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Abstract. The aim of this paper is to investigate the asymptotic behavior of the minimizers
to the following problems related to the fractional p−Laplacian with nonhomogeneous term
h(u) in the presence of an obstacle ψ in a bounded Lipschitz domain Ω ⊂ RN ,

min

{
1

2

∫
Ω×Ω

|u(x)− u(y)|p

|x− y|αp
+

∫
Ω

h(u)p : u ∈W s,p(Ω), u ≥ ψ on Ω̄, u = g on ∂Ω

}
.

First, we show the convergence of the solutions to certain limit as p → ∞ and identify the
limit equation. More precisely, we show that the limit problem is closely related to the
infinity fractional Laplacian. In the particular case when h is increasing, we study the Hölder
regularity of any solution to the limit problem and we extend the existence result to the case
when h is singular.

1. Introduction

Let Ω be a bounded open set in RN and g be a α−Hölder boundary datum on ∂Ω. From
[1], it is well known that if up minimizes the functional

Ep[u] :=

∫
Ω×Ω

|u(x)− u(y)|p

|x− y|αp
dx dy

among all functions u in the fractional Sobolev space W s,p(Ω) such that up = g on ∂Ω (with

s = α − N
p ), then up → u as p → ∞ where the limit function u solves the following equation

(which is usually referred to as the infinity fractional Laplacian):

L∞u := L+
∞u+ L−

∞u = 0,

where

L+
∞u = sup

y∈Ω, y ̸=x

u(y)− u(x)

|y − x|α
and L−

∞u = inf
y∈Ω, y ̸=x

u(y)− u(x)

|y − x|α
.

In fact, one of the most important motivations to analyse this kind of problems is the α−Hölder
extension of the function g ∈ C0,α(∂Ω). In fact, one can show that the limit function u is the
optimal Hölder extension to Ω̄ of the boundary datum g, i.e. the Hölder seminorm for u in Ω
is always less than or equal to the one for the boundary datum given on ∂Ω.

Given a continuous obstacle ψ defined on Ω̄, the authors in [7] follow the work in [1] and
prove the existence of a super infinity fractional harmonic function constrained to lie above the
obstacle and to take the datum on ∂Ω. More precisely, they show that the following obstacle
problem has a viscosity solution:

(1.1)


L∞u = 0 in {x ∈ Ω : u(x) > ψ(x)},
L∞u ≤ 0 in {x ∈ Ω : u(x) = ψ(x)},
u(x) ≥ ψ(x) if x ∈ Ω,

u(x) = g(x) if x ∈ ∂Ω.
1
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In order to have a solution for this problem (1.1), it is necessary that ψ(x) ≤ g(x), for all
x ∈ ∂Ω. So, in the sequel, we will assume the following natural condition on the obstacle ψ:

ψ ≤ g on ∂Ω.

The idea in [7] follows exactly the one in [1], where the authors approximate Problem (1.1)
with a sequence of fractional p−Laplacian operators. To be more precise, they consider the
following minimization problem:

(1.2) min

{
Ep[u] : u ∈W s,p(Ω), u ≥ ψ in Ω̄, u = g on ∂Ω

}
.

But, it is not difficult to check that the Euler-Lagrange equation associated to this functional
is

(1.3)

{
Lpup = 0 in {up > ψ},
Lpup ≤ 0 in {up = ψ},

where

Lpu :=

∫
Ω

(
|u(x)− u(y)|

|x− y|α

)p−1 1

|x− y|α
u(y)− u(x)

|u(y)− u(x)|
dy.

Let us denote by L+
p and L−

p the positive and negative parts of Lp, respectively. So, one has

L+
p up = L−

p up in {up > ψ}.

Hence,(∫
Ω

(
[up(x)− up(y)]+

|x− y|α

)p−1 1

|x− y|α
dy

) 1
p−1

=

(∫
Ω

(
[up(x)− up(y)]−

|x− y|α

)p−1 1

|x− y|α
dy

) 1
p−1

,

where [z]± := max{±z, 0}. Letting p goes to ∞, we may show that up to a subsequence
up → u. Formally, we get that

L+
∞u = −L−

∞u

and so, L∞u = 0 in {u > ψ}. We note that this limit procedure only works when the right
hand side in (1.3) is zero.

In this paper, we consider the minimization problem (1.2) but in the presence of an extra
nonhomogeneous term:

(1.4) min

{
Ep[u]

2
+

∫
Ω
h(u)p : u ∈W s,p(Ω), u ≥ ψ on Ω̄, u = g on ∂Ω

}
,

where h is a given C1 function; in the sequel, we will denote by f the derivative of h. The
main goal of this paper is to study the limit as p → ∞ of the minimizers up to (1.4), prove
their convergence up to a subsequence to a function u, and to identify the limit problem for
u. In fact, we may assume that the limit function u solves the following problem:

(1.5)

{
L∞u = h(u) in {u > ψ},
L∞u ≤ h(u) in {u = ψ}.

However, we will see that this is not the case and the limit equation is different, so the presence
of the nonhomogeneous term makes more delicate the analysis of our problem. This will also
depends on the monotonicity of h.
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In [2], the authors characterize the limit as p→ ∞ of the branches of solutions to the local
p−Laplacian:

−∇ · [|∇u|p−2∇u] = λuγ(p), u > 0,

with λ > 0 and limp→∞
γ(p)
p−1 = γ⋆ < 1. They show that the limit set is a curve of positive

viscosity solutions of the equation

min{−∆∞u, |∇u| − Λuγ⋆} = 0,

where ∆∞u := D2u∇u · ∇u is the infinity Laplacian operator and Λ > 0. On the other hand,
in [5], the problem of minimizing the fractional Rayleigh quotient has been considered

(1.6) min

{∫∫
RN×RN

|u(x)−u(y)|p
|x−y|αp∫

RN up
: u ∈W s,p(Ω), u = 0 on ∂Ω

}
.

This problem leads to an interesting eigenvalue problem with the non-local Euler-Lagrange
equation:

−Lpu = λ|u|p−2u,

where the operator Lp is defined exactly as Lp but with integration set RN instead of Ω. The
limit equation takes the form

max{L∞u,L−
∞u+ λu} = 0 in Ω.

