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Abstract

We study a Schilder-type large deviation principle for sticky-reflected Brownian motion with
boundary diffusion, both at the static and sample path level in the short-time limit. A sharp
transition for the rate function occurs, depending on whether the tangential boundary diffusion
is faster or slower than in the interior of the domain. The resulting intrinsic distance naturally
gives rise to a novel optimal transport model, where motion and kinetic energy are treated
differently in the interior and along the boundary.
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1 Introduction
In its classical version, Schilder’s theorem completely describes on the path level the short-time
behaviour of Brownian motion with generator Q = 1

2∆. More precisely, the slowed-down Wiener
measure Rε on Ω = C([0, 1];Rd), corresponding to the process with generator Qε = ε

2∆, satisfies
in the small-time regime ε→ 0 the Large Deviation Principle

Rε ≍
ε→0

exp

(
−1

ε
C(ω)

)
, C(ω) =

1

2

∫ 1

0

|ω̇t|2dt (1.1)

with rate function given by the kinetic energy. The short-time behaviour can of course be
analyzed for more general diffusion processes and this is interesting for many reasons, but let
us just mention three in connection with analysis, optimal transport, and PDEs:

1. Varadhan’s short-time formula [46]

− lim
t↘0

t log pt(x, y) =
1

2
d2(x, y)

relates the transition kernel pt(x, y) to the intrinsic distance d2(x, y) of a given diffusion
process, which in turn can be used to establish upper and lower heat kernel estimates,
Harnack inequalities, etc.

2. The short-time behaviour is a key ingredient for the so-called Schrödinger problem, which
has been recognized over the past 20 years as an entropic approximation of Monge-
Kantorovich optimal transport [33, 34, 37]. More precisely, given two distributions ρ0, ρ1 ∈
P(Rd) and writing H(P |R) =

∫
dP
dR log

(
dP
dR

)
dR for the relative entropy of P ≪ R with

respect to a reference measure R, the Schrödinger bridge problem reads

Cε(ρ0, ρ1) = min
P∈P(Ω)

{
εH(P |Rε) s.t. P0 = ρ0, P1 = ρ1

}
. (1.2)
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Here and throughout et(ω) = ωt denotes the time-t evaluation map, and P0 = e0#P
and P1 = e1#P denote the marginals of the path measure P at times t = 0, 1. Roughly
speaking, as soon as the slowed-down measure satisfies the LDP Rε ≍ exp(− 1

εC(ω)) the
entropic problem Gamma-converges to

C = Γ− lim
ε→0

Cε

given by

C(ρ0, ρ1) = min
P

{∫
C(ω)P (dω) s.t. P0 = ρ0, P1 = ρ1

}
,

see e.g. [33, 8, 4, 7, 13]. This is nothing but the Lagrangian version of the celebrated
Benamou-Brenier Eulerian interpretation of Monge-Kantorovich optimal transport [6].
Moreover, writing

c(x, y) = min
ω

{
C(ω) s.t. ω(0) = x, ω(1) = y

}
(1.3)

one also has the equivalent static Kantorovich formulation

C(ρ0, ρ1) = min
π

{∫
c(x, y)π(dx, dy) s.t. πx = ρ0, πy = ρ1

}
.

Hence the rate function C(ω) in Schilder’s theorem is deeply related to the optimal trans-
port problem.

3. Since the works of Jordan, Kinderlehrer and Otto [29], it is well-known that the canonical
Fokker-Planck equation ∂tρt = Q∗ρt = 1

2∆ρt (with no-flux conditions on the boundary
of the domain D ⊂ Rd) can be interpreted as the gradient flow of the entropy H(ρ) =∫
D
ρ log ρ dx with respect to the Euclidean Wasserstein distance W 2(µ, ν) = C(µ, ν) =

min
π

∫
|x − y|2π(dx, dy). Two ingredients connect here this macroscopic PDE with the

microscopic (reflected) Brownian motion: the entropy H(ρ) = H(ρ|Leb) is computed
relatively to the stationary, reversible Lebesgue measure, and the Wasserstein distance is
built upon the underlying Euclidean cost c(x, y) = |x− y|2 given by the intrinsic distance
of the stochastic process. In the series of works [1, 19, 35, 36] it was understood that this
macroscopic gradient flow structure can be justified at the microscopic level precisely from
large deviation principles. In particular (1.1) plays a key role in the fist order expansion
(Gamma-convergence) relating discrete-time rate functions on the one-hand, characterizing
the hydrodynamic limit N → ∞ for a large system of independent Brownian particles, and
on the other hand minimizing movements/JKO schemes, a discrete-time characterization
of the dissipative gradient flow structure of the macroscopic heat equation. We refer e.g. to
[1, Theorem 3] for a self-contained statement and more details, but let us just summarize
by saying that it is the LDP (1.1) that determines the correct Wasserstein dissipation
mechanism and entropy functional, which in turn gives the Fokker-Planck equation as a
canonical gradient flow. See also [22, §13.3 and Theorem 13.37].

All of this can be extended to cover more general models and processes (see e.g. [38, 39, 40, 41]
to name just a few), but the analysis is always restricted to somehow “smooth” settings and
requires a case-to-case adaptation. In this work, motivated by the three questions above and
in particular by the connection with Fokker-Planck PDEs, we take interest in the short-time
behaviour of a particular non-smooth diffusion, the so-called Sticky-reflected Brownian Motion
with boundary diffusion (SBM in short). Sparked by applications in interacting particle systems
with boundary or zero-range interactions [3, 31, 24], among others, SBM has received renewed
attention in the last decade [9, 11, 30, 42, 20, 12]. In a given domain D ⊂ Rd SBM can be
roughly described as follows. While in the interior, the process performs standard Brownian
motion. Upon hitting the boundary, SBM “sticks” there for a while and thereafter undergoes
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purely tangential diffusion along Γ = ∂D. The process then eventually reenters the domain and
resumes standard Brownian motion, and so on. A delicate balance determines the jump rate
from/to the boundary and involves the local time at the boundary, see later on Section 2 for
rigorous details. Accordingly, the Fokker-Planck equation takes the form of a system of coupled
interior/boundary parabolic equations (2.6).

By simple scaling arguments one can always assume that the interior diffusion occurs with
volatility σint = 1, but a particularly important parameter in the model is the tangential dif-
fusivity coefficient a = σ2

Γ > 0. We will show that a sharp transition takes place across a = 1,
which is the critical threshold for which interior and boundary diffusions match tangentially: For
a > 1 motion along the boundary is preferred, the rate function in our LDP will see the impact
of a in a nontrivial and global fashion, and therefore the intrinsic distance da(x, y) induces a
specific geometry that strongly depends on a > 1. On the other hand for a ≤ 1 interior motion
becomes more favourable from an energetic perspective, the rate function will not depend on a
anymore, and one recovers instead a purely Euclidean scenario da(x, y) ≡ |x− y| independently
of a < 1.

In [16] the first two authors showed that the Fokker-Planck equation for SBM is a gradient
flow for the standard Wasserstein distance when a = 1. This is expected when interior and
boundary diffusions match tangentially, so that the intrinsic distance of SBM coincides with the
Euclidean one d2a(x, y) = |x− y|2. The case a > 1 should lead to a true metric gradient flow (in
the sense of curves of maximal slope [2]) with respect to the Wasserstein distance W 2

a induced
by the cost c(x, y) = d2a(x, y) and will be the subject of a future article [15]. For a < 1, since
d2a(x, y) = |x − y|2 is independent of a, the natural transportation distance is the Euclidean
Wasserstein distance, so any Wasserstein gradient flow would not see a. On the other hand
the probabilistic Fokker-Planck equation clearly depends on a, see later on Section 2 and in
particular (2.6). This means that the gradient flow, if any, cannot be a true metric one, and
that a finer understanding of the infinitesimal structure is needed. This will be investigated in
a separate work [10].

Our goal here is threefold: 1) we study the LDP in its own right, 2) for a < 1 we exhibit
a very natural example of Sturm’s paradigm [44] when the diffusion process is not fully deter-
mined by its intrinsic distance, and 3) for a > 1 the LDP gives, via the Gamma-convergence
entropic-to-deterministic problems, gives the natural dissipation mechanism and yields a lim-
iting, nonstandard optimal transport problem which is thereby justified and will therefore be
used in subsequent works to study gradient-flows. For full disclosure, we stress at this point
that the rigorous analysis will only be carried in the particular case of half-spaces D = Rd

+.

The paper is organized as follows. Section 2 contains a detailed description of SBM and
its basic properties. In Section 3 we give a heuristic derivation of various levels of LDPs and
formally identify the correct rate functions. In Section 4 we explicitly compute the Markov
transition kernel of SBM in half-spaces. In Section 5 we build on this explicit representation
to derive a static LDP for the initial-terminal joint marginals Rε

0,1 ≍ exp(− 1
ε c(x, y)), Theo-

rem 5.1. Section 6 contains an analysis of the cost and identifies it as a dynamical Lagrangian
minimization c(x, y) = min

∫ 1

0
L(ωt, ω̇t)dt, Theorem 6.1. Finally, in Section 7 we show exponen-

tial tightness of the path measure and strengthen the static LDP to a full sample paths LDP
Rε

x ≍ exp(− 1
εCx(ω)), Theorem 7.1.

2 Sticky-reflected Brownian Motion with boundary diffu-
sion
In its simplest form, SBM was originally studied by Feller [21] for the classification of boundary
conditions for one-dimensional diffusions, and was later extended to include boundary diffusions
in higher dimensions [27, 45, 47] including to Wentzell boundary conditions. Let D ⊂ Rd be
a smooth domain with boundary Γ = ∂D. We write Γ for objects and integrals intrinsically
defined on Γ, seen as a (d − 1)-manifold of its own, while we keep the notation ∂D for the
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boundary trace of objects defined in the whole domain D̄ (typically appearing when integration
by parts is performed).

The Sticky-reflected Brownian Motion with boundary diffusion (SBM in short) is the D̄-
valued stochastic process with Feller generator

Qϕ(x) =

{
1
2∆ϕ(x) if x ∈ D
a
2∆Γϕ(x)− θ∂nϕ(x) if x ∈ ∂D

(2.1)

and domain
D(Q) =

{
ϕ ∈ C(D̄) s.t. Qϕ ∈ C(D̄)

}
. (2.2)

Here n denotes the outer unit normal, and we write throughout ∇Γ,divΓ,∆Γ for the tangential
gradient, divergence, and Laplace-Beltrami operators along Γ = ∂D. The tangential diffusion
coefficient a > 0 will play a crucial role and we sometimes emphasize the dependence by writing
Q = Qa. On the other hand the stickiness θ plays a very minor role and we omit the dependence.
The reversible stationary measure is

µ(dx) = dx+
1

2θ
σ(dx), (2.3)

where σ = Hd−1
∂D denotes the Lebesgue measure on the boundary. Note that µ depends on θ,

but crucially not on a. Integration by parts∫
D̄

ϕQψ dµ =

∫
D

ϕ
1

2
∆ψ dx+

∫
Γ

ϕ
(a
2
∆Γψ − θ∂nψ

) 1

2θ
dσ

=
1

2

(
−
∫
D

∇ϕ · ∇ψ dx+

∫
∂D

ϕ∂nψ dσ

)
−
(
a

4θ

∫
Γ

∇Γϕ · ∇Γψ dσ +
1

2

∫
Γ

ϕ∂nψ dσ

)
= −1

2

∫
Ω

∇ϕ · ∇ψ dx− a

4θ

∫
Γ

∇Γϕ · ∇Γψ dσ (2.4)

shows that µ is indeed symmetric, and the corresponding Dirichlet form is

Ea(ϕ) =
1

2

∫
D

|∇ϕ|2dx+
a

4θ

∫
∂D

|∇Γϕ|2dσ

with domain
D(Ea) =

{
ϕ ∈ H1(D) s.t. ϕ|∂D ∈ H1(∂D)

}
.

