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Abstract. The aim of this paper is to investigate the asymptotic behavior of the minimizers
to the following problems related to the fractional p−Laplacian with nonhomogeneous term
hp(x, u) in the presence of an obstacle ψ in a bounded Lipschitz domain Ω ⊂ RN ,

min

{
1

2

∫
Ω×Ω

|u(x)− u(y)|p

|x− y|αp
+

∫
Ω

hp(x, u) : u ∈W s,p(Ω), u ≥ ψ on Ω̄, u = g on ∂Ω

}
.

In the case when hp(x, u) =
h(x,u)p

p
and h(x, u) ≥ 0, we show the convergence of the solutions

to certain limit as p → ∞ and identify the limit equation. More precisely, we show that the
limit problem is closely related to the infinity fractional Laplacian. In the particular case
when ∂sh > 0, we study the Hölder regularity of any solution to the limit problem and we
extend the existence result to the case when h is not smooth.

In addition, we will study the limit of this problem when the nonhomogeneous term hp(x, u)
is not necessarily positive. To be more precise, we will consider the following two cases:

hp(x, u) = h(x)u and hp(x, u) = h(x) |u|Λ
Λ

with Λ := Λ(p) < p.

1. Introduction

Let Ω be a bounded open set in RN and g be a α−Hölder boundary datum on ∂Ω. From
[1], it is well known that if up minimizes the functional

Ep[u] :=

∫
Ω×Ω

|u(x)− u(y)|p

|x− y|αp
dx dy

among all functions u in the fractional Sobolev space W s,p(Ω) such that up = g on ∂Ω (with

s = α − N
p ), then up → u as p → ∞ where the limit function u solves the following equation

(which is usually referred to as the infinity fractional Laplacian):

L∞u := L+
∞u+ L−

∞u = 0,

where

L+
∞u = sup

y∈Ω, y ̸=x

u(y)− u(x)

|y − x|α
and L−

∞u = inf
y∈Ω, y ̸=x

u(y)− u(x)

|y − x|α
.

In fact, one of the most important motivations to analyse this kind of problems is the α−Hölder
extension of the function g ∈ C0,α(∂Ω). In fact, one can show that the limit function u is the
optimal Hölder extension to Ω̄ of the boundary datum g, i.e. the Hölder seminorm for u in Ω
is always less than or equal to the one for the boundary datum given on ∂Ω.

Given a continuous obstacle ψ, the authors in [9] follow the work in [1] and prove existence
of a fractional harmonic function constrained to lie above the obstacle and to take the datum
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on ∂Ω. More precisely, they show that the following obstacle problem has a viscosity solution:

(1.1)


L∞u = 0 in {x ∈ Ω : u(x) > ψ(x)},
L∞u ≤ 0 in {x ∈ Ω : u(x) = ψ(x)},
u(x) ≥ ψ(x) if x ∈ Ω,

u(x) = g(x) if x ∈ ∂Ω.

In order to have a solution for this problem (1.1), it is necessary that ψ(x) ≤ g(x), for all
x ∈ ∂Ω. So, in the sequel, we will assume the following natural condition on the obstacle ψ:

ψ ≤ g on ∂Ω.

The idea in [9] follows exactly the one in [1], where the authors approximate Problem (1.1)
with a sequence of fractional p−Laplacian operators. To be more precise, they consider the
following minimization problem:

(1.2) min

{
Ep[u] : u ∈W s,p(Ω), u ≥ ψ in Ω̄, u = g on ∂Ω

}
.

But, it is not difficult to check that the Euler-Lagrange equation associated to this functional
is

(1.3)

{
Lpup = 0 in {up > ψ},
Lpup ≤ 0 in {up = ψ},

where

Lpu :=

∫
Ω

(
|u(x)− u(y)|

|x− y|α

)p−1 1

|x− y|α
u(y)− u(x)

|u(y)− u(x)|
dy.

Let us denote by L+
p and L−

p the positive and negative parts of Lp, respectively. So, one has

L+
p up = L−

p up in {up > ψ}.

Hence,(∫
Ω

(
[up(x)− up(y)]+

|x− y|α

)p−1 1

|x− y|α
dy

) 1
p−1

=

(∫
Ω

(
[up(x)− up(y)]−

|x− y|α

)p−1 1

|x− y|α
dy

) 1
p−1

,

where [z]± := max{±z, 0}. Letting p goes to ∞, we may show that up to a subsequence
up → u. Formally, we get that

L+
∞u = −L−

∞u

and so, L∞u = 0 in {u > ψ}. We note that this limit procedure only works when the right
hand side in (1.3) is zero.

In this paper, we consider the minimization problem (1.2) but in the presence of an extra
nonhomogeneous term:

(1.4) min

{
Ep[u]

2p
+

∫
Ω
hp(x, u) : u ∈W s,p(Ω), u ≥ ψ on Ω̄, u = g on ∂Ω

}
.

The main goal of this paper is to study the limit as p→ ∞ of the minimizers up to (1.4), prove
their convergence up to a subsequence to a function u, and to identify the limit problem for



THE LIMIT OF A NONLOCAL p−LAPLACIAN OBSTACLE PROBLEM 3

u. Assume h ≥ 0 and hp = hp

p , we may assume that the limit function u solves the following

problem:

(1.5)

{
L∞u = h(x, u) in {u > ψ},
L∞u ≤ h(x, u) in {u = ψ}.

However, we will see in Section 3 that this is not the case and the limit equation is completely
different, so the presence of the nonhomogeneous term makes the analysis of our problem
more delicate. We note that this will also depends on the monotonicity of h. In Section 4,
we will study the limit of (1.4) in the linear case, i.e. when hp(x, u) = h(x)u, and show that
the limit of (1.4) is equivalent to an optimal transport problem with import/export taxes.

In Section 5, we will also consider the superlinear case, i.e. when hp(x, u) = h(x) |u|Λ
Λ where

1 < Λ = Λ(p) < p.
In [2], the authors characterize the limit as p→ ∞ of the branches of solutions to the local

p−Laplacian:

−∇ · [|∇u|p−2∇u] = λuγ(p), u > 0,

with λ > 0 and limp→∞
γ(p)
p−1 = γ⋆ < 1. They show that the limit set is a curve of positive

viscosity solutions of the equation

min{−∆∞u, |∇u| − Cuγ⋆} = 0,

where ∆∞u := D2u∇u · ∇u is the infinity Laplacian operator and C > 0. On the other hand,
in [7], the problem of minimizing the fractional Rayleigh quotient has been considered

(1.6) min

{∫∫
RN×RN

|u(x)−u(y)|p
|x−y|αp∫

RN up
: u ∈W s,p(Ω), u = 0 on ∂Ω

}
.

This problem leads to an interesting eigenvalue problem with the non-local Euler-Lagrange
equation:

−Lpu = λ|u|p−2u,

where the operator Lp is defined exactly as Lp but with integration set RN instead of Ω. The
limit equation takes the form

max{L∞u,L−
∞u+ λu} = 0 in Ω.

In addition, an equivalent nonlocal version for the fractional p−Laplacian was studied in [5],
where the authors were interested in describing the behaviour of the solutions to the following
Dirichlet problem as p→ ∞:

(1.7)

{
−Lpu = |u|γ(p)−1u in Ω,

u = g on RN\Ω,

Inspired by [7], the authors of [5] prove that the limit problem of (1.7) is the following problem:

(1.8)

{
min{−L∞u,−L−

∞u− |u|γ⋆} = 0 in Ω,

u = g on RN\Ω.
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2. Preliminaries

In order to study the minimization problem (1.4), we recall some basic theory of fractional
Sobolev spaces. Assume Ω is a Lipschitz domain. Then, we define the fractional Sobolev space
W s,p(Ω) with 0 < s < 1 and 1 < p <∞ as follows:

W s,p(Ω) :=

{
u ∈ Lp(Ω), [u]ps,p :=

∫∫
Ω×Ω

|u(x)− u(y)|p

|x− y|N+sp
<∞

}
.

We may see W s,p(Ω) as an intermediary Banach space between Lp(Ω) and W 1,p(Ω), endowed
with the natural norm

||u||W s,p(Ω) =

[
||u||pp + [u]ps,p

] 1
p

.

In order to obtain a Poincaré inequality in W s,p
0 (Ω) (where the space W s,p

0 (Ω) is defined as the
closure of C∞

0 (Ω) with respect to the norm || · ||W s,p(Ω)) valid for p large, we consider again
the fractional Rayleigh quotient:

λp = min (1.6).

In [7], the authors show that

(λp)
1
p → 1

Rα
,

with R = max{dist(x, ∂Ω) : x ∈ Ω} being the radius of the largest ball inscribed in Ω. As a
consequence, we have

||u||Lp(Ω) ≤ C(R,α)

(∫∫
RN×RN

|u(x)− u(y)|p

|x− y|αp

) 1
p

.

But, ∫∫
RN×RN

|u(x)− u(y)|p

|x− y|αp
=

∫∫
Ω×Ω

|u(x)− u(y)|p

|x− y|αp
+ 2

∫∫
Ω×(RN\Ω)

|u(x)|p

|x− y|αp
.

However, ∫∫
Ω×(RN\Ω)

|u(x)|p

|x− y|αp
=

∫
Ω
|u(x)|p

(∫
{z:x+z∈RN\Ω}

1

|z|αp
dz

)
dx.

Using polar coordinates, one has∫
{z:x+z∈RN\Ω}

1

|z|αp
dz =

∫
SN−1

∫
{r>0:x+rw/∈Ω}

1

rαp−N+1
dr dw.

For w ∈ SN−1, we define

dw,Ω(x) := inf{r > 0 : x+ rw /∈ Ω}.

