see Definition 3.6.2 and Lemma 3.6.4. This is achieved since quasiminimal
sets enjoy uniform density estimates at boundary points, see Theorem 3.6.3. Exploiting Theorem 3.1.1, the pre-
vious quantitative inequality yields an inequality of the form (3.1.3) in the class of quasiminimal sets. Eventually,
Theorem 3.1.2 follows by applying again a selection-type argument where now 𝛽𝜆 plays the role of the Fraenkel
asymmetry.

From now on and for the rest of the chapter it is assumed that 𝜆 ∈ (−1, 1) and 𝑛 ∈ ℕ with 𝑛 ≥ 2 are fixed.

3.2 Two proofs of the capillarity isoperimetric inequality

We first give a proof of the isoperimetric inequality for the capillarity functional 𝑃𝜆 exploiting an ABP method.
Since the bubbles 𝐵𝜆(𝑣) are Schwarz-symmetric, we can exploit Remark 2.6.2 to compute their energy.
Lemma 3.2.1. There holds 𝑃𝜆(𝐵𝜆(𝑣)) = 𝑛|𝐵𝜆|

1
𝑛 𝑣

𝑛−1
𝑛 , for any 𝑣 ≥ 0 and 𝜆 ∈ (−1, 1).

First proof of Lemma 3.2.1. By scale invariance, it is sufficient to prove that 𝑃𝜆(𝐵𝜆) ∶= 𝑃 (𝐵𝜆, {𝑥𝑛 > 𝜆}) −
𝜆𝑛−1(𝜕𝐵𝜆 ∩ {𝑥𝑛 = 𝜆}) is equal to 𝑛|𝐵𝜆|.
If 𝜆 = 0, we have 𝑃0(𝐵0) = 1

2
𝑃 (𝐵) = 1

2
𝑛|𝐵| = 𝑛|𝐵0

|. So if we prove that
d
d𝜆

(

𝑃𝜆(𝐵𝜆) − 𝑛|𝐵𝜆|
)

= 0, (3.2.1)

for any 𝜆 ∈ (−1, 1), the claim follows. Let 𝜑(𝑡) ∶= (1− 𝑡2)
1
2 , for 𝑡 ∈ [−1, 1], be the profile function of the standard

unit ball in ℝ𝑛.
• By coarea formula 2.1.40, the volume of 𝐵𝜆 equals

|𝐵𝜆| = ∫

1

𝜆
𝜔𝑛−1𝜑

𝑛−1 d𝑡.

• By Remark 2.6.2 we get

𝑃𝜆(𝐵𝜆) = ∫

1

𝜆

(

(𝑛 − 1)𝜔𝑛−1
√

1 + (𝜑′)2𝜑𝑛−2 + 𝜆(𝑛 − 1)𝜔𝑛−1𝜑′𝜑𝑛−2
)

d𝑡

= ∫

1

𝜆
(𝑛 − 1)𝜔𝑛−1(1 − 𝜆𝑡)𝜑𝑛−3 d𝑡.
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• Since 𝜑′ = −𝑡∕𝜑, the derivative of 𝑃𝜆(𝐵𝜆) equals:
d
d𝜆
𝑃𝜆(𝐵𝜆) = ∫

1

𝜆
(𝑛 − 1)𝜔𝑛−1(−𝑡)𝜑𝑛−3 d𝑡 − (𝑛 − 1)𝜔𝑛−1(1 − 𝜆2)𝜑𝑛−3(𝜆)

= (𝑛 − 1)𝜔𝑛−1 ∫

1

𝜆
𝜑′𝜑𝑛−2 d𝑡 − (𝑛 − 1)𝜔𝑛−1𝜑𝑛−1(𝜆)

= −𝜔𝑛−1𝜑𝑛−1(𝜆) − (𝑛 − 1)𝜔𝑛−1𝜑𝑛−1(𝜆)

= −𝑛𝜔𝑛−1𝜑𝑛−1(𝜆).

• The derivative of the volume |𝐵𝜆| equals
d
d𝜆

|𝐵𝜆| = −𝜔𝑛−1𝜑𝑛−1(𝜆).

Putting together the above computations we have d
d𝜆
𝑃𝜆(𝐵𝜆) = 𝑛 d

d𝜆
|𝐵𝜆|, which is (3.2.1).

Now we provide a second proof of Lemma 3.2.1.
Second proof of Lemma 3.2.1. By scale invariance, it is sufficient to prove that 𝑃 (𝐵𝜆, {𝑥𝑛 > 𝜆}) − 𝜆𝑛−1(𝜕𝐵𝜆 ∩
{𝑥𝑛 = 𝜆}) is equal to 𝑛|𝐵𝜆|. Indeed, let 𝑢(𝑥) = 1

2
|𝑥|2. Then

𝑛|𝐵𝜆| = ∫𝐵𝜆
Δ𝑢 = 𝑃 (𝐵𝜆, {𝑥𝑛 > 𝜆}) + ∫𝜕𝐵𝜆∩{𝑥𝑛=𝜆}

⟨−𝑒𝑛, 𝑥⟩ = 𝑃 (𝐵𝜆, {𝑥𝑛 > 𝜆}) − 𝜆𝑛−1(𝜕𝐵𝜆 ∩ {𝑥𝑛 = 𝜆}).

Remark 3.2.2. Let 𝐸 ⊂ ℝ𝑛 ⧵𝐻 be a connected open set such that 𝜕𝐸 ⧵𝐻 is a smooth hypersurface with boundary
that intersects 𝜕𝐻 orthogonally. Then the Neumann problem

⎧

⎪

⎨

⎪

⎩

Δ𝑢 = 𝑃𝜆(𝐸)
|𝐸|

in 𝐸,
𝜕𝑢
𝜕𝜈

= 1 on 𝜕𝐸 ⧵ 𝜕𝐻,
𝜕𝑢
𝜕𝜈

= −𝜆 on 𝜕𝐸 ∩ 𝜕𝐻,
(3.2.2)

has a solution 𝑢 ∈ 𝐶1(𝐸) ∩ 𝐶∞(𝐸).
Indeed, existence of a weak solution of (3.2.2) follows by classical arguments exploiting the Riesz representation
theorem. By [Nit11, Proposition 3.6] there exists 𝛾 > 0 such that every weak solution is in 𝐶0,𝛾 (𝐸). Hence we can
apply [Lie88, Theorem 1] to the equivalent problem

⎧

⎪

⎨

⎪

⎩

Δ𝑢 − 𝑢 = 𝑃𝜆(𝐸)
|𝐸|

− 𝑢 =∶ 𝑓 in 𝐸,
𝜕𝑢
𝜕𝜈

= 1 on 𝜕𝐸 ⧵ 𝜕𝐻,
𝜕𝑢
𝜕𝜈

= −𝜆 on 𝜕𝐸 ∩ 𝜕𝐻

getting that a weak solution is in fact 𝐶1(𝐸).
Theorem 3.2.3 (Isoperimetric inequality for 𝑃𝜆). Let 𝐸 ⊂ ℝ𝑛 ⧵𝐻 be a set of finite perimeter with |𝐸| ∈ (0,+∞).
Then

𝑃𝜆(𝐸)

|𝐸|
𝑛−1
𝑛

≥
𝑃𝜆(𝐵𝜆)

|𝐵𝜆|
𝑛−1
𝑛

= 𝑛|𝐵𝜆|
1
𝑛 . (3.2.3)

Moreover, equality occurs in (3.2.3) if and only if 𝐸 = 𝐵𝜆(|𝐸|) up to a translation and up to negligible sets.

We just give a proof of the inequality (3.2.3) here, referring to the proof of Theorem 2.4.1 in [Mag12] for an
alternative proof comprising the characterization of minimizers.
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First proof of Theorem 3.2.3. By the standard isoperimetric inequality, we can assume that 𝑛−1(𝜕∗𝐸 ∩ 𝜕𝐻) > 0.
By Lemma 2.4.4, we can further assume that 𝐸 is a bounded set such that 𝜕𝐸 ⧵ 𝜕𝐻 is smooth and intersects 𝜕𝐻
orthogonally.
Let us further assume for the moment that 𝐸 is connected. Let 𝑢 be the solution of the Neumann problem

⎧

⎪

⎨

⎪

⎩

Δ𝑢 = 𝑃𝜆(𝐸)
|𝐸|

in 𝐸,
𝜕𝑢
𝜕𝜈

= 1 on 𝜕𝐸 ⧵ 𝜕𝐻,
𝜕𝑢
𝜕𝜈

= −𝜆 on 𝜕𝐸 ∩ 𝜕𝐻,
(3.2.4)

where 𝜕𝑢∕𝜕𝜈 denotes the outer normal derivative of 𝑢 on 𝜕𝐸. Observe that such a solution exists and 𝑢 ∈ 𝐶1(𝐸) ∩
𝐶∞(𝐸) (see Remark 3.2.2). We consider the “lower contact set” of 𝑢 defined by

Γ𝑢 ∶=
{

𝑥 ∈ 𝐸 ∶ 𝑢(𝑦) ≥ 𝑢(𝑥) + ⟨∇𝑢(𝑥), 𝑦 − 𝑥⟩ for all 𝑦 ∈ 𝐸
}

.

We claim that
𝐵𝜆 ⊂ ∇𝑢(Γ𝑢). (3.2.5)

To show (3.2.5), take any 𝑝 ∈ 𝐵𝜆. Let 𝑥 ∈ 𝐸 be a point such that
min
𝑦∈𝐸

{𝑢(𝑦) − ⟨𝑝, 𝑦⟩} = 𝑢(𝑥) − ⟨𝑝, 𝑥⟩ .

If 𝑥 ∈ 𝜕𝐸⧵𝜕𝐻 then the exterior normal derivative of 𝑢(𝑦)−⟨𝑝, 𝑦⟩ at 𝑥would be nonpositive and hence (𝜕𝑢∕𝜕𝜈)(𝑥) ≤
|𝑝| < 1, a contradiction with (3.2.4). Similarly, if 𝑥 ∈ 𝜕𝐸 ∩ 𝜕𝐻 then (𝜕𝑢∕𝜕𝜈)(𝑥) ≤ ⟨𝑝,−𝑒𝑛⟩ < −𝜆, a contradiction
with (3.2.4). It follows that 𝑥 ∈ 𝐸 and, therefore, that 𝑥 is an interior minimum of the function 𝑢(𝑦) − ⟨𝑝, 𝑦⟩ over
𝐸. In particular 𝑝 = ∇𝑢(𝑥) and 𝑥 ∈ Γ𝑢, hence Claim (3.2.5) is now proved.
From (3.2.5), since 𝑢 ∈ 𝐶∞(𝐸) and Γ𝑢 ⊂ 𝐸, we can apply the area formula on ∇𝑢 to deduce

|𝐵𝜆| ≤ |∇𝑢(Γ𝑢)| = ∫∇𝑢(Γ𝑢)
d𝑝 ≤ ∫Γ𝑢

|det∇2𝑢(𝑥)| d𝑥.

Since points 𝑥 ∈ Γ𝑢 are interior minima for 𝑦↦ 𝑢(𝑦) − ⟨∇𝑢(𝑥), 𝑦⟩, then ∇2𝑢(𝑥) is positively semi-definite. Hence
by the arithmetic-geometric mean inequality

|det∇2𝑢| = det∇2𝑢 ≤
(Δ𝑢
𝑛

)𝑛 in Γ𝑢.

Hence
|𝐵𝜆| ≤ ∫Γ𝑢

det∇2𝑢 d𝑥 ≤ ∫Γ𝑢

(Δ𝑢
𝑛

)𝑛
d𝑥 ≤ ∫𝐸

(Δ𝑢
𝑛

)𝑛
d𝑥,

since Δ𝑢 ≡ 𝑃𝜆(𝐸)∕|𝐸|. Plugging in the value of Δ𝑢, the claimed inequality follows.
It remains to consider the case when𝐸 is not connected, hence when𝐸 is a disjoint union of finitely many bounded
sets 𝐸𝑖, for 𝑖 = 1,… , 𝑘, such that 𝜕𝐸𝑖 ⧵ 𝜕𝐻 is smooth and intersects 𝜕𝐻 orthogonally. We can apply the isoperi-
metric inequality that we just proved for 𝑃𝜆 on each component 𝐸𝑖. Summing the inequalities and exploiting the
subadditivity of 𝑡↦ 𝑡

𝑛−1
𝑛 , the final inequality follows.

Now we present another version of the proof of the inequality in Theorem 3.2.3, inspired by Gromov’s proof of the
isoperimetric inequality [CNV04; FMP10; Mag08; MS86].
Second proof of Theorem 3.2.3. By scale invariance, we can assume |𝐸| = |𝐵𝜆|. At the same time, by the sub-
additivity of 𝑡 ↦ 𝑡

𝑛−1
𝑛 it is sufficient to prove Theorem 3.2.3 when 𝐸 is connected. Finally, by Theorem 2.6.4 and

Proposition 2.6.5 we can assume that 𝐸 is Schwarz symmetric and by density we can assume that 𝐸 is smooth.
The proof is based on a parametrization of 𝐵𝜆 in terms of 𝐸 via the function

𝜏 ∶ [0,+∞) → [𝜆,∞)

defined by
|𝐸 ∩ {𝑥𝑛 < 𝑡}| = |𝐵𝜆 ∩ {𝑥𝑛 < 𝜏(𝑡)}|.
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If we define
𝑣(𝑡) ∶= 𝑛−1(𝐸 ∩ {𝑥𝑛 = 𝑡})

𝑤(𝑠) ∶= 𝑛−1(𝐵𝜆 ∩ {𝑥𝑛 = 𝑠}),

by construction

∫

𝑡

0
𝑣(𝑠) d𝑠 = ∫

𝜏(𝑡)

0
𝑤(𝑠) d𝑠.

Then 𝜏 is smooth with 𝜏′ > 0 on the set {𝑡 > 0 ∶ 𝑣(𝑡) > 0}, where 𝜏′ is given by

𝜏′(𝑡) =
𝑣(𝑡)

𝑤(𝜏(𝑡))
.

Let us consider the deformation 𝑇 ∶ 𝐸 → 𝐵𝜆 defined by

𝑇 (𝑥) ∶=
𝑛−1
∑

𝑖=1

(

𝑤(𝜏(𝑥𝑛))
𝑣(𝑥𝑛)

)
1
𝑛−1
𝑥𝑖𝑒𝑖 + 𝜏(𝑥𝑛)𝑒𝑛 =

𝑛−1
∑

𝑖=1
𝜏′(𝑥𝑛)

− 1
𝑛−1𝑥𝑖𝑒𝑖 + 𝜏(𝑥𝑛)𝑒𝑛.

Note that
𝑇 (𝐸 ∩ {𝑥𝑛 = 𝑡}) = 𝐵𝜆 ∩ {𝑥𝑛 = 𝜏(𝑡)}

for every 𝑡 > 0, therefore 𝑇 (𝐸) = 𝐵𝜆. For any 𝑥 ∈ 𝐸, the differential d𝑇 of 𝑇 is represented by the matrix

d𝑇 (𝑥) =
𝑛−1
∑

𝑖=1

1

𝜏′(𝑥𝑛)
1
𝑛−1

𝑒𝑖 ⊗ 𝑒𝑖 +

⎛

⎜

⎜

⎜

⎝

𝑛−1
∑

𝑖=1

𝜕
(

𝜏′(𝑥𝑛)
1

1−𝑛

)

𝜕𝑥𝑛
𝑥𝑖𝑒𝑖

⎞

⎟

⎟

⎟

⎠

⊗ 𝑒𝑛 + 𝜏′(𝑥𝑛)𝑒𝑛 ⊗ 𝑒𝑛,

where {𝑒𝑖} is an orthonormal basis of {𝑥𝑛 = 0}. Taking the trace of d𝑇 we deduce that
div 𝑇 (𝑥) = (𝑛 − 1) 1

𝜏′(𝑥𝑛)
1
𝑛−1

+ 𝜏′(𝑥𝑛),

thus by Young’s inequality we estimate

div 𝑇 (𝑥)
𝑛

= 𝑛 − 1
𝑛

(

1

𝜏′(𝑥𝑛)
1
𝑛

)
𝑛
𝑛−1

+ 1
𝑛

(

𝜏′(𝑥𝑛)
1
𝑛

)𝑛
≥ 1.

If for 𝜀 > 0 we define 𝐸𝜀 ∶= 𝐸 ∩ {𝜀 < 𝑥𝑛}, by divergence theorem
𝑃𝜆(𝐸) = lim

𝜀→0
𝑃 (𝐸𝜀, {𝑥𝑛 > 𝜀}) − 𝜆𝑛−1(𝐸𝜀 ∩ {𝑥𝑛 = 𝜀})

≥ lim
𝜀→0

𝑃 (𝐸𝜀, {𝑥𝑛 > 𝜀}) + ∫𝜕∗𝐸𝜀∩{𝑥𝑛=𝜀}

⟨

𝑇 , 𝜈𝐸𝜀
⟩

d𝑛−1

≥ lim
𝜀→0∫𝜕∗𝐸𝜀

⟨

𝑇 , 𝜈𝐸𝜀
⟩

d𝑛−1 = lim
𝜀→0∫𝐸𝜀

div 𝑇 d𝑛 ≥ lim
𝜀→0

𝑛|𝐸𝜀| = 𝑛|𝐸| = 𝑛|𝐵𝜆|,

and we conclude the proof.

3.3 Asymmetry and deficit

We recall the definition of the Fraenkel asymmetry with respect to optimal bubbles 𝐵𝜆(𝑣, 𝑥) and the deficit corre-
sponding to the functional 𝑃𝜆, proving some preliminary properties on these quantities.
Definition 3.3.1 (Fraenkel asymmetry). Let 𝐸 ⊂ ℝ𝑛 ⧵𝐻 be a Borel set with measure |𝐸| = 𝑣 ∈ (0,+∞). We
define

𝛼𝜆(𝐸) ∶= inf
{

|𝐸Δ𝐵𝜆(𝑣, 𝑥)|
𝑣

∶ 𝑥 ∈ {𝑥𝑛 = 0}
}

.

It is readily checked that the Fraenkel asymmetry of 𝐸 is a minimum.
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Definition 3.3.2 (Isoperimetric deficit). Let 𝐸 ⊂ ℝ𝑛 ⧵ 𝐻 be a Borel set with measure |𝐸| = 𝑣 ∈ (0,+∞). We
define

𝐷𝜆(𝐸) ∶=
𝑃𝜆(𝐸) − 𝑃𝜆(𝐵𝜆(𝑣))

𝑃𝜆(𝐵𝜆(𝑣))
.

The following lemma states that, if the isoperimetric deficit of a competitor is sufficiently small, then the competitor
touches the hyperplane {𝑥𝑛 = 0}.
Lemma 3.3.3. There exists 𝑐 = 𝑐(𝑛, 𝜆) > 0 such that if a Borel set 𝐸 ⊂ ℝ𝑛 ⧵ 𝐻 satisfies 𝐷𝜆(𝐸) < 𝑐 then
𝑃 (𝐸, 𝜕𝐻) > 0.

Proof. If 𝐸 is a Borel set such that 𝐷𝜆(𝐸) < 𝑐 and 𝑃 (𝐸, 𝜕𝐻) = 0, then the standard isoperimetric inequality
together with Lemma 3.2.1 imply

𝑛𝜔
1
𝑛
𝑛 |𝐸|

𝑛−1
𝑛 ≤ 𝑃 (𝐸) = 𝑃𝜆(𝐸) < (1 + 𝑐)𝑃𝜆(𝐵𝜆(|𝐸|)) = 𝑛|𝐵𝜆|

1
𝑛 (1 + 𝑐)|𝐸|

𝑛−1
𝑛 .

Since |𝐸| > 0 for 𝑐 small enough, we get a contradiction if 𝑐 is sufficiently small.
The following lemmas prove continuity properties of deficit, asymmetry and 𝑃𝜆 under convergence of sets.
Lemma 3.3.4. If {𝐸𝑖}𝑖∈ℕ and 𝐸 are sets of finite perimeter in ℝ𝑛 ⧵𝐻 with finite measure such that

𝐸𝑖
𝐿1
loc

←←←←←←←←←←←←←←←→ 𝐸.

Then
lim inf
𝑖→+∞

𝑃𝜆(𝐸𝑖) ≥ 𝑃𝜆(𝐸), lim inf
𝑖→+∞

𝐷𝜆(𝐸𝑖) ≥ 𝐷𝜆(𝐸).

Proof. Let us define the function
𝑓 ∶ ℝ𝑛 → [0,+∞)
𝑓 (𝑣) = |𝑣| − 𝜆 ⟨𝑒𝑛, 𝑣⟩ .

Note that 𝑓 is continuous; moreover 𝑓 (𝑡𝑣) = 𝑡𝑓 (𝑣) for any 𝑡 ≥ 0 and 𝑓 is convex. Let us set
𝜇𝑖 ∶= 𝜈𝐸𝑖𝑛−1 (𝜕∗𝐸𝑖 ∩ (ℝ𝑛 ⧵𝐻))

𝜇 ∶= 𝜈𝐸𝑛−1 (𝜕∗𝐸 ∩ (ℝ𝑛 ⧵𝐻)).

Since 𝜈𝐸𝑖𝑛−1 𝜕∗𝐸𝑖 → 𝜈𝐸𝑛−1 𝜕∗𝐸 weakly∗ in ℝ𝑛, then 𝜇𝑖 → 𝜇 weakly∗ in ℝ𝑛 ⧵𝐻 . Recalling Remark 2.4.2,
the Reshetnyak lower semicontinuity theorem 2.1.22 guarantees the lower semicontinuity of 𝑃𝜆. Therefore, the
lower semicontinuity of the deficit also follows by lower semicontinuity of 𝑃𝜆.
Lemma 3.3.5. If {𝐸𝑖}𝑖∈ℕ and 𝐸 are sets of finite perimeter in ℝ𝑛 ⧵𝐻 with finite measure such that |𝐸| > 0 and

𝐸𝑖
𝐿1

←←←←←←←←←←←→ 𝐸.

Then
lim
𝑖→+∞

𝛼𝜆(𝐸𝑖) = 𝛼𝜆(𝐸)

Proof. Let 𝑣 ∶= |𝐸| and 𝑣𝑖 ∶= |𝐸𝑖|, then 𝑣𝑖 → 𝑣.
If 𝛼𝜆(𝐸) = 2, there exists 𝑦 > 0 such that |𝐸 ∩ {𝑥 ∈ ℝ𝑛 ⧵𝐻 ∶ ⟨𝑥, 𝑒𝑛⟩ < 𝑦}| = 0. Let 𝑦0 be the least upper bound
of such 𝑦’s; then every spherical cap 𝐵𝜆(𝑣, 𝑥), with 𝑥 ∈ 𝜕𝐻 , is contained in {𝑥 ∈ ℝ𝑛 ⧵𝐻 ∶ ⟨𝑥, 𝑒𝑛⟩ < 𝑦0}. By
𝐿1-convergence of {𝐸𝑖}𝑖, for every 𝑧 ∈ 𝜕𝐻 and 𝑖 sufficiently large we have

sup
𝑧∈𝜕𝐻

|𝐸𝑖 ∩ 𝐵𝜆(𝑣𝑖, 𝑧)| = sup
𝑧∈𝜕𝐻

|𝐸𝑖 ∩ 𝐵𝜆(𝑣𝑖, 𝑧) ∩ {𝑥 ∈ ℝ𝑛 ⧵𝐻 ∶ ⟨𝑥, 𝑒𝑛⟩ < 𝑦0}|+

+ |𝐸𝑖 ∩ 𝐵𝜆(𝑣𝑖, 𝑧) ∩ {𝑥 ∈ ℝ𝑛 ⧵𝐻 ∶ ⟨𝑥, 𝑒𝑛⟩ > 𝑦0}|
≤ |𝐸𝑖 ∩ {𝑥 ∈ ℝ𝑛 ⧵𝐻 ∶ ⟨𝑥, 𝑒𝑛⟩ < 𝑦0}| + |𝐵𝜆(𝑣𝑖, 0) ∩ {𝑥 ∈ ℝ𝑛 ⧵𝐻 ∶ ⟨𝑥, 𝑒𝑛⟩ > 𝑦0}| ←←←←→𝑖 0,
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hence 𝛼𝜆(𝐸𝑖) → 2.
Suppose then that 𝛼𝜆(𝐸) < 2, let 𝛼𝜆(𝐸) be attained by some 𝐵𝜆(𝑣, 𝑥0). Then

𝛼𝜆(𝐸) =
|𝐸Δ𝐵𝜆(𝑣, 𝑥0)|

𝑣
= lim
𝑖→+∞

(

|𝐸𝑖Δ𝐵𝜆(𝑣, 𝑥0)|
𝑣𝑖

𝑣𝑖
𝑣

)

≥ lim sup
𝑖→+∞

|𝐸𝑖Δ𝐵𝜆(𝑣𝑖, 𝑥0)| − |𝐵𝜆(𝑣𝑖, 𝑥0)Δ𝐵𝜆(𝑣, 𝑥0)|
𝑣𝑖

≥ lim sup
𝑖→+∞

(

𝛼𝜆(𝐸𝑖) −
|𝐵𝜆(𝑣𝑖, 𝑥0)Δ𝐵𝜆(𝑣, 𝑥0)|

𝑣𝑖

)

= lim sup
𝑖→+∞

𝛼𝜆(𝐸𝑖).

On the other hand, let 𝛼𝜆(𝐸𝑖) be attained by 𝐵𝜆𝑖 (𝑣𝑖, 𝑥𝑖). We claim that {𝑥𝑖}𝑖 is bounded. If {𝑥𝑖}𝑖 ⊂ 𝜕𝐻 were
unbounded, then there would be a subsequence {𝑥𝑖𝑗}𝑗 such that |𝑥𝑖𝑗 | → +∞. From the hypothesis we have that, for
sufficiently large 𝑗, |𝐵𝜆(𝑣𝑖𝑗 , 𝑥0)∩𝐸𝑖𝑗 | > |𝐵𝜆(𝑣𝑖𝑗 , 𝑥𝑖𝑗 )∩𝐸𝑖𝑗 | ←←←←←→𝑗 0, in contradiction with the definition of asymmetry.
Therefore {𝑥𝑖}𝑖 is bounded. Let {𝑥𝑖𝑘}𝑘 be a subsequence such that lim𝑘→+∞ 𝛼𝜆(𝐸𝑖𝑘) = lim inf 𝑖→+∞ 𝛼𝜆(𝐸𝑖). By the
boundedness of {𝑥𝑖}𝑖 there is a subsequence {𝑥𝑖𝑘𝑙 }𝑙 of 𝑥𝑖𝑘 such that 𝑥𝑖𝑘𝑙 → 𝑥 ∈ 𝜕𝐻 . Then

𝛼𝜆(𝐸) ≤
|𝐸Δ𝐵𝜆(𝑣, 𝑥)|

𝑣
≤ lim
𝑖→+∞

|𝐸𝑖Δ𝐵𝜆(𝑣, 𝑥)| + |𝐸𝑖Δ𝐸|
𝑣𝑖

= lim
𝑖→+∞

|𝐸𝑖Δ𝐵𝜆(𝑣, 𝑥)|
𝑣𝑖

≤ lim inf
𝑙→+∞

|𝐸𝑖𝑘𝑙Δ𝐵
𝜆(𝑣𝑖𝑘𝑙 , 𝑥𝑖𝑘𝑙 )| + |𝐵𝜆(𝑣𝑖𝑘𝑙 , 𝑥𝑖𝑘𝑙 )Δ𝐵

𝜆(𝑣, 𝑥)|

𝑣𝑖𝑘𝑙
= lim inf

𝑙→+∞
𝛼𝜆(𝐸𝑖𝑘𝑙 ) = lim

𝑘→+∞
𝛼𝜆(𝐸𝑖𝑘) = lim inf

𝑖→+∞
𝛼𝜆(𝐸𝑖),

which gives the needed reversed inequality.
Corollary 3.3.6. If {𝐸𝑖}𝑖∈ℕ are sets of finite perimeter in ℝ𝑛 ⧵𝐻 such that |𝐸𝑖 ⧵ 𝐾| = 0 for any 𝑖 and for some
compact set 𝐾 ⊂ ℝ𝑛, and if

sup
𝑖∈ℕ

|𝐸𝑖| + 𝑃𝜆(𝐸𝑖) <∞,

then there exists 𝐸 of finite perimeter in ℝ𝑛 ⧵𝐻 and 𝑖𝑘 → ∞ as 𝑘→ ∞ such that

𝐸𝑖𝑘
𝐿1

←←←←←←←←←←←→ 𝐸 lim inf
𝑘

𝑃𝜆(𝐸𝑖𝑘) ≥ 𝑃𝜆(𝐸).

Proof. By Corollary 2.4.5 we have that 𝑃𝜆(𝐸𝑖) ≥ 1−𝜆
2 𝑃 (𝐸𝑖). Then sup𝑖∈ℕ 𝑃 (𝐸𝑖) <∞. Hence by classical precom-

pactness of sets of finite perimeter 2.3.10 and recalling Lemma 3.3.4 the claim follows.
Now we give another proof of the lower semicontinuity of 𝑃𝜆 when the convergence of {𝐸𝑖} is in 𝐿1, inspired by
[Mag12, Proposition 19.1, Proposition 19.3].
Lemma 3.3.7. If {𝐸𝑖}𝑖∈ℕ and 𝐸 are sets of finite perimeter in ℝ𝑛 ⧵𝐻 with finite measure such that

𝐸𝑖
𝐿1

←←←←←←←←←←←→ 𝐸.

Then
lim inf
𝑖→+∞

𝑃𝜆(𝐸𝑖) ≥ 𝑃𝜆(𝐸).

Proof. First let us assume that 𝜆 ≤ 0. We can suppose that lim inf 𝑃𝜆(𝐸𝑖) is finite. By Corollary 2.4.5 we find that
sup𝑖∈ℕ 𝑃 (𝐸𝑖) is finite. The weak convergence of the perimeter measures implies

lim inf
𝑖→+∞

𝑃 (𝐸𝑖) ≥ 𝑃 (𝐸), lim inf
𝑖→+∞

𝑃 (𝐸𝑖,ℝ𝑛 ⧵𝐻) ≥ 𝑃 (𝐸,ℝ𝑛 ⧵𝐻).

The identity
𝑃𝜆(𝐸) = (1 + 𝜆)𝑃 (𝐸,ℝ𝑛 ⧵𝐻) − 𝜆𝑃 (𝐸)
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and the nonnegativity of 1 + 𝜆 and −𝜆 guarantee the lower semicontinuity.
Let us assume 𝜆 > 0. Let us consider the function

𝑇𝛿 ∶ ℝ𝑛 ⧵𝐻 → ℝ𝑛

𝑇𝛿 ∶= 𝜒(𝑥𝑛) 𝑒𝑛,

where 𝜒(𝑥𝑛) ∶ [0,+∞) → [0,+∞) is a cut-off function such that 𝜒(𝑡) = 0 if 𝑡 ≥ 𝛿 and 𝜒(0) = 1. Note that
⟨𝑇𝛿(𝑥1,… , 𝑥𝑛−1, 0), 𝑒𝑛⟩ = 1 on 𝜕𝐻

|𝑇𝛿| ≤ 1 on ℝ𝑛 ⧵𝐻

𝑇𝛿(𝑥1,… , 𝑥𝑛) = 0 if 𝑥𝑛 > 𝛿.

If 𝐹 ⊂ ℝ𝑛 ⧵𝐻 is a set of finite perimeter, by the divergence theorem

∫𝐹
div 𝑇𝛿 = ∫𝜕∗𝐹∩(ℝ𝑛⧵𝐻)

⟨

𝑇𝛿, 𝜈
𝐹⟩ d𝑛−1 + ∫𝜕∗𝐹∩𝜕𝐻

⟨

𝑇𝛿, 𝜈
ℝ𝑛⧵𝐻⟩ d𝑛−1.

We deduce
𝑃 (𝐹 , 𝜕𝐻) ≤ 𝑃 (𝐹 , {(𝑥1,… , 𝑥𝑛) ∈ ℝ𝑛 ⧵𝐻 ∶ 𝑥𝑛 < 𝛿}) + 𝑐(𝛿)|𝐹 |, (3.3.1)

with 𝑐(𝛿) = supℝ𝑛⧵𝐻 |∇𝑇𝛿|. If 𝐸𝑖, 𝐸 are taken as in the statement, we apply (3.3.1) to 𝐹 = 𝐸𝑖 ⧵𝐸, in order to have
|𝑃 (𝐸𝑖, 𝜕𝐻) − 𝑃 (𝐸, 𝜕𝐻)| ≤ 𝑛−1(𝜕𝐻 ∩ (𝜕∗𝐸𝑖Δ𝜕∗𝐸))

= 𝑃 (𝐸𝑖Δ𝐸, 𝜕𝐻)
≤ 𝑃 (𝐸𝑖Δ𝐸, {(𝑥1,… , 𝑥𝑛) ∈ ℝ𝑛 ⧵𝐻 ∶ 𝑥𝑛 < 𝛿}) + 𝑐(𝛿)|𝐸𝑖Δ𝐸|
≤ 𝑃 (𝐸𝑖, {(𝑥1,… , 𝑥𝑛) ∈ ℝ𝑛 ⧵𝐻 ∶ 𝑥𝑛 < 𝛿})
+ 𝑃 (𝐸, {(𝑥1,… , 𝑥𝑛) ∈ ℝ𝑛 ⧵𝐻 ∶ 𝑥𝑛 < 𝛿}) + 𝑐(𝛿)|𝐸𝑖Δ𝐸|.

Then
𝑃𝜆(𝐸𝑖) − 𝑃𝜆(𝐸) ≥ 𝑃 (𝐸𝑖,ℝ𝑛 ⧵𝐻) − 𝑃 (𝐸,ℝ𝑛 ⧵𝐻) − |𝑃 (𝐸𝑖, 𝜕𝐻) − 𝑃 (𝐸, 𝜕𝐻)|

≥ 𝑃 (𝐸𝑖, {(𝑥1,… , 𝑥𝑛) ∈ ℝ𝑛 ⧵𝐻 ∶ 𝑥𝑛 > 𝛿}) − 𝑃 (𝐸,ℝ𝑛 ⧵𝐻)
− 𝑃 (𝐸, {(𝑥1,… , 𝑥𝑛) ∈ ℝ𝑛 ⧵𝐻 ∶ 𝑥𝑛 < 𝛿}) − 𝑐(𝛿)|𝐸𝑖Δ𝐸|.

By the lower semicontinuity of the perimeter we have
lim inf
𝑖→+∞

𝑃𝜆(𝐸𝑖) ≥ 𝑃𝜆(𝐸) + 𝑃 (𝐸, {(𝑥1,… , 𝑥𝑛) ∈ ℝ𝑛 ⧵𝐻 ∶ 𝑥𝑛 > 𝛿}) − 𝑃 (𝐸,ℝ𝑛 ⧵𝐻)

− 𝑃 (𝐸, {(𝑥1,… , 𝑥𝑛) ∈ ℝ𝑛 ⧵𝐻 ∶ 𝑥𝑛 < 𝛿}),

and the right-hand side converges to 𝑃𝜆(𝐸) as 𝛿 → 0+.

3.4 Reduction to bounded symmetric sets

In the following arguments, in order to prove Theorem 3.1.1, we will repeatedly reduce ourselves to consider sets
𝐸 having isoperimetric deficit smaller than some chosen constant. This reduction is always possible.
Indeed, let 𝛿 > 0 be some positive constant; if 𝐸 is a set of finite perimeter such that 𝐷𝜆(𝐸) ≥ 𝛿, since 𝛼𝜆(𝐸) ≤ 2,
we immediately get

𝛼2𝜆(𝐸) ≤
4
𝛿
𝛿 ≤ 4

𝛿
𝐷𝜆(𝐸).

Therefore, if Theorem 3.1.1 is proved on sets with deficit ≤ 𝛿, then it is proved for any set.
Hence,
within this section we will assume that 𝐷𝜆(𝐸) < 𝑐 for any competitor 𝐸 involved, whit 𝑐 given by Lemma 3.3.3.

In particular 𝑃 (𝐸, 𝜕𝐻) > 0.
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Reduction to bounded sets

In this section we prove that, in order to prove Theorem 3.1.1, it is sufficient to prove the quantitative isoperimetric
inequality (3.1.2) among suitably uniformly bounded sets.
From now on, we shall denote 𝑄𝑙 ∶= [−𝑙, 𝑙]𝑛 ⊂ ℝ𝑛. We start by proving an estimate on the area of horizontal
slices of a set in terms of its deficit.
Lemma 3.4.1. Let𝐸 ⊂ ℝ𝑛⧵𝐻 be a bounded set of finite perimeter such that 𝜕𝐸∩ℝ𝑛⧵𝐻 is a smooth hypersurface
(possibly with smooth boundary) with |𝐸| = |𝐵𝜆| and such that 𝑛−1({𝑥 ∈ 𝜕∗𝐸 ⧵𝐻 ∶ 𝜈𝐸(𝑥) = ±𝑒𝑛}) = 0. Then

𝑛−1(𝐸 ∩ {𝑥𝑛 = 𝑡}) ≥ 1
2
𝑃𝜆(𝐵𝜆)

(

(

𝜔𝑛
|𝐵𝜆|

)
1
𝑛
(

1 −
|𝐸 ∩ {𝑥𝑛 < 𝑡}|

|𝐵𝜆|

)
𝑛−1
𝑛
− 1 −𝐷𝜆(𝐸)

)

, (3.4.1)

for every 𝑡 > 0. In particular

𝑛−1(𝜕∗𝐸 ∩ 𝜕𝐻) ≥ 1
2
𝑃𝜆(𝐵𝜆)

(

(

𝜔𝑛
|𝐵𝜆|

)
1
𝑛
− 1 −𝐷𝜆(𝐸)

)

. (3.4.2)

Moreover, if 𝐹 ⊂ ℝ𝑛 ⧵𝐻 is a set of finite perimeter with |𝐹 | = |𝐵𝜆|, then (3.4.1) holds with 𝐹 in place of 𝐸 for
almost every 𝑡 > 0, and (3.4.2) holds with 𝐹 in place of 𝐸.

The estimates given by Lemma 3.4.1 are clearly nontrivial only when the deficit is sufficiently small. On the other
hand, if the deficit𝐷𝜆(𝐸) is sufficiently small, since𝜔𝑛∕|𝐵𝜆| > 1, (3.4.1) and (3.4.2) essentially yield a quantitative
version of Lemma 3.3.3, nontrivial also for slices 𝑛−1(𝐸 ∩ {𝑥𝑛 = 𝑡}) with 𝑡 > 0 as long as |𝐸 ∩ {𝑥𝑛 < 𝑡}| is
small.
Proof of Lemma 3.4.1. Let 𝑣𝐸(𝑡) ∶= 𝑛−1(𝐸 ∩ {𝑥𝑛 = 𝑡}) for any 𝑡 > 0, and let 𝑔(𝑡) ∶= |𝐸 ∩ {𝑥𝑛 < 𝑡}|∕|𝐵𝜆|. By
the standard isoperimetric inequality we have that

𝑃 (𝐸, {𝑥𝑛 > 𝑡}) + 𝑣𝐸(𝑡) = 𝑃 (𝐸 ∩ {𝑥𝑛 > 𝑡}) ≥ 𝑛𝜔
1
𝑛
𝑛 |𝐸 ∩ {𝑥𝑛 > 𝑡}|

𝑛−1
𝑛 = 𝑃𝜆(𝐵𝜆)

(

𝜔𝑛
|𝐵𝜆|

)
1
𝑛
(1 − 𝑔(𝑡))

𝑛−1
𝑛 , (3.4.3)

for any 𝑡 > 0. Moreover, for any 𝑡 > 0, we observe that for any 𝑥′ ∈ 𝜕∗𝐸 ∩ 𝜕𝐻 , the halfline [0, 𝑡] ∋ 𝑥𝑛 ↦ (𝑥′, 𝑥𝑛)
either intersects 𝜕∗𝐸 ∩ {0 < 𝑥𝑛 ≤ 𝑡} or it intersects 𝐸 ∩ {𝑥𝑛 = 𝑡}. Therefore

𝑃 (𝐸, {0 < 𝑥𝑛 ≤ 𝑡}) + 𝑣𝐸(𝑡) ≥ 𝑛−1(𝜕∗𝐸 ∩ 𝜕𝐻), (3.4.4)
for any 𝑡 > 0. Hence we conclude that

𝑃𝜆(𝐵𝜆)(1 +𝐷𝜆(𝐸)) = 𝑃𝜆(𝐸) = 𝑃 (𝐸, {𝑥𝑛 > 𝑡}) + 𝑃 (𝐸, {0 < 𝑥𝑛 ≤ 𝑡}) − 𝜆𝑛−1(𝜕∗𝐸 ∩ 𝜕𝐻)
(3.4.4)
≥ 𝑃 (𝐸, {𝑥𝑛 > 𝑡}) − 𝑣𝐸(𝑡)

(3.4.3)
≥ 𝑃𝜆(𝐵𝜆)

(

𝜔𝑛
|𝐵𝜆|

)
1
𝑛
(1 − 𝑔(𝑡))

𝑛−1
𝑛 − 2𝑣𝐸(𝑡),

for any 𝑡 > 0, which yields (3.4.1). By Theorem 2.3.20, the function 𝑣𝐸 belongs to 𝑊 1,1(0,+∞), thus (3.4.2)
follows by letting 𝑡→ 0+ in (3.4.1).
Now if 𝐹 ⊂ ℝ𝑛 ⧵ 𝐻 is as in the assumptions, let 𝐸𝑖 be given by Lemma 2.4.4 applied to 𝐹 , and let �̃�𝑖 ∶=
(|𝐵𝜆|∕|𝐸𝑖|)

1
𝑛𝐸𝑖. Hence the inequality (3.4.2) and the right hand side of (3.4.1) applied with 𝐸 = �̃�𝑖 pass to the

limit as 𝑖→ ∞. Moreover

|�̃�𝑖Δ𝐸| = ∫

+∞

0
𝑛−1(�̃�𝑖Δ𝐸 ∩ {𝑥𝑛 = 𝑡}) d𝑡 ≥ ∫

+∞

0

|

|

|

𝑛−1(�̃�𝑖 ∩ {𝑥𝑛 = 𝑡}) −𝑛−1(𝐸 ∩ {𝑥𝑛 = 𝑡})||
|

d𝑡.

Since |�̃�𝑖Δ𝐸| → 0, the left hand side of (3.4.1) passes to the limit as well as 𝑖→ ∞, for a.e. 𝑡 > 0.
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We are ready to prove the claimed reduction to bounded sets. The proof follows the line of [FMP08, Lemma 5.1],
essentially truncating a competitor with coordinate slabs having estimated width. To give a bound for the truncation
in the 𝑛-th direction will need to modify the argument in [FMP08, Lemma 5.1] and we will exploit Lemma 3.4.1.
Lemma 3.4.2 (Reduction to bounded sets). There exist 𝑙 = 𝑙(𝑛, 𝜆) > 0 and 𝐶1 = 𝐶1(𝑛, 𝜆) > 0 such that, if 𝐸 ⊂
ℝ𝑛 ⧵𝐻 is a set of finite perimeter with |𝐸| ∈ (0,+∞), then there exists a set of finite perimeter 𝐸′ ⊂ 𝑄𝑙 ∩(ℝ𝑛 ⧵𝐻)
such that |𝐸′

| = |𝐵𝜆| and

𝛼𝜆(𝐸) ≤ 𝛼𝜆(𝐸′) + 𝐶1𝐷𝜆(𝐸), 𝐷𝜆(𝐸′) ≤ 𝐶1𝐷𝜆(𝐸). (3.4.5)
Proof. By scale-invariance of the asymmetry and of the deficit, it is sufficient to prove the claim assuming also
|𝐸| = |𝐵𝜆|. First of all we observe that we may prove the claim assuming that 𝜕𝐸 ∩ℝ𝑛 ⧵𝐻 is smooth and

𝑛−1({𝑥 ∈ 𝜕∗𝐸 ∩ℝ𝑛 ⧵𝐻 ∶ 𝜈𝐸(𝑥) = ±𝑒𝑖}) = 0 (3.4.6)
for all 𝑖 = 1, … , 𝑛. Indeed, if 𝐸 is a generic set of finite perimeter, then by Lemma 2.4.4 there exists a sequence
of smooth sets {𝐸𝑖}𝑖∈ℕ converging to 𝐸 such that (3.4.6) holds. If we know that the claim holds for 𝐸𝑖, we get
the existence of 𝐸′

𝑖 ⊂ 𝑄𝑙 ∩ (ℝ𝑛 ⧵𝐻) such that (3.4.5) holds with 𝐸,𝐸′ replaced by 𝐸𝑖, 𝐸′
𝑖 . Hence we can apply

Corollary 3.3.6 on the sequence𝐸′
𝑖 , and by Lemma 3.3.4 and Lemma 3.3.5 the inequalities (3.4.5) pass to the limit.

Without loss of generality, we can further assume that
𝐷𝜆(𝐸) < (21∕𝑛 − 1)∕4. (3.4.7)

Let us consider the axis 𝑥1 first. Thanks to (3.4.6), by Theorem 2.3.20 (see also [FMP08, Theorem 6.1]) we deduce
that

𝑣𝐸(𝑡) ∶= 𝑛−1({𝑥′ ∈ ℝ𝑛−1 ∶ (𝑡, 𝑥′) ∈ 𝐸}) for 𝑡 ∈ ℝ

belongs to 𝑊 1,1(ℝ), hence we may assume that 𝑣𝐸 is continuous. Setting
𝐸−
𝑡 ∶= {𝑥 ∈ 𝐸 ∶ 𝑥1 < 𝑡}

and
𝑃𝜆(𝐸, {𝑥1 < 𝑡}) ∶= 𝑃 (𝐸, {𝑥 ∈ ℝ𝑛 ⧵𝐻 ∶ 𝑥1 < 𝑡}) − 𝜆𝑛−1({𝑥 ∈ 𝜕∗𝐸 ∩ 𝜕𝐻 ∶ 𝑥1 < 𝑡})

for all 𝑡 ∈ ℝ, by smoothness of 𝐸 we have that
𝑃𝜆(𝐸−

𝑡 ) = 𝑃𝜆(𝐸, {𝑥1 < 𝑡}) + 𝑣𝐸(𝑡), 𝑃𝜆(𝐸 ⧵ 𝐸−
𝑡 ) = 𝑃𝜆(𝐸, {𝑥1 > 𝑡}) + 𝑣𝐸(𝑡), (3.4.8)

where 𝑃𝜆(𝐸, {𝑥1 > 𝑡}) is defined analogously. Let us now define the function 𝑔 ∶ ℝ → [0,+∞) given by

𝑔(𝑡) ∶=
|𝐸−

𝑡 |

|𝐵𝜆|
.

Hence 𝑔 is a nondecreasing 𝐶1 function with 𝑔′(𝑡) = 𝑣𝐸(𝑡)∕|𝐵𝜆|. Let −∞ ≤ 𝑎 < 𝑏 ≤ +∞ be such that {𝑡 ∶ 0 <
𝑔(𝑡) < 1} = (𝑎, 𝑏). If 𝑡 ∈ (𝑎, 𝑏), then by (3.2.3) we have

𝑃𝜆(𝐸−
𝑡 ) ≥ 𝑔(𝑡)

𝑛−1
𝑛 𝑃𝜆(𝐵𝜆).

Similarly,
𝑃𝜆(𝐸 ⧵ 𝐸−

𝑡 ) ≥ (1 − 𝑔(𝑡))
𝑛−1
𝑛 𝑃𝜆(𝐵𝜆).

Therefore, from (3.4.6) and (3.4.8) we get that

𝑃𝜆(𝐸) + 2𝑣𝐸(𝑡) ≥ 𝑃𝜆(𝐵𝜆)
(

𝑔(𝑡)
𝑛−1
𝑛 + (1 − 𝑔(𝑡))

𝑛−1
𝑛

)

for all 𝑡 ∈ (𝑎, 𝑏). Since by definition we have 𝑃𝜆(𝐸) = 𝑃𝜆(𝐵𝜆)(1 +𝐷𝜆(𝐸)), we obtain

𝑣𝐸(𝑡) ≥
1
2
𝑃𝜆(𝐵𝜆)

(

𝑔(𝑡)
𝑛−1
𝑛 + (1 − 𝑔(𝑡))

𝑛−1
𝑛 − 1 −𝐷𝜆(𝐸)

)

. (3.4.9)
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Let us now define the concave function

𝜓 ∶ [0, 1] → [0,+∞) 𝜓(𝑡) ∶= 𝑡
𝑛−1
𝑛 + (1 − 𝑡)

𝑛−1
𝑛 − 1.

Note that 𝜓(0) = 𝜓(1) = 0 and 𝜓 achieves its maximum at 𝜓(1∕2) = 21∕𝑛 − 1, hence by concavity

𝜓(𝑡) = 𝜓
(

2𝑡1
2
+ 0

)

≥ 2𝑡𝜓(1∕2) + 0 = 2(21∕𝑛 − 1)𝑡 ∀𝑡 ∈
[

0, 1
2

]

. (3.4.10)

Recall that by (3.4.7) there holds 2𝐷𝜆(𝐸) < 𝜓(1∕2). Let 𝑎 < 𝑡1 < 𝑡2 < 𝑏 be such that 𝑔(𝑡1) = 1 − 𝑔(𝑡2) and
𝜓(𝑔(𝑡1)) = 𝜓(𝑔(𝑡2)) = 2𝐷𝜆(𝐸). Then

𝜓(𝑔(𝑡)) ≥ 2𝐷𝜆(𝐸) ∀𝑡 ∈ (𝑡1, 𝑡2) (3.4.11)
and, by (3.4.10),

𝑔(𝑡1) = 1 − 𝑔(𝑡2) ≤
𝐷𝜆(𝐸)
21∕𝑛 − 1

. (3.4.12)
For any 𝑡1 ≤ 𝑡 ≤ 𝑡2 we have

𝑣𝐸(𝑡)
(3.4.9)
≥ 1

2
𝑃𝜆(𝐵𝜆)(𝜓(𝑔(𝑡)) −𝐷𝜆(𝐸)) =

1
4
𝑃𝜆(𝐵𝜆)𝜓(𝑔(𝑡)) +

1
4
𝑃𝜆(𝐵𝜆)(𝜓(𝑔(𝑡)) − 2𝐷𝜆(𝐸))

(3.4.11)
≥ 𝑛|𝐵𝜆|

4
𝜓(𝑔(𝑡)).

(3.4.13)

Since 𝑣𝐸(𝑡) = |𝐵𝜆|𝑔′(𝑡), we have

𝑡2 − 𝑡1
(3.4.13)
≤ 4

𝑛 ∫

𝑡2

𝑡1

𝑔′(𝑡)
𝜓(𝑔(𝑡))

d𝑡 = 4
𝑛 ∫

𝑔(𝑡2)

𝑔(𝑡1)

1
𝜓(𝑠)

d𝑠 ≤ 4
𝑛 ∫

1

0

1
𝜓(𝑠)

d𝑠 =∶ 𝛼, (3.4.14)

for some 𝛼 = 𝛼(𝑛) > 0.
Let

𝜏1 = max
{

𝑡 ∈ (𝑎, 𝑡1] ∶ 𝑣𝐸(𝑡) ≤
𝑛|𝐵𝜆|𝐷𝜆(𝐸)

2

}

,

𝜏2 = min
{

𝑡 ∈ [𝑡2, 𝑏) ∶ 𝑣𝐸(𝑡) ≤
𝑛|𝐵𝜆|𝐷𝜆(𝐸)

2

}

.

Note that 𝜏1 and 𝜏2 are well defined since 𝑣𝐸 is continuous and 𝑣𝐸(𝑡) → 0 as 𝑡→ 𝑎 or 𝑡→ 𝑏; moreover, by (3.4.11)
and (3.4.13), 𝑣𝐸(𝜏1) = 𝑣𝐸(𝜏2) =

𝑛|𝐵𝜆|𝐷𝜆(𝐸)
2 . Moreover, from (3.4.12) and by definition of 𝜏1, we have

𝑡1 − 𝜏1 ≤
2

𝑛|𝐵𝜆|𝐷𝜆(𝐸) ∫

𝑡1

𝜏1
𝑣𝐸(𝑡) d𝑡 =

2
𝑛𝐷𝜆(𝐸) ∫

𝑡1

𝜏1
𝑔′(𝑡) d𝑡 ≤

2𝑔(𝑡1)
𝑛𝐷𝜆(𝐸)

≤ 2
𝑛(21∕𝑛 − 1)

,

and an analogous estimate holds for 𝜏2 − 𝑡2.
We consider the truncation �̃� ∶= 𝐸 ∩ {𝑥 ∶ 𝜏1 < 𝑥1 < 𝜏2}. From the above estimate and (3.4.14), we have that
𝜏2 − 𝜏1 < 𝛽 for some 𝛽 = 𝛽(𝑛) > 0. Moreover by (3.4.8) and (3.4.12), by the definition of 𝜏1, 𝜏2, and since
𝑃 (𝐸, {𝑥1 < 𝜏1, 𝑥1 > 𝜏2}) ≥ 𝜆𝑛−1(𝜕∗𝐸 ∩ 𝜕𝐻 ∩ {𝑥1 < 𝜏1, 𝑥1 > 𝜏2}) (see the proof of Corollary 2.4.5) we can
estimate

|�̃�| ≥ |

|

|

𝐵𝜆||
|

(

1 − 2
𝐷𝜆(𝐸)
21∕𝑛 − 1

)

, 𝑃𝜆(�̃�) ≤ 𝑃𝜆(𝐸) + 𝑛|𝐵𝜆|𝐷𝜆(𝐸). (3.4.15)
We finally define

𝜎 ∶=
(

|𝐵𝜆|
|�̃�|

)1∕𝑛

, 𝐸′ ∶= 𝜎�̃�.

Clearly, |𝐸′
| = |𝐵𝜆| and by (3.4.15) we get that𝐸′ is contained in a strip {𝜏′1 < 𝑥1 < 𝜏′2}, with 𝜏′2−𝜏′1 ≤ 𝜎(𝜏2−𝜏1) ≤

𝑙′, where 𝑙′ = 𝑙′(𝑛, 𝜆) > 0. Let us now show that 𝐸′ satisfies (3.4.5) for a suitable constant 𝐶1 = 𝐶1(𝑛, 𝜆) > 0 that
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may change from line to line. To this aim, since we are assuming𝐷𝜆(𝐸) small by (3.4.7), from (3.4.15) we get that
1 ≤ 𝜎 ≤ 1 + 𝐶0𝐷𝜆(𝐸), with 𝐶0 = 𝐶0(𝑛). Thus, from (3.4.15) and (3.4.7), we get

𝑃𝜆(𝐸′) = 𝜎𝑛−1𝑃𝜆(�̃�) ≤ 𝜎𝑛−1(𝑃𝜆(𝐸) + 𝑛|𝐵𝜆|𝐷𝜆(𝐸))

= 𝜎𝑛−1𝑃𝜆(𝐵𝜆)(1 + 2𝐷𝜆(𝐸)) ≤ 𝑃𝜆(𝐵𝜆)(1 + 𝐶1𝐷𝜆(𝐸)).

Hence, the second inequality in (3.4.5) follows. To prove the first inequality, let us denote by 𝐵𝜆(|𝐵𝜆|, 𝑝), with
𝑝 ∈ 𝜕𝐻 , a spherical cap such that 𝛼𝜆(𝐸′) = |𝐸′Δ𝐵𝜆(|𝐵𝜆|,𝑝)|

|𝐵𝜆|
. From the first inequality in (3.4.15), recalling that

|𝐸| = |𝐵𝜆|, we then get
𝛼𝜆(𝐸) ≤

|𝐸Δ𝐵𝜆(|𝐵𝜆|, 𝑝∕𝜎)|
|𝐵𝜆|

≤ |𝐸Δ�̃�|
|𝐵𝜆|

+
|�̃�Δ𝐵𝜆(|𝐵𝜆|∕𝜎𝑛, 𝑝∕𝜎)|

|𝐵𝜆|
+
|𝐵𝜆(|𝐵𝜆|∕𝜎𝑛, 𝑝∕𝜎)Δ𝐵𝜆(|𝐵𝜆|, 𝑝∕𝜎)|

|𝐵𝜆|

=
|𝐸 ⧵ �̃�|
|𝐵𝜆|

+
𝛼𝜆(𝐸′)
𝜎𝑛

+
|𝐵𝜆(|𝐵𝜆|) ⧵ 𝐵𝜆(|𝐵𝜆|∕𝜎𝑛)|

|𝐵𝜆|
(3.4.15)
≤ 𝐶1𝐷𝜆(𝐸) + 𝛼𝜆(𝐸′) + 𝐶1(𝜎 − 1)

≤ 𝛼𝜆(𝐸′) + 𝐶1𝐷𝜆(𝐸).

Thus the set 𝐸′ satisfies (3.4.5) and points in 𝐸′ have first coordinate contained in an interval of length bounded
by 𝑙′.
Starting from 𝐸′, we can repeat the same construction finitely many times with respect to the axes 𝑥2,… , 𝑥𝑛−1,
thus getting a new set, still denoted by 𝐸′, satisfying (3.4.5).
It remains to adapt the construction with respect to the coordinate axis 𝑥𝑛. In this case we eventually aim at
truncating the set 𝐸′ in some controlled slab of the form {0 < 𝑥𝑛 < 𝜏2}. Define

�̄�(𝑡) ∶= 𝑛−1({𝑥′ ∈ ℝ𝑛−1 ∶ (𝑥′, 𝑡) ∈ 𝐸′}), �̄�−
𝑡 ∶= {𝑥 ∈ 𝐸′ ∶ 𝑥𝑛 < 𝑡}, �̄�(𝑡) ∶=

|�̄�−
𝑡 |

|𝐵𝜆|
,

for 𝑡 > 0. It is readily checked that, arguing as above, one estimates
�̄�(𝑡) ≥ 1

2
𝑃𝜆(𝐵𝜆)

(

𝜓(�̄�(𝑡)) −𝐷𝜆(𝐸)
)

, (3.4.16)
which is analogous to (3.4.9), for any 𝑡 such that �̄�(𝑡) ∈ (0, 1). Similarly as before, we define 0 < 𝑡1 < 𝑡2 such that
�̄�(𝑡1) = 1 − �̄�(𝑡2) and 𝜓(�̄�(𝑡1)) = 𝜓(�̄�(𝑡2)) = 2𝐷𝜆(𝐸′). Therefore, using (3.4.16) and the concavity of 𝜓 , arguing
as before one estimates

�̄�(𝑡) ≥ 𝑛|𝐵𝜆|
4

𝜓(�̄�(𝑡)) ∀ 𝑡 ∈ [𝑡1, 𝑡2], (3.4.17)
which is analogous to (3.4.13).
Let

𝐴 ∶= 1
2
𝑃𝜆(𝐵𝜆)

(

(

𝜔𝑛
|𝐵𝜆|

)
1
𝑛
− 1

)

> 0.

We claim that there exists �̄� = �̄�(𝑛, 𝜆) > 0 such that if 𝐷𝜆(𝐸) < �̄� then
�̄�(𝑡) ≥ 𝐴

2
for a.e. 𝑡 ∈ (0, 𝑡1). (3.4.18)

Indeed, since 𝐷𝜆(𝐸′) ≤ 𝐶1𝐷𝜆(𝐸) and 𝜓(�̄�(𝑡1)) = 2𝐷𝜆(𝐸′), then for any 𝜔 > 0 there is �̄� = �̄�(𝑛, 𝜆) > 0 such that
�̄�(𝑡1) < 𝜔 whenever 𝐷𝜆(𝐸) < �̄�. Applying Lemma 3.4.1 with 𝐹 = 𝐸′, for almost every 𝑡 ∈ (0, 𝑡1) we find

�̄�(𝑡) ≥ 1
2
𝑃𝜆(𝐵𝜆)

(

(

𝜔𝑛
|𝐵𝜆|

)
1
𝑛
(1 − �̄�(𝑡))

𝑛−1
𝑛 − 1 −𝐷𝜆(𝐸′)

)

≥ 1
2
𝑃𝜆(𝐵𝜆)

(

(

𝜔𝑛
|𝐵𝜆|

)
1
𝑛 (

1 − �̄�(𝑡1)
)
𝑛−1
𝑛 − 1 −𝐷𝜆(𝐸′)

)

≥ 1
2
𝑃𝜆(𝐵𝜆)

(

(

𝜔𝑛
|𝐵𝜆|

)
1
𝑛
(1 − 𝜔)

𝑛−1
𝑛 − 1 − 𝐶1�̄�

)

≥ 𝐴
2
,
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provided �̄� is small enough.
Therefore, assuming without loss of generality that 𝐷𝜆(𝐸) < �̄�, since �̄�′(𝑡) = �̄�(𝑡)∕|𝐵𝜆| we estimate

𝑡2
(3.4.17)
≤ 𝑡1 +

4
𝑛 ∫

𝑡2

𝑡1

�̄�′(𝑡)
𝜓(�̄�(𝑡))

d𝑡
(3.4.18)
≤ 2

𝐴 ∫

𝑡1

0
�̄�(𝑡) d𝑡 + 4

𝑛 ∫

1

0

1
𝜓

≤ 2|𝐵𝜆|
𝐴

+ 4
𝑛 ∫

1

0

1
𝜓

=∶ 𝛼′(𝑛, 𝜆).

The rest of the construction follows analogously as above by defining

𝜏2 ∶= min
{

𝑡 ≥ 𝑡2 ∶ �̄�(𝑡) < 1, �̄�(𝑡) ≤
𝑛|𝐵𝜆|𝐷𝜆(𝐸′)

2

}

,

estimating 𝜏2 − 𝑡2 ≤ 𝛽′(𝑛, 𝜆), hence finally taking the set
(

|𝐵𝜆|
|𝐸′ ∩ {𝑥𝑛 < 𝜏2}|

)

1
𝑛
(𝐸′ ∩ {𝑥𝑛 < 𝜏2}). (3.4.19)

Up to translation along 𝜕𝐻 , the set defined in (3.4.19) yields the final one satisfying the claim of the lemma.
Corollary 3.4.3 (Non-quantitative stability). For any �̄� > 0 there exists 𝛿 = 𝛿(𝑛, 𝜆, �̄�) > 0 such that if 𝐸 ⊂ ℝ𝑛 ⧵𝐻
is a Borel set such that 𝐷𝜆(𝐸) ≤ 𝛿, then 𝛼𝜆(𝐸) ≤ �̄�.

Proof. By scale-invariance of the asymmetry and of the deficit, it is sufficient to prove the claim assuming also
|𝐸| = |𝐵𝜆|. We argue by contradiction. Suppose there exist a number �̄� > 0 and a sequence of sets {𝐸𝑖}𝑖, with
𝐸𝑖 ⊂ ℝ𝑛 ⧵𝐻 and |𝐸𝑖| = |𝐵𝜆|, such that 𝐷𝜆(𝐸𝑖) <

1
𝑖

and 𝛼𝜆(𝐸𝑖) > �̄� for all 𝑖 ∈ ℕ. Let us consider the sequence
of sets {𝐸′

𝑖}𝑖, with 𝐸′
𝑖 ⊂ 𝑄𝑙 ∩ (ℝ𝑛 ⧵𝐻) and |𝐸′

𝑖 | = |𝐵𝜆|, given by Lemma 3.4.2. Moreover Lemma 3.4.2 assures
that 𝛼𝜆(𝐸′

𝑖 ) > �̄�∕2 for large 𝑖, and 𝐷𝜆(𝐸′
𝑖 ) → 0. Since each set 𝐸′

𝑖 is contained in the same 𝑄𝑙, by Corollary 3.3.6
we can assume, up to a subsequence, that 𝐸′

𝑖
𝐿1

←←←←←←←←←←←→ 𝐸′ for some set 𝐸′ of finite perimeter with |𝐸′
| = |𝐵𝜆|. By the

lower semicontinuity of the perimeters we get 𝑃𝜆(𝐸′) ≤ 𝑃𝜆(𝐵𝜆), hence 𝐸′ = 𝐵𝜆(|𝐵𝜆|, 𝑥) for some 𝑥 ∈ 𝜕𝐻 ∩ 𝑄𝑙
by uniqueness of minimizers. The convergence of 𝐸′

𝑖 to 𝐸′ implies that |𝐸′
𝑖Δ𝐸

′
| → 0, against the assumption

𝛼𝜆(𝐸′
𝑖 ) >

�̄�
2 .

Corollary 3.4.4. There exist 𝐴𝜆, 𝑇𝜆, 𝜂 > 0 depending on 𝑛, 𝜆 such that for any set of finite perimeter 𝐸 ⊂ ℝ𝑛 ⧵𝐻
with |

|

|𝐸| − |𝐵𝜆||
|

≤ 𝜂 and 𝐷𝜆(𝐸) ≤ 𝜂 there holds

𝑛−1(𝐸 ∩ {𝑥𝑛 = 𝑡}) ≥ 𝐴𝜆,

for almost every 𝑡 ∈ (0, 𝑇𝜆).

Proof. Let us prove the inequality assuming |𝐸| = |𝐵𝜆| first. Fix 𝑇 ′
𝜆 > 0 such that

(

𝜔𝑛
|𝐵𝜆|

)
1
𝑛
(

1 −
|𝐵𝜆(|𝐵𝜆|, 0) ∩ {𝑥𝑛 < 𝑇 ′

𝜆}|
|𝐵𝜆|

)
𝑛−1
𝑛

≥ 1 + 𝑎,

for some 𝑎 > 0. By Corollary 3.4.3, for any 𝜔 > 0 there is 𝜂 > 0 such that if 𝐷𝜆(𝐸) < 𝜂 then |𝐸 ∩ {𝑥𝑛 < 𝑇 ′
𝜆}| ≤

|𝐵𝜆(|𝐵𝜆|, 0) ∩ {𝑥𝑛 < 𝑇 ′
𝜆}|+𝜔. For such a set 𝐸, Lemma 3.4.1 implies that for almost every 𝑡 ∈ (0, 𝑇 ′

𝜆) there holds

𝑛−1(𝐸 ∩ {𝑥𝑛 = 𝑡}) ≥ 1
2
𝑃𝜆(𝐵𝜆)

(

(

𝜔𝑛
|𝐵𝜆|

)
1
𝑛
(

1 −
|𝐸 ∩ {𝑥𝑛 < 𝑡}|

|𝐵𝜆|

)
𝑛−1
𝑛
− 1 −𝐷𝜆(𝐸)

)

≥ 1
2
𝑃𝜆(𝐵𝜆)

⎛

⎜

⎜

⎝

(

𝜔𝑛
|𝐵𝜆|

)
1
𝑛
(

1 −
|𝐵𝜆(|𝐵𝜆|, 0) ∩ {𝑥𝑛 < 𝑇 ′

𝜆}| + 𝜔
|𝐵𝜆|

)
𝑛−1
𝑛

− 1 − 𝜂
⎞

⎟

⎟

⎠

.

Hence for sufficiently small 𝜂 > 0 the right hand side in the previous estimate is bounded below by some constant
𝐴′
𝜆(𝑛, 𝜆) > 0.

For a generic set 𝐸 such that |
|

|𝐸| − |𝐵𝜆||
|

≤ 𝜂 and 𝐷𝜆(𝐸) ≤ 𝜂, the set 𝐸′ =
(

|𝐵𝜆|
1
𝑛∕|𝐸|

1
𝑛

)

𝐸 has measure equal
to |𝐵𝜆| and deficit 𝐷𝜆(𝐸′) ≤ 𝜂. Up to decreasing 𝜂 > 0, applying the first part of the proof to 𝐸′, the desired
estimate holds on 𝐸 for 𝑇𝜆 = 𝑇 ′

𝜆∕2 and 𝐴𝜆 = 𝐴′
𝜆∕2.

51



Reduction to (𝑛 − 1)-symmetric sets

In this section we prove that, in order to prove Theorem 3.1.1, it is sufficient to further reduce to show (3.1.2)
among (𝑛 − 1)-symmetric sets, i.e., sets which are symmetric with respect to reflection across 𝑛 − 1 orthogonal
hyperplanes, each one orthogonal to {𝑥𝑛 = 0}. The results are analogous to [Mag08, Section 6].
Lemma 3.4.5. Let 𝐸 ⊂ ℝ𝑛 ⧵𝐻 be a Borel set with finite measure, symmetric with respect to 𝑘 ∈ {1,… , 𝑛 − 1}
orthogonal half-hyperplanes 𝐻𝑗 =

{

𝑥 ∈ ℝ𝑛 ⧵𝐻 ∶
⟨

𝑥, 𝜈𝑗
⟩

= 0
}

for 1 ≤ 𝑗 ≤ 𝑘, where |𝜈𝑗| = 1 and
⟨

𝜈𝑗 , 𝑒𝑛
⟩

= 0
for any 1 ≤ 𝑗 ≤ 𝑘. Then

min
𝑥∈𝜕𝐻

|𝐸Δ𝐵𝜆(|𝐸|, 𝑥)| ≤ min
𝑦∈𝜕𝐻∩

⋂𝑘
𝑗=1𝐻𝑗

|𝐸Δ𝐵𝜆(|𝐸|, 𝑦)| ≤ 3 min
𝑥∈𝜕𝐻

|𝐸Δ𝐵𝜆(|𝐸|, 𝑥)|. (3.4.20)

Proof. We can suppose for simplicity that ∀𝑗 ∈ {1,… , 𝑘} we have 𝜈𝑗 = 𝑒𝑗 . If 𝑥0 = (𝑥01,… , 𝑥0𝑛−1, 0) is such that
𝛼𝜆(𝐸) is achieved by𝐵𝜆(|𝐸|, 𝑥0), then 𝛼𝜆(𝐸) is achieved also by𝐵𝜆(|𝐸|, �̄�0), where �̄�0 = (−𝑥01,… ,−𝑥0𝑘, 𝑥

0
𝑘+1,… ,

𝑥0𝑛−1, 0). Since |𝐵𝜆(|𝐸|, 𝑥0)Δ𝐵𝜆(|𝐸|)| ≤ |𝐵𝜆(|𝐸|, 𝑥0)Δ𝐵𝜆(|𝐸|, �̄�0)| we have
|𝐸Δ𝐵𝜆(|𝐸|)| ≤ |𝐸Δ𝐵𝜆

(

|𝐸|, 𝑥0
)

| + |𝐵𝜆
(

|𝐸|, 𝑥0
)

Δ𝐵𝜆(|𝐸|)|

≤ |𝐸Δ𝐵𝜆
(

|𝐸|, 𝑥0
)

| + |𝐵𝜆
(

|𝐸|, 𝑥0
)

Δ𝐵𝜆
(

|𝐸|, �̄�0
)

|

≤ |𝐸Δ𝐵𝜆
(

|𝐸|, 𝑥0
)

| + |𝐵𝜆
(

|𝐸|, 𝑥0
)

Δ𝐸| + |𝐸Δ𝐵𝜆
(

|𝐸|, �̄�0
)

|

= 3|𝐸Δ𝐵𝜆
(

|𝐸|, 𝑥0
)

|.

Given a Borel set 𝐸 ⊂ ℝ𝑛 ⧵𝐻 with finite measure and a unit vector 𝜈 with ⟨𝜈, 𝑒𝑛⟩ = 0, we denote by 𝐻+
𝜈 = {𝑥 ∈

ℝ𝑛 ∶ ⟨𝑥, 𝜈⟩ > 𝑡} an open half-space orthogonal to 𝜈 where 𝑡 ∈ ℝ is chosen in such a way that
|𝐸 ∩𝐻+

𝜈 | =
|𝐸|
2
.

We also denote by 𝑟𝜈 ∶ ℝ𝑛 ⧵𝐻 → ℝ𝑛 ⧵𝐻 the reflection with respect to 𝐻𝜈 ∶= 𝜕𝐻+
𝜈 , and by 𝐻−

𝜈 ∶= 𝑟𝜈(𝐻+
𝜈 ) the

open half-space complementary to 𝐻+
𝜈 . Finally we write 𝐸±

𝜈 ∶= 𝐸 ∩𝐻±
𝜈 .