(Here and throughout ϕ|∂D stands for the boundary trace trϕ = ϕ|∂D of ϕ ∈ H1(D)). It is
shown in [25] that Ea is symmetric, regular, strongly local, and recurrent. We denote by pt(x, dy)
the transition kernel with density pt(x, y) = pt(y, x) w.r.t to µ. By [25, thm. 3.15 and thm 3.17]
for any x ∈ D̄ (including x ∈ Γ = ∂D) there is a unique path-measure Rx on Ω = C([0, 1]; D̄)
solving the martingale problem and represented through the SDE

dXt = 1D(Xt)dBt + 1Γ(Xt)
[√
adBΓ

t − θn(Xt)dt
]

dBΓ
t = π(Xt) ◦ dBt

X0 = x

. (2.5)

Here
π(x) = Id−n(x)nt(x) ∈Md×d(R)

denotes the orthogonal projection on the tangent space Tx∂D at a point x ∈ ∂D with outer
normal n(x). The Stratonovich SDE dBΓ

t = π(Xt) ◦ dBt simply means that BΓ
t is a Brow-

nian motion on the boundary Γ = ∂D with Laplace-Beltrami generator 1
2∆Γ, see [26]. Note

that the full d-dimensional Brownian motion Bt inside D contains more information than the
tangential one BΓ

t . In [20] it is shown that even in one dimension D = R+ the SDE represent-
ing 1-dimensional SBM does not have strong solutions, and it is therefore natural to represent
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the boundary BM BΓ in terms of the interior BM. An important feature of (2.5) is that it
characterizes the local time at the boundary LΓ

t as

dLΓ
t = θ1Γ(Xt)dt,

see e.g. [20, thm. 5] and [28, §IV.7]. In particular, stickiness θ > 0 yields non-trivial sojourn on
the boundary with occupation time

Ot =

∫ t

0

1Γ(Xs)ds =
1

θ
LΓ
t .

Finally, for the sake of completeness and also for future reference, let us derive the Fokker-
Planck equation for SBM. The relevant laws Xt ∼ ρt ∈ P(D̄) will as always be absolutely
continuous w.r.t the stationary measure µ in (2.3), hence we only consider measures ρ≪ µ and
accordingly write

ρ(dx) = u(x)dx+ v(x)σ(dx).

In order to compute the dual Q∗ of (2.1) we take ϕ ∈ D(Q) and integrate by parts (assuming
that u, v are smooth enough)∫

D̄

ϕ(x)[Q∗ρ](dx) =

∫
D̄

[Qϕ](x)ρ(dx) =

∫
D

[
1

2
∆ϕ

]
u+

∫
Γ

[a
2
∆Γϕ− θ∂nϕ

]
v

=
1

2

(∫
D

ϕ∆u+

∫
∂D

u∂nϕ− ϕ∂nu

)
+

(∫
Γ

ϕ
a

2
∆Γv − θv∂nϕ

)
=

∫
D

1

2
∆uϕ+

∫
Γ

(a
2
∆Γv − ∂nu

)
ϕ+

∫
∂D

(u
2
− θv

)
∂nϕ.

(all the integrals being implicitly computed with respect to the Lebesgue measures dx, dσ on D
and Γ = ∂D, respectively) As a consequence the abstract Fokker-Planck equation ∂tρt = Q∗ρt
can be written in weak form (with again ρt = utdx+ vtdσ)

∀ϕ ∈ D(Q) :

∫
D

ϕ∂tut +

∫
Γ

ϕ∂tvt =
d

dt

(∫
D

ϕut +

∫
Γ

ϕvt

)
=

d

dt

∫
D̄

ϕρt =

∫
D̄

(Qϕ)ρt =

∫
D̄

ϕQ∗ρt

=

∫
D

1

2
∆ut ϕ+

∫
Γ

(
a

2
∆Γvt −

1

2
∂nut

)
ϕ

+

∫
∂Ω

(ut
2

− θvt

)
∂nϕ.

Taking first ϕ ∈ C∞
c (Ω) gives simply

∂tut =
1

2
∆ut

in the interior, and we can simply cancel
∫
D
ϕ∂tut =

∫
D
ϕ 1

2∆ut in the previous equality. This
leaves

∀ϕ ∈ D(Q) :

∫
Γ

ϕ∂tvt =

∫
Γ

(
a

2
∆Γvt −

1

2
∂nut

)
ϕ+

∫
∂Ω

(
1

2
ut − θvt

)
∂nϕ.

Taking now any ϕ ∈ C∞(Γ) and extending to ϕ ∈ C∞(D̄) with zero normal derivative such
that ϕ ∈ D(Q) (this is no too difficult), we see now that

∫
Γ
ϕ∂tvt =

∫
Γ

(
a
2∆Γvt − ∂nut

)
ϕ for all

ϕ ∈ C∞(Γ), meaning that

∂tvt =
a

2
∆Γvt −

1

2
∂nut.
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Subtracting again from the previous equality, we are finally left with

∀ϕ ∈ D(Q) : 0 =

∫
∂D

(
1

2
ut − θvt

)
∂nϕ.

It is relatively easy to check that the normal trace ∂n : D(Q) → C(Γ) is surjective, and therefore

1

2
ut

∣∣∣∣
∂D

= θvt on the boundary ∂Ω.

In view of (2.3) this simply means that the density ft(x) of ρt(dx) = ft(x)µ(dx) with respect
to the stationary, reversible measure µ is continuous up to the boundary, which should come as
no surprise. Summarizing, the Fokker-Planck equations is

∂tρt = Q∗ρt ⇐⇒


ρt = utdx+ vtdσ,

∂tut =
1
2∆ut in D,

∂tvt =
a
2∆Γvt − 1

2∂nut in Γ,
1
2ut = θvt on ∂Ω.

(2.6)

3 Heuristics and technical obstructions
The SBM process slowed-down on time-scale ε > 0 is described by

Rε
x := the path-measure with generator Qε = εQ

started at x. One of the classical approaches to analyze the large deviations of the diffusion Rε

as ε→ 0 is as follows, see e.g. [22, 32]. Consider the Hamiltonian

Hεϕ := εe−
ϕ
ε Qεe

ϕ
ε

and its associated Hamilton-Jacobi nonlinear semi-group V ε(t)ϕ := ε logExe
1
εϕ(X

ε
t ) satisfying{

d
dtV

ε(t)ϕ = HεV ε(t)ϕ,

V ε(0)ϕ = ϕ.

Convergence of the generators
lim
ε→0

Hεϕ = Hϕ (3.1)

in some vague sense and for a large enough class of functions ϕ should in principle imply
convergence of generated semi-groups

lim
ε→0

V ε(t)ϕ = V (t)ϕ, (3.2)

where the limit V is defined by {
d
dtV (t)ϕ = HV (t)ϕ,

V (0)ϕ = ϕ.

By standard Varadhan-Bryc arguments [18, chapters 4.2 and 4.3] one expects the LDP to hold
with dynamical rate function given by the abstract time-slicing

C(ω) := sup
|τN |→0

sup
ϕ1,...,ϕN

N∑
i=1

ϕi(ωti)− V (ti − ti−1)ϕi(ωti−1
), (3.3)
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where the supremum is taken over all partitions τN of the time interval [0, 1] such that 0 = t0 <
t1 < · · · < tN = 1 with size |τN | = max |ti+1 − ti| → 0. In order to retrieve a more tractable
expression for this, assume moreover that the variational representation

Hϕ(x) = H(x,∇ϕ(x)) = sup
q∈Rd

{∇ϕ(x) · q − L(x, q)} , x ∈ D̄

holds for a sufficiently well-behaved Lagrangian L, i-e with H(x, ·) = L∗(x, ·) convex conjugate
of one another in the sense Fenchel-Legendre duality. Then H generates a Nisio semi-group
V (t), the dynamical cost (3.3) can be computed from usual stochastic control theory [23] as a
Lagrangian action

C(ω) =

∫ 1

0

L(ωt, ω̇t)dt, (3.4)

and the diffusion Xε finally satisfies the LDP

Rε
x ≍ exp

(
−1

ε
Cx(ω)

)
with rate function Cx(ω) = ι{ω0=x} + C(ω).

Here

ι{ω0=x} =

{
0 if ω0 = x

+∞ else

encodes the initial condition X0 = x, but one can also cover general initial distributions Xε
0 ∼ ρε0

as long as they satisfy a LDP ρε0(dx) ≍ exp(− 1
εC0(x)). By the contraction principle one therefore

expects that the initial-terminal joint distribution Rε
01 = (e0, e1)#R

ε
x ∈ P(D̄2) satisfies the LDP

Rε
01 ≍ exp

(
−1

ε
c(x, y)

)
with the static cost (1.3) obtained by Lagrangian minimization

c(x, y) = min
ω

{∫ 1

0

L(ωt, ω̇t)dt s.t. ω0 = x, ω1 = y

}
.

This determines the static LDP from the dynamic one, but the analysis goes both ways: by
simple scaling the LDP for {Rε

01}ε immediately gives the LDP for {Rετ
01}ε>0 = {Rε

0τ}ε>0 for
any fixed τ > 0. One expects in general the collection of all such (0, τ)-joint distributions to
fully determine the path measure, hence by time slicing the sample path large deviation should
follow from the static one. This is actually the route that we will take.

Let us try to make this all of this more explicit in our particular setting. With the generator
Qε = εQ given by (2.1) one easily computes

Hεϕ(x) =

{
1
2 |∇ϕ|

2 + ε
2∆ϕ if x ∈ D

a
2 |∇Γϕ|2 + ε

(
a
2∆Γϕ− θ∂nϕ

)
if x ∈ ∂D

, (3.5)

from which at least formally

Hεϕ(x) −−−→
ε→0

Hϕ(x) =

{
1
2 |∇ϕ|

2 if x ∈ D
a
2 |∇Γϕ|2 if x ∈ ∂D

. (3.6)

The Legendre transform can be computed explicitly as

L(x, q) = sup
p

{q · p−H(x, p)} =


1
2 |q|

2 if x ∈ D
1
2a |q|

2 if x ∈ ∂D and q ∈ Tx∂D

+∞ else
. (3.7)
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It is straightforward to check that L is jointly lower semicontinuous if and only if a ≥ 1, and
therefore the map

ω 7−→ C(ω) :=

∫ 1

0

L(ωt, ω̇t)dt is l.s.c. if and only if a ≥ 1

for the natural weak H1 convergence, see later on Theorem 6.1. As usual, if a particular LDP
holds for some rate function (here C(ω)) it also holds for its lower semi-continuous relaxation,
so imposing the lower semi-continuity of good rate functions allows to speak unambiguously of
the rate function. In our particular context we thus expect that the LDP should hold in fact
with L replaced by its lower semi-continuous relaxation L, with effective rate function

Cx(ω) := ι{ω0=x} + C(ω) = ι{ω0=x} +

∫ 1

0

L(ωt, ω̇t)dt. (3.8)

Here we see the phase transition already appearing very naturally: For a ≥ 1 we have L = L
and the induced cost C = C feels the influence of a in a nontrivial fashion. On the other hand
it is not difficult to see that for a < 1 the relaxation is always given by L = L|a=1, which is
somehow a monotone relation with respect to the diffusion coefficient in the trivial sense that
1 = sup{a, a < 1}. In that case the effective rate function C = C|a=1 does not depend on a.