Hence, we have∫
{z:x+z∈RN\Ω}

1

|z|αp
dz ≤

∫
SN−1

∫ ∞

dw,Ω(x)

1

rαp−N+1
dr dw =

1

αp−N

∫
SN−1

1

dw,Ω(x)αp−N
dw.

Thus, we get∫∫
Ω×(RN\Ω)

|u(x)|p

|x− y|αp
≤ 1

αp−N

∫
Ω
|u(x)|p

(∫
SN−1

1

dw,Ω(x)αp−N
dw

)
dx.
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Thanks to [8, Theorem 1.2], if sp > 1 then we have the following fractional Hardy-type
inequality:∫

Ω
|u(x)|p

(∫
SN−1

1

dw,Ω(x)αp−N
dw

)
dx ≤ C(N, p, α)

∫∫
Ω×Ω

|u(x)− u(y)|p

|x− y|αp
.

Finally, this yields that

||u||Lp(Ω) ≤ C

(∫∫
Ω×Ω

|u(x)− u(y)|p

|x− y|αp

) 1
p

, for all u ∈W s,p
0 (Ω).

On the other hand, one can show certain regularity properties for functions in W s,p(Ω) when
sp > N . From [10, Theorem 8.2], there exists a constant C < ∞ depending only on s, p, N
such that

(2.1) ||u||C0,β(Ω̄) ≤ C[u]s,p, for all u ∈W s,p
0 (Ω),

where β = s− N
p and

||u||C0,β(Ω̄) = ||u||L∞(Ω) + sup

{
|u(x)− u(y)|

|x− y|β
: x, y ∈ Ω̄, x ̸= y

}
.

Since we are interested in what happens when p → ∞, we want to diminish the dependence
on p. Thus, it is useful to note that the constant C can be chosen independently of p such
that the following inequality holds:

(2.2) ||u||L∞(Ω) ≤ C[u]s,p, for all u ∈W s,p
0 (Ω).

3. The case of a nonnegative nonhomogeneous term

3.1. Existence of solutions to the fractional p−Laplacian problem. Let hp : Ω×R 7→
R+ be a nonnegative continuous in (x, s) and C1 function with respect to the second variable
s and set fp = ∂shp. We consider the minimization problem:
(3.1)

min

{
1

2p

∫∫
Ω×Ω

|u(x)− u(y)|p

|x− y|αp
+

∫
Ω
hp(x, u) : u ∈W s,p(Ω), u ≥ ψ on Ω̄, u = g on ∂Ω

}
,

where αp = sp +N . Assume that there is an extension g̃ ∈ W s,p(Ω) such that g̃ = g on ∂Ω.
For simplicity of notation, we will simply call it g instead of g̃.

Proposition 3.1. Assume α > 2N
p . Then, there exists a minimizer up for Problem (3.1).

Moreover, up is a weak solution to the following problem:{
Lpu = fp(x, u) in {u > ψ},
Lpu ≤ fp(x, u) in {u = ψ},

where

Lpu =

∫
Ω

|u(x)− u(y)|p−2

|x− y|αp
[u(y)− u(x)] dy.

Proof. Let (un)n be a minimizing sequence in Problem (3.1). So, there will be a constant
C <∞ such that

1

2p

∫∫
Ω×Ω

|un(x)− un(y)|p

|x− y|αp
+

∫
Ω
hp(x, un) ≤ C, for all n.
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Since hp ≥ 0, this implies that ∫∫
Ω×Ω

|un(x)− un(y)|p

|x− y|αp
≤ C.

But, we have

||un − g||C0,β(Ω̄) ≤ C[un − g]s,p ≤ C([un]s,p + [g]s,p).

This yields that (un)n is bounded inW s,p(Ω) and so, up to a subsequence, un ⇀ up inW
s,p(Ω)

and so, un → up uniformly in C0,β(Ω̄) with β = α− 2N
p . By Fatou’s Lemma, this yields that∫∫

Ω×Ω

|up(x)− up(y)|p

|x− y|αp
=

∫∫
Ω×Ω

lim inf
n

[
|un(x)− un(y)|p

|x− y|αp

]
≤ lim inf

n

∫∫
Ω×Ω

|un(x)− un(y)|p

|x− y|αp

and ∫
Ω
hp(x, up) ≤ lim inf

n

∫
Ω
hp(x, un).

So, we get that

1

2p

∫∫
Ω×Ω

|up(x)− up(y)|p

|x− y|αp
+

∫
Ω
hp(x, up) ≤ lim inf

n

[
1

2p

∫∫
Ω×Ω

|un(x)− un(y)|p

|x− y|αp
+

∫
Ω
hp(x, un)

]
.

Yet, up ≥ ψ on Ω̄ and up = g on ∂Ω. Hence, up minimizes (3.1). Now, we show the second
part. Let ϕ be a smooth function such that supp(ϕ) ⊂ {up > ψ}. Thanks to the continuity
of up, it is clear that up + tϕ is admissible in (3.1), for all t ∈ R small enough. From the
minimality of up, we have

1

2p

∫∫
Ω×Ω

|up(x)− up(y)|p

|x− y|αp
+

∫
Ω
hp(x, up)

≤ 1

2p

∫∫
Ω×Ω

|up(x) + tϕ(x)− up(y)− tϕ(y)|p

|x− y|αp
+

∫
Ω
hp(x, up + tϕ) := Jϕ(t).

So, Jϕ has a minimum at t = 0. Therefore, we have J ′
ϕ(0) = 0 and so, we get the following:

1

2

∫∫
Ω×Ω

|up(x)− up(y)|p−1

|x− y|αp
[up(x)− up(y)]

|up(x)− up(y)|
[ϕ(x)− ϕ(y)] +

∫
Ω
fp(x, up)ϕ = 0.

By symmetry, this yields that

−
∫∫

Ω×Ω

|up(x)− up(y)|p−2

|x− y|αp
[up(y)− up(x)]ϕ(x) +

∫
Ω
fp(x, up)ϕ = 0.

Finally, we note that for every ϕ ∈ C∞
0 (Ω) such that ϕ ≥ 0, the function up + tϕ is admissible

in (3.1), for all t ∈ R+. Hence, J ′
ϕ(0) ≥ 0 and so, one has

−
∫∫

Ω×Ω

|up(x)− up(y)|p−2

|x− y|αp
[up(y)− up(x)]ϕ(x) +

∫
Ω
fp(x, up)ϕ ≥ 0.

Then,

−
∫
Ω

|up(x)− up(y)|p−2

|x− y|αp
[up(y)− up(x)] dy + fp(x, up) ≥ 0 in {up = ψ}. □



THE LIMIT OF A NONLOCAL p−LAPLACIAN OBSTACLE PROBLEM 7

The solutions in the previous Proposition 3.1 were defined as weak solutions to the Euler-
Lagrange equation in the usual way with test functions under the integral sign. In the sequel,
we will see that they are also viscosity solutions of the equation

(3.2) Lpu = fp(x, u)

inside the noncoincidence set {up > ψ} while it is a viscosity supersolution in the coincidence
set {up = ψ}. We refer the reader to the book [6] for an introduction to the theory of viscosity
solutions. Here, we give the definition of a viscosity supersolution (resp. subsolution).

Definition 3.1. We will say that u is a viscosity supersolution in Ω of the equation (3.2) if
the following holds: whenever x0 ∈ Ω and ϕ ∈ C1(Ω) ∩ C(Ω̄) are such that

ϕ(x0) = u(x0) and ϕ(x) ≤ u(x) for all x ∈ Ω̄,

then we have
min{−Lpϕ(x0) + fp(x0, ϕ(x0)), ϕ(x0)− ψ(x0)} ≥ 0.

The requirement for a viscosity subsolution is symmetric: the test function is touching from
above and the inequality is reversed. Finally, a viscosity solution is defined as being both a
viscosity supersolution and a viscosity subsolution.

In order to prove that weak solutions are viscosity solutions we need the following comparison
principle (the proof follows in an analogous way the one in [7]):

Proposition 3.2. Let u and v be two continuous functions belonging to W s,p(Ω). Assume
that −Lpu < −Lpv in the weak sense on B ⊂ Ω. If u ≤ v on Ω̄\B, then u ≤ v in Ω.

Proof. Assume [u − v]+ ̸= 0 on B. Since [u − v]+ = 0 on Ω̄\B, then [u − v]+ ∈ W s,p
0 (Ω) and

so, one has∫∫
B×Ω

|v(x)− v(y)|p−2

|x− y|αp
[v(x)−v(y)][u−v]+(x) >

∫∫
B×Ω

|u(x)− u(y)|p−2

|x− y|αp
[u(x)−u(y)][u−v]+(x).

Hence, ∫∫
B×Ω

|v(x)− v(y)|p−2

|x− y|αp
[v(x)− v(y)]([u− v]+(x)− [u− v]+(y))

>

∫∫
B×Ω

|u(x)− u(y)|p−2

|x− y|αp
[u(x)− u(y)] ([u− v]+(x)− [u− v]+(y))

Then, we get

(3.3)
1

2

∫∫
B×Ω

1

|x− y|αp
Φ1(x, y) ([u− v]+(x)− [u− v]+(y)) > 0

where

Φ1(x, y) =

[
|v(x)− v(y)|p−2[v(x)− v(y)]− |u(x)− u(y)|p−2[u(x)− u(y)]

]
.

For a, b ∈ R, one has

|b|p−2b−|a|p−2a =

∫ 1

0

d

dt
[|a+t(b−a)|p−2(a+t(b−a))] = (p−1)

(∫ 1

0
|a+t(b−a)|p−2 dt

)
[b−a].

Then,
Φ1(x, y)
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= (p− 1)

(∫ 1

0
|u(x)− u(y) + t(v(x)− v(y)− u(x) + u(y))|p−2 dt

)
[v(x)− v(y)− u(x) + u(y)].