Observe that
𝐷𝜆(𝐸±

𝜈 ∪ 𝑟𝜈(𝐸±
𝜈 )) ≤ 2𝐷𝜆(𝐸). (3.4.21)

Indeed
𝑃𝜆(𝐸±

𝜈 ∪ 𝑟𝜈(𝐸±
𝜈 )) − 𝑃𝜆(𝐵

𝜆(|𝐸|)) ≤ 2𝑃𝜆(𝐸) − 𝑃𝜆(𝐸∓
𝜈 ∪ 𝑟𝜈(𝐸∓

𝜈 )) − 𝑃𝜆(𝐵
𝜆(|𝐸|))

= 2(𝑃𝜆(𝐸) − 𝑃𝜆(𝐵𝜆(|𝐸|))) + 𝑃𝜆(𝐵𝜆(|𝐸|)) − 𝑃𝜆(𝐸∓
𝜈 ∪ 𝑟𝜈(𝐸∓

𝜈 ))
≤ 2(𝑃𝜆(𝐸) − 𝑃𝜆(𝐵𝜆(|𝐸|))),

where in the last inequality we used the isoperimetric inequality of Theorem 3.2.3.
Lemma 3.4.6. There exist �̄�2, 𝛿2 > 0 depending on 𝑛, 𝜆 such that, if 𝐸 ⊂ ℝ𝑛 ⧵𝐻 is a Borel set with finite measure
such that 𝐷𝜆(𝐸) ≤ 𝛿2, and if 𝜈1 and 𝜈2 are two orthogonal vectors, with ⟨𝜈𝑖, 𝑒𝑛⟩ = 0, such that 𝐻𝜈1 and 𝐻𝜈2 divide
𝐸 in four parts of equal measure, then there exist 𝑖 ∈ {1, 2} and 𝑠 ∈ {+,−} such that, setting 𝐸′ = 𝐸𝑠

𝜈𝑖
∪ 𝑟𝜈𝑖(𝐸

𝑠
𝜈𝑖
),

there holds
𝛼𝜆(𝐸) ≤ �̄�2𝛼(𝐸′). (3.4.22)

Proof. By scale-invariance of Fraenkel asymmetry, it is sufficient to prove the claim assuming also |𝐸| = |𝐵𝜆|. If
𝑖 ∈ {1, 2} and 𝑠 ∈ {+,−}, let 𝐸 ′𝑠

𝜈𝑖
denote the sets obtained by reflecting 𝐸𝑠

𝜈𝑖
along 𝐻𝜈𝑖 and let 𝐵𝜆,𝑠𝑖 = 𝐵𝜆(|𝐵𝜆|, 𝑥𝑠𝑖 )be four spherical caps such that

|𝐸
′𝑠
𝜈𝑖
Δ𝐵𝜆,𝑠𝑖 | = min

𝑥∈𝐻𝜈𝑖∩𝜕𝐻
|𝐸

′𝑠
𝜈𝑖
Δ𝐵𝜆(|𝐵𝜆|, 𝑥)|.

For 𝑖 = 1, 2, by the triangular inequality we have
min
𝑥∈𝜕𝐻

|𝐸Δ𝐵𝜆(|𝐵𝜆|, 𝑥)| ≤ |𝐸Δ𝐵𝜆,+𝑖 |

= |(𝐸Δ𝐵𝜆,+𝑖 ) ∩𝐻+
𝜈𝑖
| + |(𝐸Δ𝐵𝜆,+𝑖 ) ∩𝐻−

𝜈𝑖
|

≤ |(𝐸Δ𝐵𝜆,+𝑖 ) ∩𝐻+
𝜈𝑖
| + |(𝐸Δ𝐵𝜆,−𝑖 ) ∩𝐻−

𝜈𝑖
| + |(𝐵𝜆,+𝑖 Δ𝐵𝜆,−𝑖 ) ∩𝐻−

𝜈𝑖
|

= 1
2
|𝐸

′+
𝜈𝑖
Δ𝐵𝜆,+𝑖 | + 1

2
|𝐸

′−
𝜈𝑖
Δ𝐵𝜆,−𝑖 | + 1

2
|𝐵𝜆,+𝑖 Δ𝐵𝜆,−𝑖 |.

(3.4.23)
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Once we show that if 𝐷𝜆(𝐸) is sufficiently small then there exists 𝑐𝑛,𝜆 > 0 such that at least one the following

|𝐵𝜆,+1 Δ𝐵𝜆,−1 | ≤ 2𝑐𝑛,𝜆
(

|𝐸
′+
𝜈1
Δ𝐵𝜆,+1 | + |𝐸

′−
𝜈1
Δ𝐵𝜆,−1 |

)

|𝐵𝜆,+2 Δ𝐵𝜆,−2 | ≤ 2𝑐𝑛,𝜆
(

|𝐸
′+
𝜈2
Δ𝐵𝜆,+2 | + |𝐸

′−
𝜈2
Δ𝐵𝜆,−2 |

) (3.4.24)

holds, then we soon conclude the proof. Indeed, assume for example that the first inequality in (3.4.24) holds.
Then, from (3.4.20) and (3.4.23) with 𝑖 = 1, we get

min
𝑥∈𝜕𝐻

|𝐸Δ𝐵𝜆(|𝐵𝜆|, 𝑥)|
(3.4.23)
≤ (𝑐𝑛,𝜆 + 1∕2)

(

|𝐸
′+
𝜈1
Δ𝐵𝜆,+1 | + |𝐸

′−
𝜈1
Δ𝐵𝜆,−1 |

)

(3.4.20)
≤ 3(𝑐𝑛,𝜆 + 1∕2)

(

min
𝑥∈𝜕𝐻

|𝐸
′+
𝜈1
Δ𝐵𝜆(|𝐵𝜆|, 𝑥)| + min

𝑥∈𝜕𝐻
|𝐸

′−
𝜈1
Δ𝐵𝜆(|𝐵𝜆|, 𝑥)|

)

,

thus proving (3.4.22) with �̄�2 = 6(𝑐𝑛,𝜆 + 1∕2) and 𝐸′ equal to 𝐸 ′+
𝜈1

or 𝐸 ′−
𝜈1

.
Observe that, given �̃� > 0, Corollary 3.4.3, (3.4.20) and (3.4.21) imply that there exists 𝛿2(𝑛, 𝜆) > 0 such that if
𝐷𝜆(𝐸) < 𝛿2 then

max

⎧

⎪

⎨

⎪

⎩

𝛼𝜆(𝐸),
|𝐸 ′±

𝜈𝑖
Δ𝐵𝜆,±𝑖 |

|𝐵𝜆|
∶ 𝑖 = 1, 2

⎫

⎪

⎬

⎪

⎭

< �̃�. (3.4.25)

Thanks to (3.4.25), we can show that the caps 𝐵𝜆,±𝑖 get closer and closer to the optimal ones for 𝐸, as 𝛿2 decreases.
Indeed, let us assume by contradiction that there exists 𝜂 > 0 such that for every 𝑗 ∈ ℕ there exist 𝐸𝑗 , with
|𝐸𝑗| = |𝐵𝜆|, 𝐷𝜆(𝐸𝑗) <

1
𝑗
, with 𝐵𝜆𝑗 ∶= 𝐵𝜆(|𝐵𝜆|, 𝑥𝑗) realizing the asymmetry of 𝐸𝑗 , but for 𝑖 ∈ {1, 2} and

𝑠 ∈ {+,−}, if 𝐵𝜆,𝑠𝑖,𝑗 ∶= 𝐵𝜆(|𝐵𝜆|, 𝑥𝑠𝑖,𝑗) is such that

|𝐸′𝑠
𝑗,𝜈𝑗𝑖

Δ𝐵𝜆,𝑠𝑖,𝑗 | = min
𝑥∈𝐻

𝜈𝑗𝑖
∩𝜕𝐻

|𝐸′𝑠
𝑗,𝜈𝑗𝑖

Δ𝐵𝜆(|𝐵𝜆|, 𝑥)|,

where 𝐸′𝑠
𝑗,𝜈𝑗𝑖

is given by reflections of truncations of 𝐸𝑗 along orthogonal subspaces 𝐻𝜈𝑗1
,𝐻𝜈𝑗2

, then |𝑥𝑠𝑖,𝑗 − 𝑥𝑗| > 𝜂

for some 𝑖 ∈ {1, 2}, 𝑠 ∈ {+,−} and any 𝑗. Without loss of generality we can assume that that 𝑖 = 1 and 𝑠 = +.
Let us translate every set in the above contradiction assumption by −𝑥𝑗 . Without relabeling the objects involved,
up to subsequences, we have that 𝐸𝑗 → 𝐵𝜆0 ∶= 𝐵𝜆(|𝐵𝜆|, 0) in 𝐿1. We can show that 𝐸′+

𝑗,𝜈𝑗1
→ 𝐵𝜆0 as well. Indeed,

up to a rotation we can further assume that
𝐻𝜈𝑗1

=
{

(𝑎𝑗 , 0,… , 0) + 𝑒⟂1
}

, 𝜈𝑗1 = 𝑒1, ∀ 𝑗,

with 𝑎𝑗 ∈ ℝ. By the definition of 𝐻𝜈𝑗1
, we have

|𝐵𝜆|
2

=
|𝐸𝑗|
2

= |𝐸𝑗 ∩ {𝑥1 > 𝑎𝑗}|.

Then {𝑎𝑗} is bounded and, up to subsequence, converges to 𝑎∞ = 0 because, if 𝑎∞ ≠ 0, then
𝐸𝑗 ∩ {𝑥1 > 𝑎𝑗} → 𝐵𝜆0 ∩ {𝑥1 > 𝑎∞}

with |

|

|

𝐵𝜆0 ∩ {𝑥1 > 𝑎∞}||
|

≠ |𝐵𝜆|
2 . In particular 𝐸′+

𝑗,𝜈𝑗1
→ 𝐵𝜆0 . Finally by (3.4.25)

�̃�|𝐵𝜆| ≥ lim
𝑗

|

|

|

|

𝐸′+
𝑗,𝜈𝑗1

Δ𝐵𝜆,+1,𝑗

|

|

|

|

≥ min
𝑥∈𝜕𝐻,|𝑥|≥𝜂

{

|𝐵𝜆(|𝐵𝜆|, 𝑥)Δ𝐵𝜆0
}

=∶ 𝐶(𝜂) > 0.

But for 𝑗 sufficiently large, since 𝐷𝜆(𝐸𝑗) → 0, by (3.4.25) we can choose �̃� such that �̃�|𝐵𝜆| < 𝐶(𝜂)∕2, getting a
contradiction.
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We observe that for �̃� > 0 sufficiently small, that is for 𝛿2 > 0 sufficiently small, there exists 𝑐𝑛,𝜆 > 0 such that for
all possible choices of 𝑠, 𝑡 ∈ {+,−} there holds

|(𝐵𝜆,𝑠1 Δ𝐵𝜆,𝑡2 ) ∩ (𝐻𝑠
𝜈1
∩𝐻 𝑡

𝜈2
)| >

|𝐵𝜆,𝑠1 Δ𝐵𝜆,𝑡2 |

𝑐𝑛,𝜆
. (3.4.26)

We only sketch the argument for (3.4.26). Letting 𝑄 ∶= (𝐻𝑠
𝜈1
∩ 𝐻 𝑡

𝜈2
) and 𝐵1(ℎ) ∶= 𝐵𝜆(|𝐵𝜆|, ℎ 𝑥𝑠1), 𝐵2(ℎ) ∶=

𝐵𝜆(|𝐵𝜆|, ℎ 𝑥𝑡2) for ℎ ∈ [0, 1], one can compute
d
dℎ

|

|

|

(𝐵1(ℎ)Δ𝐵2(ℎ)) ∩𝑄
|

|

|

= ∫𝜕𝐵1(ℎ)∩𝐵2(ℎ)∩𝑄

⟨

𝜈𝐵1(ℎ), 𝑥𝑡2 − 𝑥
𝑠
1
⟩

d𝑛−1 + ∫𝜕𝐵2(ℎ)∩𝐵1(ℎ)∩𝑄

⟨

𝜈𝐵2(ℎ), 𝑥𝑠1 − 𝑥
𝑡
2
⟩

d𝑛−1

=

(

∫𝜕𝐵1(ℎ)∩𝐵2(ℎ)∩𝑄

⟨

𝜈𝐵1(ℎ),
𝑥𝑡2 − 𝑥

𝑠
1

|𝑥𝑠1 − 𝑥
𝑡
2|

⟩

+ ∫𝜕𝐵2(ℎ)∩𝐵1(ℎ)∩𝑄

⟨

𝜈𝐵2(ℎ),
𝑥𝑠1 − 𝑥

𝑡
2

|𝑥𝑠1 − 𝑥
𝑡
2|

⟩)

|𝑥𝑠1 − 𝑥
𝑡
2|

= ∫𝜕(𝐵1(ℎ)∩𝐵2(ℎ))∩𝑄

⟨

𝜈𝐵1(ℎ)∩𝐵2(ℎ), 𝑣𝑠,𝑡12
⟩

d𝑛−1
|𝑥𝑠1 − 𝑥

𝑡
2|

≥ 𝑐|𝑥𝑠1 − 𝑥
𝑡
2|,

where 𝑣𝑠,𝑡12 is obviously defined, provided �̃� is small enough, for some 𝑐 = 𝑐(𝑛, 𝜆) > 0 that will change from line to
line. The last estimate follows since ⟨𝜈𝐵1(ℎ)∩𝐵2(ℎ), 𝑣𝑠,𝑡12

⟩

≥ 0 pointwise and, for �̃� small, centers 𝑥𝑠1, 𝑥𝑡2 are so close
that ⟨𝜈𝐵1(ℎ)∩𝐵2(ℎ), 𝑣𝑠,𝑡12

⟩ can be estimated from below by a positive constant on a set of 𝑛−1-measure uniformly
bounded from below away from zero. On the other hand one can estimate

|(𝐵𝜆,𝑠1 Δ𝐵𝜆,𝑡2 )| ≤ 𝑐|𝑥𝑠1 − 𝑥
𝑡
2|.

Hence

|(𝐵𝜆,𝑠1 Δ𝐵𝜆,𝑡2 ) ∩ (𝐻𝑠
𝜈1
∩𝐻 𝑡

𝜈2
)| = ∫

1

0

d
dℎ

|

|

|

(𝐵1(ℎ)Δ𝐵2(ℎ)) ∩𝑄
|

|

|

dℎ ≥ 𝑐|𝑥𝑠1 − 𝑥
𝑡
2| ≥ 𝑐|(𝐵𝜆,𝑠1 Δ𝐵𝜆,𝑡2 )|,

and (3.4.26) follows.
Letting

𝑆1 = (𝐵𝜆,+1 ∩𝐻+
𝜈1
) ∪ (𝐵𝜆,−1 ∩𝐻−

𝜈1
), 𝑆2 = (𝐵𝜆,+2 ∩𝐻+

𝜈2
) ∪ (𝐵𝜆,−2 ∩𝐻−

𝜈2
),

we deduce

|𝑆1Δ𝑆2| ≥ |(𝑆1Δ𝑆2) ∩ (𝐻𝑠
𝜈1
∩𝐻 𝑡

𝜈2
)| = |(𝐵𝜆,𝑠1 Δ𝐵𝜆,𝑡2 ) ∩ (𝐻𝑠

𝜈1
∩𝐻 𝑡

𝜈2
)| >

|𝐵𝜆,𝑠1 Δ𝐵𝜆,𝑡2 |

𝑐𝑛,𝜆
.

In particular we have
|𝐵𝜆,+1 Δ𝐵𝜆,−1 | ≤ |𝐵𝜆,+1 Δ𝐵𝜆,+2 | + |𝐵𝜆,+2 Δ𝐵𝜆,−1 | < 2𝑐𝑛,𝜆|𝑆1Δ𝑆2|,

|𝐵𝜆,+2 Δ𝐵𝜆,−2 | ≤ |𝐵𝜆,+2 Δ𝐵𝜆,+1 | + |𝐵𝜆,+1 Δ𝐵𝜆,−2 | < 2𝑐𝑛,𝜆|𝑆1Δ𝑆2|.
(3.4.27)

If by contradiction (3.4.24) were false, then

|𝐸
′+
𝜈1
Δ𝐵𝜆,+1 | + |𝐸

′−
𝜈1
Δ𝐵𝜆,−1 | <

|𝐵𝜆,+1 Δ𝐵𝜆,−1 |

2𝑐𝑛,𝜆
and |𝐸

′+
𝜈2
Δ𝐵𝜆,+2 | + |𝐸

′−
𝜈2
Δ𝐵𝜆,−2 | <

|𝐵𝜆,+2 Δ𝐵𝜆,−2 |

2𝑐𝑛,𝜆
. (3.4.28)

Hence

|𝑆1Δ𝑆2| ≤ |𝑆1Δ𝐸| + |𝐸Δ𝑆2| =
1
2

2
∑

𝑖=1

(

|𝐸
′+
𝜈𝑖
Δ𝐵𝜆,+𝑖 | + |𝐸

′−
𝜈𝑖
Δ𝐵𝜆,−𝑖 |

)

(3.4.28)
< 1

4𝑐𝑛,𝜆

2
∑

𝑖=1
|𝐵𝜆,+𝑖 Δ𝐵𝜆,−𝑖 |

(3.4.27)
≤ |𝑆1Δ𝑆2|,

getting a contradiction.
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Lemma 3.4.7 (Reduction to (𝑛 − 1)-symmetric sets). There exist 𝐶2, 𝛿2 > 0 depending on 𝑛, 𝜆 such that, if 𝐸 is a
Borel set with 𝐸 ⊂ ℝ𝑛 ⧵𝐻 , 𝐸 ⊂ 𝑄𝑙, |𝐸| = |𝐵𝜆| and 𝐷𝜆(𝐸) ≤ 𝛿2, there exists a Borel set 𝐹 ⊂ ℝ𝑛 ⧵𝐻 , 𝐹 ⊂ 𝑄2𝑙,
|𝐹 | = |𝐵𝜆|, symmetric with respect to 𝑛 − 1 orthogonal half-hyperplanes (each orthogonal to 𝜕𝐻) and such that

𝛼𝜆(𝐸) ≤ 𝐶2𝛼𝜆(𝐹 ), 𝐷𝜆(𝐹 ) ≤ 2𝑛−1𝐷𝜆(𝐸).

Proof. Let us define 𝛿2 ∶= 𝛿22−(𝑛−2), where 𝛿2 is the constant appearing in Lemma 3.4.6. We can apply Lem-
ma 3.4.6 𝑛 − 2 times to different pairs of orthogonal vectors in {𝑒1,… , 𝑒𝑛−2} normal to corresponding pairs of
affine hyperplanes splitting the measure of 𝐸 in two halves. Therefore, also recalling (3.4.21), we find an (𝑛 − 2)-
symmetric set 𝐸′ such that |𝐸′

| = |𝐵𝜆| and
𝛼𝜆(𝐸) ≤ �̄�𝑛−22 𝛼𝜆(𝐸′), 𝐷𝜆(𝐸′) ≤ 2𝑛−2𝐷𝜆(𝐸).

To perform the last symmetrization, let us consider a half-hyperplane𝐻𝑛−1 orthogonal to 𝑒𝑛−1 and dividing𝐸′ into
two parts of equal measure. For simplicity let us assume that 𝐻𝑛−1 = {𝑥𝑛−1 = 0} ⧵𝐻 . We denote by 𝐸 ′+ (resp.
𝐸 ′−) the set obtained by the union of 𝐸′ ∩ {𝑥𝑛−1 > 0} (resp. 𝐸′ ∩ {𝑥𝑛−1 < 0}) with its reflection along 𝐻𝑛−1. By
(3.4.21) we have

𝐷𝜆(𝐸
′±) ≤ 2𝐷𝜆(𝐸′) ≤ 2𝑛−1𝐷𝜆(𝐸).

Regarding the asymmetry of 𝐸 ′± note that since 𝐸′ is symmetric with respect to the first 𝑛 − 2 coordinate hyper-
planes, 𝐸 ′+ and 𝐸 ′− are (𝑛 − 1)-symmetric. By Lemma 3.4.5 we get

|𝐵𝜆|𝛼𝜆(𝐸′) ≤ |𝐸′Δ𝐵𝜆(|𝐵𝜆|)|
= |(𝐸′Δ𝐵𝜆(|𝐵𝜆|)) ∩ {𝑥𝑛−1 > 0}| + |(𝐸′Δ𝐵𝜆(|𝐵𝜆|)) ∩ {𝑥𝑛−1 < 0}|

= 1
2

(

|𝐸
′+Δ𝐵𝜆(|𝐵𝜆|)| + |𝐸

′−Δ𝐵𝜆(|𝐵𝜆|)|
)

≤ 3|𝐵𝜆|
2

(

𝛼𝜆(𝐸
′+) + 𝛼𝜆(𝐸

′−)
)

.

Therefore at least one of the sets 𝐸 ′+, 𝐸 ′− has asymmetry greater than 1
3𝛼𝜆(𝐸

′) and, denoting by 𝐹 this set, we
have

𝐷𝜆(𝐹 ) ≤ 2𝐷𝜆(𝐸′) ≤ 2𝑛−1𝐷𝜆(𝐸)

𝛼𝜆(𝐸) ≤ �̄�𝑛−22 𝛼𝜆(𝐸′) ≤ 3�̄�𝑛−22 𝛼𝜆(𝐹 ).

Finally, the inclusion 𝐹 ⊂ 𝑄2𝑙 follows since 𝐹 was obtained by performing reflections of 𝐸 ⊂ 𝑄𝑙 along affine
hyperplanes of the form {𝑥𝑗 = 𝑎𝑗} for 𝑗 = 1,… , 𝑛 − 1 with 𝑎𝑗 ∈ (−𝑙, 𝑙).

Reduction to Schwarz-symmetric sets

In this section we observe that, in order to prove Theorem 3.1.1, it is sufficient to further reduce to show (3.1.2)
just among Schwarz-symmetric sets. The proof is analogous to [Fus15, Proposition 4.9].
Lemma 3.4.8 (Reduction to Schwarz-symmetric sets). There exists 𝐶3 = 𝐶3(𝑛, 𝜆) > 0 such that the following
holds. Let 𝐸 ⊂ ℝ𝑛 ⧵𝐻 be a set of finite perimeter with |𝐸| = |𝐵𝜆|. Suppose that 𝐸 is symmetric with respect to
the coordinate hyerplanes {𝑥1 = 0},… , {𝑥𝑛−1 = 0} and that

𝐷𝜆(𝐸) < 1, 𝐸 ⊂ 𝑄2𝑙,

where 𝑙 = 𝑙(𝑛, 𝜆) is as in in Lemma 3.4.2. Then

|𝐸Δ𝐸∗
| ≤ 𝐶3

√

𝐷𝜆(𝐸) and 𝐷𝜆(𝐸∗) ≤ 𝐷𝜆(𝐸), (3.4.29)
where 𝐸∗ denotes the Schwarz symmetrization of 𝐸 with respect to the 𝑛-th axis.

Proof. The second inequality in (3.4.29) follows from the fact |𝐸∗
| = |𝐸| and 𝑃𝜆(𝐸∗)≤ 𝑃𝜆(𝐸). Exploiting Lemma

2.4.4, we may assume
𝑛−1({𝑥 ∈ 𝜕∗𝐸 ⧵𝐻 ∶ 𝜈𝐸(𝑥) = ±𝑒𝑛}) = 0,
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and thus that 𝑣𝐸 ∈ 𝑊 1,1(ℝ). Indeed, if 𝐸𝑖 is given by Lemma 2.4.4 and the claim is proved for 𝐸𝑖, by the
contractivity of Schwartz rearrangement 2.6.3, for every �̃� > 0 and with 𝑖 sufficiently large, we get

|𝐸Δ𝐸∗
| ≤ |𝐸Δ𝐸𝑖| + |𝐸𝑖Δ𝐸∗

𝑖 | + |𝐸∗
𝑖 Δ𝐸

∗
|

≤ 2|𝐸Δ𝐸𝑖| + |𝐸𝑖Δ𝐸∗
𝑖 |

≤ 2�̃� + 𝐶3
√

𝐷𝜆(𝐸𝑖),

and the last term tends to 𝐶3
√

𝐷𝜆(𝐸) as 𝑖→ ∞.
For 1-a.e. 𝑡 ∈ (0,∞) denote

𝑣𝐸(𝑡) ∶= 𝑛−1({𝑥′ ∈ ℝ𝑛−1 ∶ (𝑥′, 𝑡) ∈ 𝐸}),

𝑝𝐸(𝑡) ∶= 𝑛−2(𝜕∗{𝑥′ ∈ ℝ𝑛−1 ∶ (𝑥′, 𝑡) ∈ 𝐸}),

and employ analogous notation for 𝐸∗. Since |𝜕∗𝐸 ∩ 𝜕𝐻| = |𝜕∗𝐸∗ ∩ 𝜕𝐻|, we get
𝑃𝜆(𝐸) − 𝑃𝜆(𝐵𝜆) ≥ 𝑃𝜆(𝐸) − 𝑃𝜆(𝐸∗) = 𝑃 (𝐸,ℝ𝑛 ⧵𝐻) − 𝑃 (𝐸∗,ℝ𝑛 ⧵𝐻).

It is therefore possible to reproduce the computation in [Fus15, Proposition 4.9] verbatim up to [Fus15, Eq. (4.29)]
to estimate the right hand side in the last equation from below. We include the computation for the convenience of
the reader. [Mag12, Eq. (19.30)] states that

𝑃 (𝐸) ≥ ∫

∞

0

√

𝑝𝐸(𝑡)2 + 𝑣′𝐸(𝑡)
2 d𝑡,

therefore by Theorem 2.6.4 one has
𝑃𝜆(𝐸) − 𝑃𝜆(𝐵𝜆) ≥ 𝑃 (𝐸,ℝ𝑛 ⧵𝐻) − 𝑃 (𝐸∗,ℝ𝑛 ⧵𝐻) ≥ ∫

∞

0

(

√

𝑝2𝐸 + 𝑣′2𝐸 −
√

𝑝2𝐸∗ + 𝑣′2𝐸

)

d𝑡

= ∫

∞

0

𝑝2𝐸 − 𝑝2𝐸∗
√

𝑝2𝐸 + 𝑣′2𝐸 +
√

𝑝2𝐸∗ + 𝑣′2𝐸

d𝑡 ≥
(

∫

∞

0

√

𝑝2𝐸 − 𝑝2𝐸∗ d𝑡
)2 1

∫ ∞
0

√

𝑝2𝐸 + 𝑣′2𝐸 +
√

𝑝2𝐸∗ + 𝑣′2𝐸 d𝑡

≥
(

∫

∞

0

√

𝑝2𝐸 − 𝑝2𝐸∗ d𝑡
)2 1

𝑃 (𝐸,ℝ𝑛 ⧵𝐻) + 𝑃 (𝐸∗,ℝ𝑛 ⧵𝐻)

≥ 𝑐(𝜆)
(

∫

∞

0

√

𝑝2𝐸 − 𝑝2𝐸∗ d𝑡
)2 1

𝑃𝜆(𝐸) + 𝑃𝜆(𝐸∗)
,

where in the last inequality we used Corollary 2.4.5. Since 𝐷𝜆(𝐸) < 1 and 𝑝𝐸 ≥ 𝑝𝐸∗ , we have 𝑃𝜆(𝐸∗) ≤ 𝑃𝜆(𝐸) ≤
2𝑃𝜆(𝐵𝜆) and

√

𝐷𝜆(𝐸) ≥ 𝑐 ∫

∞

0

√

𝑝2𝐸 − 𝑝2𝐸∗ d𝑡 = 𝑐 ∫

∞

0

√

𝑝𝐸 + 𝑝𝐸∗
√

𝑝𝐸∗

√

𝑝𝐸 − 𝑝𝐸∗

𝑝𝐸∗
d𝑡

≥
√

2𝑐 ∫

∞

0
𝑝𝐸∗

√

𝑝𝐸 − 𝑝𝐸∗

𝑝𝐸∗
d𝑡,

(3.4.30)

for some constant 𝑐 = 𝑐(𝑛, 𝜆) > 0 changing from line to line. Note that (𝐸∗)𝑡 is a (𝑛−1)-dimensional ball with the
same 𝑛−1 measure of 𝐸𝑡. Then the quantity

𝑝𝐸(𝑡) − 𝑝𝐸∗(𝑡)
𝑝𝐸∗(𝑡)

is the classical isoperimetric deficit in ℝ𝑛−1 of 𝐸𝑡 with respect to the standard perimeter. By the quantitative
isoperimetric inequality in ℝ𝑛−1 [FMP08], the fact that 𝐸𝑡 is 𝑛 − 1 symmetric with (𝐸∗)𝑡 centered at the center of
symmetry of 𝐸𝑡 and Lemma 3.4.5, we have

𝑛−1(𝐸𝑡Δ𝐸∗
𝑡 )

𝑛−1((𝐸∗)𝑡)
≤ 𝑐(𝑛)

√

𝑝𝐸(𝑡) − 𝑝𝐸∗(𝑡)
𝑝𝐸∗(𝑡)

.

By (3.4.30) and the inclusion 𝐸 ⊂ 𝑄2𝑙 we conclude
√

𝐷𝜆(𝐸) ≥ 𝑐 ∫

∞

0

𝑝𝐸∗(𝑡)
𝑛−1((𝐸∗)𝑡)

𝑛−1(𝐸𝑡Δ𝐸∗
𝑡 ) d𝑡 ≥

𝑐
𝑙 ∫

∞

0
𝑛−1(𝐸𝑡Δ𝐸∗

𝑡 ) d𝑡 =
𝑐
𝑙
|𝐸Δ𝐸∗

|.
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Reduction to indecomposable sets

Definition 3.4.9. A set of finite perimeter 𝐸 with finite measure is said to be indecomposable if, whenever there
exist two sets of finite perimeter𝐸1, 𝐸2 such that |𝐸Δ(𝐸1∪𝐸2)| = 0with |𝐸1∩𝐸2| = 0 and𝑃 (𝐸) = 𝑃 (𝐸1)+𝑃 (𝐸2),
then

min{|𝐸1|, |𝐸2|} = 0.

The next result is analogous to [Mag08, Theorem 4.4].
Lemma 3.4.10. There exist two 𝛿4 = 𝛿4(𝑛) > 0 and 𝐶4 = 𝐶4(𝑛, 𝜆) > 0 such that if 𝐸 is a set of finite measure with
𝐷𝜆(𝐸) ≤ 𝛿4, then there exists an indecomposable set 𝐹 such that |𝐹 | > |𝐸|∕2 and

𝛼𝜆(𝐸) ≤ 𝛼𝜆(𝐹 ) + 𝐶4𝐷𝜆(𝐸), 𝐷𝜆(𝐹 ) ≤ 𝐶4𝐷𝜆(𝐸). (3.4.31)
Proof. By scale-invariance of the asymmetry and of the deficit, it is sufficient to prove the claim assuming also
|𝐸| = |𝐵𝜆|. Without loss of generality, let us assume that 𝐸 is not indecomposable. By [Amb+01, Theorem
1], there exist at most countably many disjoint indecomposable sets 𝐸ℎ, for ℎ ∈ 𝐼 ⊂ ℕ, such that |𝐸ℎ| > 0,
|𝐸ℎ ⧵𝐸| = 0, |𝐸 ⧵∪ℎ𝐸ℎ| = 0 and 𝑃 (𝐸) = ∑

ℎ 𝑃 (𝐸ℎ). In particular 𝑛−1 𝜕∗𝐸 =
∑

ℎ𝑛−1 𝜕∗𝐸ℎ as measures,
thus 𝑃 (𝐸,ℝ𝑛 ⧵ 𝐻) =

∑

ℎ 𝑃 (𝐸ℎ,ℝ𝑛 ⧵ 𝐻) and 𝑛−1(𝜕∗𝐸 ∩ 𝜕𝐻) =
∑

ℎ𝑛−1(𝜕∗𝐸ℎ ∩ 𝜕𝐻). Rewriting 𝑃𝜆 as in
(2.4.3), we conclude that and 𝑃𝜆(𝐸) = ∑

ℎ∈𝐼 𝑃𝜆(𝐸ℎ) holds. From the isoperimetric inequality in Theorem 3.2.3
we get

𝐷𝜆(𝐸) =
1

𝑛|𝐵𝜆|

(

∑

ℎ∈𝐼
𝑃𝜆(𝐸ℎ) − 𝑃𝜆(𝐵𝜆)

)

≥ 1
𝑛|𝐵𝜆|

(

𝑛|𝐵𝜆|
1
𝑛
∑

ℎ∈𝐼
|𝐸ℎ|

𝑛−1
𝑛 − 𝑛|𝐵𝜆|

)

=
∑

ℎ∈𝐼
𝑎
𝑛−1
𝑛
ℎ − 1

with 𝑎ℎ ∶= |𝐸ℎ|∕|𝐵𝜆|. Note that ∑ℎ∈𝐼 𝑎ℎ = 1 as |𝐸| = |𝐵𝜆|. Assume for simplicity that the 𝑎ℎ are ordered
decreasingly.
If 𝑎1 > 1∕2, from (3.4.10) we get

𝐷𝜆(𝐸) ≥ 𝑎
𝑛−1
𝑛

1 + (1 − 𝑎1)
𝑛−1
𝑛 − 1 ≥ 2

(

2
1
𝑛 − 1

)

(1 − 𝑎1), (3.4.32)

hence |𝐸 ⧵ 𝐸1| ≤ 𝐶4𝐷𝜆(𝐸), with 𝐶4 = 𝐶4(𝑛, 𝜆) > 0 that may change from line to line. Setting 𝐹 = 𝐸1, since
𝑡↦ 𝑡

𝑛−1
𝑛 is Lipschitz on [|𝐵𝜆|∕2, |𝐵𝜆|], we find

𝑃𝜆(𝐹 ) − 𝑃𝜆(𝐵𝜆(|𝐹 |)) ≤ 𝑃𝜆(𝐸) − 𝑃𝜆(𝐵𝜆) + 𝑃𝜆(𝐵𝜆) − 𝑃𝜆(𝐵𝜆(|𝐹 |)) = 𝑃𝜆(𝐸) − 𝑃𝜆(𝐵𝜆) + 𝑛|𝐵𝜆|
1
𝑛 (|𝐸|

𝑛−1
𝑛 − |𝐹 |

𝑛−1
𝑛 )

≤ 𝑃𝜆(𝐸) − 𝑃𝜆(𝐵𝜆) + 𝐶4|𝐸 ⧵ 𝐸1| ≤ 𝑃𝜆(𝐸) − 𝑃𝜆(𝐵𝜆) + 𝐶4𝐷𝜆(𝐸).

Since
𝑃𝜆(𝐵𝜆(|𝐹 |)) ≥ 𝑛|𝐵𝜆|

1
𝑛
|𝐹 |

𝑛−1
𝑛 > 𝑛

2
𝑛−1
𝑛

|𝐵𝜆| = 1

2
𝑛−1
𝑛

𝑃𝜆(𝐵𝜆),

we get
𝐷𝜆(𝐹 ) ≤ 𝐶4𝐷𝜆(𝐸).

Similarly, denoting by 𝐵𝜆(|𝐹 |, 𝑥0) an optimal spherical cap realizing 𝛼𝜆(𝐹 ) we have
|𝐵𝜆|𝛼𝜆(𝐸) ≤ |𝐸Δ𝐵𝜆(|𝐵𝜆|, 𝑥0)|

≤ |𝐸Δ𝐹 | + |𝐹Δ𝐵𝜆(|𝐹 |, 𝑥0)| + |𝐵𝜆(|𝐹 |, 𝑥0)Δ𝐵𝜆(|𝐵𝜆|, 𝑥0)|
= |𝐹Δ𝐵𝜆(|𝐹 |, 𝑥0)| + 2|𝐸 ⧵ 𝐹 |
≤ |𝐹Δ𝐵𝜆(|𝐹 |, 𝑥0)| + 2𝐶4𝐷𝜆(𝐸),

thus completing the proof of (3.4.31).
Therefore, it remains to show that if 𝛿4 is sufficiently small then 𝑎1 > 1∕2. By contradiction assume that 𝑎1 ≤ 1∕2
and let 𝑁 ≥ 2 be the greatest integer such that ∑ℎ<𝑁 𝑎ℎ ≤ 1∕2. Then, by (3.4.10) and arguing as in (3.4.32), we
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get

𝐷𝜆(𝐸) ≥

(

∑

ℎ<𝑁
𝑎ℎ

)
𝑛−1
𝑛

+

(

∑

ℎ≥𝑁
𝑎ℎ

)
𝑛−1
𝑛

≥ 2
(

2
1
𝑛 − 1

)

∑

ℎ<𝑁
𝑎ℎ

𝐷𝜆(𝐸) ≥

(

∑

ℎ≤𝑁
𝑎ℎ

)
𝑛−1
𝑛

+

(

∑

ℎ>𝑁
𝑎ℎ

)
𝑛−1
𝑛

≥ 2
(

2
1
𝑛 − 1

)

∑

ℎ>𝑁
𝑎ℎ.

Adding these two inequalities we get

𝐷𝜆(𝐸) ≥
(

2
1
𝑛 − 1

)

∑

ℎ≠𝑁
𝑎ℎ =

(

2
1
𝑛 − 1

)

(1 − 𝑎𝑁 ) ≥
(

2
1
𝑛 − 1

)

(1 − 𝑎1) >
2

1
𝑛 − 1
2

,

which is impossible for 𝛿4 < 2

2
1
𝑛 −1

.
Remark 3.4.11. If 𝐸 as in Lemma 3.4.10 is also symmetric with respect to the first 𝑛 − 1 variables, then the
indecomposable component 𝐹 given by Lemma 3.4.10 is 𝑛 − 1-symmetric as well.
Indeed, consider for instance the hyperplane 𝐻1 = {𝑥1 = 0} and assume by contradiction that there exists 𝐴 ⊂
𝐹+ ∶= 𝐹∩{𝑥1 > 0}with |𝐴| > 0 such that its reflection 𝑟𝐻1

(𝐴)with respect to𝐻1 satisfies |𝑟𝐻1
(𝐴)∩𝐹 | = ∅, where

𝑟𝐻1
∶ {𝑥1 > 0} → {𝑥1 < 0}. Decomposing 𝐹+ = ∪𝑖𝐹𝑖 in maximal indecomposable components (see [Amb+01,

Theorem 1]) we can assume without loss of generality that 𝐴 ⊂ 𝐹1 (containments understood up to Lebesgue-null
sets). If 𝑃 (𝐹1,𝐻1) > 0, then [Amb+01, Proposition 5(i)] implies that 𝐹1 ∪ 𝑟𝐻1

(𝐹1) is indecomposable. Also
𝐹1 ∪ 𝑟𝐻1

(𝐹1) ⊂ 𝐸 by symmetry of 𝐸, hence 𝐹1 ∪ 𝑟𝐻1
(𝐹1) is contained in one indecomposable component of 𝐸;

since |(𝐹1 ∪ 𝑟𝐻1
(𝐹1)) ∩ 𝐹 | > 0, then 𝐹1 ∪ 𝑟𝐻1

(𝐹1) ⊂ 𝐹 , which implies 𝑟𝐻1
(𝐴) ⊂ 𝐹 , against the contradiction

assumption. Therefore there must hold that 𝑃 (𝐹1,𝐻1) = 0, hence 𝐹1 = 𝐹 since 𝐹 is indecomposable. Thus
𝐹 ⊂ {𝑥1 > 0}, but then |𝐸| ≥ |𝐹 | + |𝑟𝐻1

(𝐹 )| > |𝐸|∕2 + |𝐸|∕2 = |𝐸|, that gives a final contradiction.
Corollary 3.4.12. There exist 𝛿5, 𝑙 > 0 depending on 𝑛, 𝜆 such that for every 0 < 𝛿 ≤ 𝛿5, if the quantitative
isoperimetric inequality (3.1.2) holds (with some constant depending on 𝑛, 𝜆) for every Schwarz-symmetric inde-
composable set 𝐹 , with |𝐹 | = |𝐵𝜆|, contained in a cube 𝑄𝑙 and with 𝐷𝜆(𝐹 ) < 𝛿, then (3.1.2) holds for any
measurable set of finite measure (up to changing the multiplicative constant, depending on 𝑛, 𝜆 only).

3.5 First quantitative isoperimetric inequality

Coupling

We start by recalling the general definition and properties of the restricted envelopes introduced in [Cin+22].
Definition 3.5.1 ([Cin+22, Definition 3.1]). Let𝐾 ⊂ ℝ𝑛 be a compact convex set, 𝐸 ⊂ ℝ𝑛 be a bounded open set,
and 𝑢 ∈ 𝐶0(𝐸) ∩ 𝐶2(𝐸). The 𝐾-envelope of 𝑢 is the function �̄�𝐾 ∶ ℝ𝑛 → ℝ given by

�̄�𝐾 (𝑥) ∶= sup{𝑎 + ⟨𝜉, 𝑥⟩ ∶ 𝜉 ∈ 𝐾, 𝑎 + ⟨𝜉, 𝑦⟩ ≤ 𝑢(𝑦) ∀𝑦 ∈ 𝐸}.

The desired coupling corresponding to a competitor 𝐸 will be essentially the 𝐾-envelope of the solution to the
elliptic problem (3.2.4), for 𝐾 equal to the closure of the optimal bubble 𝐵𝜆.
Definition 3.5.2 ([Cin+22, Definition 3.9]). Let 𝐾 ⊂ ℝ𝑛 be a compact convex set, 𝐸 ⊂ ℝ𝑛 be a bounded open set
and 𝑢 ∈ 𝐶0(𝐸) ∩ 𝐶2(𝐸). Given 𝑥 ∈ ℝ𝑛 and 𝜉 ∈ 𝐾 , we define

𝑆𝜉 ∶= argmin
𝑥∈𝐸

{𝑢(𝑥) − ⟨𝜉, 𝑥⟩}

and

𝐻(𝑥, 𝜉, 𝐾) ∶=

⎧

⎪

⎨

⎪

⎩

𝑚
∑

𝑖=1
𝜆𝑖∇2𝑢(𝑠𝑖) ∶

1 ≤ 𝑚 ≤ 𝑛 + 1
𝜆𝑖 ≥ 0,

∑

𝜆𝑖 = 1
𝑠𝑖 ∈ 𝑆𝜉 ∩ 𝐸
𝑥 −

∑

𝜆𝑖𝑠𝑖 ∈ 𝑁(𝜉, 𝐾)

⎫

⎪

⎬

⎪

⎭

,

where 𝑁(𝜉, 𝐾) is the normal cone of 𝐾 at 𝜉, defined as
𝑁(𝜉, 𝐾) ∶= {𝑣 ∈ ℝ𝑛 ∶

⟨

𝑣, 𝜉′ − 𝜉
⟩

≤ 0 for all 𝜉′ ∈ 𝐾}.
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We will need the following
Proposition 3.5.3 ([Cin+22, Proposition 3.10]). Let𝐾 ⊂ ℝ𝑛 be a compact convex set, 𝐸 ⊂ ℝ𝑛 be a bounded open
set, and 𝑢 ∈ 𝐶0(𝐸) ∩ 𝐶2(𝐸). Assume that for any 𝜉 ∈ 𝐾 it holds 𝑆𝜉 ⊂ 𝐸, then �̄�𝐾 ∶ ℝ𝑛 → ℝ is a 𝐶1,1 convex
function such that

∇�̄�𝐾 (ℝ𝑛) = ∇�̄�𝐾 (𝐸) = 𝐾.

Moreover, for any 𝑥 ∈ ℝ𝑛 and any 𝐻𝑥 ∈ 𝐻(𝑥,∇�̄�𝐾 (𝑥), 𝐾) ≠ ∅, it holds ∇2�̄�𝐾 (𝑥) ≤ 𝐻𝑥.

Lemma 3.5.4 ([Cin+22, Lemma A.1]). Let {𝜆𝑖}𝑖=1,…,𝑚 be positive real numbers with 𝑠 ∶= 𝜆1 +⋯ + 𝜆𝑚 ≥ 1 and
let {𝑥𝑖}𝑖=1,…,𝑚 be nonnegative real numbers. If

∑

𝜆𝑖𝑥𝑖 ≤ 𝑐𝑠 for some 𝑐 > 0, then it holds

𝑚
∑

𝑖=1
𝜆𝑖(𝑥𝑖 − 𝑐)2 ≤

8
3

𝑐2−𝑠𝑠3

min𝑖=1,…,𝑚 𝜆2𝑖

(

𝑐𝑠 − 𝑥𝜆11 ⋅ ⋅ ⋅ 𝑥𝜆𝑚𝑚
)

.

We will need to associate a coupling only to Lipschitz-regular connected competitors, having 𝐶1 relative boundary
in ℝ𝑛 ⧵𝐻 . This is established in the next result, whose proof is analogous to the one in [Cin+22].
Proposition 3.5.5. There exists �̂� = �̂�(𝑛, 𝜆) > 0 such that the following holds. Let 𝐸 ⊂ ℝ𝑛 ⧵𝐻 be a connected
bounded open set. Suppose that 𝐸 has Lipschitz boundary and that 𝜕𝐸 ∩ {𝑥𝑛 ≥ 0} is a hypersurface of class 𝐶1

with boundary.
Then there exists a 1-Lipschitz convex function Ψ ∶ ℝ𝑛 → ℝ of class 𝐶1,1 such that ΔΨ ≤ 𝑃𝜆(𝐸)

|𝐸|
and such that

∇Ψ(ℝ𝑛) = ∇Ψ(𝐸) = 𝐵𝜆 up to negligible sets. Moreover, if |𝐸| = |𝐵𝜆| and 𝐷𝜆(𝐸) ≤ 1, then

∫𝐸
|∇2Ψ − id| d𝑥 ≤ �̂�

√

𝐷𝜆(𝐸) (3.5.1)

∫𝜕∗𝐸∩(ℝ𝑛⧵𝐻)
(1 − |∇Ψ|) d𝑛−1 ≤ �̂�𝐷𝜆(𝐸). (3.5.2)

Proof. Let us assume first that 𝜕𝐸 ⧵𝜕𝐻 is a smooth hypersurface with smooth boundary intersecting 𝜕𝐻 orthogo-
nally. Let 𝑢 ∶ 𝐸 → ℝ be a solution of (3.2.4) and (𝐾𝑖)𝑖∈ℕ a sequence of compact convex sets such that𝐾𝑖 ⊂⊂ �̊�𝑖+1
and ∪𝑖∈ℕ𝐾𝑖 = 𝐵𝜆. We showed in the proof of Theorem 3.2.3 that for any 𝜉 ∈ 𝐵𝜆 the minimum of 𝑢(𝑥) − ⟨𝜉, 𝑥⟩
cannot be achieved on the boundary of 𝐸. Moreover, at any point 𝑥 ∈ 𝐸 such that ∇2𝑢(𝑥) ≥ 0, it holds

0 ≤ ∇2𝑢(𝑥) ≤ Δ𝑢(𝑥) id =
𝑃𝜆(𝐸)
|𝐸|

id.

Therefore, recalling Remark 3.2.2, by Proposition 3.5.3 we get that �̄�𝐾𝑖 is a sequence of 1-Lipschitz functions, being
suprema of 1-Lipschitz functions, that is uniformly bounded in 𝐶1,1 on compact sets; hence up to subsequence it
converges to a limit function Ψ in 𝐶1

loc(ℝ
𝑛). Since ∇�̄�𝐾𝑖(ℝ𝑛) = ∇�̄�𝐾𝑖(𝐸) = 𝐾𝑖, then ∇Ψ(ℝ𝑛) = ∇Ψ(𝐸) = 𝐵𝜆, Ψ is

a convex function of class 𝐶1,1, and writing the inequality Δ�̄�𝐾𝑖 ≤ 𝑃𝜆(𝐸)
|𝐸|

in the sense of distributions, one checks
that it readily passes to the limit as 𝑖→ +∞ for the function Ψ.
To prove that |∇Ψ(𝐸)Δ𝐵𝜆| = 0, let 𝑍 ⊂ 𝐸 be a compact set and notice that

|∇�̄�𝐾𝑖(𝐸 ⧵𝑍)| ≤ 𝑐(𝑛, |𝐸|, 𝑃𝜆(𝐸))|𝐸 ⧵𝑍|,

|∇�̄�𝐾𝑖(𝑍)| = |∇�̄�𝐾𝑖(𝐸 ⧵ (𝐸 ⧵𝑍))| ≥ |∇�̄�𝐾𝑖(𝐸)| − |∇�̄�𝐾𝑖(𝐸 ⧵𝑍)| = |𝐾𝑖| − 𝑐|𝐸 ⧵𝑍|.

Passing to the limit we find

|∇Ψ(𝑍)| ≥
|

|

|

|

lim sup
𝑖

∇�̄�𝐾𝑖(𝑍)
|

|

|

|

≥ lim sup
𝑖

|∇�̄�𝐾𝑖(𝑍)| ≥ |𝐵𝜆| − 𝑐|𝐸 ⧵𝑍|,

hence letting 𝑍 ↗ 𝐸, we get that ∇Ψ(ℝ𝑛) = ∇Ψ(𝐸) = 𝐵𝜆 up to negligible sets.
Suppose now that 𝐸 is a generic connected set as in the assumptions. If 𝑛 ≥ 3 we can apply the above argument to
a sequence of sets 𝐸𝑖 approximating 𝐸 given by Lemma 2.4.4, suitably modified connecting possibly disconnected
components with thin tubes vanishing in the limit. If 𝑛 = 2, then 𝜕𝐸 ⧵ 𝜕𝐻 is a union of 𝐶1 curves, which thus can
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be approximated by smooth ones touching 𝜕𝐻 orthogonally preserving the connectedness of the set. Applying the
first part of the proof on the approximating sequence𝐸𝑖 we get a corresponding sequence of functions Ψ𝑖 uniformly
bounded in 𝐶1,1 on compact sets, hence converging in 𝐶1

loc up to subsequence to a convex function Ψ of class 𝐶1,1

with ΔΨ ≤ 𝑃𝜆(𝐸)∕|𝐸|. Also, since ∇Ψ𝑖(ℝ𝑛) = 𝐵𝜆, then ∇Ψ(ℝ𝑛) ⊂ 𝐵𝜆 by 𝐶1
loc-convergence. Moreover, since

𝐸 has Lipschitz boundary, there exists a sequence of compact sets 𝑍𝑗 ⊂ 𝐸 such that 𝑍𝑗 ⊂ 𝐸𝑖 for any 𝑖 ≥ 𝑖𝑗 and
such that 𝑍𝑗 ↗ 𝐸. Hence one can repeat the above argument with Ψ𝑖, 𝐸,𝑍𝑗 in place of �̄�𝐾𝑖 , 𝐸,𝑍, respectively, to
deduce that

|∇Ψ𝑖(𝑍𝑗)| ≥ |𝐵𝜆| − 𝑐(𝑛, |𝐸𝑖|, 𝑃𝜆(𝐸𝑖))|𝐸𝑖 ⧵𝑍𝑗| ≥ |𝐵𝜆| − 𝑐(𝑛, |𝐸|, 𝑃𝜆(𝐸))|𝐸𝑖 ⧵𝑍𝑗|.

Letting 𝑖→ ∞ first, and then 𝑗 → ∞, we get that ∇Ψ(ℝ𝑛) = ∇Ψ(𝐸) = 𝐵𝜆 up to negligible sets.
We now prove (3.5.1) and (3.5.2). The symbol �̂� shall denote a positive constant depending on 𝑛, 𝜆 changing from
line to line. By the area formula, the arithmetic-geometric mean inequality and the properties of Ψ we get

|𝐵𝜆| = |∇Ψ(𝐸)| ≤ ∫𝐸
det(∇2Ψ) d𝑛 ≤ ∫𝐸

(ΔΨ
𝑛

)𝑛
d𝑥 ≤ ∫𝐸

(

𝑃𝜆(𝐸)
𝑛|𝐸|

)𝑛

d𝑥 = ∫𝐸

(

𝑃𝜆(𝐸)
𝑛|𝐵𝜆|

)𝑛

d𝑥

=
(

𝑃𝜆(𝐸)
𝑃𝜆(𝐵𝜆)

)𝑛

|𝐵𝜆| = (1 +𝐷𝜆(𝐸))𝑛|𝐵𝜆|.
(3.5.3)

Hence
∫𝐸

((

𝑃𝜆(𝐸)
𝑛|𝐸|

)𝑛

− det(∇2Ψ)
)

d𝑥 ≤ |𝐵𝜆|(1 +𝐷𝜆(𝐸))𝑛 − |𝐵𝜆| ≤ �̂�𝐷𝜆(𝐸). (3.5.4)

By Lemma 3.5.4 applied with 𝑚 = 𝑛, 𝜆1 = … = 𝜆𝑛 = 1, (𝑥1,… , 𝑥𝑛) equal to the eigenvalues of ∇2Ψ and
𝑐 = 𝑃𝜆(𝐸)

𝑛|𝐸|
= 𝑃𝜆(𝐸)

𝑃𝜆(𝐵𝜆)
≥ 1, we obtain

|∇2Ψ − id|2 ≤ 2|∇2Ψ − 𝑐 id|2 + 2|(𝑐 − 1)id|2 ≤ �̂�
((

𝑃𝜆(𝐸)
𝑛|𝐸|

)𝑛

− det(∇2Ψ)
)

+ 2𝑛
(

𝑃𝜆(𝐸) − 𝑛|𝐸|
𝑛|𝐸|

)2

≤ �̂�
((

𝑃𝜆(𝐸)
𝑛|𝐸|

)𝑛

− det(∇2Ψ) +𝐷𝜆(𝐸)2
)

.
(3.5.5)

Therefore by (3.5.4) and (3.5.5) we get

∫𝐸
|∇2Ψ − id|2 d𝑥 ≤ �̂�𝐷𝜆(𝐸),

which implies (3.5.1).
Arguing as in (3.5.3), by the divergence theorem and using that ⟨∇Ψ,−𝑒𝑛⟩ ≤ −𝜆 since ∇Ψ(ℝ𝑛) ⊂ 𝐵𝜆, we get

|𝐵𝜆| ≤ ∫𝐸

(ΔΨ
𝑛

)𝑛
d𝑥 ≤

𝑃𝜆(𝐸)𝑛−1

𝑛𝑛|𝐸|𝑛−1 ∫𝐸
ΔΨd𝑥 =

𝑃𝜆(𝐸)𝑛−1

𝑛𝑛|𝐸|𝑛−1 ∫𝜕∗𝐸

⟨

∇Ψ, 𝜈𝐸
⟩

d𝑛−1

≤
𝑃𝜆(𝐸)𝑛−1

𝑛𝑛|𝐸|𝑛−1

(

∫𝜕∗𝐸∩(ℝ𝑛⧵𝐻)

⟨

∇Ψ, 𝜈𝐸
⟩

d𝑛−1 + ∫𝜕∗𝐸∩𝜕𝐻
⟨∇Ψ,−𝑒𝑛⟩ d𝑛−1

)

≤
𝑃𝜆(𝐸)𝑛−1

𝑛𝑛|𝐸|𝑛−1

(

∫𝜕∗𝐸∩(ℝ𝑛⧵𝐻)

⟨

∇Ψ, 𝜈𝐸
⟩

− 1 d𝑛−1 + 𝑃𝜆(𝐸)
)

≤
𝑃𝜆(𝐸)𝑛

𝑛𝑛|𝐸|𝑛−1
−
𝑃𝜆(𝐸)𝑛−1

𝑛𝑛|𝐸|𝑛−1 ∫𝜕∗𝐸∩(ℝ𝑛⧵𝐻)
(1 − |∇Ψ|) d𝑛−1.

Rearranging terms, since 𝐷𝜆(𝐸) ≤ 1 and |𝐸| = |𝐵𝜆|, we obtain

∫𝜕∗𝐸∩(ℝ𝑛⧵𝐻)
(1 − |∇Ψ|) d𝑛−1 ≤

𝑃𝜆(𝐸)𝑛 − 𝑃𝜆(𝐵𝜆)𝑛

𝑃𝜆(𝐸)𝑛−1
≤ �̂�𝐷𝜆(𝐸).
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We now want to translate the quantitative estimates obtained on the coupling in Proposition 3.5.5 into quantitative
estimates on the asymmetry of a competitor. We will need some technical results first.
The next lemma is analogous to [Cin+22, Lemma 6.2], but with a varying range of parameters that here must
depend on 𝜆.
Lemma 3.5.6. Let 𝐸 ⊂ [0,∞) be a 1-dimensional set of locally finite perimeter with |𝐸| <∞ and set

𝑟𝜆 ∶= min
{√

1 − 𝜆2, 1 − 𝜆
}

, 𝑅𝜆 ∶= max
{√

1 − 𝜆2, 1 − 𝜆
}

.

There exists 𝑐 = 𝑐(𝑛, 𝜆) > 0 such that for any 7
8
𝑟𝜆 ≤ 𝑙 ≤ 9

8
𝑅𝜆 there holds

∫𝐸Δ[0,𝑙]
𝑡𝑛−1 d𝑡 ≤ 𝑐

(

∫[0, 𝑟𝜆2
]

⧵𝐸
𝑡𝑛−1 d𝑡 + ∫𝜕∗𝐸

𝑡𝑛−1|𝑙 − 𝑡| d0

)

.

Proof. It holds 𝐸Δ[0, 𝑙] = ((𝑙,∞) ∩ 𝐸) ∪ ([0, 𝑙] ⧵ 𝐸). We claim that

max

{

∫[𝑙,∞)∩𝐸
𝑡𝑛−1 d𝑡,∫[ 𝑟𝜆

2 ,𝑙
]

⧵𝐸
𝑡𝑛−1 d𝑡

}

≤ 𝑐(𝑛, 𝜆)

(

∫[0, 𝑟𝜆2
]

⧵𝐸
𝑡𝑛−1 d𝑡 + ∫𝜕∗𝐸

𝑡𝑛−1|𝑙 − 𝑡| d0(𝑡)

)

. (3.5.6)

We will estimate the two terms on the left-hand side separately.
Without loss of generality, suppose [𝑙,∞) ∩ 𝐸 ≠ ∅. Since |𝐸| < ∞, then 𝜕∗𝐸 ∩ [𝑙,∞) is nonempty and we can
assume it has finite supremum 𝑡 (otherwise the right hand side in (3.5.6) equals +∞). In particular the right-hand
side in (3.5.6) is finite. It holds

∫[𝑙,∞)∩𝐸
𝑡𝑛−1 d𝑡 ≤ ∫

𝑡

𝑙
𝑡𝑛−1 d𝑡 ≤ 𝑡𝑛−1|𝑡 − 𝑙| ≤ ∫𝜕∗𝐸

𝑡𝑛−1|𝑙 − 𝑡| d0(𝑡),

and the first term in the left-hand side of (3.5.6) is bounded as wished.
Let us now consider ∫[ 𝑟𝜆

2 ,𝑙
]

⧵𝐸
𝑡𝑛−1 d𝑡. Its value is a priori bounded by

(

9
8𝑅𝜆

)𝑛. If 𝜕∗𝐸 ∩
[

𝑟𝜆
4 ,

3
4𝑟𝜆

]

≠ ∅ and 𝜏 is one
of its elements, then

∫𝜕∗𝐸
𝑡𝑛−1|𝑙 − 𝑡| d0(𝑡) ≥ 𝜏𝑛 |𝑙 − 𝜏| ≥

(𝑟𝜆
4

)𝑛 1
8
𝑟𝜆 ≥ 𝑐(𝑛, 𝜆)

(9
8
𝑅𝜆

)𝑛−1
|

|

|

|

9
8
𝑅𝜆 −

𝑟𝜆
2
|

|

|

|

≥ 𝑐(𝑛, 𝜆)∫[ 𝑟𝜆
2 ,𝑙

]

⧵𝐸
𝑡𝑛−1 d𝑡.

So from now on we can assume that 𝜕∗𝐸 ∩
[

𝑟𝜆
4
, 3
4
𝑟𝜆
]

= ∅. If
[

𝑟𝜆
4
, 3
4
𝑟𝜆
]

⧵ 𝐸 ≠ ∅, then 𝐸 ∩
[

𝑟𝜆
4
, 3
4
𝑟𝜆
]

= ∅ and

∫[0, 𝑟𝜆2
]

⧵𝐸
𝑡𝑛−1 d𝑡 + ∫𝜕∗𝐸

𝑡𝑛−1|𝑙 − 𝑡| d0(𝑡) ≥ ∫[ 𝑟𝜆
4 ,

𝑟𝜆
2

]
𝑡𝑛−1 d𝑡 = 𝑐(𝑛, 𝜆) ≥ 𝑐(𝑛, 𝜆)

(9
8
𝑅𝜆

)𝑛−1
|

|

|

|

9
8
𝑅𝜆 −

𝑟𝜆
2
|

|

|

|

≥ 𝑐(𝑛, 𝜆)∫[ 𝑟𝜆
2 ,𝑙

]

⧵𝐸
𝑡𝑛−1 d𝑡.

So we can further assume
[

𝑟𝜆
4
, 3
4
𝑟𝜆
]

⊂ 𝐸. If 𝜕∗𝐸 ∩
[

𝑟𝜆
4
, 𝑙
]

= ∅, then
[

𝑟𝜆
2
, 𝑙
]

⊂ 𝐸 and there is nothing to prove.
Finally, if 𝜕∗𝐸 ∩

[

𝑟𝜆
4
, 𝑙
]

≠ ∅, let us denote by 𝑡 the infimum of 𝜕∗𝐸 ∩
[

𝑟𝜆
4
, 𝑙
]

. Then

∫[ 𝑟𝜆
2 ,𝑙

]

⧵𝐸
𝑡𝑛−1 d𝑡 ≤ ∫

𝑙

𝑡
𝑡𝑛−1 d𝑡 ≤ 𝑙𝑛−1|𝑙 − 𝑡| = 𝑡𝑛−1|𝑙 − 𝑡|

(

𝑙
𝑡

)𝑛−1

≤ 𝑐(𝑛, 𝜆)𝑡𝑛−1|𝑙 − 𝑡|

≤ 𝑐(𝑛, 𝜆)∫𝜕∗𝐸
𝑡𝑛−1|𝑙 − 𝑡| d0(𝑡).

This concludes the proof of the claim (3.5.6). Hence

∫𝐸Δ[0,𝑙]
𝑡𝑛−1 d𝑡 ≤ max

{

∫[𝑙,∞)∩𝐸
𝑡𝑛−1 d𝑡,∫[ 𝑟𝜆

2 ,𝑙
]

⧵𝐸
𝑡𝑛−1 d𝑡

}

+ ∫[0, 𝑟𝜆2
]

⧵𝐸
𝑡𝑛−1 d𝑡

(3.5.6)
≤ 𝑐(𝑛, 𝜆)

(

∫[0, 𝑟𝜆2
]

⧵𝐸
𝑡𝑛−1 d𝑡 + ∫𝜕∗𝐸

𝑡𝑛−1|𝑙 − 𝑡| d0(𝑡)

)

+ ∫[0, 𝑟𝜆2
]

⧵𝐸
𝑡𝑛−1 d𝑡,

and the proof follows.
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We shall also need the following standard technical result stating that a Vol’pert property holds for the intersections
of a set of finite perimeter with rays from the origin, cf. [Vol67]. The proof follows, for example, by adapting the
proof of [Fus04, Theorem 3.21] working in polar coordinates rather than in Cartesian coordinates.
Lemma 3.5.7. Let 𝐸 ⊂ ℝ𝑛 ⧵𝐻 be a set of finite perimeter with |𝐸| < +∞. If 𝜗 ∈ 𝕊𝑛−1 ∩ (ℝ𝑛 ⧵𝐻), we define

𝐸𝜗 ∶= {𝑡 ≥ 0 ∶ 𝑡𝜗 ∈ 𝐸}.

Then, for 𝑛−1-almost every 𝜗 ∈ 𝕊𝑛−1 ∩ (ℝ𝑛 ⧵𝐻), 𝐸𝜗 is a 1-dimensional set of locally finite perimeter such that

𝜕∗𝐸𝜗 ∩ {𝑡 > 0} = {𝑡 > 0 ∶ 𝑡𝜗 ∈ 𝜕∗𝐸}.

Moreover, if 𝜂 ∈ 𝐿1(𝜕∗𝐸) is nonnegative, we have

∫𝜕∗𝐸⧵𝐻
𝜂 d𝑛−1 ≥ ∫𝕊𝑛−1⧵𝐻

(

∫𝜕∗𝐸𝜗
𝑡𝑛−1𝜂(𝑡𝜗) d0(𝑡)

)

d𝑛−1(𝜗).

Combining Lemma 3.5.6 with Lemma 3.5.7 we get the following result that estimates the symmetric difference of
a competitor with a bubble that is just close to a standard bubble 𝐵𝜆(𝑣, 𝑥). The result is analogous to [Cin+22,
Proposition 6.1].
Lemma 3.5.8. There exist 𝜀, 𝑐 > 0 depending on 𝑛, 𝜆 such that the following holds. Let 𝐸 ⊂ ℝ𝑛 ⧵𝐻 be a bounded
set of finite perimeter. If ||

|

𝐸 ∩ 𝐵 𝑟𝜆
2
(0)||

|

≥ 1
2
|

|

|

𝐵 𝑟𝜆
2
(0) ⧵𝐻|

|

|

, then

|𝐸Δ(𝐵1(𝑥0) ⧵𝐻)| ≤ 𝑐 ∫𝜕∗𝐸⧵𝐻
||𝑥 − 𝑥0| − 1| d𝑛−1(𝑥),

for any 𝑥0 ∈ ℝ𝑛 such that |𝑥0 − (0,… , 0,−𝜆)| < 𝜀.

Proof. If 𝜀 is sufficiently small, depending only on 𝑛, 𝜆, then for any 𝜗 ∈ 𝕊𝑛−1 ∩ (ℝ𝑛 ⧵ 𝐻) the set {𝑡 > 0 ∶
|𝑡𝜗 − 𝑥0| < 1} is an open segment (0, 𝑡(𝜗)), with 𝑡(𝜗) close to the number

𝑇𝜗 ∈
[

min
{√

1 − 𝜆2, 1 − 𝜆
}

,max
{√

1 − 𝜆2, 1 − 𝜆
}]

=∶ [𝑟𝜆, 𝑅𝜆]

such that |𝑇𝜗𝜗+𝜆𝑒𝑛| = 1. In particular, if 𝜀 is sufficiently small, then 9
8𝑅𝜆 ≥ 𝑡(𝜗) ≥ 7

8𝑟𝜆 for any 𝜗 ∈ 𝕊𝑛−1∩(ℝ𝑛⧵𝐻).
As before, for any 𝜗 ∈ 𝕊𝑛−1 ⧵𝐻 let

𝐸𝜗 ∶= {𝑡 ≥ 0 ∶ 𝑡𝜗 ∈ 𝐸}.

By coarea formula we get

|𝐸Δ𝐵1(𝑥0) ∩ (ℝ𝑛 ⧵𝐻)| = ∫𝕊𝑛−1⧵𝐻

(

∫𝐸𝜗Δ[0,𝑡(𝜗)]
𝑡𝑛−1 d𝑡

)

d𝑛−1(𝜗).

By Lemma 3.5.6 we obtain

|𝐸Δ𝐵1(𝑥0) ⧵𝐻| ≤ 𝑐(𝑛, 𝜆)∫𝕊𝑛−1⧵𝐻

(

∫[0, 𝑟𝜆2
]

⧵𝐸𝜗
𝑡𝑛−1 d𝑡 + ∫𝜕∗𝐸𝜗

𝑡𝑛−1|𝑡(𝜗) − 𝑡| d0

)

d𝑛−1(𝜗). (3.5.7)

For every 𝑡 > 0, we claim that
||𝑡𝜗 − 𝑥0| − 1| ≥ 𝑐(𝑛, 𝜆)|𝑡 − 𝑡(𝜗)|. (3.5.8)

Note that there exists 𝛿 = 𝛿(𝑛, 𝜆, 𝜀) ∈ (0, 𝑟𝜆∕8) such that for 𝑡 ∈ [𝑡(𝜗) − 𝛿, 𝑡(𝜗) + 𝛿] there holds
|

|

|

|

d
d𝑡
|𝑡𝜗 − 𝑥0|

|

|

|

|

= |

|

⟨(𝑡𝜗 − 𝑥0)∕ || 𝑡𝜗 − 𝑥0 || , 𝜗⟩|| ≥ 𝑐(𝑛, 𝜆, 𝜀) > 0.

Then, for 𝑡 ∈ [𝑡(𝜗) − 𝛿, 𝑡(𝜗) + 𝛿],
|𝑡(𝜗) − 𝑡| ≤ 𝑐(𝑛, 𝜆)||𝑡𝜗 − 𝑥0| − 1|,
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and in this case the claim follows. Regarding the remaining cases, note that
||𝑡𝜗 − 𝑥0| − 1|

|𝑡(𝜗) − 𝑡|
→ 1 as |𝑡| → +∞

and the claim follows for 𝑡 ≥ 𝑅 = 𝑅(𝑛, 𝜆, 𝜀) > 0 big enough. Finally, if 0 < 𝑡 < 𝑅 and 𝑡 ∉ [𝑡(𝜗) − 𝛿, 𝑡(𝜗) + 𝛿], then
|

|

|𝑡𝜗 − 𝑥0| − 1|
|

≥ 𝑐(𝑛, 𝜆, 𝛿) > 0

|𝑡(𝜗) − 𝑡| ≤ 𝑐(𝑛, 𝜆, 𝑅)

hence the claim follows as well.
Therefore

∫𝕊𝑛−1⧵𝐻 ∫𝜕∗𝐸𝜗
𝑡𝑛−1|𝑡 − 𝑡(𝜗)| d0(𝑡) d𝑛−1(𝜗)

(3.5.8)
≤ 𝑐(𝑛, 𝜆)∫𝕊𝑛−1⧵𝐻 ∫𝜕∗𝐸𝜗

𝑡𝑛−1||𝑡𝜗 − 𝑥0| − 1| d0(𝑡) d𝑛−1(𝜗).

(3.5.9)
By Lemma 3.5.7 we deduce

∫𝜕∗𝐸⧵𝐻
||𝑥 − 𝑥0| − 1| d𝑛−1(𝑥) ≥ ∫𝕊𝑛−1⧵𝐻

(

∫𝜕∗𝐸𝜗
𝑡𝑛−1||𝑡𝜗 − 𝑥0| − 1| d0(𝑡)

)

d𝑛−1(𝜗). (3.5.10)

Since ||𝑥 − 𝑥0| − 1| ≥ 𝑐(𝑛, 𝜆) > 0 in 𝐵 𝑟𝜆
2
(0), by coarea formula and relative isoperimetric inequality we get

∫𝕊𝑛−1⧵𝐻

(

∫[0, 𝑟𝜆2
]

⧵𝐸𝜗
𝑡𝑛−1 d𝑡

)

d𝑛−1(𝜗) =
|

|

|

|

(

𝐵 𝑟𝜆
2
(0) ⧵𝐻

)

⧵ 𝐸
|

|

|

|

=
|

|

|

|

(

𝐵 𝑟𝜆
2
(0) ⧵𝐻

)

⧵ 𝐸
|

|

|

|

𝑛−1
𝑛 |

|

|

|

(

𝐵 𝑟𝜆
2
(0) ⧵𝐻

)

⧵ 𝐸
|

|

|

|

1
𝑛

≤ 𝑐(𝑛, 𝜆)∫𝜕∗𝐸∩
(

𝐵 𝑟𝜆
2
(0)⧵𝐻

) d𝑛−1

≤ 𝑐(𝑛, 𝜆)∫𝜕∗𝐸⧵𝐻
||𝑥 − 𝑥0| − 1| d𝑛−1(𝑥).

(3.5.11)
Putting together (3.5.7), (3.5.9), (3.5.10) and (3.5.11), the proof follows.
We can finally show that if a suitably regular Schwarz-symmetric set satisfies a trace inequality, then the quantitative
estimates in Proposition 3.5.5 imply a quantitative isoperimetric inequality.
Proposition 3.5.9. There exists 𝛿6 = 𝛿6(𝑛, 𝜆) > 0 such that for any 𝑐𝑇 > 0 there exists 𝛾 = 𝛾(𝑛, 𝜆, 𝑐𝑇 ) > 0 such
that the following holds. Let 𝐸 ⊂ ℝ𝑛 ⧵ 𝐻 be a bounded connected open set with |𝐸| = |𝐵𝜆|. Suppose that 𝐸
has Lipschitz boundary and that 𝜕𝐸 ∩ {𝑥𝑛 ≥ 0} is a hypersurface of class 𝐶1 with boundary. Assume that 𝐸 is
Schwarz-symmetric with respect to the 𝑛-th axis and that there exists a constant 𝑐𝑇 such that for every function
𝑓 ∈ 𝐵𝑉 (ℝ𝑛) ∩ 𝐿∞(ℝ𝑛) there is a constant 𝑐 ∈ ℝ such that the following holds

∫𝐸
d|𝐷𝑓 |(𝑥) ≥ 𝑐𝑇 ∫𝜕∗𝐸∩(ℝ𝑛⧵𝐻)

tr𝐸(|𝑓 − 𝑐|) d𝑛−1(𝑥). (3.5.12)

If 𝐷𝜆(𝐸) < 𝛿6, then
𝛼2𝜆(𝐸) ≤ 𝛾𝐷𝜆(𝐸).