In [44] K.T. Sturm showed that, perhaps surprisingly, diffusion processes are not always fully
characterized by their intrinsic distance. More precisely, given any process X with intrinsic
distance d2(x, y), he constructs a second process X̃ with strictly smaller diffusion coefficients
and yet sharing the same intrinsic distance d̃ = d with X. This monotonicity echoes our lower
relaxation of the Lagrangian: for any a < 1 the SBM X has intrinsic distance given by the
Euclidean cost, and picking any ã < a gives a different diffusion X̃ with smaller coefficients but
same distance. Clearly a = 1 is special in this sense, since it is the larger such a for which one
can pick ã < a in this way, and a = 1 is therefore a maximal diffusion of some sort. This is
likely not a coincidence and will be investigated in a future work [10].

On a different note, the phase transition is also suggested from the boundary conditions,
about which we deliberately remained vague so far. By definition of the Hamiltonian, a function
ϕ is in the domain D(Hε) of (3.5) if and only if exp(ϕ/ε) is in the domain D(Qε) = D(Q), or
equivalently if and only if the two expression in the right-hand side of (3.5) match continuously
at the boundary ∂D. At least formally for ε→ 0 this suggests

|∇ϕ(x)|2 = a|∇Γϕ(x)|2 for x ∈ ∂D. (3.9)

• For a > 1 this simply means that, at boundary points, ∇ϕ makes an angle α = α(a) with
the normal n(x) given by

sin2 α =
1

a
.

This angle α will show up again later on, and we will prove that geodesics for the intrinsic
distance always enter or exit the boundary with angle of incidence α (see Theorem 6.1).
Notice that for a = 1 this corresponds to a right-angle condition α = π/2, or equivalently to
the Neumann boundary condition ∂nϕ = 0 along ∂D. This is exactly the classical no-flux
condition for the velocity field v = ∇ϕ driving Lagrangian particles in the Benamou-Brenier
formulation [6] of optimal transport.

• On the other hand for a < 1 the constraint (3.9) becomes unfeasible unless the whole
gradient vanishes, ∇ϕ|∂D = 0. Formally this means that particles can no longer move along
the boundary (not even tangentially), which seems surprising at first sight: choosing x, y
close enough on a concave or flat portion of the boundary ∂D, on expects that minimizing
curves realizing c(x, y) = min

ω

∫ 1

0
L(ωt, ω̇t)dt should actually remain supported along the

boundary. This apparent paradox is yet another effect of the lack of lower semi-continuity
for a < 1, and is simply resolved by the fact that no such minimizer actually exists.
Indeed, for any curve (ωt)t∈[0,1] supported along the boundary, it is easy to construct a
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curve ω′ ≈ ω very close to ω with the same endpoints, but moving inside D for all t ∈ (0, 1)
and thus with a strictly lesser cost∫ 1

0

L(ω′
t, ω̇

′
t) =

1

2

∫
|ω̇′

t|2dt <
1

2a

∫
|ω̇t|2dt =

∫ 1

0

L(ωt, ω̇t).

This shows that curves moving along the boundary are exponentially unlikely, as far as a
putative rate function is concerned in the LDP, hence those trajectories will asymptotically
never be seen by our sticky diffusion.

To summarize, the LDP is correctly captured by (3.8) with the relaxed Lagrangian L, and the
phase transition across a = 1 is simply the threshold determining whether L is l.s.c. or not.

There are two main obstructions to turning this informal approach into rigorous analysis:

1. For a < 1 the lack of joint lower semi-continuity of (x, q) 7→ L(x, q) (mostly in the x
variable) immediately prevents any rigorous application of the above abstract arguments,
i.e. the chain of implications (3.1) =⇒ (3.2) =⇒ (3.4) is no longer justified. Thus the
lack of semicontinuity is not just an (almost aesthetic) matter of unique selection of a rate
function, but rather a key step that fails in the dynamical/Lagrangian representation of
C(ω).

2. For a > 1 the running cost ω 7→
∫ 1

0
L(ωt, ω̇t)dt is l.s.c. but the argument requires no

matter what a well-posedness of the Hamilton-Jacobi problem

∂tϕ+Hϕ = 0

in the viscosity sense (more precisely, a resolvent estimate for id−τH for small τ > 0
based on maximum principles, see [22, 32]). In our particular context this corresponds to
nonstandard, coupled interior-boundary Hamilton-Jacobi equations{

∂tϕ+ 1
2 |∇ϕ| = 0 if x ∈ D,

∂tϕ+ a
2 |∇Γϕ| = 0 if x ∈ ∂D.

The recent theory in [5] might allow handling such delicate systems with discontinuous
Hamiltonians, but for the sake of brevity we did not pursue in this direction.

Both obstacles are somehow orthogonal to each other: for a ≤ 1 the Hamilton-Jacobi problem
is standard but the lower semi-continuity fails, while for a ≥ 1 the Lagrangian is lower semi-
continuous but the Hamilton-Jacobi system becomes difficult to cope with. In order to offer
self-contained and rigorous proofs we opted here for a compromise and chose to work on half-
spaces D = Rd

+, where explicit formulas can be leveraged and standard stochastic calculus is
sufficient to carry over the whole analysis. Of course, in smooth domains the boundary looks
locally as Rd

+: Because SBM still belongs to the realm of Feller diffusions with quadratic variance
Ex(|Xt − x|2) ∼ t, one should expect that our results in half-spaces can be leveraged to cover
general domains following a “local-to-global” construction, see e.g. [17, chapters 8 and 9], but
this falls out of the scope of this paper

4 Transition kernel in half-spaces
From now on and unless otherwise specified we denote

D = Rd
+ = R+ × Rd−1 with ∂D ≃ Rd−1

and
x = (x1, x

′) ∈ D with x1 ∈ R+, x′ = (x2 . . . xd) ∈ Rd−1.

9



We shall often speak of x1, x′ as the horizontal and vertical coordinates, respectively. In this
particular setting the SBM process Xt = (X1

t , X
′
t) takes values in D̄ and (2.5) takes the more

explicit form 
dX1

t = 1{X1
t >0}dB

1
t + θ1{X1

t =0}dt

dX ′
t =

[√
a1{X1

t =0} + 1{X1
t >0}

]
dB′

t

X0 = x

, (4.1)

where B = (B1, B′) is a standard d-dimensional Brownian motion. The goal of this section is
to explicitly compute the transition kernel pt(x, dy) of SBM in this simple planar setting, given
by (4.6) below.

The key observation here is that the horizontal X1 evolution is uncoupled from the vertical
X ′ motion and corresponds to the 1-dimensional Sticky-reflected Brownian Motion studied in
[20]. In particular the local time at the boundary of the full process is just given by the local
time at the origin for the first component, which we simply denote

Lt = LΓ
t (X) = L0

t (X
1).

By [20, §3 and theorem 5] the first equation in (4.1) encodes among other things a relation

dL0
t (X

1) = θ1{X1
t =0}dt = θdOt

between the occupation time

Ot :=

∫ t

0

1Γ(Xs)ds =

∫ t

0

1{X1
s=0}ds ∈ [0, t]

and local time Lt, whence
Lt = θOt ∈ [0, θt]. (4.2)

Note that in (4.1) the vertical diffusion X ′ is only coupled to the horizontal motion of X1

through the volatility σt = σ(X1
t ) =

√
a1{X1

t =0}+1{X1
t >0}, with X1 independent of B′. By the

strong Markov property and∫ t

0

1{X1
s=0}ds = Ot,

∫ t

0

1{X1
s>0}ds =

∫ t

0

[
1− 1{X1

s=0}
]
ds = t−Ot,

we can integrate dX ′
t =

[√
a1{X1

t =0} + 1{X1
t >0}

]
dB′

t explicitly as

X ′
t =

√
aB̃′

Ot
+ B̂′

t−Ot
(4.3)

almost surely, where B̃′, B̂′ are independent (d − 1)-dimensional Brownian motions, also inde-
pendent of X1 and therefore of the occupation time Ot.

In order to eliminate the invariance under Rd−1-vertical translation we always start from

X0 = (X1
0 , X

′
0) = (x1, 0) for x1 ≥ 0.

We first condition on (X1
t , Lt) = (z, l) as

pt(x, dy) = Px(Xt ∈ dy) = Px(X
1
t ∈ dy1, X

′
t ∈ dy′)

=

∫
R+

∫ θt

0

Px(X
1
t ∈ dy1, X

′
t ∈ dy′

∣∣X1
t = z, Lt = l)Px1

(X1
t ∈ dz, Lt ∈ dl)

=

∫
R+

∫ θt

0

Px

(
X1

t ∈ dy1, X
′
t ∈ dy′

∣∣∣X1
t = z,Ot =

1

θ
l

)
Px1(X

1
t ∈ dz, Lt ∈ dl).
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The point here is that the bivariate distribution (X1, L) for the 1-dimensional SBM in the
conditioning can be determined explicitly. More precisely, for x1, z ≥ 0 let T0 denote the first
hitting time at the origin for 1D-Brownian motion, denote by

h(t, x1) :=
|x1|√
2πt

3
2

e−
|x1|2

2t t ≥ 0

its distribution (i-e Px1(T0 ∈ dt) = h(t, x1)dt), and let

g0t (x1, z) :=
1

(2πt)
1
2

[
e−

|x1−z|2
2t − e−

|x1+z|2
2t

]
, z ∈ R+

be the kernel of Brownian motion before killing at the origin (i-e Px1(B
1
t ∈ dz, T0 < t) =

g0t (x1, z)dz). By [14, Theorem 2] there holds

Px1(X
1
t ∈ dz, Lt ∈ dl) = g0t (x1, z) dzδ0(dl)

+
1

θ
h

(
t− l

θ
, l + x1

)
δ0(dz)dl + 2h

(
t− l

θ
, l + x1 + z

)
dz dl, (4.4)

with implicitly z ≥ 0 and l ∈ [0, θt] as in (4.2). On the other hand, writing

g(t, z′) =
1

(2πt)
d−1
2

exp

(
−|z′|2

2t

)
, z′ ∈ Rd−1

for the standard (d− 1)-Gaussian, we can also compute

Px

(
X1

t ∈ dy1, X
′
t ∈ dy′

∣∣∣X1
t = z,Ot =

1

θ
l

)
= δz(dy1)Px′

(√
aB̃′

Ot
+ B̂′

t−Ot
∈ dy′

∣∣∣Ot =
1

θ
l

)
= δz(dy1)Px′

(√
aB̃′

l
θ
+ B̂′

t− l
θ
∈ dy′

)
= δz(dy1)Px′

(
B̃′

a l
θ
+ B̂′

t− l
θ
∈ dy′

)
= δz(dy1)g

(
a
l

θ
+ t− l

θ
, y′ − x′

)
dy′,

because the sum of independent Gaussian variables B̃ + B̂ remains Gaussian with additive
variance. Putting

A := a− 1 ∈ (−1,∞)

and gathering everything, we end-up with

pt(x, dy) = g0t (x1, y1)g(t, y
′ − x′) dy1dy

′

+
1

θ

(∫ θt

0

h

(
t− l

θ
, l + x1

)
g

(
t+A

l

θ
, y′ − x′

)
dl

)
δ0(dy1)dy

′

+ 2

(∫ θt

0

h

(
t− l

θ
, l + x1 + y1

)
g

(
t+A

l

θ
, y′ − x′

)
dl

)
dy1dy

′. (4.5)

Owing to Lt = θOt ∈ [0, θt] the local time runs in l ∈ [0, θt] above, hence since A > −1 the
effective time arguments t − l

θ ≥ 0 and t + A l
θ ≥ t − l

θ ≥ 0 in h, g remain nonnegative as
they should. Similarly we emphasize that all the time arguments will be nonnegative in the
sequel, and this will be implicit throughout without any further mention. In our simple planar
setting the stationary measure (2.3) decomposes as µ(dy) =

(
dy1 +

1
2θ δ0(dy1)

)
dy′. Recalling

that g0(x1, 0) = 0 for killed Brownian motion, (4.5) can be finally be written more compactly
as
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pt(x, dy) =

[
g0t (x1, y1)g(t, y

′ − x′)

+ 2

∫ θt

0

h

(
t− l

θ
, l + x1 + y1

)
g

(
t+A

l

θ
, y′ − x′

)
dl

]
µ(dy).