So, we get
Φ1(x, y)[[u− v]+(x)− [u− v]+(y)]

= Φ2(x, y)[v(x)− v(y)− u(x) + u(y)][[u− v]+(x)− [u− v]+(y)]

where

Φ2(x, y) = (p− 1)

(∫ 1

0
|u(x)− u(y) + t(v(x)− v(y)− u(x) + u(y))|p−2 dt

)
≥ 0.

But,
[v(x)− v(y)− u(x) + u(y)][[u− v]+(x)− [u− v]+(y)]

= −[u(x)− v(x)− (u(y)− v(y))][[u− v]+(x)− [u− v]+(y)]

= −
[
[u− v]2+(x) + [u− v]2+(y)− Φ3(x, y)

]
,

where
Φ3(x, y) = [u(x)− v(x)][u(y)− v(y)]+ + [u(y)− v(y)][u(x)− v(x)]+.

For simplicity of notation, we set s± := [u(x) − v(x)]± and t± := [u(y) − v(y)]±. Then, we
have

Φ3(x, y) = [s+ − s−]t+ + [t+ − t−]s+ = 2s+t+ − s−t+ − t−s+.

Hence,
[v(x)− v(y)− u(x) + u(y)][[u− v]+(x)− [u− v]+(y)]

= −[s2+ + t2+ − 2s+t+ + s−t+ + t−s+] = −[(s+ − t+)
2 + s−t+ + t−s+] ≤ 0.

Thus, we get that
Φ1(x, y)[[u− v]+(x)− [u− v]+(y)] ≤ 0.

Finally, we infer that∫∫
B×Ω

1

|x− y|αp
Φ1(x, y) ([u− v]+(x)− [u− v]+(y)) ≤ 0,

which is in contradiction with the strict inequality in (3.3). Hence, [u− v]+ = 0 and so, u ≤ v
on B. □

Proposition 3.3. Assume α ≤ 1 − 1
p . The weak solution up of Problem (3.1) is a viscosity

solution to the equation:

(3.4) Lpu = fp(x, u) in {u > ψ}.
In addition, up is a viscosity supersolution to the equation (3.2) on the coincidence set S :=
{x ∈ Ω : u(x) = ψ(x)}.

Proof. Assume up is not a viscosity subsolution in {up > ψ}, i.e. there is a point x0 ∈ {up > ψ}
and a test function ϕ ∈ C1(Ω) ∩ C(Ω) such that up ≤ ϕ on Ω̄, ϕ(x0) = up(x0) and

Lpϕ(x0)− fp(x0, ϕ(x0)) < 0.

Thanks to our assumption that α ≤ 1− 1
p , it is easy to see that x 7→ Lpϕ(x) is continuous on

Ω. Hence, there is a r > 0 small enough such that

Lpϕ(x)− fp(x0, ϕ(x0)) < 0 on B(x0, r).
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Let η be a smooth cutoff function such that η(x0) = 1 and η = 0 on Ω\B(x0, r). Then, we
define

ϕε := ϕ− εη.

Clearly, ϕε = ϕ on Ω\B(x0, r). Moreover, one has

|ϕε(x)−ϕε(y)|p−2[ϕε(x)−ϕε(y)] = |ϕ(x)−ϕ(y)−ε[η(x)−η(y)]|p−2[ϕ(x)−ϕ(y)−ε[η(x)−η(y)]].

Yet, ∣∣∣∣|ϕε(x)− ϕε(y)|p−2[ϕε(x)− ϕε(y)]− |ϕ(x)− ϕ(y)|p−2[ϕ(x)− ϕ(y)]

∣∣∣∣
=

∣∣∣∣(p− 1)

(∫ 1

0
|ϕ(x)− ϕ(y)− εt[η(x)− η(y)]|p−2 dt

)
[−ε[η(x)− η(y)]]

∣∣∣∣
≤ Cε|x− y|p−1.

Then, we get

|Lpϕε(x)− Lpϕ(x)| ≤ Cε.

We recall that up and f are both continuous. For ε > 0 small enough, we have then

Lpϕε(x)− fp(x, up(x)) < 0 on B(x0, r).

But, ϕε = ϕ ≥ up on Ω\B(x0, r). By Proposition 3.2, we infer that up ≤ ϕε in B(x0, r). In
particular, up(x0) = ϕ(x0) ≤ ϕε(x0) = ϕ(x0)− ε, which is a contradiction. This concludes the
proof that up is a viscosity subsolution in {up > ψ}.

The proof that up is a viscosity supersolution in Ω is similar and so, we omit some details.
Assume by contradiction that there is a point x0 ∈ Ω and a test function ϕ ∈ C1(Ω) ∩ C(Ω̄)
such that ϕ ≤ up on Ω̄ with equality at x0 and

Lpϕ(x0)− fp(x0, ϕ(x0)) > 0.

Now, set ϕε := ϕ + εη, where η is always a cutoff function such that η(x0) = 1 and η = 0
outside B(x0, r). Then, we have ϕε = ϕ on Ω\B(x0, r). In addition, one can show as before
that for every ε > 0 small enough,

Lpϕε(x)− fp(x, up(x)) > 0 on B(x0, r).

Again, by Proposition 3.2, we infer that up ≥ ϕε in B(x0, r), which is a contradiction. □

3.2. The limit problem as p → ∞. In this section, we show that up to a subsequence the
solutions up to (1.4) converge uniformly to a function u as p goes to infinity. Moreover, we
will be interested in identifying the limit problem verified by u. First of all, let us remember
the definition of the infinity fractional Laplacian

L∞u = sup
y∈Ω, y ̸=x

u(y)− u(x)

|y − x|α
+ inf

y∈Ω, y ̸=x

u(y)− u(x)

|y − x|α
.

We decompose this operator as follows:

L+
∞u = sup

y∈Ω, y ̸=x

u(y)− u(x)

|y − x|α
and L−

∞u = inf
y∈Ω, y ̸=x

u(y)− u(x)

|y − x|α
.

In the sequel, we will need the following technical result where the proof can be found in [1,
Lemma 6.5].
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Lemma 3.4. Assume ϕ ∈ C1(Ω). Let {xp}p ⊂ Ω be such that xp → x0. So, we define

fp(y) =
ϕ(y)− ϕ(xp)

|y − xp|α
and f(y) =

ϕ(y)− ϕ(x0)

|y − x0|α
.

Then, one has

lim
p→∞

∣∣∣∣∣∣∣∣ [fp]±

|y − xp|
α
p

∣∣∣∣∣∣∣∣
Lp(Ω)

= ||[f ]±||L∞(Ω).

Hence, we have the following:

Proposition 3.5. Suppose that h : Ω×R 7→ R+ is a nonnegative continuous function in (x, s)
and that it is C1 with respect to the second variable s and g ∈ C0,α(∂Ω). Moreover, assume
that there is a constant M <∞ such that

(3.5) ψ(x) ≤ min{M |x− x0|α + g(x0) : x0 ∈ ∂Ω}, for all x ∈ Ω.

For hp(x, s) :=
h(x,s)p

p , let up be a solution of Problem (3.4). Then, up to a subsequence,

up → u uniformly in Ω. Moreover, u ∈ C0,α(Ω̄) and, u is a viscosity solution to the following
problem:
(3.6)

min{−L∞u,−L−
∞u− h(x, u)} = 0 in {u > ψ} ∩ {f(x, u) < 0},

max{−L∞u,−L+
∞u+ redh(x, u)} = 0 in {u > ψ} ∩ {f(x, u) > 0},

min{−L∞u,−L−
∞u− h(x, u)} ≥ 0 in {u = ψ} ∩ {f(x, u) < 0},

max{−L∞u,−L+
∞u+ h(x, u)} ≥ 0 in {u = ψ} ∩ {f(x, u) > 0},

L∞u = 0 in {u > ψ} ∩ Ω\{f(x, u) ̸= 0},
L∞u ≤ 0 in {u = ψ} ∩ Ω\{f(x, u) ̸= 0},
L∞u ≥ 0 in {u > ψ} ∩ ∂{f(x, u) > 0}\∂{f(x, u) < 0},
L∞u ≤ 0 in Ω ∩ ∂{f(x, u) < 0}\∂{f(x, u) > 0},
u = g on ∂Ω,

where f(x, s) = ∂sh(x, s).

Proof. First, we show that there is a function g̃ ∈ C0,α(Ω̄) such that g̃ ≥ ψ on Ω̄ and g̃ = g
on ∂Ω. For x̂ ∈ ∂Ω and c ∈ R, we set

Vx̂,c(x) := C|x− x̂|α + c, for all x ∈ Ω,

where C = max{[g]C0,α(∂Ω),M} > 0. If c ≥ ||g||∞, then Vx̂,c ≥ ψ on Ω̄ and Vx̂,c ≥ g on ∂Ω.
Now, we define

g̃(x) = inf

{
Vx̂,c(x) : x̂ ∈ ∂Ω, c ∈ R such that Vx̂,c ≥ ψ on Ω̄, Vx̂,c ≥ g on ∂Ω

}
.

We clearly have g̃ ≥ ψ on Ω̄ and g̃ ≥ g on ∂Ω. Now, fix a point x̂0 ∈ ∂Ω and set c0 = g(x̂0).
By (3.5), one has

Vx̂0,c0(x) = C|x− x̂0|α + g(x̂0) ≥ ψ(x), for every x ∈ Ω.

Thanks to the α−Hölder regularity of g, then we also have

Vx̂0,c0(x) = C|x− x̂0|α + g(x̂0) ≥ g(x), for every x ∈ ∂Ω.