Proof. Let Ψ be given by Proposition 3.5.5. By (3.5.12) and (3.5.1) we get

∫𝜕∗𝐸∩(ℝ𝑛⧵𝐻)
|(∇Ψ − 𝑥) + 𝑥0| d𝑛−1(𝑥) ≤ 𝑐(𝑛, 𝜆, 𝑐𝑇 )

√

𝐷𝜆(𝐸),

where 𝑥0 = (𝑥10,… , 𝑥𝑛0) is the vector whose 𝑖-th component is the constant 𝑐 of (3.5.12) corresponding to the 𝑖-th
component of ∇Ψ − 𝑥. Therefore

∫𝜕∗𝐸∩(ℝ𝑛⧵𝐻)
|

|

|𝑥 − 𝑥0| − 1|
|

d𝑛−1(𝑥) ≤ ∫𝜕∗𝐸∩(ℝ𝑛⧵𝐻)
|∇Ψ − (𝑥 − 𝑥0)| + |1 − |∇Ψ|| d𝑛−1(𝑥)

(3.5.2)
≤ 𝑐(𝑛, 𝜆, 𝑐𝑇 )

√

𝐷𝜆(𝐸).

(3.5.13)
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We observe that if 𝜀 = 𝜀(𝑛, 𝜆) is given by Lemma 3.5.8, then for 𝛿6 small enough depending on 𝜀, we ensure that
|𝑥0 − (0,… , 0,−𝜆)| < 𝜀. Indeed, if for every 𝑖 ∈ ℕ there were 𝐸𝑖 satisfying the hypotheses of Proposition 3.5.9
such that 𝐷𝜆(𝐸) <

1
𝑖

with corresponding 𝑥0,𝑖 verifying |𝑥0,𝑖 − (0,… , 0,−𝜆)| ≥ 𝜀, passing to limit in (3.5.13) we
would get a contradiction with the fact that 𝐸𝑖 converges to 𝐵𝜆(|𝐵𝜆|).
Hence we can apply Lemma 3.5.8. Since 𝐸 is Schwarz-symmetric, we get

|𝐸Δ𝐵1(0,… , 0, 𝑥𝑛0) ∩ (ℝ𝑛 ⧵𝐻)| ≤ |𝐸Δ𝐵1(𝑥0) ∩ (ℝ𝑛 ⧵𝐻)|

≤ 𝑐(𝑛, 𝜆, 𝑐𝑇 )
√

𝐷𝜆(𝐸).
(3.5.14)

Arguing as above, up to taking a smaller 𝛿6, we can assume that |𝑥𝑛0 + 𝜆| ≤ |𝑥0 − (0,… , 0,−𝜆)| is so small that
|

|

|

|

d
d𝑡
|𝐵1(0,… , 0, 𝑡) ⧵𝐻|

|

|

|

|

≥ 1
2
𝜔𝑛−1(1 − 𝜆2)

𝑛−1
2 ,

for any 𝑡 ∈ [−|𝑥𝑛0 + 𝜆|, |𝑥
𝑛
0 + 𝜆|]. Hence

𝑐(𝑛, 𝜆, 𝑐𝑇 )
√

𝐷𝜆(𝐸)
(3.5.14)
≥ |

|

|

|𝐵1(0,… , 0, 𝑥𝑛0) ⧵𝐻| − |𝐸|||
|

= |

|

|

|𝐵1(0,… , 0, 𝑥𝑛0) ⧵𝐻| − |𝐵1(0,… , 0,−𝜆) ⧵𝐻|

|

|

|

≥ 1
2
𝜔𝑛−1(1 − 𝜆2)

𝑛−1
2
|𝑥𝑛0 + 𝜆|,

which implies
|𝑥𝑛0 + 𝜆| ≤ 𝑐(𝑛, 𝜆, 𝑐𝑇 )

√

𝐷𝜆(𝐸), (3.5.15)
for a suitable constant. Therefore

|

|

|

(

𝐵1(0,… , 0, 𝑥𝑛0) ⧵𝐻
)

Δ
(

𝐵1(0,… , 0,−𝜆) ⧵𝐻
)

|

|

|

≤ 𝑐(𝑛, 𝜆)|𝑥𝑛0 + 𝜆|
(3.5.15)
≤ 𝑐(𝑛, 𝜆, 𝑐𝑇 )

√

𝐷𝜆(𝐸),
(3.5.16)

where in the first inequality we used that 𝑡 ↦ |

|

|

(

𝐵1(0,… , 0, 𝑡) ⧵𝐻
)

Δ
(

𝐵1(0,… , 0,−𝜆) ⧵𝐻
)

|

|

|

is Lipschitz for
some Lipschitz constant 𝑐(𝑛, 𝜆) > 0.
Finally

|𝐸Δ𝐵1(0,… , 0, 𝑥𝑛0) ∩ (ℝ𝑛 ⧵𝐻)|

≥ |𝐵𝜆(|𝐵𝜆|)Δ𝐸| − |

|

|

(

𝐵1(0,… , 0, 𝑥𝑛0) ⧵𝐻
)

Δ
(

𝐵1(0,… , 0,−𝜆) ⧵𝐻
)

|

|

|

(3.5.16)
≥ 𝛼𝜆(𝐸) − 𝑐(𝑛, 𝜆, 𝑐𝑇 )

√

𝐷𝜆(𝐸).

In the next lemma we observe that optimal bubbles do satisfy trace inequalities.
Lemma 3.5.10. There exists 𝑐 = 𝑐(𝑛, 𝜆) > 0 such that for every function 𝑓 ∈ 𝐵𝑉 (ℝ𝑛)∩𝐿∞(ℝ𝑛) there is a constant
𝑐 ∈ ℝ such that the following holds

∫𝐵𝜆(|𝐵𝜆|)
d|𝐷𝑓 |(𝑥) ≥ 𝑐 ∫𝜕𝐵𝜆(|𝐵𝜆|)⧵𝐻

tr𝐵𝜆(|𝐵𝜆|)(|𝑓 − 𝑐|) d𝑛−1(𝑥). (3.5.17)

Proof. We may assume 𝑓 ∈ Lip𝑐(ℝ𝑛). If we set 𝑓+ ∶= 𝑓 |{𝑥𝑛≥0}, we define

𝑓 (𝑥) ∶=

{

𝑓+(𝑥) if 𝑥 ∈ {𝑥𝑛 ≥ 0},
𝑓+(−𝑥) if 𝑥 ∈ {𝑥𝑛 < 0}.

Hence 𝑓 is Lipschitz. Let𝐵 be the union of𝐵𝜆(|𝐵𝜆|)with its reflection across {𝑥𝑛 = 0}. By the Poincaré inequality
2.3.2, there exist 𝑐 = 𝑐(𝑛, 𝜆) > 0 and 𝐶 = 𝐶(𝑛, 𝜆, 𝑓 ) > 0 such that

∫𝐵
|𝑓 − 𝐶| d𝑥 ≤ 𝑐(𝑛, 𝜆)∫𝐵

|∇𝑓 | d𝑥.
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By the boundary trace theorem 2.3.4 applied to the function 𝑓 − 𝐶 , we get

2∫𝜕𝐵𝜆(|𝐵𝜆|)∩ℝ𝑛⧵𝐻
|𝑓 − 𝐶| d𝑛−1 = ∫𝜕𝐵

|𝑓 − 𝐶| d𝑛−1 ≤ 𝑐(𝑛, 𝜆)
(

∫𝐵
|𝑓 − 𝐶| d𝑥 + ∫𝐵

|∇(𝑓 − 𝐶)| d𝑥
)

= 𝑐(𝑛, 𝜆)
(

∫𝐵
|𝑓 − 𝐶| d𝑥 + ∫𝐵

|∇𝑓 | d𝑥
)

≤ 𝑐(𝑛, 𝜆)∫𝐵
|∇𝑓 | d𝑥

= 𝑐(𝑛, 𝜆)∫𝐵𝜆(|𝐵𝜆|)
|∇𝑓 | d𝑥.

We now introduce a notion of 𝐶1-distance from 𝐵𝜆(|𝐵𝜆|) for sets in the half-space ℝ𝑛 ⧵𝐻 , and we deduce that
Schwarz-symmetric sets sufficiently close in 𝐶1 to 𝐵𝜆(|𝐵𝜆|) enjoy a quantitative isoperimetric inequality.
Definition 3.5.11. Let 𝜑𝜆 ∶ 𝜕𝐵1 ⧵𝐻 → 𝜕𝐵𝜆(|𝐵𝜆|)⧵𝐻 be such that 𝜕𝐵𝜆(|𝐵𝜆|)⧵𝐻 = {𝜑𝜆(𝑥) 𝑥 ∶ 𝑥 ∈ 𝜕𝐵1 ⧵𝐻}.
Let 𝐸 ⊂ ℝ𝑛 ⧵ 𝐻 be a bounded open set. Suppose that 𝐸 has Lipschitz boundary and that 𝜕𝐸 ∩ {𝑥𝑛 ≥ 0} is a
hypersurface of class 𝐶1 with boundary. Assume that 𝐸 is Schwarz-symmetric. Suppose that there exists a 𝐶1

functions
𝜑 ∶ 𝜕𝐵1 ⧵𝐻 → 𝜕𝐸 ⧵𝐻

whose graph parametrizes the boundary of 𝐸 in ℝ𝑛 ⧵𝐻 , that is
𝜕𝐸 ⧵𝐻 = {𝜑(𝑥) 𝑥 ∶ 𝑥 ∈ 𝜕𝐵1 ⧵𝐻}.

We define the 𝐶1 distance of 𝐸 to 𝐵𝜆(|𝐵𝜆|) by d𝐶1(𝐸,𝐵𝜆(|𝐵𝜆|)) ∶= ‖𝜑 − 𝜑𝜆‖𝐶1(𝜕𝐵1∩ℝ𝑛⧵𝐻).
A sequence of sets 𝐸𝑗 as above is said to converge to 𝐵𝜆(|𝐵𝜆|) in 𝐶1 if d𝐶1(𝐸𝑗 , 𝐵𝜆(|𝐵𝜆|)) → 0 as 𝑗 → +∞.
Corollary 3.5.12. There exist �̂�, �̂� > 0 depending only on 𝑛, 𝜆 such that the following holds. Let 𝐸 ⊂ ℝ𝑛 ⧵𝐻 be
as in Definition 3.5.11. If d𝐶1(𝐸,𝐵𝜆(|𝐵𝜆|)) ≤ �̂�, then

𝛼2𝜆(𝐸) ≤ �̂�(𝑛, 𝜆)𝐷𝜆(𝐸).

Proof. Let 𝜑,𝜑𝜆 be as in Definition 3.5.11. If 𝜒 ∶ [0,+∞) → [0, 1] is a smooth cut-off function such that 𝜒(𝑡) = 0
for 𝑡 < 1

4
min{

√

1 − 𝜆2, 1−𝜆} and such that 𝜒(𝑡) = 1 for 𝑡 > 1
2
min{

√

1 − 𝜆2, 1−𝜆}, we define the diffeomorphism

𝜓 ∶ ℝ𝑛 ⧵𝐻 → ℝ𝑛 ⧵𝐻 𝜓(𝑥) =

⎛

⎜

⎜

⎜

⎝

1 − 𝜒(|𝑥|) + 𝜒(|𝑥|)
𝜑
(

𝑥
|𝑥|

)

𝜑𝜆
(

𝑥
|𝑥|

)

⎞

⎟

⎟

⎟

⎠

𝑥.

Note that
‖𝜓 − id‖𝐶1 ≤ 𝑐�̂�,

𝜓(𝜕𝐵𝜆(|𝐵𝜆|) ⧵𝐻) = 𝜕𝐸 ⧵𝐻,

for some 𝑐 = 𝑐(𝑛, 𝜆, 𝜒), if d𝐶1(𝐸,𝐵𝜆(|𝐵𝜆|)) ≤ �̂� < 1.
Let 𝑔 ∈ Lip𝑐(ℝ𝑛) and define 𝑓 ∶= 𝑔◦𝜓 . If 𝑐 is the constant in (3.5.17) corresponding to 𝑓 , then by area formula
and (3.5.17) we get

∫𝜕∗𝐸∩⧵𝐻
|𝑔 − 𝑐| d𝑛−1 ≤ 𝐶(𝑛, 𝜆)∫𝜕𝐵𝜆⧵𝐻

|𝑓 − 𝑐| d𝑛−1 ≤ 𝐶(𝑛, 𝜆)∫𝐵𝜆
|∇𝑓 | d𝑥

≤ 𝐶(𝑛, 𝜆)∫𝐸
|∇𝑔| d𝑥.

Therefore, if �̂� is small enough, we can apply Proposition 3.5.9 with 𝑐𝑇 therein depending on 𝑛, 𝜆 only, and we get
𝛼𝜆(𝐸) ≤ �̂�(𝑛, 𝜆)𝐷𝜆(𝐸).
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Proof of the first quantitative isoperimetric inequality

We are ready to prove the main quantitative isoperimetric inequality. Let us recall the following immediate result,
completely analogous to [Fus15, Lemma 5.3].
Lemma 3.5.13. The standard bubble 𝐵𝜆(|𝐵𝜆|) is the unique solution, up to translations along 𝜕𝐻 , of

min
{

𝑃𝜆(𝐹 ) + Λ |

|

|

|𝐹 | − |𝐵𝜆|||
|

∶ 𝐹 ⊂ ℝ𝑛 ⧵𝐻
}

,

for any Λ > 𝑛.

Proof. By Theorem 3.2.3 we may restrict ourselves to consider rescalings of 𝐵𝜆(|𝐵𝜆|). Hence we just need to
minimize the function

[0,+∞) ∋ 𝑟↦ 𝑃𝜆(𝑟𝐵𝜆(|𝐵𝜆|)) + Λ |

|

|

|𝑟𝐵𝜆(|𝐵𝜆|)| − |𝐵𝜆(|𝐵𝜆|)|||
|

= |𝐵𝜆(|𝐵𝜆|)|
(

𝑛𝑟𝑛−1 + Λ|𝑟𝑛 − 1|
)

.

To show that 𝑟 = 1 minimize the above function, it is sufficient to consider 𝑟 ∈ [0, 1). Since Λ > 𝑛, for 𝑟 ∈ [0, 1)
we have

𝑛𝑟𝑛−1 + Λ|𝑟𝑛 − 1| = 𝑛𝑟𝑛−1 + Λ(1 − 𝑟𝑛) > 𝑛(𝑟𝑛−1 + 1 − 𝑟𝑛) > 𝑛,

which proves the claim.
Proof of Theorem 3.1.1. Let �̂�(𝑛, 𝜆) be the constant given by Corollary 3.5.12 and let 𝛿4, 𝑙 be given by Corol-
lary 3.4.12. By Corollary 3.4.12 it is sufficient to prove that there exists 𝛿 ∈ (0, 𝛿4) such that, if 𝐸 is a Schwarz-
symmetric set contained in 𝑄𝑙 such that |𝐸| = |𝐵𝜆| and 𝐷𝜆(𝐸) < 𝛿, then 𝛼𝜆(𝐸) ≤ 2�̂�(𝑛, 𝜆)

√

𝐷𝜆(𝐸).
We argue by contradiction. Let {𝐸𝑗}𝑗 be a sequence of Schwarz-symmetric sets contained in 𝑄𝑙 such that |𝐸𝑗| =
|𝐵𝜆|, with 𝑃𝜆(𝐸𝑗) → 𝑃𝜆(𝐵𝜆) and

𝛼𝜆(𝐸𝑗) > 2�̂�(𝑛, 𝜆)
√

𝐷𝜆(𝐸𝑗). (3.5.18)
For every 𝑗 we consider a minimizer 𝐹𝑗 of the problem

min{𝑃𝜆(𝐹 ) + |𝛼𝜆(𝐹 ) − 𝛼𝜆(𝐸𝑗)| + Λ||𝐹 | − |𝐸𝑗|| ∶ 𝐹 Schwarz-symmetric contained in𝑄𝑙}, (3.5.19)
for Λ > 0 to be chosen large. Up to subsequence, 𝐹𝑗 converges in 𝐿1 to a minimizer of 𝐹 ↦ 𝑃𝜆(𝐹 ) + 𝛼𝜆(𝐹 ) +
Λ |

|

|𝐹 | − |𝐵𝜆||
|

, hence, takingΛ > 𝑛, we have that𝐹𝑗 converges to𝐵𝜆(|𝐵𝜆|) by Lemma 3.5.13. Also, by comparison
with with 𝐸𝑗 , we have that 𝑃𝜆(𝐹𝑗) → 𝑃𝜆(𝐵𝜆).
We prove that 𝐹𝑗 is a local (Λ1, 𝑟0)-minimizer in ℝ𝑛 ⧵𝐻 , for some Λ1, 𝑟0 > 0 and 𝑗 large. Let us consider a ball
𝐵𝑟(𝑥) ⊂⊂ ℝ𝑛 ⧵ 𝐻 , with 𝑟 < min{𝑟0, 𝑑(𝑥, 𝜕𝐻)}, and a set 𝐺 such that 𝐹𝑗Δ𝐺 ⊂⊂ 𝐵𝑟(𝑥). Denoting by (⋅)∗ the
Schwarz symmetrization with respect to the 𝑛-th axis and by 𝑍 ∶= 𝐺 ∩𝑄𝑙, we have
𝑃 (𝐹𝑗 ,ℝ𝑛 ⧵𝐻) ≤ 𝑃 (𝑍∗,ℝ𝑛 ⧵𝐻) + |𝛼𝜆(𝑍∗) − 𝛼𝜆(𝐸𝑗)| − |𝛼𝜆(𝐹𝑗) − 𝛼𝜆(𝐸𝑗)| + Λ[||𝑍| − |𝐸𝑗|| − ||𝐹𝑗| − |𝐸𝑗||]

≤ 𝑃 (𝑍,ℝ𝑛 ⧵𝐻) + |𝛼𝜆(𝑍∗) − 𝛼𝜆(𝐹𝑗)| + Λ|𝑍Δ𝐹𝑗|
≤ 𝑃 (𝐺,ℝ𝑛 ⧵𝐻) + |𝛼𝜆(𝑍∗) − 𝛼𝜆(𝐹𝑗)| + Λ|𝐺Δ𝐹𝑗|.

For 𝑟0 small enough and 𝑗 sufficiently large we have that |𝐺| ≥ |𝑍| ≥ 𝑐(𝑛, 𝜆) > 0. Assume for instance that
𝛼𝜆(𝑍∗) ≥ 𝛼𝜆(𝐹𝑗) (the opposite case being symmetric), then

𝛼𝜆(𝑍∗) − 𝛼𝜆(𝐹𝑗) ≤ |𝑍|

−1
(

|𝑍∗Δ𝐹𝑗| + |𝐹𝑗Δ𝐵𝜆(|𝐹𝑗|)| +
|

|

|

|𝑍| − |𝐹𝑗|
|

|

|

)

− |𝐹𝑗|
−1
|𝐹𝑗Δ𝐵𝜆(|𝐹𝑗|)|

≤ 𝑐(𝑛, 𝜆)|𝑍Δ𝐹𝑗| + 𝑐(𝑛, 𝜆)
(

|𝐹𝑗| − |𝑍|

)

+ |𝑍Δ𝐹𝑗|
≤ 𝑐(𝑛, 𝜆)|𝐺Δ𝐹𝑗|.

Arguing analogously in case 𝛼𝜆(𝑍∗) < 𝛼𝜆(𝐹𝑗), we deduce
𝑃 (𝐹𝑗 ,ℝ𝑛 ⧵𝐻) ≤ 𝑃 (𝐺,ℝ𝑛 ⧵𝐻) + Λ1|𝐺Δ𝐹𝑗|,
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for some Λ1 = (Λ, 𝑛, 𝜆).
By Theorem 2.5.3 we know that 𝜕∗𝐹𝑗 ∩ {𝑥𝑛 > 0} is a 𝐶1, 12 manifold and 𝜕𝐹𝑗 ∩ {𝑥𝑛 > 0} ⧵ 𝜕∗𝐹𝑗 has Hausdorff
dimension ≤ 𝑛−8. Since 𝐹𝑗 is Schwarz-symmetric, if there exists a point (𝑟𝜗, 𝑡) ∈ 𝜕𝐹𝑗 ∩{𝑥𝑛 > 0}⧵𝜕∗𝐹𝑗 for some
𝑟, 𝑡 > 0, 𝜗 ∈ 𝕊𝑛−2, then (𝑟𝜗′, 𝑡) ∈ 𝜕𝐹𝑗 ∩{𝑥𝑛 > 0}⧵𝜕∗𝐹𝑗 for any 𝜗′ ∈ 𝕊𝑛−2. Hence 𝜕𝐹𝑗 ∩{𝑥𝑛 > 0}⧵𝜕∗𝐹𝑗 ⊂ {𝑡𝑒𝑛 ∶
𝑡 > 0}. However by Theorem 2.5.3 for every 𝜀 > 0 the set 𝜕𝐹𝑗 ∩ {𝑥𝑛 ≥ 𝜀} converges to 𝜕𝐵𝜆(|𝐵𝜆|) ∩ {𝑥𝑛 ≥ 𝜀} in
𝐶1,𝛼 for any 0 < 𝛼 < 1

2 . Also, for 𝑗 large we can apply Corollary 3.4.4 which implies that𝑛−1(𝐹𝑗∩{𝑥𝑛 = 𝑡}) ≥ 𝐴𝜆
for a.e. 𝑡 ∈ (0, 𝑇𝜆), for some 𝐴𝜆, 𝑇𝜆 > 0 depending on 𝑛, 𝜆. Then points 𝑡𝑒𝑛 for 𝑡 ∈ (0, 𝑇𝜆∕2) are points of density
1 for 𝐹𝑗 , hence they belong to the interior of 𝐹𝑗 . Therefore, for 𝑗 large enough, 𝜕𝐹𝑗 ∩ {𝑥𝑛 > 0} ⧵ 𝜕∗𝐹𝑗 must be
empty and 𝜕𝐹𝑗 ∩ {𝑥𝑛 > 0} is an axially symmetric hypersurface of class 𝐶1, 12 .
By the minimality of the 𝐹𝑗 , (3.5.18) and Lemma 3.5.13 we observe that
𝑃𝜆(𝐹𝑗) + Λ |

|

|

|𝐹𝑗| − |𝐵𝜆|||
|

+ |

|

|

𝛼𝜆(𝐹𝑗) − 𝛼𝜆(𝐸𝑗)
|

|

|

≤ 𝑃𝜆(𝐸𝑗)

≤ 𝑃𝜆(𝐵𝜆(|𝐵𝜆|)) +
𝑃𝜆(𝐵𝜆(|𝐵𝜆|))
4�̂�2(𝑛, 𝜆)

𝛼2𝜆(𝐸𝑗) ≤ 𝑃𝜆(𝐹𝑗) + Λ |

|

|

|𝐹𝑗| − |𝐵𝜆|||
|

+
𝑃𝜆(𝐵𝜆(|𝐵𝜆|))
4�̂�2(𝑛, 𝜆)

𝛼2𝜆(𝐸𝑗).
(3.5.20)

Therefore, we have that
|𝛼𝜆(𝐹𝑗) − 𝛼𝜆(𝐸𝑗)| ≤

𝑃𝜆(𝐵𝜆(|𝐵𝜆|))
4�̂�2(𝑛, 𝜆)

𝛼2𝜆(𝐸𝑗).

Since 𝛼𝜆(𝐸𝑗) → 0 we get that
𝛼𝜆(𝐹𝑗)
𝛼𝜆(𝐸𝑗)

→ 1.

Let {�̂�𝑗} ⊂ (0,∞) such that, setting 𝐹𝑗 ∶= �̂�𝑗𝐹𝑗 , then |𝐹𝑗| = |𝐵𝜆|. Clearly �̂�𝑗 → 1 since |𝐹𝑗| → |𝐵𝜆|. Since
𝑃𝜆(𝐹𝑗) → 𝑃𝜆(𝐵𝜆(|𝐵𝜆|)) and Λ > 𝑛, for 𝑗 sufficiently large we have 𝑃𝜆(𝐹𝑗) < Λ|𝐹𝑗| and

|

|

|

𝑃𝜆(𝐹𝑗) − 𝑃𝜆(𝐹𝑗)
|

|

|

= 𝑃𝜆(𝐹𝑗)
|

|

|

�̂�𝑛−1𝑗 − 1||
|

≤ 𝑃𝜆(𝐹𝑗)
|

|

|

�̂�𝑛𝑗 − 1||
|

≤ Λ |

|

|

�̂�𝑛𝑗 − 1||
|

|𝐹𝑗| = Λ |

|

|

|𝐹𝑗| − |𝐹𝑗|
|

|

|

.

Hence, by definition of �̂�𝑗 and by (3.5.20) we get
𝑃𝜆(𝐹𝑗) ≤ 𝑃𝜆(𝐹𝑗) + Λ |

|

|

|𝐹𝑗| − |𝐹𝑗|
|

|

|

= 𝑃𝜆(𝐹𝑗) + Λ |

|

|

|𝐹𝑗| − |𝐵𝜆|||
|

(3.5.20)
≤ 𝑃𝜆(𝐵𝜆(|𝐵𝜆|)) +

𝑃𝜆(𝐵𝜆(|𝐵𝜆|))
4�̂�2(𝑛, 𝜆)

𝛼2𝜆(𝐸𝑗).
(3.5.21)

Since 𝛼𝜆(𝐹𝑗)∕𝛼𝜆(𝐸𝑗) → 1 as 𝑗 → ∞ we have 𝛼𝜆(𝐸𝑗)2 < 2𝛼𝜆(𝐹𝑗)2 for 𝑗 sufficiently large. Hence from (3.5.21) we
finally obtain

𝛼𝜆(𝐹𝑗) >
√

2�̂�(𝑛, 𝜆)
√

𝐷𝜆(𝐹𝑗). (3.5.22)
For 𝑡 > 0 let

𝜑−
𝐹𝑗
(𝑡) ∶=

{

min𝑥∈𝜕𝐹𝑗∩{𝑥𝑛=𝑡}
{

|

|

𝑥 − 𝑡𝑒𝑛||
}

if 𝜕𝐹𝑗 ∩ {𝑥𝑛 = 𝑡} ≠ ∅,
0 if 𝜕𝐹𝑗 ∩ {𝑥𝑛 = 𝑡} = ∅.

be the function measuring the distance of 𝜕𝐹𝑗 ∩{𝑥𝑛 = 𝑡} from the 𝑛-th axis, set to zero in case 𝜕𝐹𝑗 ∩{𝑥𝑛 = 𝑡} = ∅.
For 𝑗 large we can apply Corollary 3.4.4 again to deduce that there exists 𝑇𝜆, 𝐴𝜆 > 0 such that 𝑛−1(𝐹𝑗 ∩ {𝑥𝑛 =
𝑡}) ≥ 𝐴𝜆 for almost every 𝑡 ∈ (0, 𝑇𝜆). Since 𝐹𝑗 is Schwarz-symmetric and its relative boundary in {𝑥𝑛 > 0} is 𝐶1

regular, then we can write that 𝜑−
𝐹𝑗
(𝑡) ≥ 𝐴′

𝜆 > 0 for 𝑗 large and for any 𝑡 ∈ (0, 𝑇𝜆).
Recalling that 𝐹𝑗 is a local (Λ1, 𝑟0)-minimizer, by Lemma 2.5.2 its boundary has generalized mean curvature
bounded by Λ1 for any 𝑗. Since 𝐹𝑗 = �̂�𝑗𝐹𝑗 with �̂�𝑗 → 1, then 𝜕𝐹𝑗 ∩ (ℝ𝑛 ⧵𝐻) is a hypersurface of class 𝐶1, 12 with
generalized mean curvature𝐻𝜕𝐹𝑗 bounded by 2Λ1 for any 𝑗. Observe that if we locally parametrize 𝜕𝐹𝑗 ∩(ℝ𝑛 ⧵𝐻)
with the graph of a function Φ𝑗 , then Φ𝑗 weakly solves the mean curvature equation

div

⎛

⎜

⎜

⎜

⎝

∇Φ𝑗
√

1 + |∇Φ𝑗|
2

⎞

⎟

⎟

⎟

⎠

=
⟨

𝐻𝜕𝐹𝑗 , 𝑁Φ𝑗

⟩

,
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where 𝑁Φ𝑗
is the unit normal corresponding to Φ𝑗 and 𝐻𝜕𝐹𝑗 is evaluated along the graph of Φ𝑗 . Since 𝐻𝜕𝐹𝑗 is

bounded, we get that Φ𝑗 is of class 𝑊 2,𝑝 for every 𝑝 <∞ (see [GT01]).
Fix 𝑝0 ∈ 𝜕𝐹𝑗 ∩ {𝑥1 > 0, 0 < 𝑥𝑛 ≤ 𝑇𝜆} ∩ span{𝑒1, 𝑒𝑛}. Since 𝜕𝐹𝑗 ∩ (ℝ𝑛 ⧵ 𝐻) is 𝐶1, 12 , there exists a curve
𝛾𝑗 = (𝛼𝑗 , 0,… , 0, 𝛽𝑗) ∶ (𝑎, 𝑏) → span{𝑒1, 𝑒𝑛} ⧵ 𝐻 such that the map 𝕊𝑛−2 × (𝑎, 𝑏) ∋ (𝜗, 𝑡) ↦ (𝛼𝑗(𝑡)𝜗, 𝛽𝑗(𝑡))
parametrizes 𝜕𝐹𝑗 in a neighborhood of 𝑝0. We claim that 𝛼𝑗 , 𝛽𝑗 ∈ 𝑊 2,𝑝, up to reparametrization.
Indeed, we can also parametrize 𝜕𝐹𝑗 in a neighborhood𝑈 of 𝑝0 as the graph of a functionΦ𝑗 with domain contained
in some affine hyperplane of the form 𝑝0+𝑉 , and without loss of generality we can assume that either 𝑉 = {𝑥1 = 0}
or 𝑉 = {𝑥𝑛 = 0}. If 𝑛 = 2, then the claimed regularity immediately follows from the regularity ofΦ𝑗 . Then assume
𝑛 ≥ 3, and suppose for example that 𝑉 = {𝑥1 = 0}. The image of the curve 𝛾𝑗 in 𝑈 can be parametrized as the
graph of a function 𝑡↦ (𝑓 (𝑡), 0,… , 0, 𝑡). Writing as (𝑥′, 𝑥𝑛) ∈ 𝑝0+𝑉 the variable for Φ𝑗 , the fact that the distance
from the 𝑛-th axis is constant on the intersection of 𝜕𝐹𝑗 with any horizontal hyperplane yields the identity

(

Φ𝑗(𝑥′, 𝑥𝑛) + dist𝑥𝑛(𝑝0)
)2

+ |𝑥′|2 = 𝑓 (𝑥𝑛)2,

where dist𝑥𝑛(𝑝0) denotes distance of 𝑝0 from the 𝑛-th axis. Since Φ𝑗 is of class 𝐶1 and 𝑊 2,𝑝 and dist𝑥𝑛(𝑝0) >
0 because 𝜑−

𝐹𝑗
≥ 𝐴′

𝜆 > 0, inverting the above identity we find that 𝑓 is of class 𝑊 2,𝑝, hence so is 𝛾𝑗 , up to
reparametrization. In case 𝑉 = {𝑥𝑛 = 0}, the observation follows analogously relating Φ𝑗 with a parametrization
for 𝛾𝑗 .
We further observe that, for 𝛼𝑗 , 𝛽𝑗 ∶ (𝑎, 𝑏) → (0,∞) as above, since 𝛼𝑗 , 𝛽𝑗 are of class𝑊 2,𝑝

loc , up to reparametrization
by arclength we can apply Lemma 2.6.6 to get that

𝐻𝜕𝐹𝑗
|

|

|(𝛼𝑗 (𝑡)𝜗,𝛽𝑗 (𝑡))
=

(

⟨

𝑘𝛾𝑗 , 𝜈
⟩

− (𝑛 − 2)
𝛽′𝑗
𝛼𝑗

)

(−𝛽′𝑗𝜗, 𝛼
′
𝑗),

in the notation of Lemma 2.6.6. Recalling that 𝜑−
𝐹𝑗

≥ 𝐴′
𝜆 > 0 on (0, 𝑇𝜆), we have that |𝛼𝑗| ≥ 𝐴′

𝜆 and thus

|𝑘𝛾𝑗 | ≤ 2Λ1 +
𝑛 − 2
𝐴′
𝜆
. (3.5.23)

Observe that the upper bound in (3.5.23) is independent of 𝑗 and of the initially chosen point 𝑝0.
Fix now 𝑞0 ∈ 𝜕𝐹𝑗 ∩ {𝑥1 > 0, 𝑥𝑛 = 𝑇𝜆} ∩ span{𝑒1, 𝑒𝑛}, let 𝛾0𝑗 ∶ [0, 𝑙0) → span{𝑒1, 𝑒𝑛} be part of a curve defined
as before, parametrized by arclength, such that

⟨

𝛾0𝑗 (𝑡), 𝑒𝑛
⟩

≤ 𝑇𝜆 for any 𝑡. If lim𝑡→𝑙−0
𝛾0𝑗 (𝑡) ∉ 𝜕𝐻 , the curve can

be extended to a longer one, parametrized by arclength, by joining 𝛾0𝑗 with a curve defined as before for the choice
𝑝0 = lim𝑡→𝑙−0

𝛾0𝑗 (𝑡). Hence we can consider 𝜎𝑗 ∶ [0, 𝐿𝑗) → span{𝑒1, 𝑒𝑛} the maximal extension of 𝛾0𝑗 parametrized
by arclength that parametrizes 𝐹𝑗 ∩ {𝑥1 > 0, 0 < 𝑥𝑛 ≤ 𝑇𝜆} ∩ span{𝑒1, 𝑒𝑛}. Since the perimeter 𝑃 (𝐹𝑗 ,ℝ𝑛 ⧵𝐻) is
uniformly bounded, then sup𝑗 𝐿𝑗 < +∞. Obviously lim𝑡→𝐿𝑗 𝜎𝑗(𝑡) ∈ 𝜕𝐻 , for otherwise the curve could be further
extended. By construction, the uniform bound in (3.5.23) holds pointwise for the curvature of 𝜎𝑗 . Therefore 𝜎𝑗
can be extended to a curve 𝛾𝑗 ∶ [0, 𝐿𝑗] → span{𝑒1, 𝑒𝑛} such that

‖𝛾𝑗‖𝐶1,1([0,𝐿𝑗 ]) ≤ 𝐶, (3.5.24)
with 𝐶 independent of 𝑗, depending only on 𝑛, 𝜆, 𝑙 and the upper bound on the curvature given by (3.5.23).
Up to a subsequence, since 𝐹𝑗 → 𝐵𝜆(|𝐵𝜆|) and we already know that for every 𝜀 > 0 the set 𝜕𝐹𝑗 ∩ {𝑥𝑛 ≥ 𝜀}
converges to 𝜕𝐵𝜆(|𝐵𝜆|) ∩ {𝑥𝑛 ≥ 𝜀} in 𝐶1,𝛼 for any 0 < 𝛼 < 1

2
, the bound (3.5.24) implies that 𝐹𝑗 converges in 𝐶1

sense to 𝐵𝜆(|𝐵𝜆|) in the sense of Definition 3.5.11. Hence, by Corollary 3.5.12, for 𝑗 sufficiently large there holds
𝛼2𝜆(𝐹𝑗) ≤ �̂�(𝑛, 𝜆)𝐷𝜆(𝐹𝑗),

in contradiction with (3.5.22).
Remark 3.5.14. In the proof of it is possible to directly prove that the boundary of 𝐹𝑗 remains uniformly far away
from the 𝑛-th axis in a small slab {0 < 𝑥𝑛 ≤ 𝜀0} without appealing to Corollary 3.4.4. We present here an
alternative proof of this fact.
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Let
ℎ0 ∶= (1 − 𝜆) 9

10
, 𝜀0 ∶= (1 − 𝜆) 1

10
.

Let 𝜑 be the profile function parametrizing 𝜕𝐵𝜆(|𝐵𝜆|) ⧵𝐻 . For 𝑡 > 0, we define

𝜑−
𝐹𝑗
(𝑡) ∶=

{

min𝑥∈𝜕𝐹𝑗∩{𝑥𝑛=𝑡}
{

|

|

𝑥 − 𝑡𝑒𝑛||
}

if 𝜕𝐹𝑗 ∩ {𝑥𝑛 = 𝑡} ≠ ∅,
0 if 𝜕𝐹𝑗 ∩ {𝑥𝑛 = 𝑡} = ∅.

𝜑+
𝐹𝑗
(𝑡) ∶=

{

max𝑥∈𝜕𝐹𝑗∩{𝑥𝑛=𝑡}
{

|

|

𝑥 − 𝑡𝑒𝑛||
}

if 𝜕𝐹𝑗 ∩ {𝑥𝑛 = 𝑡} ≠ ∅,
0 if 𝜕𝐹𝑗 ∩ {𝑥𝑛 = 𝑡} = ∅.

Note that 𝜑−
𝐹𝑗
(𝑡) is lower semicontinuous. Indeed, let 𝑡𝑘 → 𝑡∞ ∈ (0,∞). If there exists 𝑡𝑘𝑙 → 𝑡∞ such that

𝜑−
𝐹𝑗
(𝑡𝑘𝑙 ) = 0 then, by regularity of 𝜕𝐹𝑗 , we infer

lim inf
𝑘→∞

𝜑−
𝐹𝑗
(𝑡𝑘) = lim

𝑙→∞
𝜑−
𝐹𝑗
(𝑡𝑘𝑙 ) = 0 = 𝜑−

𝐹𝑗
(𝑡∞).

Otherwise, for 𝑘 sufficiently large let 𝜑−
𝐹𝑗
(𝑡𝑘) be achieved in 𝑥𝑘. Then

lim inf
𝑘→∞

𝜑−
𝐹𝑗
(𝑡𝑘) = lim inf

𝑘→∞
min

𝑥∈𝜕𝐹𝑗∩{𝑥𝑛=𝑡𝑘}
{|𝑥 − 𝑡𝑘𝑒𝑛|}

= lim inf
𝑘→∞

{|𝑥𝑘 − 𝑡𝑘𝑒𝑛|}

≥ 𝜑−
𝐹𝑗
(𝑡∞).

By the convergence of 𝜕𝐹𝑗 to 𝜕𝐵𝜆(|𝐵𝜆|) in 𝐶1-sense in {𝑥𝑛 ≥ 𝜀0}, for any 𝜎 > 0 and for sufficiently large 𝑗 ∈ ℕ
we have

|

|

|

|

𝜑𝑧
𝐹𝑗
(𝜀0) − 𝜑(𝜀0)

|

|

|

|

<
𝜎

1000
, (3.5.25)

with 𝑧 ∈ {+,−}. Let us define the neighborhood of 𝜕𝐵𝜆(|𝐵𝜆|) in {𝑥𝑛 > 0} given by

𝑈𝜎 ∶=
{

𝑥 = (𝑥′, 𝑥𝑛) ∈ ℝ𝑛 ⧵𝐻 ∶ ||𝑥′| − 𝜑(𝑥𝑛)| <
𝜎

1000

}

and let
�̃�𝑗 ∶= inf

{

0 < 𝑠 ≤ 𝜀0 ∶ 𝜑−
𝐹𝑗
(𝑡) > 1

1000

√

1 − 𝜆2 ∀𝑡 ∈ [𝑠, 𝜀0]
}

.

We claim that, for sufficiently large 𝑗, �̃�𝑗 = 0, which coincides to prove that 𝜕𝐹𝑗 ∩ {𝑥𝑛 = 𝑡} is nonempty and
uniformly far away from the 𝑛-th axis, for 𝑡 ∈ (0, 𝜀0].
By contradiction let us assume that �̃�𝑗 is strictly positive for any large 𝑗. Note that the lower semicontinuity of 𝜑−

𝐹𝑗

implies that 𝜑−
𝐹𝑗
(�̃�𝑗) ≤

1
1000

√

1 − 𝜆2. This follows by taking a sequence �̂�𝑘 ↗ �̃�𝑗 , with

𝜑−
𝐹𝑗
(�̂�𝑘) ≤

1
1000

√

1 − 𝜆2.

We claim that there exists 𝑐(𝑛, 𝜆, 𝜎) such that
𝑛−1((𝜕𝐹𝑗 ⧵𝐻) ⧵ 𝑈𝜎 ∩ {�̃�𝑗 < 𝑥𝑛 < 𝜀0}) > 𝑐(𝑛, 𝜆, 𝜎) > 0. (3.5.26)

Indeed, if there exists 𝑐1 > 0 such that
lim inf
𝑗→∞

𝜑+
𝐹𝑗
(�̃�𝑗) > lim inf

𝑗→∞
𝜑−
𝐹𝑗
(�̃�𝑗) + 𝑐1,

then
𝑛−1((𝜕𝐹𝑗 ⧵𝐻) ⧵ 𝑈𝜎 ∩ {�̃�𝑗 < 𝑥𝑛 < 𝜀}) ≥ 𝜔𝑛−1(𝜑+

𝐹𝑗
(�̃�𝑗)𝑛−1 − 𝜑−

𝐹𝑗
(�̃�𝑗)𝑛−1) ≥ 𝑐1 > 0.

69



Otherwise lim𝑗→∞ 𝜑+
𝐹𝑗
(�̃�𝑗) = lim𝑗→∞ 𝜑−

𝐹𝑗
(�̃�𝑗) up to subsequence; hence let 𝐴�̃�𝑗 be the annulus in the plane {𝑥𝑛 =

�̃�𝑗} with center in the origin and radii 1
1000

√

1 − 𝜆2 and min{𝜑(0), 𝜑(𝜀0)} − 1
1000𝜎. If 𝑝 ∈ 𝐴�̃�𝑗 and 𝑝 ∉ 𝐹𝑗 ,

by (3.5.25) and the regularity of 𝜕𝐹𝑗 , there exists 𝑡 > 0 such that 𝑝 + 𝑡𝑒𝑛 ∈ 𝜕𝐹𝑗 . In particular, the projection of
(𝜕𝐹𝑗 ⧵𝐻) ⧵ 𝑈𝜎 ∩ {�̃�𝑗 < 𝑥𝑛 < 𝜀0} over the plane {𝑥𝑛 = �̃�𝑗} is surjective on 𝐴�̃�𝑗 . Therefore

𝑛−1((𝜕𝐹𝑗 ⧵𝐻) ⧵ 𝑈𝜎 ∩ {�̃�𝑗 < 𝑥𝑛 < 𝜀0}) ≥ 𝑛−1
(

𝜋𝜕𝐻
(

(𝜕𝐹𝑗 ⧵𝐻) ⧵ 𝑈𝜎 ∩ {�̃�𝑗 < 𝑥𝑛 < 𝜀0}
))

≥ 𝜔𝑛−1

[

(

min
{

𝜑(0), 𝜑(𝜀0)
}

−
𝜎

1000

)𝑛−1
−
( 1
1000

)𝑛−1
(

1 − 𝜆2
)

𝑛−1
2

]

> 0

and we have proved (3.5.26).
However (3.5.26) would imply that 𝑃𝜆(𝐹𝑗) ↛ 𝑃𝜆(𝐵𝜆). Indeed, since

𝑃𝜆(𝐹𝑗) = ∫(𝜕𝐹𝑗⧵𝐻)∩𝑈𝜎
1 − 𝜆

⟨

𝑒𝑛, 𝜈
𝐹𝑗
⟩

d𝑛−1 + ∫(𝜕𝐹𝑗⧵𝐻)⧵𝑈𝜎
1 − 𝜆

⟨

𝑒𝑛, 𝜈
𝐹𝑗
⟩

d𝑛−1,

the first integral in the right-hand side tends to 𝑃𝜆(𝐵𝜆) by Reshetnyak lower semicontinuity theorem 2.1.22 while
the second integral is greater than a strictly positive constant because of (3.5.26).
We can further prove that 𝜑𝑧

𝐹𝑗
, with 𝑧 ∈ {+,−}, defined in the proof of Theorem 3.1.1, converges uniformly to the

profile function 𝜑 of 𝐵𝜆(|𝐵𝜆|) in (0, ℎ0].
Indeed, let us assume by contradiction that there exists 𝜎0 > 0 such that

max
𝑧∈{+,−}

sup
(0,ℎ0]

|

|

|

|

𝜑𝑧
𝐹𝑗
(𝑡) − 𝜑(𝑡)

|

|

|

|

> 𝜎0

for any 𝑗 large. We can assume that
max

𝑧∈{+,−}
sup
(0,𝜀0]

|

|

|

|

𝜑𝑧
𝐹𝑗
(𝑡) − 𝜑(𝑡)

|

|

|

|

> 𝜎0

for sufficiently large 𝑗. Let {𝑡𝑗}𝑗∈ℕ ⊂ (0, 𝜀0] and 𝑧 ∈ {+,−} be such that
|

|

|

|

𝜑𝑧
𝐹𝑗
(𝑡𝑗) − 𝜑(𝑡𝑗)

|

|

|

|

> 𝜎0.

Then there exists 𝑡∞ ∈ [0, 𝜀0] such that, up to a subsequence, 𝑡𝑗 → 𝑡∞. For 𝑈𝜎0 defined analogously as above,
since

𝑃𝜆(𝐹𝑗) → 𝑃𝜆(|𝐵𝜆|)

and
𝑃𝜆(𝐹𝑗) = ∫(𝜕𝐹𝑗⧵𝐻)∩𝑈𝜎0

1 − 𝜆
⟨

𝑒𝑛, 𝜈
𝐹𝑗
⟩

d𝑛−1 + ∫(𝜕𝐹𝑗⧵𝐻)⧵𝑈𝜎0

1 − 𝜆
⟨

𝑒𝑛, 𝜈
𝐹𝑗
⟩

d𝑛−1,

then
lim
𝑗→∞∫(𝜕𝐹𝑗⧵𝐻)⧵𝑈𝜎0

1 − 𝜆
⟨

𝑒𝑛, 𝜈
𝐹𝑗
⟩

d𝑛−1 = 0.

For 𝑗 large enough 𝜑𝑧
𝐹𝑗
(𝜀0) ∈ 𝑈𝜎0 , with 𝑧 ∈ {+,−}. Moreover

∫(𝜕𝐹𝑗⧵𝐻)⧵𝑈𝜎0

1 − 𝜆
⟨

𝑒𝑛, 𝜈
𝐹𝑗
⟩

d𝑛−1 ≥ (1 − 𝜆)𝑛−1
(

(

𝜕𝐹𝑗 ⧵𝐻
)

⧵ 𝑈𝜎0 ∩
{

𝑡𝑗 < 𝑥𝑛 < 𝜀0
}

)

.

Let us define

𝑠𝑗 ∶= inf
{

0 < 𝑠 ≤ 𝜀0 ∶ |𝜑+
𝐹𝑗
(𝑡) − 𝜑(𝑡)| <

𝜎
1000

, |𝜑−
𝐹𝑗
(𝑡) − 𝜑(𝑡)| <

𝜎
1000

∀ 𝑡 ∈ [𝑠, 𝜀0]
}

.
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Observe that 𝑡𝑗 < 𝑠𝑗 . There exists 𝑠∞ ∈ [0, 𝜀0] such that, up to a subsequence, 𝑠𝑗 → 𝑠∞. If 𝑠∞ = 𝑡∞ then

𝑛−1
(

(

𝜕𝐹𝑗 ⧵𝐻
)

⧵ 𝑈𝜎0 ∩
{

𝑡𝑗 < 𝑥𝑛 < 𝜀0
}

)

≥ 𝑛−1
(

𝜋𝜕𝐻
(

(

𝜕𝐹𝑗 ⧵𝐻
)

⧵ 𝑈𝜎0 ∩
{

𝑡𝑗 < 𝑥𝑛 < 𝜀0
}

))

> 𝜔𝑛−1

[

𝜎𝑛−10 −
( 𝜎0
1000

)𝑛−1
]

(

1 − 𝜆2
)

𝑛−1
2 > 0.

If 𝑠∞ > 𝑡∞ then

𝑛−1
(

(

𝜕𝐹𝑗 ⧵𝐻
)

⧵ 𝑈𝜎0 ∩
{

𝑡𝑗 < 𝑥𝑛 < 𝜀0
}

)

≥ ∫

𝑠𝑗

𝑡𝑗
(𝑛 − 1)𝜔𝑛−1

√

1 +
(

(𝜑𝑧
𝐹𝑗
)′
)2

(𝜑𝑧
𝐹𝑗
)𝑛−2 d𝑥

≥ (𝑛 − 1)𝜔𝑛−1 ∫

𝑠𝑗

𝑡𝑗
(𝜑𝑧

𝐹𝑗
)𝑛−2 d𝑥

≥ (𝑛 − 1)𝜔𝑛−1 ∫

𝑠𝑗

𝑡∞+𝑠𝑗
2

(𝜑𝑧
𝐹𝑗
)𝑛−2 d𝑥 ≥ 𝑐 > 0.

In both cases, as before we would get that 𝑃𝜆(𝐹𝑗) ↛ 𝑃𝜆(𝐵𝜆).

3.6 Second quantitative isoperimetric inequality

We will need the following technical lemma, proving that if the energy 𝑃𝜆(𝐸𝑖) a sequence of sets 𝐸𝑖 converges to
the energy of the limit, then the sequence strictly converges in the sense of 𝐵𝑉 functions. The proof essentially
follows by analyzing the equality case in the Reshetnyak lower semicontinuity theorem 2.1.22.
Lemma 3.6.1. Let {𝐸𝑖}𝑖∈ℕ be a sequence of sets of finite perimeter in ℝ𝑛 ⧵𝐻 such that 𝐸𝑖 → 𝐸 in 𝐿1, for some
set of finite perimeter 𝐸 with |𝐸| < +∞. If 𝑃𝜆(𝐸𝑖) → 𝑃𝜆(𝐸), then

lim
𝑖
𝑃 (𝐸𝑖,ℝ𝑛 ⧵𝐻) = 𝑃 (𝐸,ℝ𝑛 ⧵𝐻), lim

𝑖
𝑛−1(𝜕∗𝐸𝑖 ∩ 𝜕𝐻) = 𝑛−1(𝜕∗𝐸 ∩ 𝜕𝐻).

Proof. Let 𝑓 (𝑣) ∶= |𝑣| − 𝜆 ⟨𝑒𝑛, 𝑣⟩, for any 𝑣 ∈ ℝ𝑛, and let 𝜈𝑖 ∶= |𝐷𝜒𝐸𝑖|⊗ 𝛿𝜈𝐸𝑖 be a measure on ℝ𝑛 ⧵𝐻 × 𝕊𝑛−1.
Since |𝜈𝑖|(ℝ𝑛⧵𝐻 ×𝕊𝑛−1) ≤ 𝑃 (𝐸𝑖) ≤ 2𝑃𝜆(𝐸𝑖)∕(1−𝜆) by Corollary 2.4.5, up to subsequence, 𝜈𝑖 weakly* converges
to a finite measure 𝜈. Up to subsequence, also |𝐷𝜒𝐸𝑖| weakly* converges to a finite measure 𝜇 on ℝ𝑛⧵𝐻 . Denoting
by 𝜋 ∶ ℝ𝑛 ⧵𝐻 ×𝕊𝑛−1 → ℝ𝑛 ⧵𝐻 the natural projection, we have 𝜋♯𝜈𝑖 = |𝐷𝜒𝐸𝑖| → 𝜇 = 𝜋♯𝜈. Moreover, 𝜇 ≥ |𝐷𝜒𝐸|
by lower semicontinuity. By the disintegration theorem 2.1.27, we can write 𝜈 = 𝜇 ⊗ 𝜈𝑥, for a 𝜇-measurable map
ℝ𝑛 ⧵𝐻 ∋ 𝑥 ↦ 𝜈𝑥, where 𝜈𝑥 is a probability measure on 𝕊𝑛−1. Analogously to [AFP00, Eq. (2.30)], we observe
that

∫𝕊𝑛−1
𝑣 d𝜈𝑥(𝑣) = 𝜈𝐸(𝑥)

|𝐷𝜒𝐸|
𝜇

(𝑥), (3.6.1)
at 𝜇-a.e. 𝑥 ∈ ℝ𝑛 ⧵𝐻 . Indeed, for any continuous function 𝑔 with spt(𝑔) ⊂⊂ ℝ𝑛 ⧵𝐻 we find

∫ℝ𝑛⧵𝐻
𝑔(𝑥)∫𝕊𝑛−1

𝑣 d𝜈𝑥(𝑣) d𝜇(𝑥) = ∫ℝ𝑛⧵𝐻×𝕊𝑛−1
𝑔(𝑥) 𝑣 d𝜈(𝑥, 𝑣) = lim

𝑖 ∫ℝ𝑛⧵𝐻×𝕊𝑛−1
𝑔(𝑥) 𝑣 d𝜈𝑖(𝑥, 𝑣)

= − lim
𝑖 ∫ℝ𝑛⧵𝐻

𝑔(𝑥) d𝐷𝜒𝐸𝑖(𝑥) = −∫ℝ𝑛⧵𝐻
𝑔(𝑥) d𝐷𝜒𝐸(𝑥) = ∫ℝ𝑛⧵𝐻

𝑔(𝑥)𝜈𝐸(𝑥)
|𝐷𝜒𝐸|
𝜇

(𝑥) d𝜇(𝑥).

Since 𝑓 is nonnegative, convex and continuous, by Remark 2.4.2 we find

lim
𝑖
𝑃𝜆(𝐸𝑖) = lim

𝑖 ∫ℝ𝑛⧵𝐻
𝑓 (𝜈𝐸𝑖) d|𝐷𝜒𝐸𝑖| = lim

𝑖 ∫ℝ𝑛⧵𝐻×𝕊𝑛−1
𝑓 (𝑣) d𝜈𝑖(𝑥, 𝑣) ≥ ∫ℝ𝑛⧵𝐻×𝕊𝑛−1

𝑓 (𝑣) d𝜈(𝑥, 𝑣)

= ∫ℝ𝑛⧵𝐻 ∫𝕊𝑛−1
𝑓 (𝑣) d𝜈𝑥(𝑣) d𝜇(𝑥) ≥ ∫ℝ𝑛⧵𝐻

𝑓
(

∫𝕊𝑛−1
𝑣 d𝜈𝑥(𝑣)

)

d𝜇(𝑥)

(3.6.1)
= ∫ℝ𝑛⧵𝐻

𝑓
(

𝜈𝐸(𝑥)
|𝐷𝜒𝐸|
𝜇

(𝑥)
)

d𝜇(𝑥) = ∫ℝ𝑛⧵𝐻
𝑓 (𝜈𝐸(𝑥)) d|𝐷𝜒𝐸|(𝑥) = 𝑃𝜆(𝐸),

(3.6.2)
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where in the second inequality we applied Jensen inequality 2.1.7, and where the last equality follows since 𝑓 is
positively 1-homogeneous. Since lim𝑖 𝑃𝜆(𝐸𝑖) = 𝑃𝜆(𝐸) by assumption and since 𝑓 is not affine, equality in Jensen
inequality 2.1.7 implies that the identity map 𝕊𝑛−1 ∋ 𝑣↦ 𝑣 is constant 𝜈𝑥-a.e., for 𝜇-a.e. 𝑥 ∈ ℝ𝑛 ⧵𝐻 . This means
that 𝜈𝑥 = 𝛿𝑣𝑥 for some 𝑣𝑥 ∈ 𝕊𝑛−1 for 𝜇-a.e. 𝑥 ∈ ℝ𝑛 ⧵𝐻 . Hence (3.6.1) implies

𝑣𝑥 = 𝜈𝐸(𝑥)
|𝐷𝜒𝐸|
𝜇

(𝑥),

at 𝜇-a.e. 𝑥 ∈ ℝ𝑛 ⧵𝐻 , and since |𝑣𝑥| = |𝜈𝐸(𝑥)| = 1, then |𝐷𝜒𝐸|∕𝜇(𝑥) = 1 at 𝜇-a.e. 𝑥 ∈ ℝ𝑛 ⧵𝐻 , and 𝑣𝑥 = 𝜈𝐸(𝑥)
𝜇-almost everywhere. Inserting in (3.6.2) we deduce

∫ℝ𝑛⧵𝐻
𝑓
(

𝜈𝐸(𝑥)
)

d𝜇(𝑥) = ∫ℝ𝑛⧵𝐻
𝑓
(

∫𝕊𝑛−1
𝑣 d𝜈𝑥(𝑣)

)

d𝜇(𝑥) = ∫ℝ𝑛⧵𝐻
𝑓 (𝜈𝐸(𝑥)) d|𝐷𝜒𝐸|(𝑥).

Since 𝑓 (𝜈𝐸(𝑥)) > 0 and 𝜇 ≥ |𝐷𝜒𝐸|, we deduce that 𝜇 = |𝐷𝜒𝐸|, and then |𝐷𝜒𝐸𝑖| weakly* converges to |𝐷𝜒𝐸|.
We can now fix an increasing sequence of Lipschitz bounded open sets Ω𝑗 ⊂⊂ ℝ𝑛 ⧵𝐻 such that ∪𝑗Ω𝑗 = ℝ𝑛 ⧵𝐻
and 𝑃 (𝐸𝑖, 𝜕Ω𝑗) = 𝑃 (𝐸, 𝜕Ω𝑗) = 0 for every 𝑖, 𝑗. Hence lim𝑖 𝑃 (𝐸𝑖,Ω𝑗) = 𝑃 (𝐸,Ω𝑗) for any 𝑗. Moreover

𝑃 (𝐸𝑖,ℝ𝑛 ⧵ (𝐻 ∪ Ω𝑗)) ≤
1

1 − |𝜆|

(

𝑃𝜆(𝐸𝑖) − ∫Ω𝑗
𝑓 (𝜈𝐸𝑖) d|𝐷𝜒𝐸𝑖|

)

,

for any 𝑖, 𝑗. Applying Reshetnyak continuity theorem 2.1.23 on Ω𝑗 we get

lim sup
𝑖

𝑃 (𝐸𝑖,ℝ𝑛 ⧵ (𝐻 ∪ Ω𝑗)) ≤
1

1 − |𝜆| ∫ℝ𝑛⧵(𝐻∪Ω𝑗 )
𝑓 (𝜈𝐸) d|𝐷𝜒𝐸| ≤

1 + |𝜆|
1 − |𝜆|

𝑃 (𝐸,ℝ𝑛 ⧵ (𝐻 ∪ Ω𝑗)),

for any 𝑗. Therefore

lim sup
𝑖

𝑃 (𝐸𝑖,ℝ𝑛 ⧵𝐻) ≤ 𝑃 (𝐸,Ω𝑗) +
1 + |𝜆|
1 − |𝜆|

𝑃 (𝐸,ℝ𝑛 ⧵ (𝐻 ∪ Ω𝑗)),

for any 𝑗. Letting 𝑗 → ∞, the proof follows.
We will also exploit the concept of (𝐾, 𝑟0)-quasiminimal set.
Definition 3.6.2. Let 𝐸 ⊂ ℝ𝑛 ⧵𝐻 be a set of finite perimeter with finite measure, and let 𝐾 ≥ 1, 𝑟0 > 0. We say
that 𝐸 is a (𝐾, 𝑟0)-quasiminimal set (relatively in ℝ𝑛 ⧵𝐻) if

𝑃 (𝐸,ℝ𝑛 ⧵𝐻) ≤ 𝐾𝑃 (𝐹 ,ℝ𝑛 ⧵𝐻),

for any 𝐹 ⊂ ℝ𝑛 ⧵𝐻 such that 𝐸Δ𝐹 ⊂⊂ 𝐵𝑟(𝑥), for some ball 𝐵𝑟(𝑥) ⊂ ℝ𝑛 with 𝑟 ≤ 𝑟0 and 𝑥 ∈ {𝑥𝑛 ≥ 0}.
Quasiminimal sets have well-known topological regularity properties following from uniform density estimates at
boundary points. We recall these facts in the following statement. The proof follows, for example, by repeatedly
applying [Kin+13, Theorem 4.2] with 𝑋 = {𝑥𝑛 ≥ 0} in domains Ω = 𝑋 ∩ 𝐵𝑟0(𝑥) for 𝑥 ∈ 𝑋, in the nota-
tion of [Kin+13, Theorem 4.2]. Observe that in [Kin+13], the perimeter functional coincides with the relative
perimeter in ℝ𝑛 ⧵ 𝐻 , hence the definition of quasiminimal set in [Kin+13, Definition 3.1] coincides with our
Definition 3.6.2. Alternatively, the proof follows by adapting the proof of [Mag12, Theorem 21.11] working with
(𝐾, 𝑟0)-quasiminimal sets instead of (Λ, 𝑟0)-minimizers.
Theorem 3.6.3. Let 𝐸 ⊂ ℝ𝑛 ⧵ 𝐻 be a (𝐾, 𝑟0)-quasiminimal set, for some 𝐾 ≥ 1, 𝑟0 > 0. Then there exist
𝑚 = 𝑚(𝑛,𝐾, 𝑟0) ∈ (0, 1) and 𝑟′0 = 𝑟′0(𝑛,𝐾, 𝑟0) ∈ (0, 𝑟0] such that

𝑚 ≤
|𝐸 ∩ 𝐵𝑟(𝑥)|
|𝐵𝑟(𝑥) ⧵𝐻|

≤ 1 − 𝑚 ∀𝑥 ∈ 𝜕𝐸 ⧵𝐻, ∀ 𝑟 ∈ (0, 𝑟′0].

In particular the set 𝐸(1) of points of density 1 for 𝐸 is an open representative for 𝐸.

We will identify a (𝐾, 𝑟0)-quasiminimal set with its open representative 𝐸(1). In order to prove Theorem 1.1.2 we
need two preparatory lemmas.
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Lemma 3.6.4. For any 𝐾 ≥ 1, 𝑟0 > 0 there exist 𝛿7, 𝐶6, 𝐶7 > 0 depending on 𝑛, 𝜆,𝐾, 𝑟0 such that the following
holds. If 𝐸 ⊂ ℝ𝑛 ⧵𝐻 is a bounded (𝐾, 𝑟0)-quasiminimal set with |𝐸| = |𝐵𝜆| and 𝐷𝜆(𝐸) ≤ 𝛿7, then

𝑑
(

𝜕𝐸 ⧵𝐻, 𝜕𝐵𝜆(|𝐵𝜆|, 𝑥) ⧵𝐻
)

≤ 𝐶6𝛼𝜆(𝐸)
1
𝑛 , (3.6.3)

where 𝐵𝜆(|𝐵𝜆|, 𝑥) is a bubble realizing the asymmetry of 𝐸. Moreover

𝛽𝜆(𝐸) ≤ 𝐶7𝐷𝜆(𝐸)
1
2𝑛 . (3.6.4)

Proof. Up to translation, we can assume that 𝑥 = 0. Also, letting𝑚, 𝑟′0 be given by Theorem 3.6.3, up to decreasing
𝑟0 we can assume that 𝑟0 = 𝑟′0. Let 𝑝 ∈ 𝜕𝐸 ⧵𝐻 be such that

𝑑0 ∶= dist
(

𝑝, 𝜕𝐵𝜆(|𝐵𝜆|) ⧵𝐻
)

= max
{

dist
(

𝑦, 𝜕𝐵𝜆(|𝐵𝜆|) ⧵𝐻
)

∶ 𝑦 ∈ 𝜕𝐸 ⧵𝐻
}

.

Hence 𝐵𝑑0(𝑝) ∩ 𝜕𝐵𝜆(|𝐵𝜆|) ⧵𝐻 = ∅. Then either 𝐵𝑑0(𝑝) ⧵𝐻 ⊂ 𝐵𝜆(|𝐵𝜆|) or 𝐵𝑑0(𝑝) ⧵𝐻 ⊂ ℝ𝑛 ⧵ (𝐻 ∪ 𝐵𝜆(|𝐵𝜆|)).
In the first case Theorem 3.6.3 implies

𝑚|𝐵𝑟(𝑥) ⧵𝐻| ≤ |𝐵𝑟(𝑥) ⧵ (𝐻 ∪ 𝐸)| ≤ |𝐵𝜆(|𝐵𝜆|) ⧵ 𝐸| = 1
2
𝛼𝜆(𝐸) ∀ 𝑟 ∈ (0,min{𝑑0, 𝑟0}),

while in the second case Theorem 3.6.3 implies

𝑚|𝐵𝑟(𝑥) ⧵𝐻| ≤ |𝐵𝑟(𝑥) ∩ 𝐸| ≤ |𝐸 ⧵ 𝐵𝜆(|𝐵𝜆|)| = 1
2
𝛼𝜆(𝐸) ∀ 𝑟 ∈ (0,min{𝑑0, 𝑟0}).

Since |𝐵𝑅(𝑥) ⧵𝐻| ≥ 𝐶𝑟𝑛, then min{𝑑0, 𝑟0}𝑛 ≤ 𝐶𝛼𝜆(𝐸), for 𝐶 = 𝐶(𝑛, 𝜆,𝐾, 𝑟0). So by Corollary 3.4.3, choosing
𝛿7 small enough we have that 𝛼𝜆(𝐸) is so small that min{𝑑0, 𝑟0} = 𝑑0 and then

𝑑𝑛0 ≤ 𝐶𝛼𝜆(𝐸).

Since density estimates as those in Theorem 3.6.3 hold for 𝐵𝜆(|𝐵𝜆|), repeating the above argument exchanging the
roles of 𝐸 and 𝐵𝜆(|𝐵𝜆|), (3.6.3) follows.
From (3.6.3), we deduce that

𝜕𝐸 ⧵𝐻 ⊂
{

𝑦 ∈ {𝑥𝑛 ≥ 0} ∶ dist
(

𝑦, 𝜕𝐵𝜆(|𝐵𝜆|) ⧵𝐻
)

≤ 𝐶6𝛼𝜆(𝐸)
1
𝑛

}

.

Hence
𝑛−1 (𝜕∗𝐸Δ𝜕𝐵𝜆(|𝐵𝜆|) ∩ 𝜕𝐻

)

≤ 𝑛−1
({

(𝑥′, 0) ∈ ℝ𝑛 ∶ (1 − 𝜆2)
1
2 − 𝐶6𝛼𝜆(𝐸)

1
𝑛 ≤ |𝑥′| ≤ (1 − 𝜆2)

1
2 + 𝐶6𝛼𝜆(𝐸)

1
𝑛

})

≤ 𝐶𝛼𝜆(𝐸)
1
𝑛 ≤ 𝐶𝐷𝜆(𝐸)

1
2𝑛 ,

for some 𝐶 = 𝐶(𝑛, 𝜆,𝐾, 𝑟0), where we used Theorem 3.1.1 in the last inequality. Hence (3.6.4) follows.
Lemma 3.6.5. There exists 𝛿8, 𝐶8 > 0 depending on 𝑛, 𝜆 such that for any measurable set 𝐸 ⊂ ℝ𝑛 ⧵ 𝐻 with
|𝐸| = |𝐵𝜆| and 𝐷𝜆(𝐸) ≤ 𝛿8 there holds

𝛽𝜆(𝐸) ≤ 𝐶8𝐷𝜆(𝐸)
1
2𝑛 .

Proof. Fix Λ > 𝑛. Let𝑄 ⊂ ℝ𝑛 be a large cube whose interior contains the closure of 𝐵𝜆(|𝐵𝜆|), and let 𝐹 ⊂ 𝑄⧵𝐻
be such that |𝐵𝜆|∕2 ≤ |𝐹 | ≤ 2|𝐵𝜆|. Let 𝐺 ⊂ ℝ𝑛 ⧵ 𝐻 be such that 𝐺Δ𝐹 ⊂⊂ 𝐵𝑟0(𝑥), for 𝑥 ∈ {𝑥𝑛 ≥ 0} and
𝑟0 ∈ (0, 1) to be chosen small. Let 𝑍 ∶= 𝐺 ∩𝑄. Observe that

||𝑍| − |𝐹 || ≤ |𝑍Δ𝐹 | ≤ |𝐺Δ𝐹 |
1
𝑛
|𝐺Δ𝐹 |

𝑛−1
𝑛 ≤ 𝜔

1
𝑛
𝑛 𝑟

(

|𝐺|
𝑛−1
𝑛 + |𝐹 |

𝑛−1
𝑛

)

≤ 𝐶(𝑛)𝑟0 (𝑃 (𝐺,ℝ𝑛 ⧵𝐻) + 𝑃 (𝐹 ,ℝ𝑛 ⧵𝐻)) ,
(3.6.5)
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where in the last inequality we used the relative isoperimetric inequality in a half-space (see [CGR07] for the sharp
inequality). Let 𝑦, 𝑧 ∈ 𝜕𝐻 be such that

𝛽𝜆(𝐹 ) =
𝑛−1 (𝜕∗𝐹Δ𝜕𝐵𝜆(|𝐹 |, 𝑦) ∩ 𝜕𝐻

)

𝑛−1
(

𝜕𝐵𝜆(|𝐹 |, 𝑦) ∩ 𝜕𝐻
) , 𝛽𝜆(𝑍) =

𝑛−1 (𝜕∗𝑍Δ𝜕𝐵𝜆(|𝑍|, 𝑧) ∩ 𝜕𝐻
)

𝑛−1
(

𝜕𝐵𝜆(|𝑍|, 𝑧) ∩ 𝜕𝐻
) ,

Observe that 𝑦, 𝑧 exist since 𝐹 ,𝑍 ⊂ 𝑄. Suppose, for instance, that 𝛽𝜆(𝑍) ≥ 𝛽𝜆(𝐹 ). Then

𝛽𝜆(𝑍) − 𝛽𝜆(𝐹 ) ≤
𝑛−1 (𝜕∗𝑍Δ𝜕𝐵𝜆(|𝑍|, 𝑦) ∩ 𝜕𝐻

)

𝑛−1
(

𝜕𝐵𝜆(|𝑍|, 𝑦) ∩ 𝜕𝐻
) −

𝑛−1 (𝜕∗𝐹Δ𝜕𝐵𝜆(|𝐹 |, 𝑦) ∩ 𝜕𝐻
)

𝑛−1
(

𝜕𝐵𝜆(|𝐹 |, 𝑦) ∩ 𝜕𝐻
)

≤
𝑛−1 (𝜕∗𝑍Δ𝜕∗𝐹 ∩ 𝜕𝐻) +𝑛−1 (𝜕∗𝐹Δ𝜕𝐵𝜆(|𝐹 |, 𝑦) ∩ 𝜕𝐻

)

+𝑛−1 (𝜕𝐵𝜆(|𝐹 |, 𝑦)Δ𝜕𝐵𝜆(|𝑍|, 𝑦) ∩ 𝜕𝐻
)

𝑛−1
(

𝜕𝐵𝜆(|𝑍|, 𝑦) ∩ 𝜕𝐻
) +

−
𝑛−1 (𝜕∗𝐹Δ𝜕𝐵𝜆(|𝐹 |, 𝑦) ∩ 𝜕𝐻

)

𝑛−1
(

𝜕𝐵𝜆(|𝐹 |, 𝑦) ∩ 𝜕𝐻
)

=
𝑛−1 (𝜕∗𝑍Δ𝜕∗𝐹 ∩ 𝜕𝐻)
𝑛−1

(

𝜕𝐵𝜆(|𝑍|, 𝑦) ∩ 𝜕𝐻
) +

|

|

|

𝑛−1 (𝜕𝐵𝜆(|𝐹 |, 𝑦) ∩ 𝜕𝐻
)

−𝑛−1 (𝜕𝐵𝜆(|𝑍|, 𝑦) ∩ 𝜕𝐻
)

|

|

|

𝑛−1
(

𝜕𝐵𝜆(|𝑍|, 𝑦) ∩ 𝜕𝐻
) +

+𝑛−1 (𝜕∗𝐹Δ𝜕𝐵𝜆(|𝐹 |, 𝑦) ∩ 𝜕𝐻
)

(

1
𝑛−1

(

𝜕𝐵𝜆(|𝑍|, 𝑦) ∩ 𝜕𝐻
) − 1

𝑛−1
(

𝜕𝐵𝜆(|𝐹 |, 𝑦) ∩ 𝜕𝐻
)

)

(3.6.6)
By the trace inequality in Theorem 2.3.4 we estimate

𝑛−1 (𝜕∗𝑍Δ𝜕∗𝐹 ∩ 𝜕𝐻
)

≤ 𝐶(𝑛) (|𝑍Δ𝐹 | + 𝑃 (𝑍,ℝ𝑛 ⧵𝐻) + 𝑃 (𝐹 ,ℝ𝑛 ⧵𝐻))
≤ 𝐶(𝑛) (|𝐺Δ𝐹 | + 𝑃 (𝐺,ℝ𝑛 ⧵𝐻) + 𝑃 (𝐹 ,ℝ𝑛 ⧵𝐻))
≤ 𝐶(𝑛) (𝑃 (𝐺,ℝ𝑛 ⧵𝐻) + 𝑃 (𝐹 ,ℝ𝑛 ⧵𝐻)) ,

where the last inequality follows as in (3.6.5), and 𝐶 denotes a constant depending on suitable parameters that
changes from line to line. For 𝑟0 small, depending only on 𝑛, 𝜆, we can ensure that

𝑛−1 (𝜕𝐵𝜆(|𝑍|, 𝑦) ∩ 𝜕𝐻
)

≥ 𝐶(𝑛, 𝜆) > 0.