(4.6)

5 Static Large Deviation Principle
As already discussed, the short time behaviour will be captured at the static level by the LDP
for the slowed down transition kernels

ρεx(dy) := pε(x, dy) ∈ P(D̄), (5.1)

where x ∈ D̄ is fixed and pε(x, dy) is given by (4.6) with t = ε. The main goal of this section is
to establish

Theorem 5.1. Let a > 0 and write for convenience A = a − 1. For any fixed x = (x1, x
′) ∈

D̄ = R+ × R the sequence {ρεx}ε>0 ∈ P(D̄) from (5.1) satisfies the LDP

ρεx(dy) ≍
ε→0

exp

(
−1

ε
c(x, y)

)
with good rate function y 7→ c(x, y) given by

if a ≤ 1 : c(x, y) :=
1

2
|x− y|2 (5.2)

if a > 1 : c(x, y) :=
1

2

|x− y|2 if (x, y) ∈ C,

1
a

(√
A|x1 + y1|+ |y′ − x′|

)2
else,

(5.3)

where for A = a− 1 > 0 the “cone” C is

C :=

{
(x, y) ∈ D̄2 : |y′ − x′| ≤ 1√

A

[
|x1 + y1|+ 2

√
a
√
x1y1

]}
. (5.4)

Moreover (x, y) 7→ c(x, y) is symmetric and continuous over D̄2.

Note that c strongly depends on a (in a continuous way), but not on θ. This might first come as
a surprise, but we shall make a case later on that c(x, y) = d2(x, y) is truly the intrinsic distance
for the SBM diffusion. On the other hand the θ-“stickiness” clearly appears as a lower order
drift term in (2.5), and intrinsic distances classically tend to depend on the purely diffusive part
of the process only.

For later purposes it will be convenient to define

C(x) := {y ∈ D̄ : (x, y) ∈ C}, (5.5)

which is represented graphically in Figure 1 below. Note that C(x) is really a cone if x1 = 0
with aperture exactly sin2 α = 1

a , while it is rather a horizontal paraboloid if x1 > 0. It is worth
stressing that the quantity |x1 + y1| appearing in(5.3)(5.4) can be naturally interpreted as a
horizontal travel distance from x1 to y1 when forced to go through z1 = 0. This corresponds
to a sticky scenario, where most random trajectories actually tend to go through the sticky
boundary z1 = 0 in order to move faster in the vertical direction by taking advantage of a
stronger diffusion along the boundary if a > 1. Accordingly, a delicate balance will tip in
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2x1√
a−1 x

C(x)

x̃
C(x̃)

x1

x′

α

Figure 1: The cone C(x).

favor of the “going through the boundary” strategy or not, depending on 1) the value of the
diffusivity a, and 2) the relative location of the points x, y to be connected (here (x, y) ∈ C or
not). At a more technical level, let us anticipate that we will decompose below ρεx = ρεint + ρεst
as the sum of an “interior” kernel (corresponding to paths avoiding the boundary) and of a
“sticky” kernel (corresponding to paths with positive sojourn along ∂D). The interior part will
always lead to a standard Euclidean contribution ρεint ≍ exp(− 1

εIint(x, y)) with rate function
Iint = 1

2 |y − x|2. The second part involves local time accounting for stickiness, and leads to a
contribution ρεst ≍ exp(− 1

εIst(x, y)) for a more complicated rate function Ist that strongly feels
the influence of the diffusion coefficient a > 0. Depending on the precise value of a and relative
positions of x, y, one or the other rate function will overtake, corresponding to the dichotomy
in our statement.

In order to make the strategy of proof more precise we first change time scale

l = εθL with L ∈ [0, 1].

From there (4.6) conveniently leads to

ρεx(dy) =

[
g0ε(x1, y1)g(ε, y

′ − x′)

+

∫ θε

0

h

(
ε− l

θ
, l + x1 + y1

)
g

(
ε+A

l

θ
, y′ − x′

)
dl

]
µ(dy)

=

[
g0ε(x1, y1)g(ε, y

′ − x′)

+

∫ 1

0

h (ε(1− L), εθL+ x1 + y1) g (ε(1 +AL), y′ − x′) εθdL

]
µ(dy)

=
[
ρεint(x, y) + ρεst(x, y)

]
µ(dy), (5.6)
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where the interior and sticky densities are defined as

ρεint(x, y) := g0ε(x1, y1)g(ε, y
′ − x′)

=
1

(2πε)d/2

[
exp

(
−|x1 − y1|2

2ε

)
− exp

(
−|x1 + y1|2

2ε

)]
exp

(
−|x′ − y′|2

2ε

)
(5.7)

and

ρεst(x, y) :=

∫ 1

0

ρ̄εst(x, y, L)dL, (5.8)

with

ρ̄εst(x, y, L) := εθh (ε(1− L), εθL+ x1 + y1) g (ε(1 +AL), y′ − x′)

=
θ

(2πε)
d
2

× εθL+ x1 + y1

(1− L)
3
2 (1 +AL)

d−1
2

exp

(
−|εθL+ x1 + y1|2

2ε(1− L)

)
exp

(
− |x′ − y′|2

2ε(1 +AL)

)
. (5.9)

For the interior contribution (5.7) one has |x1−y1| < |x1+y1| for all y1 (except for y1 = 0 for
which g0ε vanishes anyway), hence one expects exp

(
− |x1−y1|2

2ε

)
≫ exp

(
− |x1+y1|2

2ε

)
and therefore

one should anticipate

ρεint(x, y) ≍ exp

(
−1

ε
Iint(x, y)

)
, Iint(x, y) :=

1

2
|x− y|2. (5.10)

Viewing ρ̄εst(x, y, L) as acting on L ∈ [0, 1] as well, one reads off at least formally from (5.9)

ρ̄εst(x, y, L) ≍ exp

(
−1

ε
Īst(x, y, L)

)
, Īst(x, y, L) :=

|x1 + y1|2

2(1− L)
+

|x′ − y′|2

2(1 +AL)
. (5.11)

The contraction principle [18, thm. 4.2.1] thus suggests

ρεst(x, y) =

∫ 1

0

ρ̄εst(x, y, L)dL ≍ exp

(
−Ist(x, y)

ε

)
, Ist(x, y) := min

L∈[0,1]
Īst(x, y, L). (5.12)

Finally, the sum should at least formally satisfy an LDP with rate given by the usual rule of
the “least unlikely of the unlikely”, here

ρεx(dy) =
[
ρεint(x, y) + ρεst(x, y)

]
µ(dy) ≍ exp

(
−1

ε
c(x, y)

)
with c(x, y) = min {Iint(x, y), Ist(x, y)} .

It turns out that for a ≤ 1 ⇔ A ≤ 0 one always has Iint ≤ Ist, while for a > 1 one has Ist < Iint if
and only if (x, y) ∈ C exactly as in (5.2)(5.3). This line of thought really gives the correct result,
but requires special technical care due to the 1

1−L singularity appearing both in the exponential
rate and multiplicative prefactor in (5.9) and, to a lesser extent, to the atom at y1 = 0 in µ(dy).

Let us now make this sketch of proof rigorous. For the sake of exposition we first establish
two technical lemmas in order to fully determine Iint, Ist and c = min{Iint, Ist} as functions of
x, y.

Lemma 5.2. Let a > 0 and A = a− 1. The sticky rate Ist defined by (5.11)(5.12) reads

Ist(x, y) =
1

2


|x1 + y1|2 + |x′ − y′|2 if a ≤ 1

|x1 + y1|2 + |x′ − y′|2 if a > 1 and |y′ − x′| ≤ 1√
A
|x1 + y1|

1
a

(√
A|x1 + y1|+ |x′ − y′|

)2
if a > 1 and |y′ − x′| > 1√

A
|x1 + y1|

(5.13)

and is continuous in y.
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Proof. For fixed x, y (with x1, y1 ≥ 0) let

f(L) :=
|x1 + y1|2

1− L
+

|x′ − y′|2

1 +AL
,

so that by definition Ist(x, y) = 1
2 min
L∈[0,1]

f(L) in (5.12).

In the easy case A ≤ 0 ⇐⇒ a ≤ 1 the function f is monotone nondecreasing and clearly
the minimum is attained for L = 0 with value Ist(x, y) = 1

2f(0) =
1
2 (|x1 + y1|2 + |x′ − y′|2).

Consider now the case A > 0, and observe that f is convex. If f ′(0) = |x1+y1|2−A|x′−y′|2 ≥
0 then by convexity f is minimized again at L = 0 and leads to the exact same value as above.
This is exactly the second alternative in our statement.

Let us finally deal with the last case f ′(0) < 0, which is exactly our third alternative in
(5.13). Assume that x1 + y1 > 0: then f(1−) = +∞, and by strict convexity f is minimized
for a unique L∗ ∈ (0, 1). A tedious but straightforward computation allows to characterize this
critical point f ′(L∗) = 0 as the unique positive root of a certain quadratic polynomial in L and

leads to the precise value f(L∗) = 1
a

(√
A|x1 + y1|+ |x′ − y′|

)2
as in our statement. It remains

to observe that the very same formula remains valid also if x1 + y1 = 0, which is a particularly
easy case when f(L) = |x′−y′|2

1+AL is obviously minimized by f(1) = |x′−y′|2
1+A = |x′−y′|2

a .
Those three cases are illustrated in Figure 2.
Finally, the continuity of y 7→ Ist(x, y) is easy to check in view of the explicit formula (5.13)

and the proof is complete.

Lemma 5.3. The cost
c(x, y) := min{Iint(x, y), Ist(x, y)}

is given explicitly by (5.2)(5.3).

Proof. Recall that by definition Iint(x, y) = 1
2 |x − y|2, so we need to compare this Euclidean

cost to each of the three explicit cases in Lemma 5.2 to determine which of Iint, Ist realizes the
minimum.

• If a ≤ 1 we have by (5.13) that Iint(x, y) =
1
2 (|x1 − y1|2 + |x′ − y′|2) ≤ 1

2 (|x1 + y1|2 + |x′ −
y′|2) = Ist(x, y) due to x1, y1 ≥ 0 =⇒ |x1 − y1| ≤ |x1 + y1|.

• For the very same reason the second alternative in (5.13) also leads to Iint ≤ Ist.

• In the third case, straightforward algebra shows that

Ist(x, y) ≤ Iint(x, y) ⇐⇒ 1

a

(√
A|x1 + y1|+ |x′ − y′|

)2
≤ |x1 − y1|2 + |x′ − y′|2.