But so,
g̃(x̂0) ≤ Vx̂0,c0(x̂0) = c0 = g(x̂0).
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This yields that g̃ = g on ∂Ω. Moreover, it is clear that g̃ ∈ C0,α(Ω̄). On the other hand, we
have

1

2p

∫∫
Ω×Ω

|up(x)− up(y)|p

|x− y|αp
+

∫
Ω
hp(x, up) ≤

1

2p

∫∫
Ω×Ω

|g̃(x)− g̃(y)|p

|x− y|αp
+

∫
Ω
hp(x, g̃)

≤ Cp|Ω|2

2p
+

||h(·, g̃)||p∞|Ω|
p

≤ Cp

p
.

We get that ∫∫
Ω×Ω

|up(x)− up(y)|p

|x− y|αp
≤ Cp.

Hence, there is a uniform constant C (independent of p) such that we have the following bound:[ ∫∫
Ω×Ω

|up(x)− up(y)|p

|x− y|αp

] 1
p

≤ C.

On the other side, we recall that ||up||∞ ≤ C([u]s,p + [g̃]s,p) + ||g̃||∞ ≤ C thanks to the fact
that g̃ ∈ C0,α(∂Ω). Fix m < p, one has

(3.7)

[ ∫∫
Ω×Ω

|up(x)− up(y)|m

|x− y|αm

] 1
m

≤
[ ∫∫

Ω×Ω

|up(x)− up(y)|p

|x− y|αp

] 1
p

|Ω|2(
p−m
pm

) ≤ C.

Consequently, (up)p is bounded in W s,m(Ω) (with s = α− N
m) and so, up to a subsequence, it

converges uniformly to a function u ∈W s,m(Ω), for all m. In particular, u belongs to C0,α(Ω̄).

Now, fix x0 ∈ {u > ψ}. We show that u is a viscosity subsolution at x0 to equation (3.6).
First, we consider the case when f(x0, u(x0)) > 0. Assume there is a function ϕ ∈ C1(Ω)∩C(Ω)
such that u ≤ ϕ on Ω̄, u(x0) = ϕ(x0) and,

max{−L∞ϕ(x0),−L+
∞ϕ(x0) + h(x0, ϕ(x0))} > 0.

In fact, one can assume that x0 is the unique maximizer of u − ϕ. To see this fact, fix δ > 0
small enough and set ϕδ(x) := ϕ(x) + δ|x− x0|2, for every x ∈ Ω. We have

L∞ϕδ(x0) = sup
x∈Ω, x ̸=x0

ϕδ(x)− ϕδ(x0)

|x− x0|α
+ inf

x∈Ω, x ̸=x0

ϕδ(x)− ϕδ(x0)

|x− x0|α
.

Yet,
[ϕδ(x)− ϕδ(x0)]− [ϕ(x)− ϕ(x0)] = δ|x− x0|2.

Hence,
ϕδ(x)− ϕδ(x0)

|x− x0|α
=
ϕ(x)− ϕ(x0)

|x− x0|α
+ δ|x− x0|2−α ≤ ϕ(x)− ϕ(x0)

|x− x0|α
+ Cδ.

Therefore, we get that ∣∣∣∣L±
∞ϕδ(x0)− L±

∞ϕ(x0)

∣∣∣∣ ≤ Cδ.

Then, −L∞ϕδ(x0) > 0 or −L+
∞ϕδ(x0)+h(x0, ϕδ(x0)) > 0 provided that δ > 0 is small enough.

This proves our claim.
Since up → u uniformly in Ω, then there is a point xp ∈ {up > ψ} such that up − ϕ has a

maximum at xp and xp → x0 (since x0 is the unique maximizer of u − ϕ). In the sequel, we
set Mp := maxΩ[up − ϕ]; we note that Mp → 0, up ≤ ϕ+Mp and up(xp) = ϕ(xp) +Mp. But,
up is a viscosity solution to equation (3.4). Hence,

−Lp[ϕ+Mp](xp) + fp(xp, ϕ(xp) +Mp) ≤ 0,
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where fp = ∂shp. So, we get

−Lpϕ(xp) + fp(xp, ϕ(xp) +Mp) ≤ 0.

Recalling the definition of Lp, one has

(3.8) −
∫
Ω

|ϕ(x)− ϕ(xp)|p−1

|x− xp|αp
ϕ(x)− ϕ(xp)

|ϕ(x)− ϕ(xp)|
dx+ fp(xp, ϕ(xp) +Mp) ≤ 0.

Then, ∫
Ω

[ϕ(x)− ϕ(xp)]
p−1
+

|x− xp|αp
dx ≥

∫
Ω

[ϕ(x)− ϕ(xp)]
p−1
−

|x− xp|αp
dx+ fp(xp, ϕ(xp) +Mp).

Set

Ap[ϕ] :=

[ ∫
Ω

[ϕ(x)− ϕ(xp)]
p−1
+

|x− xp|αp
dx

] 1
p−1

and

Bp[ϕ] :=

[ ∫
Ω

[ϕ(x)− ϕ(xp)]
p−1
−

|x− xp|αp
dx

] 1
p−1

.

We have
Ap[ϕ]

p−1 ≥ Bp[ϕ]
p−1 + fp(xp, ϕ(xp) +Mp).

Without loss of generality, we may assume that Ap[ϕ] > 0. Hence, dividing by Ap[ϕ], we get:

(3.9)
Bp[ϕ]

p−1

Ap[ϕ]p−1
+
fp(xp, ϕ(xp) +Mp)

Ap[ϕ]p−1
≤ 1.

Therefore, we have

Bp[ϕ]

Ap[ϕ]
≤ 1 and

fp(xp, ϕ(xp) +Mp)
1

p−1

Ap[ϕ]
=
h(xp, ϕ(xp) +Mp) f(xp, ϕ(xp) +Mp)

1
p−1

Ap[ϕ]
≤ 1

since otherwise, at least one of the two terms in (3.9) goes to ∞, which is a contradiction.
Thanks to Lemma 3.4, we have that Ap[ϕ] → L+

∞ϕ and Bp[ϕ] → −L−
∞ϕ. Passing to the limit

when p→ ∞, this yields that

−L∞ϕ(x0) ≤ 0 and − L+
∞ϕ(x0) + h(x0, ϕ(x0)) ≤ 0.

If f(x0, u(x0)) < 0, we assume that there is a function ϕ ∈ C1(Ω) ∩ C(Ω) such that u ≤ ϕ on
Ω̄, u(x0) = ϕ(x0) and,

min{−L∞ϕ(x0),−L−
∞ϕ(x0)− h(x0, ϕ(x0))} > 0.

Recalling (3.8), we have∫
Ω

[ϕ(x)− ϕ(xp)]
p−1
−

|x− xp|αp
dx ≤

∫
Ω

[ϕ(x)− ϕ(xp)]
p−1
+

|x− xp|αp
dx− fp(xp, ϕ(xp) +Mp).

Following the same steps as before, we arrive to a contradiction and so, u is a viscosity
subsolution to the following equation:

min{−L∞u,−L−
∞u− h(x, u)} ≤ 0 in {u > ψ}.
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Let us prove that u is also a viscosity supersolution in Ω to equation (3.6) in the case when
f(x0, u(x0)) > 0. Our aim is to show that for every function ϕ ∈ C1(Ω) ∩ C(Ω) such that
u ≥ ϕ on Ω̄ and ϕ(x0) = u(x0), we have

max{−L∞ϕ(x0),−L+
∞ϕ(x0) + h(x0, ϕ(x0))} ≥ 0.

Assume this is not the case. Thanks to the uniform convergence of up to u, there is a point xp ∈
Ω such that xp → x0 and up−ϕ has a minimum at xp. We denote by mp := minΩ[up−ϕ] → 0.
Since up is a viscosity solution to (3.4), then one has

−Lp[ϕ](xp) + fp(xp, ϕ(xp) +mp) ≥ 0.

So, we have

Bp[ϕ]
p−1 + fp(xp, ϕ(xp) +mp) ≥ Ap[ϕ]

p−1.

In particular, we get

Bp[ϕ]

Ap[ϕ]
≥ 1 or

fp(xp, ϕ(xp) +mp)

Ap[ϕ]
≥ 1.

Hence,

−L∞ϕ(x0) ≥ 0

or

−L+
∞ϕ(x0) + h(x0, ϕ(x0)) ≥ 0.

Consequently,

max{−L∞ϕ(x0),−L+
∞ϕ(x0) + h(x0, ϕ(x0))} ≥ 0.

Finally, if f(x0, u(x0)) < 0 then one can show similarly that u is a viscosity supersolution in
Ω to the following equation:

min{−L∞u,−L−
∞u− h(·, u)} ≥ 0.

This concludes the proof. □

3.3. Regularity. In this section, we assume that ∂sh > 0 over Ω×R. Under this assumption,
we recall that the limit problem is the following:

(3.10)


max{−L∞u,−L+

∞u+ h(x, u)} = 0 in {u > ψ},
max{−L∞u,−L+

∞u+ h(x, u)} ≥ 0 in {u = ψ},
u = g on ∂Ω.

From the previous section, we know that Problem (3.10) has a solution u which can be obtained
by approximation with the fractional p−Laplacian problem (1.4), and this solution u belongs
to C0,α(Ω). The goal of this section is to show that any viscosity solution to (3.10) is in
fact α−Hölderian. In order to study the regularity of a solution u, we start by the following
comparison principle:

Proposition 3.6. Let u be a viscosity solution of (3.10). Let ϕ ∈ C1(Ω) ∩ C(Ω̄) be a strict
viscosity supersolution in {u > ψ} such that u ≤ ϕ on {u = ψ} ∪ ∂Ω. Then, we have u ≤ ϕ in
Ω.
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Proof. Assume there exists a point x⋆ ∈ {x ∈ Ω : u(x) > ψ(x)} such that u(x⋆) − ϕ(x⋆) =
maxΩ[u − ϕ] = M > 0. So, we have u ≤ ϕ +M on Ω̄ and u(x⋆) = ϕ(x⋆) +M . Since u is a
viscosity solution, then one has

max{−L∞ϕ(x
⋆),−L+

∞ϕ(x
⋆) + h(x⋆, ϕ(x⋆) +M)} ≤ 0.