Finally
|

|

|

𝑛−1 (𝜕𝐵𝜆(|𝐹 |, 𝑦) ∩ 𝜕𝐻
)

−𝑛−1 (𝜕𝐵𝜆(|𝑍|, 𝑦) ∩ 𝜕𝐻
)

|

|

|

≤ 𝐿 ||𝑍| − |𝐹 ||
(3.6.5)
≤ 𝐶(𝑛, 𝜆) (𝑃 (𝐺,ℝ𝑛 ⧵𝐻) + 𝑃 (𝐹 ,ℝ𝑛 ⧵𝐻)) ,

for a suitable Lipschitz constant 𝐿 = 𝐿(𝑛, 𝜆). Therefore (3.6.6) becomes
𝛽𝜆(𝑍) − 𝛽𝜆(𝐹 ) ≤ 𝐶(𝑛, 𝜆) (𝑃 (𝐺,ℝ𝑛 ⧵𝐻) + 𝑃 (𝐹 ,ℝ𝑛 ⧵𝐻)) .

In case 𝛽𝜆(𝑍) < 𝛽𝜆(𝐹 ), the very same argument leads to an analogous estimate. Hence
|

|

𝛽𝜆(𝑍) − 𝛽𝜆(𝐹 )|| ≤ 𝐶(𝑛, 𝜆) (𝑃 (𝐺,ℝ𝑛 ⧵𝐻) + 𝑃 (𝐹 ,ℝ𝑛 ⧵𝐻)) . (3.6.7)
Up to taking a smaller 𝑟0, we fix 𝑟0 = 𝑟0(𝑛, 𝜆,Λ) ∈ (0, 1) and 𝜀0 = 𝜀0(𝑛, 𝜆,Λ) ∈ (0, 1) such that 1−|𝜆|−𝜀0𝐶(𝑛, 𝜆)−
Λ𝐶(𝑛)𝑟0 > 0, and we define

𝐾 ∶=
1 + |𝜆| + 𝜀0𝐶(𝑛, 𝜆) + Λ𝐶(𝑛)𝑟0
1 − |𝜆| − 𝜀0𝐶(𝑛, 𝜆) − Λ𝐶(𝑛)𝑟0

> 1.

Let 𝛿7, 𝐶7 be given by Lemma 3.6.4 corresponding to the parameters 𝐾, 𝑟0∕2. We want to prove that if 𝛿7 is
sufficiently small, then

𝛽𝜆(𝐸) ≤ 2𝐶7𝐷𝜆(𝐸)
1
2𝑛 .
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We argue by contradiction assuming that there exist sets 𝐸𝑗 ⊂ ℝ𝑛 ⧵𝐻 with |𝐸𝑗| = |𝐵𝜆| and 𝐷𝜆(𝐸𝑗) ≤ 1∕𝑗 such
that

𝛽𝜆(𝐸𝑗) > 2𝐶7𝐷𝜆(𝐸𝑗)
1
2𝑛 ,

for any 𝑗. Up to translation, 𝐸𝑗 → 𝐵𝜆(|𝐵𝜆|, 0) and 𝑃𝜆(𝐸𝑗) → 𝑃𝜆(𝐵𝜆). Since the trace operator is continuous with
respect to strict convergence of 𝐵𝑉 functions by Theorem 2.3.7, by Lemma 3.6.1 we deduce that 𝛽𝜆(𝐸𝑗) → 0.
Let 𝐹𝑗 be a minimizer of the problem

min
{

𝑃𝜆(𝐸) + 𝜀0|𝛽𝜆(𝐸) − 𝛽𝜆(𝐸𝑗)| + Λ |

|

|

|𝐸| − |𝐸𝑗|
|

|

|

∶ 𝐸 ⊂ 𝑄
}

. (3.6.8)
By Corollary 3.3.6, up to subsequence 𝐹𝑗 converges to a limit set 𝐹 in 𝐿1. If by contradiction 𝛽𝑗(𝐹𝑗) ̸→ 0, by
Lemma 3.5.13 for large 𝑗 we would have that

𝑃𝜆(𝐵𝜆(|𝐵𝜆|)) + 𝜀0𝛽𝜆(𝐸𝑗) < 𝑃𝜆(𝐹𝑗) + 𝜀0|𝛽𝜆(𝐹𝑗) − 𝛽𝜆(𝐸𝑗)| + Λ |

|

|

|𝐹𝑗| − |𝐸𝑗|
|

|

|

,

contradicting the minimality of 𝐹𝑗 . Hence 𝛽𝜆(𝐹𝑗) → 0. It follows that, up to translation, 𝐹𝑗 converges to 𝐵𝜆(|𝐵𝜆|)
in 𝐿1. Comparing with 𝐸𝑗 , we also see that 𝑃𝜆(𝐹𝑗) → 𝑃𝜆(𝐵𝜆).
We want to show that 𝐹𝑗 is (𝐾, 𝑟0)-quasiminimal for 𝑗 large. Indeed, |𝐵𝜆|∕2 ≤ |𝐹𝑗| ≤ 2|𝐵𝜆| for 𝑗 large. Hence
we can apply (3.6.5) and (3.6.7) with 𝐹 = 𝐹𝑗 . Letting 𝐺 ⊂ ℝ𝑛 ⧵𝐻 such that 𝐺Δ𝐹 ⊂⊂ 𝐵𝑟0(𝑥), for 𝑥 ∈ {𝑥𝑛 ≥ 0},
denoting 𝑍 ∶= 𝐺 ∩𝑄, by minimality of 𝐹𝑗 for (3.6.8) we find

(1 − |𝜆|)𝑃 (𝐹𝑗 ,ℝ𝑛 ⧵𝐻) ≤ (1 + |𝜆|)𝑃 (𝑍,ℝ𝑛 ⧵𝐻) + 𝜀0
|

|

|

𝛽𝜆(𝑍) − 𝛽𝜆(𝐹𝑗)
|

|

|

+ Λ |

|

|

|𝑍| − |𝐹𝑗|
|

|

|

≤ (1 + |𝜆|)𝑃 (𝐺,ℝ𝑛 ⧵𝐻) +
(

𝜀0𝐶(𝑛, 𝜆) + Λ𝐶(𝑛)𝑟0
)

(

𝑃 (𝐺,ℝ𝑛 ⧵𝐻) + 𝑃 (𝐹𝑗 ,ℝ𝑛 ⧵𝐻)
)

,

proving that 𝐹𝑗 is (𝐾, 𝑟0)-quasiminimal.
By minimality of 𝐹𝑗 , we have

𝑃𝜆(𝐹𝑗) + Λ |

|

|

|𝐹𝑗| − |𝐵𝜆|||
|

+ 𝜀0
|

|

|

𝛽𝜆(𝐹𝑗) − 𝛽𝜆(𝐸𝑗)
|

|

|

≤ 𝑃𝜆(𝐸𝑗)

≤ 𝑃𝜆(𝐵𝜆) +
𝑃𝜆(𝐵𝜆)
(2𝐶7)2𝑛

𝛽2𝑛𝜆 (𝐸𝑗) ≤ 𝑃𝜆(𝐹𝑗) + Λ |

|

|

|𝐹𝑗| − |𝐵𝜆|||
|

+
𝑃𝜆(𝐵𝜆)
(2𝐶7)2𝑛

𝛽2𝑛𝜆 (𝐸𝑗)
(3.6.9)

Therefore
|𝛽𝜆(𝐹𝑗) − 𝛽𝜆(𝐸𝑗)| ≤

𝑃𝜆(𝐵𝜆)
𝜀0(2𝐶7)2𝑛

𝛽2𝑛𝜆 (𝐸𝑗),

and then
𝛽𝜆(𝐹𝑗)
𝛽𝜆(𝐸𝑗)

→ 1.

Next we select {�̂�𝑗} ⊂ (0,∞) such that, setting 𝐹𝑗 ∶= �̂�𝑗𝐹𝑗 , then |𝐹𝑗| = |𝐵𝜆|. Clearly �̂�𝑗 → 1 since |𝐹𝑗| → |𝐵𝜆|.
Since 𝑃𝜆(𝐹𝑗) → 𝑃𝜆(𝐵𝜆)) and Λ > 𝑛, for 𝑗 sufficiently large we have 𝑃𝜆(𝐹𝑗) < Λ|𝐹𝑗| and

|

|

|

𝑃𝜆(𝐹𝑗) − 𝑃𝜆(𝐹𝑗)
|

|

|

= 𝑃𝜆(𝐹𝑗)
|

|

|

�̂�𝑛−1𝑗 − 1||
|

≤ 𝑃𝜆(𝐹𝑗)
|

|

|

�̂�𝑛𝑗 − 1||
|

≤ Λ |

|

|

�̂�𝑛𝑗 − 1||
|

|𝐹𝑗| = Λ |

|

|

|𝐹𝑗| − |𝐹𝑗|
|

|

|

.

Hence, by definition of �̂�𝑗 and by (3.6.9) we get

𝑃𝜆(𝐹𝑗) ≤ 𝑃𝜆(𝐹𝑗) + Λ |

|

|

|𝐹𝑗| − |𝐹𝑗|
|

|

|

= 𝑃𝜆(𝐹𝑗) + Λ |

|

|

|𝐹𝑗| − |𝐵𝜆|||
|

(3.6.9)
≤ 𝑃𝜆(𝐵𝜆) +

𝑃𝜆(𝐵𝜆)
(2𝐶7)2𝑛

𝛽2𝑛𝜆 (𝐸𝑗). (3.6.10)

Since 𝛽𝜆(𝐹𝑗)∕𝛽𝜆(𝐸𝑗) → 1 as 𝑗 → ∞ and 𝛽𝜆 is scale invariant, we have 𝛽𝜆(𝐸𝑗)2𝑛 < 2𝛽𝜆(𝐹𝑗)2𝑛 for 𝑗 sufficiently
large. Hence from (3.6.10) we obtain

𝛽𝜆(𝐹𝑗)2𝑛 ≥ 22𝑛−1𝐶2𝑛
7 𝐷𝜆(𝐹𝑗),

that is 𝛽𝜆(𝐹𝑗) ≥ 21−
1
2𝑛𝐶7𝐷𝜆(𝐹𝑗)

1
2𝑛 . On the other hand, for 𝑗 large, 𝐹𝑗 is (𝐾, �̂�𝑗𝑟0)-quasiminimal. As �̂�𝑗 → 1, then

𝐹𝑗 is (𝐾, 𝑟0∕2)-quasiminimal for 𝑗 large. Moreover𝐷𝜆(𝐹𝑗) → 0. By the choice of 𝐶7 above, Lemma 3.6.4 implies
that

𝛽𝜆(𝐹𝑗) ≤ 𝐶7𝐷𝜆(𝐹𝑗)
1
2𝑛 ,

giving a contradiction.
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Proof of Theorem 3.1.2. By Lemma 3.6.5 it follows that for any 𝐴 > 0 there exists 𝐶𝐴 > 0 such that for any set
𝐸 ⊂ ℝ𝑛 ⧵𝐻 with |𝐸| = |𝐵𝜆| and 𝑛−1(𝜕∗𝐸 ∩ 𝜕𝐻) ≤ 𝐴 there holds

𝛽𝜆(𝐸) ≤ 𝐶𝐴𝐷𝜆(𝐸)
1
2𝑛 . (3.6.11)

Indeed, if 𝐷𝜆(𝐸) ≤ 𝛿8, for 𝛿8 as in Lemma 3.6.5, then (3.6.11) follows with 𝐶𝐴 = 𝐶8. Otherwise we just have

𝛽𝜆(𝐸) ≤ 𝐶(𝑛, 𝜆)
(

𝑛−1(𝜕∗𝐸 ∩ 𝜕𝐻) +𝑛−1(𝜕∗𝐵𝜆(|𝐵𝜆|, 0) ∩ 𝜕𝐻)
)

≤ 𝐶(𝑛, 𝜆, 𝐴)
𝛿

1
2𝑛
8

𝛿
1
2𝑛
8

≤ 𝐶(𝑛, 𝜆, 𝐴)𝐷
1
2𝑛
𝜆 .

Next we observe that, letting 𝐶𝜆 such that 𝑃𝜆(𝐵𝜆) ≤ 𝐶𝜆𝑛−1(𝜕𝐵𝜆(|𝐵𝜆|) ∩ 𝜕𝐻), then for any set 𝐸 ⊂ ℝ𝑛 ⧵𝐻 with
|𝐸| = |𝐵𝜆| and 𝑛−1(𝜕∗𝐸 ∩ 𝜕𝐻) ≥ 2𝐶𝜆

1−𝜆
𝑛−1(𝜕𝐵𝜆(|𝐵𝜆|) ∩ 𝜕𝐻) there holds

𝛽𝜆(𝐸) ≤ 𝐶9𝐷𝜆(𝐸), (3.6.12)
for a constant 𝐶9 = 𝐶9(𝑛, 𝜆) > 0.
Indeed

𝑃𝜆(𝐸) − 𝑃𝜆(𝐵𝜆) ≥ (1 − 𝜆)𝑛−1(𝜕∗𝐸 ∩ 𝜕𝐻) − 𝐶𝜆𝑛−1(𝜕𝐵𝜆(|𝐵𝜆|) ∩ 𝜕𝐻) ≥ 1 − 𝜆
2

𝑛−1(𝜕∗𝐸 ∩ 𝜕𝐻),

and
𝛽𝜆(𝐸) ≤ 𝐶(𝑛, 𝜆)

(

𝑛−1(𝜕∗𝐸 ∩ 𝜕𝐻) +𝑛−1(𝜕∗𝐵𝜆(|𝐵𝜆|, 0) ∩ 𝜕𝐻)
)

≤ 𝐶(𝑛, 𝜆, 𝐶𝜆)𝑛−1(𝜕∗𝐸 ∩ 𝜕𝐻).

Setting now 𝐴 ∶= 2𝐶𝜆
1−𝜆

𝑛−1(𝜕𝐵𝜆(|𝐵𝜆|) ∩ 𝜕𝐻) in (3.6.11), taking into account (3.6.12) we conclude that for any
set 𝐸 ⊂ ℝ𝑛 ⧵𝐻 with |𝐸| = |𝐵𝜆| there holds

𝛽𝜆(𝐸) ≤ max{𝐶𝐴, 𝐶9} max
{

𝐷𝜆(𝐸), 𝐷𝜆(𝐸)
1
2𝑛

}

.
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Chapter 4

Existence and nonexistence results for the
capillarity problem with nonlocal repulsion
and gravity

4.1 Main results

If 𝑔 ∶ ℝ𝑛 ⧵ {0} → (0,∞), we define the Riesz-type potential

ℛ(𝐸) ∶= ∫𝐸 ∫𝐸
𝑔(𝑦 − 𝑥) d𝑦 d𝑥.

Given a function 𝐺 ∶ (0,∞) → (0,∞), we define the gravity-type potential

𝒢 (𝐸) ∶= ∫𝐸
𝐺(𝑥𝑛) d𝑥.

If 𝑣 > 0 and we denote
ℱ 𝜆(𝐸) ∶= 𝑃𝜆(𝐸) +ℛ(𝐸) + 𝒢 (𝐸),

we consider the nonlocal problem
inf{ℱ 𝜆(𝐸) ∶ 𝐸 ⊂ {𝑥𝑛 > 0}, |𝐸| = 𝑣}. (4.1.1)

The first result in this chapter is an existence result in the capillarity context and in the small mass regime, together
with qualitative properties of volume constrained minimizers.
Theorem 4.1.1 ([Pas25]). Let 𝑔 be a ℛ-admissible 𝑞-growing function, 𝑞 ≥ 0, and let 𝐺 be a 𝒢 -admissible
function. There exists a mass �̄� = �̄�(𝑛, 𝜆, 𝑔, 𝐺, 𝑞) > 0 such that, for every 𝑚 ∈ (0, �̄�), there exists a minimizer of
ℱ 𝜆 in the class

𝑚 ∶= {Ω ⊂ ℝ𝑛 ⧵𝐻 measurable ∶ |Ω| = 𝑚}

and it satisfies
𝛼𝜆(𝐸) ≤ 𝑐(𝑛, 𝜆, 𝑔, 𝐺)𝑚

1
2𝑛 .

Moreover, if 𝑔 is also infinitesimal, minimizers are indecomposable and, if in addition 𝑔 is symmetric, minimizers
are essentially bounded.
Furthermore, if 𝑔 is also 0-growing, infinitesimal and symmetric and 𝐺 is coercive, minimizers have no holes, i.e.,
if 𝐸 is a minimizer of ℱ 𝜆 in 𝑚, there is no set 𝐹 ⊂ ℝ𝑛 ⧵ (𝐻 ∪ 𝐸) with |𝐹 | > 0 such that

𝑃𝜆(𝐸) = 𝑃𝜆(𝐸 ∪ 𝐹 ) + 𝑃 (𝐹 ,ℝ𝑛 ⧵𝐻) + 𝜆𝑛−1(𝜕∗𝐹 ∩ 𝜕𝐻).

Finally, if 𝑔 is ℛ-admissible and coercive and 𝐺 is 𝒢 -admissible and coercive, there exists a minimizer of ℱ 𝜆 in
𝑚 for any 𝑚 > 0.
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We remark that, by a symmetry argument, analyzing the Euler-Lagrange equation of problem (4.1.1), it is possible
to verify that the sets 𝐵𝜆(𝑚, 𝑥) are not volume constrained minimizers of ℱ 𝜆; actually, the isoperimetric bubbles
𝐵𝜆(𝑚, 𝑥) are not even volume constrained critical points of ℱ 𝜆. It is left as a future project to study quantitative
properties of minimizers to (4.1.1), such as the proximity of minimizers from bubbles 𝐵𝜆(𝑚, 𝑥) in terms of the
smallness of the mass.
For large masses and for suitable choices of 𝑔, the repulsive interaction dominates and the variational problem in
Theorem 4.1.1 does not admit a minimizer.
Theorem 4.1.2 ([Pas25]). Let

𝑔(𝑥) = 1
|𝑥|𝛽

, 0 < 𝛽 < 𝑛, 𝑥 ∈ ℝ𝑛 ⧵ {0}

and let 𝐺 be 𝒢 -admissible. For every 𝛽 ∈ (0, 2], there exists �̃� > 0, depending on 𝑛, 𝜆, 𝛽, 𝐺, such that for all
𝑚 ≥ �̃� the minimization problem

inf{ℱ 𝜆(𝐸) ∶ 𝐸 ⊂ ℝ𝑛 ⧵𝐻, |𝐸| = 𝑚}

has no minimizers.

Therefore, for a general 𝑔, existence may fail for masses large enough, since minimizers tend to split in two or more
components which then move apart one from the other in order to decrease the nonlocal energy. To capture this
phenomenon, it is convenient to introduce a generalized energy defined as

ℱ̃ 𝜆(𝐸) ∶= inf
ℎ∈ℕ

ℱ̃ 𝜆
ℎ (𝐸),

where
ℱ̃ 𝜆
ℎ (𝐸) ∶= inf

{ ℎ
∑

𝑖=1
ℱ 𝜆(𝐸𝑖) ∶ 𝐸 =

ℎ
⋃

𝑖=1
𝐸𝑖, 𝐸𝑖 ∩ 𝐸𝑗 = ∅ for 1 ≤ 𝑖 ≠ 𝑗 ≤ ℎ

}

.

Note that in this functional the interaction between different components is not evaluated, which corresponds to
consider them “at infinite distance” one from the other. By considering ℱ̃ 𝜆 instead of ℱ 𝜆, we can prove the
following generalized existence result.
Theorem 4.1.3 ([Pas25]). Let 𝑔 be a ℛ-admissible 𝑞-growing function, 𝑞 ≥ 0, and let 𝐺 be a 𝒢 -admissible
function. For every 𝑚 > 0 there exists a minimizer of ℱ̃ 𝜆 in the class

𝑚 = {Ω ⊂ ℝ𝑛 ⧵𝐻 measurable ∶ |Ω| = 𝑚} .

More precisely, there exist a set 𝐸 ∈  and a subdivision 𝐸 = ∪ℎ𝑗=1𝐸
𝑗 , with pairwise disjoint sets 𝐸𝑗 , such that

ℱ̃ 𝜆(𝐸) =
ℎ
∑

𝑗=1
ℱ 𝜆(𝐸𝑗) = inf

{

ℱ̃ 𝜆(Ω) ∶ Ω ∈ 
}

.

Moreover, for every 1 ≤ 𝑗 ≤ ℎ, the set 𝐸𝑗 is a minimizer of both the standard and the generalized energy for its
volume, i.e.

ℱ̃ 𝜆(𝐸𝑗) = ℱ 𝜆(𝐸𝑗) = min
{

ℱ̃ 𝜆(Ω) ∶ Ω ⊂ ℝ𝑛 ⧵𝐻, |Ω| = |𝐸𝑗
|

}

.

Remark 4.1.4. We note that, if 𝑔 is infinitesimal, then
inf

{

ℱ̃ 𝜆(Ω) ∶ Ω ∈ 𝑚
}

= inf
{

ℱ 𝜆(Ω) ∶ Ω ∈ 𝑚
}

.

The proof can be easily adapted by [NP21, Lemma 3.4], with attention given to translating the components of a
partition without changing the 𝑛-th component. In this case, every minimizer of ℱ 𝜆 is also a minimizer of ℱ̃ 𝜆.
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Strategy of the proof and comments The proof of Theorem 4.1.1 is divided into several steps. In the spirit of
[KM14], the existence of minimizers in the small mass regime follows by the direct method of the calculus of
variations, see Theorem 4.3.1, once we show that for sufficiently small mass every minimizing sequence of the
energy may be replaced by another minimizing sequence where all sets have uniformly bounded diameter, see
Lemma 4.3.5. We remark that we heavily use the quantitative isoperimetric inequality for the capillarity problem
proved in [PP24] and described in Chapter 3, which estimates the Fraenkel asymmetry of a competitor with respect
to the optimal sets in terms of the energy deficit. As pointed out in Chapter 3, it is unclear at the moment how
to apply stronger isoperimetric inequalities of Fuglede-type [CL12; Fug89] for nearly spherical sets in the present
capillarity framework; instead, stronger isoperimetric inequalities have been used as fundamental tools, for exam-
ple, in [AFM13; BC14; CFP23]. In fact, the classical Fuglede’s method relies on the precise knowledge of the
eigenvalues of the Laplace-Beltrami operator, which is not available for 𝑃𝜆 on optimal sets for generic 𝜆 ∈ (−1, 1).
Moreover, in our case it is in general not possible to globally parametrize 𝐶1-close boundaries one on the other as
normal graphs.
The boundedness result in Theorem 4.1.1 follows once we show that minimizers enjoy uniform density estimates
at boundary points. In order to do so, we prove that, under suitable conditions on the Riesz potential, minimizers
are (𝐾, 𝑟0)-quasiminimal sets for all masses, see Definition 3.6.2 and Lemma 4.3.13. Indeed quasiminimal sets
have well-known topological regularity properties (Theorem 3.6.3), which easily guarantee boundedness, see The-
orem 4.3.8. Note that the lack of symmetry of the problem, due to the presence of gravitational potential and the fact
that ambient space is a half-space, forces us to deal with the vertical direction in a separate way, see Lemma 4.3.12.
The absence of holes is based on the combination of some techniques from [KM14] and [NP21]. We firstly prove
some density estimates which improve, under suitable hypotheses on 𝑔, the analogous estimates for quasiminimal
sets, by providing bounds independent of the minimizer, see Lemma 4.4.2. In fact, this allows to prove the bound-
edness in the vertical direction with a bound independent of the minimizer, see Lemma 4.4.8, and to obtain absence
of holes arguing by contradiction, see Theorem 4.4.7.
The proof of Theorem 4.1.2 is based on the combination of some techniques from [FN21] and [KM14] and exploits
some estimates on the diameter and the nonlocal potential energy of minimizers. We remark that the range of the
exponent 𝛽 in Theorem 4.1.2 is the same as the analogous nonexistence results in the classical setting [CNT22;
FKN16; FN21; KM14; LO14].
The proof of Theorem 4.1.3 is inspired by [NP21] and exploits the isoperimetric inequality for the capillarity
functional 𝑃𝜆. In our case the argument must be modified to take into account the presence of the gravitational
energy and, as before, estimates in the vertical direction must be treated separately. We remark that also the possible
choices for the kernels 𝑔 in our Theorem 4.1.3 allow for more freedom than those considered in [NP21].

From now on and for the rest of the chapter we assume that 𝜆 ∈ (−1, 1) and 𝑛 ∈ ℕ with 𝑛 ≥ 2 are fixed.

4.2 Definitions

We provide some definitions for the kernels of Riesz-type potential ℛ and gravity-type potential 𝒢 . In particular,
in the following Definition 4.2.1 and Definition 4.2.4 we will impose pointwise requirements on the functions 𝑔,
𝐺, i.e., it is understood that we fix pointwise defined representatives for the functions 𝑔, 𝐺.
Definition 4.2.1. A function 𝑔 ∶ ℝ𝑛 ⧵ {0} → (0,∞) is ℛ-admissible if 𝑔 ∈ 𝐿1

𝑙𝑜𝑐(ℝ
𝑛 ⧵ {0}) and ℛ(𝐵1) <∞.

A ℛ-admissible function 𝑔 ∶ ℝ𝑛 ⧵ {0} → (0,∞) is 𝑞-growing, for some 𝑞 ∈ [0,∞), if for every 𝑥 ∈ ℝ𝑛 ⧵ {0} and
every 𝛼 > 1 it holds

𝑔(𝛼𝑥) ≤ 𝛼𝑞𝑔(𝑥).

A ℛ-admissible function 𝑔 ∶ ℝ𝑛 ⧵ {0} → (0,∞) is infinitesimal if
lim

|𝑥|→+∞
𝑔(𝑥) = 0.

A ℛ-admissible function 𝑔 ∶ ℝ𝑛 ⧵ {0} → (0,∞) is symmetric if
𝑔(−𝑥) = 𝑔(𝑥) ∀𝑥 ∈ ℝ𝑛 ⧵ {0}.

79



A ℛ-admissible function 𝑔 ∶ ℝ𝑛 ⧵ {0} → (0,∞) is coercive if
𝑔(𝑥) → +∞ as |𝑥| → +∞.

Given two measurable sets 𝐿, 𝑀 ⊂ ℝ𝑛 ⧵𝐻 we let

ℛ(𝐿,𝑀) ∶= ∫𝐿 ∫𝑀
𝑔(𝑦 − 𝑥) d𝑦 d𝑥.

Remark 4.2.2. The functions 1
|𝑥|𝛽

, for 𝛽 ∈ (0, 𝑛), are ℛ-admissible, 0-growing, infinitesimal and symmetric.
Remark 4.2.3. The attractive-repulsive kernels |𝑥|𝛽1 + 1

|𝑥|𝛽2
, for 𝛽1 > 0 and 𝛽2 ∈ (0, 𝑛), are ℛ-admissible 𝛽1-

growing symmetric functions. At the same time they diverge positively as |𝑥| → +∞.
Definition 4.2.4. A function 𝐺 ∶ (0,∞) → (0,∞) is 𝒢 -admissible if 𝐺 ∈ 𝐿1

𝑙𝑜𝑐(0,∞),
sup
𝑡∈(0,2)

𝐺(𝑡) <∞, (4.2.1)

and
𝐺(𝛼𝑡) ≤ 𝛼𝑛𝐺(𝑡), ∀𝛼 > 1, 𝑡 > 0. (4.2.2)

A 𝒢 -admissible function 𝐺 ∶ (0,∞) → (0,∞) is coercive if
𝐺(𝑡) → +∞ as 𝑡→ +∞.

Remark 4.2.5. The identity function 𝐺(𝑡) = 𝑡 on (0,+∞) is a 𝒢 -admissible function.
Remark 4.2.6. Conditions (4.2.1) and (4.2.2) easily imply

𝐺(𝑡) = 𝐺(𝑡 ⋅ 1) ≤ 𝑡𝑛𝐺(1) ≤ 𝑐(𝐺) 𝑡𝑛, ∀𝑡 > 1.

4.3 Existence of minimizers for small masses

Existence

The goal of this Section is to prove the following
Theorem 4.3.1. Let 𝑔 be a ℛ-admissible 𝑞-growing function and let 𝐺 be a 𝒢 -admissible function. There exists
a mass �̄� = �̄�(𝑛, 𝜆, 𝑔, 𝐺, 𝑞) > 0 such that, for all 𝑚 ∈ (0, �̄�), there exists a minimizer of ℱ 𝜆 in the class

𝑚 ∶= {Ω ⊂ ℝ𝑛 ⧵𝐻 measurable ∶ |Ω| = 𝑚}.

We begin by proving some preparatory lemmas, which estimate the energy of some competitors.
Lemma 4.3.2. Let 𝑔 be ℛ-admissible and 𝐺 be 𝒢 -admissible. There exists a constant 𝑐 = 𝑐(𝑛, 𝜆, 𝑔, 𝐺) such that

ℛ(𝐵𝜆(𝑚)) ≤ 𝑐 𝑚, 𝒢 (𝐵𝜆(𝑚)) ≤ 𝑐 𝑚

for every 0 < 𝑚 ≤ |𝐵𝜆|.

Proof. Let us denote by �̄�𝑙 ⊂ ℝ𝑛 ⧵ 𝐻 , with 𝑙 > 0, the cube [−𝑙, 𝑙] × ⋯ × [−𝑙, 𝑙] × [0, 2𝑙]. For any 𝑁 ∈ ℕ
the cube �̄�1 is the essential union of (2𝑁)𝑛 disjoint isometric cubes 𝑄𝑖

1
2𝑁

of side 1∕𝑁 . If �̄� 1
2𝑁
⊂ �̄�1 is the cube

[

− 1
2𝑁
, 1
2𝑁

]

×⋯ ×
[

− 1
2𝑁
, 1
2𝑁

]

×
[

0, 1
𝑁

]

, evidently

ℛ(�̄�1) ≥
(2𝑁)𝑛
∑

𝑖=1
ℛ(𝑄𝑖

1
2𝑁

) = (2𝑁)𝑛ℛ(�̄� 1
2𝑁
).
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Moreover

2𝑛 sup
(0,2)

𝐺 = |�̄�1| sup
(0,2)

𝐺 = (2𝑁)𝑛
|�̄�1|

(2𝑁)𝑛
sup
(0,2)

𝐺 = (2𝑁)𝑛 ∫�̄� 1
2𝑁

sup
(0,2)

𝐺 d𝑥 ≥ (2𝑁)𝑛𝒢 (�̄� 1
2𝑁
).

For any 0 < 𝑟 ≤ 1 we denote by𝑁 the integer part of 1
2𝑟 , so that (2𝑟)−1 ≤ 2𝑁 ≤ 𝑟−1. The above estimates, together

with 4𝑟𝑁 ≥ 1, imply that
ℛ(�̄�𝑟) ≤ (4𝑟)𝑛𝑁𝑛ℛ(�̄� 1

2𝑁
) ≤ 2𝑛ℛ(�̄�1)𝑟𝑛

and
𝒢 (�̄�𝑟) ≤ (4𝑟)𝑛𝑁𝑛𝒢 (�̄� 1

2𝑁
) ≤ 4𝑛

(

sup
(0,2)

𝐺
)

𝑟𝑛.

If 𝑟 = 𝑚
1
𝑛

|𝐵𝜆|
1
𝑛
≤ 1, since 𝐵𝜆(|𝐵𝜆|) ⊂ �̄�1, we get 𝐵𝜆(𝑚) ⊂ �̄�𝑟 and we conclude that

ℛ(𝐵𝜆(𝑚)) ≤ ℛ(�̄�𝑟) ≤ 𝑐𝑟𝑛 ≤ 𝑐𝑚

and
𝒢 (𝐵𝜆(𝑚)) ≤ 𝒢 (�̄�𝑟) ≤ 𝑐𝑟𝑛 ≤ 𝑐𝑚.

Corollary 4.3.3. Let 𝑔 be ℛ-admissible and infinitesimal and let𝐺 be 𝒢 -admissible. For every 𝑚 ≥ 1 there exists
𝐸 ⊂ ℝ𝑛 ⧵𝐻 with |𝐸| = 𝑚 such that ℱ 𝜆(𝐸) ≤ 𝑐𝑚 for some 𝑐 depending on 𝑛, 𝜆, 𝑔 and 𝐺.

Proof. Let us consider the set 𝐸 given by a collection of 𝑁 ≥ 1 spherical caps {𝐵𝜆(𝑣, 𝑥𝑖)
}

1≤𝑖≤𝑁 of equal volume
𝑣 and with centers located at 𝑥𝑖 = 𝑖𝑅𝑒1, 𝑖 = 1,… , 𝑁 , with 𝑅 large enough so that 𝐵𝜆(𝑣, 𝑥𝑖) are pairwise disjoint.
We choose the number 𝑁 as the smallest integer for which the volume of each spherical cap does not exceed
min

{

1, |𝐵𝜆|
}. In particular 𝑁𝑣 = 𝑚 and 𝑁 =

⌈

𝑚
min{1,|𝐵𝜆|}

⌉

. Note that, by [PP24, Lemma 3.1], since 𝑣 ≤ 1 ≤
𝑚 = |𝐸|,

𝑃𝜆(𝐸) = 𝑃𝜆
(

∪𝑁𝑖=1𝐵
𝜆(𝑣, 𝑥𝑖)

)

=
𝑁
∑

𝑖=1
𝑃𝜆(𝐵𝜆(𝑣, 𝑥𝑖)) = 𝑐(𝑛, 𝜆)𝑁𝑣

𝑛−1
𝑛 ≤ 𝑐(𝑛, 𝜆)

(

𝑚
min{1, |𝐵𝜆|}

+ 1
)

𝑣
𝑛−1
𝑛

≤ 𝑐(𝑛, 𝜆) (𝑚𝑣
𝑛−1
𝑛 + 𝑣

𝑛−1
𝑛 ) ≤ 𝑐(𝑛, 𝜆) (𝑚 1

𝑛−1
𝑛 + 𝑚 1

𝑛−1
𝑛 ) = 𝑐(𝑛, 𝜆)𝑚.

Moreover, let 𝑅 be so large that 𝑔(𝑥 − 𝑦) < 1
𝑁

for every 𝑥 ∈ 𝐵𝜆(𝑣, 𝑥𝑗), 𝑦 ∈ 𝐵𝜆(𝑣, 𝑥𝑘) with 𝑗 ≠ 𝑘. Then, by
Lemma 4.3.2, since 𝑣 ≤ 1 ≤ 𝑚 = |𝐸|,

ℛ(𝐸) = ∫⋃𝑁
𝑖=1 𝐵𝜆(𝑣,𝑥𝑖)

∫⋃𝑁
𝑖=1 𝐵𝜆(𝑣,𝑥𝑖)

𝑔(𝑦 − 𝑥) d𝑦 d𝑥

=
𝑁
∑

𝑖=1
ℛ(𝐵𝜆(𝑣, 𝑥𝑖)) +

𝑁
∑

𝑖=1
∫𝐵𝜆(𝑣,𝑥𝑖) ∫𝐵𝜆(𝑣,𝑥1)∪⋯∪𝐵𝜆(𝑣,𝑥𝑖)∪⋯∪𝐵𝜆(𝑣,𝑥𝑁 )

𝑔(𝑦 − 𝑥) d𝑦 d𝑥

≤ 𝑐(𝑛, 𝜆, 𝑔, 𝐺)𝑁𝑣 +𝑁 1
𝑁
𝑣(𝑚 − 𝑣) ≤ 𝑐(𝑛, 𝜆, 𝑔, 𝐺)𝑚 + (𝑚 − 𝑣) ≤ 𝑐(𝑛, 𝜆, 𝑔, 𝐺)𝑚,

where the 𝐵𝜆(𝑣, 𝑥1) ∪ ⋯ ∪ ̂𝐵𝜆(𝑣, 𝑥𝑖) ∪ ⋯ ∪ 𝐵𝜆(𝑣, 𝑥𝑁 ) denotes union over all the bubbles except for 𝐵𝜆(𝑣, 𝑥𝑖).
Finally, by Lemma 4.3.2

ℱ 𝜆(𝐸) = 𝑃𝜆(𝐸) +ℛ(𝐸) + 𝒢 (𝐸)

≤ 𝑐(𝑛, 𝜆)|𝐸| + 𝑐(𝑛, 𝜆, 𝑔, 𝐺)|𝐸| +
𝑁
∑

𝑖=1
𝒢 (𝐵𝜆(𝑣, 𝑥𝑖))

≤ 𝑐(𝑛, 𝜆)|𝐸| + 𝑐(𝑛, 𝜆, 𝑔, 𝐺)|𝐸| + 𝑐(𝑛, 𝜆, 𝑔, 𝐺)𝑁𝑣 = 𝑐(𝑛, 𝜆, 𝑔, 𝐺)𝑚.
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Lemma 4.3.4. Let 𝐸 ⊂ ℝ𝑛 ⧵𝐻 be a set of finite perimeter. Let 𝑔 be ℛ-admissible and 𝑞-growing and let 𝐺 be
𝒢 -admissible. If 𝛼 > 1, then

ℱ 𝜆(𝛼𝐸) ≤ 𝛼2𝑛+𝑞ℱ 𝜆(𝐸).

Proof. Note that, if 𝐸 ⊂ ℝ𝑛 ⧵𝐻 , then 𝛼𝐸 ⊂ ℝ𝑛 ⧵𝐻 . Since 𝛼 > 1, by the positivity of 𝑃𝜆 we get
𝑃𝜆(𝛼𝐸) = 𝛼𝑛−1𝑃𝜆(𝐸) ≤ 𝛼2𝑛+𝑞𝑃𝜆(𝐸).

Since 𝑔 is 𝑞-growing, we have

ℛ(𝛼𝐸) = ∫ ∫(𝛼𝐸)2
𝑔(𝑦 − 𝑥) d𝑦 d𝑥

= 𝛼2𝑛 ∫ ∫𝐸×𝐸
𝑔(𝛼(𝑦 − 𝑥)) d𝑦 d𝑥

≤ 𝛼2𝑛+𝑞 ∫ ∫𝐸×𝐸
𝑔(𝑦 − 𝑥) d𝑦 d𝑥 = 𝛼2𝑛+𝑞ℛ(𝐸).

Finally, by (4.2.2) we get

∫𝛼𝐸
𝐺(𝑥𝑛) d𝑥 = 𝛼𝑛 ∫𝐸

𝐺(𝛼𝑥𝑛) d𝑥 ≤ 𝛼2𝑛+𝑞 ∫𝐸
𝐺(𝑥𝑛) d𝑥.

The following lemma allows to suitably localize minimizing sequences with sufficiently small volume.
Lemma 4.3.5. Let 𝑔 be ℛ-admissible and 𝑞-growing and let 𝐺 be 𝒢 -admissible. There exists �̄� > 0, depending
on 𝑛, 𝜆, 𝑔, 𝐺 and 𝑞, such that, for every 𝑚 ∈ (0, �̄�) and every set of finite perimeter 𝐹 ⊂ ℝ𝑛 ⧵𝐻 with |𝐹 | = 𝑚,
there exists a set of finite perimeter 𝐿 with

ℱ 𝜆(𝐿) ≤ ℱ 𝜆(𝐹 ) and 𝐿 ⊂ �̄�1 ∶= [−1, 1] ×⋯ × [−1, 1] × [0, 2]. (4.3.1)
Proof. Throughout the proof we will assume that �̄� < |𝐵𝜆|

4𝑛 . If ℱ 𝜆(𝐵𝜆(𝑚)) ≤ ℱ 𝜆(𝐹 ), then the assertion of the
lemma is proved by choosing 𝐿 = 𝐵𝜆(𝑚). Then we can assume, by Lemma 4.3.2, that

ℱ 𝜆(𝐹 ) < ℱ 𝜆(𝐵𝜆(𝑚)) ≤ 𝑐(𝑛, 𝜆, 𝑔, 𝐺) max
{

𝑚,𝑚
𝑛−1
𝑛

}

. (4.3.2)
By Lemma 4.3.2

𝐷𝜆(𝐹 ) =
𝑐(𝑛, 𝜆)

𝑚
𝑛−1
𝑛

(𝑃𝜆(𝐹 ) − 𝑃𝜆(𝐵𝜆(𝑚)))

≤ 𝑐(𝑛, 𝜆)

𝑚
𝑛−1
𝑛

([ℛ(𝐵𝜆(𝑚)) −ℛ(𝐹 )] + [𝒢 (𝐵𝜆(𝑚)) − 𝒢 (𝐹 )])

≤ 𝑐(𝑛, 𝜆)

𝑚
𝑛−1
𝑛

(ℛ(𝐵𝜆(𝑚)) + 𝒢 (𝐵𝜆(𝑚)))

≤ 𝑐(𝑛, 𝜆, 𝑔, 𝐺)
(

𝑚
|𝐵𝜆|

)
1
𝑛
.

(4.3.3)

By the quantitative isoperimetric inequality 3.1.1

𝛼𝜆(𝐹 ) ≤ 𝑐(𝑛, 𝜆)
√

𝐷𝜆(𝐹 ) ≤ 𝑐(𝑛, 𝜆, 𝑔, 𝐺)
(

𝑚
|𝐵𝜆|

)
1
2𝑛 (4.3.4)

and, after a suitable translation,

|𝐵𝜆(𝑚)Δ𝐹 | ≤ 𝑐(𝑛, 𝜆, 𝑔, 𝐺)
(

𝑚
|𝐵𝜆|

)1+ 1
2𝑛
.
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Since |𝐹 | = 𝑚 = |𝐵𝜆(𝑚)| we also have
|𝐵𝜆(𝑚)Δ𝐹 | = 2|𝐹 ⧵ 𝐵𝜆(𝑚)|

and
|𝐹 ⧵ 𝐵𝜆(𝑚)| ≤ 𝑐(𝑛, 𝜆, 𝑔, 𝐺)

(

𝑚
|𝐵𝜆|

)1+ 1
2𝑛
. (4.3.5)

For any 𝜚 > 0 let 𝐹1 = 𝐹 ∩ 𝐵𝜚(0) and 𝐹2 = 𝐹 ⧵ 𝐵𝜚(0). Note that for every 𝜀 > 0 there exists �̄� sufficiently small
such that, if 𝜚 ≥ 𝑚

1
𝑛

|𝐵𝜆|
1
𝑛
𝑅𝜆 =∶ 𝜚𝑚, with 𝑚 < �̄�, then

|𝐹2| ≤ 𝜀|𝐹1|. (4.3.6)
Indeed, since 𝐵𝜆(|𝐵𝜆|) ⊂ 𝐵𝑅𝜆(0), we get 𝐵𝜆(𝑚) ⊂ 𝐵𝜚(0). Moreover, by (4.3.5) and for sufficiently small �̄� we
estimate

|𝐹1| = |𝐹 ∩ 𝐵𝜚(0)| ≥ |𝐹 ∩ 𝐵𝜆(𝑚)|
= |𝐹 | − |𝐹 ⧵ 𝐵𝜆(𝑚)|

≥ |𝐵𝜆|
(

𝑚
|𝐵𝜆|

)

− 𝑐(𝑛, 𝜆, 𝑔, 𝐺)
(

𝑚
|𝐵𝜆|

)1+ 1
2𝑛

≥ |𝐵𝜆|
2

(

𝑚
|𝐵𝜆|

)

.

and
|𝐹 ⧵ 𝐵𝜚(0)| ≤ |𝐹 ⧵ 𝐵𝜆(𝑚)| ≤ 𝑐(𝑛, 𝜆, 𝑔, 𝐺)

(

𝑚
|𝐵𝜆|

)1+ 1
2𝑛
≤ 𝑐(𝑛, 𝜆, 𝑔, 𝐺)

(

𝑚
|𝐵𝜆|

)
1
2𝑛
|𝐹1| ≤ 𝜀|𝐹1|.

Let us define the monotonically decreasing function 𝑈 (𝜚) = |𝐹 ⧵ 𝐵𝜚(0)|.
We now distinguish two cases. Let us firstly prove (4.3.1) when we assume that

Σ ∶= 𝑃𝜆(𝐹1) + 𝑃𝜆(𝐹2) − 𝑃𝜆(𝐹 ) >
1
2
ℱ 𝜆(𝐹2) ∀𝜚 ∈

(

𝜚𝑚,
𝑅𝜆
2

)

(4.3.7)

By (4.3.5) we have
𝑈 (𝜚𝑚) = |𝐹 ⧵ 𝐵𝜆(𝑚)| ≤ 𝑐(𝑛, 𝜆, 𝑔, 𝐺)𝑚1+ 1

2𝑛 ≤ 𝑐(𝑛, 𝜆, 𝑔, 𝐺)𝜚
𝑛+ 1

2
𝑚

Furthermore, by Theorem 3.2.3 and (4.3.7) we have

−2
d𝑈 (𝜚)
d𝜚

= Σ > 1
2
ℱ 𝜆(𝐹2) ≥

1
2
𝑃𝜆(𝐹 ⧵ 𝐵𝜚(0)) ≥ 𝑐(𝑛, 𝜆)𝑈

𝑛−1
𝑛 (𝜚).

In particular we have
⎧

⎪

⎨

⎪

⎩

d𝑈 (𝜚)
d𝜚 ≤ −𝑐(𝑛, 𝜆)𝑈

𝑛−1
𝑛 (𝜚) for a.e. 𝜚 ∈

(

𝜚𝑚,
𝑅𝜆
2

)

𝑈 (𝜚𝑚) ≤ 𝑐(𝑛, 𝜆, 𝑔, 𝐺)𝜚
𝑛+ 1

2
𝑚 .

By ODE comparison we deduce that, if �̄� < 1,

𝑈 (𝜚)
1
𝑛 ≤ 𝑈 (𝜚𝑚)

1
𝑛 − 𝑐(𝑛, 𝜆) (𝜚 − 𝜚𝑚)

≤ 𝑐(𝑛, 𝜆, 𝑔, 𝐺) 𝜚
1+ 1

2𝑛
𝑚 − 𝑐(𝑛, 𝜆)𝜚 + 𝑐(𝑛, 𝜆)𝜚𝑚

= 𝑐(𝑛, 𝜆, 𝑔, 𝐺)𝑚
1
𝑛+

1
2𝑛2 − 𝑐(𝑛, 𝜆) 𝜚 + 𝑐(𝑛, 𝜆)𝑚

1
𝑛

≤ 𝑐(𝑛, 𝜆, 𝑔, 𝐺)𝑚
1
𝑛 − 𝑐(𝑛, 𝜆) 𝜚 + 𝑐(𝑛, 𝜆)𝑚

1
𝑛

= 𝑐(𝑛, 𝜆, 𝑔, 𝐺)𝑚
1
𝑛 − 𝑐(𝑛, 𝜆) 𝜚.
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For �̄� sufficiently small, it follows that 𝑈 (𝜚) = 0 for 𝜚 ≥ 𝑅𝜆
2 , and we obtain (4.3.1) with 𝐿 = 𝐹 .

Let us prove (4.3.1) assuming that
Σ ≤ 1

2
ℱ 𝜆(𝐹2) (4.3.8)

holds for some 𝜚0 ∈
(

𝜚𝑚,
𝑅𝜆
2

)

. Let 𝑚1 ∶= |𝐹1|, 𝑚2 ∶= |𝐹2| and 𝛾 ∶= 𝑚2
𝑚1

≤ 𝜀, with 𝜀 that will be chosen suitably
small later. Let us also denote 𝐹 = 𝑙 𝐹1, with 𝑙 ∶= (1 + 𝛾)

1
𝑛 . In particular |𝐹 | = 𝑚 and, if 𝜀 is sufficiently small,

𝐹 = (1 + 𝛾)
1
𝑛𝐹1 = (1 + 𝛾)

1
𝑛

(

𝐹 ∩ 𝐵𝜚0(0)
)

⊂ 𝐵𝜚0 𝑛√1+𝛾 (0) ⊂ 𝐵𝑅𝜆(0) ⊂ �̄�1.

By Lemma 4.3.4
ℱ 𝜆(𝐹 ) = ℱ 𝜆(𝑙𝐹1) ≤ 𝑙2𝑛+𝑞ℱ 𝜆(𝐹1)

= ℱ 𝜆(𝐹1) +
(

𝑙2𝑛+𝑞 − 1
)

ℱ 𝜆(𝐹1).
(4.3.9)

Choosing 𝜀 ≤ 1, we have 1 ≤ 𝑙 ≤ 2
1
𝑛 , and by Taylor’s formula we obtain 𝑙2𝑛+𝑞 − 1 = (1 + 𝛾)2+𝑞∕𝑛 − 1 ≤ 𝛾𝐾 for

some 𝐾 > 0 independent of 𝛾 and for 𝜀 sufficiently small. By (4.3.9) we arrive at
ℱ 𝜆(𝐹 ) −ℱ 𝜆(𝐹1) ≤ 𝛾𝐾ℱ 𝜆(𝐹1).

By the definition of Σ and since ℛ(𝐹1) +ℛ(𝐹2) ≤ ℛ(𝐹 )

ℱ 𝜆(𝐹 ) −ℱ 𝜆(𝐹 ) ≤ ℛ(𝐹1) + 𝒢 (𝐹1) +ℛ(𝐹2) + 𝒢 (𝐹2) −ℛ(𝐹 ) − 𝒢 (𝐹 ) + Σ −ℱ 𝜆(𝐹2) + 𝛾𝐾ℱ 𝜆(𝐹1)

≤ −1
2
ℱ 𝜆(𝐹2) + 𝛾𝐾ℱ 𝜆(𝐹1).

(4.3.10)

By positivity ofℛ and𝒢 and the isoperimetric inequality Theorem 3.2.3, we haveℱ 𝜆(𝐹2) > 𝑃𝜆(𝐹2) ≥ 𝑐(𝑛, 𝜆)𝑚
𝑛−1
𝑛

2 .
By (4.3.8) we obtain

ℱ 𝜆(𝐹 ) −ℱ 𝜆(𝐹1) = 𝑃𝜆(𝐹 ) +ℛ(𝐹 ) + 𝒢 (𝐹 ) − 𝑃𝜆(𝐹1) −ℛ(𝐹1) − 𝒢 (𝐹1) − 𝑃𝜆(𝐹2) + 𝑃𝜆(𝐹2)

≥ −1
2
ℱ 𝜆(𝐹2) +ℛ(𝐹 ) + 𝒢 (𝐹 ) −ℛ(𝐹1) − 𝒢 (𝐹1) + 𝑃𝜆(𝐹2)

= −1
2
𝑃𝜆(𝐹2) −

1
2
ℛ(𝐹2) −

1
2
𝒢 (𝐹2) +ℛ(𝐹 ) + 𝒢 (𝐹 ) −ℛ(𝐹1) − 𝒢 (𝐹1) + 𝑃𝜆(𝐹2) ≥ 0,

(4.3.11)
that is ℱ 𝜆(𝐹1) ≤ ℱ 𝜆(𝐹 ). By (4.3.2), since 𝛾𝑚 ≤ 2𝑚2 and 𝛾 ≤ 𝜀, (4.3.10) turns into

ℱ 𝜆(𝐹 ) −ℱ 𝜆(𝐹 ) ≤ −𝑐(𝑛, 𝜆)𝑚
𝑛−1
𝑛

2 + 𝛾𝐾ℱ 𝜆(𝐹 )

≤ −𝑐(𝑛, 𝜆)𝑚
𝑛−1
𝑛

2 + 𝐶(𝑛, 𝜆, 𝑔, 𝐺, 𝑞) max
{

𝑚2, 𝜀
1
𝑛𝑚

𝑛−1
𝑛

2

}

.

Since 𝑚2 ≤ 𝑐(𝑛, 𝜆)𝜀 by (4.3.6), for 𝜀 sufficiently small (4.3.1) follows with 𝐿 = 𝐹 .
Remark 4.3.6. Arguing exactly as in (4.3.2), (4.3.3) and (4.3.4), we easily deduce that if 𝐸 is a minimizer of ℱ 𝜆

in 𝑚 with 𝑚 sufficiently small then
𝛼𝜆(𝐸) ≤ 𝑐(𝑛, 𝜆, 𝑔, 𝐺)𝑚

1
2𝑛 .

Now we are ready to prove Theorem 4.3.1.
Proof of Theorem 4.3.1. By Lemma 4.3.5 there exists a minimizing sequence with uniformly bounded sets. The
lower semicontinuity of 𝑃𝜆 [PP24, Lemma 3.7] and the continuity of ℛ and 𝒢 under strong 𝐿1 convergence
(which holds by dominated convergence theorem and uniformly boundedness of the minimizing sequence) allow
to conclude the proof.
The following proposition states that, if the nonlocal kernel 𝑔 and the gravitational term 𝐺 are coercive, we have
existence of minimizers for all values of 𝑚.
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Proposition 4.3.7. Let 𝑔 be a ℛ-admissible coercive function and let 𝐺 be a 𝒢 -admissible coercive function.
Then, for every 𝑚 > 0, there exists a minimizer of ℱ 𝜆 in the class

𝑚 ∶= {Ω ⊂ ℝ𝑛 ⧵𝐻 measurable ∶ |Ω| = 𝑚}.

Proof. Let us consider a minimizing sequence {𝐸𝑖
}

𝑖∈ℕ of ℱ 𝜆 in 𝑚. In particular
sup
𝑖∈ℕ

ℱ 𝜆(𝐸𝑖) = 𝐶 < +∞.

By [PP24, Corollary 2.5] it holds
𝑃 (𝐸𝑖) ≤

2
1 − 𝜆

𝑃𝜆(𝐸𝑖) ≤
2

1 − 𝜆
ℱ 𝜆(𝐸𝑖) ≤ 𝐶, ∀𝑖 ∈ ℕ.

By [ANP22, Lemma 2.10] and [LRV22, Corollary 3.25] we get the existence of a constant 𝑐 = 𝑐
(

𝑚, 𝑛, sup𝑖 𝑃 (𝐸𝑖)
)

>
0 such that for every 𝑖 ∈ ℕ there exists 𝑥𝑖 ∈

{

𝑥𝑛 > 0
} with

|

|

𝐸𝑖 ∩ 𝐵1(𝑥𝑖)|| ≥ 𝑐.

By the coercivity of 𝐺 we have that (𝑥𝑖
)

𝑛 is uniformly bounded. Indeed, if by contradiction (

𝑥𝑖
)

𝑛 → +∞, then

𝐶 ≥ ∫𝐸𝑖
𝐺(𝑥𝑛) d𝑥 ≥ ∫𝐸𝑖∩𝐵1(𝑥𝑖)

𝐺(𝑥𝑛) d𝑥 ≥ 𝑐
(

inf
𝐵1(𝑥𝑖)

𝐺(𝑥𝑛)
)

→ +∞.

By the lower semicontinuity of ℱ 𝜆 under strong 𝐿1 convergence, the existence of a minimizer follows if we show
that for every 𝜀 > 0 and 𝑖 ∈ ℕ there exists 𝑅 > 0 with

sup
𝑖∈ℕ

|

|

𝐸𝑖 ⧵ 𝐵𝑅(𝑥𝑖)|| < 𝜀. (4.3.12)

In order to prove (4.3.12), note that

𝐶 ≥ ℛ(𝐸𝑖) ≥ ∫𝐸𝑖 ∫𝐸𝑖⧵𝐵𝑅(𝑥)
𝑔(𝑦 − 𝑥) d𝑦 d𝑥 ≥

(

inf
|𝑥|>𝑅

𝑔(𝑥)
)

∫𝐸𝑖
|

|

𝐸𝑖 ⧵ 𝐵𝑅(𝑥)|| d𝑥

≥
(

inf
|𝑥|>𝑅

𝑔(𝑥)
)

∫𝐸𝑖∩𝐵1(𝑥𝑖)
|

|

𝐸𝑖 ⧵ 𝐵𝑅(𝑥)|| d𝑥 ≥ 𝑐
(

inf
|𝑥|>𝑅

𝑔(𝑥)
)

|

|

𝐸𝑖 ⧵ 𝐵𝑅+1(𝑥𝑖)||

and
|

|

𝐸𝑖 ⧵ 𝐵𝑅+1(𝑥𝑖)|| ≤
𝐶
𝑐

(

inf
|𝑥|>𝑅

𝑔(𝑥)
)−1

→ 0 as 𝑅→ +∞.

Boundedness and indecomposability of minimizers

In this section we will prove two qualitative properties of volume constrained minimizers of ℱ 𝜆, namely bound-
edness and indecomposability. We begin with the following
Theorem 4.3.8. Let 𝑔 be ℛ-admissible, infinitesimal and symmetric and let 𝐺 be 𝒢 -admissible. Let 𝐸 ⊂ ℝ𝑛 ⧵𝐻
be a minimizer of ℱ 𝜆 with |𝐸| = 𝑚, 𝑚 > 0. Then 𝐸 is essentially bounded.

Remark 4.3.9. We remark that Theorem 4.3.8 proves boundedness of minimizers without requiring growing prop-
erties of the Riesz-type kernel, but only infinitesimality and symmetry.
Before giving the proof, we recall the definition and some properties of the so-called (𝐾, 𝑟0)-quasiminimal sets.
Definition 4.3.10. Let 𝐸 ⊂ ℝ𝑛 ⧵𝐻 be a set of finite perimeter with finite measure, and let 𝐾 ≥ 1, 𝑟0 > 0. We say
that 𝐸 is a (𝐾, 𝑟0)-quasiminimal set (relatively in ℝ𝑛 ⧵𝐻) if

𝑃 (𝐸,ℝ𝑛 ⧵𝐻) ≤ 𝐾𝑃 (𝐹 ,ℝ𝑛 ⧵𝐻),

for any 𝐹 ⊂ ℝ𝑛 ⧵𝐻 such that 𝐸Δ𝐹 ⊂⊂ 𝐵𝑟(𝑥), for some ball 𝐵𝑟(𝑥) ⊂ ℝ𝑛 with 𝑟 ≤ 𝑟0 and 𝑥 ∈ {𝑥𝑛 ≥ 0}.
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Theorem 4.3.11. Let 𝐸 ⊂ ℝ𝑛 ⧵ 𝐻 be a (𝐾, 𝑟0)-quasiminimal set, for some 𝐾 ≥ 1, 𝑟0 > 0. Then there exist
𝑐 = 𝑐(𝑛,𝐾, 𝑟0) ∈

(

0, 12
]

and 𝑟′0 = 𝑟′0(𝑛,𝐾, 𝑟0) ∈ (0, 𝑟0] such that

𝑐 ≤
|𝐸 ∩ 𝐵𝑟(𝑥)|
|𝐵𝑟(𝑥) ⧵𝐻|

≤ 1 − 𝑐 ∀𝑥 ∈ 𝜕𝐸 ⧵𝐻, ∀𝑟 ∈ (0, 𝑟′0].

In particular the set 𝐸(1) of points of density 1 for 𝐸 is an open representative for 𝐸.

The proof of Theorem 4.3.11 follows, for instance, by repeatedly applying [Kin+13, Theorem 4.2] with𝑋 = {𝑥𝑛 ≥
0} in domains Ω = 𝑋∩𝐵𝑟0(𝑥) for 𝑥 ∈ 𝑋, in the notation of [Kin+13, Theorem 4.2]. Observe also that in [Kin+13],
the perimeter functional coincides with the relative perimeter in ℝ𝑛⧵𝐻 , hence the definition of quasiminimal set in
[Kin+13, Definition 3.1] coincides with Definition 4.3.10. Alternatively, Theorem 4.3.11 follows also by adapting
the classical argument in the proof of [Mag12, Theorem 21.11] working with (𝐾, 𝑟0)-quasiminimal sets instead of
(Λ, 𝑟0)-minimizers.
The aim of the following lemmas is to prove that minimizers of ℱ 𝜆 are (𝐾, 𝑟0)-quasiminimal sets, in order to apply
Theorem 4.3.11.
Lemma 4.3.12. Let 𝑔 be ℛ-admissible, infinitesimal and symmetric and let 𝐺 be 𝒢 -admissible. Let 𝐸 ⊂ ℝ𝑛 ⧵𝐻
be a minimizer of ℱ 𝜆 with |𝐸| = 𝑚, 𝑚 > 0. Then there exists �̄�𝑛 > 0, depending on 𝑛, 𝑔, 𝐺, 𝐸, such that

|𝐸 ∩ {𝑥𝑛 > �̄�𝑛}| = 0. (4.3.13)
Proof. Let us define, for every 𝑡 > 0,

𝐸𝑡 ∶= 𝐸 ∩ {𝑥𝑛 ≤ 𝑡}, 𝑉 (𝑡) ∶= |

|

𝐸 ∩ {𝑥𝑛 > 𝑡}|| .

Fix 𝑥0 ∈ 𝜕∗𝐸 such that 𝑥0 ∈ 𝜕∗𝐸 ∩ {0 < 𝑥𝑛 < 𝑡} and 𝑟0 > 0 such that 𝐵𝑟0(𝑥0) ⊂⊂ {0 < 𝑥𝑛 < 𝑡} for any 𝑡 large
enough. By [Mag12, Lemma 17.21] there exist 𝜎0, 𝑐0 ∈ (0,∞), depending on 𝐸, 𝑥0 and 𝑟0, such that for every
𝜎 ∈ (−𝜎0, 𝜎0) we can find a set of finite perimeter 𝐹 , given by a suitable local variation of 𝐸, such that

𝐹Δ𝐸 ⊂⊂ 𝐵𝑟0(𝑥0) |𝐹 | = |𝐸| + 𝜎, |𝑃 (𝐹 ,𝐵𝑟0(𝑥0)) − 𝑃 (𝐸,𝐵𝑟0(𝑥0))| ≤ 𝑐0|𝜎|. (4.3.14)
Now consider 𝑡0 = 𝑡0(𝐸) > 0 large enough such that 𝑉 (𝑡0) < 𝜎0, and set 𝜎 = 𝑉 (𝑡) for 𝑡 > 𝑡0. Then there exists 𝐹
such that (4.3.14) holds. Define also �̃�𝑡 ∶= 𝐹 ∩ {0 < 𝑥𝑛 ≤ 𝑡}, so that

|�̃�𝑡| = |𝐹 | − |𝐹 ∩ {𝑥𝑛 > 𝑡}| = |𝐹 | − 𝑉 (𝑡) = |𝐸| + 𝜎 − 𝜎 = |𝐸|.

Moreover by [Mag12, Lemma 17.9, Lemma 17.21] and properties of local variations, we get
|�̃�𝑡Δ𝐸𝑡| = |𝐹Δ𝐸| ≤ 𝑐(𝐸) ||𝐹 | − |𝐸|| = 𝑐(𝐸)𝑉 (𝑡),
|𝑃 (�̃�𝑡, 𝐵𝑟0(𝑥0)) − 𝑃 (𝐸,𝐵𝑟0(𝑥0))| ≤ 𝑐(𝐸)𝑉 (𝑡).

By the minimality of 𝐸
𝑃𝜆(𝐸) +ℛ(𝐸) + 𝒢 (𝐸) ≤ 𝑃𝜆(�̃�𝑡) +ℛ(�̃�𝑡) + 𝒢 (�̃�𝑡).

Since 𝑛−1(𝜕∗𝐸 ∩ 𝜕𝐻) = 𝑛−1(𝜕∗�̃�𝑡 ∩ 𝜕𝐻), we get
𝑃 (𝐸,ℝ𝑛 ⧵𝐻) +ℛ(𝐸) + 𝒢 (𝐸) ≤ 𝑃 (�̃�𝑡,ℝ𝑛 ⧵𝐻) +ℛ(�̃�𝑡) + 𝒢 (�̃�𝑡)

≤ 𝑃 (𝐸𝑡,ℝ𝑛 ⧵ (𝐻 ∪ 𝐵𝑟0(𝑥0))) + 𝑃 (𝐸,𝐵𝑟0(𝑥0)) + 𝑐(𝐸)𝑉 (𝑡) +ℛ(�̃�𝑡) + 𝒢 (�̃�𝑡)

= 𝑃 (𝐸, {𝑥𝑛 < 𝑡}) + |𝑉 ′(𝑡)| +ℛ(�̃�𝑡) + 𝒢 (�̃�𝑡) + 𝑐(𝐸)𝑉 (𝑡)
= 𝑃 (𝐸,ℝ𝑛 ⧵𝐻) − 𝑃 (𝐸, {𝑥𝑛 > 𝑡}) + |𝑉 ′(𝑡)| +ℛ(�̃�𝑡) + 𝒢 (�̃�𝑡) + 𝑐(𝐸)𝑉 (𝑡).

Then
𝑃 (𝐸, {𝑥𝑛 > 𝑡}) ≤ |𝑉 ′(𝑡)| +ℛ(�̃�𝑡) −ℛ(𝐸) + 𝒢 (�̃�𝑡) − 𝒢 (𝐸) + 𝑐(𝐸)𝑉 (𝑡)
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By Fubini theorem and symmetry of 𝑔

ℛ(�̃�𝑡) −ℛ(𝐸) = ∫�̃�𝑡⧵𝐸 ∫�̃�𝑡
𝑔(𝑦 − 𝑥) d𝑦 d𝑥 + ∫�̃�𝑡∩𝐸 ∫�̃�𝑡⧵𝐸

𝑔(𝑦 − 𝑥) d𝑦 d𝑥

− ∫𝐸⧵�̃�𝑡 ∫𝐸
𝑔(𝑦 − 𝑥) d𝑦 d𝑥 − ∫𝐸∩�̃�𝑡 ∫𝐸⧵�̃�𝑡

𝑔(𝑦 − 𝑥) d𝑦 d𝑥

= ∫�̃�𝑡⧵𝐸 ∫�̃�𝑡
𝑔(𝑦 − 𝑥) d𝑦 d𝑥 + ∫�̃�𝑡⧵𝐸 ∫�̃�𝑡∩𝐸

𝑔(𝑥 − 𝑦) d𝑦 d𝑥

− ∫𝐸⧵�̃�𝑡 ∫𝐸
𝑔(𝑦 − 𝑥) d𝑦 d𝑥 − ∫𝐸⧵�̃�𝑡 ∫𝐸∩�̃�𝑡

𝑔(𝑥 − 𝑦) d𝑦 d𝑥

= ∫�̃�𝑡⧵𝐸 ∫�̃�𝑡
𝑔(𝑦 − 𝑥) d𝑦 d𝑥 + ∫�̃�𝑡⧵𝐸 ∫�̃�𝑡∩𝐸

𝑔(𝑦 − 𝑥) d𝑦 d𝑥

− ∫𝐸⧵�̃�𝑡 ∫𝐸
𝑔(𝑦 − 𝑥) d𝑦 d𝑥 − ∫𝐸⧵�̃�𝑡 ∫𝐸∩�̃�𝑡

𝑔(𝑦 − 𝑥) d𝑦 d𝑥

≤ ∫�̃�𝑡Δ𝐸

(

∫�̃�𝑡
𝑔(𝑦 − 𝑥) d𝑦 + ∫𝐸

𝑔(𝑦 − 𝑥) d𝑦
)

d𝑥

Since 𝑔 is infinitesimal there exists 𝑅𝑔 > 0 such that
𝑔(𝑥) < 1 ∀𝑥 ∶ |𝑥| > 𝑅𝑔.

Then

ℛ(�̃�𝑡) −ℛ(𝐸) ≤ ∫�̃�𝑡Δ𝐸

(

2∫𝐵𝑅𝑔 (0)
𝑔(𝑧) d𝑧 + |

|

|

�̃�𝑡 ⧵ 𝐵𝑅𝑔(0)
|

|

|

+ |

|

|

𝐸 ⧵ 𝐵𝑅𝑔(0)
|

|

|

)

d𝑥

≤ 2∫�̃�𝑡Δ𝐸

(

∫𝐵𝑅𝑔 (0)
𝑔(𝑧) d𝑧 + |𝐸|

)

d𝑥

≤ 𝑐(𝑔, 𝑚)(|�̃�𝑡Δ𝐸𝑡| + |𝐸𝑡Δ𝐸|) ≤ 𝑐(𝑔, 𝐸)𝑉 (𝑡).

By Remark 4.2.6
(

sup𝐵𝑟0 (𝑥0)𝐺
)

<∞ and

𝒢 (�̃�𝑡) − 𝒢 (𝐸) = ∫�̃�𝑡⧵𝐸
𝐺 d𝑥 − ∫𝐸⧵�̃�𝑡

𝐺 d𝑥 ≤ ∫�̃�𝑡⧵𝐸
𝐺 d𝑥 ≤

(

sup
𝐵𝑟0 (𝑥0)

𝐺

)

|�̃�𝑡 ⧵ 𝐸|.

Therefore, for almost every 𝑡 sufficiently large,
𝑃 (𝐸, {𝑥𝑛 > 𝑡}) ≤ |𝑉 ′(𝑡)| + 𝑐(𝑛, 𝑔, 𝐺, 𝐸)𝑉 (𝑡). (4.3.15)

Finally, if 𝑐𝑖𝑠𝑜 = 𝑐𝑖𝑠𝑜(𝑛) is the constant in the classical isoperimetric inequality and 𝑡 is large enough, (4.3.15) yields

𝑐𝑖𝑠𝑜𝑉 (𝑡)
𝑛−1
𝑛 = 𝑐𝑖𝑠𝑜|𝐸 ⧵ 𝐸𝑡|

𝑛−1
𝑛 ≤ 𝑃 (𝐸 ⧵ 𝐸𝑡) = 𝑛−1(𝜕∗𝐸𝑡 ∩ {𝑥𝑛 = 𝑡}) + 𝑃 (𝐸, {𝑥𝑛 > 𝑡})

≤ 2|𝑉 ′(𝑡)| + 𝑐(𝑛, 𝑔, 𝐺, 𝐸)𝑉 (𝑡) < 2|𝑉 ′(𝑡)| +
𝑐𝑖𝑠𝑜
2
𝑉 (𝑡)

𝑛−1
𝑛

and
−𝑉 ′(𝑡) ≥ 𝑐𝑉 (𝑡)

𝑛−1
𝑛 .

Therefore ODE comparison implies that 𝑉 (𝑡) vanishes at some 𝑡 = �̄�𝑛 < +∞.
Lemma 4.3.13. Let 𝑔 be ℛ-admissible, infinitesimal and symmetric and let 𝐺 be 𝒢 -admissible. Let 𝐸 ⊂ ℝ𝑛 ⧵𝐻
be a minimizer of ℱ 𝜆 with |𝐸| = 𝑚, 𝑚 > 0. Then 𝐸 is a (𝐾, 𝑟0)-quasiminimal set, for suitable 𝐾 ≥ 1 and 𝑟0 > 0,
depending on 𝑛, 𝜆, 𝑔, 𝐺, 𝐸.
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Proof. Let us consider 𝑥1, 𝑥2 ∈ 𝜕∗𝐸 ⧵ 𝐻 and 𝑡0 > 0 such that we have 𝐵𝑡0(𝑥1) ∩ 𝐵𝑡0(𝑥2) = ∅ and 𝐵𝑡0(𝑥1) ∪
𝐵𝑡0(𝑥2) ⊂⊂ ℝ𝑛 ⧵𝐻 . By applying [Mag12, Lemma 17.21] we find two positive constants 𝜎0 and 𝑐0, depending on
𝐸, such that, given |𝜎| < 𝜎0, there exist two sets of finite perimeter 𝐹1 and 𝐹2 with
𝐸Δ𝐹𝑘 ⊂⊂ 𝐵𝑡0(𝑥𝑘), |𝐹𝑘| = |𝐸| + 𝜎, |

|

|

𝑃 (𝐸,𝐵𝑡0(𝑥𝑘)) − 𝑃 (𝐹𝑘, 𝐵𝑡0(𝑥𝑘))
|

|

|

≤ 𝑐0|𝜎|, 𝑘 ∈ {1, 2}. (4.3.16)
Let 𝑟0 = 𝑟0(𝑛, 𝜆, 𝑔, 𝐺, 𝐸) > 0 to be determined later. At the moment assume that

𝑟0 < min

⎧

⎪

⎨

⎪

⎩

𝑡0
2
,
𝜎

1
𝑛
0
𝜔𝑛
,
|𝑥1 − 𝑥2| − 2𝑡0

2

⎫

⎪

⎬

⎪

⎭

.