Solving explicitly in |x′− y′| shows that this quadratic inequality holds true outside of the
two roots

|y′ − x′| ̸∈ [R−, R+], R± =
1√
A
|x1 + y1| ± 2

√
a

A

√
x1y1.

In particular our standing assumption that |y′ − x′| > 1√
A
|x1 + y1| from (5.13) rules out

the lower part |y′ − x′| ≤ R−, hence in that case Ist ≤ Iint if and only if |y′ − x′| ≥ R+.
According to (5.4) is exactly the definition of (x, y) ̸∈ C, or equivalently y ̸∈ C(x), and the
proof is complete.

Those three cases are again depicted in Figure 2. Note that if x1 > 0 the cone C(x) is a true
paraboloid as in Figure 2a, while if x1 = 0 it collapses into a linear cone as in Figure 2b.

We can now proceed with our main objective in this section
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f ′(0) < 0, Ist > Iint

f ′(0) < 0, Ist ≤ Iint

x
f ′(0) ≥ 0, Ist = Iint

x1, y1

x′, y′

C(x)

(a) for x1 > 0

f ′(0) < 0, Ist ≤ Iint

x
f ′(0) ≥ 0, Ist = Iint

x1, y1

x′, y′

C(x)

(b) for x1 = 0

Figure 2: The alternatives in Lemma 5.2 and Lemma 5.3 (for a > 1).

Proof of Theorem 5.1. Note first that the cone C is completely symmetric in x↔ y, as is obvious

from (5.4). Since the two expressions |x− y|2 and 1
a

(√
A|x1 + y1|+ |y′ − x′|

)2
in (5.2)(5.3) are

also symmetric, clearly c(x, y) = c(y, x). The continuity of c is immediate from its explicit
expression, and it is also easy to check that it has compact sublevelsets and is thus a good rate
function as claimed.

Let us now address the main difficulty, namely the LDP itself. To this end, pick a Borel set
E ⊂ D̄ and assume µ(E) > 0 (otherwise ρεx ≪ µ implies ρεx(E) = 0 for all ε > 0 and there is
nothing to prove).

Step 1: LDP upper bound. Since y 7→ c(x, y) is coercive

λ̂ := inf
y∈Ē

c(x, y) = min
y∈Ē

c(x, y) ∈ [0,∞)

if finite. From (5.6) it suffices to estimate from above ρεint, ρ
ε
st ≲ e

− λ̂
ε separately.

We start with the “interior” contribution. Recall that µ(dy) = (dy1 +
1
2θ δ0(dy1))dy

′, so E
is possibly concentrated on the boundary ∂D = {y1 = 0} even if µ(E) > 0. By definition of
c = min{Iint, Ist} and λ̂ we have that Iint(x, y) ≥ c(x, y) ≥ λ̂ for µ-a.e. y ∈ E (and even if E
concentrates on {y1 = 0}). Recalling also that g0ε(x1, 0) = 0 we then estimate from (5.7)∫

E

ρεint(x, y)µ(dy) =

∫
E

ρεint(x, y)dy

≤ θ

(2πε)
d
2

∫
E

[
exp

(
−|x1 − y1|2

2ε

)
− 0

]
exp

(
−|x′ − y′|2

2ε

)
dy

=
C

ε
d
2

∫
E

exp

(
−Iint(x, y)

ε

)
dy =

C

ε
d
2

e−
λ̂
ε

∫
E

exp

(
−Iint(x, y)− λ̂

ε

)
dy.
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By definition of λ̂ we can simply write 0 ≤ Iint(x, y)− λ̂ ≤ Iint(x,y)−λ̂
ε in the exponential, whence∫

E

ρεint(x, y)µ(dy) ≤
C

ε
d
2

e−
λ̂
ε

∫
E

exp
(
−[Iint(x, y)− λ̂]

)
dy

=
C

ε
d
2

e−
λ̂
ε

∫
E

exp

(
−|x− y|2

2
+ λ̂

)
dy

≤ C

ε
d
2

e−
λ̂
ε

∫
Rd

+

exp

(
−|x− y|2

2
+ λ̂

)
dy =

C

ε
d
2

e−
λ̂
ε , (5.14)

where C ≥ 0 varies from line to line and depends on x, θ, λ̂, E but not on ε. Note that at this
stage we have possibly C = 0 if E actually concentrates on the boundary. This settles the upper
estimate for the “interior” part in (5.6).

For the second “sticky” contribution, recall that Īst(x, y, L) = |x1+y1|2
2(1−L) + |x′−y′|2

2(1+AL) and by

definition Ist(x, y) = min
L∈[0,1]

Īst(x, y, L). Since λ̂ ≤ c(x, y) ≤ Ist(x, y) for µ-a.e. y ∈ E, we simply

have Īst(x, y, L) ≥ λ̂ for µ(dy)dL-a.e. (y, L) ∈ F := E × [0, 1]. From (5.9) we get∫
E

ρεst(x, y)µ(dy) =

∫
E

(∫ 1

0

ρ̄εst(x, y, L)dL

)
µ(dy)

=
θ

(2πε)
d
2

∫
F

εθL+ x1 + y1
(1− L)3/2(1 +AL)1/2

exp

(
−|εθL+ x1 + y1|2

2ε(1− L)

)
exp

(
− |x′ − y′|2

2ε(1 +AL)

)
µ(dy)dL

=
C

ε
d
2

∫
F

εθL+ x1 + y1
(1− L)3/2(1 +AL)1/2

exp

(
−|εθL+ x1 + y1|2 − |x1 + y1|2

2ε(1− L)

)
× exp

(
− 1

ε

[
|x1 + y1|2

2(1− L)
+

|x′ − y′|2

2(1 +AL)︸ ︷︷ ︸
=Īst(x,y,L)

])
µ(dy)dL

=
C

ε
d
2

e−
λ̂
ε

∫
F

εθL+ x1 + y1
(1− L)3/2(1 +AL)1/2

exp

(
−θLεθL+ 2x1 + 2y1

2(1− L)

)
× exp

(
− Īst(x, y, L)− λ̂

ε

)
µ(dy)dL,

where C is again a constant possibly varying from line to line but independent of ε > 0. Due to
Īst ≥ Ist ≥ c ≥ λ̂ we can simply write Īst(x,y,L)−λ̂

ε ≥ Īst(x, y, L)− λ̂ in the last exponential term
in the integral. Exploiting moreover the very rough bounds 1 + AL ≥ 1− L, εθL ≤ εθ ≤ 1 for
small ε as well as εθL+ x1 + y1 ≥ εθL (recall that x1, y1 ≥ 0 in D̄) we obtain∫

E

ρεst(x, y)µ(dy) ≤
C

ε
d
2

e−
λ̂
ε

∫
F

1 + x1 + y1
(1− L)2

exp

(
−ε θ2L2

2(1− L)

)
exp

(
−Īst(x, y, L) + λ̂

)
µ(dy)dL

=
Ceλ̂

ε
d
2

e−
λ̂
ε

∫
F

1 + x1 + y1
(1− L)2

exp

(
−ε θ2L2

2(1− L)

)
× exp

(
−

[
|x1 + y1|2

2(1− L)
+

|x′ − y′|2

2(1 +AL)︸ ︷︷ ︸
=Īst(x,y,L)

])
µ(dy)dL.
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Since 1
1+AL ≥ c = 1

1+|A| > 0 as soon as a > 0 ⇐⇒ A > −1 we get

∫
E

ρεst(x, y)µ(dy) ≤
C

ε
d
2

e−
λ̂
ε

∫
F

1

(1− L)2
exp

(
−ε θL2

2(1− L)

)
(1 + x1 + y1)

× exp

(
−|x1 + y1|2

2
− c|x′ − y′|2

)
µ(dy)dL

≤ C

ε
d
2

e−
λ̂
ε

(∫ 1

0

1

(1− L)2
exp

(
−ε θL2

2(1− L)

)
dL

)
×
(∫

D̄

(1 + x1 + y1) exp

(
−|x1 + y1|2

2
− c|x′ − y′|2

)
µ(dy)

)
.

The second integral on the whole spatial domain D̄ is clearly absolutely convergent due to the
exponential decay in y1, y′. As for the first dL integral we estimate

L ≤ 1

2
:

1

(1− L)2
exp

(
−ε θL2

2(1− L)

)
≤ 1

(1− L)2
≤ 1

4
,

L ≥ 1

2
:

1

(1− L)2
exp

(
−ε θL2

2(1− L)

)
≤ 1

ε2

(
ε

1− L

)2

exp

(
−c ε

1− L

)
,

where c = θ/8 > 0. Being u 7→ u2 exp(−cu) globally bounded for u ≥ 0 we conclude that∫ 1

0

1

(1− L)2
exp

(
−ε θL2

2(1− L)

)
dL ≤ C

(
1 +

1

ε2

)
and therefore ∫

E

ρεst(x, y)µ(dy) ≤
C

ε
d
2

(
1 +

1

ε2

)
e−

λ̂
ε (5.15)

for some C ≥ 0 independent of ε.
Gathering (5.14)(5.15) gives

ρεx(E) =

∫
E

ρεint(x, y)dy +

∫
E

ρεst(x, y)µ(dy) ≤
C

ε
d
2

(
1 +

1

ε2

)
e−

λ̂
ε

uniformly in ε→ 0, which in turn yields the LDP upper bound

lim sup
ε→0

ε log ρεx(E) ≤ −λ̂ = − inf
y∈Ē

c(x, y).

Step 2: LDP lower bound. Let

λ̌ := inf
y∈E◦

c(x, y).

We want to prove that ρx(E) ≳ e−
λ̌
ε . If E◦ = ∅ then λ̌ = +∞ and the statement is vacuous,

so we may equally assume that E◦ is nonempty. Because c(x, ·) is continuous, coercive, and
bounded from below, there exists y∗ ∈ E◦ such that

λ̌ = c(x, y∗) = min
{
Iint(x, y

∗), Ist(x, y
∗)
}
.

As usual we distinguish cases depending on which of the two interior/sticky contributions Iint, Ist
realizes the “least unlikely of the unlikely”.

1. Assume first that λ̌ = Ist(x, y
∗) ≤ Iint(x, y

∗). By definition of Ist(x, y) = min
L∈[0,1]

Īst(x, y, L)

there exists L∗ ∈ [0, 1] such that λ̌ = Īst(x, y
∗, L∗). Fix an arbitrarily small η > 0. By
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continuity of Īst in (5.11) there exists a small neighborhood Fη ⊂ F := E× [0, 1] of (y∗, L∗)
with µ⊗ dL(Fη) < +∞ such that

Īst(x, y, L) ≤ λ̌+ η for µ(dy)dL-a.e. (y, L) ∈ Fη.