As ∂sh > 0, then
max{−L∞ϕ(x

⋆),−L+
∞ϕ(x

⋆) + h(x⋆, ϕ(x⋆))} ≤ 0,

which is a contradiction since ϕ is a strict viscosity supersolution in {u > ψ}. □

Lemma 3.7. Fix x0 ∈ {u > ψ}. If u is a viscosity solution of Problem (3.10) in Ω, then u is
a viscosity solution of (3.10) in Ω\{x0}.

Proof. We show that u is a viscosity subsolution in Ω\{x0}∩{u > ψ}. Let x⋆ ∈ Ω\{x0}∩{u >
ψ} and ϕ ∈ C1(Ω \ {x0}) ∩ C(Ω̄) be such that u ≤ ϕ on Ω̄ and ϕ(x⋆) = u(x⋆). Assume that
u(x0) < ϕ(x0). Let ϕn ∈ C1(Ω) ∩ C(Ω̄) be such that ϕn = ϕ on Ω\B(x0,

1
n), ϕ ≤ ϕn and ϕn

converges uniformly to ϕ. So, we have u ≤ ϕn on Ω̄ and u(x⋆) = ϕn(x
⋆). Since u is a viscosity

solution on Ω, then we must have

(3.11) max{−L∞ϕn(x
⋆),−L+

∞ϕn(x
⋆) + h(x⋆, ϕn(x

⋆))} ≤ 0.

Fix 0 < ε < |x0 − x⋆|. For n ∈ N⋆ large enough, one has the following:

L+
∞ϕn(x

⋆) = max

{
sup

y∈Ω̄\B̄(x0,ε), y ̸=x⋆

ϕn(y)− ϕn(x
⋆)

|y − x⋆|α
, sup
y∈B̄(x0,ε), y ̸=x⋆

ϕn(y)− ϕn(x
⋆)

|y − x⋆|α

}
= max

{
sup

y∈Ω̄\B̄(x0,ε), y ̸=x⋆

ϕ(y)− ϕ(x⋆)

|y − x⋆|α
, sup
y∈B̄(x0,ε), y ̸=x⋆

ϕn(y)− ϕn(x
⋆)

|y − x⋆|α

}
.

Yet, it is clear that

ϕn(y)− ϕn(x
⋆)

|y − x⋆|α
→ ϕ(y)− ϕ(x⋆)

|y − x⋆|α
uniformly in B̄(x0, ε).

Hence, limn→∞ L+ϕn(x
⋆) = L+ϕ(x⋆). In the same way, we show that L−ϕn(x

⋆) → L−ϕ(x⋆).
Passing to the limit in (3.11) as n→ ∞, we get that

max{−L∞ϕ(x
⋆),−L+

∞ϕ(x
⋆) + h(x⋆, ϕ(x⋆))} ≤ 0.

Finally, assume that u(x0) = ϕ(x0). For every δ > 0, we define ϕδ := ϕ+ δ|x− x⋆|2. We have
ϕδ(x

⋆) = u(x⋆) and u ≤ ϕδ on Ω̄. Hence,

max{−L∞ϕδ(x
⋆),−L+

∞ϕδ(x
⋆) + h(x⋆, ϕδ(x

⋆))} ≤ 0.

But, we recall that
|L±

∞ϕδ(x)− L±
∞ϕ(x)| ≤ Cδ.

Passing to the limit when δ → 0+, we conclude the proof. In the same way, we show that u is
a viscosity supersolution in Ω\{x0}. □

Proposition 3.8. Any viscosity solution u of Problem (3.10) is bounded. Moreover, we have
||u||∞ ≤ max{||g||∞, ||ψ||∞}.

Proof. Set ϕ =M ≥ max{||g||∞, ||ψ||∞}. We have u ≤ ϕ on {u = ψ} ∪ ∂Ω. Fix x ∈ Ω ∩ {u >
ψ}, then we clearly have

max{−Lϕ(x),−L+ϕ(x) + h(x, ϕ(x))} = h(x,M) > 0.

Hence, ϕ is a strict viscosity supersolution. Thanks to the comparison principle 3.6, this yields
that u ≤ ϕ on Ω. □
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Proposition 3.9. Let u be a viscosity solution of (3.10). Then, u is locally α−Hölderian in
{u > ψ}. Moreover, we have the following estimate:

[u]α ≤ 2||u||∞
dist(ω, {u = ψ} ∪ ∂Ω)

, for every ω ⊂⊂ Ω ∩ {u > ψ},

where [u]α denotes the α−Hölder constant of u.

Proof. Fix x0 ∈ ω ∩ {u > ψ}. Assume α < 1. Set Ψx0(x) = |x − x0|α, for all x ∈ Ω. For
x ∈ Ω\{x0}, it is easy to see that

L−Ψx0(x) = inf
y∈Ω̄, y ̸=x

Ψ(y)−Ψ(x)

|y − x|α
= inf

y∈Ω̄, y ̸=x

|y − x0|α − |x− x0|α

|y − x|α
≤ −1.

On the other hand,

L+Ψx0(x) = sup
y∈Ω̄, y ̸=x

Ψ(y)−Ψ(x)

|y − x|α
≤ sup

y∈Ω̄, y ̸=x

|y − x0|α − |x− x0|α

||y − x0| − |x− x0||α
≤ sup

1<r<
diam(Ω)
|x−x0|

Ψ(r),

with Ψ(r) =
rα − 1

(r − 1)α
. Yet, it is easy to check that Ψ is increasing on (1,+∞) and so, since

α < 1, we have

L+Ψx0(x) ≤ Ψ

(
diam(Ω)

|x− x0|

)
=

(
diam(Ω)

|x− x0|

)α

− 1(
diam(Ω)

|x− x0|
− 1

)α < 1.

Consequently, we get that

LΨx0(x) ≤

(
diam(Ω)

|x− x0|

)α

− 1(
diam(Ω)

|x− x0|
− 1

)α − 1 < 0.

Now, we define ϕ(x) = u(x0) + C|x− x0|α. We have ϕ ∈ C1(Ω\{x0}) ∩ C(Ω̄). Moreover,

L∞ϕ(x) = CLΨx0(x) < 0.

In particular, one has

max{−L∞ϕ(x),−L+
∞ϕ(x) + h(x, ϕ(x))} > 0.

If we choose the constant C large enough, one can get that u ≤ ϕ on {u = ψ} ∪ ∂Ω ∪ {x0}.
Indeed, for every x ∈ {u = ψ} ∪ ∂Ω, we have

u(x)− ϕ(x) = u(x)− u(x0)− C|x− x0|α ≤ 2||u||∞ − C dist(x0, {u = ψ} ∪ ∂Ω)α ≤ 0

as soon as

C ≥ 2||u||∞
dist(x0, {u = ψ} ∪ ∂Ω)α

.

Thanks to the comparison principle 3.6 and since u is a viscosity solution while ϕ is a strict
viscosity supersolution in Ω\{x0}∩{u > ψ}, this implies that u < ϕ in Ω\{x0}. Consequently,

u(x) ≤ u(x0) + C|x− x0|α.
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Finally, assume α = 1. Fix ε > 0 small enough. Then, we define Ψx0(x) = |x−x0|−ε|x−x0|2.
Again, we have

L−Ψx0(x) = inf
y∈Ω̄, y ̸=x

Ψx0(y)−Ψx0(x)

|y − x|
= inf

y∈Ω̄, y ̸=x

|y − x0| − ε|y − x0|2 − |x− x0|+ ε|x− x0|2

|y − x|
≤ −1 + ε|x− x0|.

Moreover,

L+Ψx0(x) = sup
y∈Ω̄, y ̸=x

Ψx0(y)−Ψx0(x)

|y − x|
≤ sup

y∈Ω̄, y ̸=x

|y − x0| − ε|y − x0|2 − |x− x0|+ ε|x− x0|2

||y − x0| − |x− x0||

= 1− ε|x− x0| − ε min
|y−x0|>|x−x0|

|y − x0| = 1− 2ε|x− x0|.

Hence, we get
LΨx0(x) ≤ −ε|x− x0| < 0, for all x ∈ Ω\{x0}.

Now, set ϕ(x) = u(x0) + C[|x − x0| − ε|x − x0|2]. So, we have Lϕ(x) = CLΨx0(x) < 0, for
every x ∈ Ω\{x0}. In addition, one has

u(x)− ϕ(x) = u(x)− u(x0)− C[|x− x0| − ε|x− x0|2]

≤ 2||u||∞ − Cdist(w, {u = ψ} ∪ ∂Ω) + Cεdiam(Ω)2 ≤ 0

as soon as

C ≥ 2||u||∞
dist(w, {u = ψ} ∪ ∂Ω)− εdiam(Ω)2

.

Then,

|u(x)− u(x0)| ≤
2||u||∞

dist(w, {u = ψ} ∪ ∂Ω)− εdiam(Ω)2
[|x− x0| − ε|x− x0|2].

Letting ε→ 0, we get

|u(x)− u(x0)| ≤
2||u||∞

dist(w, {u = ψ} ∪ ∂Ω)
|x− x0|.