In addition, an equivalent nonlocal version for the fractional p−Laplacian was studied in [3],
where the authors were interested in describing the behaviour of the solutions to the following
Dirichlet problem as p→ ∞:

(1.7)

{
−Lpu = |u|γ(p)−1u in Ω,

u = g on RN\Ω,

Inspired by [5], the authors of [3] prove that the limit problem of (1.7) is the following:

(1.8)

{
min{−L∞u,−L−

∞u− |u|γ⋆} = 0 in Ω,

u = g on RN\Ω.

2. Preliminaries

In order to study the minimization problem (1.4), we recall some basic theory of fractional
Sobolev spaces. Assume Ω is a Lipschitz domain. Then, we define the fractional Sobolev space
W s,p(Ω) with 0 < s < 1 and 1 < p <∞ as follows:

W s,p(Ω) :=

{
u ∈ Lp(Ω), [u]ps,p :=

∫∫
Ω×Ω

|u(x)− u(y)|p

|x− y|N+sp
<∞

}
.

We may see W s,p(Ω) as an intermediary Banach space between Lp(Ω) and W 1,p(Ω), endowed
with the natural norm

||u||W s,p(Ω) =

[
||u||pp + [u]ps,p

] 1
p

.

In order to obtain a Poincaré inequality in W s,p
0 (Ω) (where the space W s,p

0 (Ω) is defined as the
closure of C∞

0 (Ω) with respect to the norm || · ||W s,p(Ω)) valid for p large, we consider again
the fractional Rayleigh quotient:

λp = min (1.6).
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In [5], the authors show that

(λp)
1
p → 1

Rα
,

with R = max{dist(x, ∂Ω) : x ∈ Ω} being the radius of the largest ball inscribed in Ω. As a
consequence, we have

||u||Lp(Ω) ≤ C(R,α)

(∫∫
RN×RN

|u(x)− u(y)|p

|x− y|αp

) 1
p

.

But, ∫∫
RN×RN

|u(x)− u(y)|p

|x− y|αp
=

∫∫
Ω×Ω

|u(x)− u(y)|p

|x− y|αp
+ 2

∫∫
Ω×(RN\Ω)

|u(x)|p

|x− y|αp
.

However, ∫∫
Ω×(RN\Ω)

|u(x)|p

|x− y|αp
=

∫
Ω
|u(x)|p

(∫
{z:x+z∈RN\Ω}

1

|z|αp
dz

)
dx.

Using polar coordinates, one has∫
{z:x+z∈RN\Ω}

1

|z|αp
dz =

∫
SN−1

∫
{r>0:x+rw/∈Ω}

1

rαp−N+1
dr dw.

For w ∈ SN−1, we define

dw,Ω(x) := inf{r > 0 : x+ rw /∈ Ω}.
Hence, we have∫

{z:x+z∈RN\Ω}

1

|z|αp
dz ≤

∫
SN−1

∫ ∞

dw,Ω(x)

1

rαp−N+1
dr dw =

1

αp−N

∫
SN−1

1

dw,Ω(x)αp−N
dw.

Thus, we get∫∫
Ω×(RN\Ω)

|u(x)|p

|x− y|αp
≤ 1

αp−N

∫
Ω
|u(x)|p

(∫
SN−1

1

dw,Ω(x)αp−N
dw

)
dx.

Thanks to [6, Theorem 1.2], if sp > 1 then we have the following fractional Hardy-type
inequality:∫

Ω
|u(x)|p

(∫
SN−1

1

dw,Ω(x)αp−N
dw

)
dx ≤ C(N, p, α)

∫∫
Ω×Ω

|u(x)− u(y)|p

|x− y|αp
.

Finally, this yields that

||u||Lp(Ω) ≤ C

(∫∫
Ω×Ω

|u(x)− u(y)|p

|x− y|αp

) 1
p

, for all u ∈W s,p
0 (Ω).

On the other hand, one can show certain regularity properties for functions in W s,p(Ω) when
sp > N . From [8, Theorem 8.2], there exists a constant C < ∞ depending only on s, p, N
such that

(2.1) ||u||C0,β(Ω̄) ≤ C[u]s,p, for all u ∈W s,p
0 (Ω),

where β = s− N
p and

||u||C0,β(Ω̄) = ||u||L∞(Ω) + sup

{
|u(x)− u(y)|

|x− y|β
: x, y ∈ Ω̄, x ̸= y

}
.
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Since we are interested in what happens when p → ∞, we want to diminish the dependence
on p. Thus, it is useful to note that the constant C can be chosen independently of p such
that the following inequality holds:

(2.2) ||u||L∞(Ω) ≤ C[u]s,p, for all u ∈W s,p
0 (Ω).

3. The nonlocal fractional p−Laplacian with obstacle

3.1. Existence & weak solution. Let hp : R 7→ R+ be a C1 function and set fp = h′p. We
consider the minimization problem:

(3.1) min

{
1

2p

∫∫
Ω×Ω

|u(x)− u(y)|p

|x− y|αp
+

∫
Ω
hp(u) : u ∈W s,p(Ω), u ≥ ψ on Ω̄, u = g on ∂Ω

}
,

where αp = sp +N . Assume that there is an extension g̃ ∈ W s,p(Ω) such that g̃ = g on ∂Ω.
For simplicity of notation, we will simply call it g instead of g̃.

Proposition 3.1. Assume α > 2N
p . Then, there exists a minimizer up for Problem (3.1).

Moreover, up is a weak solution to the following equation:{
Lpu = fp(u) in {u > ψ},
Lpu ≤ fp(u) in {u = ψ},

where

Lpu =

∫
Ω

|u(x)− u(y)|p−2

|x− y|αp
[u(y)− u(x)] dy.

Proof. Let (un)n be a minimizing sequence in Problem (3.1). So, there will be a constant
C <∞ such that

1

2p

∫∫
Ω×Ω

|un(x)− un(y)|p

|x− y|αp
+

∫
Ω
hp(un) ≤ C, for all n.

Since hp ≥ 0, this implies that ∫∫
Ω×Ω

|un(x)− un(y)|p

|x− y|αp
≤ C.

But, we have
||un − g||C0,β(Ω̄) ≤ C[un − g]s,p ≤ C([un]s,p + [g]s,p).