By (5.8)(5.9) we see that

ρεx(E) =

∫
E

ρεint(x, y)µ(dy) +

∫
E

∫ 1

0

ρ̄εst(x, y, L)dLµ(dy)

≥
∫
Fη

ρ̄εst(x, y, L)dLµ(dy)

=
θ

(2πε)
d
2

∫
Fη

εθL+ x1 + y1
(1− L)3/2(1 +AL)1/2

× exp

(
−|εθL+ x1 + y1|2

2ε(1− L)

)
exp

(
− |x′ − y′|2

2ε(1 +AL)

)
µ(dy)dL,

and isolating the leading term |εθL+x1+ y1|2 = |x1+ y1|2+ εθL (εθL+ 2x1 + 2y1) in the
first exponential leads next to

ρεx(E) ≥ c

ε
d
2

∫
Fη

εθL+ x1 + y1
(1− L)3/2(1 +AL)1/2

exp

(
−θLεθL+ 2x1 + 2y1

2(1− L)

)

× exp

(
− 1

ε

[
|x1 + y1|2

2(1− L)
+

|x′ − y′|2

2(1 +AL)︸ ︷︷ ︸
=Īst(x,y,L)≤λ̌+η

])
µ(dy)dL

≥ c

ε
d
2

e−
λ̌+η
ε

∫
Fη

εθL+ x1 + y1
(1− L)3/2(1 +AL)1/2

exp

(
−θLεθL+ 2x1 + 2y1

2(1− L)

)
µ(dy)dL

for some c > 0 independent of ε (which will keep varying again from line to line below).
Recalling that x1, y1 ≥ 0 and decreasing Fη if needed we can assume that 0 ≤ x1 + y1 ≤
2(x1 + y∗1) in Fη, and with 1

1+AL ≥ 1
1+|A| ,

1
1−L ≥ 1 and θL ≤ θ, εθL ≤ 1 the previous

integral can be bounded from below as

ρεx(E) ≥ c

ε
d
2

e−
λ̌+η
ε

∫
Fη

εθL

(1 + |A|)1/2
exp

(
−θ1 + 4x1 + 4y∗1

2(1− L)

)
µ(dy)dL

=
c

ε
d
2−1

e−
λ̌+η
ε

∫
Fη

L exp

(
− C

1− L

)
µ(dy)dL =

c

ε
d
2−1

e−
λ̌+η
ε . (5.16)

In the last equality we used that (y, L) 7→ Le−C/(1−L) > 0 is locally µ(dy)dL-integrable
together with the fact that Fη has positive measure, and as usual c, C > 0 may depend on
the various parameters (including η > 0) but not on ε.

2. Consider now the opposite case λ̌ = Iint(x, y
∗) < Ist(x, y

∗). If a ≤ 1 there holds |x1+y1|2 ≥
|x1 − y1|2 in (5.13) and therefore Ist ≥ Iint, so we may as well assume that a > 1. But,
for a > 1, from the proof of Lemma 5.3 we have Iint = Ist if either x1 = 0 or y∗1 = 0, see
Figure 2. Hence we only consider a > 1 and x1, y∗1 > 0.
This being said, fix again a small η > 0 and choose a small neighborhood Eη ⊂ E of y∗
with positive Lebesgue measure (recall that E◦ ̸= ∅) and such that Iint(x, y) ≤ λ̌+η, µ-a.e.
on Eη. Up to decreasing Eη if needed we can further assume that x1y1 ≥ 1

2x1y
∗
1 > 0 in
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this neighborhood. By (5.7) and µ(dy) ≥ dy, elementary algebra in the exponentials gives

ρεx(E) =

∫
E

ρεint(x, y)µ(dy) +

∫
E

ρεst(x, y)µ(dy) ≥
∫
Eη

ρεint(x, y)dy

=

∫
Eη

1

(2πε)
d
2

[
exp

(
−|x1 − y1|2

2ε

)
− exp

(
−|x1 + y1|2

2ε

)]
exp

(
−|x′ − y′|2

2ε

)
dy

=
c

ε
d
2

∫
Eη

[
1− exp

(
− 2x1y1

ε︸ ︷︷ ︸
≥ x1y∗

1
ε

)]
exp

(
− 1

ε

[
|x1 − y1|2

2
+

|x′ − y′|2

2︸ ︷︷ ︸
Iint(x,y)≤λ̌+η

])
dy

≥ c

ε
d
2

e−
λ̌+η
ε

∫
Eη

[
1− exp

(
−x1y

∗
1

ε

)]
dy

≥ c

ε
d
2

e−
λ̌+η
ε

∫
Eη

1

2
dy =

c

ε
e−

λ̌+η
ε , (5.17)

where c > 0 is again uniform in ε.

Gathering (5.16)(5.17) and taking ε→ 0 we get in any case

lim inf
ε→0

ε log ρεx(E) ≥ −(λ̌+ η).

Since η > 0 was arbitrary this gives the desired LDP lower bound the proof is complete.

6 Study of the cost function
In order to support our informal discussion from Section 3 we need now to rigorously identify the
static cost from Theorem 5.1 as a dynamical minimization problem c(x, y) = min

∫ 1

0
L(ωt, ω̇t)dt,

where the Lagrangian L(x, q) is obtained by Legendre-transforming the Hamiltonian

Hϕ(x) = Ha(x,∇ϕ(x)) = lim
ε→0

εe−
ϕ
ε Qεe

ϕ
ε .

Again, we only carry out this program in the easy planar setup for simplicity (our explicit
computation of geodesics below becomes impossible in general manifolds). Claiming now full
mathematical rigour, for fixed a > 0 and all p ∈ T ∗

x D̄, q ∈ TxD̄ we set according to (3.5)(3.6)(3.7)

H(x, p) :=
1

2

{
|p|2 if x ∈ D

a|p|2 if x ∈ ∂D

and

L(x, q) := H∗(x, q) =
1

2

{
|q|2 if x ∈ D
1
a |q|

2 if x ∈ ∂D
. (6.1)

Implicitly we mean here that q ∈ Tx∂D ∼= Rd−1 should be a vertical tangent vectors if x ∈ ∂D
while q ∈ TxD ∼= Rd at interior points x ∈ D. According to our discussion in Section 3 L is only
lower semi-continuous for a > 1, and we expect that the lower semi-continuous relaxation is the
relevant object. Here it is a simple exercise to compute

L(x, q) := inf
xn→x
qn→q

lim inf
n→∞

L(xn, qn) =

{
L(x, q) if a > 1
1
2 |q|

2 if a ≤ 1
. (6.2)

The associated path-action is

C(ω) :=

{∫ 1

0
L(ωt, ω̇t)dt if ω ∈ H1,

+∞ else.
(6.3)
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Recalling that the contact angle α is defined as

sin2 α =
1

a
for a ≥ 1,

our main result in this section is

Theorem 6.1. The dynamical cost C is H1-weakly lower semi-continuous, coercive, and induces
the static cost c from Theorem 5.1 in the sense that

c(x, y) = min

{∫ 1

0

L(ωt, ω̇t)dt : ω ∈ H1(0, 1; D̄) and ω0 = x, ω1 = y

}
. (6.4)

The minimum is always attained for a unique geodesic (γxyt )t∈[0,1] ∈ H1(0, 1; D̄). Moreover

• For a ≤ 1 geodesics are the standard Euclidean interpolants γxyt = (1− t)x+ ty.

• For a > 1 geodesics are characterized as in Figure 3a and Figure 3b: for y ̸∈ C(x) they are
concatenations of at most three straight lines, either making an angle α with the normal
direction or vertical along the boundary, while for y ∈ C(x) geodesics are again Euclidean
interpolants.

Not only this is a dynamical characterization of our intrinsic distance, but it will also be useful
in our next section 7 to derive the sample-path LDP from the static one in Theorem 5.1.

Since L(x, ·) is quadratic in its second argument, an immediate consequence is that our static
cost, as a short-time rate function, truly determines the intrinsic distance of SBM:

Corollary 6.2. c(x, y) = d2(x, y) is a squared distance.

Proof. This is very classical so we only sketch the proof. Assume that c(x, y) = 0. According
to (6.1)(6.2) there holds L(x, q) ≥ C|q|2 for C = min{1/2, 1/2a} > 0. In that case the unique
minimizing geodesic must satisfy 0 = c(x, y) =

∫ 1

0
L(γxyt , γ̇xyt )dt ≥ C

∫ 1

0
|γ̇xyt |2dt, hence x =

γxy0 = γxy1 = y. The symmetry is obvious in view of (6.4) and L(x, q) = L(x,−q). For the
triangular inequality, pick any x, y, z. For given λ ∈ (0, 1) we can construct an admissible
path (ωt)t∈[0,1] starting from ω0 = x, passing through ωλ = y and finally ω1 = z by following
first the geodesic γxy rescaled in time t ∈ [0, λ] and then the geodesic γyz in time t ∈ [λ, 1].
By quadratic scaling this gives a cost d2(x, z) ≤

∫ 1

0
L(ωt, ω̇t) = 1

λd
2(x, y) + 1

1−λd
2(y, z), and

choosing λ = d(x,y)+d(y,z)
d(x,y) gives the triangular inequality d2(x, z) = [d(x, y) + d(y, z)]2.

Proof of Theorem 6.1. For a ≤ 1, L(x, q) = 1
2 |q|

2 is the standard Euclidean cost and the whole
statement is obvious so we only address the case a > 1.

Let us first prove that C is a well-behaved functional. For a > 1 we have L = L, hence by
(6.1)

L(x, q) ≥ 1

2a
|q|2, ∀x ∈ D̄, q ∈ TxD̄ (6.5)

(this is of course a very bad estimate if x ∈ D, when L(x, q) = 1
2 |v|

2). This immediately gives
Ḣ1 coercivity of

ω 7→ C(ω) :=

∫ 1

0

L(ωt, ω̇t)dt ≥
1

2a

∫ 1

0

|ω̇t|2dt.

For the weak lower semi-continuity, consider any fixed endpoints ω0 = x, ω1 = y and let ωn ⇀ ω
weakly in H1. By usual compactness H1 ⊂⊂ C([0, 1]) we can assume that ωn → ω uniformly.
Let

Z :=
{
t ∈ (0, 1) : ωt ∈ ∂D

}
and J := (0, 1) \ Z =

{
t ∈ (0, 1) : ωt ∈ D

}
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(b) x1 = 0

Figure 3: Geodesics for all possible configurations of (x, y) ∈ D̄2

By standard properties of Sobolev functions we see that ω̇t is tangent to ∂D for a.e. t ∈ Z. By
standard weak lower semi-continuity we get∫

Z

L(ωt, ω̇t) =

∫
Z

1

2a
|ω̇t|2 ≤ lim inf

n→∞

∫
Z

1

2a
|ω̇n

t |2 ≤ lim inf
n→∞

∫
Z

L(ωn
t , ω̇

n
t )dt,

where the last very rough inequality is just (6.5). In order to get control over J , fix an arbitrarily
small η > 0 and let

Jη :=
{
t ∈ [0, 1] : dist(ωt, ∂D) ≥ η

}
⊆ J.

Since ω ∈ H1 is uniformly continuous we have that |J \ Jη| → 0 as η → 0. Crucially, for fixed η
the uniform convergence ωn → ω guarantees that dist(ωn

t , ∂D) ≥ η/2 > 0 for sufficiently large
n. As a consequence∫

Jη

L(ωt, ω̇t)dt =

∫
Jη

1

2
|ω̇t|2dt ≤ lim inf

n→∞

∫
Jη

1

2
|ω̇n

t |2dt

= lim inf
n→∞

∫
Jη

L(ωn
t , ω̇

n
t )dt ≤ lim inf

n→∞

∫
J

L(ωn
t , ω̇

n
t )dt,

where the last inequality holds simply because Jη ⊆ J . Since η > 0 was arbitrary and |J\Jη| → 0
as η → 0 we conclude that∫

J

L(ωt, ω̇t)dt = lim
η→0

∫
Jη

L(ωt, ω̇t)dt ≤ lim inf
n→∞

∫
J

L(ωn
t , ω̇

n
t )dt

and therefore∫ 1

0

L(ωt, ω̇t)dt =

∫
Z

L(ωt, ω̇t)dt+

∫
J

L(ωt, ω̇t)dt

≤ lim inf
n→∞

∫
Z

L(ωn
t , ω̇

n
t )dt+ lim inf

n→∞

∫
J

L(ωn
t , ω̇

n
t )dt ≤ lim inf

n→∞

∫ 1

0

L(ωn
t , ω̇

n
t )dt.