□

Proposition 3.10. Assume ψ ∈ C0,α(Ω̄). Then, any viscosity solution u of (3.10) belongs to
C0,α(Ω̄). Moreover, we have

[u]α ≤ C(||g||∞, ||ψ||∞, [g]α, [ψ]α).

Proof. Fix x0 ∈ ∂{u > ψ}\∂Ω. Set ϕ(x) = ψ(x0) + C|x − x0|α. From Proposition 3.9, we
recall that ϕ is a strict viscosity supersolution in {u > ψ}. Since ψ ∈ C0,α(Ω̄), we have

u(x)− ϕ(x) = ψ(x)− ψ(x0)− C|x− x0|α ≤ 0, for all x ∈ {u = ψ}
and

u(x)−ϕ(x) = g(x)−ψ(x0)−C|x−x0|α ≤ ||g||∞+||ψ||∞−C dist(x0, ∂Ω)
α ≤ 0, for all x ∈ ∂Ω,

as soon as

C ≥ ||g||∞ + ||ψ||∞
dist(x0, ∂Ω)α

.

Hence, by Proposition 3.6, we infer that u ≤ ϕ in {u > ψ}. Thanks to Proposition 3.9, this

implies that u ∈ C0,α
loc (Ω).



THE LIMIT OF A NONLOCAL p−LAPLACIAN OBSTACLE PROBLEM 17

Now, fix x0 ∈ ∂Ω. Again, we define ϕ(x) = g(x0) + C|x − x0|α. So, ϕ is a strict viscosity
supersolution in {u > ψ}. Moreover, one has

u(x)− ϕ(x) = g(x)− g(x0)− C|x− x0|α ≤ 0, for all x ∈ ∂Ω

and

u(x)− ϕ(x) = ψ(x)− g(x0)− C|x− x0|α ≤ 0, for all x ∈ {u = ψ},

provided that C ≥ max{[g]α,M}; we note that in the last inequality we have used that
ψ(x) ≤ min{M |x− x0|α + g(x0) : x0 ∈ ∂Ω}. Consequently, u ∈ C0,α(Ω). □

We conclude this section by the following existence result but in the case when h = h(s) is
not smooth.

Proposition 3.11. Assume h is a nonnegative nondecreasing continuous function. Then,
Problem (3.10) has a solution.

Proof. Let hn be a sequence of smooth functions such that h′n > 0 and hn → h locally uniformly
on R. For every n ∈ N, let un be a solution to Problem (3.10). Thanks to Proposition 3.10,
we have

[un]α ≤ C(||g||∞, ||ψ||∞, [g]α, [ψ]α).

Moreover,

||un||∞ ≤ max{||g||∞, ||ψ||∞}.

Hence, up to a subsequence, un → u uniformly in Ω̄. In particular, we have u = g on ∂Ω and
u ≥ ψ on Ω̄. Now, let us show that u is a viscosity solution of (3.10). First, we show that u is
a viscosity subsolution in {u > ψ}. Fix x0 ∈ {u > ψ} and let φ ∈ C1(Ω) ∩ C(Ω̄) be such that
u ≤ φ on Ω̄ and u(x0) = φ(x0), we recall that one can assume x0 to be the unique maximizer
of u − φ. For every n, let xn be a maximizer of un − φ and set Mn := maxΩ̄[un − φ]. Then,
xn → x0 and Mn → 0. Since un is a viscosity solution, then one has

max{−L∞φ(xn),−L+
∞φ(xn) + hn(xn, φ(xn) +Mn)} ≤ 0.

But, L∞φ ∈ C(Ω) since φ ∈ C1(Ω) (see [1, Lemma 3.5]). Passing to the limit when n→ +∞,
we get

max{−L∞φ(x0),−L+
∞φ(x0) + h(x0, φ(x0))} ≤ 0.

In the same way, we show that u is a viscosity supersolution in Ω. This concludes the proof
that u is a viscosity solution. □

4. The case of a linear nonhomogeneous term

In this section, we consider the case when the nonhomogeneous term is linear in s, i.e.
hp(x, s) = h(x) · s, where h ∈ Lq(Ω) with q > 1. For p ≥ q/q − 1, we minimize the following
problem

(4.1) min

{
1

2p

∫∫
Ω×Ω

|u(x)− u(y)|p

|x− y|αp
−
∫
Ω
h(x)u : u ∈W s,p(Ω), u ≥ ψ on Ω̄, u = g on ∂Ω

}
.

Notice that the nonhomogeneous term has no sign now and so, we cannot use Proposition 3.1
to get existence of solution to Problem (4.1). However, we still have the following:
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Proposition 4.1. Problem (4.1) has a minimizer up. Moreover, up is a weak solution to the
following problem:

(4.2)

{
−Lpu = h in {u > ψ},
−Lpu ≤ h in {u = ψ}.

In addition, if h is continuous and p ≥ 1/1−α then up is also a viscosity solution to Problem
(4.2).

Proof. Let (un)n be a minimizing sequence. Then, there is a uniform constant C < ∞ such
that

1

2p

∫∫
Ω×Ω

|un(x)− un(y)|p

|x− y|αp
−

∫
Ω
h(x)un ≤ C, for all n.

Using both Hölder and Poincaré inequalities, we have∫
Ω
h(x)un ≤ |Ω|1−

1
p
− 1

q ||h||Lq(Ω) ||un||Lp(Ω) ≤ |Ω|1−
1
p
− 1

q ||h||Lq(Ω) ||un||Lp(Ω)

(4.3) ≤ |Ω|1−
1
p
− 1

q ||h||Lq(Ω)(C[un − g]s,p + ||g||Lp(Ω)) ≤ C([un]s,p + 1)

where the constant C is uniform in n. In particular, this implies that

[un]
p
s,p − C[un]s,p ≤ C.

Hence, (un)n is bounded in W s,p(Ω) and so, up to a subsequence, un ⇀ up in W s,p(Ω) and

un → up uniformly in C0,β(Ω̄), β = α− 2N
p , with up ≥ ψ on Ω and up = g on ∂Ω. So, we get

that ∫∫
Ω×Ω

|up(x)− up(y)|p

|x− y|αp
≤ lim inf

n

∫∫
Ω×Ω

|un(x)− un(y)|p

|x− y|αp

and ∫
Ω
h(x)un →

∫
Ω
h(x)up.

Hence, up minimizes Problem (4.1). Now, let ϕ be a smooth function such that supp(ϕ) ⊂
{up > ψ}. Then, for all t ∈ R small enough, we have

1

2p

∫∫
Ω×Ω

|up(x)− up(y)|p

|x− y|αp
−
∫
Ω
h(x)up

≤ 1

2p

∫∫
Ω×Ω

|up(x) + tϕ(x)− up(y)− tϕ(y)|p

|x− y|αp
−
∫
Ω
h(x)[up + tϕ].

Thus, we get

−
∫∫

Ω×Ω

|up(x)− up(y)|p−2

|x− y|αp
[up(y)− up(x)]ϕ(x)−

∫
Ω
h(x)ϕ(x) = 0.

The fact that Lpup ≤ h on the coincidence set {up = ψ} can be treated similarly. Following
the proof of Proposition 3.3, one can also show that up is a viscosity solution to (4.2) provided
that h is continuous. This concludes the proof. □
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Proposition 4.2. Up to a subsequence, up → u uniformly in Ω and u belongs to C0,α(Ω). In
addition, assume [g]C0,α(∂Ω) ≤ 1 and that the obstacle ψ satisfies the following inequality:

(4.4) ψ(x) ≤ min{|x− x0|α + g(x0) : x0 ∈ ∂Ω}, for all x ∈ Ω.

Then, u maximizes the following problem:
(4.5)

max

{∫
Ω
ϕ(x)h(x) dx : ϕ ∈ C0,α(Ω), [ϕ]C0,α(Ω) ≤ 1, ϕ ≥ ψ in Ω and ϕ = g on ∂Ω

}
where

[ϕ]C0,α(Ω) = sup
x, y ∈Ω

|ϕ(x)− ϕ(y)|
|x− y|α

.

Moreover, this limit function u is a viscosity solution to the following limit problem:

(4.6)



L+
∞u = 1 in {u > ψ} ∩ {h < 0},

L−
∞u = −1 in {u > ψ} ∩ {h > 0},

L∞u = 0 in {u > ψ} ∩
◦

(Ω\ spth),
L∞u ≤ 0 in {u = ψ} ∩

◦
(Ω\ spth),

L∞u ≤ 0 in Ω ∩ ∂{h > 0}\∂{h < 0},
L∞u ≥ 0 in {u > ψ} ∩ ∂{h < 0}\∂{h > 0},
L+
∞u ≤ 1 in Ω,

L−
∞u ≥ −1 in Ω,

u = g on ∂Ω.

Proof. Recalling the proof of Proposition 3.5, there is a function g̃ ∈ C0,α(Ω̄) such that g̃ ≥ ψ
on Ω̄ and g̃ = g on ∂Ω. Thanks to (4.12) and the fact that [g]C0,α(∂Ω) ≤ 1, it is not difficult
to check that g̃ satisfies [g̃]C0,α(Ω) ≤ 1. From the optimality of up in (4.1), we have

1

2p

∫∫
Ω×Ω

|up(x)− up(y)|p

|x− y|αp
−

∫
Ω
h(x)up ≤

1

2p

∫∫
Ω×Ω

|g̃(x)− g̃(y)|p

|x− y|αp
−

∫
Ω
h(x)g̃

≤
|Ω|2 [g̃]p

C0,α(Ω)

2p
+ ||g̃||L∞(Ω) ||h||L1(Ω) ≤ C

( [g̃]p
C0,α(Ω)

p
+ 1

)
.