This yields that (un)n is bounded inW s,p(Ω) and so, up to a subsequence, un ⇀ up inW
s,p(Ω)

and so, un → u uniformly in C0,β(Ω̄) with β = α− 2N
p . By Fatou’s Lemma, this yields that∫∫

Ω×Ω

|up(x)− up(y)|p

|x− y|αp
=

∫∫
Ω×Ω

lim inf
n

[
|un(x)− un(y)|p

|x− y|αp

]
≤ lim inf

n

∫∫
Ω×Ω

|un(x)− un(y)|p

|x− y|αp

and ∫
Ω
hp(up) ≤ lim inf

n

∫
Ω
hp(un).

So, we get that

1

2p

∫∫
Ω×Ω

|up(x)− up(y)|p

|x− y|αp
+

∫
Ω
hp(up) ≤ lim inf

n

[
1

2p

∫∫
Ω×Ω

|un(x)− un(y)|p

|x− y|αp
+

∫
Ω
hp(un)

]
.

Yet, up ≥ ψ on Ω̄ and up = g on ∂Ω. Hence, up minimizes (3.1). Now, we show the second
part. Let ϕ be a smooth function such that supp(ϕ) ⊂ {up > ψ}. Thanks to the continuity
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of up, it is clear that up + tϕ is admissible in (3.1), for all t ∈ R small enough. From the
minimality of up, we have

1

2p

∫∫
Ω×Ω

|up(x)− up(y)|p

|x− y|αp
+

∫
Ω
hp(up)

≤ 1

2p

∫∫
Ω×Ω

|up(x) + tϕ(x)− up(y)− tϕ(y)|p

|x− y|αp
+

∫
Ω
hp(up + tϕ) := Jϕ(t).

So, Jϕ has a minimum at t = 0. Therefore, we have J ′
ϕ(0) = 0 and so, we get the following:

1

2

∫∫
Ω×Ω

|up(x)− up(y)|p−1

|x− y|αp
[up(x)− up(y)]

|up(x)− up(y)|
[ϕ(x)− ϕ(y)] +

∫
Ω
fp(up)ϕ = 0.

By symmetry, this yields that

−
∫∫

Ω×Ω

|up(x)− up(y)|p−2

|x− y|αp
[up(y)− up(x)]ϕ(x) +

∫
Ω
fp(up)ϕ = 0.

Finally, we note that for every ϕ ∈ C∞
0 (Ω) such that ϕ ≥ 0, the function up + tϕ is admissible

in (3.1), for all t ∈ R+. Hence, J ′
ϕ(0) ≥ 0 and so, one has

−
∫∫

Ω×Ω

|up(x)− up(y)|p−2

|x− y|αp
[up(y)− up(x)]ϕ(x) +

∫
Ω
fp(up)ϕ ≥ 0.

Then,

−
∫
Ω

|up(x)− up(y)|p−2

|x− y|αp
[up(y)− up(x)] dy + fp(up) ≥ 0 in {up = ψ}. □

3.2. Viscosity solution. The solutions in the previous subsection 3.1 were defined as weak
solutions to the Euler-Lagrange equation in the usual way with test functions under the integral
sign. In this subsection, we will see that they are also viscosity solutions of the equation

(3.2) Lpu = fp(u)

inside the noncoincidence set {up > ψ} while it is a viscosity supersolution in the coincidence
set {up = ψ}. We refer the reader to the book [4] for an introduction to the theory of viscosity
solutions. Here, we give the definition of a viscosity supersolution (resp. subsolution).

Definition 3.1. We will say that u is a viscosity supersolution in Ω of the equation (3.2) if
the following holds: whenever x0 ∈ Ω and ϕ ∈ C1(Ω) ∩ C(Ω̄) are such that

ϕ(x0) = u(x0) and ϕ(x) ≤ u(x) for all x ∈ Ω̄,

then we have

min{−Lpϕ(x0) + fp(ϕ(x0)), ϕ(x0)− ψ(x0)} ≥ 0.

The requirement for a viscosity subsolution is symmetric: the test function is touching from
above and the inequality is reversed. Finally, a viscosity solution is defined as being both a
viscosity supersolution and a viscosity subsolution.

In order to prove that weak solutions are viscosity solutions we need the following comparison
principle (the proof follows in an analogous way the one in [5]):
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Proposition 3.2. Assume hp is increasing on R. Let u and v be two continuous functions
belonging to W s,p(Ω). Assume that −Lpu+hp(u) < −Lpv+hp(v) in the weak sense on B ⊂ Ω.
If u ≤ v on Ω̄\B, then u ≤ v in Ω.

Proof. Assume [u − v]+ ̸= 0 on B. Since [u − v]+ = 0 on Ω̄\B, then [u − v]+ ∈ W s,p
0 (Ω) and

so, one has∫∫
B×Ω

|v(x)− v(y)|p−2

|x− y|αp
[v(x)− v(y)][u− v]+(x) +

∫
B
hp(v(x))[u− v]+(x)

>

∫∫
B×Ω

|u(x)− u(y)|p−2

|x− y|αp
[u(x)− u(y)][u− v]+(x) +

∫
B
hp(u(x))[u− v]+(x).

Hence,

1

2

∫∫
B×Ω

|v(x)− v(y)|p−2

|x− y|αp
[v(x)− v(y)]([u− v]+(x)− [u− v]+(y)) +

∫
B
hp(v(x))[u− v]+(x)

>
1

2

∫∫
B×Ω

|u(x)− u(y)|p−2

|x− y|αp
[u(x)− u(y)] ([u− v]+(x)− [u− v]+(y)) +

∫
B
hp(u(x))[u− v]+(x).

Since h is increasing, we get

(3.3)
1

2

∫∫
B×Ω

1

|x− y|αp
Φ1(x, y) ([u− v]+(x)− [u− v]+(y))

>

∫
B
(hp(u(x))− hp(v(x)))[u− v]+(x) ≥ 0,

where

Φ1(x, y) =

[
|v(x)− v(y)|p−2[v(x)− v(y)]− |u(x)− u(y)|p−2[u(x)− u(y)]

]
.

For a, b ∈ R, one has

|b|p−2b−|a|p−2a =

∫ 1

0

d

dt
[|a+t(b−a)|p−2(a+t(b−a))] = (p−1)

(∫ 1

0
|a+t(b−a)|p−2 dt

)
[b−a].

Then,
Φ1(x, y)

= (p− 1)

(∫ 1

0
|u(x)− u(y) + t(v(x)− v(y)− u(x) + u(y))|p−2 dt

)
[v(x)− v(y)− u(x) + u(y)].