This shows that the Lagrangian cost C is lower-semicontinuous and coercive, and we can now
focus on the geodesic problem itself. In other words, for fixed x, y ∈ D̄ let us solve

min

{∫ 1

0

L(ωt, ω̇t)dt : ω ∈ H1(0, 1; D̄) with ω0 = x, ω1 = y

}
.
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First, note that linear interpolation ωt = (1− t)x+ ty is always an admissible competitor with
finite cost, hence there exists a minimizing sequence {ωn}n≥0 ⊂ H1. Since the endpoints are
fixed, the coercivity (6.5) gives ∥ωn∥H1 ≤ C and there exists a weak-H1 limit ω. By lower-
semicontinuity ω is necessarily a minimizer and it suffices to show that it has the right cost
c(x, y) =

∫ 1

0
L(ωt, ω̇t)dt. We distinguish cases depending on whether x, y belong to ∂D or not.

1. If x1 = y1 = 0, recall that L(ωt, ω̇t) ≥ 1
2a |ω̇t|2 with equality if and only if ωt ∈ ∂D. Clearly

in that case the best one can do is follow the Euclidean geodesic γxyt = (1− t)x+ ty along
the vertical boundary, for a cost c(x, y) = 1

2a |y − x|2 =
∫ 1

0
1
2a |γ̇

xy
t |2dt as in (5.3).

2. Consider now x1 > 0 and y1 > 0 as in Figure 3a

• Pick first y ̸∈ C(x), and take zin, zout ∈ ∂D as in Figure 3a, implicitly defined
through the condition of making an angle α with the normal (elementary geome-
try shows this is possible if y ̸∈ C(x)). The blue curve x ⇝ zin ⇝ zout ⇝ y is
always admissible. Suitably adjusting the constant speed on each segment so that
L(ωt, ω̇t) = cst for t ∈ [0, 1], the definition of sin2 α = 1

a precisely results in the overall

cost 1
2a

(√
A(x1 + y1) + |y′ − x′|

)2
as in (5.3) (we omit the lengthy but straightfor-

ward computation here). Let us check that this is optimal. Indeed, since y ∈ C(x) ⇔
(x, y) ∈ C, and by definition of C this particular cost is strictly less than the Euclidean
cost 1

2 |y−x|
2, which is clearly the best one could do if the geodesic remained contained

in D and away from ∂D for all times t ∈ [0, 1] (since then the Lagrangian would just
be
∫ 1

0
1
2 |ω̇t|2dt). This means that, for y ̸∈ C(x), a geodesic must eventually go through

the boundary at some point. By continuity, there are a first entry and last exit times
0 < tin ≤ tout < 1 such that Zin := ωtin and Zout := ωtout lie on ∂D. Clearly in that
case the best one can do is to first follow a geodesic x+ t

tin
(Zin − x), then a vertical

segment Zin+
t−tin

tout−tin
(Zout−Zin), and finally connect to y via Zout+

t−tout
1−tout

(y−Zout).

This has overall cost
∫ tin
0

∣∣∣Zin−x
tin

∣∣∣2 dt+ ∫ tout

tin
1
2a

∣∣∣Zout−Zin
tout−tin

∣∣∣2 dt+ ∫ 1

tout

∣∣∣y−Zout
1−tout

∣∣∣2 dt. (The
1/2a factor along the vertical path is crucial here!) Optimizing first in tin,out for
fixed Zin, Zout, and then minimizing with respect to Zin, Zout ∈ ∂D, a tedious but
straightforward computation shows that the optimal cost in this case is realized when
Zin = zin and Zout = zout are precisely defined through the α-angle condition as in
Figure 3a (we omit again the details).

• If now y ∈ C(x) we claim that the Euclidean geodesic with cost 1
2 |y−x|

2 is optimal, see
again Figure 3a. Clearly this is the best one can achieve without ever going through
∂D, so it is enough to prove that any path actually going through ∂D has larger cost.
For any such path ω, let as before 0 < tin ≤ tout < 1 be the first entry and last exit
times, with Zin = ωtin ∈ ∂D and Zout = ωtin ∈ ∂D. Exactly as before, the best
strategy is then given explicitly by three consecutive straight lines x⇝ Zin ⇝ Zout ⇝
y, each with constant speed suitably determined by tin ≤ tout. Again, this can be
explicitly optimized first w.r.t to tin ≤ tout for given Zin, Zout, and then with respect
to the locations of Zin, Zout. The main difference is that the condition that y ∈ C(x)
leads now to Zin = Zout, uniquely determined by normal reflection on the boundary
(this is geometrically intuitive and clearly gives the shortest path from x ∈ D to
y ∈ D if forced to go through the boundary at least once, so we skip the details).
The resulting cost turns out to be exactly 1

2 (|x−in |+ |Zout − y|)2 > 1
2 |x− y|2. This

cannot be optimal, since the cost 1
2 |x− y|2 is realized in particular by the Euclidean

interpolation. As a consequence a minimizing curve cannot cross the boundary at any
time, and the Euclidean geodesic γxyt = (1− t)x+ ty is therefore the sought geodesic.

3. Finally we consider x1 = 0 and y1 > 0 (we already covered x1 = y1 = 0 and x1 > 0, y1 > 0,
so all the remaining cases are covered by simple symmetry c(x, y) = c(y, x)).

• Pick first y ̸∈ C(x). Similarly to a previous case, it is easy to check by hand that if
zout is determined through the α-angle condition as in Figure 3b and the constant
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speed is suitably adjusted on each segment of the blue curve, the cost is exactly
1
2a

(√
A(x1 + y1) + |y′ − x′|

)2
. By (5.3) this realizes the cost c(x, y). We claim that

this is necessarily optimal in the Lagrangian minimization. Indeed, by definition
of C(x) this cost is strictly less than the Euclidean 1

2 |x − y|2, hence a minimizing
geodesic must necessarily go through the boundary at some point, until a last exit
time tout ∈ [0, 1) with Zout ∈ ∂D. The case tout = 0 would lead to the suboptimal
Euclidean cost and is therefore ruled out. By definition of L̄ clearly the best one can
do is then to move vertically x ⇝ Zout along ∂D for t ∈ [0, tout] (wandering off of
∂D would result in unnecessary oscillations in the horizontal direction as well as more
costly vertical motion due to a > 1), and then remain contained in D for later times
t ∈ (tout, 1]. In this scenario clearly the best strategy is to follow two consecutive
straight lines x ⇝ Zout ⇝ y, and optimizing first w.r.t. tout for fixed Zout, and then
w.r.t Zout, one gets that Zout = zout is determined exactly by the α-angle condition
with the right cost. This means that the blue curve in Figure 3b is optimal as claimed.

• Now if y ∈ C(x) the same optimization program easily leads to Zout = x and tout = 0,
i-e the geodesic immediately exits ∂D and never reenters. But in that case ωt ∈ D

for all t ∈ (0, 1], the Lagrangian is simply
∫ 1

0
1
2 |ω̇t|2dt, so the minimal cost is realized

by Euclidean interpolation as in our statement and the proof is complete.

7 Sample path Large Deviation Principle
Recall that Ω = C([0, 1]; D̄) and Rε

x ∈ P(Ω) is the path measure for SBM started from x ∈ D̄,
slowed-down on the scale ε > 0 as before. The goal of this section is to establish the dynamical
counterpart of Theorem 5.1

Theorem 7.1. For fixed x ∈ D̄ the sequence {Rε
x}ε>0 ∈ P(Ω) satisfies a Large Deviation

Principle

Rε
x ≍

ε→0
exp

(
−1

ε
Cx(ω)

)
for the uniform topology on Ω, with good rate function

Cx(ω) = ι{ω0=x} + C(ω)

and C as in (6.3).

This is nothing but a Schilder’s theorem for sticky-reflected Brownian motion. Our interest
for such dynamical statement is twofold. First, it provides information at the path level, which
conveys more information than the static LDP in Theorem 5.1. Second, this allows a direct
application abstract results guaranteeing Gamma-convergence of the ε-Schrödinger problem to
the deterministic counterpart, see e.g. [33, prop. 2.5 and thm. 2.7].

Note that our static result from Theorem 5.1 asserts nothing but the LDP for the initial-
terminal joint distribution for δx ⊗ ρεx = (e0, e1)#R

ε
x. Just as in one of the classical proofs of

Schilder’s theorem for pure Brownian motion, the main and standard idea to establish Theo-
rem 7.1 will be to perform a time slicing, retrieve a discrete LDP via the Chapman-Kolmogorov
property and iterated applications of our previous static LDP, and finally apply the Dawson-
Gärtner theorem to recover the dynamic LDP by projective limit. More precisely, we will first
establish

Proposition 7.2. Theorem 7.1 holds for the topology of pointwise convergence on Ω.

To this end, fix a large N ∈ N and take any partition τN of the time interval [0, 1]

0 = t0 < t1 < · · · < tN = 1
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with size |τN | = maxi |ti+1− ti| → 0 as N → ∞. For a fixed curve ω ∈ Ω with ω0 = x we denote

yj := ωtj , j = 0, . . . , N,

and
Rε,N

x := (et0 , . . . , etN )#R
ε
x ∈ P(D̄N+1).

In other words,

Rε,N
x (E0 × · · · × EN ) = Rε

x(ωt0 ∈ E0, . . . , ωtN ∈ EN ) = Px(X
ε
t0 ∈ E0, . . . , X

ε
tN ∈ EN )

for the slowed-down sticky Brownian motion (Xε
t )t∈[0,1].

Lemma 7.3. For any fixed x ∈ D̄ and N < +∞ the sequence
{
Rε,N

x

}
ε>0

satisfies the LDP

Rε,N
x ≍

ε→0
exp

(
−1

ε
CN

x (y0, . . . , yN )

)
with good rate function

CN
x (y0, . . . , yN ) := ι{y0=x} + CN (y0, . . . , yN ) with CN (y0, . . . , yN ) :=

N−1∑
j=0

c(yj , yj+1)

tj+1 − tj
, (7.1)

where the static cost c(x, y) is exactly as in (5.2)(5.3).

Proof. The argument is very similar to the proof of Theorem 5.1 so we only sketch the details.
Pick any Borel sets E0, . . . , EN ⊂ D̄, and let us denote for convenience

εj := ε(tj+1 − tj) and E := E1 × · · · × EN .

By the Chapman-Kolmogorov property we have that

Rε,N
x (E0 × · · · × EN ) = 1{x∈E0}

∫
E

pε0(x, dy1)pε1(y1,dy2) . . . pεN−1
(yN−1,dyN )

= 1{x∈E0}

∫
E

ρε0x (dy1)ρ
ε1
y1
(dy2) . . . ρ

εN−1
yN−1

(dyN ).

Just as in (5.6)(5.7)(5.8)(5.9) the kernels ρεjyj (dyj+1) are explicitly given by

ρεjyj
(dyj+1) = ρ

εj
int(yj , yj+1)dyj+1 +

(∫ 1

0

ρ̄
εj
st (yj , yj+1, Lj)dLj

)
µ(dyj+1).