Recalling estimate (4.3), we get∫
Ω
h(x)up ≤ |Ω|1−

1
p
− 1

q ||h||Lq(Ω)(C[up − g]s,p + ||g||Lp(Ω))

where the Poincaré constant C is independent of p (see Section 2). Hence, we infer that∫
Ω
h(x)up ≤ C([up]s,p + 1).

Hence,

1

2p
[up]

p
s,p − C[up]s,p ≤ C

( [g̃]p
C0,α(Ω)

p
+ 1

)
.

Using Young inequality, one has

C[up]s,p ≤
ε

p
[up]

p
s,p +

ε
−1
p−1

p
p−1

C
p

p−1 , for any ε > 0.
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Therefore, we get

1

2p
[up]

p
s,p −

ε

p
[up]

p
s,p −

ε
−1
p−1

p
p−1

C
p

p−1 ≤ C

( [g̃]p
C0,α(Ω)

p
+ 1

)
.

Choose ε = 1
4 . Then, we infer that

(4.7) [up]
p
s,p ≤ Cp

( [g̃]p
C0,α(Ω)

p
+ 1

)
.

Consequently, [ ∫∫
Ω×Ω

|up(x)− up(y)|p

|x− y|αp

] 1
p

≤ C.

Yet,

||up||∞ ≤ C([u]s,p + [g̃]s,p) + ||g̃||∞ ≤ C.

Recalling (3.7), we may show that (up)p is bounded in Wα−N
m
,m(Ω), for any m ∈ N. Hence,

up to a subsequence, up → u uniformly in Ω where u ∈ C0,α(Ω), u ≥ ψ in Ω and u = g on ∂Ω.
Recalling (4.7), since [g̃]C0,α(Ω) ≤ 1, then we have

(4.8) [up]s,p ≤ [Cp]
1
p .

Fix m < p. Thanks again to (3.7), one has

(4.9)

[ ∫∫
Ω×Ω

|up(x)− up(y)|m

|x− y|αm

] 1
m

≤ [Cp]
1
p |Ω|2(

p−m
pm

)
.

By Fatou’s Lemma, we get

lim inf
m→∞

[ ∫∫
Ω×Ω

|u(x)− u(y)|m

|x− y|αm

] 1
m

≤ lim inf
m→∞

lim inf
p→∞

∫∫
Ω×Ω

|up(x)− up(y)|m

|x− y|αm

≤ lim inf
m→∞

lim inf
p→∞

[Cp]
1
p |Ω|2(

p−m
pm

)
= lim inf

m→∞
|Ω|

2
m = 1.

Now, let ϕ ∈ C0,α(Ω) with ϕ ≥ ψ in Ω, ϕ = g on ∂Ω and [ϕ]C0,α(Ω) ≤ 1. Since up minimizes

(4.1) and ϕ is admissible, then we have

1

2p

∫∫
Ω×Ω

|up(x)− up(y)|p

|x− y|αp
−

∫
Ω
h(x)up(x) ≤

1

2p

∫∫
Ω×Ω

|ϕ(x)− ϕ(y)|p

|x− y|αp
−

∫
Ω
h(x)ϕ(x).

Hence,

−
∫
Ω
h(x)up(x) ≤

|Ω|2

2p
−

∫
Ω
h(x)ϕ(x).

Passing to the limit when p goes to ∞, we get∫
Ω
h(x)u(x) ≥

∫
Ω
h(x)ϕ(x).

Fix x0 ∈ Ω. Let ϕ ∈ C1(Ω) ∩ C(Ω) be such that u ≤ ϕ on Ω̄ and u(x0) = ϕ(x0). Then, we
claim that

−L−
∞ϕ(x0) ≤ 1.
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By definition of L−
∞, we have

−L−
∞ϕ(x0) = sup

x∈Ω, x ̸=x0

ϕ(x0)− ϕ(x)

|x− x0|α
≤ sup

x∈Ω, x ̸=x0

u(x0)− u(x)

|x− x0|α
≤ 1

where in the last two inequalities we have used that ϕ(x0) = u(x0), u ≤ ϕ in Ω and [u]C0,α ≤ 1.
Now, assume ϕ ∈ C1(Ω) ∩ C(Ω) is such that u ≥ ϕ on Ω̄ and ϕ(x0) = u(x0). From the

definition of L+
∞, one has

L+
∞ϕ(x0) = sup

x∈Ω, x ̸=x0

ϕ(x)− ϕ(x0)

|x− x0|α
≤ sup

x∈Ω, x ̸=x0

u(x)− u(x0)

|x− x0|α
≤ 1.

Hence,
−L+

∞ϕ(x0) + 1 ≥ 0.

Fix x0 ∈ {u > ψ} ∩ {h < 0}. So, we will show that u is a viscosity subsolution at x0 to (4.6).
Assume by contradiction that there is a function ϕ ∈ C1(Ω) ∩ C(Ω) with u ≤ ϕ on Ω̄ and
u(x0) = ϕ(x0) such that

−L+
∞ϕ(x0) + 1 > 0.

From the proof of Proposition 3.3, we recall that by considering ϕδ(x) := ϕ(x) + δ|x − x0|2
instead of ϕ, one can assume that x0 is the unique maximizer of u−ϕ. Since up → u uniformly

in Ω, then there is a point xp ∈ {up > ψ} such that up−ϕ has a maximum at xp and xp → x0.
Set Mp := maxΩ[up − ϕ]; we note that Mp → 0, up ≤ ϕ+Mp and up(xp) = ϕ(xp) +Mp. But,
up is a viscosity solution to equation (4.2). Hence,

−Lpϕ(xp)− h(xp) ≤ 0.

Hence,

−
∫
Ω

|ϕ(x)− ϕ(xp)|p−1

|x− xp|αp
ϕ(x)− ϕ(xp)

|ϕ(x)− ϕ(xp)|
dx− h(xp) ≤ 0.

Thus, we get

(4.10) Ap[ϕ]
p−1 ≥ Bp[ϕ]

p−1 − h(xp),

where we recall that

Ap[ϕ] :=

[ ∫
Ω

[ϕ(x)− ϕ(xp)]
p−1
+

|x− xp|αp
dx

] 1
p−1

and Bp[ϕ] :=

[ ∫
Ω

[ϕ(x)− ϕ(xp)]
p−1
−

|x− xp|αp
dx

] 1
p−1

.

Then,
Bp[ϕ]

p−1

Ap[ϕ]p−1
− h(xp)

Ap[ϕ]p−1
≤ 1.

Since h(x0) < 0, then we have

Bp[ϕ]

Ap[ϕ]
≤ 1 and

[−h(xp)]
1

p−1

Ap[ϕ]
≤ 1.

Recalling Lemma 3.4, we have that Ap[ϕ] → L+
∞ϕ and Bp[ϕ] → −L−

∞ϕ. Passing to the limit
when p→ ∞, we get

−L∞ϕ(x0) ≤ 0 and − L+
∞ϕ(x0) + 1 ≤ 0

which is a contradiction.
Fix x0 ∈ {u > ψ} ∩ {h > 0}. Assume there is a function ϕ ∈ C1(Ω) ∩ C(Ω) with u ≥ ϕ on

Ω̄ and u(x0) = ϕ(x0) such that
−L−

∞ϕ(x0)− 1 < 0.
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Again we may assume that x0 is the unique minimizer of u − ϕ. Thanks to the uniform
convergence of up to u, there is a point xp ∈ Ω such that xp → x0 and up − ϕ has a minimum
at xp. We denote by mp := minΩ[up − ϕ] → 0. Since up is a viscosity solution to (4.2), then
one has

−Lp[ϕ](xp)− h(xp) ≥ 0.

So, we have

Bp[ϕ]
p−1 ≥ Ap[ϕ]

p−1 + h(xp).

In particular, we get

Ap[ϕ]

Bp[ϕ]
≤ 1 and

h(xp)
1

p−1

Bp[ϕ]
≤ 1.

Hence,
−L∞ϕ(x0) ≥ 0 and − L−

∞ϕ(x0)− 1 ≥ 0,

which is a contradiction.
If the point x0 ∈ {u > ψ} ∩

◦
(Ω\ spth) then one can show exactly as above that u is a

viscosity solution at x0 to the following equation

(4.11) L∞u = 0.

If x0 ∈ {u = ψ} ∩
◦

(Ω\ spth), then u is a viscosity supersolution to (4.11) at x0. In the
same way, we show the remaining equations in (4.6) when x0 ∈ ∂{h > 0}\∂{h < 0} or
x0 ∈ ∂{h < 0}\∂{h > 0}. This concludes the proof. □

Finally, we note that if α = 1 then the maximization problem (4.5) without both the obstacle
u ≥ ψ in Ω and the boundary condition u = g on ∂Ω is nothing else than the dual of the
classical Monge-Kantorovich problem. In [3, 4], the authors studied a mass transportation
problem between two masses h+ and h− (which do not have a priori the same total masses)
with the possibility of transporting some mass to/from the boundary, paying the transport
cost c(x, y) plus an extra cost g(y) for each unit of mass that comes out from a pointy y ∈ ∂Ω
(the export taxes) or −g(x) for each unit of mass that enters at the point x ∈ ∂Ω (the import
taxes); this means that ∂Ω can be used as an infinite reserve/repository, we can take as much
mass as we wish from the boundary, or send back as much mass as we want, provided that
we pay the transportation cost plus the import/export taxes. In this case, the dual problem
will be complemented with the boundary condition u = g on ∂Ω. In addition, assume that
we can import mass through any point x ∈ Ω but we have to pay again an import tax given
by −ψ(x). Then, the obstacle condition u ≥ ψ in Ω will be added now to the dual problem.
So, we conclude this section with the following connection with optimal transport theory (the
proof of this duality will be similar to the one in [3]).