So, we get
Φ1(x, y)[[u− v]+(x)− [u− v]+(y)]

= Φ2(x, y)[v(x)− v(y)− u(x) + u(y)][[u− v]+(x)− [u− v]+(y)]

where

Φ2(x, y) = (p− 1)

(∫ 1

0
|u(x)− u(y) + t(v(x)− v(y)− u(x) + u(y))|p−2 dt

)
≥ 0.

But,
[v(x)− v(y)− u(x) + u(y)][[u− v]+(x)− [u− v]+(y)]

= −[u(x)− v(x)− (u(y)− v(y))][[u− v]+(x)− [u− v]+(y)]

= −
[
[u− v]2+(x) + [u− v]2+(y)− Φ3(x, y)

]
,
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where
Φ3(x, y) = [u(x)− v(x)][u(y)− v(y)]+ + [u(y)− v(y)][u(x)− v(x)]+.

For simplicity of notation, we set s± := [u(x) − v(x)]± and t± := [u(y) − v(y)]±. Then, we
have

Φ3(x, y) = [s+ − s−]t+ + [t+ − t−]s+ = 2s+t+ − s−t+ − t−s+.

Hence,
[v(x)− v(y)− u(x) + u(y)][[u− v]+(x)− [u− v]+(y)]

= −[s2+ + t2+ − 2s+t+ + s−t+ + t−s+] = −[(s+ − t+)
2 + s−t+ + t−s+] ≤ 0.

Thus, we get that
Φ1(x, y)[[u− v]+(x)− [u− v]+(y)] ≤ 0.

Finally, we infer that∫∫
B×Ω

1

|x− y|αp
Φ1(x, y) ([u− v]+(x)− [u− v]+(y)) ≤ 0,

which is in contradiction with the strict inequality in (3.3). Hence, [u− v]+ = 0 and so, u ≤ v
on B. □

Proposition 3.3. Assume α ≤ 1 − 1
p . The weak solution up of Problem (3.1) is a viscosity

solution to the equation:

(3.4) Lpu = fp(u) in {u > ψ}.
In addition, up is a viscosity supersolution to the equation (3.2) on the coincidence set S :=
{x ∈ Ω : u(x) = ψ(x)}.

Proof. Assume up is not a viscosity subsolution in {up > ψ}, i.e. there is a point x0 ∈ {up > ψ}
and a test function ϕ ∈ C1(Ω) ∩ C(Ω) such that up ≤ ϕ on Ω̄, ϕ(x0) = up(x0) and

Lpϕ(x0)− fp(ϕ(x0)) < 0.

Thanks to our assumption that α ≤ 1− 1
p , it is easy to see that x 7→ Lpϕ(x) is continuous on

Ω. Hence, there is a r > 0 small enough such that

Lpϕ(x)− fp(ϕ(x0)) < 0 on B(x0, r).

Let η be a smooth cutoff function such that η(x0) = 1 and η = 0 on Ω\B(x0, r). Then, we
define

ϕε := ϕ− εη.

Clearly, ϕε = ϕ on Ω\B(x0, r). Moreover, one has

|ϕε(x)−ϕε(y)|p−2[ϕε(x)−ϕε(y)] = |ϕ(x)−ϕ(y)−ε[η(x)−η(y)]|p−2[ϕ(x)−ϕ(y)−ε[η(x)−η(y)]].

Yet, ∣∣∣∣|ϕε(x)− ϕε(y)|p−2[ϕε(x)− ϕε(y)]− |ϕ(x)− ϕ(y)|p−2[ϕ(x)− ϕ(y)]

∣∣∣∣
=

∣∣∣∣(p− 1)

(∫ 1

0
|ϕ(x)− ϕ(y)− εt[η(x)− η(y)]|p−2 dt

)
[−ε[η(x)− η(y)]]

∣∣∣∣
≤ Cε|x− y|p−1.

Then, we get
|Lpϕε(x)− Lpϕ(x)| ≤ Cε.
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We recall that up and f are both continuous. For ε > 0 small enough, we have then

Lpϕε(x)− fp(up(x)) < 0 on B(x0, r).

But, ϕε = ϕ ≥ up on Ω\B(x0, r). By Proposition 3.2, we infer that up ≤ ϕε in B(x0, r). In
particular, up(x0) = ϕ(x0) ≤ ϕε(x0) = ϕ(x0)− ε, which is a contradiction. This concludes the
proof that up is a viscosity subsolution in {up > ψ}.

The proof that up is a viscosity supersolution in Ω is similar and so, we omit some details.
Assume by contradiction that there is a point x0 ∈ Ω and a test function ϕ ∈ C1(Ω) ∩ C(Ω̄)
such that ϕ ≤ up on Ω̄ with equality at x0 and

Lpϕ(x0)− fp(ϕ(x0)) > 0.

Now, set ϕε := ϕ + εη, where η is always a cutoff function such that η(x0) = 1 and η = 0
outside B(x0, r). Then, we have ϕε = ϕ on Ω\B(x0, r). In addition, one can show as before
that for every ε > 0 small enough,

Lpϕε(x)− fp(up(x)) > 0 on B(x0, r).

Again, by Proposition 3.2, we infer that up ≥ ϕε in B(x0, r), which is a contradiction. □

4. The limit problem as p→ ∞

In this section, we show that up to a subsequence the solutions up to (1.4) converge uniformly
to a function u as p goes to infinity. Moreover, we will be interested in identifying the limit
problem verified by u. First of all, let us remember the definition of the infinity fractional
Laplacian

L∞u = sup
y∈Ω, y ̸=x

u(y)− u(x)

|y − x|α
+ inf

y∈Ω, y ̸=x

u(y)− u(x)

|y − x|α
.

We decompose this operator as follows:

L+
∞u = sup

y∈Ω, y ̸=x

u(y)− u(x)

|y − x|α
and L−

∞u = inf
y∈Ω, y ̸=x

u(y)− u(x)

|y − x|α
.

In the sequel, we will need the following technical result where the proof can be found in [1,
Lemma 6.5].

Lemma 4.1. Assume ϕ ∈ C1(Ω). Let {xp}p ⊂ Ω be such that xp → x0. We define

fp(y) =
ϕ(y)− ϕ(xp)

|y − xp|α
and f(y) =

ϕ(y)− ϕ(x0)

|y − x0|α
.