In particular, if a ball of radius 𝑟0 intersects 𝐵𝑡0(𝑥1) (resp. 𝐵𝑡0(𝑥2)), then it is disjoint from 𝐵𝑡0(𝑥2) (resp. from
𝐵𝑡0(𝑥1)). Let 𝐹 be such that 𝐸Δ𝐹 ⊂⊂ 𝐵𝑟(𝑥) ∩ (ℝ𝑛 ⧵𝐻), where 𝑟 < 𝑟0. Then, by the definition of 𝑟0,

||𝐸| − |𝐹 || ≤ |𝐸Δ𝐹 | ≤ 𝜔𝑛𝑟
𝑛 < 𝜔𝑛𝑟

𝑛
0 ≤ 𝜎0

and we can compensate for the volume deficit ||𝐸| − |𝐹 || between 𝐸 and 𝐹 by modifying 𝐹 inside either 𝐵𝑡0(𝑥1)or𝐵𝑡0(𝑥2). Precisely, by the definition of 𝑟0, we may assume without loss of generality that𝐵𝑟(𝑥) does not intersect
𝐵𝑡0(𝑥1), set 𝜎 = |𝐸| − |𝐹 |, and consider 𝐹1 verifying (4.3.16), so that

𝐸Δ𝐹1 ⊂⊂ 𝐵𝑡0(𝑥1), 𝐸Δ𝐹 ⊂⊂ 𝐵𝑟(𝑥) ∩ (ℝ𝑛 ⧵𝐻) ⊂⊂ ℝ𝑛 ⧵
(

𝐻 ∪ 𝐵𝑡0(𝑥1)
)

. (4.3.17)
By (4.3.16) 𝜎 = |𝐹1| − |𝐸| and, if we define

𝐹 = (𝐹 ∩ 𝐵𝑟(𝑥)) ∪ (𝐹1 ∩ 𝐵𝑡0(𝑥1)) ∪ (𝐸 ⧵ (𝐵𝑟(𝑥) ∪ 𝐵𝑡0(𝑥1))),

then |𝐹 | = |𝐸| and 𝐹Δ𝐸 ⊂⊂ {𝑥𝑛 > 0}. By the minimality of 𝐸
(1 − |𝜆|)𝑃 (𝐸,ℝ𝑛 ⧵𝐻) ≤ 𝑃𝜆(𝐸) ≤ 𝑃𝜆(𝐹 ) +ℛ(𝐹 ) −ℛ(𝐸) + 𝒢 (𝐹 ) − 𝒢 (𝐸). (4.3.18)

By (4.3.16) and (4.3.17) we get
𝑃𝜆(𝐹 ) ≤ (1 + |𝜆|)𝑃 (𝐹 ,ℝ𝑛 ⧵𝐻)

≤ (1 + |𝜆|)
[

𝑃 (𝐹 ,ℝ𝑛 ⧵ (𝐻 ∪ 𝐵𝑡0(𝑥1))) + 𝑃 (𝐹 ,𝐵𝑡0(𝑥1)) + 𝑃 (𝐹 , 𝜕𝐵𝑡0(𝑥1))
]

= (1 + |𝜆|)
[

𝑃 (𝐹 ,ℝ𝑛 ⧵ (𝐻 ∪ 𝐵𝑡0(𝑥1))) + 𝑃 (𝐹1, 𝐵𝑡0(𝑥1)) + 𝑃 (𝐹 , 𝜕𝐵𝑡0(𝑥1))
]

≤ (1 + |𝜆|)
[

𝑃 (𝐹 ,ℝ𝑛 ⧵ (𝐻 ∪ 𝐵𝑡0(𝑥1))) + 𝑃 (𝐸,𝐵𝑡0(𝑥1)) + 𝑐0(𝐸)|𝜎|
]

≤ (1 + |𝜆|)𝑃 (𝐹 ,ℝ𝑛 ⧵𝐻) + 𝑐0(𝜆, 𝐸)|𝐹Δ𝐸|.

(4.3.19)

As in the proof of Lemma 4.3.12 one estimates
ℛ(𝐹 ) −ℛ(𝐸) ≤ 𝑐(𝑔, 𝐸) |𝐹Δ𝐸|, (4.3.20)

and by Remark 4.2.6, (4.3.13) and if 𝑡0 < 1

𝒢 (𝐹 ) − 𝒢 (𝐸) ≤

(

sup
𝐹⧵𝐸

𝐺

)

|𝐹 ⧵ 𝐸| ≤

(

sup
𝐹⧵𝐸

𝐺

)

(

|𝐹Δ𝐹 | + |𝐹Δ𝐸|
)

≤ 𝑐(𝐺,𝐸) (�̄�𝑛 + 1)𝑛|𝐹Δ𝐸| = 𝑐(𝑛, 𝑔, 𝐺, 𝐸) |𝐹Δ𝐸|.

(4.3.21)

However, by the relative isoperimetric inequality [CGR07; FM23] and (4.3.17)
|𝐹Δ𝐸| = |𝐹Δ𝐸|

1
𝑛
|𝐹Δ𝐸|

𝑛−1
𝑛 ≤ 𝑐(𝑛)|𝐹Δ𝐸|

1
𝑛𝑃 (𝐹Δ𝐸,ℝ𝑛 ⧵𝐻)

≤ 𝑐(𝑛)|𝐹Δ𝐸|
1
𝑛 (𝑃 (𝐹 ,ℝ𝑛 ⧵𝐻) + 𝑃 (𝐸,ℝ𝑛 ⧵𝐻))

≤ 𝑐(𝑛) 𝑟0 (𝑃 (𝐹 ,ℝ𝑛 ⧵𝐻) + 𝑃 (𝐸,ℝ𝑛 ⧵𝐻)).

(4.3.22)

Putting together (4.3.18)-(4.3.22) we obtain
(

(1 − |𝜆|) − 𝑐(𝑛, 𝜆, 𝑔, 𝐺, 𝐸) 𝑟0
)

𝑃 (𝐸,ℝ𝑛 ⧵𝐻) ≤
(

(1 + |𝜆|) + 𝑐(𝑛, 𝜆, 𝑔, 𝐺, 𝐸) 𝑟0
)

𝑃 (𝐹 ,ℝ𝑛 ⧵𝐻)

If 𝑟0 is sufficiently small, we conclude the proof.

88



By Theorem 4.3.11 and Lemma 4.3.13, from now on we can identify any minimizer 𝐸 of ℱ 𝜆, with |𝐸| = 𝑚,
𝑚 > 0, 𝑔 ℛ-admissible infinitesimal symmetric function and 𝐺 𝒢 -admissible function, with the open set 𝐸(1) of
points of density 1 for 𝐸.
Now we are ready to prove Theorem 4.3.8.
Proof of Theorem 4.3.8. By Lemma 4.3.13 and Theorem 4.3.11 there exist 𝑟 > 0 and 𝑐 > 0 such that for every
𝑥 ∈ 𝜕𝐸 ⧵𝐻 we have |𝐸 ∩ 𝐵𝑟(𝑥)| ≥ 𝑐𝑟𝑛. If 𝐸 were not bounded, one would easily get |𝐸| = ∞.
Now we prove indecomposability of minimizers.
Theorem 4.3.14. Let 𝑔 be ℛ-admissible and infinitesimal and let 𝐺 be 𝒢 -admissible. Let 𝐸 ⊂ ℝ𝑛 ⧵ 𝐻 be a
minimizer of ℱ 𝜆 with |𝐸| = 𝑚, 𝑚 > 0. Then 𝐸 is indecomposable.

Proof. We argue by contradiction. Assume that there exist two sets of finite perimeter 𝐸1 and 𝐸2 such that |𝐸1 ∩
𝐸2| = 0, 𝐸 = 𝐸1 ∪ 𝐸2 and 𝑃 (𝐸) = 𝑃 (𝐸1) + 𝑃 (𝐸2). If 𝑅 > 0 is sufficiently large, letting 𝑒1 = (1, 0,… , 0) and
defining 𝐸𝑅 ∶= 𝐸1 ∪ (𝐸2 + 𝑒1𝑅), we have |𝐸𝑅| = 𝑚, 𝑃𝜆(𝐸𝑅) = 𝑃𝜆(𝐸) and 𝒢 (𝐸𝑅) = 𝒢 (𝐸). At the same time, the
nonlocal energy decreases, precisely

lim inf
𝑅→∞

(

∫𝐸1
∫𝐸2+𝑒1𝑅

𝑔(𝑦 − 𝑥) d𝑦 d𝑥 + ∫𝐸2+𝑒1𝑅
∫𝐸1

𝑔(𝑦 − 𝑥) d𝑦 d𝑥
)

= 0,

and
lim inf
𝑅→∞

ℱ 𝜆(𝐸𝑅) = 𝑃𝜆(𝐸) +ℛ(𝐸1) +ℛ(𝐸2) + 𝒢 (𝐸)

< 𝑃𝜆(𝐸) +ℛ(𝐸1) +ℛ(𝐸2) + ∫𝐸1
∫𝐸2

𝑔(𝑦 − 𝑥) d𝑦 d𝑥 + ∫𝐸2
∫𝐸1

𝑔(𝑦 − 𝑥) d𝑦 d𝑥 + 𝒢 (𝐸)

= ℱ 𝜆(𝐸).

Therefore, if 𝑅 is sufficiently large, we obtain ℱ 𝜆(𝐸𝑅) < ℱ 𝜆(𝐸), in contradiction with the minimizing property
of 𝐸.

4.4 Nonexistence of minimizers for large masses

The goal of this Section is to prove Theorem 4.1.2. We begin by proving some preparatory lemmas. Let us start
with a non-optimality criterion.
Lemma 4.4.1. Let 𝑔 be ℛ-admissible, 𝑞-growing and infinitesimal and let𝐺 be 𝒢 -admissible. There exists 𝜀 > 0,
depending on 𝑛, 𝜆, 𝑔,𝐺 and 𝑞, such that the following holds. Let 𝐹 ⊂ ℝ𝑛⧵𝐻 be a set of finite perimeter and assume
there exist two sets of finite perimeter 𝐹1, 𝐹2 ⊂ 𝐹 such that |𝐹1|, |𝐹2| > 0, |𝐹1 ∩ 𝐹2| = 0, |𝐹 ⧵ (𝐹1 ∪ 𝐹2)| = 0 and

Σ ∶= 𝑃𝜆(𝐹1) + 𝑃𝜆(𝐹2) − 𝑃𝜆(𝐹 ) ≤
1
2
ℱ 𝜆(𝐹2). (4.4.1)

Then, if
|𝐹2| ≤ 𝜀min{1, |𝐹1|}, (4.4.2)

there exists a set 𝐺 ⊂ ℝ𝑛 ⧵𝐻 with |𝐺| = |𝐹 | and ℱ 𝜆(𝐺) < ℱ 𝜆(𝐹 ).

Proof. Let us denote 𝑚 ∶= |𝐹 |, 𝑚1 ∶= |𝐹1|, 𝑚2 ∶= |𝐹2| and 𝛾 ∶= 𝑚2
𝑚1

≤ 𝜀. Let us define the sets 𝐹 and 𝐹 in the
following way: 𝐹 is given by 𝐹 = 𝑙 𝐹1, with 𝑙 ∶= 𝑛

√

1 + 𝛾 , so that |𝐹 | = |𝐹 |, and 𝐹 is given by a collection of
𝑁 ≥ 1 spherical caps {𝐵𝜆(𝑣, 𝑥𝑖)

}

1≤𝑖≤𝑁 of equal volume 𝑣 and with centers located at 𝑥𝑖 = 𝑖𝑅𝑒1, 𝑖 = 1,… , 𝑁 ,
with 𝑅 large enough so that the 𝐵𝜆(𝑣, 𝑥𝑖), 1 ≤ 𝑖 ≤ 𝑁 are pairwise disjoint. The number 𝑁 is the smallest integer
for which the volume of each spherical cap does not exceed min

{

1, |𝐵𝜆|
}. Hence𝑁𝑣 = 𝑚 and𝑁 =

⌈

𝑚
min{1,|𝐵𝜆|}

⌉

.
If there exists 𝑅 > 0 such that, for the corresponding 𝐹 , one has ℱ 𝜆(𝐹 ) < ℱ 𝜆(𝐹 ), then the proof is concluded
with 𝐺 = 𝐹 . So we can assume that for any 𝑅 > 0 there holds ℱ 𝜆(𝐹 ) ≥ ℱ 𝜆(𝐹 ). Hence for 𝑅 large enough we
claim that

ℱ 𝜆(𝐹 ) ≤ ℱ 𝜆(𝐹 ) ≤ 𝑐(𝑛, 𝜆, 𝑔, 𝐺) max
{

𝑚,𝑚
𝑛−1
𝑛

}

. (4.4.3)
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Indeed, if𝑚 ≥ 1, estimate (4.4.3) follows by the same computations done in the proof of Corollary 4.3.3. If instead
𝑚 < 1, by [PP24, Lemma 3.1] we find

𝑃𝜆(𝐸) = 𝑃𝜆
(

∪𝑁𝑖=1𝐵
𝜆(𝑣, 𝑥𝑖)

)

=
𝑁
∑

𝑖=1
𝑃𝜆(𝐵𝜆(𝑣, 𝑥𝑖)) = 𝑐(𝑛, 𝜆)𝑁𝑣

𝑛−1
𝑛 ≤ 𝑐(𝑛, 𝜆)

(

𝑚
min{1, |𝐵𝜆|}

+ 1
)

𝑣
𝑛−1
𝑛

≤ 𝑐(𝑛, 𝜆)(𝑚𝑣
𝑛−1
𝑛 + 𝑣

𝑛−1
𝑛 ) ≤ 𝑐(𝑛, 𝜆)(𝑚 + 𝑚

𝑛−1
𝑛 ) = 𝑐(𝑛, 𝜆)𝑚

𝑛−1
𝑛 .

Arguing as in Corollary 4.3.3, if𝑅 is so large that 𝑔(𝑥−𝑦) < 1
𝑁

for every 𝑥 ∈ 𝐵𝜆(𝑣, 𝑥𝑗), 𝑦 ∈ 𝐵𝜆(𝑣, 𝑥𝑘) with 𝑗 ≠ 𝑘,
then

ℛ(𝐸) ≤ 𝑐(𝑛, 𝜆, 𝑔, 𝐺)𝑚 ≤ 𝑐(𝑛, 𝜆, 𝑔, 𝐺)𝑚
𝑛−1
𝑛

and

ℱ 𝜆(𝐸) = 𝑃𝜆(𝐸) +ℛ(𝐸) + 𝒢 (𝐸) ≤ 𝑐(𝑛, 𝜆)|𝐸|
𝑛−1
𝑛 + 𝑐(𝑛, 𝜆, 𝑔, 𝐺)|𝐸|

𝑛−1
𝑛 +

𝑁
∑

𝑖=1
𝒢 (𝐵𝜆(𝑣, 𝑥𝑖)) ≤ 𝑐(𝑛, 𝜆, 𝑔, 𝐺)𝑚

𝑛−1
𝑛 ,

therefore (4.4.3) holds.
We want to show that if 𝜀 sufficiently small, then ℱ 𝜆(𝐹 ) < ℱ 𝜆(𝐹 ), implying the claim with 𝐺 = 𝐹 . By
Lemma 4.3.4

ℱ 𝜆(𝐹 ) = ℱ 𝜆(𝑙𝐹1) ≤ 𝑙2𝑛+𝑞ℱ 𝜆(𝐹1) = ℱ 𝜆(𝐹1) + (𝑙2𝑛+𝑞 − 1)ℱ 𝜆(𝐹1). (4.4.4)

Choosing 𝜀 ≤ 1, we have 1 ≤ 𝑙 ≤ 2
1
𝑛 , and by Taylor’s formula we obtain 𝑙2𝑛+𝑞 − 1 = (1 + 𝛾)2+𝑞∕𝑛 − 1 ≤ 𝛾𝐾 for

some 𝐾 > 0 independent of 𝛾 , for 𝜀 sufficiently small. By (4.4.4) we arrive at
ℱ 𝜆(𝐹 ) −ℱ 𝜆(𝐹1) ≤ 𝛾𝐾ℱ 𝜆(𝐹1).

By the definition of Σ and since ℛ(𝐹1) +ℛ(𝐹2) ≤ ℛ(𝐹 )

ℱ 𝜆(𝐹 ) −ℱ 𝜆(𝐹 ) ≤ ℛ(𝐹1) + 𝒢 (𝐹1) +ℛ(𝐹2) + 𝒢 (𝐹2) −ℛ(𝐹 ) − 𝒢 (𝐹 ) + Σ −ℱ 𝜆(𝐹2) + 𝛾𝐾ℱ 𝜆(𝐹1)

≤ −1
2
ℱ 𝜆(𝐹2) + 𝛾𝐾ℱ 𝜆(𝐹1).

(4.4.5)

By positivity of ℛ and 𝒢 and the isoperimetric inequality, we have ℱ 𝜆(𝐹2) > 𝑃𝜆(𝐹2) ≥ 𝑐(𝑛, 𝜆)𝑚
𝑛−1
𝑛

2 . As in (4.3.11)
we obtain ℱ 𝜆(𝐹1) ≤ ℱ 𝜆(𝐹 ). By (4.4.3), since 𝛾𝑚 ≤ 2𝑚2 and 𝛾 ≤ 𝜀, (4.4.5) turns into

ℱ 𝜆(𝐹 ) −ℱ 𝜆(𝐹 ) ≤ −𝑐(𝑛, 𝜆)𝑚
𝑛−1
𝑛

2 + 𝛾𝐾ℱ 𝜆(𝐹 ) ≤ −𝑐(𝑛, 𝜆)𝑚
𝑛−1
𝑛

2 + 𝐶(𝑛, 𝜆, 𝑔, 𝐺, 𝑞) max
{

𝑚2, 𝜀
1
𝑛𝑚

𝑛−1
𝑛

2

}

.

Since 𝑚2 ≤ 𝜀 by (4.4.2), for 𝜀 sufficiently small the assertion of the lemma holds with 𝐺 = 𝐹 .
Next lemma is an improvement of the standard density estimate for quasiminimizers.
Lemma 4.4.2. Let 𝑔 be ℛ-admissible, 𝑞-growing and infinitesimal, and let 𝐺 be 𝒢 -admissible. Then there exists
𝑐 = 𝑐(𝑛, 𝜆, 𝑔, 𝐺, 𝑞) > 0 such that the following holds. Let 𝐸 ⊂ ℝ𝑛 ⧵𝐻 be a minimizer of ℱ 𝜆 with |𝐸| = 𝑚, 𝑚 > 0.
Then for almost every 𝑥 ∈ 𝐸 there holds

|𝐸 ∩ 𝐵1(𝑥)| ≥ 𝑐min{1, 𝑚}.

Proof. For 𝑟 > 0 and 𝑥 ∈ 𝐸, let 𝐹 𝑟1 ∶= 𝐸⧵𝐵𝑟(𝑥) and 𝐹 𝑟2 ∶= 𝐸∩𝐵𝑟(𝑥). Note that |𝐹 𝑟1 |+|𝐹 𝑟2 | = 𝑚 and |𝐹 𝑟2 | ≤ 𝜔𝑛𝑟𝑛.
Then there exists 𝐶 > 0, depending on 𝑛, 𝜆, 𝑔, 𝐺 and 𝑞, such that (4.4.2) holds for all 𝑟 ≤ 𝑟1 ∶= 𝐶 min

{

1, 𝑛
√

𝑚
}

.
Note that we can choose 𝐶 ≤ 1. Since 𝐸 is a minimizer, Lemma 4.4.1 implies that (4.4.1) cannot be satisfied for
any 𝑟 ≤ 𝑟1. Equivalently, recalling also [PP24, Corollary 2.5], for all 𝑟 ≤ 𝑟1 we have

Σ𝑟 ∶= 𝑃𝜆(𝐹 𝑟1 ) + 𝑃𝜆(𝐹
𝑟
2 ) − 𝑃𝜆(𝐸) >

1
2
ℱ 𝜆(𝐹 𝑟2 ) >

1
2
𝑃𝜆(𝐹 𝑟2 ) ≥

1 − 𝜆
4

𝑃 (𝐹 𝑟2 ). (4.4.6)
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At the same time, for almost every 𝑟 we have
Σ𝑟 = 2𝑛−1(𝐸(1) ∩ 𝜕𝐵𝑟(𝑥)).

By (4.4.6), for a constant 𝑐(𝑛, 𝜆) ∈
(

0, 12
)

there holds

2𝑛−1(𝐸(1) ∩ 𝜕𝐵𝑟(𝑥)) > 𝑐(𝑛, 𝜆) (𝑛−1(𝜕∗𝐸 ∩ 𝐵𝑟(𝑥)) +𝑛−1(𝐸(1) ∩ 𝜕𝐵𝑟(𝑥))), (4.4.7)

for almost every 𝑟. Let us now distinguish two cases. If there exists 𝑟2 ∈
(

𝑟1
2
, 𝑟1

)

such that |𝐸 ∩ 𝐵𝑟2| ≥
1
2
𝜔𝑛𝑟𝑛2,

then by the choice of 𝑟1 we get

|𝐸 ∩ 𝐵1| ≥ |𝐸 ∩ 𝐵𝑟2| ≥ 𝑐(𝑛)
(𝑟1
2

)𝑛
= 𝑐(𝑛, 𝜆, 𝑔, 𝐺, 𝑞) min{1, 𝑚},

and the proof is concluded.
Let us assume that |𝐸 ∩𝐵𝑟| <

1
2
𝜔𝑛𝑟𝑛 for all 𝑟 ∈

(

𝑟1
2
, 𝑟1

)

. Then we rearrange terms in (4.4.7) and apply the relative
isoperimetric inequality [Mag12, Proposition 12.37] to the right-hand side to obtain

𝑛−1(𝐸(1) ∩ 𝜕𝐵𝑟(𝑥)) ≥ 𝑐(𝑛, 𝜆)|𝐸 ∩ 𝐵𝑟(𝑥)|
𝑛−1
𝑛 .

Let us denote 𝑈 (𝑟) ∶= |𝐸 ∩ 𝐵𝑟(𝑥)|. Then d𝑈 (𝑟)
d𝑟 = 𝑛−1(𝐸(1) ∩ 𝜕𝐵𝑟(𝑥)) for all 𝑟 ∈

(

𝑟1
2 , 𝑟1

)

and
d𝑈 (𝑟)
d𝑟

≥ 𝑐(𝑛, 𝜆)𝑈
𝑛−1
𝑛 (𝑟) ∀𝑟 ∈

(𝑟1
2
, 𝑟1

)

.

For 𝑛-a.e. 𝑥 ∈ 𝐸, we have 𝑈 (𝑟) > 0 for all 𝑟 > 0 and ODE comparison in 𝑟 ∈
(

𝑟1
2 , 𝑟1

)

implies that

𝑈 1∕𝑛(𝑟) ≥ 𝑈 1∕𝑛
(𝑟1
2

)

+ 𝑐(𝑛, 𝜆)
(

𝑟 −
𝑟1
2

)

≥ 𝑐(𝑛, 𝜆)
(

𝑟 −
𝑟1
2

)

∀𝑟 ∈
(𝑟1
2
, 𝑟1

)

.

Then the lemma follows as

𝑐(𝑛, 𝜆, 𝑔, 𝐺) min{1, 𝑚} = 𝑐(𝑛, 𝜆)𝑟𝑛1 ≤ 𝑈 (𝑟1) = |𝐸 ∩ 𝐵𝑟1(𝑥)| =
|

|

|

|

|

𝐸 ∩ 𝐵
𝐶 min

{

1, 𝑛
√

𝑚
}(𝑥)

|

|

|

|

|

≤ |𝐸 ∩ 𝐵1(𝑥)|.

Remark 4.4.3. We remark that the density estimate in Lemma 4.4.2 is more precise than the one provided in
Section 4.3. Indeed, in Lemma 4.3.13 𝐾 and 𝑟0 depend on the minimizer, and consequently 𝑐 in Theorem 4.3.11
also inherits this dependence. At the same time, Lemma 4.4.2 requires 𝑔 to be 𝑞-growing, which is not required in
Lemma 4.3.13.
The following lemma will imply Theorem 4.1.2 for 𝛽 ∈ (0, 1).
Lemma 4.4.4. Let

𝑔(𝑥) = 1
|𝑥|𝛽

, 0 < 𝛽 < 𝑛, 𝑥 ∈ ℝ𝑛 ⧵ {0},

and let 𝐺 be 𝒢 -admissible. Let 𝐸 be a minimizer of ℱ 𝜆 with |𝐸| = 𝑚 and 𝑚 ≥ 1. Then

𝑐𝑚
1
𝛽 ≤ diam𝐸 ≤ 𝐶𝑚, (4.4.8)

for some 𝐶 , 𝑐 > 0 depending only on 𝑛, 𝛽, 𝜆, 𝐺.

Proof. By Theorem 4.3.8 and Theorem 4.3.14 we know that 𝐸 is essentially bounded and indecomposable. In
particular 𝑑 ∶= diam𝐸 <∞. By Corollary 4.3.3 we get the existence of 𝑐(𝑛, 𝜆, 𝛽, 𝐺) > 0 such that

𝑚2

𝑑𝛽
≤ ∫𝐸 ∫𝐸

1
|𝑥 − 𝑦|𝛽

d𝑦 d𝑥 = ℛ(𝐸) ≤ ℱ 𝜆(𝐸) ≤ 𝑐𝑚,
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which implies the first bound in (4.4.8).
In order to prove the upper bound in (4.4.8), we may clearly assume that 𝑑

√

2
> 3. Recalling that we identify 𝐸

with the bounded open set 𝐸(1), we let 𝑥(1), 𝑥(2) ∈ �̄� such that
|𝑥(1) − 𝑥(2)| = 𝑑.

Up to a rotation with respect to an axis orthogonal to {𝑥𝑛 = 0}, we can write
𝑥(2) − 𝑥(1) =

⟨

𝑥(2) − 𝑥(1), 𝑒1
⟩

𝑒1 +
⟨

𝑥(2) − 𝑥(1), 𝑒𝑛
⟩

𝑒𝑛.

In particular,
max

{

|

|

|

⟨

𝑥(2) − 𝑥(1), 𝑒1
⟩

|

|

|

, ||
|

⟨

𝑥(2) − 𝑥(1), 𝑒𝑛
⟩

|

|

|

}

≥ 𝑑
√

2
.

Assume for simplicity that
|

|

|

⟨

𝑥(2) − 𝑥(1), 𝑒𝑛
⟩

|

|

|

≥ 𝑑
√

2
,

the remaining case being analogous. Up to relabeling, assume also that
⟨

𝑥(2), 𝑒𝑛
⟩

>
⟨

𝑥(1), 𝑒𝑛
⟩

Let𝑁 be the largest integer smaller than 𝑑
3
√

2
, i.e. 𝑁 ∶=

⌊

𝑑
3
√

2

⌋

. Since𝐸 is indecomposable, for every 𝑗 = 1,… , 𝑁

there holds
|

|

|

𝐸 ∩
{

3𝑗 − 1 +
⟨

𝑥(1), 𝑒𝑛
⟩

< 𝑥𝑛 < 3𝑗 +
⟨

𝑥(1), 𝑒𝑛
⟩}

|

|

|

> 0.

For every 𝑗 = 1,… , 𝑁 , let
𝑥𝑗 ∈ 𝐸 ∩

{

3𝑗 − 1 +
⟨

𝑥(1), 𝑒𝑛
⟩

< 𝑥𝑛 < 3𝑗 +
⟨

𝑥(1), 𝑒𝑛
⟩}

.

The balls 𝐵1(𝑥𝑗), 𝑗 = 1,… , 𝑁 , are pairwise disjoint and, for a suitable choice of 𝑥𝑗 , we can apply Lemma 4.4.2
to get

𝑚 = |𝐸| ≥
𝑁
∑

𝑗=1
|𝐵1(𝑥𝑗) ∩ 𝐸| ≥ 𝑐(𝑛, 𝜆, 𝛽, 𝐺)𝑁 ≥ 𝑐(𝑛, 𝜆, 𝛽, 𝐺) 𝑑.

The following lemma will imply Theorem 4.1.2 for 𝛽 = 1.
Lemma 4.4.5. Let

𝑔(𝑥) = 1
|𝑥|𝛽

, 𝛽 ∈ (0, 𝑛), 𝑥 ∈ ℝ𝑛 ⧵ {0}

and let 𝐺 be 𝒢 -admissible. Let 𝐸 ⊂ ℝ𝑛 ⧵𝐻 be a minimizer for ℱ 𝜆 with |𝐸| = 𝑚, 𝑚 > 0. Then

∫𝐸 ∫𝐸
1

|𝑥 − 𝑦|𝛽−1
d𝑦 d𝑥 ≤ 𝑐(𝑛)𝑚.

Proof. Let 𝜈 ∈ 𝕊𝑛−1 ⧵ {±𝑒𝑛} and 𝑡 ∈ ℝ. Denote
𝐸+
𝜈,𝑡 ∶= 𝐸 ∩ {⟨𝜈, 𝑥⟩ > 𝑡}

𝐸−
𝜈,𝑡 ∶= 𝐸 ∩ {⟨𝜈, 𝑥⟩ < 𝑡}.

Let 𝜈1 ∶= 𝜈ℎ𝑜𝑟
|𝜈ℎ𝑜𝑟|

, where 𝜈ℎ𝑜𝑟 is the orthogonal projection of 𝜈 on {𝑥𝑛 = 0}. For any 𝜚 ≥ 0, the set

𝐸+
𝜈,𝑡 ∪ (𝐸−

𝜈,𝑡 − 𝜚𝜈1)

has measure 𝑚 and, by minimality of 𝐸,
ℱ 𝜆(𝐸+

𝜈,𝑡 ∪ (𝐸−
𝜈,𝑡 − 𝜚𝜈1)) ≥ ℱ 𝜆(𝐸). (4.4.9)
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For any 𝜚 > 0 and for a.e. 𝑡 ∈ ℝ

𝑃𝜆(𝐸+
𝜈,𝑡 ∪ (𝐸−

𝜈,𝑡 − 𝜚𝜈1)) = 𝑃𝜆(𝐸+
𝜈,𝑡) + 𝑃𝜆(𝐸

−
𝜈,𝑡) ≤ 𝑃𝜆(𝐸) + 2𝑛−1(𝐸 ∩ {⟨𝜈, 𝑥⟩ = 𝑡}).

For any 𝜚 ≥ 0 we have

∫𝐸+
𝜈,𝑡∪(𝐸

−
𝜈,𝑡−𝜚𝜈1)

∫𝐸+
𝜈,𝑡∪(𝐸

−
𝜈,𝑡−𝜚𝜈1)

1
|𝑥 − 𝑦|𝛽

d𝑦 d𝑥 =∫𝐸+
𝜈,𝑡
∫𝐸+

𝜈,𝑡

1
|𝑥 − 𝑦|𝛽

d𝑦 d𝑥 + ∫𝐸−
𝜈,𝑡
∫𝐸−

𝜈,𝑡

1
|𝑥 − 𝑦|𝛽

d𝑦 d𝑥

+ 2∫𝐸+
𝜈,𝑡
∫𝐸−

𝜈,𝑡

1
|𝑥 − 𝑦 + 𝜚𝜈1|𝛽

d𝑦 d𝑥.

Moreover
∫𝐸+

𝜈,𝑡
∫𝐸−

𝜈,𝑡

1
|𝑥 − 𝑦 + 𝜚𝜈1|𝛽

d𝑦 d𝑥→ 0

as 𝜚→ ∞. Hence, by (4.4.9), letting 𝜚→ ∞, we get

𝑃𝜆(𝐸) + 2𝑛−1(𝐸 ∩ {⟨𝜈, 𝑥⟩ = 𝑡}) + ∫𝐸+
𝜈,𝑡
∫𝐸+

𝜈,𝑡

1
|𝑥 − 𝑦|𝛽

d𝑦 d𝑥 + ∫𝐸−
𝜈,𝑡
∫𝐸−

𝜈,𝑡

1
|𝑥 − 𝑦|𝛽

d𝑦 d𝑥 + 𝒢 (𝐸+
𝜈,𝑡) + 𝒢 (𝐸−

𝜈,𝑡)

≥ 𝑃𝜆(𝐸) + ∫𝐸+
𝜈,𝑡
∫𝐸+

𝜈,𝑡

1
|𝑥 − 𝑦|𝛽

d𝑦 d𝑥 + ∫𝐸−
𝜈,𝑡
∫𝐸−

𝜈,𝑡

1
|𝑥 − 𝑦|𝛽

d𝑦 d𝑥 + 2∫𝐸+
𝜈,𝑡
∫𝐸−

𝜈,𝑡

1
|𝑥 − 𝑦|𝛽

d𝑦 d𝑥 + 𝒢 (𝐸).

Then

𝑛−1(𝐸 ∩ {⟨𝜈, 𝑥⟩} = 𝑡) ≥ ∫𝐸+
𝜈,𝑡
∫𝐸−

𝜈,𝑡

1
|𝑥 − 𝑦|𝛽

d𝑦 d𝑥

= ∫𝐸 ∫𝐸
𝜒{⟨𝜈,⋅⟩<𝑡}(𝑦)𝜒{⟨𝜈,⋅⟩>𝑡}(𝑥)

1
|𝑥 − 𝑦|𝛽

d𝑦 d𝑥.

Integrating the last inequality with respect to 𝑡 ∈ ℝ, by Fubini’s theorem we get

𝑚 ≥ ∫𝐸 ∫𝐸 ∫

+∞

−∞
𝜒{⟨𝜈,⋅⟩<𝑡}(𝑦)𝜒{⟨𝜈,⋅⟩>𝑡}(𝑥) d𝑡

1
|𝑥 − 𝑦|𝛽

d𝑦 d𝑥 = ∫𝐸 ∫𝐸 ∫

+∞

−∞
𝜒(⟨𝜈,𝑦⟩,⟨𝜈,𝑥⟩)(𝑡) d𝑡

1
|𝑥 − 𝑦|𝛽

d𝑦 d𝑥

= ∫𝐸 ∫𝐸

⟨𝜈, 𝑥 − 𝑦⟩+
|𝑥 − 𝑦|𝛽

d𝑦 d𝑥.

Further integrating over 𝕊𝑛−1 ⧵ {±𝑒𝑛}, since

∫𝕊𝑛−1
⟨𝜈, 𝑥 − 𝑦⟩+ d𝜈 = 𝑐(𝑛)|𝑥 − 𝑦|,

by symmetry of 𝕊𝑛−1, we conclude that

|𝕊𝑛−1|𝑚 ≥ ∫𝐸 ∫𝐸 ∫𝕊𝑛−1
⟨𝜈, 𝑥 − 𝑦⟩+ d𝜈 1

|𝑥 − 𝑦|𝛽
d𝑦 d𝑥 = 𝑐(𝑛)∫𝐸 ∫𝐸

1
|𝑥 − 𝑦|𝛽−1

d𝑦 d𝑥.

The following lemma will imply Theorem 4.1.2 for 𝛽 ∈ (1, 2].
Lemma 4.4.6. Let

𝑔(𝑥) = 1
|𝑥|𝛽

, 0 < 𝛽 < 𝑛, 𝑥 ∈ ℝ𝑛 ⧵ {0}

and let𝐺 be 𝒢 -admissible. Let𝐸 ⊂ ℝ𝑛⧵𝐻 be a minimizer for ℱ 𝜆 with |𝐸| = 𝑚,𝑚 > 𝜔𝑛. Then, for 1 ≤ 𝑟 ≤ diam𝐸
2 ,

|𝐸 ∩ 𝐵𝑟(𝑥)| ≥ 𝑐(𝑛, 𝜆, 𝛽, 𝐺) 𝑟 for a.e. 𝑥 ∈ 𝐸.
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Proof. Let 𝑁 ∶=
⌊

𝑟−1
3

⌋

and 𝑥 ∈ 𝐸. If 𝑟 < 4, by Lemma 4.4.2

|𝐸 ∩ 𝐵𝑟(𝑥)| ≥ |𝐸 ∩ 𝐵1(𝑥)| ≥ 𝑐(𝑛, 𝜆, 𝛽, 𝐺) =
𝑐(𝑛, 𝜆, 𝛽, 𝐺)

4
4 ≥ 𝑐(𝑛, 𝜆, 𝛽, 𝐺) 𝑟.

So we can assume that 𝑟 ≥ 4, in particular 𝑁 ≥ 1. Since 𝐸 is indecomposable by Theorem 4.3.14, for every
𝑖 = 0,… , 𝑁 − 1 there holds

|𝐸 ∩ (𝐵3𝑖+3(𝑥) ⧵ 𝐵3𝑖+2(𝑥))| > 0.

For every 𝑖 = 0,… , 𝑁 − 1, let
𝑦𝑖 ∈ 𝐸 ∩ (𝐵3𝑖+3(𝑥) ⧵ 𝐵3𝑖+2(𝑥)).

The balls 𝐵1(𝑦𝑖), 𝑖 = 0,…𝑁 −1, are pairwise disjoint and, for a suitable choice of 𝑦𝑖, by Lemma 4.4.2 there exists
𝑐(𝑛, 𝜆, 𝛽, 𝐺) such that |𝐸 ∩ 𝐵1(𝑦𝑖)| ≥ 𝑐 for 𝑖 = 0,… , 𝑁 − 1. Finally

|𝐸 ∩ 𝐵𝑟(𝑥)| ≥
𝑁−1
∑

𝑖=0
|𝐸 ∩ 𝐵1(𝑦𝑖)| + |𝐸 ∩ 𝐵1(𝑥)| ≥ (𝑁 + 1)𝑐 ≥ 𝑐 𝑟 − 1

3
≥ 𝑐 𝑟.

Now we are ready to prove Theorem 4.1.2.
Proof of Theorem 4.1.2. Lemma 4.4.4 and Lemma 4.4.5 easily imply Theorem 4.1.2 for 𝛽 ∈ (0, 1] and mass 𝑚
sufficiently large. Then it remains to consider 𝛽 ∈ (1, 2]. Let 𝐸 ⊂ ℝ𝑛 ⧵𝐻 be a volume constrained minimizer for
ℱ 𝜆 with |𝐸| = 𝑚. By Lemma 4.4.4, for 𝑚 large enough, we can assume that diam𝐸 > 4. We observe first that

1
𝑟𝛽−1

|{(𝑥, 𝑦) ∈ 𝐸 × 𝐸 ∶ |𝑥 − 𝑦| < 𝑟}| = 1
𝑟𝛽−1 ∫𝐸

|𝐸 ∩ 𝐵𝑟(𝑥)| d𝑥 ≤
𝜔𝑛𝑟𝑛

𝑟𝛽−1
|𝐸| ←←←←←←←←←←←←←←←←→

𝑟→0
0. (4.4.10)

Applying the coarea formula on ℝ𝑛 ×ℝ𝑛 for the Lipschitz function 𝑓 ∶ ℝ𝑛 ×ℝ𝑛 → ℝ given by 𝑓 (𝑥, 𝑦) ∶= |𝑥− 𝑦|,
observing that |∇𝑓 | = √

2 and that
d
d𝑟

|{(𝑥, 𝑦) ∈ 𝐸 × 𝐸 ∶ |𝑥 − 𝑦| < 𝑟}| = 1
√

2 ∫{(𝑥,𝑦)∈ℝ𝑛×ℝ𝑛 ∶ |𝑥−𝑦|=𝑟}
𝜒𝐸×𝐸(𝑥, 𝑦) d2𝑛−1(𝑥, 𝑦) for a.e. 𝑟 > 0,

and integrating by parts, we estimate

∫𝐸 ∫𝐸
1

|𝑥 − 𝑦|𝛽−1
d𝑦 d𝑥 = 1

√

2 ∫ℝ𝑛×ℝ𝑛

𝜒𝐸×𝐸(𝑥, 𝑦)
|𝑥 − 𝑦|𝛽−1

|∇𝑓 | d𝑥 d𝑦

= 1
√

2 ∫

+∞

0 ∫{(𝑥,𝑦)∈ℝ𝑛×ℝ𝑛 ∶ |𝑥−𝑦|=𝑟}

𝜒𝐸×𝐸(𝑥, 𝑦)
𝑟𝛽−1

d2𝑛−1(𝑥, 𝑦) d𝑟

= lim
𝜀→0+ ∫

+∞

𝜀

1
𝑟𝛽−1

d
d𝑟

|{(𝑥, 𝑦) ∈ 𝐸 × 𝐸 ∶ |𝑥 − 𝑦| < 𝑟}| d𝑟

= lim
𝜀→0+

− 1
𝜀𝛽−1

|{(𝑥, 𝑦) ∈ 𝐸 × 𝐸 ∶ |𝑥 − 𝑦| < 𝜀}|+

− ∫

+∞

𝜀
(1 − 𝛽) 1

𝑟𝛽
|{(𝑥, 𝑦) ∈ 𝐸 × 𝐸 ∶ |𝑥 − 𝑦| < 𝑟}| d𝑟.

Exploiting (4.4.10) and Lemma 4.4.6 we deduce

∫𝐸 ∫𝐸
1

|𝑥 − 𝑦|𝛽−1
d𝑦 d𝑥 = (𝛽 − 1)∫

+∞

0
|{(𝑥, 𝑦) ∈ 𝐸 × 𝐸 ∶ |𝑥 − 𝑦| < 𝑟}| d𝑟

𝑟𝛽

= (𝛽 − 1)∫

+∞

0 ∫𝐸
|𝐸 ∩ 𝐵𝑟(𝑥)|

𝑟𝛽
d𝑥 d𝑟

≥ (𝛽 − 1)∫

diam𝐸
2

1 ∫𝐸
|𝐸 ∩ 𝐵𝑟(𝑥)|

𝑟𝛽
d𝑥 d𝑟

≥ 𝑐 ∫

diam𝐸
2

1

|𝐸|
𝑟𝛽−1

d𝑟.
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The final right-hand side in the previous chain of inequalities is bounded from below by 𝑐 |𝐸| (diam𝐸)2−𝛽 if
𝛽 < 2, and by 𝑐 |𝐸| log(diam𝐸) if 𝛽 = 2. Combining this bounds with Lemma 4.4.5, we get a contradiction for
|𝐸| large enough.

Absence of holes in minimizers

As a corollary of the estimates proved in the last section, we prove here a further qualitative property of volume
constrained minimizers of ℱ 𝜆. The next theorem essentially tells that volume constrained minimizers of ℱ 𝜆 do
not have “interior holes”.
Theorem 4.4.7. Let 𝑔 be ℛ-admissible, 0-growing, infinitesimal and symmetric and let 𝐺 be 𝒢 -admissible and
coercive. There exists �̄� > 0, depending on 𝑛, 𝜆, 𝑔 and 𝐺, such that, for all 𝑚 ∈ (0, �̄�), every minimizer 𝐸 of ℱ 𝜆

with |𝐸| = 𝑚 has the following property. There is no set 𝐹 ⊂ ℝ𝑛 ⧵ (𝐻 ∪ 𝐸) with |𝐹 | > 0 such that

𝑃𝜆(𝐸) = 𝑃𝜆(𝐸 ∪ 𝐹 ) + 𝑃 (𝐹 ,ℝ𝑛 ⧵𝐻) + 𝜆𝑛−1(𝜕∗𝐹 ∩ 𝜕𝐻). (4.4.11)
We begin with a preparatory lemma.
Lemma 4.4.8. Let 𝑔 be ℛ-admissible, 𝑞-growing, infinitesimal and symmetric and let 𝐺 be 𝒢 -admissible and
coercive. There exist �̄� > 0 and �̄� > 0, depending on 𝑛, 𝜆, 𝑔, 𝐺, 𝑞 such that, for all 𝑚 ∈ (0, �̄�), every volume
constrained minimizer 𝐸 of ℱ 𝜆 with |𝐸| = 𝑚 satisfies

|𝐸 ∩ {𝑥𝑛 > �̄� }| = 0.

Proof. By Lemma 4.3.12 there exists �̄�𝐸 <∞, depending on 𝑛, 𝜆, 𝑔, 𝐺 and 𝐸 with
�̄�𝐸 ∶= sup{𝑡 ∶ |𝐸 ∩ {𝑥𝑛 > 𝑡}| > 0}.

Let 𝑥𝐸 ∈ 𝐸 such that
(𝑥𝐸)𝑛 ≥

1
2
�̄�𝐸 .

By Lemma 4.4.2 there exists 𝑐 = 𝑐(𝑛, 𝜆, 𝑔, 𝐺, 𝑞) > 0 such that, if �̄� < 1, then
|𝐸 ∩ 𝐵1(𝑥𝐸)| ≥ 𝑐 𝑚.

Therefore
ℱ 𝜆(𝐸) ≥ 𝑃𝜆(𝐸) + ∫𝐸∩𝐵1(𝑥𝐸 )

𝐺 ≥ 𝑃𝜆(𝐵𝜆(𝑚)) + 𝑐𝑚 inf
((𝑥𝐸 )𝑛−1,(𝑥𝐸 )𝑛+1)

𝐺. (4.4.12)

On the other hand, by Lemma 4.3.2, if �̄� ≤ |𝐵𝜆| we have
ℱ 𝜆(𝐸) ≤ ℱ 𝜆(𝐵𝜆(𝑚)) ≤ 𝑃𝜆(𝐵𝜆(𝑚)) + 𝑐(𝑛, 𝜆, 𝑔, 𝐺)𝑚. (4.4.13)

Putting together (4.4.12) and (4.4.13) we obtain
inf

((𝑥𝐸 )𝑛−1,(𝑥𝐸 )𝑛+1)
𝐺 ≤ 𝑐(𝑛, 𝜆, 𝑔, 𝐺, 𝑞).

Since 𝐺 is coercive, then (𝑥𝐸)𝑛, and in particular also �̄�𝐸 , is bounded by a constant independent of 𝐸, and we
conclude the proof.
Remark 4.4.9. We remark that Lemma 4.4.8 is a stronger result than Lemma 4.3.12. Indeed, the bound in Lemma
4.4.8 does not depend on the minimizer. At the same time, Lemma 4.3.12 does not require that 𝑔 is 𝑞-growing and
𝐺 is coercive.
Now we are ready to prove Theorem 4.4.7.
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Proof of Theorem 4.4.7. If �̄� is sufficiently small, Lemma 4.4.8 guarantees that there exists �̄� > 0, depending on
𝑛, 𝜆, 𝑔, 𝐺, such that

|𝐸 ∩ {𝑥𝑛 > �̄� }| = 0.

Assume that there exists a set 𝐹 ⊂ ℝ𝑛 ⧵ (𝐻 ∪ 𝐸) with 𝑣 ∶= |𝐹 | > 0 and such that (4.4.11) holds. We aim
to find a contradiction if �̄� is chosen suitably small. Let �̄� ≤ |𝐵𝜆|. By the minimality of 𝐸, the isoperimetric
inequality Theorem 3.2.3, the relative isoperimetric inequality outside convex sets [CGR07; FM23] and since
𝑃𝜆(𝐵𝜆(𝑚)) = 𝑛|𝐵𝜆|

1
𝑛𝑚

𝑛−1
𝑛 [PP24, Lemma 3.1], we find

𝑛|𝐵𝜆|
1
𝑛𝑚

𝑛−1
𝑛 +ℛ(𝐵𝜆(𝑚)) + 𝒢 (𝐵𝜆(𝑚)) = ℱ 𝜆(𝐵𝜆(𝑚)) ≥ ℱ 𝜆(𝐸) ≥ 𝑃𝜆(𝐸)

= 𝑃𝜆(𝐸 ∪ 𝐹 ) + 𝑃 (𝐹 ,ℝ𝑛 ⧵𝐻) + 𝜆𝑛−1(𝜕∗𝐹 ∩ 𝜕𝐻)
≥ 𝑃𝜆(𝐸 ∪ 𝐹 ) + (1 − |𝜆|)𝑃 (𝐹 ,ℝ𝑛 ⧵𝐻)

≥ 𝑛|𝐵𝜆|
1
𝑛 (𝑚 + 𝑣)

𝑛−1
𝑛 + (1 − |𝜆|) 𝑛

(𝜔𝑛
2

)
1
𝑛 𝑣

𝑛−1
𝑛

≥ 𝑛|𝐵𝜆|
1
𝑛𝑚

𝑛−1
𝑛 + (1 − |𝜆|) 𝑛

(𝜔𝑛
2

)
1
𝑛 𝑣

𝑛−1
𝑛

which gives, by Lemma 4.3.2,

𝑣 ≤
⎛

⎜

⎜

⎜

⎝

ℛ(𝐵𝜆(𝑚)) + 𝒢 (𝐵𝜆(𝑚))

(1 − |𝜆|) 𝑛 𝑛
√

𝜔𝑛
2

⎞

⎟

⎟

⎟

⎠

𝑛
𝑛−1

≤ 𝑐(𝑛, 𝜆, 𝑔, 𝐺)

⎛

⎜

⎜

⎜

⎝

𝑚

(1 − |𝜆|) 𝑛 𝑛
√

𝜔𝑛
2

⎞

⎟

⎟

⎟

⎠

𝑛
𝑛−1

. (4.4.14)

Since �̄� < 𝑐(𝑛, 𝜆, 𝑔, 𝐺), also 𝑣 is bounded by a suitable �̄�(𝑛, 𝜆, 𝑔, 𝐺). By [NP21, Lemma 3.5] there exists a contin-
uous and increasing function 𝜑 ∶ (0,∞) → (0,∞), with 𝜑(0) = 0, such that for every two sets 𝐹1, 𝐹2 ⊂ ℝ𝑛 ⧵𝐻
one has

ℛ(𝐹1, 𝐹2) ≤ |𝐹1|𝜑(|𝐹2|).

Then
ℛ(𝐸 ∪ 𝐹 ) −ℛ(𝐸) = ℛ(𝐹 , 𝐹 ) + 2ℛ(𝐹 ,𝐸) ≤ 𝑣𝜑(�̄�) + 2𝑣𝜑(�̄�) ≤ 𝑐(𝑛, 𝜆, 𝑔, 𝐺)𝑣.

Let us prove that also 𝐹 is essentially contained in {0 < 𝑥𝑛 ≤ �̄� }. To this end, assume by contradiction that
𝑛−1 (𝜕∗𝐹 ⧵

(

𝐻 ∪ 𝜕∗𝐸
))

> 0. (4.4.15)
Let us denote

Σ𝐸 ∶= 𝑛−1 (𝜕∗𝐸 ⧵
(

𝐻 ∪ 𝜕∗𝐹
))

Σ ∶= 𝑛−1 ((𝜕∗𝐸 ∩ 𝜕∗𝐹
)

⧵𝐻
)

Σ𝐹 ∶= 𝑛−1 (𝜕∗𝐹 ⧵
(

𝐻 ∪ 𝜕∗𝐸
))

Θ𝐸 ∶= 𝑛−1 (𝜕∗𝐸 ∩ 𝜕𝐻
)

Θ𝐹 ∶= 𝑛−1 (𝜕∗𝐹 ∩ 𝜕𝐻
)

.

By (4.4.11) we obtain
Σ𝐸 + Σ − 𝜆Θ𝐸 = 𝑃𝜆(𝐸)

= 𝑃𝜆(𝐸 ∪ 𝐹 ) + 𝑃 (𝐹 ,ℝ𝑛 ⧵𝐻) + 𝜆Θ𝐹
= Σ𝐸 + Σ𝐹 − 𝜆Θ𝐸 − 𝜆Θ𝐹 + Σ + Σ𝐹 + 𝜆Θ𝐹
= Σ𝐸 + 2Σ𝐹 + Σ − 𝜆Θ𝐸 .

In particular, we get Σ𝐹 = 0, contradicting (4.4.15). Therefore 𝐹 ⊂ {0 < 𝑥𝑛 ≤ �̄� } and we also deduce

𝒢 (𝐸 ∪ 𝐹 ) − 𝒢 (𝐸) = 𝒢 (𝐹 ) ≤ ∫𝐹
sup
(0,�̄� )

𝐺 d𝑥 = 𝑐(𝑛, 𝜆, 𝑔, 𝐺) 𝑣. (4.4.16)
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By (4.4.11), we obtain
ℱ 𝜆(𝐸 ∪ 𝐹 ) = 𝑃𝜆(𝐸 ∪ 𝐹 ) +ℛ(𝐸 ∪ 𝐹 ) + 𝒢 (𝐸 ∪ 𝐹 )

= 𝑃𝜆(𝐸) − 𝑃 (𝐹 ,ℝ𝑛 ⧵𝐻) − 𝜆𝑛−1(𝜕∗𝐹 ∩ 𝜕𝐻) +ℛ(𝐸 ∪ 𝐹 ) + 𝒢 (𝐸 ∪ 𝐹 )
≤ 𝑃𝜆(𝐸) − (1 − |𝜆|)𝑃 (𝐹 ,ℝ𝑛 ⧵𝐻) +ℛ(𝐸 ∪ 𝐹 ) + 𝒢 (𝐸 ∪ 𝐹 )

≤ 𝑃𝜆(𝐸) − (1 − |𝜆|) 𝑛
(𝜔𝑛
2

)
1
𝑛 𝑣

𝑛−1
𝑛 +ℛ(𝐸) + 𝑐 𝑣 + 𝒢 (𝐸) + 𝑐 𝑣

= ℱ 𝜆(𝐸) − (1 − |𝜆|) 𝑛
(𝜔𝑛
2

)
1
𝑛 𝑣

𝑛−1
𝑛 + 𝑐 𝑣 < ℱ 𝜆(𝐸),

(4.4.17)

where the last inequality holds if 𝑣 is sufficiently small, hence by (4.4.14) as soon as �̄� is sufficiently small.
Let 𝑡 ∈ (0,∞) be such that, if 𝐷 =

{

𝑥 ∈ 𝐸 ∪ 𝐹 , 𝑥𝑛 < 𝑡
}, then |𝐷| = 𝑚. Clearly ℱ 𝜆(𝐷) ≤ ℱ 𝜆(𝐸 ∪ 𝐹 ), hence

(4.4.17) implies ℱ 𝜆(𝐷) < ℱ 𝜆(𝐸), contradicting the minimality of 𝐸.
Remark 4.4.10. Note that if the function 𝐺 were globally bounded, Theorem 4.4.7 could be easily extended to
minimizers of ℱ 𝜆 in the class

𝑚 = {Ω ⊂ ℝ𝑛 ⧵𝐻 measurable ∶ |Ω| = 𝑚}

for every mass 𝑚 > 0.
Indeed, in the proof of Theorem 4.4.7 we exploited Lemma 4.4.8 just to get the estimate (4.4.16), which is trivial
in case 𝐺 were assumed to be globally bounded.
Now we are ready to complete the proof of Theorem 4.1.1.
Proof of Theorem 4.1.1. Theorem 4.1.1 follows by Theorem 4.3.1, Remark 4.3.6, Proposition 4.3.7, Theorem
4.3.8, Theorem 4.3.14 and Theorem 4.4.7.

4.5 Generalized minimizers

Let us give the following definition.
Definition 4.5.1. If 𝐸 ⊂ ℝ𝑛 ⧵𝐻 is a measurable set, 𝑔 is a ℛ-admissible function, 𝐺 is a ℛ-admissible function
and 𝜀1, 𝜀2 > 0, we define the functional

ℱ 𝜆
𝜀 (𝐸) ∶= 𝑃𝜆(𝐸) + 𝜀1ℛ(𝐸) + 𝜀2𝒢 (𝐸)

= 𝑃𝜆(𝐸) + 𝜀1 ∫𝐸 ∫𝐸
𝑔(𝑦 − 𝑥) d𝑦 d𝑥 + 𝜀2 ∫𝐸

𝐺(𝑥𝑛) d𝑥.

Remark 4.5.2. We remark that minimizing the functional ℱ 𝜆 in the small mass regime is equivalent to minimizing
the functional ℱ 𝜆

𝜀 for 𝜀1, 𝜀2 small and among sets of a fixed volume. Indeed, let for instance |𝐸| = |𝐵𝜆|, if 𝑚 > 0

and �̄� ∶= 𝑚
1
𝑛

|𝐵𝜆|
1
𝑛

, then �̃� ∶= �̄�𝐸 has volume 𝑚 and by scaling we have

ℱ 𝜆(�̃�) = �̄�𝑛−1
(

𝑃𝜆(𝐸) + �̄�𝑛+1 ∫𝐸 ∫𝐸
𝑔(�̄�(𝑦 − 𝑥)) d𝑦 d𝑥 + �̄�∫𝐸

𝐺(�̄�𝑥𝑛) d𝑥
)

.

In particular we deduce that
• for every ℛ-admissible function 𝑔1, 𝒢 -admissible function𝐺1 and𝑚 > 0, there exist �̄� > 0, a ℛ-admissible

function 𝑔2 and a 𝒢 -admissible function 𝐺2 such that, if

ℱ 𝜆(𝐸) = 𝑃𝜆(𝐸) + ∫𝐸 ∫𝐸
𝑔1(𝑦 − 𝑥) d𝑦 d𝑥 + ∫𝐸

𝐺1(𝑥𝑛) d𝑥

and
ℱ 𝜆
�̄� (𝐸) = 𝑃𝜆(𝐸) + �̄�𝑛+1 ∫𝐸 ∫𝐸

𝑔2(𝑦 − 𝑥) d𝑦 d𝑥 + �̄�∫𝐸
𝐺2(𝑥𝑛) d𝑥,

then inf
|𝐸|=𝑚ℱ

𝜆(𝐸) is proportional to inf
|𝐸|=|𝐵𝜆|ℱ

𝜆
�̄� (𝐸) and the variational problems are equivalent.
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• for every ℛ-admissible function 𝑔2, 𝒢 -admissible function 𝐺2, 𝜀1, 𝜀2 > 0 and 𝑚 > 0, there exist a ℛ-ad-
missible function 𝑔1 and a 𝒢 -admissible function 𝐺1 such that, if

ℱ 𝜆(𝐸) = 𝑃𝜆(𝐸) + ∫𝐸 ∫𝐸
𝑔1(𝑦 − 𝑥) d𝑦 d𝑥 + ∫𝐸

𝐺1(𝑥𝑛) d𝑥

and
ℱ 𝜆
𝜀 (𝐸) = 𝑃𝜆(𝐸) + 𝜀1 ∫𝐸 ∫𝐸

𝑔2(𝑦 − 𝑥) d𝑦 d𝑥 + 𝜀2 ∫𝐸
𝐺2(𝑥𝑛) d𝑥,

then inf
|𝐸|=|𝐵𝜆|ℱ

𝜆
𝜀 (𝐸) is proportional to inf

|𝐸|=𝑚ℱ
𝜆(𝐸) and the variational problems are equivalent.

From now on for the rest of the section, we assume that 𝜀1, 𝜀2 > 0 and 𝑔, 𝐺 as in Definition 4.5.1 are given. Hence
we also define the generalized energy corresponding to ℱ 𝜆

𝜀 as
ℱ̃ 𝜆
𝜀 (𝐸) ∶= inf

ℎ∈ℕ
ℱ̃ 𝜆
𝜀,ℎ(𝐸),

where
ℱ̃ 𝜆
𝜀,ℎ(𝐸) ∶= inf

{ ℎ
∑

𝑖=1
ℱ 𝜆
𝜀 (𝐸

𝑖) ∶ 𝐸 =
ℎ
⋃

𝑖=1
𝐸𝑖, 𝐸𝑖 ∩ 𝐸𝑗 = ∅ for 1 ≤ 𝑖 ≠ 𝑗 ≤ ℎ

}

.

The goal of this Section is to prove the following version of Theorem 4.1.3, suitably modified for the functional
ℱ 𝜆
𝜀 .

Theorem 4.5.3. Let 𝑔 be ℛ-admissible and 𝑞-growing and let 𝐺 be 𝒢 -admissible. For every 𝜀1, 𝜀2 > 0 there
exists a minimizer of ℱ̃ 𝜆

𝜀 in the class

 ∶=
{

Ω ⊂ ℝ𝑛 ⧵𝐻 measurable ∶ |Ω| = |𝐵𝜆|
}

.

More precisely, there exist a set 𝐸 ∈  and a subdivision 𝐸 = ∪ℎ𝑗=1𝐸
𝑗 , with pairwise disjoint sets 𝐸𝑗 , such that

ℱ̃ 𝜆
𝜀 (𝐸) =

ℎ
∑

𝑗=1
ℱ 𝜆
𝜀 (𝐸

𝑗) = inf
{

ℱ̃ 𝜆
𝜀 (Ω) ∶ Ω ∈ 

}

.

Moreover, for every 1 ≤ 𝑗 ≤ ℎ, the set 𝐸𝑗 is a minimizer of both the standard and the generalized energy for its
volume, i.e.

ℱ̃ 𝜆
𝜀 (𝐸

𝑗) = ℱ 𝜆
𝜀 (𝐸

𝑗) = min
{

ℱ̃ 𝜆
𝜀 (Ω) ∶ Ω ⊂ ℝ𝑛 ⧵𝐻, |Ω| = |𝐸𝑗

|

}

. (4.5.1)
Note that an analogous version of Lemma 4.3.4 holds.
Lemma 4.5.4. Let 𝐸 ⊂ ℝ𝑛 ⧵𝐻 be a set of finite perimeter. Let 𝑔 be ℛ-admissible and 𝑞-growing and let 𝐺 be
𝒢 -admissible. If 𝛼 > 1, then

ℱ 𝜆
𝜀 (𝛼𝐸) ≤ 𝛼2𝑛+𝑞ℱ 𝜆

𝜀 (𝐸).

We begin by proving some preparatory lemmas. The next geometric lemma allows to modify an excessively long
and thin set decreasing its energy.
Lemma 4.5.5. Let 𝑔 be ℛ-admissible and 𝐺 be 𝒢 -admissible. For every �̄� > 0 there exists 𝐿(𝑛, 𝜆, �̄�) > 0 such
that the following holds. Let 𝐸 ⊂ ℝ𝑛 ⧵𝐻 , and let 𝑎 < 𝑏 be two numbers with 𝑏 > 𝑎 + 2𝐿 and such that

|

|

|

{

𝑥 ∈ 𝐸 ∶ 𝑎 ≤ 𝑥1 ≤ 𝑏
}

|

|

|

< �̄�.

Then there exist two numbers 𝑎+ ∈ [𝑎, 𝑎 + 𝐿] and 𝑏− ∈ [𝑏 − 𝐿, 𝑏] such that, denoting 𝐸− = 𝐸 ⧵ ([𝑎+, 𝑏−] × ℝ𝑛−2

× (0,∞)) and 𝑚 = |𝐸| − |𝐸−
| < �̄�, one has

ℱ 𝜆
𝜀 (𝐸

−) ≤ ℱ 𝜆
𝜀 (𝐸) −

1
2
𝑛|𝐵𝜆|

1
𝑛𝑚

𝑛−1
𝑛 . (4.5.2)
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Proof. It is sufficient to prove the claim for bounded sets 𝐸 such that 𝜕𝐸 ⧵ 𝜕𝐻 is a smooth hypersurface with
𝑛−1({𝑥 ∈ 𝜕𝐸 ⧵𝐻 ∶ 𝜈𝐸(𝑥) = ±𝑒𝑗}) = 0 for any 𝑗 = 1,… , 𝑛. Indeed, if 𝐸 is a generic set of finite perimeter
satisfying the hypotheses of Lemma 4.5.5, let 𝐸𝑖

𝐿1

←←←←←←←←←←←→ 𝐸 be the sequence of sets given by Lemma 2.4.4. For 𝑖
sufficiently large,

|

|

|

{

𝑥 ∈ 𝐸𝑖 ∶ 𝑎 ≤ 𝑥1 ≤ 𝑏
}

|

|

|

< �̄�

holds. Then there exist 𝑎+𝑖 ∈ [𝑎, 𝑎+𝐿] and 𝑏−𝑖 ∈ [𝑏−𝐿, 𝑏] such that, if we set 𝐸−
𝑖 = 𝐸𝑖 ⧵

(

[𝑎+𝑖 , 𝑏
−
𝑖 ] × (0,∞)

) and
𝑚𝑖 = |𝐸𝑖| − |𝐸−

𝑖 |, we obtain
ℱ 𝜆
𝜀 (𝐸

−
𝑖 ) ≤ ℱ 𝜆

𝜀 (𝐸𝑖) −
1
2
𝑛|𝐵𝜆|

1
𝑛𝑚

𝑛−1
𝑛
𝑖 .

Up to subsequence, 𝑎+𝑖 and 𝑏−𝑖 converge to certain 𝑎+ ∈ [𝑎, 𝑎+𝐿] and 𝑏− ∈ [𝑏−𝐿, 𝑏] respectively. By Lemma 2.4.4
𝑃𝜆(𝐸𝑖) → 𝑃𝜆(𝐸). By the lower semicontinuity of 𝑃𝜆 3.3.4, the continuity of ℛ and 𝒢 under strong𝐿1 convergence
and the properties of {𝐸𝑖}, if 𝐸− = 𝐸 ⧵

(

[𝑎+, 𝑏−] × (0,∞)
) then

ℱ 𝜆
𝜀 (𝐸

−) = 𝑃𝜆(𝐸−) + 𝜀1ℛ(𝐸−) + 𝜀2𝒢 (𝐸−)
≤ lim inf

𝑖
(𝑃𝜆(𝐸−

𝑖 ) + 𝜀1ℛ(𝐸−
𝑖 ) + 𝜀2𝒢 (𝐸−

𝑖 ))

≤ lim inf
𝑖

(

𝑃𝜆(𝐸𝑖) + 𝜀1ℛ(𝐸𝑖) + 𝜀2𝒢 (𝐸𝑖) −
1
2
𝑛|𝐵𝜆|

1
𝑛𝑚

𝑛−1
𝑛
𝑖

)

= ℱ 𝜆
𝜀 (𝐸) −

1
2
𝑛|𝐵𝜆|

1
𝑛𝑚

𝑛−1
𝑛 .

So let us fix �̄� and consider 𝑎 and 𝑏 as in the claim, with 𝐿 to be determined later. For 𝑡 ∈ ℝ let
𝜎(𝑡) ∶= 𝑛−1 (𝐸 ∩

{

𝑥 ∈ ℝ𝑛 ∶ 𝑥1 = 𝑡
})

.

If 𝑐 ∶= 𝑎+𝑏
2

, let
𝜑(𝑡) ∶= ∫

𝑐

𝑡
𝜎(𝑠) d𝑠.

We note that there exists 𝑎+ ∈ [𝑎, 𝑎 + 𝐿] ⊂ [𝑎, 𝑐) such that, if
𝑚1 ∶=

|

|

|

{

𝑥 ∈ 𝐸 ∶ 𝑎+ < 𝑥1 < 𝑐
}

|

|

|

,

then
𝜎(𝑎+) ≤ 1

8
𝑛|𝐵𝜆|

1
𝑛𝑚

𝑛−1
𝑛

1 . (4.5.3)
Indeed, assume by contradiction that for every 𝑡 ∈ (𝑎, 𝑎 + 𝐿) it holds

−𝜑′(𝑡) = 𝜎(𝑡) > 1
8
𝑛|𝐵𝜆|

1
𝑛𝜑(𝑡)

𝑛−1
𝑛 .

Then 𝜑|(𝑎,𝑎+𝐿) is a positive decreasing function satisfying
{

𝜑(𝑎) ≤ �̄�,

|𝜑′(𝑡)| > 1
8
𝑛|𝐵𝜆|

1
𝑛𝜑(𝑡)

𝑛−1
𝑛 .

By standard ODE comparison there exists a constant 𝑑 > 0 depending only on 𝑛, 𝜆 and �̄� such that, if 𝑎+𝑑 < 𝑎+𝐿,
then 𝜑(𝑡) → 0 as 𝑡→ (𝑎+ 𝑑)−. Hence 𝐿 could be chosen so big that 𝑎+ 𝑑 < 𝑎+𝐿 < 𝑐, and then 𝜑(𝑡) = 0 for any
𝑡 ∈ (𝑎 + 𝑑, 𝑐). It follows that there exists 𝑎+ such that (4.5.3) holds. Similarly, up to choosing a larger 𝐿, we have
the existence of 𝑏− ∈ [𝑏 − 𝐿, 𝑏] ⊂ (𝑐, 𝑏] such that, if

𝑚2 ∶=
|

|

|

{

𝑥 ∈ 𝐸 ∶ 𝑐 < 𝑥1 < 𝑏
−}|

|

|

,

then
𝜎(𝑏−) ≤ 1

8
𝑛|𝐵𝜆|

1
𝑛𝑚

𝑛−1
𝑛

2 .
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Let 𝐸− ∶= 𝐸 ⧵
([

𝑎+, 𝑏−
]

× (0,∞)
) and 𝐹 ∶= 𝐸 ⧵ 𝐸−. Then

|𝐹 | = 𝑚 = 𝑚1 + 𝑚2,

and, by isoperimetric inequality 3.2.3, there holds
𝑃𝜆(𝐹 ) ≥ 𝑛|𝐵𝜆|

1
𝑛𝑚

𝑛−1
𝑛 .

Hence
𝑃𝜆(𝐸−) ≤ 𝑃𝜆(𝐸) − 𝑃𝜆(𝐹 ) + 2(𝜎(𝑎+) + 𝜎(𝑏−))

≤ 𝑃𝜆(𝐸) − 𝑃𝜆(𝐹 ) +
1
4
𝑛|𝐵𝜆|

1
𝑛

(

𝑚
𝑛−1
𝑛

1 + 𝑚
𝑛−1
𝑛

2

)

≤ 𝑃𝜆(𝐸) − 𝑃𝜆(𝐹 ) +
1
2
𝑛|𝐵𝜆|

1
𝑛 (𝑚1 + 𝑚2)

𝑛−1
𝑛

≤ 𝑃𝜆(𝐸) −
1
2
𝑛|𝐵𝜆|

1
𝑛 (𝑚1 + 𝑚2)

𝑛−1
𝑛 .

Since 𝐸− ⊂ 𝐸, then ℛ(𝐸−) ≤ ℛ(𝐸) and 𝒢 (𝐸−) ≤ 𝒢 (𝐸), and we deduce (4.5.2).
The following variant of Lemma 4.5.5 concerns the case of the vertical direction when we modify a part lying on
the hyperplane {𝑥𝑛 = 0}.
Lemma 4.5.6. Let 𝑔 be ℛ-admissible and 𝐺 be 𝒢 -admissible. For every �̄� ∈ ℝ there exists 𝐿(𝑛, 𝜆, �̄�) > 0 such
that the following holds. Let 𝐸 ⊂ ℝ𝑛 ⧵𝐻 , and let 𝑏 be a number with 𝑏 > 𝐿 and such that

|

|

|

{

𝑥 ∈ 𝐸 ∶ 0 < 𝑥𝑛 ≤ 𝑏
}

|

|

|

< �̄�.

There exists then 𝑏− ∈ [𝑏 − 𝐿, 𝑏] such that, denoting 𝐸− = 𝐸 ⧵
(

ℝ𝑛−1 × [0, 𝑏−]
)

and 𝑚 = |𝐸| − |𝐸−
| ≤ �̄�, one

has
ℱ 𝜆
𝜀 (𝐸

−) ≤ ℱ 𝜆
𝜀 (𝐸) −

1
2
𝑛|𝐵𝜆|

1
𝑛𝑚

𝑛−1
𝑛 . (4.5.4)

Proof. As in the proof of Lemma 4.5.5, we may assume that 𝜕𝐸 ⧵ 𝜕𝐻 is a smooth hypersurface with 𝑛−1({𝑥 ∈
𝜕𝐸 ⧵ 𝐻 ∶ 𝜈𝐸𝑖(𝑥) = ±𝑒𝑗}) = 0 for any 𝑗 = 1,… 𝑛. Let us fix �̄� and consider 𝑏 as in the claim, with 𝐿 to be
determined later. For almost every 𝑡 ∈ ℝ, let

𝜎(𝑡) ∶= 𝑛−1 (𝐸 ∩
{

𝑥 ∈ ℝ𝑛 ∶ 𝑥1 = 𝑡
})

.

Let
𝜑(𝑡) ∶= ∫

𝑡

0
𝜎(𝑠) d𝑠.

As in the proof of Lemma 4.5.5, we note that there exists 𝑏− ∈ [𝑏 − 𝐿, 𝑏] ⊂ (0, 𝑏] such that, if
𝑚 ∶= |

|

|

{

𝑥 ∈ 𝐸 ∶ 0 < 𝑥𝑛 < 𝑏−
}

|

|

|

,

then
𝜎(𝑏−) ≤ 1

4
𝑛|𝐵𝜆|

1
𝑛𝑚

𝑛−1
𝑛 .