For finite N , it is a tedious but rather straightforward exercise to adapt N consecutive times the
same argument as in the proof of Theorem 5.1 to get the LDP for Rε,N

x as ε → 0. Let us just
sketch the idea. For the LDP lower bound, pick first a minimizer y∗ = (y∗0 , . . . , y

∗
N ) of CN

x in Ē =
Ē1×· · ·×ĒN . In (7.1) clearly one has two possible rate functions Iint(yj , yj+1) and Ist(yj , yj+1) =
min

Lj∈[0,1]
Īst(yj , yj+1, Lj) competing for c(yj , yj+1) = min {Iint(yj , yj+1), Ist(yj , yj+1)}. Distin-

guishing which one is acting separately on each subinterval [tj , tj+1], each with scale εj =
ε(tj+1 − tj), one simply guesses as in the proof of Theorem 5.1 how to pick either an η-
neighborhood Ej,η ⊂ Ej of y∗j+1 or a neighborhood Fj,η ⊂ Ej × [0, 1] of (y∗j+1, L

∗
j ) (depending

on whether Iint or Ist is smaller) in order to get the LDP lower bound, up to an arbitrarily small
correction η (see again the details of the proof of Theorem 5.1). The LDP upper bound is even
simpler, given that the upper estimates used in the static proof were actually global in x, y, L
(at least to a sufficient extent so that they can be iterated N times). The tj+1 − tj scaling in
(7.1) appears as usual due to our setting εj = ε(tj+1 − tj) in each subinterval.
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Proof of Proposition 7.2. In view of Lemma 7.3 and by the Dawson-Gärtner theorem [18, thm.
4.6.1], the desired LDP will automatically hold with good rate function

sup
|τN |→0

CN
x (ωt0 , . . . , ωtN ) = ι{ω0=x} + sup

|τN |→0

CN (ωt0 , . . . , ωtN ), ω ∈ Ω

so clearly it is enough to show that

sup
|τN |→0

N−1∑
j=0

c(ωtj , ωtj+1
)

tj+1 − tj
=

{∫ 1

0
L(ωt, ω̇t)dt if ω ∈ H1

+∞ else

for any fixed ω ∈ Ω.
To this end, consider first ω ∈ H1. Setting γjs := ωtj+s(tj+1−tj), we have by (6.4) and

2-homogeneity of L(x, ·) that

c(ωtj , ωtj+1) ≤
∫ 1

0

L(γjs , γ̇
j
s)ds = (tj+1 − tj)

∫ tj+1

tj

L(ωt, ω̇t)dt.

As a consequence

CN (ωt0 , . . . , ωtN ) =

N−1∑
j=0

c(ωtj , ωtj+1
)

tj+1 − tj
≤

N−1∑
j=0

∫ tj+1

tj

L(ωt, ω̇t)dt =

∫ 1

0

L(ωt, ω̇t)dt

for any N . In order to get a lower bound, let (ωN
t )t∈[0,1] be the continuous, piecewise geodesic

interpolation of ωt0 , . . . , ωtN , where geodesics are not the Euclidean ones but rather the intrinsic
ones from Theorem 6.1, and appropriately scaled in time so that

CN (ωt0 , . . . , ωtN ) =

N−1∑
j=0

c(ωtj , ωtj+1)

tj+1 − tj
=

∫ 1

0

L(ωN
t , ω̇

N
t )dt.

By coercivity (6.5) and the previous upper bound we see that {ωN}N is bounded in H1 with
fixed endpoints ωN

0 = ω0 and ωN
1 = ω1. We can therefore assume that ωN has a weak-H1 limit,

and this limit is of course ω. Hence by the weak lower semicontinuity in Theorem 6.1 and from
the previous upper bound we obtain∫ 1

0

L(ωt, ω̇t)dt ≤ lim inf
N→∞

∫ 1

0

L(ωN
t , ω̇

N
t )dt

= lim inf
N→∞

CN (ωt0 , . . . , ωtN )

≤ lim sup
N→∞

CN (ωt0 , . . . , ωtN ) ≤
∫ 1

0

L(ωt, ω̇t)dt

as claimed.

If now ω ̸∈ H1, standard properties of Sobolev functions give that
N−1∑
j=0

|ωtj+1
−ωtj

|2

tj+1−tj
→ +∞

as |τN | → 0. The coercivity (6.5) integrated along geodesics readily gives c(x, y) ≥ 1
2a |x − y|2

for any x, y, thus

N−1∑
j=0

c(ωtj+1 , ωtj )

tj+1 − tj
≥ 1

2a

N−1∑
j=0

|ωtj+1 − ωtj |2

tj+1 − tj
−−−−→
N→∞

+∞

and the proof is complete.

We are finally in position to establish our main result.
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Proof of Theorem 7.1. Since the uniform topology is obviously stronger than pointwise conver-
gence, by [18, Corollary. 4.2.6] it is enough to prove that {Rε

x}ε>0 is exponentially tight for the
uniform topology. By [43, Theorem 4.1] it is enough to check the “exponential Arzelà-Ascoli”
conditions

(i) compactness:
lim

M→∞
lim sup

ε→0
ε logRε

x

({
ω : |ω(0)| ≥M

})
= −∞,

(ii) equicontinuity: for all fixed η > 0,

lim
δ→0

lim sup
ε→0

ε logRε
x

({
ω : sup

|t−s|≤δ

|ω(t)− ω(s)| ≥ η
})

= −∞. (7.2)

Since ω(0) = x for Rε
x-a.e. ω ∈ Ω the first condition is trivial so we only focus on the second

part. Fix η > 0. We first deal with the vertical component, which according to (4.3) reads

Xε
t
′ =

√
aB̃′

Oεt
+ B̌′

εt−Oεt

for two independent (d− 1)-Brownian motions B̃′, B̂′. For fixed 0 ≤ s ≤ t ≤ 1 we have∣∣Xε
t
′ −Xε

s
′∣∣ ≤ √

a
∣∣∣B̃′

Oεt
− B̃′

Oεs

∣∣∣+ ∣∣B̌′
εt−Oεt

− B̌′
εs−Oεs

∣∣
and therefore

P

(
sup

|t−s|≤δ

∣∣Xε
t
′ −Xε

s
′∣∣ ≥ η

)
≤ P

(
sup

|t−s|≤δ

|B̃′
Oεt

− B̃′
Oεs

| ≥ η

2
√
a

)

+ P

(
sup

|t−s|≤δ

|B̂′
εt−Oεt

− B̂′
εs−Oεs

| ≥ η

2

)
=: A′

ε +B′
ε

For the first A′
ε term, recall that the occupation time Ot =

∫ t

0
1{X1

τ=0}dτ only depends on
the horizontal sticky Brownian motion, which in turn is completely independent of the two
vertical Brownian motions B̃′, B̂′. As a consequence, by independence and standard properties
of Brownian increments, B̃Oεt

− B̃Oεs
is distributed as B̃Oεt−Oεs

and therefore

A′
ε = P

(
sup

|t−s|≤δ

|B̃′
Oεt−Oεs

| ≥ η

2
√
a

)
.

Now, since 0 ≤ Oεt −Oεs =
∫ εt

εs
1{X1

τ=0}dτ ≤ ε(t− s) one has

sup
|t−s|≤δ

|B̃′
Oεt−Oεs

| ≤ sup
τ≤εδ

|B̃′
τ |

almost surely. Finally, by standard properties of Brownian motion one has the classical estimate
(see e.g. [18, Lemma 5.2.1]

P

(
sup

τ∈[0,T ]

|Bτ | ≥M

)
≤ 4(d− 1) exp

(
− M2

2(d− 1)T

)
, ∀M > 0, T > 0.

Putting M = η/2
√
a and T = εδ we see that

A′
ε ≤ 4(d− 1) exp

(
− η2

8a(d− 1)εδ

)
Similarly, since t− Ot and B̂′ are independent and 0 ≤ (εt− Oεt)− (εs− Oεs) ≤ ε(t− s), one
easily gets that

B′
ε ≤ 4(d− 1) exp

(
− η2

8(d− 1)εδ

)
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and thus
A′

ε +B′
ε ≤ C exp(−cη2/δε)

for some uniform constants C, c > 0 independent of η, ε, δ > 0. This immediately gives the
exponential equicontinuity (7.2) for the horizontal component.

Let us now turn to the horizontal component Xε
t
1 = X1

εt, where (X1
τ )τ≥0 is the one-

dimensional sticky-reflecting Brownian motion started from x1 ≥ 0. First of all, by fine proper-
ties of the one-dimensional reflected SBM [20, eqs. (2.11) and (3.7)] we have that

X1
t = |St| =

∣∣∣∣x1 +Bt −
∫ t

0

1{Sτ=0}dB
0
τ

∣∣∣∣ ,
where St is the two-sided, non-reflected sticky Brownian motion on R and Bt, B

0
t are two stan-

dard Brownian motions in R. It follows that

|X1
t −X1

s | ≤ |Sr − Ss| ≤ |Bt −Bs|+
∣∣∣∣∫ t

s

1{Sτ=0}dB
0
τ

∣∣∣∣
and therefore, for fixed η, T > 0 and s ≥ 0

P

(
sup

t∈[s,s+T ]

|St − Ss| ≥ η

)
≤ P

(
sup

t∈[s,s+T ]

|Bt −Bs| ≥ η/2

)

+ P

(
sup

t∈[s,s+T ]

∣∣∣∣∫ t

s

1{Sτ=0}dB
0
τ

∣∣∣∣ ≥ η/2

)
=: A1

T +B1
T .

For the first term we have exactly as before

A1
T = P

(
sup

τ∈[0,T ]

|Bτ | ≥ η/2

)
≤ 4 exp

(
− η2

8T

)
.

For the second term let us set

Yt :=

∫ t

s

1{Sτ=0}dB
0
τ .

For fixed λ > 0 let f(y) := exp(λy) and Zt := f(Yt). Because f is convex and Y is a martingale,
Z is a submartingale and therefore by Doob’s martingale inequality

P

(
sup

t∈[s,s+T ]

Yt ≥ η/2

)
= P

(
sup

t∈[s,s+T ]

Zt ≥ f(η/2)

)
≤ E(Zs+T )

exp(λη/2)
.

Applying Itô’s lemma

dZt = f ′(Yt)dYt +
1

2
f ′′(Yt)d⟨Y ⟩t = λZtdYt +

λ2

2
Zt1{St=0}dt,

taking expectation, and integrating we see that

E(Zt) = E(Zs) +
λ2

2
E
∫ t

s

Zτ1{Sτ=0}dτ = 1 +
λ2

2

∫ t

s

E(Zτ1{Sτ=0})dτ ≤ 1 +
λ2

2

∫ t

s

E(Zτ )dτ.

Grönwall’s inequality yields E(Zs+T ) ≤ exp(λ2T/2), thus

P

(
sup

t∈[s,s+T ]

Yt ≥M/2

)
≤ exp(λ2T/2− λη/2)
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for any λ > 0. The right-hand side is minimized for λ = η
2T and therefore

P

(
sup

t∈[s,s+T ]

Yt ≥ η/2

)
≤ exp(−η2/8T ).

Since Yt is distributed as −Yt we conclude that

B1
T = P

(
sup

t∈[s,s+T ]

|Yt| ≥ η/2

)
≤ 2 exp(−η2/8T ).

Finally scaling down time t, s↔ εs, εt and T = εδ gives

P

(
sup

|s−t|≤δ

|Xε
t
1 −Xε

s
1| ≥ η

)
= P

(
sup

|s−t|≤δ

|X1
εt −X1

εs| ≥ η

)
≤ A1

εδ+B
1
εδ ≤ C exp(−cη2/εδ).

This shows that the horizontal component also satisfies the equicontinuity (7.2) and concludes
the proof.
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