Then, we have

lim
p→∞

∣∣∣∣∣∣∣∣ [fp]±

|y − xp|
α
p

∣∣∣∣∣∣∣∣
Lp(Ω)

= ||[f ]±||L∞(Ω).

Then, we have the following:

Proposition 4.2. Suppose that h : R 7→ R+ is a C1 function and g ∈ C0,α(∂Ω). Moreover,
assume that there is a constant M <∞ such that

(4.1) ψ(x) ≤ min{M |x− x0|α + g(x0) : x0 ∈ ∂Ω}, for all x ∈ Ω.
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For hp := hp

p , let up be a solution of Problem (3.4). Then, up to a subsequence, up → u

uniformly in Ω. Moreover, u ∈ C0,α(Ω̄) and, u is a viscosity solution to the following problem:

(4.2)



min{−L∞u,−L−
∞u− h(u)} = 0 in {u > ψ} ∩ {f(u) < 0},

max{−L∞u,−L+
∞u+ h(u)} = 0 in {u > ψ} ∩ {f(u) > 0},

min{−L∞u,−L−
∞u− h(u)} ≥ 0 in {u = ψ} ∩ {f(u) < 0},

max{−L∞u,−L+
∞u+ h(u)} ≥ 0 in {u = ψ} ∩ {f(u) > 0},

u = g on ∂Ω,

where f = h′.

Proof. First, we show that there is a function g̃ ∈ C0,α(Ω̄) such that g̃ ≥ ψ on Ω̄ and g̃ = g
on ∂Ω. For x̂ ∈ ∂Ω and c ∈ R, we set

Vx̂,c(x) := C|x− x̂|α + c, for all x ∈ Ω,

where C > 0 is any large constant. If c ≥ ||g||∞, then Vx̂,c ≥ ψ on Ω̄ and Vx̂,c ≥ g on ∂Ω.
Now, we define

g̃(x) = inf

{
Vx̂,c(x) : x̂ ∈ ∂Ω, c ∈ R such that Vx̂,c ≥ ψ on Ω̄, Vx̂,c ≥ g on ∂Ω

}
.

We clearly have g̃ ≥ ψ on Ω̄ and g̃ ≥ g on ∂Ω. Now, fix a point x̂0 ∈ ∂Ω and set c0 = g(x̂0).
By (4.1), one has

Vx̂0,c0(x) = C|x− x̂0|α + g(x̂0) ≥ ψ(x), for every x ∈ Ω.

Thanks to the α−Hölder regularity of g, then we also have

Vx̂0,c0(x) = C|x− x̂0|α + g(x̂0) ≥ g(x), for every x ∈ ∂Ω.

But so,

g̃(x̂0) ≤ Vx̂0,c0(x̂0) = c0 = g(x̂0).

This yields that g̃ = g on ∂Ω. Moreover, it is clear that g̃ ∈ C0,α(Ω̄). On the other hand, we
have

1

2p

∫∫
Ω×Ω

|up(x)− up(y)|p

|x− y|αp
+

∫
Ω
hp(up) ≤

1

2p

∫∫
Ω×Ω

|g̃(x)− g̃(y)|p

|x− y|αp
+

∫
Ω
hp(g̃)

≤ Cp|Ω|2

2p
+

||h(g̃)||p∞|Ω|
p

≤ Cp

p
.

We get that ∫∫
Ω×Ω

|up(x)− up(y)|p

|x− y|αp
≤ Cp.

Hence, there is a uniform constant C (independent of p) such that we have the following bound:[ ∫∫
Ω×Ω

|up(x)− up(y)|p

|x− y|αp

] 1
p

≤ C.
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On the other side, we recall that ||up||∞ ≤ C([u]s,p + [g̃]s,p) + ||g̃||∞ ≤ C thanks to the fact
that g̃ ∈ C0,α(∂Ω). Fix m < p, one has[ ∫∫

Ω×Ω

|up(x)− up(y)|m

|x− y|αm

] 1
m

≤
[ ∫∫

Ω×Ω

|up(x)− up(y)|p

|x− y|αp

] 1
p

|Ω|2(1−
m
p
) ≤ C.

Consequently, (up)p is bounded in W s,m(Ω) (with s = α− N
m) and so, up to a subsequence, it

converges uniformly to a function u ∈W s,m(Ω), for all m. In particular, u belongs to C0,α(Ω̄).

Now, fix x0 ∈ {u > ψ}. We show that u is a viscosity subsolution at x0 to equation (4.2).
First, we consider the case when f(u(x0)) > 0. Assume there is a function ϕ ∈ C1(Ω) ∩ C(Ω)
such that u ≤ ϕ on Ω̄, u(x0) = ϕ(x0) and,

max{−L∞ϕ(x0),−L+
∞ϕ(x0) + h(ϕ(x0))} > 0.

In fact, one can assume that x0 is the unique maximizer of u − ϕ. To see this fact, fix δ > 0
small enough and set ϕδ(x) := ϕ(x) + δ|x− x0|2, for every x ∈ Ω. We have

L∞ϕδ(x0) = sup
x∈Ω, x ̸=x0

ϕδ(x)− ϕδ(x0)

|x− x0|α
+ inf

x∈Ω, x ̸=x0

ϕδ(x)− ϕδ(x0)

|x− x0|α
.

Yet,
[ϕδ(x)− ϕδ(x0)]− [ϕ(x)− ϕ(x0)] = δ|x− x0|2.

Hence,
ϕδ(x)− ϕδ(x0)

|x− x0|α
=
ϕ(x)− ϕ(x0)

|x− x0|α
+ δ|x− x0|2−α ≤ ϕ(x)− ϕ(x0)

|x− x0|α
+ Cδ.

Therefore, we get that ∣∣∣∣L±
∞ϕδ(x0)− L±

∞ϕ(x0)

∣∣∣∣ ≤ Cδ.

Then, −L∞ϕδ(x0) > 0 or −L+
∞ϕδ(x0) + h(ϕδ(x0)) > 0 provided that δ > 0 is small enough.