If 𝐸− ∶= 𝐸 ⧵
(

ℝ𝑛−1 × [0, 𝑏−]
) and 𝐹 ∶= 𝐸 ⧵ 𝐸−, then

|𝐹 | = 𝑚

and, by isoperimetric inequality 3.2.3,
𝑃𝜆(𝐹 ) ≥ 𝑛|𝐵𝜆|

1
𝑛𝑚

𝑛−1
𝑛 .

We establish that
𝑃𝜆(𝐸−) ≤ 𝑃𝜆(𝐸) − 𝑃𝜆(𝐹 ) + 2𝜎(𝑏−)

≤ 𝑃𝜆(𝐸) − 𝑃𝜆(𝐹 ) +
1
2
𝑛|𝐵𝜆|

1
𝑛𝑚

𝑛−1
𝑛

≤ 𝑃𝜆(𝐸) −
1
2
𝑛|𝐵𝜆|

1
𝑛𝑚

𝑛−1
𝑛 .

Since 𝐸− ⊂ 𝐸, then ℛ(𝐸−) ≤ ℛ(𝐸), 𝒢 (𝐸−) ≤ 𝒢 (𝐸) and we deduce (4.5.4).
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We now prove a uniform boundedness result.
Lemma 4.5.7. Let 𝑔 be ℛ-admissible and 𝑞-growing and let 𝐺 be 𝒢 -admissible. Let 𝜀1, 𝜀2 > 0. For every
𝑚 ∈ (0,∞) there exist 𝑅 > 0 and ℎ̄ ∈ ℕ, depending on 𝑛, 𝜆, 𝑚, 𝜀1, 𝜀2, 𝑔, 𝐺 and 𝑞, such that

inf
{

ℱ 𝜆
𝜀 (Ω) ∶ Ω ⊂ ℝ𝑛 ⧵𝐻, |Ω| = 𝑚

}

≥ inf
{

ℱ̃ 𝜆,𝑅
𝜀,ℎ̄

(Ω) ∶ Ω ⊂ ℝ𝑛 ⧵𝐻, |Ω| = 𝑚
}

,

where

ℱ̃ 𝜆,𝑅
𝜀,ℎ̄

(Ω) ∶= inf

⎧

⎪

⎨

⎪

⎩

ℎ̄
∑

𝑖=1
ℱ 𝜆
𝜀 (Ω

𝑖) ∶ Ω = ∪ℎ̄𝑖=1Ω
𝑖, Ω𝑖 ∩ Ω𝑗 = ∅, diamΩ𝑖 ≤ 𝑅 ∀1 ≤ 𝑖 ≠ 𝑗 ≤ ℎ̄

⎫

⎪

⎬

⎪

⎭

.

Proof. Let 𝑀(𝑛, 𝜆, 𝑚, 𝜀1, 𝜀2, 𝑔, 𝐺, 𝑞) ∈ ℕ be a natural number to be determined later and let us denote �̄� = 𝑚∕𝑀 .
Let 𝐸 ⊂ 𝑅𝑛 ⧵𝐻 be a bounded set with |𝐸| = 𝑚 and

ℱ 𝜆
𝜀 (𝐸) ≤ inf

{

ℱ 𝜆
𝜀 (Ω) ∶ Ω ∈ 

}

+
𝑛|𝐵𝜆|

1
𝑛

3

( 𝑚
𝑀2

)
𝑛−1
𝑛 . (4.5.5)

This is possible since the infimum is reached by a sequence of bounded sets. Let 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑀−1 < 𝑡𝑀 be
real numbers such that

|

|

|

𝐸 ∩
(

(𝑡𝑖, 𝑡𝑖+1) ×ℝ𝑛−2 × (0,∞)
)

|

|

|

= �̄�,

for every 0 ≤ 𝑖 ≤ 𝑀 − 1 and let 𝐿(𝑛, 𝜆, �̄�) be given by Lemma 4.5.5. For every 0 ≤ 𝑖 ≤ 𝑀 − 1 let us define the
interval 𝐼𝑖 in the following way. If 𝑡𝑖+1 − 𝑡𝑖 ≤ 2𝐿 we set 𝐼𝑖 = ∅, otherwise we apply Lemma 4.5.5 with 𝑎 = 𝑡𝑖 and
𝑏 = 𝑡𝑖+1 and we set 𝐼𝑖 = [𝑎+, 𝑏−]. If 𝑚𝑖 = |𝐸 ∩ (𝐼𝑖 ×ℝ𝑛−2 × (0,∞))|, then

𝑚𝑖 ≤
𝑚
𝑀2

. (4.5.6)

Indeed, if 𝐼𝑖 = ∅, then (4.5.6) is clearly true. If 𝐼𝑖 ≠ ∅, we set
𝐸′ = 𝛼

(

𝐸 ⧵
(

𝐼𝑖 ×ℝ𝑛−2 × (0,∞)
))

,

with 𝛼 =
(

𝑚
𝑚−𝑚𝑖

)
1
𝑛 . Note that 𝑚𝑖

𝑚
≤ 1

𝑀
by construction. By Lemma 4.5.4 and (4.5.2) we have

ℱ 𝜆
𝜀 (𝐸

′) ≤
(

𝑚
𝑚 − 𝑚𝑖

)2+ 𝑞
𝑛
ℱ 𝜆
𝜀
(

𝐸 ⧵ (𝐼𝑖 ×ℝ𝑛−2 × (0,∞))
)

≤

(

1
1 − 𝑚𝑖

𝑚

)2+ 𝑞
𝑛 (

ℱ 𝜆
𝜀 (𝐸) −

1
2
𝑛|𝐵𝜆|

1
𝑛𝑚

𝑛−1
𝑛
𝑖

)

.

Moreover, if 𝑀 is large enough,

ℱ 𝜆
𝜀 (𝐸

′) ≤
(

1 +
(

3 +
𝑞
𝑛

) 𝑚𝑖
𝑚

)

(

ℱ 𝜆
𝜀 (𝐸) −

1
2
𝑛|𝐵𝜆|

1
𝑛𝑚

𝑛−1
𝑛
𝑖

)

≤ ℱ 𝜆
𝜀 (𝐸) −

1
3
𝑛|𝐵𝜆|

1
𝑛𝑚

𝑛−1
𝑛
𝑖 .

(4.5.7)

Estimates (4.5.5) and (4.5.7) imply that

ℱ 𝜆
𝜀 (𝐸

′) ≤ inf
{

ℱ 𝜆
𝜀 (Ω) ∶ Ω ∈ 

}

+
𝑛|𝐵𝜆|

1
𝑛

3

( 𝑚
𝑀2

)
𝑛−1
𝑛 −

𝑛|𝐵𝜆|
1
𝑛

3
𝑚

𝑛−1
𝑛
𝑖 ,

and, since |𝐸′
| = 𝑚, (4.5.6) holds.

Let
�̃� = 𝐸 ⧵

(𝑀−1
⋃

𝑖=0
𝐼𝑖 ×ℝ𝑛−2 × (0,∞)

)
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and 𝜇 =
∑𝑀−1
𝑖=0 𝑚𝑖, so that |

|

�̃�|
|

= 𝑚 − 𝜇. By Lemma 4.5.5 and the subadditivity of power function with exponent
less than 1 we get

ℱ 𝜆
𝜀 (�̃�) ≤ ℱ 𝜆

𝜀 (𝐸) −
1
2
𝑛|𝐵𝜆|

1
𝑛

𝑀−1
∑

𝑖=0
𝑚

𝑛−1
𝑛
𝑖 ≤ ℱ 𝜆

𝜀 (𝐸) −
1
2
𝑛|𝐵𝜆|

1
𝑛𝜇

𝑛−1
𝑛 .

The set 𝐹 ∶=
(

𝑚
𝑚−𝜇

)
1
𝑛 �̃� has volume 𝑚. We can use Lemma 4.5.4 to obtain

ℱ 𝜆
𝜀 (𝐹 ) ≤

(

𝑚
𝑚 − 𝜇

)2+ 𝑞
𝑛
ℱ𝜀(�̃�) ≤

(

𝑚
𝑚 − 𝜇

)2+ 𝑞
𝑛 (

ℱ 𝜆
𝜀 (𝐸) −

1
2
𝑛|𝐵𝜆|

1
𝑛𝜇

𝑛−1
𝑛

)

.

If 𝜇 is small enough, which happens as soon as 𝑀 is large enough thanks to (4.5.6), we deduce

ℱ 𝜆
𝜀 (𝐹 ) ≤

(

𝑚
𝑚 − 𝜇

)2+ 𝑞
𝑛 (

ℱ 𝜆
𝜀 (𝐸) −

1
2
𝑛|𝐵𝜆|

1
𝑛𝜇

𝑛−1
𝑛

)

≤ ℱ 𝜆
𝜀 (𝐸) + 𝐶𝜇

(

inf
{

ℱ 𝜆
𝜀 (Ω) ∶ Ω ∈ 

}

+ 𝑐
( 𝑚
𝑀2

)
𝑛−1
𝑛

)

+ (1 + 𝐶𝜇)
(

−1
2
𝑛|𝐵𝜆|

1
𝑛𝜇

𝑛−1
𝑛

)

≤ ℱ 𝜆
𝜀 (𝐸).

Note that �̃� is the union of at most 𝑀 + 1 sets, each contained in a slab having width at most equal to 2𝐿 by
Lemma 4.5.5. In particular, 𝐹 is the union of at most 𝑀 + 1 parts and each of them has horizontal width at most
equal 3𝐿.
If we repeat the arguments in the remaining directions, with care to apply also Lemma 4.5.6 in the 𝑛-th direction,
we get the boundedness of the pieces in all the 𝑛 directions. Then there exist 𝑅 ∈ (0,∞), ℎ̄ ∈ ℕ and 𝐺 ⊂ ℝ𝑛 such
that |𝐺| = 𝑚, 𝐺 = ∪ℎ̄𝑖=1𝐺𝑖, 𝐺𝑖 ∩ 𝐺𝑗 = ∅, diam 𝐺𝑖 ≤ 𝑅 and ℱ 𝜆

𝜀 (𝐺) ≤ ℱ 𝜆
𝜀 (𝐸). Finally

ℱ 𝜆
𝜀 (𝐺) ≥

ℎ̄
∑

𝑖=1
ℱ 𝜆
𝜀 (𝐺𝑖) ≥ ℱ̃ 𝜆,𝑅

𝜀,ℎ̄
(𝐺).

Now we are ready to prove Theorem 4.5.3.
Proof of Theorem 4.5.3. We begin by proving the existence of ℎ′ ∈ ℕ and of a sequence {𝐺𝑖}𝑖∈ℕ ⊂  such that

inf
{

ℱ̃ 𝜆
𝜀 (Ω) ∶ Ω ∈ 

}

= lim
𝑖→∞

ℱ̃ 𝜆
𝜀,ℎ′(𝐺𝑖). (4.5.8)

Let ℎ′(𝑛, 𝜆, 𝜀1, 𝜀2, 𝑔, 𝐺, 𝑞) be an integer to be determined later and consider a sequence {𝐸𝑖}𝑖∈ℕ ⊂  such that
𝐾 ∶= inf

{

ℱ̃ 𝜆
𝜀 (Ω) ∶ Ω ∈ 

}

= lim
𝑖→∞

ℱ̃ 𝜆
𝜀 (𝐸𝑖). (4.5.9)

For every 𝑖 ∈ ℕ let ℎ(𝑖) ∈ ℕ such that there exists a subdivision 𝐸𝑖 = 𝐸1
𝑖 ∪ 𝐸

2
𝑖 ∪⋯ ∪ 𝐸ℎ(𝑖)

𝑖 with

ℱ̃ 𝜆
𝜀 (𝐸𝑖) >

(

1 − 1
𝑖 + 1

)

ℎ(𝑖)
∑

𝑗=1
ℱ 𝜆
𝜀 (𝐸

𝑗
𝑖 ). (4.5.10)

Without loss of generality, we can assume ℎ(𝑖) → ∞, so that ℎ(𝑖) > ℎ′ for 𝑖 large enough. Let us fix a generic
𝑖 ∈ ℕ. For simplicity of notation, let us denote ℎ = ℎ(𝑖) and 𝑚𝑗 = |𝐸𝑗

𝑖 | for every 1 ≤ 𝑗 ≤ ℎ. Let us also assume,
without loss of generality, that 𝑚𝑗 is decreasing with respect to 𝑗. By (4.5.10) we get

ℱ̃ 𝜆
𝜀 (𝐸𝑖) ≥

1
2

ℎ
∑

𝑗=1
𝑃𝜆(𝐸

𝑗
𝑖 ) ≥

1
2

ℎ
∑

𝑗=1
𝑛|𝐵𝜆|

1
𝑛𝑚

𝑛−1
𝑛
𝑗 ≥ 1

2 𝑛
√

𝑚1

ℎ
∑

𝑗=1
𝑛|𝐵𝜆|

1
𝑛𝑚𝑗 =

1
2 𝑛
√

𝑚1
𝑛|𝐵𝜆|

𝑛+1
𝑛 .
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If 𝑖 is large enough, by (4.5.9) we deduce that

𝑚1 ≥

(

𝑛|𝐵𝜆|
𝑛+1
𝑛

4𝐾

)𝑛

.

For every such 𝑖, we define
𝐺𝑖 = 𝛼

ℎ′
⋃

𝑗=1
𝐸𝑗
𝑖 ,

with
𝛼 =

(

|𝐵𝜆|
|𝐵𝜆| −

∑

𝑗>ℎ′ 𝑚𝑗

)
1
𝑛

≤ 1 + 𝑐1
ℎ
∑

𝑗=ℎ′+1
𝑚𝑗 ,

where 𝑐1 is a constant depending on 𝑛, 𝜆 and 𝐾 (that is on 𝑛, 𝜆, 𝜀1, 𝜀2, 𝑔 and 𝐺). Note that also 𝐺𝑖 belongs to .
By Lemma 4.5.4 we deduce

ℱ̃ 𝜆
𝜀,ℎ′(𝐺𝑖) ≤

ℎ′
∑

𝑗=1
ℱ 𝜆
𝜀 (𝛼𝐸

𝑗
𝑖 ) ≤ 𝛼2𝑛+𝑞

ℎ′
∑

𝑗=1
ℱ𝜀(𝐸

𝑗
𝑖 )

≤

(

1 + 𝑐2(𝑛, 𝜆, 𝜀1, 𝜀2, 𝑔, 𝐺, 𝑞)
ℎ
∑

𝑗=ℎ′+1
𝑚𝑗

) ℎ′
∑

𝑗=1
ℱ 𝜆
𝜀 (𝐸

𝑗
𝑖 ).

(4.5.11)

By (4.5.10) we get

ℱ̃ 𝜆
𝜀 (𝐸𝑖) >

(

1 − 1
𝑖 + 1

)

ℎ
∑

𝑗=1
ℱ 𝜆
𝜀 (𝐸

𝑗
𝑖 )

≥
(

1 − 1
𝑖 + 1

)

ℎ′
∑

𝑗=1
ℱ 𝜆
𝜀 (𝐸

𝑗
𝑖 ) +

1
2

ℎ
∑

𝑗=ℎ′+1
𝑃𝜆(𝐸

𝑗
𝑖 )

≥
(

1 − 1
𝑖 + 1

)

ℎ′
∑

𝑗=1
ℱ 𝜆
𝜀 (𝐸

𝑗
𝑖 ) +

1
2
𝑛|𝐵𝜆|

1
𝑛

ℎ
∑

𝑗=ℎ′+1
𝑚

𝑛−1
𝑛
𝑗 .

If 𝑖 is large enough, by (4.5.9) and (4.5.10)
ℎ′
∑

𝑗=1
ℱ 𝜆
𝜀 (𝐸

𝑗
𝑖 ) ≤ 2𝐾.

By (4.5.11)

ℱ̃ 𝜆
𝜀,ℎ′(𝐺𝑖) − ℱ̃ 𝜆

𝜀,ℎ(𝐸𝑖) ≤ 2𝐾

(

𝑐2(𝑛, 𝜆, 𝜀1, 𝜀2, 𝑔, 𝐺, 𝑞)
ℎ
∑

𝑗=ℎ′+1
𝑚𝑗 +

1
𝑖 + 1

)

− 1
2
𝑛|𝐵𝜆|

1
𝑛

ℎ
∑

𝑗=ℎ′+1
𝑚

𝑛−1
𝑛
𝑗 . (4.5.12)

Now we can define ℎ′ ∈ ℕ so that

ℎ′ ≥
(

4𝐾𝑐2(𝑛, 𝜆, 𝜀1, 𝜀2, 𝑔, 𝐺, 𝑞)
𝑛

)𝑛

.

Since 𝑚𝑗 ≤ |𝐵𝜆|
ℎ′

for 𝑗 > ℎ′, if 𝑖 is large enough we get from (4.5.12)

ℱ̃ 𝜆
𝜀,ℎ′(𝐺𝑖) ≤ ℱ̃ 𝜆

𝜀,ℎ(𝐸𝑖) +
2𝐾
𝑖 + 1

.

By (4.5.9) we finally deduce that {𝐺𝑖}𝑖∈ℕ ⊂  satisfies (4.5.8).
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Let us now show that for every 𝑚 > 0 there exist ℎ̄ ∈ ℕ, a bounded set 𝐸 with |𝐸| = 𝑚 and a subdivision
𝐸 =

⋃ℎ̄
𝑘=1𝐸

𝑘 such that

ℱ̃ 𝜆
𝜀 (𝐸) ≤

ℎ̄
∑

𝑘=1
ℱ 𝜆
𝜀 (𝐸

𝑘) ≤ inf
{

ℱ 𝜆
𝜀 (Ω) ∶ Ω ∈ ℝ𝑛 ⧵𝐻, |Ω| = 𝑚

}

. (4.5.13)

Let 𝑅 and ℎ̄ be as in Lemma 4.5.7. By Lemma 4.5.7 there is a sequence of sets {Ω𝑖}𝑖∈ℕ of volume 𝑚 such that
inf

{

ℱ 𝜆
𝜀 (Ω) ∶ Ω ⊂ ℝ𝑛 ⧵𝐻, |Ω| = 𝑚

}

≥ lim
𝑖→+∞

ℱ̃ 𝜆,𝑅
𝜀,ℎ̄

(Ω𝑖), (4.5.14)

where ℱ̃ 𝜆,𝑅
𝜀,ℎ̄

is defined in Lemma 4.5.7. For every 𝑖 ∈ ℕ there exists a partition Ω𝑖 = Ω1
𝑖 ∪ Ω2

𝑖 ∪ ⋯ ∪ Ωℎ̄
𝑖 with

diam(Ω𝑗
𝑖 ) ≤ 𝑅 and

ℎ̄
∑

𝑗=1
ℱ 𝜆
𝜀 (Ω

𝑗
𝑖 ) ≤ ℱ̃ 𝜆,𝑅

𝜀,ℎ̄
(Ω𝑖) +

1
𝑖
. (4.5.15)

Up to a subsequence there exist 𝑚𝑗 ∈ (0,∞), with 1 ≤ 𝑗 ≤ ℎ̄, such that

𝑚𝑗 = lim
𝑖→∞

|Ω𝑗
𝑖 | ∀1 ≤ 𝑗 ≤ ℎ̄, 𝑚 =

ℎ̄
∑

𝑗=1
𝑚𝑗 .

Let us fix 1 ≤ 𝑘 ≤ ℎ̄ and consider the sets {Ω𝑘
𝑖 }𝑖∈ℕ. Since their diameters are uniformly bounded by 𝑅, up

to translations we can assume that all the Ω𝑘
𝑖 are pairwise disjoint and contained in a fixed ball with radius 𝑅.

Therefore the characteristic functions 𝑓𝑖 = 𝜒Ω𝑘𝑖 have uniformly bounded supports and are bounded in 𝐵𝑉 . Up
to a subsequence, we can assume that 𝑓𝑖 is weakly∗ convergent in 𝐵𝑉 , and in particular strongly convergent in
𝐿1, to a certain function 𝑓 . Then 𝑓 is the characteristic function of a bounded set 𝐸𝑘 with volume 𝑚𝑘. By the
lower-semicontinuity of the perimeter under weak∗ 𝐵𝑉 -convergence and the continuity of ℛ and 𝒢 under strong
𝐿1 convergence, we obtain that

ℱ 𝜆
𝜀 (𝐸

𝑘) ≤ lim inf
𝑖→∞

ℱ 𝜆
𝜀 (Ω

𝑘
𝑖 ). (4.5.16)

Up to a translation we can assume that the sets 𝐸𝑘 are pairwise disjoint. In particular the set 𝐸 = ∪ℎ̄𝑘=1𝐸
𝑘 is

bounded with |𝐸| = 𝑚. By (4.5.14), (4.5.15) and (4.5.16) we get

ℱ̃ 𝜆
𝜀 (𝐸) ≤

ℎ̄
∑

𝑘=1
ℱ 𝜆
𝜀 (𝐸

𝑘) ≤
ℎ̄
∑

𝑘=1
lim inf
𝑖→∞

ℱ 𝜆
𝜀 (Ω

𝑘
𝑖 ) ≤ lim inf

𝑖→∞

ℎ̄
∑

𝑘=1
ℱ 𝜆
𝜀 (Ω

𝑘
𝑖 )

≤ lim inf
𝑖→∞

ℱ̃ 𝜆,𝑅
𝜀,ℎ̄

(Ω𝑖) ≤ inf
{

ℱ 𝜆
𝜀 (Ω) ∶ Ω ⊂ ℝ𝑛 ⧵𝐻, |Ω| = 𝑚

}

,

so (4.5.13) is proved.
We can now conclude the proof of the theorem. Let {𝐺𝑖}𝑖∈ℕ as in (4.5.8) and let us consider a subdivision 𝐺𝑖 =
𝐺1
𝑖 ∪ 𝐺

2
𝑖 ∪⋯ ∪ 𝐺ℎ′𝑖 such that

inf
{

ℱ̃ 𝜆
𝜀 (Ω) ∶ Ω ∈ 

}

= lim
𝑖→∞

ℎ′
∑

𝑗=1
ℱ 𝜆
𝜀 (𝐺

𝑗
𝑖 ). (4.5.17)

Up to a subsequence there exist 𝜇𝑗 > 0, 1 ≤ 𝑗 ≤ ℎ′, such that

𝜇𝑖 = lim
𝑖→∞

|𝐺𝑗𝑖 | ∀1 ≤ 𝑗 ≤ ℎ′, |𝐵𝜆| =
ℎ′
∑

𝑗=1
𝜇𝑗 .

Let
𝐾𝑗 ∶= inf

{

ℱ 𝜆
𝜀 (Ω) ∶ Ω ⊂ ℝ𝑛 ⧵𝐻, |Ω| = 𝜇𝑗

}

.

By (4.5.17)
inf

{

ℱ̃ 𝜆
𝜀 (Ω) ∶ Ω ∈ 

}

=
ℎ′
∑

𝑗=1
𝐾𝑗 . (4.5.18)
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By (4.5.13) for every 1 ≤ 𝑗 ≤ ℎ′ there exist ℎ̄(𝑗) ∈ ℕ, a bounded set𝐸𝑗 ⊂ ℝ𝑛⧵𝐻 with |𝐸𝑗| = 𝜇𝑗 and a subdivision
in pairwise disjoint sets 𝐸𝑗 = ⋃ℎ̄(𝑗)

𝑘=1𝐸𝑗,𝑘 such that

ℱ̃ 𝜆
𝜀 (𝐸𝑗) ≤

ℎ̄(𝑗)
∑

𝑘=1
ℱ 𝜆
𝜀 (𝐸𝑗,𝑘) ≤ 𝐾𝑗 . (4.5.19)

Since the sets𝐸𝑗 are bounded, up to translations we can assume that the set𝐸 = ∪ℎ′𝑗=1𝐸𝑗 has volume |𝐵𝜆|. Therefore
𝐸 is the disjoint union of all the sets 𝐸𝑗,𝑘 with 1 ≤ 𝑗 ≤ ℎ′ and 1 ≤ 𝑘 ≤ ℎ̄(𝑗). Let us denote these sets as 𝐸𝑙 with
1 ≤ 𝑙 ≤ ℎ and ℎ =

∑ℎ′
𝑗=1 ℎ̄(𝑗). By (4.5.18) and (4.5.19) we deduce that

ℱ̃ 𝜆
𝜀 (𝐸) ≤

ℎ
∑

𝑙=1
ℱ 𝜆
𝜀 (𝐸

𝑙) ≤
ℎ′
∑

𝑗=1
𝐾𝑗 = inf

{

ℱ̃ 𝜆
𝜀 (Ω) ∶ Ω ∈ 

}

,

that is 𝐸 is a minimizer of ℱ̃ 𝜆
𝜀 and the subdivision 𝐸 =

⋃ℎ
𝑙=1𝐸

𝑙 is optimal.
The proof of (4.5.1) for a given 1 ≤ 𝑗 ≤ ℎ easily follows as in the proof of [NP21, Proposition 1.2].
Now we are ready to prove Theorem 4.1.3.
Proof of Theorem 4.1.3. With the notation of Theorem 4.1.3, if Ω ⊂ ℝ𝑛 ⧵𝐻 is a measurable set with |Ω| = 𝑚, let

ℱ 𝜆(Ω) = 𝑃𝜆(Ω) + ∫Ω ∫Ω
𝑔(𝑦 − 𝑥) d𝑦 d𝑥 + ∫Ω

𝐺(𝑥𝑛) d𝑥

and
ℱ̃ 𝜆(Ω) ∶= inf

ℎ∈ℕ
ℱ̃ 𝜆
ℎ (Ω),

where
ℱ̃ 𝜆
ℎ (Ω) ∶= inf

{ ℎ
∑

𝑖=1
ℱ 𝜆(Ω𝑖) ∶ Ω =

ℎ
⋃

𝑖=1
Ω𝑖,Ω𝑖 ∩ Ω𝑗 = ∅ for 1 ≤ 𝑖 ≠ 𝑗 ≤ ℎ

}

.

If 𝐹 ⊂ ℝ𝑛 ⧵𝐻 has measure |𝐵𝜆| and �̄� = 𝑚
1
𝑛

|𝐵𝜆|
1
𝑛

, the set 𝐹 ∶= �̄�𝐹 has volume 𝑚 and by Remark 4.5.2 there exist �̃�
ℛ-admissible and �̃� 𝒢 -admissible such that

ℱ 𝜆(𝐹 ) = �̄�𝑛−1
(

𝑃𝜆(𝐹 ) + �̄�𝑛+1 ∫𝐹 ∫𝐹
�̃�(𝑦 − 𝑥) d𝑦 d𝑥 + �̄�∫𝐹

�̃�(𝑥𝑛) d𝑥
)

=∶ �̄�𝑛−1ℱ 𝜆
�̄� (𝐹 ).

Note that ℱ̃ 𝜆(𝐹 ) = �̄�𝑛−1ℱ̃ 𝜆
�̄� (𝐹 ) and that, if 𝑔 is 𝑞-growing, also �̃� is 𝑞-growing (see Remark 4.5.2). By Theo-

rem 4.5.3 there exists 𝐸 ⊂ ℝ𝑛 ⧵𝐻 with |𝐸| = |𝐵𝜆| which minimizes ℱ̃ 𝜆
�̄� . Then the set �̃� ∶= �̄�𝐸 minimizes ℱ̃ 𝜆

among sets with volume 𝑚 and Theorem 4.1.3 easily follows.
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Chapter 5

Regularity results for some nonlinear elliptic
systems with discontinuous coefficients

5.1 Main results

We consider nonlinear elliptic systems of the type
div𝐴(𝑥,𝐷𝑢(𝑥)) = div𝐹 (𝑥) (5.1.1)

in a bounded domain Ω ⊂ ℝ𝑛, 𝑛 > 2, and with 𝑢 ∶ Ω → ℝ𝑁 , 𝑁 > 1. We suppose that the vector field
𝐴 ∶ Ω ×ℝ𝑁×𝑛 → ℝ𝑁×𝑛 is a Carathéodory function, i.e.

• 𝑥→ 𝐴(𝑥, 𝜉) is measurable for all 𝜉 ∈ ℝ𝑁×𝑛,
• 𝜉 → 𝐴(𝑥, 𝜉) is continuous for a.e. 𝑥 ∈ Ω.

Furthermore, we assume that there exist a function 𝑏(𝑥) ≥ 𝜆0 > 0, belonging to the space 𝐵𝑀𝑂, and a function
𝐾(𝑥), belonging to the Marcinkiewicz space 𝐿𝑛,∞(Ω), such that 𝐹 ∈ 𝑊 1,2

𝑙𝑜𝑐 (𝑏,Ω;ℝ
𝑁×𝑛) and, for a.e. 𝑥, 𝑦 ∈ Ω,

|𝐴(𝑥, 𝜉) − 𝐴(𝑥, 𝜂)| ≤ 𝑘𝑏(𝑥)|𝜉 − 𝜂| (𝜇2 + |𝜉|2 + |𝜂|2)
𝑝−2
2 , (5.1.2)

1
𝑘
𝑏(𝑥)|𝜉 − 𝜂|2 (𝜇2 + |𝜉|2 + |𝜂|2)

𝑝−2
2 ≤ ⟨𝐴(𝑥, 𝜉) − 𝐴(𝑥, 𝜂), 𝜉 − 𝜂⟩ , (5.1.3)

|𝐴(𝑥, 𝜂) − 𝐴(𝑦, 𝜂)| ≤ |𝑥 − 𝑦| [𝐾(𝑥) +𝐾(𝑦)] (𝜇2 + |𝜂|2)
𝑝−1
2 (5.1.4)

𝐴(𝑥, 0) = 0 (5.1.5)
|𝑏(𝑥) − 𝑏(𝑦)| ≤ |𝑥 − 𝑦| [𝐾(𝑥) +𝐾(𝑦)], (5.1.6)

where 𝑘 is a positive constant, 𝜇 ∈ (0, 1], 𝑝 ≥ 2, 𝜉 and 𝜂 are arbitrary elements of ℝ𝑁×𝑛. Note that, by virtue of
a characterization of the Sobolev functions due to Hajlasz [Haj96], the conditions (5.1.4) and (5.1.6) describe a
weak form of continuity with respect to the 𝑥-variable since the function 𝐾 may blow up at some points.
In the account of the typical functions of 𝐵𝑀𝑂 and 𝐿𝑛,∞ respectively, the functions

𝑏(𝑥) = e−|𝑥|
Λ

− Λ log |𝑥|

𝐾(𝑥) = e−|𝑥|
Λ

+ Λ 1
|𝑥|
,

defined for a positive Λ with 𝑥 ∈ 𝐵(0, 1) = {𝑦 ∈ ℝ𝑛 ∶ 0 < |𝑦| < 1}, satisfy assumption (5.1.6).
A vector field 𝑢 in the Sobolev space 𝑊 1,𝑟

𝑙𝑜𝑐 (𝑏,Ω;ℝ
𝑁 ), 𝑟 > 2𝑛

𝑛+2 , is a local solution of (5.1.1) if it verifies

∫supp𝜑
⟨𝐴(𝑥,𝐷𝑢(𝑥)), 𝐷𝜑(𝑥)⟩ d𝑥 = ∫supp𝜑

⟨𝐹 (𝑥), 𝐷𝜑(𝑥)⟩ d𝑥 ∀𝜑 ∈ 𝐶∞
0 (Ω,ℝ𝑁 ). (5.1.7)
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In this paper our first goal is to study regularity properties of local solutions to (5.1.1) for 𝑟 close to 𝑝. The existence
of second derivatives is not clear due to the degeneracy of the problem; anyway, although the first derivatives of
the solutions may not be differentiable, the higher differentiability of solutions holds in the sense that the nonlinear
expressions 𝑉𝜇(𝐷𝑢) ∶= (𝜇2+ |𝐷𝑢|2)

𝑝−2
4 𝐷𝑢 of their gradients, with 𝜇 ∈ (0, 1], are weakly differentiable. Therefore,

the main result will be the following:
Theorem 5.1.1 ([MP24]). Let Ω be a regular domain, 𝐴(𝑥, 𝜉) a mapping verifying assumptions (5.1.2), (5.1.3),
(5.1.4) and (5.1.5), and 𝐹 ∈ 𝑊 1,2

𝑙𝑜𝑐 (𝑏,Ω;ℝ
𝑁×𝑛), with 𝑏(𝑥) as in (5.1.6). There exist 0 < 𝜀1 <

1
2 , depending on 𝑘, 𝑛,

𝜆0, 𝑝 and the 𝐵𝑀𝑂 - norm of 𝑏(𝑥), and 𝛼1 > 0, depending on 𝑝, 𝑛, 𝜆0, 𝜇 and 𝑘, such that, if 𝑢 ∈ 𝑊 1,𝑝−𝜀
𝑙𝑜𝑐 (𝑏,Ω;ℝ𝑁 ),

with 0 ≤ 𝜀 < 𝜀1, is a local solution of (5.1.1) and

𝒟𝐾 ∶= dist𝐿𝑛,∞(𝐾(𝑥), 𝐿∞) < 𝛼1,

then 𝐷(𝑉𝜇(𝐷𝑢)) ∈ 𝐿2
𝑙𝑜𝑐(𝑏,Ω) and the following estimate holds:

∫𝐵𝑅
|𝐷(𝑉𝜇(𝐷𝑢))|2𝑏 d𝑥 ≤ 𝑐 ∫𝐵2𝑅

((

1 + 1
𝑅2

)

(𝜇2 + |𝐷𝑢|2)
𝑝
2 + (𝜇2 + |𝐷𝐹 |2)

)

𝑏 d𝑥,

for every ball 𝐵2𝑅 ⊂⊂ Ω and for a constant 𝑐 depending on 𝑝, 𝑘, 𝜆0, 𝑛, 𝜇 and 𝒟𝐾 .

We point out that for local solutions of homogeneous systems
div𝐴(𝑥,𝐷𝑢) = 0,

Theorem 5.1.1 also applies in the degenerate case, i.e. 𝜇 = 0, with constants independent of 𝜇 (see Proposi-
tion 5.4.1). As a consequence, we establish certain local Calderón and Zygmund type estimates without assuming
any differentiability condition on the datum. More precisely, for 𝐺 ∈ 𝐿𝑝𝑙𝑜𝑐(𝑏,Ω;ℝ

𝑁×𝑛) we consider the problem
div𝐴(𝑥,𝐷𝑢(𝑥)) = div |𝐺|𝑝−2𝐺 in Ω. (5.1.8)

Then we prove the following result:
Theorem 5.1.2 ([MP24]). Let Ω be a regular domain and𝐴(𝑥, 𝜉) a mapping verifying assumptions (5.1.2), (5.1.3),
(5.1.4) and (5.1.5), with 𝑏(𝑥) as in (5.1.6). There exists 𝛼2 > 0, depending on 𝑝, 𝑛, 𝜆0 and 𝑘, such that, if 𝑢 ∈ 𝑊 1,𝑝

𝑙𝑜𝑐 (𝑏,
Ω;ℝ𝑁 ) is a local solution of (5.1.8) and

𝒟𝐾 ∶= dist𝐿𝑛,∞(𝐾(𝑥), 𝐿∞) < 𝛼2,

then
𝐺 ∈ 𝐿𝑞𝑙𝑜𝑐(𝑏,Ω;ℝ

𝑁×𝑛) ⟹ 𝐷𝑢 ∈ 𝐿𝑞𝑙𝑜𝑐(𝑏,Ω;ℝ
𝑁×𝑛)

for any 𝑞 ∈ (𝑝, 𝑠), where 𝑠 ∶= 𝑛𝑝
𝑛−1

+ 𝛿 for a suitable 𝛿 > 0, depending on 𝑝, 𝑘, 𝜆0, 𝑛, 𝒟𝐾 and the 𝐵𝑀𝑂-norm of
𝑏. Moreover, for every cube 𝑄2𝑅 ⊂⊂ Ω and 𝜇 ∈ [0, 1], we have

(

⨍𝑄𝑅

(

𝜇2 + |𝐷𝑢|2
)

𝑞
2 𝑏 d𝑥

)
1
𝑞
≤ 𝑐

(

⨍𝑄2𝑅

(

𝜇2 + |𝐷𝑢|2
)

𝑝
2 𝑏 d𝑥

)
1
𝑝
+

+ 𝑐
(

⨍𝑄2𝑅

(𝜇2 + |𝐺|2)
𝑞
2 𝑏 d𝑥

)
1
𝑞
,

where 𝑐 depends on 𝑝, 𝑠 − 𝑞, 𝑘, 𝜆0, 𝑛, 𝒟𝐾 and the 𝐵𝑀𝑂 - norm of 𝑏 and is independent of 𝜇.

We point out that through all the paper we consider 𝑝 ≥ 2. As known, in the subquadratic case the assumptions
and the results change, according to the properties of the 𝑝-Laplacian operator and the degeneracy of the problem.
In the case of systems with right-hand side affected by weak integrability properties, the existence of solutions
to boundary value problems obtained as the limit of smooth solutions to approximating problems is only known
under the assumption that 𝑝 > 2 − 1

𝑛
[DHM97]. Theorem 5.1.1 extends for homogeneous regular systems [AF89;

Bec07; CM19; DKM07]. For regular systems also CZ type estimates are available when 𝑝 > 2 − 1
𝑛

[Min17]. For
nonhomogeneous 𝑝-Laplacian systems Theorem 5.1.1 holds when 𝑝 > 3

2 for a datum not in divergence form and
lying in 𝐿2 [CM19]. An improvement of the range of 𝑝 is given in [Bal+22a]. Some techniques presented here
are suitable to be extended, but since they are already delicate, at this stage we prefer to confine ourselves to the
superquadratic case in order to highlight the main ideas and novelties.
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Strategy of the proof and comments. In Theorem 5.1.1 we deal with very weak solutions and so, a priori, we
cannot use in (5.1.7) test functions proportional to a solution 𝑢. Then, in Section 5.2, we first achieve a higher
integrability result. Following [IS92] and [IS94], via a weighted version of Hodge decomposition [CMP02] and
connectedness arguments, we construct suitable test functions and in Lemma 5.2.1 we prove a reverse Hölder
inequality for 𝐷𝑢. The statement of this lemma does not require assumptions (5.1.4) and (5.1.6) and extends a
result proved in [GLS96]. For another approach to treat very weak solutions see [Lew93]. Once acquired the higher
integrability of𝐷𝑢, in Section 5.3 we prove an a priori estimate by using the classic difference quotient method (for
details see for example [AF89], [GM86] and [Giu03]). Finally, in Section 5.4, the proof of Theorem 5.1.1 follows
by constructing appropriate approximating boundary value problems, whose solvability is known and for which
the a priori estimate applies.
In order to prove Theorem 5.1.2 in Section 5.5, the main difficulty is the interplay of the nonlinearity and the
presence of a weight which does not allow us to follow the scheme of classical papers [Iwa83; KM10; KM06;
Min03], based on comparing a solution 𝑤 to the initial problem with the solution to homogeneous systems with
frozen coefficients, i.e. div𝐴(𝑥0, 𝐷𝑤) = 0. In order to deal with such a peculiarity, we first compare a local solution
to (5.1.8) with the solution to a related homogeneous Dirichlet problem for which higher integrability follows from
Theorem 5.1.1. So, as in [KM06], we shall rely on a technique introduced by Caffarelli and Peral [Caf89], [CP98],
and based on Calderón and Zygmund type covering arguments and iteration of level sets, combined with a clever use
of Harmonic Analysis tools such as weighted versions of Maximal function inequalities. Finally, in Section 5.6 we
present global versions of Theorem 5.1.1 and Theorem 5.1.2. We study the Dirichlet problem with zero boundary
condition on a regular 𝐶2 domain. Since mollifiers and quasiconformal homeomorphisms preserve the 𝐵𝑀𝑂
norm [Ast83] and the distance 𝒟𝐾 [BBC75] respectively, the proof of these results follows in a standard way (see
Theorem 5.6.2 and Theorem 5.6.4). When Ω is not regular the problem is more delicate [CM19; DKM07; KM10].

5.2 Higher integrability

In this section we prove a higher integrability result useful to our aims. We consider the nonlinear elliptic system
div𝐴(𝑥,𝐷𝑢(𝑥)) = div |𝐺|𝑝−2𝐺 in Ω. (5.2.1)

We begin with a reverse Hölder inequality.
Lemma 5.2.1. Let Ω be a regular domain, 𝐴(𝑥, 𝜉) a mapping verifying assumptions (5.1.2), (5.1.3) and (5.1.5),
𝜇 ∈ [0, 1], and let 𝐺 ∈ 𝐿𝑝+𝛿𝑙𝑜𝑐 (𝑏,Ω;ℝ

𝑁×𝑛), for 𝛿 ≥ 0. Then there exist positive constants 𝜀1 and 𝑐, depending on 𝑛,
𝜆0, ‖𝑏‖∗, 𝑘, 𝑝, with 0 < 𝜀1 <

1
2 , such that if 𝑢 ∈ 𝑊 1,𝑝−𝜀

𝑙𝑜𝑐 verifies (5.2.1) and −min{𝜀1, 𝛿} < 𝜀 ≤ 𝜀1, then

1
𝑏(𝐵𝑅) ∫𝐵𝑅

(

𝜇2 + |𝐷𝑢|2 + |𝑢|2
)

𝑝−𝜀
2 𝑏 d𝑥 ≤𝑐

(

1
𝑏(𝐵2𝑅) ∫𝐵2𝑅

(𝜇2 + |𝐷𝑢|2 + |𝑢|2)
𝜎
2 𝑏 d𝑥

)
𝑝−𝜀
𝜎

+ 𝑐
𝑏(𝐵2𝑅) ∫𝐵2𝑅

(

𝜇2 + |𝐺|2
)

𝑝−𝜀
2 𝑏 d𝑥

(5.2.2)

for every 𝜎 with max
{

1, (𝑛−1)(𝑝−𝜀)
𝑛

}

≤ 𝜎 < 𝑝 − 𝜀 and for every pair of concentric balls 𝐵𝑅 ⊂ 𝐵2𝑅 ⊂⊂ Ω with
𝑅 < 1.

We recall the following
Lemma 5.2.2 ([Gia83]). For 𝑅0 < 𝑅1, consider a bounded function 𝑓 ∶ [𝑅0, 𝑅1] → [0,∞) with

𝑓 (𝑠) ≤ 𝜗𝑓 (𝑡) + 𝐴
(𝑠 − 𝑡)𝛿

+ 𝐵 for all𝑅0 < 𝑠 < 𝑡 < 𝑅1,

where 𝐴, 𝐵 and 𝛿 denote non - negative constants and 𝜗 ∈ (0, 1). Then we have

𝑓 (𝑅0) ≤ 𝑐(𝛿, 𝜗)
(

𝐴
(𝑅1 − 𝑅0)𝛿

+ 𝐵
)

,

where 𝑐(𝛿, 𝜗) is increasing with respect to 𝛿.
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By means of an analogous proof of [GM79, Proposition 5.1] we get
Lemma 5.2.3. Let 𝑓 ∈ 𝐿𝑟(𝑤,Ω) and 𝑔 ∈ 𝐿𝑠(𝑤,Ω) be non-negative functions, where 1 < 𝑟 < 𝑠, Ω is an open set,
𝑤 is a weight. If the following

∫𝐵𝑅 𝑓
𝑟𝑤 d𝑥

𝑤(𝐵𝑅)
≤ 𝑐

((

∫𝐵2𝑅
𝑓𝑤 d𝑥

𝑤(𝐵2𝑅)

)𝑟

+
∫𝐵2𝑅

𝑔𝑟𝑤 d𝑥

𝑤(𝐵2𝑅)

)

, 𝑐 > 1,

holds for every pair of concentric balls 𝐵𝑅 ⊂ 𝐵2𝑅 ⊂⊂ Ω, then there exists 𝜀 > 0 such that 𝑓 ∈ 𝐿𝑟+𝜀𝑙𝑜𝑐 (𝑤,Ω).

Now we are ready to prove Lemma 5.2.1.
Proof of Lemma 5.2.1. Fix a ball 𝐵𝑅(𝑥0) with 𝑅 < 1 such that 𝐵2𝑅(𝑥0) ⊂⊂ Ω. For 𝑅 ≤ 𝑠 < 𝑡 ≤ 2𝑅, we consider
the balls centered at 𝑥0 with radii𝑅, 𝑠, 𝑡, 2𝑅. Let 𝜉 ∶ ℝ𝑛 → ℝ be the usual cut-off function, that is 𝜉 ∈ 𝐶∞

0 (𝐵𝑡) with
0 ≤ 𝜉 ≤ 1, 𝜉 = 1 on 𝐵𝑠 and |∇𝜉| ≤ 1

𝑡−𝑠 . Let us assume that 𝑢 ∈ 𝑊 1,𝑝−𝜀
𝑙𝑜𝑐 (𝑏,Ω;ℝ𝑁 ) is a local solution of (5.2.1),

with −1 < 2𝜀 < 𝑝 − 1. By Lemma 2.2.14 applied to 𝜉(𝑢 − 𝜆), 𝜆 ∈ ℝ𝑁 , there exist 𝜑 ∈ 𝑊
1, 𝑝−𝜀1−𝜀
0 (𝑏,Ω;ℝ𝑁 ) and

𝐻 ∈ 𝐿
𝑝−𝜀
1−𝜀 (𝑏,Ω;ℝ𝑁×𝑛) such that

|𝐷[𝜉(𝑢 − 𝜆)]|−𝜀𝐷[𝜉(𝑢 − 𝜆)] = 𝐷𝜑 +𝐻

‖𝐷𝜑‖
𝐿
𝑝−𝜀
1−𝜀
𝑏 (Ω)

≤ 𝑐(𝑛, 𝑝)(1 + ‖𝑏‖∗)𝛾‖𝐷[𝜉(𝑢 − 𝜆)]‖1−𝜀
𝐿𝑝−𝜀𝑏 (Ω)

‖𝐻‖

𝐿
𝑝−𝜀
1−𝜀
𝑏 (Ω)

≤ 𝑐(𝑛, 𝑝)(1 + ‖𝑏‖∗)𝛾 |𝜀| ‖𝐷[𝜉(𝑢 − 𝜆)]‖1−𝜀
𝐿𝑝−𝜀𝑏 (Ω),

where 𝛾 is an exponent depending only on 𝑝. We use 𝜑 as a test function in (5.1.7); this yields

∫𝐵𝑡

⟨

|𝐺|𝑝−2𝐺,𝐷𝜑
⟩

d𝑥 = ∫𝐵𝑡
⟨𝐴(𝑥,𝐷𝑢), 𝐷𝜑⟩ d𝑥 =

= ∫𝐵𝑡
⟨𝐴(𝑥,𝐷[𝜉(𝑢 − 𝜆)]), 𝐷𝜑⟩ d𝑥 + ∫𝐵𝑡

⟨[𝐴(𝑥,𝐷𝑢) − 𝐴(𝑥,𝐷[𝜉(𝑢 − 𝜆)])], 𝐷𝜑⟩ d𝑥 =

= ∫𝐵𝑡
⟨𝐴(𝑥,𝐷[𝜉(𝑢 − 𝜆)]), |𝐷[𝜉(𝑢 − 𝜆)]|−𝜀𝐷[𝜉(𝑢 − 𝜆)]⟩ d𝑥+

− ∫𝐵𝑡
⟨𝐴(𝑥,𝐷[𝜉(𝑢 − 𝜆)]),𝐻⟩ d𝑥 + ∫𝐵𝑡

⟨[𝐴(𝑥,𝐷𝑢) − 𝐴(𝑥,𝐷[𝜉(𝑢 − 𝜆)])], 𝐷𝜑⟩ d𝑥.

Hence

∫𝐵𝑡
⟨𝐴(𝑥,𝐷[𝜉(𝑢 − 𝜆)]), |𝐷[𝜉(𝑢 − 𝜆)]|−𝜀𝐷[𝜉(𝑢 − 𝜆)]⟩ = ∫𝐵𝑡

⟨𝐴(𝑥,𝐷[𝜉(𝑢 − 𝜆)]),𝐻⟩

− ∫𝐵𝑡
⟨[𝐴(𝑥,𝐷𝑢) − 𝐴(𝑥,𝐷[𝜉(𝑢 − 𝜆)])], 𝐷𝜑⟩ + ∫𝐵𝑡

⟨

|𝐺|𝑝−2𝐺,𝐷𝜑
⟩

.

Now we use (5.1.3) and (5.1.5) to obtain
1
𝑘 ∫𝐵𝑡

|𝐷[𝜉(𝑢 − 𝜆)]|𝑝−𝜀𝑏 d𝑥 ≤ ∫𝐵𝑡
⟨𝐴(𝑥,𝐷[𝜉(𝑢 − 𝜆)]), |𝐷[𝜉(𝑢 − 𝜆)]|−𝜀𝐷[𝜉(𝑢 − 𝜆)]⟩ d𝑥. (5.2.3)

We then apply (5.1.2), (5.1.5), together with Hölder’s and Young’s inequalities with exponents 𝑝−𝜀
𝑝−1

and 𝑝−𝜀
1−𝜀

, to get

∫𝐵𝑡
|⟨𝐴(𝑥,𝐷[𝜉(𝑢 − 𝜆)]),𝐻⟩| d𝑥 ≤ 𝑘∫𝐵𝑡

(𝜇2 + |𝐷[𝜉(𝑢 − 𝜆)]|2)
𝑝−1
2
|𝐻|𝑏 d𝑥 ≤

≤ 𝑐(𝑘, 𝑝)∫𝐵𝑡
(𝜇𝑝−1 + |𝐷[𝜉(𝑢 − 𝜆)])|𝑝−1)|𝐻|𝑏 d𝑥 ≤

(5.2.4)
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≤ 𝑐(𝑛, ‖𝑏‖∗, 𝑘, 𝑝) |𝜀|

(

(

∫𝐵𝑡
𝜇𝑝−𝜀𝑏 d𝑥

)
𝑝−1
𝑝−𝜀

(

∫𝐵𝑡
|𝐷[𝜉(𝑢 − 𝜆)]|𝑝−𝜀𝑏 d𝑥

)
1−𝜀
𝑝−𝜀

+

+ ∫𝐵𝑡
|𝐷[𝜉(𝑢 − 𝜆)]|𝑝−𝜀𝑏 d𝑥

)

≤

≤ 𝑐(𝑛, ‖𝑏‖∗, 𝑘, 𝑝)|𝜀|
(

∫𝐵𝑡
𝜇𝑝−𝜀𝑏 d𝑥 + ∫𝐵𝑡

|𝐷[𝜉(𝑢 − 𝜆)]|𝑝−𝜀𝑏 d𝑥
)

.

On the other hand,
|𝐷𝑢| ≤ |𝐷𝑢 −𝐷[𝜉(𝑢 − 𝜆)]| + |𝐷[𝜉(𝑢 − 𝜆)]|,

thus
(𝜇2 + |𝐷𝑢|2 + |𝐷[𝜉(𝑢 − 𝜆)]|2)

𝑝−2
2 ≤ 𝑐(𝑝)(𝜇𝑝−2 + |𝐷𝑢 −𝐷[𝜉(𝑢 − 𝜆)]|𝑝−2 + |𝐷[𝜉(𝑢 − 𝜆)]|𝑝−2)

and, by (5.1.2), we have

∫𝐵𝑡
|⟨𝐴(𝑥,𝐷𝑢) − 𝐴(𝑥,𝐷[𝜉(𝑢 − 𝜆)]), 𝐷𝜑⟩| d𝑥 ≤

≤ 𝑐 ∫𝐵𝑡
|𝐷𝑢 −𝐷[𝜉(𝑢 − 𝜆)]| |𝐷𝜑|(𝜇𝑝−2 + |𝐷𝑢 −𝐷[𝜉(𝑢 − 𝜆)]|𝑝−2 + |𝐷[𝜉(𝑢 − 𝜆)]|𝑝−2)𝑏 d𝑥

= 𝑐

(

∫𝐵𝑡
𝜇𝑝−2|𝐷𝑢 −𝐷[𝜉(𝑢 − 𝜆)]| |𝐷𝜑|𝑏 d𝑥 + ∫𝐵𝑡

|𝐷𝑢 −𝐷[𝜉(𝑢 − 𝜆)]|𝑝−1|𝐷𝜑|𝑏 d𝑥+

+ ∫𝐵𝑡
|𝐷𝑢 −𝐷[𝜉(𝑢 − 𝜆)]| |𝐷[𝜉(𝑢 − 𝜆)]|𝑝−2 |𝐷𝜑|𝑏 d𝑥

)

,

with 𝑐 = 𝑐(𝑘, 𝑝). Next, we apply the straightforward equality 𝐷𝑢 −𝐷[𝜉(𝑢 − 𝜆)] = (1 − 𝜉)𝐷𝑢 − (𝑢 − 𝜆)∇𝜉:

∫𝐵𝑡
|⟨𝐴(𝑥,𝐷𝑢) − 𝐴(𝑥,𝐷[𝜉(𝑢 − 𝜆)]), 𝐷𝜑⟩| d𝑥 ≤ 𝑐(𝑘, 𝑝)

(

∫𝐵𝑡
𝜇𝑝−2(1 − 𝜉) |𝐷𝑢| |𝐷𝜑|𝑏 d𝑥

+ ∫𝐵𝑡
𝜇𝑝−2|∇𝜉| |𝑢 − 𝜆||𝐷𝜑|𝑏 d𝑥 + ∫𝐵𝑡

|(1 − 𝜉)𝐷𝑢|𝑝−1|𝐷𝜑|𝑏 d𝑥+

+ ∫𝐵𝑡
|(𝑢 − 𝜆)∇𝜉|𝑝−1|𝐷𝜑|𝑏 d𝑥 + ∫𝐵𝑡

(1 − 𝜉)|𝐷𝑢| |𝐷[𝜉(𝑢 − 𝜆)]|𝑝−2|𝐷𝜑|𝑏 d𝑥+

+ ∫𝐵𝑡
|∇𝜉| |𝑢 − 𝜆| |𝐷[𝜉(𝑢 − 𝜆)[|𝑝−2|𝐷𝜑|𝑏 d𝑥

)

=∶ 𝐼 + 𝐼𝐼 + 𝐼𝐼𝐼 + 𝐼𝑉 + 𝑉 + 𝑉 𝐼.

In order to estimate 𝐼 , if 𝑝 > 2, using Hölder’s and Young’s inequalities with exponents 𝑝 − 𝜀, 𝑝−𝜀
𝑝−2

and 𝑝−𝜀
1−𝜀

, and
for �̇� > 0, we get:

𝐼 ≤
(

∫𝐵𝑡
|(1 − 𝜉)𝐷𝑢|𝑝−𝜀𝑏 d𝑥

)
1
𝑝−𝜀

(

∫𝐵𝑡
𝜇𝑝−𝜀𝑏 d𝑥

)
𝑝−2
𝑝−𝜀

(

∫𝐵𝑡
|𝐷𝜑|

𝑝−𝜀
1−𝜀 𝑏 d𝑥

)
1−𝜀
𝑝−𝜀

≤

≤ 𝑐(𝑛, ‖𝑏‖∗, 𝑝)
(

∫𝐵𝑡
|(1 − 𝜉)𝐷𝑢|𝑝−𝜀𝑏 d𝑥

)
1
𝑝−𝜀

(

∫𝐵𝑡
𝜇𝑝−𝜀𝑏 d𝑥

)
𝑝−2
𝑝−𝜀

⋅

⋅
(

∫𝐵𝑡
|𝐷[𝜉(𝑢 − 𝜆)]|𝑝−𝜀𝑏 d𝑥

)
1−𝜀
𝑝−𝜀

≤

≤ 𝑐(𝑛, ‖𝑏‖∗, 𝑝)𝑝−𝜀
(1
�̇�

)𝑝−𝜀

∫𝐵𝑡
|(1 − 𝜉)𝐷𝑢|𝑝−𝜀𝑏 d𝑥 + ∫𝐵𝑡

𝜇𝑝−𝜀𝑏 d𝑥+

+ �̇�
𝑝−𝜀
1−𝜀

∫𝐵𝑡
|𝐷[𝜉(𝑢 − 𝜆)]|𝑝−𝜀𝑏 d𝑥.

(5.2.5)
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Now, since 𝑐 may be assumed greater than 1, 𝑐𝑝−𝜀 is less than 𝑐𝑝. Therefore, we can assume that the constant 𝑐 is
independent of 𝜀. If 𝑝 = 2, since 𝜇 ≤ 1, we argue as before by applying Hölder’s and Young’s inequalities with
exponents 𝑝 − 𝜀 and 𝑝−𝜀

𝑝−𝜀−1 :

𝐼 ≤
(

∫𝐵𝑡
|(1 − 𝜉)𝐷𝑢|𝑝−𝜀𝑏 d𝑥

)
1
𝑝−𝜀

(

∫𝐵𝑡
|𝐷𝜑|

𝑝−𝜀
𝑝−𝜀−1 𝑏 d𝑥

)
𝑝−𝜀−1
𝑝−𝜀

≤

≤ 𝑐(𝑛, ‖𝑏‖∗, 𝑝)
(

∫𝐵𝑡
|(1 − 𝜉)𝐷𝑢|𝑝−𝜀𝑏 d𝑥

)
1
𝑝−𝜀

(

∫𝐵𝑡
|𝐷[𝜉(𝑢 − 𝜆)]|𝑝−𝜀𝑏 d𝑥

)
1−𝜀
𝑝−𝜀

≤

≤ 𝑐(𝑛, ‖𝑏‖∗, 𝑝)
(1
�̇�

)𝑝−𝜀

∫𝐵𝑡
|(1 − 𝜉)𝐷𝑢|𝑝−𝜀𝑏 d𝑥 + �̇�

𝑝−𝜀
1−𝜀

∫𝐵𝑡
|𝐷[𝜉(𝑢 − 𝜆)]|𝑝−𝜀𝑏 d𝑥.

(5.2.6)

Replacing |(1 − 𝜉)𝐷𝑢| by |(𝑢 − 𝜆)∇𝜉|, we get the desired estimate for 𝐼𝐼 , if 𝑝 > 2:

𝐼𝐼 ≤ 𝑐
(1
�̇�

)𝑝−𝜀

∫𝐵𝑡
|(𝑢 − 𝜆)∇𝜉|𝑝−𝜀𝑏 d𝑥 + ∫𝐵𝑡

𝜇𝑝−𝜀𝑏 d𝑥 + �̇�
𝑝−𝜀
1−𝜀

∫𝐵𝑡
|𝐷[𝜉(𝑢 − 𝜆)]|𝑝−𝜀𝑏 d𝑥 (5.2.7)

and 𝑝 = 2:
𝐼𝐼 ≤ 𝑐

(1
�̇�

)𝑝−𝜀

∫𝐵𝑡
|(𝑢 − 𝜆)∇𝜉|𝑝−𝜀𝑏 d𝑥 + �̇�

𝑝−𝜀
1−𝜀

∫𝐵𝑡
|𝐷[𝜉(𝑢 − 𝜆)]|𝑝−𝜀𝑏 d𝑥, (5.2.8)

with 𝑐 = 𝑐(𝑛, ‖𝑏‖∗, 𝑝). Using Hölder’s and Young’s inequalities with exponents 𝑝−𝜀
𝑝−1 and 𝑝−𝜀

1−𝜀 , and if �̈� > 0, we
obtain:

𝐼𝐼𝐼 ≤ 𝑐(𝑛, ‖𝑏‖∗, 𝑝)
(

∫𝐵𝑡
|(1 − 𝜉)𝐷𝑢|𝑝−𝜀𝑏 d𝑥

)
𝑝−1
𝑝−𝜀

(

∫𝐵𝑡
|𝐷[𝜉(𝑢 − 𝜆)]|𝑝−𝜀𝑏 d𝑥

)
1−𝜀
𝑝−𝜀

≤

≤ 𝑐(𝑛, ‖𝑏‖∗, 𝑝)
(1
�̈�

)

𝑝−𝜀
𝑝−1

∫𝐵𝑡
|(1 − 𝜉)𝐷𝑢|𝑝−𝜀𝑏 d𝑥 + �̈�

𝑝−𝜀
1−𝜀

∫𝐵𝑡
|𝐷[𝜉(𝑢 − 𝜆)]|𝑝−𝜀𝑏 d𝑥.

(5.2.9)

In the same way, we estimate 𝐼𝑉 , namely

𝐼𝑉 = ∫𝐵𝑡
|(𝑢 − 𝜆)∇𝜉|𝑝−1|𝐷𝜑|𝑏 d𝑥 ≤

≤ 𝑐(𝑛, ‖𝑏‖∗, 𝑝)
(1
�̈�

)

𝑝−𝜀
𝑝−1

∫𝐵𝑡
|(𝑢 − 𝜆)∇𝜉|𝑝−𝜀𝑏 d𝑥 + �̈�

𝑝−𝜀
1−𝜀

∫𝐵𝑡
|𝐷[𝜉(𝑢 − 𝜆)]|𝑝−𝜀𝑏 d𝑥.

(5.2.10)

Arguing as for 𝐼 and 𝐼𝐼 , with 𝜀 > 0, we estimate 𝑉

𝑉 = ∫𝐵𝑡
|(1 − 𝜉)𝐷𝑢| |𝐷[𝜉(𝑢 − 𝜆)]|𝑝−2|𝐷𝜑|𝑏 d𝑥 ≤

≤ 𝑐(𝑛, ‖𝑏‖∗, 𝑝)
(1
𝜀

)𝑝−𝜀

∫𝐵𝑡
|(1 − 𝜉)𝐷𝑢|𝑝−𝜀𝑏 d𝑥 + 𝜀

𝑝−𝜀
𝑝−𝜀−1

∫𝐵𝑡
|𝐷[𝜉(𝑢 − 𝜆)]|𝑝−𝜀𝑏 d𝑥

(5.2.11)

and 𝑉 𝐼
𝑉 𝐼 = ∫𝐵𝑡

|(𝑢 − 𝜆)∇𝜉| |𝐷[𝜉(𝑢 − 𝜆)]|𝑝−2|𝐷𝜑|𝑏 d𝑥 ≤

≤ 𝑐(𝑛, ‖𝑏‖∗, 𝑝)
(1
𝜀

)𝑝−𝜀

∫𝐵𝑡
|(𝑢 − 𝜆)∇𝜉|𝑝−𝜀𝑏 d𝑥 + 𝜀

𝑝−𝜀
𝑝−𝜀−1

∫𝐵𝑡
|𝐷[𝜉(𝑢 − 𝜆)]|𝑝−𝜀𝑏 d𝑥.

(5.2.12)

Finally, by Hölder’s and Young’s inequalities with exponents 𝑝−𝜀
𝑝−1

and 𝑝−𝜀
1−𝜀

, supposing |𝜀| ≤ 𝛿, and if �⃜� > 0, we
have

∫𝐵𝑡
|

|

|

⟨

|𝐺|𝑝−2𝐺,𝐷𝜑
⟩

|

|

|

d𝑥 ≤ 1
𝜆0 ∫𝐵𝑡

|𝐺|𝑝−1|𝐷𝜑|𝑏 d𝑥 ≤ 1
𝜆0

‖𝐺‖𝑝−1
𝐿𝑝−𝜀𝑏 (𝐵𝑡)

‖𝐷𝜑‖
𝐿
𝑝−𝜀
1−𝜀
𝑏 (𝐵𝑡)

≤ 𝑐(𝑛, ‖𝑏‖∗, 𝑝, 𝜆0)
(1
�⃜�

)

𝑝−𝜀
𝑝−1

∫𝐵𝑡
|𝐺|𝑝−𝜀𝑏 d𝑥 + �⃜�

𝑝−𝜀
1−𝜀

∫𝐵𝑡
|𝐷[𝜉(𝑢 − 𝜆)]|𝑝−𝜀𝑏 d𝑥.

(5.2.13)
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Combining estimates (5.2.3) - (5.2.13) yields
1
𝑘 ∫𝐵𝑡

|𝐷[𝜉(𝑢 − 𝜆)]|𝑝−𝜀𝑏 d𝑥 ≤

≤ 𝑐(𝑛, ‖𝑏‖∗, 𝑘, 𝑝, 𝜆0)

(

(

|𝜀| + (�̇� + �̈� + �⃜�)
𝑝−𝜀
1−𝜀 + 𝜀

𝑝−𝜀
𝑝−𝜀−1

)

∫𝐵𝑡
|𝐷[𝜉(𝑢 − 𝜆)]|𝑝−𝜀𝑏 d𝑥+

+
(

(1
�̇�
+ 1
𝜀

)𝑝−𝜀
+
(1
�̈�

)

𝑝−𝜀
𝑝−1

)(

∫𝐵𝑡
|(1 − 𝜉)𝐷𝑢|𝑝−𝜀𝑏 d𝑥 + ∫𝐵𝑡

|(𝑢 − 𝜆)∇𝜉|𝑝−𝜀𝑏 d𝑥
)

+

+ (|𝜀| + 1)∫𝐵𝑡
𝜇𝑝−𝜀𝑏 d𝑥 +

(1
�⃜�

)

𝑝−𝜀
1−𝜀

∫𝐵𝑡
|𝐺|𝑝−𝜀𝑏 d𝑥

)

for arbitrary positive numbers �̇�, �̈�, 𝜀, �⃜�. We now choose 𝜀, �̇�, �̈�, 𝜀 and �⃜� to be such that 𝑐(𝑛, ‖𝑏‖∗, 𝑘, 𝑝, 𝜆0) ⋅
(

|𝜀| + (�̇� + �̈� + �⃜�)
𝑝−𝜀
1−𝜀 + 𝜀

𝑝−𝜀
𝑝−𝜀−1

)

< 1
2𝑘 . To this effect, we fix 𝜀1 > 0 sufficiently small. Accordingly,

∫𝐵𝑡
|𝐷[𝜉(𝑢 − 𝜆)]|𝑝−𝜀𝑏 d𝑥 ≤ 𝑐(𝑛, ‖𝑏‖∗, 𝑘, 𝑝, 𝜆0)

(

∫𝐵𝑡
|(1 − 𝜉)𝐷𝑢|𝑝−𝜀𝑏 d𝑥+

+ ∫𝐵𝑡
|(𝑢 − 𝜆)∇𝜉|𝑝−𝜀𝑏 d𝑥 + ∫𝐵𝑡

𝜇𝑝−𝜀𝑏 d𝑥 + ∫𝐵𝑡
|𝐺|𝑝−𝜀𝑏 d𝑥

)

,

for −min{𝜀1, 𝛿} < 𝜀 ≤ 𝜀1 and 𝑐 independent of 𝜀. The properties of the cut-off function 𝜉 and the previous
inequality yield

∫𝐵𝑠
|𝐷𝑢|𝑝−𝜀𝑏 d𝑥 ≤ 𝑐

(

∫𝐵𝑡⧵𝐵𝑠
|𝐷𝑢|𝑝−𝜀𝑏 d𝑥 + 1

(𝑡 − 𝑠)𝑝−𝜀 ∫𝐵𝑡
|𝑢 − 𝜆|𝑝−𝜀𝑏 d𝑥+

+ ∫𝐵𝑡
(𝜇𝑝−𝜀 + |𝐺|𝑝−𝜀)𝑏 d𝑥

)

.

Adding 𝑐 ∫𝐵𝑠 |𝐷𝑢|𝑝−𝜀𝑏 d𝑥 to both sides yields

∫𝐵𝑠
|𝐷𝑢|𝑝−𝜀𝑏 d𝑥 ≤ 𝑐

𝑐 + 1 ∫𝐵𝑡
|𝐷𝑢|𝑝−𝜀𝑏 d𝑥 + 𝑐

(𝑐 + 1)(𝑡 − 𝑠)𝑝−𝜀 ∫𝐵2𝑅

|𝑢 − 𝜆|𝑝−𝜀𝑏 d𝑥+

+ 𝑐
𝑐 + 1 ∫𝐵2𝑅

(𝜇𝑝−𝜀 + |𝐺|𝑝−𝜀)𝑏 d𝑥.

With the notation (2.2.1), we set
𝜆 = 𝑢𝑅 ∶=

∫𝐵2𝑅
𝑢(𝑥)𝑏 d𝑥

𝑏(𝐵2𝑅)
and we apply Lemma 5.2.2 to get

∫𝐵𝑅
|𝐷𝑢|𝑝−𝜀𝑏 d𝑥 ≤ 𝑐

(

𝑅−(𝑝−𝜀)
∫𝐵2𝑅

|𝑢 − 𝑢𝑅|𝑝−𝜀𝑏 d𝑥 + ∫𝐵2𝑅

(𝜇𝑝−𝜀 + |𝐺|𝑝−𝜀)𝑏 d𝑥
)

. (5.2.14)

We add ∫𝐵𝑅 (|𝑢|
𝑝−𝜀 + 𝜇𝑝−𝜀) 𝑏 d𝑥 to both sides. Since |𝑢|𝑝−𝜀 ≤ 𝑐(|𝑢 − 𝑢𝑅|𝑝−𝜀 + |𝑢𝑅|𝑝−𝜀) and 𝑅 < 1, we obtain

∫𝐵𝑅
(𝜇𝑝−𝜀 + |𝐷𝑢|𝑝−𝜀 + |𝑢|𝑝−𝜀)𝑏 d𝑥 ≤ 𝑐

(

𝑅−(𝑝−𝜀)
∫𝐵2𝑅

|𝑢 − 𝑢𝑅|𝑝−𝜀𝑏 d𝑥+

+ ∫𝐵2𝑅

|𝑢𝑅|
𝑝−𝜀𝑏 d𝑥 + ∫𝐵2𝑅

(

𝜇2 + |𝐺|2
)

𝑝−𝜀
2 𝑏 d𝑥

)

,

(5.2.15)

with 𝑐 = 𝑐(𝑛, ‖𝑏‖∗, 𝑘, 𝑝, 𝜆0). Note that by Jensen’s inequality 2.1.7

∫𝐵2𝑅

|𝑢𝑅|
𝑝−𝜀𝑏 d𝑥 = 𝑏(𝐵2𝑅)

(

∫𝐵2𝑅
|𝑢(𝑥)| 𝑏 d𝑥

𝑏(𝐵2𝑅)

)𝑝−𝜀

≤

≤ ∫𝐵2𝑅

|𝑢(𝑥)|𝑝−𝜀𝑏 d𝑥 ≤ 𝑅−(𝑝−𝜀)
∫𝐵2𝑅

|𝑢(𝑥)|𝑝−𝜀𝑏 d𝑥.