Proposition 4.3. Under the assumptions that [g]C0,α(∂Ω) ≤ 1 and that the obstacle ψ satisfies
the following inequality:

(4.12) ψ(x) ≤ min{|x− x0|α + g(x0) : x0 ∈ ∂Ω}, for all x ∈ Ω,

we have the following duality:

max

{∫
Ω
ϕ(x)h(x) dx : ϕ ∈ C0,α(Ω), [ϕ]C0,α(Ω) ≤ 1, ϕ ≥ ψ in Ω and ϕ = g on ∂Ω

}
= min

{∫
Ω×Ω

|x−y|α dγ−
∫
Ω
ψ d[(Πx)#γ−h+]+

∫
∂Ω
g d[(Πy)#γ−(Πx)#γ] : γ ∈ Π(h+, h−)

}
where

Π(h+, h−) := {γ ∈ M+(Ω× Ω), (Πx)#γ ≥ h+ and (Πy)#γ ≥ h−}.
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5. The case of a superlinear nonhomogeneous term

This section is devoted to study the limit of Problem (3.6) when p→ ∞ but in the case when

the nonhomogeneous term hp(x, u) = h(x) |u|Λ
Λ , where the constant Λ = Λ(p) > 1 depends on

p and the function h is in Lq(Ω) for some q > 1. Then, we consider the following minimization
problem:
(5.1)

min

{
1

2p

∫∫
Ω×Ω

|u(x)− u(y)|p

|x− y|αp
− 1

Λ

∫
Ω
h(x) |u|Λ : u ∈W s,p(Ω), u ≥ ψ on Ω̄, u = g on ∂Ω

}
.

Notice that this case was not covered in Section 3 since here the nonhomogeneous term is not
necessarily nonnegative. Some of the proofs are similar to those in Section 3; therefore, we
will omit certain details and focus on the main differences. We begin by proving the following
existence result.

Proposition 5.1. Under the assumption that Λ < (1− 1
q ) p, Problem (5.1) has a minimizer

up. In addition, up is a weak solution to the following problem:

(5.2)

{
−Lpu = h |u|Λ−2 u in {u > ψ},
−Lpu ≤ h |u|Λ−2 u in {u = ψ}.

Moreover, assume h is continuous and p ≥ 1/1 − α. Then, up is also a viscosity solution to
Problem (5.2).

Proof. Let (un)n be a minimizing sequence in Problem (5.1). Then, there is a constant C <∞
such that

1

2p

∫∫
Ω×Ω

|un(x)− un(y)|p

|x− y|αp
− 1

Λ

∫
Ω
h(x) |un|Λ ≤ C.

Since Λ < (1− 1
q ) p, then one has

1

2p

∫∫
Ω×Ω

|un(x)− un(y)|p

|x− y|αp
≤ 1

Λ
|Ω|1−

1
q
−Λ

p ||h||Lq(Ω) ||un||ΛLp(Ω) + C.

Hence,
[un]

p
s,p ≤ C(||un||ΛLp(Ω) + 1).

Therefore, (un)n is bounded in W s,p(Ω). But, this implies (see the proof of Proposition 4.1)
that up to a subsequence, un → up uniformly in Ω and up minimizes Problem (5.1). Finally,
we note that if ϕ is a smooth function such that supp(ϕ) ⊂ {up > ψ} then, for all t small
enough, one has

1

2p

∫∫
Ω×Ω

|up(x)− up(y)|p

|x− y|αp
− 1

Λ

∫
Ω
h(x)|up|Λ

≤ 1

2p

∫∫
Ω×Ω

|up(x) + tϕ(x)− up(y)− tϕ(y)|p

|x− y|αp
− 1

Λ

∫
Ω
h(x)|up + tϕ|Λ.

Hence,

−
∫∫

Ω×Ω

|up(x)− up(y)|p−2

|x− y|αp
[up(y)− up(x)]ϕ(x)−

∫
Ω
h(x) |up|Λ−2 up ϕ(x) = 0.

□

Finally, we conclude the paper by the following:
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Proposition 5.2. Up to a subsequence, up → u uniformly in Ω. In addition, assume that

lim
p→∞

Λ(p)

p
= Λ⋆ < 1− 1

q
.

Then, the limit function u solves (in the viscosity sense) the following problem:

(5.3)



max{−L∞u,−L+
∞u+ |u|Λ⋆} = 0 in {u > ψ} ∩ {h · u > 0},

min{−L∞u,−L−
∞u− |u|Λ⋆} = 0 in {u > ψ} ∩ {h · u < 0},

max{−L∞u,−L+
∞u+ |u|Λ⋆} ≥ 0 in {u = ψ} ∩ {h · u > 0},

min{−L∞u,−L−
∞u− |u|Λ⋆} ≥ 0 in {u = ψ} ∩ {h · u < 0},

u = g on ∂Ω.

Proof. Since up minimizes (5.1), then we have

1

2p

∫∫
Ω×Ω

|up(x)− up(y)|p

|x− y|αp
− 1

Λ

∫
Ω
h(x)|up|Λ ≤ 1

2p

∫∫
Ω×Ω

|g̃(x)− g̃(y)|p

|x− y|αp
− 1

Λ

∫
Ω
h(x)|g̃|Λ

≤
|Ω|2 [g̃]p

C0,α(Ω)

2p
+

1

Λ
||g̃||ΛL∞(Ω) ||h||L1(Ω) ≤ C

( [g̃]p
C0,α(Ω)

p
+

||g̃||ΛL∞(Ω)

Λ

)
≤ Cp

p
.

Yet, ∫
Ω
h(x)|up|Λ ≤ |Ω|1−

1
q
−Λ

p ||h||Lq(Ω) (C[up − g]s,p + |Ω|
1
p ||g||L∞(Ω))

Λ.

Therefore, we get that ∫
Ω
h(x)|up|Λ ≤ CΛ([up]

Λ
s,p + 1).

Hence,
1

2p
[up]

p
s,p −

CΛ

Λ
[up]

Λ
s,p ≤

Cp

p
.

Then, we get

1

2p
[up]

p
s,p −

ε

p
[up]

p
s,p −

ε
−Λ
p−Λ

pΛ
p−Λ

C
pΛ
p−Λ ≤ Cp

p
.

Consequently, (
1

2
− ε

)
[up]

p
s,p ≤ Cp +

ε
−Λ
p−Λ

Λ
p−Λ

C
pΛ
p−Λ .

Since Λ < (1− 1
q ) p, then we have

[up]s,p ≤ C +

(
ε

−Λ
p−Λ

Λ
p−Λ

) 1
p

C
Λ

p−Λ ≤ C.

Yet,

||up||∞ ≤ C([u]s,p + [g̃]s,p) + ||g̃||∞ ≤ C.

Thus, we infer that up to a subsequence, up → u uniformly in Ω and u ∈ C0,α(Ω) with u ≥ ψ

in Ω and u = g on ∂Ω.
Finally, we show briefly that u solves (5.3) in the viscosity sense. Fix x0 ∈ {u > ψ}. Then,

we will show that u is a viscosity subsolution at x0 to (5.3). Assume that h(x0) · u(x0) > 0.
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Let us assume that there is a function ϕ ∈ C1(Ω)∩C(Ω) such that u ≤ ϕ on Ω̄, u(x0) = ϕ(x0)
and,

max{−L∞ϕ(x0),−L+
∞ϕ(x0) + |ϕ(x0)|Λ

⋆} > 0.

Since up → u uniformly in Ω, then there is a point xp ∈ {up > ψ} such that up − ϕ has a
maximum at xp and xp → x0. Set Mp := maxΩ[up − ϕ]. So, one has Mp → 0, up ≤ ϕ +Mp

and up(xp) = ϕ(xp) +Mp. Yet, up is a viscosity solution to equation (5.2). Hence,

(5.4) −
∫
Ω

|ϕ(x)− ϕ(xp)|p−1

|x− xp|αp
ϕ(x)− ϕ(xp)

|ϕ(x)− ϕ(xp)|
dx+ h(xp)|ϕ(xp) +Mp|Λ−2[ϕ(xp) +Mp] ≤ 0.

Then, we have

Bp[ϕ]
p−1

Ap[ϕ]p−1
+
h(xp)|ϕ(xp) +Mp|Λ−2[ϕ(xp) +Mp]

Ap[ϕ]p−1
≤ 1.

Therefore, we have

Bp[ϕ]

Ap[ϕ]
≤ 1 and

|ϕ(xp) +Mp|
Λ−2
p−1 [h(xp)(ϕ(xp) +Mp)]

1
p−1

Ap[ϕ]
≤ 1.

Recalling Lemma 3.4, one has Ap[ϕ] → L+
∞ϕ and Bp[ϕ] → −L−

∞ϕ. Passing to the limit when
p→ ∞, we get

−L∞ϕ(x0) ≤ 0 and − L+
∞ϕ(x0) + |ϕ(x0)|Λ

⋆ ≤ 0.

Finally, we note that the other equations in (5.3) can be treated similarly. This concludes the
proof. □
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[1] Chambolle A., Lindgren E., Monneau R., A Hölder infinity Laplacian, ESAIM: Control, Optimisation
and Calculus of Variations 18.3 (2012): 799-835.

[2] Charro F. & Peral I., Limit Branch of Solutions as p → ∞ for a Family of Sub-Diffusive Problems
Related to the p−Laplacian, Communications in Partial Differential Equations, 32(12), 1965-1981.

[3] S. Dweik, N. Ghoussoub & A. Z. Palmer, Optimal Controlled Transports with Free End Times
Subject to Import/Export Tariffs, J. Dyn. Control Syst. 26, 481-507 (2020).

[4] S. Dweik, Optimal transportation with boundary costs and summability estimates on the transport
density, Journal of Convex Analysis, 25(1).
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