This proves our claim.
Since up → u uniformly in Ω, then there is a point xp ∈ {up > ψ} such that up − ϕ has a

maximum at xp and xp → x0 (since x0 is the unique maximizer of u − ϕ). In the sequel, we
set Mp := maxΩ[up − ϕ]; we note that Mp → 0, up ≤ ϕ+Mp and up(xp) = ϕ(xp) +Mp. But,
up is a viscosity solution to equation (3.4). Hence,

−Lp[ϕ+Mp](xp) + fp(ϕ(xp) +Mp) ≤ 0,

where fp = h′p. So, we get

−Lpϕ(xp) + fp(ϕ(xp) +Mp) ≤ 0.

Recalling the definition of Lp, one has

(4.3) −
∫
Ω

|ϕ(x)− ϕ(xp)|p−1

|x− xp|αp
ϕ(x)− ϕ(xp)

|ϕ(x)− ϕ(xp)|
dx+ fp(ϕ(xp) +Mp) ≤ 0.

Then, ∫
Ω

[ϕ(x)− ϕ(xp)]
p−1
+

|x− xp|αp
dx ≥

∫
Ω

[ϕ(x)− ϕ(xp)]
p−1
−

|x− xp|αp
dx+ fp(ϕ(xp) +Mp).

Set

Ap[ϕ] :=

[ ∫
Ω

[ϕ(x)− ϕ(xp)]
p−1
+

|x− xp|αp
dx

] 1
p−1
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and

Bp[ϕ] :=

[ ∫
Ω

[ϕ(x)− ϕ(xp)]
p−1
−

|x− xp|αp
dx

] 1
p−1

.

We have

Ap[ϕ]
p−1 ≥ Bp[ϕ]

p−1 + fp(ϕ(xp) +Mp).

Assume Ap[ϕ] > 0. Hence,

(4.4)
Bp[ϕ]

p−1

Ap[ϕ]p−1
+
fp(ϕ(xp) +Mp)

Ap[ϕ]p−1
≤ 1.

Therefore, we have

Bp[ϕ]

Ap[ϕ]
≤ 1 and

fp(ϕ(xp) +Mp)
1

p−1

Ap[ϕ]
=
h(ϕ(xp) +Mp) f(ϕ(xp) +Mp)

1
p−1

Ap[ϕ]
≤ 1

since otherwise, at least one of the two terms in (4.4) goes to ∞, which is a contradiction.
Thanks to Lemma 4.1, we have that Ap[ϕ] → L+

∞ϕ and Bp[ϕ] → −L−
∞ϕ. Passing to the limit

when p→ ∞, this yields that

−L∞ϕ(x0) ≤ 0 and − L+
∞ϕ(x0) + h(ϕ(x0)) ≤ 0.

If f(u(x0)) < 0, we assume that there is a function ϕ ∈ C1(Ω) ∩ C(Ω) such that u ≤ ϕ on Ω̄,
u(x0) = ϕ(x0) and,

min{−L∞ϕ(x0),−L−
∞ϕ(x0)− h(ϕ(x0))} > 0.

Recalling (4.3), we have∫
Ω

[ϕ(x)− ϕ(xp)]
p−1
−

|x− xp|αp
dx ≤

∫
Ω

[ϕ(x)− ϕ(xp)]
p−1
+

|x− xp|αp
dx− fp(ϕ(xp) +Mp).

Following the same steps as before, we arrive to a contradiction and so, u is a viscosity
subsolution to the following equation:

min{−L∞u,−L−
∞u− h(u)} ≤ 0 in {u > ψ}.

Let us prove that u is also a viscosity supersolution in Ω to equation (4.2) in the case when
f(u(x0)) > 0. Our aim is to show that for every function ϕ ∈ C1(Ω) ∩ C(Ω) such that u ≥ ϕ
on Ω̄ and ϕ(x0) = u(x0), we have

max{−L∞ϕ(x0),−L+
∞ϕ(x0) + h(ϕ(x0))} ≥ 0.

Assume this is not the case. Thanks to the uniform convergence of up to u, there is a point xp ∈
Ω such that xp → x0 and up−ϕ has a minimum at xp. We denote by mp := minΩ[up−ϕ] → 0.
Since up is a viscosity solution to (3.4), then one has

−Lp[ϕ](xp) + fp(ϕ(xp) +mp) ≥ 0.

So, we have

Bp[ϕ]
p−1 + fp(ϕ(xp) +mp) ≥ Ap[ϕ]

p−1.

In particular, we get
Bp[ϕ]

Ap[ϕ]
≥ 1 or

fp(ϕ(xp) +mp)

Ap[ϕ]
≥ 1.
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Hence,

−L∞ϕ(x0) ≥ 0

or

−L+
∞ϕ(x0) + h(ϕ(x0)) ≥ 0.

Consequently,

max{−L∞ϕ(x0),−L+
∞ϕ(x0) + h(ϕ(x0))} ≥ 0.

Finally, if f(u(x0)) < 0 then one can show similarly that u is a viscosity supersolution in Ω to
the following equation:

min{−L∞u,−L−
∞u− h(u)} ≥ 0.

This concludes the proof. □

5. Regularity

In this section, we assume that h′ > 0 over R. Under this assumption, we recall that the
limit problem is the following:

(5.1)


max{−L∞u,−L+

∞u+ h(u)} = 0 in {u > ψ},
max{−L∞u,−L+

∞u+ h(u)} ≥ 0 in {u = ψ},
u = g on ∂Ω.

In order to study the regularity of a viscosity solution u to Problem (5.1), we start by the
following comparison principle:

Proposition 5.1. Let u be a viscosity solution of (5.1). Let ϕ ∈ C1(Ω) ∩ C(Ω̄) be a strict
viscosity supersolution in {u > ψ} such that u ≤ ϕ on {u = ψ} ∪ ∂Ω. Then, we have u ≤ ϕ in
Ω.

Proof. Assume there exists a point x⋆ ∈ {x ∈ Ω : u(x) > ψ(x)} such that u(x⋆) − ϕ(x⋆) =
maxΩ[u − ϕ] = M > 0. So, we have u ≤ ϕ +M on Ω̄ and u(x⋆) = ϕ(x⋆) +M . Since u is a
viscosity solution, then one has

max{−L∞ϕ(x
⋆),−L+

∞ϕ(x
⋆) + h(ϕ(x⋆) +M)} ≤ 0.