(5.2.16)
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Theorem 2.2.11 and Lemma 2.2.10 yield
𝑅−(𝑝−𝜀)

𝑏(𝐵2𝑅) ∫𝐵2𝑅

|𝑢|𝑝−𝜀𝑏 d𝑥 ≤ 𝑐
(

1
𝑏(𝐵2𝑅) ∫𝐵2𝑅

|∇𝑢|𝜎𝑏 d𝑥
)

𝑝−𝜀
𝜎 (5.2.17)

for all 𝜎 such that max
{

1, (𝑛−1)𝑝−𝜀
𝑛

}

≤ 𝜎 < 𝑝 − 𝜀 and with 𝑐 = 𝑐(𝑛, ‖𝑏‖∗, 𝑘, 𝑝, 𝜆0). Theorem 2.2.12 and
Lemma 2.2.10 yield

𝑅−(𝑝−𝜀)

𝑏(𝐵2𝑅) ∫𝐵2𝑅

|𝑢 − 𝑢𝑅|𝑝−𝜀𝑏 d𝑥 ≤ 𝑐
(

1
𝑏(𝐵2𝑅) ∫𝐵2𝑅

|∇𝑢|𝜎𝑏 d𝑥
)

𝑝−𝜀
𝜎 (5.2.18)

for all 𝜎 such that max
{

1, (𝑛−1)𝑝−𝜀
𝑛

}

≤ 𝜎 < 𝑝 − 𝜀 and with 𝑐 = 𝑐(𝑛, ‖𝑏‖∗, 𝑘, 𝑝, 𝜆0).
Putting together (5.2.15)- (5.2.18), since the measure 𝑏 d𝑥 is doubling and by means of Lemma 2.2.10, we have

𝑐(𝑛, 𝑝, ‖𝑏‖∗)
𝑏(𝐵𝑅) ∫𝐵𝑅

(𝜇2 + |𝐷𝑢|2 + |𝑢|2)
𝑝−𝜀
2 𝑏 d𝑥 ≤

≤
𝑐(𝑛, 𝑝, ‖𝑏‖∗)
𝑏(𝐵𝑅) ∫𝐵𝑅

(𝜇𝑝−𝜀 + |𝐷𝑢|𝑝−𝜀 + |𝑢|𝑝−𝜀)𝑏 d𝑥 ≤

≤ 1
𝑏(𝐵2𝑅) ∫𝐵𝑅

(𝜇𝑝−𝜀 + |𝐷𝑢|𝑝−𝜀 + |𝑢|𝑝−𝜀)𝑏 d𝑥 ≤

≤
𝑐(𝑛, ‖𝑏‖∗, 𝑘, 𝑝, 𝜆0)

𝑏(𝐵2𝑅)

(

𝑅−(𝑝−𝜀)
∫𝐵2𝑅

|𝑢 − 𝑢𝑅|𝑝−𝜀𝑏 d𝑥+

+ 𝑅−(𝑝−𝜀)
∫𝐵2𝑅

|𝑢(𝑥)|𝑝−𝜀𝑏 d𝑥 + ∫𝐵2𝑅

(

𝜇2 + |𝐺|2
)

𝑝−𝜀
2 𝑏 d𝑥

)

≤

≤ 𝑐(𝑛, ‖𝑏‖∗, 𝑘, 𝑝, 𝜆0)

[

(

1
𝑏(𝐵2𝑅) ∫𝐵2𝑅

(𝜇𝜎 + |𝐷𝑢|𝜎 + |𝑢|𝜎)𝑏 d𝑥
)

𝑝−𝜀
𝜎
+

+ 1
𝑏(𝐵2𝑅) ∫𝐵2𝑅

(

𝜇2 + |𝐺|2
)

𝑝−𝜀
2 𝑏 d𝑥

]

,

(5.2.19)

for all 𝜎 such that max
{

1, (𝑛−1)𝑝−𝜀
𝑛

}

≤ 𝜎 < 𝑝 − 𝜀 and we can conclude the proof of the reverse Hölder’s inequal-
ity (5.2.2).
Now we are ready to prove the main result of this section.
Theorem 5.2.4. Let Ω be a regular domain, 𝐴(𝑥, 𝜉) a mapping verifying assumptions (5.1.2), (5.1.3) and (5.1.5),
𝜇 ∈ [0, 1], and let 𝐺 ∈ 𝐿𝑝+𝛿𝑙𝑜𝑐 (𝑏,Ω;ℝ

𝑁×𝑛), for 𝛿 ≥ 0. Then there exists 0 < 𝜀1 <
1
2 , depending on 𝑘, 𝑛, 𝜆0, 𝑝 and

the 𝐵𝑀𝑂 - norm of 𝑏(𝑥), such that, if 𝑢 ∈ 𝑊 1,𝑝−𝜀
𝑙𝑜𝑐 (𝑏,Ω;ℝ𝑁 ), with 0 ≤ 𝜀 < 𝜀1, is a local solution of (5.2.1), then

𝑢 ∈ 𝑊 1,𝑝−�̃�
𝑙𝑜𝑐 (𝑏,Ω,ℝ𝑁 ), for any 0 ≤ |�̃�| ≤ min{𝛿, 𝜀1}.

Proof. Let 𝑢 ∈ 𝑊 1,𝑝−�̄�
𝑙𝑜𝑐 (𝑏,Ω;ℝ𝑁 ) verify the equation (5.1.7), with 0 ≤ �̄� ≤ 𝜀1. For Ω′ ⊂⊂ Ω, set 𝐴 = {𝜀 ∈

[−min{𝛿, 𝜀1}, 𝜀1] ∶ 𝑢 ∈ 𝑊 1,𝑝−𝜀
𝑙𝑜𝑐 (𝑏,Ω′;ℝ𝑁 )}. We claim that 𝐴 = [−min{𝛿, 𝜀1}, 𝜀1]. In order to see this, we first

note that 𝐴 is not empty, since 𝜀1 ∈ 𝐴. Our goal is to show that 𝐴 is open and closed in [−min{𝛿, 𝜀1}, 𝜀1]. First
we prove that 𝐴 is open. Indeed, if 𝜀2 ∈ 𝐴, by the reverse Hölder inequality in Lemma 5.2.1 and by the higher
integrability result stated in Lemma 5.2.3, there exists 𝜀 > 0 such that max{𝜀2 − 𝜀,−min{𝛿, 𝜀1}} ∈ 𝐴. Therefore
𝐴 is open. Now we prove that 𝐴 is closed too. Let {𝜚𝑘} ⊂ 𝐴 be such that 𝜚𝑘 → 𝜚. We want to prove that 𝜚 ∈ 𝐴.
Obviously, 𝑢 ∈ 𝑊 1,𝑝−𝜚𝑘

𝑙𝑜𝑐 (𝑏,Ω′;ℝ𝑁 ) and
1

𝑏(𝐵𝑅) ∫𝐵𝑅

(

𝜇2 + |𝐷𝑢|2 + |𝑢|2
)

𝑝−𝜚𝑘
2 𝑏 d𝑥 ≤

≤ 𝑐
(

1
𝑏(𝐵2𝑅) ∫𝐵2𝑅

(𝜇2 + |𝐷𝑢|2 + |𝑢|2)
𝜎𝑘
2 𝑏 d𝑥

)

𝑝−𝜚𝑘
𝜎𝑘

+ 𝑐
𝑏(𝐵2𝑅) ∫𝐵2𝑅

(

(

𝜇2 + |𝐺|2
)

𝑝−𝜚𝑘
2 𝑏 d𝑥

)

(5.2.20)
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with 𝜎𝑘 = max{1, (𝑛−1)(𝑝− 𝜚𝑘)∕𝑛}. Let us observe that (𝜇2+ |𝐷𝑢|2+ |𝑢|2)
𝑝−𝜚𝑘
2 → (𝜇2+ |𝐷𝑢|2+ |𝑢|2)

𝑝−𝜚
2 , almost

everywhere in 𝐵2𝑅. Therefore, we can apply Fatou’s Lemma in order to estimate the left-hand side of (5.2.20). We
obtain

1
𝑏(𝐵𝑅) ∫𝐵𝑅

(𝜇2 + |𝐷𝑢|2 + |𝑢|2)
𝑝−𝜚
2 𝑏 d𝑥 ≤ lim inf

𝑘

1
𝑏(𝐵𝑅) ∫𝐵𝑅

(𝜇2 + |𝐷𝑢|2 + |𝑢|2)
𝑝−𝜚𝑘
2 𝑏 d𝑥. (5.2.21)

In order to pass to the limit on the right-hand side of (5.2.20), we assume that 𝜚𝑘 > 𝜚 for every 𝑘, since otherwise
𝑢 ∈ 𝑊 1,𝑝−𝜚

𝑙𝑜𝑐 (𝑏,Ω′;ℝ𝑁 ) and the conclusion is obvious. With this assumption we have
𝜎𝑘 ≤ max{1, (𝑛 − 1)(𝑝 − 𝜚)∕𝑛} < 𝑝 − 𝜚,

since 1 < 2 − 𝜀1 ≤ 𝑝 − 𝜚𝑘 < 𝑝 − 𝜚. Set 𝜎 = max{1, (𝑛 − 1)(𝑝 − 𝜚)∕𝑛}; the following inequality holds:
(𝜇2 + |𝐷𝑢|2 + |𝑢|2)

𝜎𝑘
2 ≤ 1 + (𝜇2 + |𝐷𝑢|2 + |𝑢|2)

𝜎
2 . (5.2.22)

For 𝑘 large enough, we have 𝜎 < 𝑝 − 𝜚𝑘 < 𝑝 − 𝜚 and, since 𝑢 ∈ 𝑊 1,𝜎𝑘
𝑙𝑜𝑐 (𝑏,Ω′;ℝ𝑁 ), the right-hand side of (5.2.22)

is in 𝐿1. Therefore, we can apply Lebesgue’s Convergence Theorem 2.1.11 in order to pass to the limit on the
right-hand side of (5.2.20). Taking also into account that we may assume |𝜚𝑘| ≤ 𝛿 for every 𝑘 and 𝐺 ∈ 𝐿𝑝+𝛿, we
get, recalling (5.2.21),

1
𝑏(𝐵𝑅) ∫𝐵𝑅

(

𝜇2 + |𝐷𝑢|2 + |𝑢|2
)

𝑝−𝜚
2 𝑏 d𝑥 ≤

≤ 𝑐
(

1
𝑏(𝐵2𝑅)

∫𝐵2𝑅
(𝜇2 + |𝐷𝑢|2 + |𝑢|2)

𝜎
2 𝑏 d𝑥

)
𝑝−𝜚
𝜎 + 𝑐

𝑏(𝐵2𝑅)
∫𝐵2𝑅

(

(

𝜇2 + |𝐺|2
)
𝑝−𝜚
2 𝑏 d𝑥

)

Hence 𝜚 ∈ 𝐴, therefore 𝐴 is closed.
Remark 5.2.5. By virtue of Theorem 5.2.4, in Section 5.3 and Section 5.4 we can assume 𝑢 ∈ 𝑊 1,𝑝+𝜀1

𝑙𝑜𝑐 (𝑏,Ω;ℝ𝑁 ),
for 𝜀1 > 0 sufficiently small. In fact, in Theorem 5.1.1 and in a priori estimate 5.3.1 we assume 𝐹 ∈ 𝑊 1,2

𝑙𝑜𝑐 (𝑏,
Ω; ℝ𝑁×𝑛). Therefore, with the notation 𝐹 = |𝐺|𝑝−2𝐺, we have |𝐺|𝑝−1 ∈ 𝐿2∗

𝑏 , with 2∗ ∶= 2𝑛
𝑛−2 , i.e. equivalently

|𝐺| ∈ 𝐿
2𝑛𝑝−2𝑛
𝑛−2

𝑏 . Finally, we note that 2𝑛𝑝−2𝑛
𝑛−2 > 𝑝 for 𝑝 > 2∗ ∶=

2𝑛
𝑛+2 .

5.3 A priori estimate

In this section we assume the weak differentiability of 𝑉𝜇(𝐷𝑢) in order prove an a priori estimate.
Theorem 5.3.1. Let Ω be a regular domain and 𝐴(𝑥, 𝜉) a mapping verifying assumptions (5.1.2), (5.1.3), (5.1.4)
and (5.1.5). If 𝐷(𝑉𝜇(𝐷𝑢)) ∈ 𝐿2

𝑙𝑜𝑐(𝑏,Ω), 𝜇 ∈ (0, 1] and 𝐹 ∈𝑊 1,2
𝑙𝑜𝑐 (𝑏, Ω;ℝ

𝑁×𝑛), there exists 𝛼 > 0, depending on
𝑝, 𝑛, 𝜆0, 𝜇 and 𝑘, such that, if

𝒟𝐾 ∶= dist𝐿𝑛,∞(𝐾(𝑥), 𝐿∞) < 𝛼, (5.3.1)
the following estimate holds:

∫𝐵𝑅
|𝐷(𝑉𝜇(𝐷𝑢))|2𝑏 d𝑥 ≤ 𝑐 ∫𝐵2𝑅

((

1 + 1
𝑅2

)

(𝜇2 + |𝐷𝑢|2)
𝑝
2 + (𝜇2 + |𝐷𝐹 |2)

)

𝑏 d𝑥 (5.3.2)

for every ball 𝐵2𝑅 ⊂⊂ Ω and for a constant 𝑐 depending on 𝑝, 𝑘, 𝜆0, 𝑛, 𝜇 and 𝒟𝐾 .

We recall the following
Lemma 5.3.2 ([GM86]). For any 𝑝 ≥ 2, we have

𝑐−1(𝜇2 + |𝜂|2 + |𝜉|2)
𝑝−2
2
|𝜂 − 𝜉|2 ≤ |𝑉𝜇(𝜂) − 𝑉𝜇(𝜉)|2 ≤ 𝑐(𝜇2 + |𝜂|2 + |𝜉|2)

𝑝−2
2
|𝜂 − 𝜉|2

for any 𝜂, 𝜉 ∈ ℝ𝑘, 𝜇 ∈ [0, 1] and a constant 𝑐 = 𝑐(𝑝) > 0.

Now we are ready to prove Theorem 5.3.1.
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Proof of Theorem 5.3.1. For a fixed ball 𝐵2𝑅 ⊂⊂ Ω and radii 𝑅 < 𝑠 < 𝑡 < 2𝑅 with 𝑅 small enough, consider
a function 𝜉 ∈ 𝐶∞

0 (𝐵𝑡), 0 ≤ 𝜉 ≤ 1, 𝜉 = 1 on 𝐵𝑠, |∇𝜉| ≤ 1
𝑡−𝑠 and set 𝜓 = 𝜉2𝜏ℎ𝑢 for sufficiently small ℎ > 0.

Since 𝑢 is a local solution of (5.1.1), we can choose 𝜑 = 𝜏−ℎ𝜓 as a test function. By virtue of the properties of the
difference quotients, we have

∫𝐵𝑡
⟨𝜏ℎ𝐴(𝑥,𝐷𝑢), 𝐷𝜓⟩ d𝑥 = ∫𝐵𝑡

⟨𝜏ℎ𝐹 (𝑥), 𝐷𝜓⟩ d𝑥

that is

∫𝐵𝑡

⟨

𝜏ℎ𝐴(𝑥,𝐷𝑢), 𝐷(𝜉2𝜏ℎ𝑢)
⟩

d𝑥 = ∫𝐵𝑡

⟨

𝜏ℎ𝐹 (𝑥), 𝐷(𝜉2𝜏ℎ𝑢)
⟩

d𝑥.

It follows that

∫𝐵𝑡
𝜉2 ⟨𝜏ℎ𝐴(𝑥,𝐷𝑢), 𝜏ℎ𝐷𝑢⟩ d𝑥 + 2∫𝐵𝑡

𝜉 ⟨𝜏ℎ𝐴(𝑥,𝐷𝑢),∇𝜉 ⊗ 𝜏ℎ𝑢⟩ d𝑥 =

= ∫𝐵𝑡

⟨

𝜏ℎ𝐹 (𝑥), 𝐷(𝜉2𝜏ℎ𝑢)
⟩

d𝑥,
(5.3.3)

and observing that
𝜏ℎ𝐴(𝑥,𝐷𝑢) =[𝐴(𝑥 + ℎ𝑒𝑖, 𝐷𝑢(𝑥 + ℎ𝑒𝑖)) − 𝐴(𝑥 + ℎ𝑒𝑖, 𝐷𝑢(𝑥))]+

+ [𝐴(𝑥 + ℎ𝑒𝑖, 𝐷𝑢(𝑥)) − 𝐴(𝑥,𝐷𝑢(𝑥))] =∶ ℎ +′
ℎ

the equality (5.3.3) can be rewritten as

∫𝐵𝑡
𝜉2 ⟨ℎ, 𝜏ℎ𝐷𝑢⟩ d𝑥 = −∫𝐵𝑡

𝜉2
⟨

′
ℎ, 𝜏ℎ𝐷𝑢

⟩

d𝑥 − 2∫𝐵𝑡
𝜉 ⟨ℎ,∇𝜉 ⊗ 𝜏ℎ𝑢⟩ d𝑥+

− 2∫𝐵𝑡
𝜉
⟨

′
ℎ,∇𝜉 ⊗ 𝜏ℎ𝑢

⟩

d𝑥 + ∫𝐵𝑡

⟨

𝜏ℎ𝐹 ,𝐷(𝜉2𝜏ℎ𝑢)
⟩

d𝑥 =∶ 𝐼1 + 𝐼2 + 𝐼3 + 𝐼4.

By assumption (5.1.3), we immediately obtain for the left hand side that

∫𝐵𝑡
𝜉2 ⟨ℎ, 𝜏ℎ𝐷𝑢⟩ d𝑥 ≥ 1

𝑘 ∫𝐵𝑡
𝜉2(𝜇2 + |𝐷𝑢(𝑥)|2 + |𝐷𝑢(𝑥 + ℎ𝑒𝑖)|2)

𝑝−2
2
|𝜏ℎ𝐷𝑢|

2𝑏 d𝑥

and hence
1
𝑘 ∫𝐵𝑡

𝜉2(𝜇2 + |𝐷𝑢(𝑥)|2 + |𝐷𝑢(𝑥 + ℎ𝑒𝑖)|2)
𝑝−2
2
|𝜏ℎ𝐷𝑢|2

|ℎ|2
𝑏 d𝑥 ≤ 1

|ℎ|2

4
∑

𝑖=1
|𝐼𝑖|.

Now let 𝐾0 ∈ 𝐿∞(Ω). In order to estimate |𝐼𝑗|, 𝑗 = 1,… , 4, we introduce the notation
(ℎ) ∶= 𝐾(𝑥 + ℎ𝑒𝑖) +𝐾(𝑥),

(ℎ) ∶= (𝜇2 + |𝐷𝑢(𝑥)|2 + |𝐷𝑢(𝑥 + ℎ𝑒𝑖)|2)
1
2 .

By assumption (5.1.4), we immediately have

|𝐼1| ≤ ∫𝐵𝑡
𝜉2|′

ℎ| |𝜏ℎ𝐷𝑢| d𝑥 ≤

≤ ∫𝐵𝑡
𝜉2|ℎ|(ℎ)(𝜇2 + |𝐷𝑢|2)

𝑝−1
2
|𝜏ℎ𝐷𝑢| d𝑥.

Then, defining
0(ℎ) ∶= 𝐾0(𝑥 + ℎ𝑒𝑖) +𝐾0(𝑥),
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the use of Young’s inequality with a constant 𝜈 ∈ (0, 1) that will be chosen later yields

|𝐼1| ≤ ∫𝐵𝑡
𝜉2|ℎ|(ℎ) (𝜇2 + |𝐷𝑢|2)

𝑝−1
2
|𝐷𝜏ℎ𝑢| d𝑥 ≤

≤ ∫𝐵𝑡
𝜉2|ℎ| |(ℎ) −0(ℎ)| (𝜇2 + |𝐷𝑢|2)

𝑝−1
2
|𝐷𝜏ℎ𝑢| d𝑥+

+ ∫𝐵𝑡
𝜉2|ℎ| ‖0(ℎ)‖𝐿∞ (𝜇2 + |𝐷𝑢|2)

𝑝−1
2
|𝐷𝜏ℎ𝑢| d𝑥 ≤

≤ 𝜈
2 ∫𝐵𝑡

𝜉2(𝜇2 + |𝐷𝑢|2)
𝑝−2
2
|𝐷𝜏ℎ𝑢|

2 d𝑥 +
|ℎ|2

2𝜈 ∫𝐵𝑡
|(ℎ) −0(ℎ)|2(𝜉(𝜇2 + |𝐷𝑢|2)

𝑝
4 )2

+ 𝜈
2 ∫𝐵𝑡

𝜉2(𝜇2 + |𝐷𝑢|2)
𝑝−2
2
|𝐷𝜏ℎ𝑢|

2 d𝑥 +
|ℎ|2

2𝜈 ∫𝐵𝑡
𝜉2‖0(ℎ)‖2𝐿∞(𝜇2 + |𝐷𝑢|2)

𝑝
2

≤ 𝜈 ∫𝐵𝑡
𝜉2(𝜇2 + |𝐷𝑢|2)

𝑝−2
2
|𝐷𝜏ℎ𝑢|

2 d𝑥 +
|ℎ|2

𝜈 ∫𝐵𝑡
|𝐾(𝑥) −𝐾0(𝑥)|2(𝜉(𝜇2 + |𝐷𝑢|2)

𝑝
4 )2

+
|ℎ|2

𝜈 ∫𝐵𝑡
|𝐾(𝑥 + ℎ𝑒𝑖) −𝐾0(𝑥 + ℎ𝑒𝑖)|2(𝜉(𝜇2 + |𝐷𝑢|2)

𝑝
4 )2 d𝑥+

+
|ℎ|2

2𝜈 ∫𝐵𝑡
𝜉2‖0(ℎ)‖2𝐿∞(𝜇2 + |𝐷𝑢|2)

𝑝
2 d𝑥

Now note that, thanks to Lemma 5.3.2, the assumption𝑉𝜇(𝐷𝑢) ∈ 𝑊 1,2
𝑙𝑜𝑐 (𝑏,Ω;ℝ

𝑁×𝑛) guarantees that (𝜇2+|𝐷𝑢|2) 𝑝2 ∈
𝑊 1,2
𝑙𝑜𝑐 (𝑏,Ω), and therefore in𝑊 1,2(Ω), and in particular, by Sobolev embedding Theorem in Lorentz spaces 2.2.15,

that 𝜉(𝜇2 + |𝐷𝑢|2)
𝑝
2 ∈ 𝐿

𝑛
𝑛−2 ,1. Consequently, by Hölder’s inequality in Lorentz spaces 2.2.17, set 2∗ ∶= 2𝑛

𝑛−2 , we
can estimate the second integral in the right hand side of previous inequality as follows

|𝐼1| ≤ 𝜈 ∫𝐵𝑡
𝜉2(𝜇2 + |𝐷𝑢|2)

𝑝−2
2
|𝐷𝜏ℎ𝑢|

2 d𝑥 +
2|ℎ|2

𝜈
‖𝐾(𝑥) −𝐾0‖

2
𝐿𝑛,∞(𝐵𝑡)

‖𝜉(𝜇2 + |𝐷𝑢|2)
𝑝
4
‖

2
𝐿2∗ ,2(𝐵𝑡)

+
|ℎ|2

2𝜈 ∫𝐵𝑡
𝜉2‖0(ℎ)‖2𝐿∞(Ω)(𝜇

2 + |𝐷𝑢|2)
𝑝
2 d𝑥.

Finally by Sobolev embedding Theorem in Lorentz spaces 2.2.15, and taking into account that 𝑏(𝑥) ≥ 𝜆0 and
(𝜇2 + |𝐷𝑢(𝑥)|2)

𝑝−2
2 ≤ (ℎ)𝑝−2, we have that

|𝐼1| ≤
𝜈
𝜆0 ∫𝐵𝑡

𝜉2(𝜇2 + |𝐷𝑢|2)
𝑝−2
2
|𝐷𝜏ℎ𝑢|

2𝑏 d𝑥+

+ 2
|ℎ|2

𝜈
𝑆2
2,𝑛‖𝐾(𝑥) −𝐾0‖

2
𝐿𝑛,∞(Ω)‖𝐷(𝜉(𝜇2 + |𝐷𝑢|2)

𝑝
4 )‖2𝐿2(𝐵𝑡)

+

+
|ℎ|2

2𝜈𝜆0 ∫𝐵𝑡
𝜉2‖0(ℎ)‖2𝐿∞(Ω)(𝜇

2 + |𝐷𝑢|2)
𝑝
2 𝑏 d𝑥 ≤

≤ 𝜈
𝜆0 ∫𝐵𝑡

𝜉2(ℎ)𝑝−2|𝐷𝜏ℎ𝑢|2𝑏 d𝑥+

+ 2
|ℎ|2

𝜈
𝑆2
2,𝑛‖𝐾(𝑥) −𝐾0‖

2
𝐿𝑛,∞(Ω)‖𝐷(𝜉(𝜇2 + |𝐷𝑢|2)

𝑝
4 )‖2𝐿2(𝐵𝑡)

+

+
|ℎ|2

2𝜈𝜆0 ∫𝐵𝑡
𝜉2‖0(ℎ)‖2𝐿∞(Ω)(𝜇

2 + |𝐷𝑢|2)
𝑝
2 𝑏 d𝑥.

(5.3.4)

Next we estimate 𝐼2. Observe that assumption (5.1.2) yields

|ℎ| ≤ 𝑘 𝑏(𝑥 + ℎ𝑒𝑖) |𝜏ℎ𝐷𝑢|
(

𝜇2 + |𝐷𝑢(𝑥)|2 + |𝐷𝑢(𝑥 + ℎ𝑒𝑖) |2
)

𝑝−2
2 =

= 𝑘 𝑏(𝑥 + ℎ𝑒𝑖) |𝜏ℎ𝐷𝑢|(ℎ)𝑝−2
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and hence, by the aid of Young’s inequality, we obtain

|𝐼2| ≤ 2∫𝐵𝑡⧵𝐵𝑠
𝜉 |ℎ| |∇𝜉| |𝜏ℎ𝑢| d𝑥 ≤

≤ 2𝑘∫𝐵𝑡⧵𝐵𝑠
𝜉 𝑏(𝑥 + ℎ𝑒𝑖) |𝜏ℎ𝐷𝑢|(ℎ)𝑝−2 |∇𝜉| |𝜏ℎ𝑢| d𝑥 ≤

≤ 𝜈 ∫𝐵𝑡⧵𝐵𝑠
𝜉2(ℎ)𝑝−2|𝜏ℎ𝐷𝑢|2𝑏(𝑥 + ℎ𝑒𝑖) d𝑥+

+ 𝑘2

𝜈 ∫𝐵𝑡⧵𝐵𝑠
|∇𝜉|2(ℎ)𝑝−2|𝜏ℎ𝑢|2𝑏(𝑥 + ℎ𝑒𝑖) d𝑥 ≤

≤ 𝜈 ∫𝐵𝑡⧵𝐵𝑠
𝜉2(ℎ)𝑝−2|𝜏ℎ𝐷𝑢|2𝑏(𝑥 + ℎ𝑒𝑖) d𝑥+

+ 𝑘2

𝜈 (𝑡 − 𝑠)2 ∫𝐵𝑡⧵𝐵𝑠
(ℎ)𝑝−2|𝜏ℎ𝑢|2𝑏(𝑥 + ℎ𝑒𝑖) d𝑥.

(5.3.5)

For 𝐼3 we proceed as follows. The assumption (5.1.4) yields

|𝐼3| ≤ 2∫𝐵𝑡⧵𝐵𝑠
𝜉|′

ℎ| |∇𝜉| |𝜏ℎ𝑢| d𝑥 ≤ 2|ℎ|∫𝐵𝑡⧵𝐵𝑠
𝜉(ℎ) |∇𝜉| (𝜇2 + |𝐷𝑢|2)

𝑝−1
2
|𝜏ℎ𝑢|.

Arguing similarly as we have done for 𝐼1, we have

|𝐼3| ≤ 2|ℎ|∫𝐵𝑡⧵𝐵𝑠
𝜉|(ℎ) −0(ℎ)| |∇𝜉|(𝜇2 + |𝐷𝑢|2)

𝑝−1
2
|𝜏ℎ𝑢| d𝑥+

+ 2|ℎ| ‖0(ℎ)‖𝐿∞(Ω) ∫𝐵𝑡⧵𝐵𝑠
𝜉 |∇𝜉|(𝜇2 + |𝐷𝑢|2)

𝑝−1
2
|𝜏ℎ𝑢| d𝑥 ≤

≤ |ℎ|2

𝜈 ∫𝐵𝑡
𝜉2|(ℎ) −0(ℎ)|2(𝜇2 + |𝐷𝑢|2)

𝑝
2 d𝑥 + 2𝜈

(𝑡 − 𝑠)2 ∫𝐵𝑡
(𝜇2 + |𝐷𝑢|2)

𝑝−2
2
|𝜏ℎ𝑢|

2

+
|ℎ|2

𝜈
‖0(ℎ)‖2𝐿∞(Ω) ∫𝐵𝑡

𝜉2(𝜇2 + |𝐷𝑢|2)
𝑝
2 d𝑥 ≤

≤ 2|ℎ|2

𝜈 ∫𝐵𝑡
𝜉2|𝐾(𝑥) −𝐾0(𝑥)|2(𝜇2 + |𝐷𝑢|2)

𝑝
2 d𝑥+

+
2|ℎ|2

𝜈 ∫𝐵𝑡
𝜉2|𝐾(𝑥 + ℎ𝑒𝑖) −𝐾0(𝑥 + ℎ𝑒𝑖)|2(𝜇2 + |𝐷𝑢|2)

𝑝
2 d𝑥+

+ 2𝜈
(𝑡 − 𝑠)2 ∫𝐵𝑡

(𝜇2 + |𝐷𝑢|2)
𝑝−2
2
|𝜏ℎ𝑢|

2 +
|ℎ|2

𝜈
‖0(ℎ)‖2𝐿∞(Ω) ∫𝐵𝑡

𝜉2(𝜇2 + |𝐷𝑢|2)
𝑝
2

≤ 4
|ℎ|2

𝜈
𝑆2
2,𝑛‖𝐾(𝑥) −𝐾0‖

2
𝐿𝑛,∞(Ω)‖𝐷(𝜉(𝜇2 + |𝐷𝑢|2)

𝑝
4 )‖2𝐿2(𝐵𝑡)

+

+ 2𝜈
𝜆0(𝑡−𝑠)2

∫𝐵𝑡(𝜇
2 + |𝐷𝑢|2)

𝑝−2
2
|𝜏ℎ𝑢|2𝑏 d𝑥 +

|ℎ|2

𝜈𝜆0
‖𝐾0‖

2
𝐿∞(Ω) ∫𝐵𝑡 𝜉

2(𝜇2 + |𝐷𝑢|2)
𝑝
2 𝑏 d𝑥.

(5.3.6)

Finally we estimate 𝐼4. By using Young’s inequality, together with 𝑏(𝑥) ≥ 𝜆0, we get

|𝐼4| =
|

|

|

|

|

∫𝐵𝑡

⟨

𝜏ℎ𝐹 ,𝐷(𝜉2𝜏ℎ𝑢)
⟩

d𝑥
|

|

|

|

|

≤

≤ ∫𝐵𝑡
𝜉2|𝜏ℎ𝐹 | |𝐷𝜏ℎ𝑢| d𝑥 + 2∫𝐵𝑡

𝜉 |∇𝜉| |𝜏ℎ𝐹 | |𝜏ℎ𝑢| d𝑥 ≤

≤ 𝜈
2 ∫𝐵𝑡

𝜉2|𝐷𝜏ℎ𝑢|
2 d𝑥 + 1

2𝜈 ∫𝐵𝑡
𝜉2|𝜏ℎ𝐹 |

2 d𝑥 + ∫𝐵𝑡
𝜉2|𝜏ℎ𝐹 |

2 d𝑥 + ∫𝐵𝑡
|∇𝜉|2|𝜏ℎ𝑢|2

≤ 𝜈
2𝜆0 ∫𝐵𝑡

𝜉2|𝐷𝜏ℎ𝑢|
2𝑏 d𝑥 +

( 1
2𝜈

+ 1
)

∫𝐵𝑡
𝜉2|𝜏ℎ𝐹 |

2 d𝑥 + 1
(𝑡 − 𝑠)2 ∫𝐵𝑡⧵𝐵𝑠

|𝜏ℎ𝑢|
2 d𝑥

(5.3.7)
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≤ 𝜈
2𝜇2𝜆0 ∫𝐵𝑡

𝜉2 (𝜇2 + |𝐷𝑢|2)
𝑝−2
2
|𝐷𝜏ℎ𝑢|

2𝑏 d𝑥 + 1
𝜆0

( 1
2𝜈

+ 1
)

∫𝐵𝑡
𝜉2|𝜏ℎ𝐹 |

2𝑏 d𝑥+

+ 1
𝜇2𝜆0(𝑡 − 𝑠)2 ∫𝐵𝑡⧵𝐵𝑠

(𝜇2 + |𝐷𝑢|2)
𝑝−2
2
|𝜏ℎ𝑢|

2𝑏 d𝑥.

Combining estimates (5.3.4) - (5.3.7), we get
1
𝑘 ∫𝐵𝑡

𝜉2(ℎ)𝑝−2
|

|

|

|

𝜏ℎ𝐷𝑢
ℎ

|

|

|

|

2
𝑏 d𝑥 ≤ 𝜈

𝜆0 ∫𝐵𝑡
𝜉2(ℎ)𝑝−2

|

|

|

|

𝐷𝜏ℎ𝑢
ℎ

|

|

|

|

2
𝑏 d𝑥+

+ 6
𝜈
𝑆2
2,𝑛‖𝐾(𝑥) −𝐾0‖

2
𝐿𝑛,∞(Ω)‖𝐷(𝜉(𝜇2 + |𝐷𝑢|2)

𝑝
4 )‖2𝐿2(𝐵𝑡)

+

+ 𝜈
2𝜇2𝜆0

∫𝐵𝑡 𝜉
2(𝜇2 + |𝐷𝑢|2)

𝑝−2
2
|

|

|

𝐷𝜏ℎ𝑢
ℎ

|

|

|

2
𝑏 d𝑥 + 𝜈 ∫𝐵𝑡⧵𝐵𝑠 𝜉

2(ℎ)𝑝−2 ||
|

𝜏ℎ𝐷𝑢
ℎ

|

|

|

2
𝑏(𝑥 + ℎ𝑒𝑖) d𝑥

+
3‖0(ℎ)‖2𝐿∞(Ω)

2𝜈𝜆0
∫𝐵𝑡 𝜉

2(𝜇2 + |𝐷𝑢|2)
𝑝
2 𝑏 d𝑥 + 2𝜇2𝜈+1

𝜇2𝜆0(𝑡−𝑠)2
∫𝐵𝑡(1 + |𝐷𝑢|2)

𝑝−2
2
|

|

|

𝜏ℎ𝑢
ℎ
|

|

|

2
𝑏 d𝑥

+ 𝑘2

𝜈(𝑡 − 𝑠)2 ∫𝐵𝑡⧵𝐵𝑠
(ℎ)𝑝−2

|

|

|

|

𝜏ℎ𝑢
ℎ

|

|

|

|

2
𝑏(𝑥 + ℎ𝑒𝑖) d𝑥 +

1
𝜆0

( 1
2𝜈

+ 1
)

∫𝐵𝑡
𝜉2

|

|

|

|

𝜏ℎ𝐹
ℎ

|

|

|

|

2
𝑏 d𝑥.

Assuming 𝜈 < 𝜆0
𝑘

and reabsorbing the first integral in the right hand side by the left hand side, we get
(

1
𝑘
− 𝜈
𝜆0

)

∫𝐵𝑡
𝜉2(ℎ)𝑝−2

|

|

|

|

𝜏ℎ𝐷𝑢
ℎ

|

|

|

|

2
𝑏 d𝑥 ≤

≤ 6
𝜈
𝑆2
2,𝑛‖𝐾(𝑥) −𝐾0‖

2
𝐿𝑛,∞(Ω)‖𝐷(𝜉(𝜇2 + |𝐷𝑢|2)

𝑝
4 )‖2𝐿2(𝐵𝑡)

+

+ 𝜈
2𝜇2𝜆0 ∫𝐵𝑡

𝜉2(𝜇2 + |𝐷𝑢|2)
𝑝−2
2
|

|

|

|

𝐷𝜏ℎ𝑢
ℎ

|

|

|

|

2
𝑏 d𝑥+

+ 𝜈 ∫𝐵𝑡⧵𝐵𝑠
𝜉2(ℎ)𝑝−2

|

|

|

|

𝜏ℎ𝐷𝑢
ℎ

|

|

|

|

2
𝑏(𝑥 + ℎ𝑒𝑖) d𝑥+

+
3‖0(ℎ)‖2𝐿∞(Ω)

2𝜈𝜆0
∫𝐵𝑡 𝜉

2(𝜇2 + |𝐷𝑢|2)
𝑝
2 𝑏 d𝑥 + 2𝜇2𝜈+1

𝜇2𝜆0(𝑡−𝑠)2
∫𝐵𝑡(𝜇

2 + |𝐷𝑢|2)
𝑝−2
2
|

|

|

𝜏ℎ𝑢
ℎ
|

|

|

2
𝑏 d𝑥

+ 𝑘2

𝜈(𝑡 − 𝑠)2 ∫𝐵𝑡⧵𝐵𝑠
(ℎ)𝑝−2

|

|

|

|

𝜏ℎ𝑢
ℎ

|

|

|

|

2
𝑏(𝑥 + ℎ𝑒𝑖) d𝑥 +

1
𝜆0

( 1
2𝜈

+ 1
)

∫𝐵𝑡
𝜉2

|

|

|

|

𝜏ℎ𝐹
ℎ

|

|

|

|

2
𝑏 d𝑥.

Let us note that, by the properties of 𝜉 and using the fact that 𝑏(𝑥) ≥ 𝜆0,

‖𝐷(𝜉(𝜇2+|𝐷𝑢|2)
𝑝
4 )‖2𝐿2(𝐵𝑡)

≤ 1
𝜆0 ∫𝐵𝑡

|𝐷(𝜉(𝜇2 + |𝐷𝑢|2)
𝑝
4 )|2𝑏 d𝑥 ≤

≤ 2
𝜆0 ∫𝐵𝑡

|∇𝜉|2(𝜇2 + |𝐷𝑢|2)
𝑝
2 𝑏 d𝑥 + 2

𝜆0 ∫𝐵𝑡
𝜉2|𝐷[(𝜇2 + |𝐷𝑢|2)

𝑝
4 ]|2𝑏 d𝑥 ≤

≤ 2
𝜆0(𝑡 − 𝑠)2 ∫𝐵𝑡

(𝜇2 + |𝐷𝑢|2)
𝑝
2 𝑏 d𝑥 + 2

𝜆0 ∫𝐵𝑡
𝜉2|𝐷[(𝜇2 + |𝐷𝑢|2)

𝑝
4 ]|2𝑏 d𝑥,

and, by (5.1.6) and since by Lemma 2.2.21 we are legitimate to pass to the limit for ℎ→ 0,

∫𝐵𝑡⧵𝐵𝑠
lim
ℎ→0

(

(ℎ)𝑝−2
|

|

|

|

𝜏ℎ𝑢
ℎ

|

|

|

|

2
𝑏(𝑥 + ℎ𝑒𝑖)

)

d𝑥 = ∫𝐵𝑡⧵𝐵𝑠
(𝜇2 + 2|𝐷𝑢|2)

𝑝−2
2
|𝐷𝑢|2𝑏 d𝑥 ≤

≤ ∫𝐵𝑡⧵𝐵𝑠
(2𝜇2 + 2|𝐷𝑢|2)

𝑝−2
2 (𝜇2 + |𝐷𝑢|2)𝑏 d𝑥 = 2

𝑝−2
2
∫𝐵𝑡⧵𝐵𝑠

(𝜇2 + |𝐷𝑢|2)
𝑝
2 𝑏 d𝑥.
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Applying now Lemma 5.3.2 and again Lemma 2.2.21, we have
1
𝑐(𝑝)

(

1
𝑘
− 𝜈
𝜆0

)

∫𝐵𝑡
𝜉2|𝐷[(𝜇2 + |𝐷𝑢|2)

𝑝−2
4 𝐷𝑢]|2𝑏 d𝑥 ≤

≤ 12
𝜈𝜆0

𝑆2
2,𝑛‖𝐾(𝑥) −𝐾0‖

2
𝐿𝑛,∞(Ω) ∫𝐵𝑡

𝜉2(𝐷[(𝜇2 + |𝐷𝑢|2)
𝑝
4 ])2𝑏 d𝑥+

+ 𝜈
2𝜇2𝜆0 ∫𝐵𝑡

𝜉2(𝜇2 + |𝐷𝑢|2)
𝑝−2
2
|𝐷2𝑢|2𝑏 d𝑥+

+ 𝑐(𝑝) 𝜈 ∫𝐵𝑡⧵𝐵𝑠
𝜉2|𝐷[(𝜇2 + |𝐷𝑢|2)

𝑝−2
4 𝐷𝑢]|2𝑏 d𝑥+

+
3‖𝐾0‖

2
𝐿∞(Ω)

𝜈𝜆0 ∫𝐵𝑡
𝜉2(𝜇2 + |𝐷𝑢|2)

𝑝
2 𝑏 d𝑥 +

𝑐(𝑝, 𝑘, 𝜆0, 𝜈, 𝜇)
(𝑡 − 𝑠)2 ∫𝐵𝑡

(𝜇2 + |𝐷𝑢|2)
𝑝
2 𝑏 d𝑥+

+ 12
𝜈𝜆0(𝑡 − 𝑠)2

𝑆2
2,𝑛‖𝐾(𝑥) −𝐾0‖

2
𝐿𝑛,∞(Ω) ∫𝐵𝑡

(𝜇2 + |𝐷𝑢|2)
𝑝
2 𝑏 d𝑥+

+ 1
𝜆0

( 1
2𝜈

+ 1
)

∫𝐵𝑡
𝜉2

|

|

|

|

𝜏ℎ𝐹
ℎ

|

|

|

|

2
𝑏 d𝑥.

Therefore
1
𝑐(𝑝)

(1
𝑘
− 𝜈
𝜆0

)

∫𝐵𝑡
𝜉2|𝐷[(𝜇2 + |𝐷𝑢|2)

𝑝−2
4 𝐷𝑢]|2𝑏 d𝑥 ≤

≤
(

12
𝜈 𝜆0

𝑆2
2,𝑛‖𝐾(𝑥) −𝐾0‖

2
𝐿𝑛,∞(Ω) +

𝜈
2𝜇2𝜆0

)

∫𝐵𝑡
𝜉2|𝐷[(𝜇2 + |𝐷𝑢|2)

𝑝−2
4 𝐷𝑢]|2𝑏 d𝑥+

+ 𝑐(𝑝)𝜈 ∫𝐵𝑡⧵𝐵𝑠
𝜉2|𝐷[(𝜇2 + |𝐷𝑢|2)

𝑝−2
4 𝐷𝑢]|2𝑏 d𝑥+

+
3‖𝐾0‖

2
𝐿∞(Ω)

𝜈𝜆0 ∫𝐵𝑡
𝜉2(𝜇2 + |𝐷𝑢|2)

𝑝
2 𝑏 d𝑥 +

𝑐(𝑝, 𝑘, 𝜆0, 𝜈, 𝜇)
(𝑡 − 𝑠)2 ∫𝐵𝑡

(𝜇2 + |𝐷𝑢|2)
𝑝
2 𝑏 d𝑥+

+ 12
𝜈𝜆0(𝑡 − 𝑠)2

𝑆2
2,𝑛‖𝐾(𝑥) −𝐾0‖

2
𝐿𝑛,∞(Ω) ∫𝐵𝑡

(𝜇2 + |𝐷𝑢|2)
𝑝
2 𝑏 d𝑥+

+ 1
𝜆0

( 1
2𝜈

+ 1
)

∫𝐵𝑡
𝜉2(𝜇2 + |𝐷𝐹 |2)𝑏 d𝑥.

(5.3.8)

Let us fix 𝜈 ∶= 𝜈0 such that
1
𝑐(𝑝)

(

1
𝑘
−
𝜈0
𝜆0

)

−
𝜈0

2𝜇2𝜆0
> 0,

for example 𝜈0 ∶= 𝜇2𝜆0
𝑘(2𝜇2+𝑐(𝑝)) . Set 𝜂 ∶=

√

𝜈0𝜆0
2
√

3𝑆2,𝑛

√

1
𝑐(𝑝)

(

1
𝑘
− 𝜈0

𝜆0

)

− 𝜈
2𝜇2𝜆0

, let 𝛼 be a number such that 0 < 𝛼 < 𝜂. If
𝒟𝐾 < 𝛼,

then we can choose 𝐾0 ∈ 𝐿∞(Ω) such that
(

1
𝑐(𝑝)

(

1
𝑘
−
𝜈0
𝜆0

)

− 12
𝜈0𝜆0

𝑆2
2,𝑛‖𝐾(𝑥) −𝐾0‖

2
𝐿𝑛,∞(Ω) −

𝜈0
2𝜇2𝜆0

)

> 0.

Then, by reabsorbing the first term of the right hand side of (5.3.8) in the left hand side, since 𝜉 = 1 on 𝐵𝑠 and
0 ≤ 𝜉 ≤ 1, we get

𝐶 ∫𝐵𝑠|𝐷[(𝜇2 + |𝐷𝑢|2)
𝑝−2
4 𝐷𝑢]|2𝑏 d𝑥 ≤ 𝑐(𝑝, 𝑘, 𝜆0, 𝜇) ∫𝐵𝑡⧵𝐵𝑠|𝐷[(𝜇2 + |𝐷𝑢|2)

𝑝−2
4 𝐷𝑢]|2𝑏 d𝑥

+ 𝑐(𝑝, 𝑘, 𝜆0, 𝑛,𝒟𝐾 , 𝜇)

(

∫𝐵2𝑅

(𝜇2 + |𝐷𝑢|2)
𝑝
2 𝑏 d𝑥 + 1

(𝑡 − 𝑠)2 ∫𝐵2𝑅

(𝜇2 + |𝐷𝑢|2)
𝑝
2 𝑏 d𝑥+

+ ∫𝐵2𝑅

(𝜇2 + |𝐷𝐹 |2)𝑏 d𝑥

)

,
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where 𝐶 = 1
𝑐(𝑝)

(

1
𝑘
− 𝜈0

𝜆0

)

− 3
𝜈0𝜆0

𝑆2
2,𝑛𝛼

2 − 𝜈0
2𝜇2𝜆0

.
Now we fill the hole, having

∫𝐵𝑠|𝐷[(𝜇2 + |𝐷𝑢|2)
𝑝−2
4 𝐷𝑢]|2𝑏 d𝑥 ≤ 𝑐(𝑝,𝑘,𝜆0,𝜇)

𝐶+𝑐(𝑝,𝑘,𝜆0,𝜇)
∫𝐵𝑡|𝐷[(𝜇2 + |𝐷𝑢|2)

𝑝−2
4 𝐷𝑢]|2𝑏 d𝑥+

+
𝑐(𝑝, 𝑘, 𝜆0, 𝑛,𝒟𝐾 , 𝜇)
𝐶 + 𝑐(𝑝, 𝑘, 𝜆0, 𝜇)

(

∫𝐵2𝑅

(𝜇2 + |𝐷𝑢|2)
𝑝
2 𝑏 d𝑥 + 1

(𝑡 − 𝑠)2 ∫𝐵2𝑅

(𝜇2 + |𝐷𝑢|2)
𝑝
2 𝑏 d𝑥+

+ ∫𝐵2𝑅

(𝜇2 + |𝐷𝐹 |2)𝑏 d𝑥

)

.

Then by Lemma 5.2.2
∫𝐵𝑅|𝐷(𝑉𝜇(𝐷𝑢))|2𝑏 d𝑥 ≤ 𝑐 ∫𝐵2𝑅

(

1 + 1
𝑅2

)

(𝜇2 + |𝐷𝑢|2)
𝑝
2 𝑏 d𝑥 + 𝑐 ∫𝐵2𝑅

(𝜇2 + |𝐷𝐹 |2)𝑏 d𝑥, (5.3.9)
where 𝑐 = 𝑐(𝑝, 𝑘, 𝜆0, 𝑛,𝒟𝐾 , 𝜇), and therefore we have the result.
Remark 5.3.3. Note that, even if we do not provide the exact value of the constant 𝛼 in (5.3.1), a bound on it is
given at the end of the proof of Theorem 5.3.1.
Remark 5.3.4. We point out that the dependence of the constant 𝑐 in (5.3.9) on 𝒟𝐾 occurs only through the norm
of 𝐾0 in 𝐿∞.
Remark 5.3.5. By a careful analysis of the proof, it is evident that the degenerate case, that is for 𝜇 = 0, causes
further difficulties only when dealing with the integral involving the datum 𝐹 . More specifically, in the estimate
of |𝐼4|, an integral which can blow up appears. Consequently, if 𝐹 ≡ 0, the proof proceeds in the same way even
if 𝜇 = 0.

5.4 Regularity

In this section we prove Theorem 5.1.1.
Proof of Theorem 5.1.1. Fix a ball 𝐵2𝑅 ⊂⊂ Ω, let 𝑢 be a local solution of the system (5.1.1) and let us consider,
for 𝑥 ∈ Ω, 𝜉 ∈ ℝ𝑁×𝑛 and 𝑗 ∈ ℕ sufficiently large,

𝐴𝑗(𝑥, 𝜉) ∶=

{

𝐴(𝑥, 𝜉) if 𝑏(𝑥) < 𝑗
𝑗 𝐴(𝑥,𝜉)
𝑏(𝑥) if 𝑏(𝑥) ≥ 𝑗.

Let 𝑏𝑗 be the truncated of 𝑏 at level 𝑗, i.e. for 𝑥 ∈ Ω and 𝑗 ∈ ℕ sufficiently large

𝑏𝑗(𝑥) ∶=

{

𝑏(𝑥) if 𝑏(𝑥) < 𝑗
𝑗 if 𝑏(𝑥) ≥ 𝑗.

Since
𝐴𝑗(𝑥, 𝜉) =

𝑏𝑗(𝑥)
𝑏(𝑥)

𝐴(𝑥, 𝜉),

it is easy to check that for a.e. 𝑥 ∈ Ω and for all 𝜉, 𝜂 ∈ ℝ𝑁×𝑛 we have

|𝐴𝑗(𝑥, 𝜉) − 𝐴𝑗(𝑥, 𝜂)| ≤ 𝑘𝑏𝑗(𝑥)|𝜉 − 𝜂| (𝜇2 + |𝜉|2 + |𝜂|2)
𝑝−2
2 , (5.4.1)

1
𝑘
𝑏𝑗(𝑥)|𝜉 − 𝜂|2 (𝜇2 + |𝜉|2 + |𝜂|2)

𝑝−2
2 ≤

⟨

𝐴𝑗(𝑥, 𝜉) − 𝐴𝑗(𝑥, 𝜂), 𝜉 − 𝜂
⟩

, (5.4.2)
𝐴𝑗(𝑥, 0) = 0.

For a.e. 𝑥, 𝑦 ∈ Ω one easily gets
|𝑏𝑗(𝑥) − 𝑏𝑗(𝑦)| ≤ |𝑏(𝑥) − 𝑏(𝑦)| ≤ |𝑥 − 𝑦| [𝐾(𝑥) +𝐾(𝑦)].
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In particular
|𝑏𝑗(𝑥) − 𝑏𝑗(𝑦)| ≤ (𝑘 + 1) |𝑥 − 𝑦| [𝐾(𝑥) +𝐾(𝑦)].

In order to simplify the proof, we will prove

|𝐴𝑗(𝑥, 𝜂) − 𝐴𝑗(𝑦, 𝜂)| ≤ (𝑘 + 1) |𝑥 − 𝑦| [𝐾(𝑥) +𝐾(𝑦)] (𝜇2 + |𝜂|2)
𝑝−1
2 , (5.4.3)

at the end of the paper, see the Appendix.
Let us consider the following Dirichlet problem

{

div𝐴𝑗(𝑥,𝐷𝑣) = div𝐹 in 𝐵2𝑅

𝑣 = 𝑢 on 𝜕𝐵2𝑅.

If we denote by 𝑢𝑗 ∈ 𝑊 1,𝑝(𝐵2𝑅) the solution of this problem, then 𝐷(𝑉𝜇(𝐷𝑢𝑗)) ∈ 𝐿2
𝑙𝑜𝑐 (𝑏𝑗 , Ω) (see [GM18]) and,

if
𝒟𝐾 < 𝛼1 ∶=

1
𝑘 + 1

𝛼,

we can use estimate (5.3.2) to obtain
∫𝐵𝑅|𝐷(𝑉𝜇(𝐷𝑢𝑗))|2𝑏𝑗 d𝑥 ≤ 𝑐 ∫𝐵2𝑅

((

1 + 1
𝑅2

)

(𝜇2 + |𝐷𝑢𝑗|2)
𝑝
2 + (𝜇2 + |𝐷𝐹 |2)

)

𝑏𝑗 d𝑥. (5.4.4)

Let us remark that by Lemma 5.2.1 there exists 𝛿 > 0 such that |𝐷𝑢| ∈ 𝐿𝑝+𝛿(𝑏, 𝐵2𝑅). Now we prove the strong
convergence of {|𝐷𝑢𝑗|}𝑗 to |𝐷𝑢| in 𝐿𝑝(𝑏, 𝐵2𝑅). Using (𝑢 − 𝑢𝑗) as test function, we easily get, thanks to (5.4.2),

∫𝐵2𝑅

|𝐷𝑢−𝐷𝑢𝑗|𝑝𝑏𝑗(𝑥) d𝑥 ≤ 𝑐(𝑘)∫𝐵2𝑅

⟨

𝐴𝑗(𝑥,𝐷𝑢𝑗) − 𝐴𝑗(𝑥,𝐷𝑢), 𝐷𝑢𝑗 −𝐷𝑢
⟩

d𝑥 =

= 𝑐(𝑘)∫𝐵2𝑅

⟨

𝐹 ,𝐷𝑢𝑗 −𝐷𝑢
⟩

d𝑥 − ∫𝐵2𝑅

⟨

𝐴𝑗(𝑥,𝐷𝑢), 𝐷𝑢𝑗 −𝐷𝑢
⟩

d𝑥 =

= 𝑐(𝑘)∫𝐵2𝑅

⟨

𝐴(𝑥,𝐷𝑢) − 𝐴𝑗(𝑥,𝐷𝑢), 𝐷𝑢𝑗 −𝐷𝑢
⟩

d𝑥 =

= 𝑐(𝑘)∫𝐵2𝑅

(

1 −
𝑏𝑗
𝑏

)

⟨

𝐴(𝑥,𝐷𝑢), 𝐷𝑢𝑗 −𝐷𝑢
⟩

d𝑥.

Then from (5.1.2) and (5.1.5) we derive

∫𝐵2𝑅

|𝐷𝑢 −𝐷𝑢𝑗|𝑝𝑏𝑗(𝑥) d𝑥 ≤ 𝑐(𝑘)∫𝐵2𝑅

(𝑏 − 𝑏𝑗)|𝐷𝑢 −𝐷𝑢𝑗|(𝜇2 + |𝐷𝑢|2)
𝑝−1
2 d𝑥.

Finally by Hölder’s inequality, since 𝑏𝑗(𝑥) ≤ 𝑏(𝑥), we obtain

∫𝐵2𝑅

|𝐷𝑢 −𝐷𝑢𝑗|𝑝𝑏𝑗(𝑥) d𝑥 ≤ 𝑐(𝑘, 𝜆0)
(

∫𝐵2𝑅

(𝜇2 + |𝐷𝑢|2)
𝑝+𝛿
2 𝑏(𝑥) d𝑥

)
𝑝
𝑝+𝛿

⋅

⋅
(

∫𝐵2𝑅

𝑏(𝑥)|𝑏 − 𝑏𝑗|
𝑝′
(

𝑝+𝛿
𝛿

)

d𝑥
)

𝛿
𝑝+𝛿

(5.4.5)

and the last term goes to zero. Previous relation easily implies the conclusion.
At this point, estimate (5.4.4) and (5.4.5) yield ‖𝐷(𝑉𝜇(𝐷𝑢𝑗))‖𝐿2

𝑏(𝐵𝑅)
≤ 𝐶 , so that we deduce that, up to a subsequence,

𝐷(𝑉𝜇(𝐷𝑢𝑗)) is weakly converging to 𝐷(𝑉𝜇(𝐷𝑢)) in 𝐿2(𝑏, 𝐵𝑅) and 𝑉𝜇(𝐷𝑢𝑗) is strongly converging in 𝐿2(𝑏, 𝐵𝑅).
Therefore, we can pass to the limit in the estimate (5.4.4) having the validity of the desired inequality for the
function 𝑢.
In account of Remark 5.3.5, we can state the following
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Proposition 5.4.1. Let Ω be a regular domain and𝐴(𝑥, 𝜉) a mapping verifying assumptions (5.1.2), (5.1.3), (5.1.4)
and (5.1.5). There exist 0 < 𝜀1 <

1
2 , depending on 𝑘, 𝑛, 𝜆0, 𝑝 and the 𝐵𝑀𝑂 - norm of 𝑏(𝑥), and 𝛼2 > 0, depending

on 𝑝, 𝑛, 𝜆0 and 𝑘, such that, if 𝑢 ∈ 𝑊 1,𝑝−𝜀
𝑙𝑜𝑐 (𝑏,Ω;ℝ𝑁 ), with 0 ≤ 𝜀 < 𝜀1, is a local solution of

div𝐴(𝑥,𝐷𝑢(𝑥)) = 0

and
𝒟𝐾 ∶= dist𝐿𝑛,∞(𝐾(𝑥), 𝐿∞) < 𝛼2,

then 𝐷(𝑉𝜇(𝐷𝑢)) ∈ 𝐿2
𝑙𝑜𝑐(𝑏,Ω) and the following estimate holds:

∫𝐵𝑅
|𝐷(𝑉𝜇(𝐷𝑢))|2𝑏 d𝑥 ≤ 𝑐

(

1 + 1
𝑅2

)

∫𝐵2𝑅

(𝜇2 + |𝐷𝑢|2)
𝑝
2 𝑏 d𝑥,

for every ball 𝐵2𝑅 ⊂⊂ Ω and for a constant 𝑐 depending on 𝑝, 𝑘, 𝜆0, 𝑛 and 𝒟𝐾 .

For 2 < 𝑝 < 𝑛, the following corollaries of fractional higher integrability easily derive from Theorem 5.1.1.
Corollary 5.4.2. Let Ω be a regular domain, 𝐴(𝑥, 𝜉) a mapping verifying assumptions (5.1.2), (5.1.3), (5.1.4) and
(5.1.5), and 𝐹 ∈ 𝑊 1,2

𝑙𝑜𝑐 (𝑏,Ω;ℝ
𝑁×𝑛). There exist 0 < 𝜀1 <

1
2
, depending on 𝑘, 𝑛, 𝜆0, 𝑝 and the 𝐵𝑀𝑂 - norm of

𝑏(𝑥), and 𝛼1 > 0, depending on 𝑝, 𝑛, 𝜆0, 𝜇 and 𝑘, such that, if 𝑢 ∈ 𝑊 1,𝑝−𝜀
𝑙𝑜𝑐 (𝑏,Ω;ℝ𝑁 ), with 0 ≤ 𝜀 < 𝜀1, is a local

solution of (5.1.1) and
𝒟𝐾 ∶= dist𝐿𝑛,∞(𝐾(𝑥), 𝐿∞) < 𝛼1,

then 𝐷𝑢 ∈ 𝑊 𝛽,𝑝
𝑙𝑜𝑐 (𝑏,Ω;ℝ

𝑁 ) for every 𝛽 ∈
(

0, 2
𝑝

)

.

Proof. Since we can estimate for every 𝑖 ∈ {1,… , 𝑛}

|𝜏ℎ,𝑖𝐷𝑢|
𝑝 ≤ 𝑐(𝑛, 𝑝)|𝜏ℎ,𝑖𝑉𝜇(𝐷𝑢)|2, (5.4.6)

summing up on 𝑖 ∈ {1,… , 𝑛} and taking into account the estimate given by Theorem 5.1.1, we get for 𝜚 ∈ (0, 𝑅)
and ℎ sufficiently small

∫𝐵𝜚

𝑛
∑

𝑖=1
|𝜏ℎ,𝑖𝐷𝑢|

𝑝𝑏 d𝑥 ≤

≤ 𝑐 ⋅
(

|ℎ|
2
𝑝

)𝑝

∫𝐵2𝑅

((

1 + 1
𝑅2

)

(𝜇2 + |𝐷𝑢|2)
𝑝
2 + (𝜇2 + |𝐷𝐹 |2)

)

𝑏 d𝑥.

It follows that 𝐷𝑢 belongs to the Nikolskii space  2
𝑝 ,𝑝 and hence the conclusion by embedding (see [Ada75], 7.73

and also [Min03]).
In the next corollary we show that assuming a higher integrability of the function 𝐹 improves the integrability of
the fractional derivatives.
Corollary 5.4.3. Let Ω be a regular domain, 𝐴(𝑥, 𝜉) a mapping verifying assumptions (5.1.2), (5.1.3), (5.1.4) and
(5.1.5), and 𝐹 ∈ 𝑊 1,𝑟

𝑙𝑜𝑐 (𝑏,Ω;ℝ
𝑁×𝑛), for some 𝑟 > 2. There exist 0 < 𝜀1 <

1
2 , depending on 𝑘, 𝑛, 𝜆0, 𝑝 and the𝐵𝑀𝑂

- norm of 𝑏(𝑥), and 𝛼1 > 0, depending on 𝑝, 𝑛, 𝜆0, 𝜇 and 𝑘, such that, if 𝑢 ∈ 𝑊 1,𝑝−𝜀
𝑙𝑜𝑐 (𝑏,Ω;ℝ𝑁 ), with 0 ≤ 𝜀 < 𝜀1,

is a local solution of (5.1.1) and
𝒟𝐾 ∶= dist𝐿𝑛,∞(𝐾(𝑥), 𝐿∞) < 𝛼1,

then 𝐷𝑢 ∈ 𝑊 𝛽,𝑞
𝑙𝑜𝑐 (𝑏,Ω;ℝ

𝑁 ) for some 𝑞 > 𝑝 and for every 𝛽 ∈
(

0, 2
𝑝

)

.

Proof. Without loss of generality, we assume 0 < 𝑅 < 1. The estimate given by Theorem 5.1.1 and the use of
Lemma 5.3.2 yield

1
𝑏(𝐵𝑅) ∫𝐵𝑅

|𝐷𝑉𝜇(𝐷𝑢)|2𝑏 d𝑥 ≤

≤ 𝑐
(

(

1 + 1
𝑅2

) 1
𝑏(𝐵2𝑅) ∫𝐵2𝑅

|𝑉𝜇(𝐷𝑢) − (𝑉 (𝐷𝑢))𝐵2𝑅
|

2 + (𝜇2 + |𝐷𝐹 |2)𝑏 d𝑥
)

.
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Hence, applying Sobolev – Poincaré inequality, we have the following reverse Hölder’s inequality
1
𝐵𝑅 ∫𝐵𝑅

|𝐷𝑉𝜇(𝐷𝑢)|2𝑏 d𝑥 ≤

≤ 𝑐

[

(

1
𝑏(𝐵2𝑅) ∫𝐵2𝑅

(|𝐷𝑉𝜇(𝐷𝑢)|2)
𝑛−1
𝑛 𝑏 d𝑥

)
𝑛
𝑛−1

+ 1
𝑏(𝐵2𝑅) ∫𝐵2𝑅

(𝜇2 + |𝐷𝐹 |2)𝑏 d𝑥

]

getting the existence of an exponent 𝑠 > 2 such that |𝐷𝑉𝜇(𝐷𝑢)| ∈ 𝐿𝑠𝑙𝑜𝑐 and
1

𝑏
(

𝐵𝑅
2

) ∫𝐵𝑅
2

|𝐷𝑉𝜇(𝐷𝑢)|𝑠𝑏 d𝑥 ≤

≤ 𝑐

⎡

⎢

⎢

⎢

⎢

⎣

⎛

⎜

⎜

⎜

⎝

1

𝑏
(

𝐵𝑅
2

) ∫𝐵𝑅
2

|𝐷𝑉𝜇(𝐷𝑢)|2𝑏 d𝑥

⎞

⎟

⎟

⎟

⎠

𝑠
2

+ 1
𝑏(𝐵2𝑅) ∫𝐵2𝑅

(𝜇2 + |𝐷𝐹 |2)
𝑠
2 𝑏 d𝑥

⎤

⎥

⎥

⎥

⎥

⎦

.

Then, using the pointwise inequality in (5.4.6), we easily obtain that
‖𝜏ℎ𝐷𝑢‖

𝐿
𝑝𝑠
2
𝑏

|ℎ|2
≤ 𝑐‖𝐷𝑉𝜇(𝐷𝑢)‖

2
𝑝

𝐿2
𝑏

which allows to conclude that 𝐷𝑢 belongs to the Nikolskii space 
2
𝑝 ,
𝑝𝑠
2 and hence, setting 𝑞 ∶= 𝑝𝑠

2 , by embedding
𝐷𝑢 ∈ 𝑊 𝛽,𝑞

𝑙𝑜𝑐 (𝑏,Ω;ℝ
𝑁 ) for every 𝛽 ∈

(

0, 2
𝑝

)

.

5.5 Calderón–Zygmund estimates

In this section we prove Theorem 5.1.2. Here the cubes considered will always have sides parallel to the coordinate
axes.
We recall a few basic facts concerning the interior regularity of solutions of elliptic systems in divergence form of
the type

div𝐴(𝑥,𝐷𝑤) = 0 in 3𝑄 ⊂ Ω,
where𝑄 is a generic cube. The same proof of Theorem 5.1.1 works for balls of the type𝐵2𝑅,𝐵3𝑅 and, by a covering
argument by means of countable disjoint balls, we have the estimate also over cubes instead of balls. Thanks to
Theorem 5.1.1, Remark 5.3.5 and Sobolev embedding Theorem 2.2.12, arguing as in (5.2.19) and if 𝒟𝐾 < 𝛼2,
with 𝛼2 as in Proposition 5.4.1, we get the following reverse Hölder inequality:

(

1
𝑏(2𝑄) ∫2𝑄

(

𝜇2 + |𝐷𝑤|2
)

𝑟
2 𝑏 d𝑥

)
1
𝑟
≤ 𝑐

(

1
𝑏(3𝑄) ∫3𝑄

(

𝜇2 + |𝐷𝑤|2
)

𝑝
2 𝑏 d𝑥

)
1
𝑝
,

with 𝑐 = 𝑐(𝑝, 𝑘, 𝜆0, 𝑛, ‖𝑏‖∗,𝒟𝐾 ) and 𝑟 = 𝑛𝑝
𝑛−1 . Then, by Gehring’s Lemma, there exists an exponent

𝑠 ∶= 𝑟 + 𝛿, (5.5.1)
with 𝛿 = 𝛿(𝑝, 𝑘, 𝜆0, 𝑛, ‖𝑏‖∗,𝒟𝐾 ), such that

(

1
𝑏(2𝑄) ∫2𝑄

(𝜇2 + |𝐷𝑤|2)
𝑠
2 𝑏 d𝑥

)
1
𝑠
≤ 𝑐

(

1
𝑏(3𝑄) ∫3𝑄

(𝜇2 + |𝐷𝑤|2)
𝑝
2 𝑏 d𝑥

)
1
𝑝

with 𝑐 = 𝑐(𝑝, 𝑘, 𝜆0, 𝑛, ‖𝑏‖∗,𝒟𝐾 ). Then

𝑐
(

∫3𝑄
(𝜇2 + |𝐷𝑤|2)

𝑝
2 𝑏 d𝑥

)
1
𝑝
≥ [𝑏(3𝑄)]

1
𝑝

[𝑏(2𝑄)]
1
𝑠

(

∫2𝑄
(𝜇2 + |𝐷𝑤|2)

𝑠
2 𝑏 d𝑥

)
1
𝑠
≥

≥ [𝑏(2𝑄)]
1
𝑝−

1
𝑠

(

∫2𝑄
(𝜇2 + |𝐷𝑤|2)

𝑠
2 𝑏 d𝑥

)
1
𝑠
≥

≥ 𝜆0|2𝑄|
1
𝑝−

1
𝑠

(

∫2𝑄(𝜇
2 + |𝐷𝑤|2)

𝑠
2 𝑏 d𝑥

)
1
𝑠 ≥ 𝜆0𝑐′(𝑛)

|3𝑄|
1
𝑝

|2𝑄|
1
𝑠

(

∫2𝑄(𝜇
2 + |𝐷𝑤|2)

𝑠
2 𝑏 d𝑥

)
1
𝑠 .
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Equivalently we have
(

⨍2𝑄

(

𝜇2 + |𝐷𝑤|2
)

𝑠
2 𝑏 d𝑥

)
1
𝑠
≤ 𝑐

(

⨍3𝑄

(

𝜇2 + |𝐷𝑤|2
)

𝑝
2 𝑏 d𝑥

)
1
𝑝
, (5.5.2)

with 𝑐 = 𝑐(𝑝, 𝑘, 𝜆0, 𝑛, ‖𝑏‖∗,𝒟𝐾 ). We wish to emphasize the fact that the above constants and exponents are
independent of the number 𝜇 ∈ [0, 1].
We recall some useful lemmas.
Lemma 5.5.1 ([KM06]). Let 𝑝 ∈ [2,∞) and 𝜇 ∈ [0, 1], then

(𝜇2 + |𝑧|2)
𝑝−2
2
|𝑧| |𝜁 | ≤ 𝜀(𝜇2 + |𝑧|2)

𝑝−2
2
|𝑧|2 + 𝜀1−𝑝(𝜇2 + |𝜁 |2)

𝑝−2
2
|𝜁 |2

for every 𝑧, 𝜁 ∈ ℝ𝑁×𝑛 and 𝜀 ∈ (0, 1].

Lemma 5.5.2 ([CP98]). Let 𝑄0 ⊂ ℝ𝑛 be a cube and (𝑄0) be the class of all dyadic cubes obtained from 𝑄0. Let
𝑎 ∈ (0, 1). Assume that 𝑋 ⊂ 𝑌 ⊂ 𝑄0 are measurable sets satisfying the following conditions:

• |𝑋| < 𝑎|𝑄0|

• if 𝑄 ∈ (𝑄0) then |𝑋 ∩𝑄| > 𝑎|𝑄| ⟹ �̃� ⊂ 𝑌 ,

where �̃� denotes the predecessor of 𝑄. Then
|𝑋| < 𝑎|𝑌 |.

The following Lemma is fundamental in order to prove Theorem 5.1.2.
Lemma 5.5.3. Let 𝑢 ∈ 𝑊 1,𝑝(𝑏,𝑄2𝑅;ℝ𝑁 ) be a solution to (5.1.8). Let 𝐵 > 1; there exists a number 𝜀 =
𝜀(𝑝, 𝑘, 𝜆0, 𝑛,𝒟𝐾 , ‖𝑏‖∗, 𝐵) such that the following is true:
If 𝜆 > 0 and 𝑄 ⊂ 𝑄𝑅 is a dyadic subcube of 𝑄𝑅 such that

|

|

|

|

|

𝑄 ∩

{

𝑥 ∈ 𝑄𝑅 ∶𝑀∗
𝑏

[

(

𝜇2 + |𝐷𝑢|2
)

𝑝
2
]

(𝑥) > 𝐴𝐵𝜆
𝜆0

,

𝑀∗
[

(

𝜇2 + |𝐺|2
)

𝑝
2
]

(𝑥) < 𝜀𝜆

}

|

|

|

|

|

> 𝐵− 𝑠
𝑝
|𝑄|,

(5.5.3)

then its predecessor �̃� satisfies

�̃� ⊂
{

𝑥 ∈ 𝑄𝑅 ∶𝑀∗
[

(

𝜇2 + |𝐷𝑢|2
)

𝑝
2 𝑏

]

(𝑥) > 𝜆
}

. (5.5.4)

Here 𝑀∗
(𝑏) ≡ 𝑀∗

(𝑏,)𝑄2𝑅
denotes the (weighted) restricted Maximal Function relative to 𝑄2𝑅, i.e. if 𝑓1 ∈ 𝐿1(𝑄2𝑅),

𝑓2 ∈ 𝐿1(𝑏,𝑄2𝑅) and 𝑥 ∈ 𝑄2𝑅

𝑀∗(𝑓1)(𝑥) ∶= sup
𝑄⊂𝑄2𝑅
𝑥∈𝑄

⨍𝑄
|𝑓1(𝑦)| 𝑑𝑦, 𝑀∗

𝑏 (𝑓2)(𝑥) ∶= sup
𝑄⊂𝑄2𝑅
𝑥∈𝑄

∫𝑄|𝑓2(𝑦)|𝑏(𝑦) 𝑑𝑦
𝑏(𝑄)

.

Moreover here 𝑠 is the number defined in (5.5.1), and 𝐴 = 𝐴(𝑝, 𝑘, 𝜆0, 𝑛,𝒟𝐾 , ‖𝑏‖∗) > 1 is an absolute constant.
All the constants and quantities are uniform with respect to 𝜇 ∈ [0, 1].

Proof. We prove this lemma by contradiction. The constants 𝐴 and 𝜀 will be chosen toward the end while all the
arguments will be worked out for a general 𝜇 ∈ [0, 1]. Suppose (5.5.4) is not satisfied although (5.5.3) holds. Then
there exists �̃� ∈ �̃� such that

𝜆0𝑀
∗
𝑏

[

(

𝜇2 + |𝐷𝑢|2
)

𝑝
2
]

(�̃�) ≤𝑀∗
[

(

𝜇2 + |𝐷𝑢|2
)

𝑝
2 𝑏

]

(�̃�) ≤ 𝜆. (5.5.5)
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Since �̃� ⊂ 3𝑄 because �̃� is the predecessor of 𝑄, we have

⨍3𝑄

(

𝜇2 + |𝐷𝑢|2
)

𝑝
2 𝑏 d𝑥 ≤ 𝜆.

Note that 3𝑄 ⊂ 𝑄2𝑅. Moreover by (5.5.3) we can find �̄� ∈ 𝑄 such that

𝑀∗
[

(

𝜇2 + |𝐺|2
)

𝑝
2
]

(�̄�) ≤ 𝜀𝜆

and therefore
⨍3𝑄

(𝜇2 + |𝐺|2)
𝑝
2 d𝑥 ≤ 𝜀𝜆. (5.5.6)

Now we define 𝑤 ∈ 𝑊 1,𝑝(𝑏, 3𝑄;ℝ𝑁 ) as the unique solution of the following Dirichlet problem
{

div𝐴(𝑥,𝐷𝑤) = 0 in 3𝑄
𝑤 − 𝑢 ∈ 𝑊 1,𝑝

0 (3𝑄,ℝ𝑁 ).
(5.5.7)

The existence and the uniqueness of such a solution follows from Minty-Browder Theorem. Let us first derive the
following estimate

∫3𝑄

(

𝜇2 + |𝐷𝑤|2
)

𝑝
2 𝑏 d𝑥 ≤ 𝑐 ∫3𝑄

(

𝜇2 + |𝐷𝑢|2
)

𝑝
2 𝑏 d𝑥 (5.5.8)

where 𝑐 = 𝑐(𝑘, 𝑝). By using 𝑤 − 𝑢 as test function in (5.5.7) we get

∫3𝑄
⟨𝐴(𝑥,𝐷𝑤), 𝐷𝑤⟩ d𝑥 = ∫3𝑄

⟨𝐴(𝑥,𝐷𝑤), 𝐷𝑢⟩ d𝑥.