As h′ > 0, then

max{−L∞ϕ(x
⋆),−L+

∞ϕ(x
⋆) + h(ϕ(x⋆))} ≤ 0,

which is a contradiction since ϕ is a strict viscosity supersolution in {u > ψ}. □

Lemma 5.2. Fix x0 ∈ {u > ψ}. If u is a viscosity solution of Problem (5.1) in Ω, then u is
a viscosity solution of (5.1) in Ω\{x0}.

Proof. We show that u is a viscosity subsolution in Ω\{x0}∩{u > ψ}. Let x⋆ ∈ Ω\{x0}∩{u >
ψ} and ϕ ∈ C1(Ω \ {x0}) ∩ C(Ω̄) be such that u ≤ ϕ on Ω̄ and ϕ(x⋆) = u(x⋆). Assume that
u(x0) < ϕ(x0). Let ϕn ∈ C1(Ω) ∩ C(Ω̄) be such that ϕn = ϕ on Ω\B(x0,

1
n), ϕ ≤ ϕn and ϕn

converges uniformly to ϕ. So, we have u ≤ ϕn on Ω̄ and u(x⋆) = ϕn(x
⋆). Since u is a viscosity

solution on Ω, then we must have

(5.2) max{−L∞ϕn(x
⋆),−L+

∞ϕn(x
⋆) + h(ϕn(x

⋆))} ≤ 0.
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Fix 0 < ε < |x0 − x⋆|. For n ∈ N⋆ large enough, one has the following:

L+
∞ϕn(x

⋆) = max

{
sup

y∈Ω̄\B̄(x0,ε), y ̸=x⋆

ϕn(y)− ϕn(x
⋆)

|y − x⋆|α
, sup
y∈B̄(x0,ε), y ̸=x⋆

ϕn(y)− ϕn(x
⋆)

|y − x⋆|α

}

= max

{
sup

y∈Ω̄\B̄(x0,ε), y ̸=x⋆

ϕ(y)− ϕ(x⋆)

|y − x⋆|α
, sup
y∈B̄(x0,ε), y ̸=x⋆

ϕn(y)− ϕn(x
⋆)

|y − x⋆|α

}
.

Yet, it is clear that

ϕn(y)− ϕn(x
⋆)

|y − x⋆|α
→ ϕ(y)− ϕ(x⋆)

|y − x⋆|α
uniformly in B̄(x0, ε).

Hence, limn→∞ L+ϕn(x
⋆) = L+ϕ(x⋆). In the same way, we show that L−ϕn(x

⋆) → L−ϕ(x⋆).
Passing to the limit in (5.2) as n→ ∞, we get that

max{−L∞ϕ(x
⋆),−L+

∞ϕ(x
⋆) + h(ϕ(x⋆))} ≤ 0.

Finally, assume that u(x0) = ϕ(x0). For every δ > 0, we define ϕδ := ϕ+ δ|x− x⋆|2. We have
ϕδ(x

⋆) = u(x⋆) and u ≤ ϕδ on Ω̄. Hence,

max{−L∞ϕδ(x
⋆),−L+

∞ϕδ(x
⋆) + h(ϕδ(x

⋆))} ≤ 0.

But, we recall that

|L±
∞ϕδ(x)− L±

∞ϕ(x)| ≤ Cδ.

Passing to the limit when δ → 0+, we conclude the proof. In the same way, we show that u is
a viscosity supersolution in Ω\{x0}. □

Proposition 5.3. Any viscosity solution u of Problem (5.1) is bounded. Moreover, we have
||u||∞ ≤ max{||g||∞, ||ψ||∞}.

Proof. Set ϕ =M ≥ max{||g||∞, ||ψ||∞}. We have u ≤ ϕ on {u = ψ} ∪ ∂Ω. Fix x ∈ Ω ∩ {u >
ψ}, then we clearly have

max{−Lϕ(x),−L+ϕ(x) + h(ϕ(x))} = h(M) > 0.

Hence, ϕ is a strict viscosity supersolution. Thanks to the comparison principle 5.1, this yields
that u ≤ ϕ on Ω. □

Proposition 5.4. Let u be a viscosity solution of (5.1). Then, u is locally α−Hölderian in
{u > ψ}. Moreover, we have the following estimate:

[u]α ≤ 2||u||∞
dist(ω, {u = ψ} ∪ ∂Ω)

, for every ω ⊂⊂ Ω ∩ {u > ψ},

where [u]α denotes the α−Hölder constant of u.

Proof. Fix x0 ∈ ω ∩ {u > ψ}. Assume α < 1. Set Ψx0(x) = |x − x0|α, for all x ∈ Ω. For
x ∈ Ω\{x0}, it is easy to see that

L−Ψx0(x) = inf
y∈Ω̄, y ̸=x

Ψ(y)−Ψ(x)

|y − x|α
= inf

y∈Ω̄, y ̸=x

|y − x0|α − |x− x0|α

|y − x|α
≤ −1.

On the other hand,

L+Ψx0(x) = sup
y∈Ω̄, y ̸=x

Ψ(y)−Ψ(x)

|y − x|α
≤ sup

y∈Ω̄, y ̸=x

|y − x0|α − |x− x0|α

||y − x0| − |x− x0||α
≤ sup

1<r<
diam(Ω)
|x−x0|

Ψ(r),
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with Ψ(r) =
rα − 1

(r − 1)α
. Yet, it is easy to check that Ψ is increasing on (1,+∞) and so, since

α < 1, we have

L+Ψx0(x) ≤ Ψ

(
diam(Ω)

|x− x0|

)
=

(
diam(Ω)

|x− x0|

)α

− 1(
diam(Ω)

|x− x0|
− 1

)α < 1.

Consequently, we get that

LΨx0(x) ≤

(
diam(Ω)

|x− x0|

)α

− 1(
diam(Ω)

|x− x0|
− 1

)α − 1 < 0.

Now, we define ϕ(x) = u(x0) + C|x− x0|α. We have ϕ ∈ C1(Ω\{x0}) ∩ C(Ω̄). Moreover,

L∞ϕ(x) = CLΨx0(x) < 0.

In particular, one has

max{−L∞ϕ(x),−L+
∞ϕ(x) + h(ϕ(x))} > 0.

If we choose the constant C large enough, one can get that u ≤ ϕ on {u = ψ} ∪ ∂Ω ∪ {x0}.
Indeed, for every x ∈ {u = ψ} ∪ ∂Ω, we have

u(x)− ϕ(x) = u(x)− u(x0)− C|x− x0|α ≤ 2||u||∞ − C dist(x0, {u = ψ} ∪ ∂Ω)α ≤ 0

as soon as

C ≥ 2||u||∞
dist(x0, {u = ψ} ∪ ∂Ω)α

.