By (5.1.2), (5.1.3) and (5.1.5) we get

∫3𝑄

(

𝜇2 + |𝐷𝑤|2
)

𝑝−2
2
|𝐷𝑤|2𝑏 d𝑥 ≤ 𝑘2 ∫3𝑄

(

𝜇2 + |𝐷𝑤|2
)

𝑝−2
2
|𝐷𝑤| |𝐷𝑢|𝑏 d𝑥

Using the Young’s type inequality in Lemma 5.5.1, which holds uniformly in 𝜇 ∈ [0, 1], with 𝜀 < min
{

1
2
, 1
2𝑘2

}

,
we obtain

∫3𝑄

(

𝜇2 + |𝐷𝑤|2
)

𝑝−2
2
|𝐷𝑤|2𝑏 d𝑥 ≤ 𝑐(𝑘, 𝑝)∫3𝑄

(

𝜇2 + |𝐷𝑢|2
)

𝑝−2
2
|𝐷𝑢|2𝑏 d𝑥.

Now using again Young’s inequality, from previous relation we have

∫3𝑄

(

𝜇2 + |𝐷𝑤|2
)

𝑝
2 𝑏 d𝑥 = ∫3𝑄

(

𝜇2 + |𝐷𝑤|2
)

𝑝−2
2 (𝜇2 + |𝐷𝑤|2)𝑏 d𝑥 ≤

≤ 𝑐 ∫3𝑄

(

𝜇2 + |𝐷𝑢|2
)

𝑝−2
2
|𝐷𝑢|2𝑏 d𝑥 + 1

2 ∫3𝑄

(

𝜇2 + |𝐷𝑤|2
)

𝑝
2 𝑏 d𝑥 + 𝑐 ∫3𝑄

𝜇𝑝𝑏 d𝑥

≤ 1
2 ∫3𝑄

(

𝜇2 + |𝐷𝑤|2
)

𝑝
2 𝑏 d𝑥 + 𝑐 ∫3𝑄

(

𝜇2 + |𝐷𝑢|2
)

𝑝
2 𝑏 d𝑥,

with 𝑐 = 𝑐(𝑘, 𝑝) independent of 𝜇. Then estimate (5.5.8) follows.
Now by (5.5.2) we find that

(

⨍2𝑄

(

𝜇2 + |𝐷𝑤|2
)

𝑠
2 𝑏 d𝑥

)
1
𝑠
≤ 𝑐

(

⨍3𝑄

(

𝜇2 + |𝐷𝑤|2
)

𝑝
2 𝑏 d𝑥

)
1
𝑝
≤

≤ 𝑐
(

⨍3𝑄

(

𝜇2 + |𝐷𝑢|2
)

𝑝
2 𝑏 d𝑥

)
1
𝑝
≤ 𝑐𝜆

1
𝑝 ,

(5.5.9)
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where 𝑐 = 𝑐(𝑝, 𝑘, 𝜆0, 𝑛, ‖𝑏‖∗,𝒟𝐾 ). Notice that since 𝑝 ≥ 2, by (5.1.3)

⨍3𝑄
|𝐷𝑢 −𝐷𝑤|𝑝𝑏 d𝑥 ≤ 𝑐(𝑝, 𝑘)⨍3𝑄

⟨𝐴(𝑥,𝐷𝑢) − 𝐴(𝑥,𝐷𝑤), 𝐷𝑢 −𝐷𝑤⟩ d𝑥 =

= 𝑐(𝑝, 𝑘)⨍3𝑄
⟨𝐴(𝑥,𝐷𝑢), 𝐷𝑢 −𝐷𝑤⟩ d𝑥 = 𝑐(𝑝, 𝑘)⨍3𝑄

⟨

|𝐺|𝑝−2𝐺,𝐷𝑢 −𝐷𝑤
⟩

d𝑥 ≤

≤ 𝑐(𝑝, 𝑘, 𝜆0)
(

⨍3𝑄
(𝜇2 + |𝐺|2)

𝑝
2 d𝑥

)

+
𝜆0
2 ⨍3𝑄

|𝐷𝑢 −𝐷𝑤|𝑝 d𝑥 ≤

≤ 𝑐(𝑝, 𝑘, 𝜆0)
(

⨍3𝑄
(𝜇2 + |𝐺|2)

𝑝
2 d𝑥

)

+ 1
2 ⨍3𝑄

|𝐷𝑢 −𝐷𝑤|𝑝𝑏 d𝑥.

Then from (5.5.6)
⨍3𝑄

|𝐷𝑢 −𝐷𝑤|𝑝𝑏 d𝑥 ≤ 𝑐𝜀𝜆 (5.5.10)
where 𝑐 = 𝑐(𝑝, 𝑘, 𝜆0). In the following we shall denote by𝑀∗∗

(𝑏) the (weighted) Restricted Maximal operator relative
to the cube 2𝑄, while𝑀∗

(𝑏) keeps on denoting the (weighted) Restricted Maximal Operator relative to the cube𝑄2𝑅.
Now, with the notation (2.2.1),

|

|

|

|

|

{

𝑥 ∈ 𝑄 ∶𝑀∗∗
𝑏

[

(

𝜇2 + |𝐷𝑢|2
)

𝑝
2
]

(𝑥) > 𝐴𝐵𝜆
𝜆0

}

|

|

|

|

|

≤

≤
|

|

|

|

|

{

𝑥 ∈ 𝑄 ∶𝑀∗∗
𝑏

[

(

𝜇2 + |𝐷𝑤|2
)

𝑝
2
]

(𝑥) > 𝐴𝐵𝜆
𝜆08𝑝

}

|

|

|

|

|

+

+
|

|

|

|

|

{

𝑥 ∈ 𝑄 ∶𝑀∗∗
𝑏

[

|𝐷𝑢 −𝐷𝑤|𝑝
]

(𝑥) > 𝐴𝐵𝜆
𝜆08𝑝

}

|

|

|

|

|

≤

≤ 1
𝜆0
𝑏
({

𝑥 ∈ 𝑄 ∶𝑀∗∗
𝑏

[

(

𝜇2 + |𝐷𝑤|2
)

𝑝
2
]

(𝑥) > 𝐴𝐵𝜆
𝜆08𝑝

})

+

+
|

|

|

|

|

|

{

𝑥 ∈ 𝑄 ∶𝑀∗∗ [
|𝐷𝑢 −𝐷𝑤|𝑝 𝑏

]

(𝑥) > 𝐴𝐵𝜆
𝜆208

𝑝

}

|

|

|

|

|

|

≤

≤
𝑐(𝑠, 𝑝, 𝜆0, ‖𝑏‖∗)

(𝐴𝐵𝜆)
𝑠
𝑝 ∫2𝑄

(

𝜇2 + |𝐷𝑤|2
)

𝑠
2 𝑏 d𝑥 +

𝑐(𝑛, 𝑝, 𝜆0)
𝐴𝐵𝜆 ∫2𝑄

|𝐷𝑢 −𝐷𝑤|𝑝𝑏 d𝑥,

(5.5.11)

where in the last inequality we used (2.2.2), Theorem 2.2.18 and Lemma 2.2.10. From (5.5.1) and (5.5.9) we get
𝑐(𝑠, 𝑝, 𝜆0, ‖𝑏‖∗)

(𝐴𝐵𝜆)
𝑠
𝑝 ∫2𝑄

(

𝜇2 + |𝐷𝑤|2
)

𝑠
2 𝑏 d𝑥 ≤ 𝑐(𝑝, 𝑘, 𝜆0, 𝑛, ‖𝑏‖∗,𝒟𝐾 )

|𝑄|

(𝐴𝐵)
𝑠
𝑝

≤

≤ 1

100𝑛+2𝐵
𝑠
𝑝

|𝑄|,
(5.5.12)

where the last inequality is true provided we choose, for instance, 𝐴 ∶=
(

100𝑛+2(𝑐 + 1)
)
𝑝
𝑠 ; this fixes the constant

𝐴 and yields the absolute dependence mentioned in the statement. From (5.5.11) thanks to (5.5.10) and (5.5.12)
we obtain

|

|

|

|

|

{

𝑥 ∈ 𝑄 ∶𝑀∗∗
𝑏

[

(

𝜇2 + |𝐷𝑢|2
)

𝑝
2
]

(𝑥) > 𝐴𝐵𝜆
𝜆0

}

|

|

|

|

|

≤ |𝑄|

100𝑛+2𝐵
𝑠
𝑝

+ 𝑐 𝜀
𝐴𝐵

|𝑄|, (5.5.13)

with 𝑐 = 𝑐(𝑛, 𝑝, 𝑘, 𝜆0). Now we can choose 𝜀 such that

𝑐(𝑛, 𝑝, 𝑘, 𝜆0)
𝜀
𝐴

≤ 1

8𝐵
𝑠
𝑝−1

and so from (5.5.13)
|

|

|

|

|

{

𝑥 ∈ 𝑄 ∶𝑀∗∗
𝑏

[

(

𝜇2 + |𝐷𝑢|2
)

𝑝
2
]

(𝑥) > 𝐴𝐵𝜆
𝜆0

}

|

|

|

|

|

≤ |𝑄|

8𝑛𝐵
𝑠
𝑝

. (5.5.14)
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To conclude we remark that (5.5.5) implies

𝑀∗
𝑏

[

(

𝜇2 + |𝐷𝑢|2
)

𝑝
2
]

(𝑥) ≤ max
{

𝑀∗∗
𝑏

[

(

𝜇2 + |𝐷𝑢|2
)

𝑝
2
]

(𝑥), 100𝑛 𝜆
𝜆0

}

(5.5.15)

for every 𝑥 ∈ 𝑄. Indeed, let 𝑥0 ∈ 𝑄 and let 𝐶 ⊂ 𝑄2𝑅 be a cube such that 𝑥0 ∈ 𝐶 . In the case when 𝐶 ⊂ 2𝑄, by
the definition of 𝑀∗∗, we trivially have

∫𝐶 (𝜇
2 + |𝐷𝑢|2)

𝑝
2 𝑏 d𝑥

𝑏(𝐶)
≤𝑀∗∗

𝑏

[

(𝜇2 + |𝐷𝑢|2)
𝑝
2

]

(𝑥0).

In the case when 𝐶 ⊄ 2𝑄, we must have 2𝑛|𝐶| ≥ |𝑄|, then �̃� ⊂ 10𝐶 and in particular �̃� ∈ 10𝐶; at this point we
further distinguish two cases. If 20𝐶 ⊂ 𝑄2𝑅 then, using (5.5.5), we obtain

∫𝐶 (𝜇
2 + |𝐷𝑢|2)

𝑝
2 𝑏 d𝑥

𝑏(𝐶)
≤ 1
𝜆0 ⨍𝐶

(𝜇2 + |𝐷𝑢|2)
𝑝
2 𝑏 d𝑥 ≤ 20𝑛

𝜆0 ⨍20𝐶
(𝜇2 + |𝐷𝑢|2)

𝑝
2 𝑏 d𝑥

≤ 20𝑛
𝜆0
𝑀∗

[

(𝜇2 + |𝐷𝑢|2)
𝑝
2 𝑏
]

(�̃�) ≤ 100𝑛
𝜆0

𝜆.

If finally 20𝐶 ⊄ 𝑄2𝑅 then 𝑄2𝑅 ⊂ 70𝐶 and therefore
∫𝐶 (𝜇

2 + |𝐷𝑢|2)
𝑝
2 𝑏 d𝑥

𝑏(𝐶)
≤ 1
𝜆0 ⨍𝐶

(𝜇2 + |𝐷𝑢|2)
𝑝
2 𝑏 d𝑥 ≤ 70𝑛

𝜆0 ⨍20𝐶
(𝜇2 + |𝐷𝑢|2)

𝑝
2 𝑏 d𝑥

≤ 70𝑛
𝜆0
𝑀∗

[

(𝜇2 + |𝐷𝑢|2)
𝑝
2 𝑏
]

(�̃�) ≤ 100𝑛
𝜆0

𝜆,

so that (5.5.15) is completely proved. Since 𝐴𝐵 > 𝐴 > 100𝑛, by using (5.5.14) we get
|

|

|

|

|

{

𝑥 ∈ 𝑄 ∶𝑀∗
𝑏

[

(

𝜇2 + |𝐷𝑢|2
)

𝑝
2
]

(𝑥) > 𝐴𝐵𝜆
𝜆0

}

|

|

|

|

|

≤ |𝑄|

2𝐵
𝑠
𝑝

,

which is a contradiction to (5.5.3). The proof is complete.
When applying Lemma 5.5.3 we shall need to fix the constant 𝐵, depending on the choice of an integrability
exponent 𝑞 ∈ (𝑝, 𝑠). With 𝑞 being fixed, we do this in the following canonical way:

1

𝐵
𝑠−𝑞
𝑝

= 1

2𝐴
𝑞
𝑝

, (5.5.16)

where the constant 𝐴 ≡ 𝐴(𝑝, 𝑘, 𝜆0, 𝑛, ‖𝑏‖∗,𝒟𝐾 ) is the absolute constant appearing in Lemma 5.5.3. This fixes in
turn𝐵 ≡ 𝐵(𝑝, 𝑘, 𝜆0, 𝑛, 𝑠−𝑞, ‖𝑏‖∗,𝒟𝐾 ). Note that𝐵 ↗ ∞ when 𝑞 ↗ 𝑠; consequently, in Lemma 5.5.3 𝜀↘ 0 when
𝑞 ↗ 𝑠. Once the choice of 𝐵 has been made, this canonically fixes the choice of 𝜀, with the following absolute
dependence

𝜀0 ≡ 𝜀 ≡ 𝜀(𝑝, 𝑘, 𝜆0, 𝑛, 𝑠 − 𝑞, ‖𝑏‖∗,𝒟𝐾 ) > 0. (5.5.17)
Proof of Theorem 5.1.2. Following the notation of Lemma 5.5.3, let us set

𝜇1(𝑡) ∶=
|

|

|

|

{

𝑥 ∈ 𝑄𝑅 ∶𝑀∗
𝑏

[

(

𝜇2 + |𝐷𝑢|2
)

𝑝
2
]

(𝑥) > 𝑡
}

|

|

|

|

,

𝜇2(𝑡) ∶=
|

|

|

|

{

𝑥 ∈ 𝑄𝑅 ∶𝑀∗
[

(

𝜇2 + |𝐺|2
)

𝑝
2
]

(𝑥) > 𝑡
}

|

|

|

|

.

Then, with 𝐵 > 1 as in (5.5.16), we take

�̃� ∶= 10𝑛
𝜆0
𝑐𝐵

𝑠
𝑝
⨍𝑄2𝑅

(𝜇2 + |𝐷𝑢|2)
𝑝
2 𝑏 d𝑥,
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where 𝑐 ≡ 𝑐(𝑛) is the constant appearing in the weak type inequality (2.2.2) when 𝑝 ≡ 1; note that �̃� is positive.
Therefore,

𝜇1(�̃�) ≤
|

|

|

|

{

𝑥 ∈ 𝑄𝑅 ∶𝑀∗
[

(

𝜇2 + |𝐷𝑢|2
)

𝑝
2 𝑏

]

(𝑥) > �̃�𝜆0
}

|

|

|

|

≤

≤ 𝑐
�̃�𝜆0 ∫𝑄2𝑅

(𝜇2 + |𝐷𝑢|2)
𝑝
2 𝑏 d𝑥 <

|𝑄𝑅|

2𝐵
𝑠
𝑝

,
(5.5.18)

and consequently, since 𝐴𝐵 > 1,
𝜇1((𝐴𝐵)ℎ�̃�) <

|𝑄𝑅|

2𝐵
𝑠
𝑝

∀ℎ ∈ ℕ, (5.5.19)

where 𝐴 is the constant appearing in Lemma 5.5.3. Next, we recall that the constant 𝐵 has been chosen accord-
ing to (5.5.16). With such a choice of 𝐵, and in view of (5.5.18) - (5.5.19), we can combine Lemma 5.5.3 and
Lemma 5.5.2 at the levels 𝜆 ≡ (𝐴𝐵)ℎ�̃�, ℎ ∈ ℕ. To this end, note that

{

𝑥 ∈ 𝑄𝑅 ∶𝑀∗
𝑏

[

(

𝜇2 + |𝐷𝑢|2
)

𝑝
2
]

(𝑥) > (𝐴𝐵)ℎ�̃�

}

⊂

⊂
{

𝑥 ∈ 𝑄𝑅 ∶𝑀∗
[

(

𝜇2 + |𝐷𝑢|2
)

𝑝
2 𝑏

]

(𝑥) > �̃�𝜆0
}

Therefore, an elementary induction argument leads to

𝜇1((𝐴𝐵)ℎ+1�̃�) ≤ 𝐵− 𝑠
𝑝 (ℎ+1)𝜇1(�̃�) +

ℎ
∑

𝑖=0
𝐵− 𝑠

𝑝 (ℎ−𝑖)𝜇2((𝐴𝐵)𝑖𝜀0�̃�)

for every ℎ ∈ ℕ; the number 𝜀0 is defined in (5.5.17). Summing up over ℎ, we have, for every 𝑀 ∈ ℕ

𝑀
∑

ℎ=0
(𝐴𝐵)

𝑞
𝑝 (ℎ+1)𝜇1((𝐴𝐵)ℎ+1�̃�) ≤

( 𝑀
∑

ℎ=0

[

𝐵− 𝑠
𝑝 (𝐴𝐵)

𝑞
𝑝

]ℎ+1
)

𝜇1(�̃�)+

+
𝑀
∑

ℎ=0

ℎ
∑

𝑖=0
(𝐴𝐵)

𝑞
𝑝 (ℎ+1)𝐵− 𝑠

𝑝 (ℎ−𝑖)𝜇2((𝐴𝐵)𝑖𝜀0�̃�).

(5.5.20)

As for the first sum in the right-hand side, we notice that (5.5.16) leads to
∞
∑

ℎ=0

[

𝐵− 𝑠
𝑝 (𝐴𝐵)

𝑞
𝑝

]ℎ+1
≤ 1.

Concerning the second sum appearing in the right-hand side of (5.5.20), we have
𝑀
∑

ℎ=0

ℎ
∑

𝑖=0
(𝐴𝐵)

𝑞
𝑝 (ℎ+1)𝐵− 𝑠

𝑝 (ℎ−𝑖)𝜇2((𝐴𝐵)𝑖𝜀0�̃�) =

= (𝐴𝐵)
𝑞
𝑝

𝑀
∑

𝑖=0
(𝐴𝐵)

𝑞
𝑝 𝑖𝜇2((𝐴𝐵)𝑖𝜀0�̃�)

𝑀−𝑖
∑

ℎ=0

[

𝐵− 𝑠
𝑝 (𝐴𝐵)

𝑞
𝑝

]ℎ
≤

≤ 2(𝐴𝐵)
𝑞
𝑝

𝑀
∑

𝑘=0
(𝐴𝐵)

𝑞
𝑝𝑘𝜇2((𝐴𝐵)𝑘𝜀0�̃�).

Combining the previous estimates with (5.5.20) we finally obtain
∞
∑

𝑘=1
(𝐴𝐵)

𝑞
𝑝𝑘𝜇1((𝐴𝐵)𝑘�̃�) ≤ 𝜇1(�̃�) + 2(𝐴𝐵)

𝑞
𝑝

∞
∑

𝑘=0
(𝐴𝐵)

𝑞
𝑝𝑘𝜇2((𝐴𝐵)𝑘𝜀0�̃�).
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Now we will do a straight, readable estimate, although it is justified only if read backwards: when the series
in (5.5.22) will be shown to converge, we will have proved that the power 𝑞 of the maximal function is integrable,
which implies that also the first integral we are about to write is finite. We observe that

∫𝑄𝑅
(𝜇2 + |𝐷𝑢|2)

𝑞
2 𝑏 d𝑥 ≤ ∫𝑄𝑅

|

|

|

|

𝑀∗
𝑏

[

(

𝜇2 + |𝐷𝑢|2
)

𝑝
2
]

(𝑥)
|

|

|

|

𝑞
𝑝
d𝑥 =

= ∫

∞

0

𝑞
𝑝
𝜆
𝑞
𝑝−1𝜇1(𝜆) 𝑑𝜆 =

= ∫

�̃�

0

𝑞
𝑝
𝜆
𝑞
𝑝−1𝜇1(𝜆) 𝑑𝜆 + ∫

∞

�̃�

𝑞
𝑝
𝜆
𝑞
𝑝−1𝜇1(𝜆) 𝑑𝜆

(5.5.21)

and

∫

�̃�

0

𝑞
𝑝
𝜆
𝑞
𝑝−1𝜇1(𝜆) 𝑑𝜆 ≤ �̃�

𝑞
𝑝
|𝑄𝑅| = 𝑐(𝑛, 𝜆0)

𝑞
𝑝𝐵

𝑠
𝑝2
𝑞
(

⨍𝑄2𝑅

(𝜇2 + |𝐷𝑢|2)
𝑝
2 𝑏 d𝑥

)
𝑞
𝑝
|𝑄𝑅| ≤

≤ 𝑐(𝑛, 𝜆0)
𝑠
𝑝𝐵

𝑠
𝑝2
𝑞
(

⨍𝑄2𝑅

(𝜇2 + |𝐷𝑢|2)
𝑝
2 𝑏 d𝑥

)
𝑞
𝑝
|𝑄𝑅| =

= 𝑐(𝑝, 𝑘, 𝜆0, 𝑛, ‖𝑏‖∗,𝒟𝐾 )𝐵
𝑠
𝑝2
𝑞
(

⨍𝑄2𝑅

(𝜇2 + |𝐷𝑢|2)
𝑝
2 𝑏 d𝑥

)
𝑞
𝑝
|𝑄𝑅|,

where we assumed 𝑐(𝑛, 𝜆0) > 1. In a similar way we have

∫ ∞
�̃�

𝑞
𝑝
𝜆
𝑞
𝑝−1𝜇1(𝜆) 𝑑𝜆 =

∑∞
𝑛=0 ∫

(𝐴𝐵)
𝑛+1
𝑝 �̃�

(𝐴𝐵)
𝑛
𝑝 �̃�

𝑞𝜆𝑞−1𝜇1(𝜆) 𝑑𝜆 ≤ (𝐴𝐵�̃�)
𝑞
𝑝
∑∞
𝑛=0(𝐴𝐵)

𝑛𝑞
𝑝 𝜇1((𝐴𝐵)𝑛�̃�).

Again,
(𝐴𝐵�̃�)

𝑞
𝑝𝜇1(�̃�) ≤ (𝐴𝐵�̃�)

𝑞
𝑝
|

|

|

|

{

𝑥 ∈ 𝑄𝑅 ∶𝑀∗
[

(

𝜇2 + |𝐷𝑢|2
)

𝑝
2 𝑏

]

(𝑥) > �̃�𝜆0
}

|

|

|

|

≤

≤ 𝑐(𝑛, 𝜆0)(𝐴𝐵)
𝑞
𝑝 �̃�

𝑞
𝑝−1

∫𝑄2𝑅

(𝜇2 + |𝐷𝑢|2)
𝑝
2 𝑏 d𝑥 ≤

≤ 𝑐(𝑝, 𝑘, 𝜆0, 𝑛, ‖𝑏‖∗,𝒟𝐾 )(𝐴)
𝑠
𝑝𝐵− 𝑠−𝑞

𝑝 𝐵
𝑠
𝑝2
𝑞
|𝑄2𝑅|

(

⨍𝑄2𝑅

(𝜇2 + |𝐷𝑢|2)
𝑝
2 𝑏 d𝑥

)
𝑞
𝑝
.

Joining the last three estimates to (5.5.21) yields

∫𝑄𝑅
(𝜇2 + |𝐷𝑢|2)

𝑞
2 𝑏 d𝑥 ≤ 𝑐𝐵

𝑠
𝑝2
𝑞
(

⨍𝑄2𝑅

(𝜇2 + |𝐷𝑢|2)
𝑝
2 𝑏 d𝑥

)
𝑞
𝑝
|𝑄𝑅|+

+ (𝐴𝐵�̃�)
𝑞
𝑝𝜇1(�̃�) + (𝐴𝐵�̃�)

𝑞
𝑝

∞
∑

𝑘=1
(𝐴𝐵)𝑘

𝑞
𝑝𝜇1((𝐴𝐵)𝑘�̃�) ≤

≤ 𝑐𝐵
𝑠
𝑝2
𝑞
(

⨍𝑄2𝑅

(𝜇2 + |𝐷𝑢|2)
𝑝
2 𝑏 d𝑥

)
𝑞
𝑝
|𝑄𝑅|+

+ 2(𝐴𝐵�̃�)
𝑞
𝑝𝜇1(�̃�) + 2(𝐴𝐵�̃�)

𝑞
𝑝

∞
∑

𝑘=0
(𝐴𝐵)𝑘

𝑞
𝑝𝜇2((𝐴𝐵)𝑘𝜀0�̃�) ≤

≤ 𝑐𝐵
𝑠
𝑝2
𝑞
(

⨍𝑄2𝑅

(𝜇2 + |𝐷𝑢|2)
𝑝
2 𝑏 d𝑥

)
𝑞
𝑝
|𝑄𝑅| + 𝑐𝐵

2𝑠
𝑝 �̃�

∞
∑

𝑘=0
(𝐴𝐵)𝑘

𝑞
𝑝𝜇2((𝐴𝐵)𝑘𝜀0�̃�),

(5.5.22)

where 𝑐 = 𝑐(𝑝, 𝑘, 𝜆0, 𝑛, 𝑠− 𝑞, ‖𝑏‖∗,𝒟𝐾 ). It remains to estimate the last series. To this aim, observe that, as before,

∫𝑄𝑅

|

|

|

|

𝑀∗
[

(

𝜇2 + |𝐺|2
)

𝑝
2
]

(𝑥)
|

|

|

|

𝑞
𝑝
d𝑥 = ∫

∞

0

𝑞
𝑝
𝜆
𝑞
𝑝−1𝜇2(𝜆) 𝑑𝜆 =

= ∫

𝜀0�̃�

0

𝑞
𝑝
𝜆
𝑞
𝑝−1𝜇2(𝜆) 𝑑𝜆 + ∫

∞

𝜀0�̃�

𝑞
𝑝
𝜆
𝑞
𝑝−1𝜇2(𝜆) 𝑑𝜆.
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Then
∫

𝜀0�̃�

0

𝑞
𝑝
𝜆
𝑞
𝑝−1𝜇2(𝜆) 𝑑𝜆 ≥ (𝜀0�̃�)

𝑞
𝑝𝜇2(𝜀0�̃�),

and

∫

∞

𝜀0�̃�

𝑞
𝑝
𝜆
𝑞
𝑝−1𝜇2(𝜆) 𝑑𝜆 =

∞
∑

𝑘=0
∫

(𝐴𝐵)𝑘+1𝜀0�̃�

(𝐴𝐵)𝑘𝜀0�̃�

𝑞
𝑝
𝜆
𝑞
𝑝−1𝜇2(𝜆) 𝑑𝜆 ≥

≥
∞
∑

𝑘=0
𝜇2((𝐴𝐵)𝑘+1𝜀0�̃�)

[

((𝐴𝐵)𝑘+1𝜀0�̃�)
𝑞
𝑝 − ((𝐴𝐵)𝑘𝜀0�̃�)

𝑞
𝑝

]

=

= (𝜀0�̃�)
𝑞
𝑝

∞
∑

𝑘=0
(𝐴𝐵)(𝑘+1)

𝑞
𝑝𝜇2((𝐴𝐵)𝑘+1𝜀0�̃�)

[

1 − (𝐴𝐵)−
𝑞
𝑝

]

≥

≥ 1
2
(𝜀0�̃�)

𝑞
𝑝

∞
∑

𝑘=1
(𝐴𝐵)𝑘

𝑞
𝑝𝜇2((𝐴𝐵)𝑘𝜀0�̃�).

Combining the last estimates with the maximal inequality we finally get

𝑝
2𝑞

(𝜀0�̃�)
𝑞
𝑝

∞
∑

𝑘=1
(𝐴𝐵)𝑘

𝑞
𝑝𝜇2((𝐴𝐵)𝑘𝜀0�̃�) +

𝑝(𝜀0�̃�)
𝑞
𝑝

𝑞
𝜇2(𝜀0�̃�) ≤

≤ 𝑝
𝑞
(𝜀0�̃�)

𝑞
𝑝

∞
∑

𝑘=0
(𝐴𝐵)𝑘

𝑞
𝑝𝜇2((𝐴𝐵)𝑘𝜀0�̃�) ≤

2𝑝
𝑞 ∫𝑄𝑅

|

|

|

|

𝑀∗
[

(

𝜇2 + |𝐺|2
)

𝑝
2
]

(𝑥)
|

|

|

|

𝑞
𝑝
d𝑥 ≤

≤ 𝑐(𝑛, 𝑝, 𝑠, ‖𝑏‖∗)∫𝑄2𝑅

(

𝜇2 + |𝐺|2
)

𝑞
2 d𝑥 ≤ 𝑐(𝑛, 𝑝, 𝑠, 𝜆0, ‖𝑏‖∗)∫𝑄2𝑅

(

𝜇2 + |𝐺|2
)

𝑞
2 𝑏 d𝑥.

Using this estimate in (5.5.22) and passing to averages we have
(

⨍𝑄𝑅

(

𝜇2 + |𝐷𝑢|2
)

𝑞
2 𝑏 d𝑥

)
1
𝑞
≤ 𝑐

(

⨍𝑄2𝑅

(

𝜇2 + |𝐷𝑢|2
)

𝑝
2 𝑏 d𝑥

)
1
𝑝
+

+ 𝑐
(

⨍𝑄2𝑅

(

𝜇2 + |𝐺|2
)

𝑞
2 𝑏 d𝑥

)
1
𝑞
,

5.6 Globality

The goal of this section is to prove global versions of the estimates in Theorem 5.1.1 and Theorem 5.1.2 when we
consider solutions of the corresponding Dirichlet problem on a bounded domain Ω ⊂ ℝ𝑛 with 𝐶2 boundary. In the
following we assume that

Ω ⊂⊂ 𝐵2𝑅 ⊂ 𝑄0,

where, without loss of generality, we suppose that the ball 𝐵2𝑅 and the cube 𝑄0 are centered in the origin.
Let conditions (5.1.2) - (5.1.6) hold in 𝐵2𝑅. Set 𝐴(𝑥, 𝜉) = 0 for any 𝑥 ∈ ℝ𝑛 ⧵𝑄0, we consider a standard mollifier
𝜚 ∶ ℝ𝑛 → [0,∞) with compact support contained in 𝐵1 ⊂ ℝ𝑛. If 0 < 𝜀 < min{𝑅, 1}, for any 𝑥 ∈ 𝐵2𝑅−𝜀 and
𝜉 ∈ ℝ𝑁×𝑛 we consider

𝐴𝜀(𝑥, 𝜉) ∶= ∫𝐵1

𝐴(𝑥 + 𝜀𝑦, 𝜉) 𝜚(𝑦) 𝑑𝑦,

𝐾𝜀(𝑥) ∶= ∫𝐵1

𝐾(𝑥 + 𝜀𝑦) 𝜚(𝑦) 𝑑𝑦,

𝑏𝜀(𝑥) ∶= ∫𝐵1

𝑏(𝑥 + 𝜀𝑦) 𝜚(𝑦) 𝑑𝑦,
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𝐹𝜀(𝑥) ∶= ∫𝐵1

𝐹 (𝑥 + 𝜀𝑦)𝜚(𝑦) 𝑑𝑦.

It is easy to verify that for a.e. 𝑥, 𝑦 ∈ Ω and for every 𝜉, 𝜂 ∈ ℝ𝑁×𝑛

|𝐴𝜀(𝑥, 𝜉) − 𝐴𝜀(𝑥, 𝜂)| ≤ 𝑘𝑏𝜀(𝑥)|𝜉 − 𝜂| (𝜇2 + |𝜉|2 + |𝜂|2)
𝑝−2
2 , (5.6.1)

1
𝑘
𝑏𝜀(𝑥)|𝜉 − 𝜂|2 (𝜇2 + |𝜉|2 + |𝜂|2)

𝑝−2
2 ≤ ⟨𝐴𝜀(𝑥, 𝜉) − 𝐴𝜀(𝑥, 𝜂), 𝜉 − 𝜂⟩ , (5.6.2)

|𝐴𝜀(𝑥, 𝜂) − 𝐴𝜀(𝑦, 𝜂)| ≤ |𝑥 − 𝑦|
[

𝐾𝜀(𝑥) +𝐾𝜀(𝑦)
]

(𝜇2 + |𝜂|2)
𝑝−1
2 , (5.6.3)

𝐴𝜀(𝑥, 0) = 0, (5.6.4)
|𝑏𝜀(𝑥) − 𝑏𝜀(𝑦)| ≤ |𝑥 − 𝑦| [𝐾𝜀(𝑥) +𝐾𝜀(𝑦)]. (5.6.5)

Global differentiability The following lemma holds
Lemma 5.6.1. Let 𝑈 a bounded Lipschitz domain such that, if we denote by 𝑄𝑟 a cube centered in the origin and
with side of length 𝑟 and

𝑄+
𝑟 = 𝑄𝑟 ∩ {𝑥𝑛 > 0},

then
𝑄+

4𝑑 ⊂ 𝑈 ⊂ 𝑄+
1 ,

with 𝑑 > 0. Let 𝐴𝜀 ∶ 𝑈 ×ℝ𝑁×𝑛 → ℝ𝑁×𝑛 satisfy assumptions (5.6.1) - (5.6.5) for 𝑥 ∈ 𝑈 , 𝑝 ≥ 2 and 𝑏𝜀 ∈ 𝐿∞(𝑈 ).
Let 𝐹 ∈ 𝑊 1,2(𝑏, 𝑈 ;ℝ𝑁×𝑛). Consider the problem

{

div𝐴𝜀(𝑥,𝐷𝑢𝜀) = div𝐹𝜀 in 𝑈
𝑢𝜀 = 0 on 𝜕𝑈 ∩ {𝑥𝑛 = 0}.

(5.6.6)

If 𝛼1 > 0 is the constant, depending on 𝑝, 𝑛, 𝜆0, 𝜇 and 𝑘, in Theorem 5.1.1 and if

𝒟𝐾 ≡ dist𝐿𝑛,∞(𝐾(𝑥), 𝐿∞) < 𝛼1,

then

∫𝑄+
2𝑑

|𝐷(𝑉𝜇(𝐷𝑢𝜀))|2𝑏𝜀 d𝑥 ≤ 𝑐 ∫𝑄+
4𝑑

((

1 + 1
𝑑2

)

(𝜇2 + |𝐷𝑢𝜀|
2)

𝑝
2 + (𝜇2 + |𝐷𝐹𝜀|

2)
)

𝑏𝜀, (5.6.7)

for a constant 𝑐 depending on 𝑝, 𝑘, 𝜆0, 𝑛, 𝜇 and 𝒟𝐾 .

Regarding the proof of Lemma 5.6.1, we refer to [DKM07, Theorem 2.3]. Actually, we can firstly repeat the proof
of Theorem 5.1.1 by using the standard difference quotient method in the tangential directions. This allows to prove
the existence of 𝐷𝑠(𝑉𝜇(𝐷𝑢𝜀)), 𝑠 = 1,… , 𝑛 − 1, in 𝐿2. Secondly, we can use the definition of (5.6.6) to bound the
𝐿2-norm of 𝐷𝑛(𝑉𝜇(𝐷𝑢𝜀)) by the 𝐿2-norm of the tangential derivatives.
Now let 𝑢 ∈ 𝑊 1,𝑝

0 (𝑏,Ω;ℝ𝑁×𝑛) be the unique solution of the problem
{

div𝐴(𝑥,𝐷𝑢) = div𝐹 in Ω
𝑢 = 0 on 𝜕Ω,

where 𝐹 ∈ 𝑊 1,2(𝑏,Ω;ℝ𝑁×𝑛). Then
Theorem 5.6.2. There exists 𝛼3 > 0, depending on 𝑝, 𝑛, 𝜆0, 𝜇, 𝑘 and Ω, such that, if

𝒟𝐾 ≡ dist𝐿𝑛,∞(𝐾(𝑥), 𝐿∞) < 𝛼3,

then 𝐷(𝑉𝜇(𝐷𝑢)) ∈ 𝐿2(𝑏,Ω;ℝ𝑁×𝑛) and

∫Ω
|𝐷(𝑉𝜇(𝐷𝑢))|2𝑏 d𝑥 ≤ 𝑐 ∫Ω

(

(𝜇2 + |𝐷𝑢|2)
𝑝
2 + (𝜇2 + |𝐷𝐹 |2)

)

𝑏 d𝑥, (5.6.8)

where 𝑐 = 𝑐(𝑝, 𝑘, 𝜆0, 𝑛, 𝜇,𝒟𝐾 ,Ω).
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Proof. Firstly we prove (5.6.8) when 𝑏(𝑥) ∈ 𝐿∞(Ω) with a constant 𝑐 = 𝑐(𝑝, 𝑘, 𝜆0, 𝑛, 𝜇, 𝒟𝐾 , Ω). If 𝑏(𝑥) ∈ 𝐿∞(Ω),
let 𝐴𝜀(𝑥, 𝜉) satisfy (5.6.1) - (5.6.5) and let 𝑢𝜀 be the unique solution of the system

{

div𝐴𝜀(𝑥,𝐷𝑢𝜀) = div𝐹𝜀 in Ω
𝑢𝜀 = 0 on 𝜕Ω.

In a standard way (see for example [Cam87], [Gro02], [Ham07], [Min06], [MP21]), we cover Ω by a family of
open sets Ω′, Ω′′, 𝑈1, … , 𝑈𝑚, 𝑉1, … , 𝑉𝑚 such that

• Ω′ ⊂⊂ Ω′′ ⊂⊂ Ω;
• 𝑈𝑙, 𝑉𝑙 are cubes centered in 𝑥𝑙 ∈ 𝜕Ω, with 𝑙 = 1,…𝑚;
• 𝑉𝑙 ⊂⊂ 𝑈𝑙, with 𝑙 = 1,… , 𝑚;
• ∪𝑚𝑙=1𝑉𝑙 ⊋ 𝜕Ω;
• Ω ⊊ ∪𝑚𝑙=1𝑉𝑙 ∪ Ω′.

Covering Ω̄′ by a finite number of balls, by Theorem 5.1.1 we have that

∫Ω′
|𝐷(𝑉𝜇(𝐷𝑢𝜀))|2𝑏𝜀 d𝑥 ≤ 𝑐 ∫Ω

(

(𝜇2 + |𝐷𝑢𝜀|
2)

𝑝
2 + (𝜇2 + |𝐷𝐹𝜀|

2)
)

𝑏𝜀 d𝑥,

with 𝑐 = 𝑐(𝑝, 𝑘, 𝜆0, 𝑛, 𝜇,𝒟𝐾 ,Ω). Regarding the boundary regularity of the solution, on every 𝑈𝑙 we can consider
a diffeomorphism Φ which maps Ω𝑙 ≡ 𝑈𝑙 ∩ Ω to an open set of ℝ𝑛 and such that

Φ(𝑈𝑙 ∩ Ω) ⊂ {𝑦 ∈ ℝ𝑛 ∶ 𝑦𝑛 > 0}, Φ{𝑈𝑙 ∩ 𝜕Ω} ⊂ {𝑦 ∈ ℝ𝑛 ∶ 𝑦𝑛 = 0}.

If �̃�𝜀 is such that 𝑢𝜀(𝑥) = (�̃�𝜀◦Φ)(𝑥), with 𝑥 ∈ 𝑈𝑙 ∩ Ω̄, then �̃�𝜀 solves in Ω̃𝑙 ≡ Φ(𝑈𝑙 ∩ Ω) a system
{

div �̃�𝜀(𝑥,𝐷�̃�𝜀) = div𝐹𝜀 in Ω̃𝑙

�̃�𝜀 = 0 on {𝑦𝑛 = 0} ∩ 𝜕Ω̃𝑙,

where �̃�𝜀 satisfies conditions similar to (5.6.1) - (5.6.5) with new constants �̃�0 and �̃� depending on Φ. This
diffeomorphism preserves the 𝐵𝑀𝑂 norm and the distance (see [Ast83], [BBC75]), that is

‖𝑏𝜀◦Φ‖∗ ≤ ‖𝑏𝜀‖∗ ≤ ‖𝑏‖∗,

𝒟𝐾𝜀◦Φ ≤ 𝒟𝐾𝜀 ≤ 𝒟𝐾

and we apply Lemma 5.6.1 in Ω̃𝑙, giving (5.6.7) with a new constant 𝑐 = 𝑐(�̃�0, �̃�, 𝑝, 𝑛, 𝜇, 𝒟𝐾 ). Coming back to
the original variables and summing on 𝑙, we get that, for any 0 < 𝜀 < 1, |𝐷𝑉𝜇(𝐷𝑢𝜀)| ∈ 𝐿2(Ω) and

∫Ω
|𝐷𝑉𝜇(𝐷𝑢𝜀)|2𝑏𝜀 d𝑥 ≤ 𝑐

(

∫Ω
(𝜇2 + |𝐷𝑢𝜀|

2)
𝑝
2 𝑏𝜀 d𝑥 + ∫Ω

(𝜇2 + |𝐷𝐹𝜀|
2)𝑏𝜀 d𝑥

)

. (5.6.9)

Now we prove that 𝐷𝑢𝜀 → 𝐷𝑢 in 𝐿𝑝(𝑏,Ω;ℝ𝑁×𝑛). From (5.6.2)
1
𝑘 ∫Ω

(𝜇2 + |𝐷𝑢𝜀|
2 + |𝐷𝑢|2)

𝑝−2
2
|𝐷𝑢 −𝐷𝑢𝜀|2𝑏𝜀 d𝑥 ≤

≤ ∫Ω
⟨𝐴𝜀(𝑥,𝐷𝑢) − 𝐴𝜀(𝑥,𝐷𝑢𝜀), 𝐷𝑢 −𝐷𝑢𝜀⟩ d𝑥 =

= ∫Ω
⟨𝐹 − 𝐹𝜀, 𝐷𝑢 −𝐷𝑢𝜀⟩ d𝑥 + ∫Ω

⟨𝐴𝜀(𝑥,𝐷𝑢) − 𝐴(𝑥,𝐷𝑢), 𝐷𝑢 −𝐷𝑢𝜀⟩ d𝑥 ≤

≤ 𝜈
𝑝
‖𝐷𝑢 −𝐷𝑢𝜀‖𝑝𝑝 +

𝑐
𝜈
‖𝐹 − 𝐹𝜀‖

𝑝′
𝑝′ +

𝑐
𝜈 ∫Ω

|𝐴𝜀(𝑥,𝐷𝑢) − 𝐴(𝑥,𝐷𝑢)|𝑝
′ d𝑥.

(5.6.10)

132



We remark that from (5.6.3) we deduce that 𝐴𝜀(𝑥,𝐷𝑢) → 𝐴(𝑥,𝐷𝑢) a.e. Moreover (5.6.1) and (5.6.4) give
|𝐴𝜀(𝑥,𝐷𝑢)|

𝑝
𝑝−1 ≤ 𝑘

𝑝
𝑝−1

‖𝑏‖
𝑝
𝑝−1
𝐿∞ (𝜇2 + |𝐷𝑢|2)

𝑝
2 ,

and by dominated convergence Theorem 2.1.11 we obtain that𝐴𝜀(𝑥,𝐷𝑢) → 𝐴(𝑥,𝐷𝑢) in𝐿 𝑝
𝑝−1 . Then, from (5.6.10)

with a suitable choice of 𝜈, we get that 𝐷𝑢𝜀 → 𝐷𝑢 in 𝐿𝑝. From (5.6.9) and the semicontinuity of the norm with
respect to weak convergence, we get (5.6.8) for 𝑏(𝑥) ∈ 𝐿∞.
Now let 𝐴𝑗(𝑥, 𝜉), 𝑗 ∈ ℕ, be the operators defined in Section 5.4. We consider the problem

{

div𝐴𝑗(𝑥,𝐷𝑢𝑗) = div𝐹 in Ω
𝑢𝑗 = 𝑢 on 𝜕Ω,

(5.6.11)

Since (5.6.8) holds for 𝑏𝑗(𝑥), we get that for any 𝑗 ∈ ℕ

∫Ω
|𝐷𝑉𝜇(𝐷𝑢𝑗)|2𝑏𝑗 d𝑥 ≤ 𝑐

(

∫Ω
(𝜇2 + |𝐷𝑢𝑗|

2)
𝑝
2 𝑏𝑗 d𝑥 + ∫Ω

(𝜇2 + |𝐷𝐹 |2)𝑏 d𝑥
)

. (5.6.12)
Now we prove that 𝐷𝑢𝑗 → 𝐷𝑢 in 𝐿𝑝(𝑏,Ω;ℝ𝑁×𝑛). From (5.1.3) we get

1
𝑘 ∫Ω

(𝜇2 + |𝐷𝑢|2 + |𝐷𝑢𝑗|
2)

𝑝−2
2
|𝐷𝑢 −𝐷𝑢𝑗|2𝑏 d𝑥 ≤

≤ ∫Ω

⟨

𝐴(𝑥,𝐷𝑢) − 𝐴(𝑥,𝐷𝑢𝑗), 𝐷𝑢 −𝐷𝑢𝑗
⟩

d𝑥 =

= ∫Ω

⟨

𝐴𝑗(𝑥,𝐷𝑢𝑗) − 𝐴(𝑥,𝐷𝑢𝑗), 𝐷𝑢 −𝐷𝑢𝑗
⟩

d𝑥 ≤

≤ 𝑘∫Ω

(

1 −
𝑏𝑗
𝑏

)

(𝜇2 + |𝐷𝑢𝑗|
2)

𝑝−1
2
|𝐷𝑢 −𝐷𝑢𝑗|𝑏 d𝑥 =

= 𝑘∫Ω
(𝑏 − 𝑏𝑗)(𝜇2 + |𝐷𝑢𝑗|

2)
𝑝−1
2
|𝐷𝑢 −𝐷𝑢𝑗| d𝑥.

Then from Young inequality we get

∫Ω
|𝐷𝑢 −𝐷𝑢𝑗|𝑏 d𝑥 ≤ 𝑐 ∫Ω

(𝑏 − 𝑏𝑗)
𝑝
𝑝−1 (𝜇2 + |𝐷𝑢𝑗|

2)
𝑝
2 d𝑥 ≤

≤ 𝑐
(

∫Ω
(𝑏 − 𝑏𝑗)𝑟 d𝑥

)
1
2
⋅
(

∫Ω
(𝜇2 + |𝐷𝑢𝑗|

2)
𝑛𝑝
𝑛−2 d𝑥

)
𝑛−2
2𝑛
,

(5.6.13)

where 𝑟 = 𝑝
𝑝−1

⋅ 2𝑛
𝑛+1

. The last term goes to zero as 𝑗 → +∞ thanks to (5.6.12), the embedding Sobolev Theorem
and the convergence of 𝑏𝑗 to 𝑏 in every Lebesgue space 𝐿𝑞 with 1 ≤ 𝑞 < 𝑛. Now, from (5.6.12), by using (5.6.11)
and (5.4.1), we obtain that {|𝐷𝑉𝜇(𝐷𝑢𝑗)|} is a bounded sequence in 𝐿2(𝑏𝑗 ,Ω). Then, by the semicontinuity of the
norm with respect to the weak convergence, we get the result.
Global integrability For 𝐺 ∈ 𝐿𝑝(𝑏,𝑄2𝑅;ℝ𝑁×𝑛), consider the problem

{

div𝐴𝜀(𝑥,𝐷𝑢𝜀) = div |𝐺𝜀|𝑝−2𝐺𝜀 in 𝑄+
2𝑅

𝑢𝜀 = 0 on 𝑄2𝑅 ∩ {𝑥𝑛 = 0}.

Lemma 5.6.3. If 𝛼2 > 0 is the constant, depending on 𝑝, 𝑛, 𝜆0 and 𝑘, in Theorem 5.1.2, if

𝒟𝐾 ≡ dist𝐿𝑛,∞(𝐾(𝑥), 𝐿∞) < 𝛼2
and if 𝐺 ∈ 𝐿𝑞(𝑏,𝑄2𝑅;ℝ𝑁×𝑛), for 𝑞 ∈ (𝑝, 𝑠), then

(

⨍𝑄+
𝑅

(𝜇2 + |𝐷𝑢𝜀|
2)

𝑞
2 𝑏𝜀 d𝑥

)
1
𝑞

≤ 𝑐

(

⨍𝑄+
2𝑅

(𝜇2 + |𝐷𝑢𝜀|
2)

𝑝
2 𝑏𝜀 d𝑥

)
1
𝑝

+

+ 𝑐

(

⨍𝑄+
2𝑅

(𝜇2 + |𝐺𝜀|
2)

𝑞
2 𝑏𝜀 d𝑥

)
1
𝑞

,

where 𝑐 = 𝑐(𝑝, 𝑛, 𝜆0, 𝑘,𝒟𝐾 , ‖𝑏‖∗).
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Proof. We proceed as in the proof of Theorem 5.1.2. We consider in Lemma 5.5.3 the comparison map defined as
the unique solution of the problem

{

div𝐴𝜀(𝑥,𝐷𝑤𝜀) = 0 in 3𝑄+

𝑤𝜀 − 𝑢𝜀 ∈ 𝑊 1,𝑝
0 (3𝑄+;ℝ𝑁 ).

Moreover 𝑀∗
𝑏𝜀
≡𝑀∗

𝑏𝜀,𝑄+
2𝑅

and we continue arguing as in [KM06, Lemma 7.5].
Now we consider the problem

{

div𝐴(𝑥,𝐷𝑢) = div |𝐺|𝑝−2𝐺 in Ω
𝑢 = 0 on 𝜕Ω.

we prove the following
Theorem 5.6.4. Let 𝑢 ∈ 𝑊 1,𝑝(𝑏,Ω,ℝ𝑁 ) be the solution of (5.6). There exists 𝛼4 > 0, depending on 𝑝, 𝑛, 𝜆0, 𝑘
and Ω, such that, if

𝒟𝐾 ≡ dist𝐿𝑛,∞(𝐾(𝑥), 𝐿∞) < 𝛼2
and 𝐺 ∈ 𝐿𝑞(𝑏,Ω;ℝ𝑁×𝑛), for 𝑞 ∈ (𝑝, 𝑠), then

(

⨍Ω
(𝜇2 + |𝐷𝑢|2)

𝑞
2 𝑏 d𝑥

)
1
𝑞
≤ 𝑐

(

⨍Ω
(𝜇2 + |𝐺|2)

𝑞
2 𝑏 d𝑥

)
1
𝑞
,

where 𝑐 = 𝑐(𝑝, 𝑛, 𝜆0, 𝑘,𝒟𝐾 , ‖𝑏‖∗,Ω).

Proof. Firstly, assuming 𝑏(𝑥) ∈ 𝐿∞(Ω), we consider for any 0 < 𝜀 < 1 the system
{

div𝐴𝜀(𝑥,𝐷𝑢𝜀) = div |𝐺𝜀|𝑝−2𝐺𝜀 in Ω
𝑢𝜀 = 0 on 𝜕Ω.

(5.6.14)

Following the lines of Theorem 5.6.2, by using Lemma 5.6.3, since 𝑢𝜀 solve the system (5.6.14), we obtain that

∫Ω
(𝜇2 + |𝐷𝑢𝜀|

2)
𝑞
2 𝑏𝜀 d𝑥 ≤ 𝑐 ∫Ω

(𝜇2 + |𝐺𝜀|
2)

𝑞
2 𝑏𝜀 d𝑥 ≤

≤ 𝑐 ∫Ω
(𝜇2 + |𝐺|2)

𝑞
2 𝑏 d𝑥,

(5.6.15)

where 𝑐 = 𝑐(𝑝, 𝑛, 𝑘, 𝜆0,𝒟𝐾 , ‖𝑏‖∗). Arguing as in (5.6.10) we get that 𝐷𝑢𝜀 → 𝐷𝑢 in 𝐿𝑝(𝑏,Ω;ℝ𝑁×𝑛). Then the
result follows by (5.6.15). In order to study the case 𝑏(𝑥) ∈ 𝐵𝑀𝑂, as in Theorem 5.6.2 we consider for any 𝑗 ∈ ℕ
the problems

{

div𝐴𝑗(𝑥,𝐷𝑢𝑗) = div |𝐺|𝑝−2𝐺 in Ω
𝑢𝑗 = 0 on 𝜕Ω,

and we apply (5.6.15) to get

∫Ω
(𝜇2 + |𝐷𝑢𝑗|

2)
𝑞
2 𝑏𝑗 d𝑥 ≤ 𝑐 ∫Ω

(𝜇2 + |𝐺|2)
𝑞
2 𝑏 d𝑥. (5.6.16)

As in Theorem 5.6.2 we get that 𝐷𝑢𝑗 → 𝐷𝑢 in 𝐿𝑝(𝑏,Ω;ℝ𝑁×𝑛). Indeed in (5.6.13) we have

∫Ω
|𝐷𝑢 −𝐷𝑢𝑗|𝑝𝑏 d𝑥 ≤ 𝑐 ∫Ω

(𝑏 − 𝑏𝑗)
𝑝
𝑝−1 ⋅ (𝜇2 + |𝐷𝑢𝑗|

2)
𝑝
2 d𝑥 ≤

≤ 𝑐
(

∫Ω
(𝑏 − 𝑏𝑗)

𝑝𝑟
𝑝−1 d𝑥

)
1
𝑟
⋅
(

∫Ω
(𝜇2 + |𝐷𝑢𝑗|

2)
𝑞
2 d𝑥

)
𝑝
𝑞
,

where 𝑟 = 𝑝
𝑝−𝑞

, and from (5.6.16) ‖𝐷𝑢𝑗 −𝐷𝑢‖ → 0 as 𝑗 → +∞. Now, from the semicontinuity of the norm with
respect to weak convergence, (5.6.16) gives the conclusion.
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5.7 A result on regular points

The aim of this section is to prove the following
Theorem 5.7.1. Let Ω ⊂ ℝ3 be a bounded domain with 𝐶2 boundary. Let 𝑢 ∈ 𝑢0 +𝑊 1,2(𝑏,Ω;ℝ𝑁 ) be a weak
solution to the Dirichlet problem

{

div𝐴(𝑥,𝐷𝑢) = 0 in Ω
𝑢 − 𝑢0 ∈ 𝑊 1,2

0 (𝑏,Ω;ℝ𝑁 )
(5.7.1)

under the assumptions (5.1.2), (5.1.3), (5.1.4) and (5.1.5) and with 𝑢0 ∈ 𝐶2
(

Ω;ℝ𝑁
)

. There exists �̃� > 0,
depending on 𝑝, 𝜆0, 𝜇, 𝑘, 𝑢0 and Ω, such that, if

𝒟𝐾 ∶= dist𝐿𝑛,∞(𝐾(𝑥), 𝐿∞) < �̃�,

then 1+𝜀-almost every boundary point is a regular point for 𝑢 for every 𝜀 > 0.

We recall the following
Proposition 5.7.2 ([Min03]). Let 𝑣 ∈ 𝑊 𝜗,𝑞

𝑙𝑜𝑐 (Ω;ℝ
𝑁 ) where 𝜗 ∈ (0, 1], 𝑞 > 1 and set

𝐴 ∶=

{

𝑥 ∈ Ω ∶ lim sup
𝜚↘0 ⨍𝐵𝜚(𝑥)

|

|

|

𝑣(𝑦) − (𝑣)𝐵𝜚(𝑥)
|

|

|

𝑞
d𝑦 > 0

}

,

𝐵 ∶=
{

𝑥 ∈ Ω ∶ lim sup
𝜚↘0

|

|

|

(𝑣)𝐵𝜚(𝑥)
|

|

|

= ∞
}

.

Then
dim(𝐴) ≤ 𝑛 − 𝜗𝑞 and dim(𝐵) ≤ 𝑛 − 𝜗𝑞.

Now we are ready to prove Theorem 5.7.1.
Proof of Theorem 5.7.1. For a fixed 𝛾 ∈ (0, 1) to be determined later, let

Ω𝐵
𝑢 ∶=

{

𝑥 ∈ 𝜕Ω ∶ 𝑢 ∈ 𝐶0,𝛾
(

Ω ∩ 𝐴;ℝ𝑁
)

for some neighborhood 𝐴 of 𝑥
}

.

We shall denote by Σ𝐵𝑢 ∶= 𝜕Ω ⧵Ω𝐵
𝑢 the set of singular boundary points of 𝑢; our aim is to prove that

dim(Σ𝐵𝑢 ) ≤ 1. (5.7.2)
A standard flattening-of-the-boundary procedure allows us to reduce the study of problems of the type (5.7.1) to
the study of those of the type

{

div𝐴(𝑥,𝐷𝑢) = 0 in 𝑄+
𝑑

𝑢 = 𝑢0 on Γ𝑑 ,
(5.7.3)

where Γ𝑅 ∶= 𝑄𝑅 ∩ {𝑥 ∈ ℝ3 ∶ 𝑥3 = 0} and 𝑄+
𝑅 ∶= 𝑄𝑅 ∩ {𝑥 ∈ ℝ3 ∶ 𝑥3 > 0}. We can locally flatten the

boundary around any point 𝑥0 ∈ 𝜕Ω, with a 𝐶2 chart (𝜚, 𝐶), whose regularity is determined by that of 𝜕Ω, in such
a way that 𝜚 ∶ 𝑄𝑑 → 𝐶 , 𝜚(𝑄+

𝑑 ) = Ω ∩ 𝐶 , 𝜚(Γ𝑑) = 𝜕Ω ∩ 𝐶 and 𝜚(0) = 𝑥0. The map �̃� ∶= 𝑢◦𝜚 is then a solution of
a problem of the type (5.7.3), for a new vector field �̃� ∶ 𝑄+

𝑑 × ℝ𝑁×𝑛 → ℝ𝑁×𝑛, satisfying the assumptions (5.1.2),
(5.1.3), (5.1.4) and (5.1.5) for new values of 𝑘 and 𝜆0. Since we can cover 𝜕Ω by a finite number of charts, these
new values of 𝑘 and 𝜆0 can be chosen independently of the chart (𝜚, 𝐶). It follows that 𝑦 ∈ Γ𝑑 is a regular point of
𝐷�̃� if and only if 𝜚(𝑦) ∈ 𝜕Ω is a regular point for𝐷𝑢. Since the Hausdorff dimension is invariant under bi-Lipschitz
transformations by Proposition 2.1.29, one checks by a standard covering argument that an estimate of Hausdorff
dimension of the set of singular boundary points in 𝜕Ω follows from an analogous estimate of the singular points
in Γ𝑑 for a solution of a problem of the type considered in (5.7.3). With a little abuse of notation, such a solution
will be denoted by the same letter 𝑢 and its set of singular boundary points by Σ𝐵𝑢 . Therefore it is sufficient to prove
that

dim(Σ𝐵𝑢 ∩ Γ𝑑) ≤ 1, (5.7.4)
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for a fixed 𝑑 > 0. The global estimate (5.7.2) is then recovered from the local estimates (5.7.4).
Moreover, a standard procedure allows to reduce the study of the Dirichlet problem (5.7.3) with non-zero Dirichlet
data 𝑢0 ∈ 𝐶2 to the homogeneous case 𝑢0 ≡ 0. Let𝑤 ∶= 𝑢−𝑢0 ∈ 𝑊 1,2

0 , then it is easy to check that𝑤 is a solution
of the homogeneous Dirichlet problem

{

div �̄�(𝑥,𝐷𝑤) = 0 in 𝑄+
𝑑

𝑤 = 0 on Γ𝑑 ,

where
�̄�(𝑥, 𝜉) ∶= 𝐴(𝑥,𝐷𝑢0(𝑥) + 𝜉)

for every (𝑥, 𝜉) ∈ Ω×ℝ𝑁×𝑛. The vector field �̄� satisfies the same growth conditions of the vector field𝐴, with new
constants depending on the initial ones and the data 𝑢0. Up to a further flattening of the domain, since 𝑢0 ∈ 𝐶2,
we can also assume that 𝐴(𝑥, 0) = 0. For this reason we can assume without loss of generality that 𝑢0 ≡ 0 and, by
a little abuse of notation, we denote with same letter 𝑢 such a solution.
Therefore it remains to prove (5.7.4). Let us denote Ω ∶= 𝑄+

𝑑 ∪ Γ𝑑 . We shall estimate
𝑈 (𝑥, 𝜚) = ⨍𝐵𝜚(𝑥)∩Ω

|

|

|

𝑢 − (𝑢)𝐵𝜚(𝑥0)∩Ω
|

|

|

2
𝑏 d𝑥.

The average is made with respect to the measure
𝑏(𝐸) ∶= ∫𝐸

𝑏 d𝑥,

that is, if 𝐸 ⊂ ℝ𝑛 and 𝑓 ∈ 𝐿1(𝑏, 𝐸), then
(𝑓 )𝐸 ∶= ⨍𝐸

𝑓𝑏 d𝑦 = 1
𝑏(𝐸) ∫𝐸

𝑓𝑏 d𝑦.

By weighted imbedding Theorem 2.2.11 and weighted Sobolev – Poincaré inequality 2.2.12 with 𝑘 = 1 and 𝑝 = 2,
if 𝜚 < 𝑅

4 by Proposition 5.4.1 we have

∫𝐵𝜚(𝑥)∩Ω
|

|

|

𝑢 − (𝑢)𝐵𝜚(𝑥0)∩Ω
|

|

|

2
𝑏 d𝑥 ≤ 𝑐(‖𝑏‖∗)𝜚2 ∫𝐵𝜚(𝑥)∩Ω

|∇𝑢|2𝑏 d𝑥

≤ 𝑐(‖𝑏‖∗)𝜚4 ∫𝐵𝜚(𝑥)∩Ω
|∇2𝑢|2𝑏 d𝑥 ≤ 𝑐(‖𝑏‖∗)𝜚4 ∫𝐵𝑅

4
(𝑥)∩Ω

|∇2𝑢|2𝑏 d𝑥

≤ 𝑐(𝑝, 𝑘, 𝜆0, 𝑅, ‖𝑏‖∗,𝒟𝐾 )𝜚4 ∫𝐵𝑅
2
(𝑥)∩Ω

|∇𝑢|2𝑏 d𝑥

≤ 𝑐(𝑝, 𝑘, 𝜆0, 𝑅, ‖𝑏‖∗,𝒟𝐾 )
( 𝜚
𝑅

)4

∫𝐵𝑅
2
(𝑥)∩Ω

|∇𝑢|2𝑏 d𝑥.

By (5.2.14) with 𝜀 = 0 we deduce

∫𝐵𝜚(𝑥)∩Ω
|

|

|

𝑢 − (𝑢)𝐵𝜚(𝑥0)∩Ω
|

|

|

2
𝑏 d𝑥 ≤ 𝑐

(

𝑝, 𝑘, 𝜆0, 𝑅, ‖𝑏‖∗,𝒟𝐾
)

( 𝜚
𝑅

)4

∫𝐵𝑅(𝑥)∩Ω
|

|

|

𝑢 − (𝑢)𝐵𝑅(𝑥0)∩Ω
|

|

|

2
𝑏 d𝑥.

In particular, if 𝑈 (𝑥0, 𝑅) < �̃� with 𝑥0 ∈ Γ𝑑 then
𝑈 (𝑥, 𝜚) ≤ 𝑐

(

𝑝, 𝑘, 𝜆0, 𝑅, ‖𝑏‖∗,𝒟𝐾
)

�̃�
( 𝜚
𝑅

)4

for every 𝑥 in a neighborhood 𝐵 of 𝑥0, so that by [Cam63, Teorema I.2] 𝑢 is Hölder-continuous in 𝐵 with a suitable
exponent 𝛾 . By construction we have that

Σ𝐵𝑢 ⊂

{

𝑥 ∈ Ω ∶ lim inf
𝜚↘0 ⨍𝐵𝜚(𝑥)∩Ω

|

|

|

𝑢(𝑦) − (𝑢)𝐵𝜚(𝑥)∩Ω
|

|

|

2
𝑏 d𝑦 > 0 or lim sup

𝜚↘0

|

|

|

(𝑢)𝐵𝜚(𝑥)∩Ω
|

|

|

= ∞

}

. (5.7.5)

By (5.7.5) the conclusion (5.7.4) easily follows. Indeed, since 𝑢 ∈ 𝑊 1,2(Ω,ℝ𝑁 ) then we use Proposition 5.7.2 to
deduce that

dim
(

Σ𝐵𝑢 ∩ Γ𝑑
)

≤ 𝑛 − 2 = 1. (5.7.6)
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Appendix

In this section we prove (5.4.3). Assume for the moment that 𝐴(𝑥, 𝜂) ≥ 0 and 𝐴(𝑦, 𝜂) ≥ 0. We note that
• If 𝑏(𝑥) ≤ 𝑗 and 𝑏(𝑦) ≤ 𝑗, then

|𝐴𝑗(𝑥, 𝜂) − 𝐴𝑗(𝑦, 𝜂)| = |𝐴(𝑥, 𝜂) − 𝐴(𝑦, 𝜂)| ≤

≤ |𝑥 − 𝑦| [𝐾(𝑥) +𝐾(𝑦)] (𝜇2 + |𝜂|2)
𝑝−1
2 ≤

≤ (𝑘 + 1) |𝑥 − 𝑦| [𝐾(𝑥) +𝐾(𝑦)] (𝜇2 + |𝜂|2)
𝑝−1
2 .

• If 𝑏(𝑦) ≥ 𝑏(𝑥) > 𝑗, then
− (𝑘 + 1) |𝑥 − 𝑦| [𝐾(𝑥) +𝐾(𝑦)] (𝜇2 + |𝜂|2)

𝑝−1
2 ≤

≤ −
𝑗
𝑏(𝑦)

|𝑥 − 𝑦| [𝐾(𝑥) +𝐾(𝑦)] (𝜇2 + |𝜂|2)
𝑝−1
2 ≤

≤ 𝑗
𝑏(𝑦)

[𝐴(𝑥, 𝜂) − 𝐴(𝑦, 𝜂)] ≤ 𝐴𝑗(𝑥, 𝜂) − 𝐴𝑗(𝑦, 𝜂) =

=
𝑗
𝑏(𝑥)

[𝐴(𝑥, 𝜂) − 𝐴(𝑦, 𝜂)] +
(

𝑗
𝑏(𝑥)

−
𝑗
𝑏(𝑦)

)

𝐴(𝑦, 𝜂) ≤

≤ 𝑗
𝑏(𝑥)

|𝑥 − 𝑦| [𝐾(𝑥) +𝐾(𝑦)](𝜇2 + |𝜂|2)
𝑝−1
2 +

+
𝑗
𝑏(𝑥)

𝑘 |𝑥 − 𝑦| [𝐾(𝑥) +𝐾(𝑦)](𝜇2 + |𝜂|2)
𝑝−1
2 ≤

≤ (𝑘 + 1) |𝑥 − 𝑦| [𝐾(𝑥) +𝐾(𝑦)] (𝜇2 + |𝜂|2)
𝑝−1
2 .

• If 𝑏(𝑥) > 𝑏(𝑦) > 𝑗, then
− (𝑘 + 1) |𝑥 − 𝑦| [𝐾(𝑥) +𝐾(𝑦)] (𝜇2 + |𝜂|2)

𝑝−1
2 ≤

≤ −
𝑗
𝑏(𝑥)

(𝑘 + 1) |𝑥 − 𝑦| [𝐾(𝑥) +𝐾(𝑦)] (𝜇2 + |𝜂|2)
𝑝−1
2 =

= −
𝑗
𝑏(𝑥)

|𝑥 − 𝑦| [𝐾(𝑥) +𝐾(𝑦)] (𝜇2 + |𝜂|2)
𝑝−1
2 +

−
𝑗
𝑏(𝑥)

𝑘 |𝑥 − 𝑦| [𝐾(𝑥) +𝐾(𝑦)] (𝜇2 + |𝜂|2)
𝑝−1
2 ≤

≤ 𝑗
𝑏(𝑥)

[𝐴(𝑥, 𝜂) − 𝐴(𝑦, 𝜂)] − 𝑗
(

𝑏(𝑥) − 𝑏(𝑦)
𝑏(𝑦)𝑏(𝑥)

)

𝐴(𝑦, 𝜂) =

= 𝐴𝑗(𝑥, 𝜂) − 𝐴𝑗(𝑦, 𝜂) ≤
𝑗
𝑏(𝑦)

[𝐴(𝑥, 𝜂) − 𝐴(𝑦, 𝜂)] ≤

≤ (𝑘 + 1) |𝑥 − 𝑦| [𝐾(𝑥) +𝐾(𝑦)] (𝜇2 + |𝜂|2)
𝑝−1
2 .

• If 𝑏(𝑦) > 𝑗 ≥ 𝑏(𝑥) then
− (𝑘 + 1) |𝑥 − 𝑦| [𝐾(𝑥) +𝐾(𝑦)] (𝜇2 + |𝜂|2)

𝑝−1
2 ≤

≤ −
𝑗
𝑏(𝑦)

|𝑥 − 𝑦| [𝐾(𝑥) +𝐾(𝑦)] (𝜇2 + |𝜂|2)
𝑝−1
2 ≤

≤ 𝑗
𝑏(𝑦)

[𝐴(𝑥, 𝜂) − 𝐴(𝑦, 𝜂)] ≤ 𝐴𝑗(𝑥, 𝜂) − 𝐴𝑗(𝑦, 𝜂) =

= 𝐴(𝑥, 𝜂) − 𝐴(𝑦, 𝜂) +
(

1 −
𝑗
𝑏(𝑦)

)

𝐴(𝑦, 𝜂) ≤

≤ |𝑥 − 𝑦| [𝐾(𝑥) +𝐾(𝑦)] (𝜇2 + |𝜂|2)
𝑝−1
2 +

(

𝑏(𝑦) − 𝑏(𝑥)
𝑏(𝑦)

)

𝑘𝑏(𝑦)(𝜇2 + |𝜂|2)
𝑝−1
2

≤ (𝑘 + 1)|𝑥 − 𝑦| [𝐾(𝑥) +𝐾(𝑦)] (𝜇2 + |𝜂|2)
𝑝−1
2 .
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• If 𝑏(𝑥) > 𝑗 ≥ 𝑏(𝑦) then

− (𝑘 + 1) |𝑥 − 𝑦| [𝐾(𝑥) +𝐾(𝑦)] (𝜇2 + |𝜂|2)
𝑝−1
2 ≤

≤ −
𝑗
𝑏(𝑥)

|𝑥 − 𝑦| [𝐾(𝑥) +𝐾(𝑦)] (𝜇2 + |𝜂|2)
𝑝−1
2 +

−
𝑗
𝑏(𝑥)

𝑘 |𝑥 − 𝑦| [𝐾(𝑥) +𝐾(𝑦)] (𝜇2 + |𝜂|2)
𝑝−1
2 ≤

≤ −
𝑗
𝑏(𝑥)

|𝑥 − 𝑦| [𝐾(𝑥) +𝐾(𝑦)] (𝜇2 + |𝜂|2)
𝑝−1
2 +

−
𝑏(𝑦)
𝑏(𝑥)

𝑘|𝑥 − 𝑦| [𝐾(𝑥) +𝐾(𝑦)] (𝜇2 + |𝜂|2)
𝑝−1
2 ≤

≤ 𝑗
𝑏(𝑥)

[𝐴(𝑥, 𝜂) − 𝐴(𝑦, 𝜂)] −
(

𝑏(𝑥) − 𝑏(𝑦)
𝑏(𝑥)

)

𝐴(𝑦, 𝜂) =

= 𝐴𝑗(𝑥, 𝜂) − 𝐴𝑗(𝑦, 𝜂) ≤ [𝐴(𝑥, 𝜂) − 𝐴(𝑦, 𝜂)] ≤

≤ (𝑘 + 1) |𝑥 − 𝑦| [𝐾(𝑥) +𝐾(𝑦)] (𝜇2 + |𝜂|2)
𝑝−1
2 .

The proof of the remaining cases is analogous, therefore (5.4.3) is proved.
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