Thanks to the comparison principle 5.1 and since u is a viscosity solution while ϕ is a strict
viscosity supersolution in Ω\{x0}∩{u > ψ}, this implies that u < ϕ in Ω\{x0}. Consequently,

u(x) ≤ u(x0) + C|x− x0|α.

Finally, assume α = 1. Fix ε > 0 small enough. Then, we define Ψx0(x) = |x−x0|−ε|x−x0|2.
Again, we have

L−Ψx0(x) = inf
y∈Ω̄, y ̸=x

Ψx0(y)−Ψx0(x)

|y − x|
= inf

y∈Ω̄, y ̸=x

|y − x0| − ε|y − x0|2 − |x− x0|+ ε|x− x0|2

|y − x|

≤ −1 + ε|x− x0|.
Moreover,

L+Ψx0(x) = sup
y∈Ω̄, y ̸=x

Ψx0(y)−Ψx0(x)

|y − x|
≤ sup

y∈Ω̄, y ̸=x

|y − x0| − ε|y − x0|2 − |x− x0|+ ε|x− x0|2

||y − x0| − |x− x0||

= 1− ε|x− x0| − ε min
|y−x0|>|x−x0|

|y − x0| = 1− 2ε|x− x0|.

Hence, we get

LΨx0(x) ≤ −ε|x− x0| < 0, for all x ∈ Ω\{x0}.
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Now, set ϕ(x) = u(x0) + C[|x − x0| − ε|x − x0|2]. So, we have Lϕ(x) = CLΨx0(x) < 0, for
every x ∈ Ω\{x0}. In addition, one has

u(x)− ϕ(x) = u(x)− u(x0)− C[|x− x0| − ε|x− x0|2]

≤ 2||u||∞ − Cdist(w, {u = ψ} ∪ ∂Ω) + Cεdiam(Ω)2 ≤ 0

as soon as

C ≥ 2||u||∞
dist(w, {u = ψ} ∪ ∂Ω)− εdiam(Ω)2

.

Then,

|u(x)− u(x0)| ≤
2||u||∞

dist(w, {u = ψ} ∪ ∂Ω)− εdiam(Ω)2
[|x− x0| − ε|x− x0|2].

Letting ε→ 0, we get

|u(x)− u(x0)| ≤
2||u||∞

dist(w, {u = ψ} ∪ ∂Ω)
|x− x0|.

□

Proposition 5.5. Assume ψ ∈ C0,α(Ω̄). Then, any viscosity solution u of (5.1) belongs to
C0,α(Ω̄). Moreover, we have

[u]α ≤ C(||g||∞, ||ψ||∞, [g]α, [ψ]α).

Proof. Fix x0 ∈ ∂{u > ψ}\∂Ω. Set ϕ(x) = ψ(x0) + C|x − x0|α. From Proposition 5.4, we
recall that ϕ is a strict viscosity supersolution in {u > ψ}. Since ψ ∈ C0,α(Ω̄), we have

u(x)− ϕ(x) = ψ(x)− ψ(x0)− C|x− x0|α ≤ 0, for all x ∈ {u = ψ}

and

u(x)−ϕ(x) = g(x)−ψ(x0)−C|x−x0|α ≤ ||g||∞+||ψ||∞−C dist(x0, ∂Ω)
α ≤ 0, for all x ∈ ∂Ω,

as soon as

C ≥ ||g||∞ + ||ψ||∞
dist(x0, ∂Ω)α

.

Hence, by Proposition 5.1, we infer that u ≤ ϕ in {u > ψ}. Thanks to Proposition 5.4, this

implies that u ∈ C0,α
loc (Ω).

Now, fix x0 ∈ ∂Ω. Again, we define ϕ(x) = g(x0) + C|x − x0|α. So, ϕ is a strict viscosity
supersolution in {u > ψ}. Moreover, one has

u(x)− ϕ(x) = g(x)− g(x0)− C|x− x0|α ≤ 0, for all x ∈ ∂Ω

and

u(x)− ϕ(x) = ψ(x)− g(x0)− C|x− x0|α ≤ 0, for all x ∈ {u = ψ},
provided that C ≥ max{[g]α,M}; we note that in the last inequality we have used that
ψ(x) ≤ min{M |x− x0|α + g(x0) : x0 ∈ ∂Ω}. Consequently, u ∈ C0,α(Ω). □

We conclude the paper by the following existence result in the case when h is not smooth.

Proposition 5.6. Assume h is a nonnegative increasing continuous function on R. Then,
Problem (5.1) has a solution.
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Proof. Let hn be a sequence of smooth functions such that h′n > 0 and hn → h locally uniformly
on R. For every n ∈ N, let un be a solution to Problem (5.1). Thanks to Proposition 5.5, we
have

[un]α ≤ C(||g||∞, ||ψ||∞, [g]α, [ψ]α).
Moreover,

||un||∞ ≤ max{||g||∞, ||ψ||∞}.

Hence, up to a subsequence, un → u uniformly in Ω̄. In particular, we have u = g on ∂Ω and
u ≥ ψ on Ω̄. Now, let us show that u is a viscosity solution of (5.1). First, we show that u is
a viscosity subsolution in {u > ψ}. Fix x0 ∈ {u > ψ} and let φ ∈ C1(Ω) ∩ C(Ω̄) be such that
u ≤ φ on Ω̄ and u(x0) = φ(x0), we recall that one can assume x0 to be the unique maximizer
of u − φ. For every n, let xn be a maximizer of un − φ and set Mn := maxΩ̄[un − φ]. Then,
xn → x0 and Mn → 0. Since un is a viscosity solution, then one has

max{−L∞φ(xn),−L+
∞φ(xn) + hn(φ(xn) +Mn)} ≤ 0.

But, L∞φ ∈ C(Ω) since φ ∈ C1(Ω) (see [1, Lemma 3.5]). Passing to the limit when n→ +∞,
we get

max{−L∞φ(x0),−L+
∞φ(x0) + h(φ(x0))} ≤ 0.

In the same way, we show that u is a viscosity supersolution in Ω. This concludes the proof
that u is a viscosity solution. □
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