ZERO DIFFUSION-DISPERSION LIMIT FOR THE
BENJAMIN-ONO-BURGERS EQUATION

GIUSEPPE MARIA COCLITE, NICOLA DE NITTI, OLA H. MAHLEN, AND ELIOT PACHERIE

ABsTrRACT. We prove that the solution of the viscous Benjamin—Ono equation converges, as
diffusion and dispersion parameters tend to zero (under a suitable balance condition), to the
unique entropy solution of the inviscid Burgers equation. The key tool in our proof is Schonbek’s
LP-compensated compactness method. Specifically, we prove a uniform L*-estimate using a
modification of a conserved quantity for the inviscid Benjamin—Ono equation and a suitable
differential inequality argument.

1. INTRODUCTION

The Benjamin—Ono equation was first formally derived by Brooke Benjamin in [4] (and, inde-
pendently, by Russ E. Davis and Andreas Acrivos in [34]) and later by Hiroaki Ono in [57] to
describe the propagation of long weakly nonlinear internal waves in a stratified fluid such that two
layers of different densities are joined by a thin region where the density varies continuously, the
lower layer being infinite. We refer to [59] for a recent detailed survey of the literature about this
model (see also [47, Chapter 3| and [6]).

We shall focus on the wviscous Benjamin—-Ono equation (also known as Benjamin—Ono-Burgers
equation):

(1.1)

8tu575 + u5758$u875 = 8(9928’11875 — 57—18325%75, t>0, reR,
Ue,5(0,7) = uo, e, 5(2), z e R,

where € > 0 is the diffusion coefficient, 6 > 0 is the dispersion coefficient, and H is the Hilbert
transform, which is defined as follows:

1 u(y) 1.
Hu(z) == p.v.— f uly) dy = F~!(isign(€)F(¢)),
TJry—=x
with F denoting the Fourier transform. By changing variables, the principal value integral above
can be written explicitly as
1 Culz +y) —ulz —y)

Hu(z) = —— li{% "
T e €

dy.

If u e LP(R), for 1 < p < oo, then the Hilbert transform is well-defined: i.e., the limit defining the
improper integral exists for almost every z; moreover, the limit function Hu belongs to LP(R) as
well.

The viscous Benjamin—Ono equation, whose physical relevance has been discussed in [35], is
well-posed in H*(R), with s > 1, and in H/?(R) (see [43, 55]), uniformly with respect to & = 0.

In the present work, we are interested in studying the competition between dispersive and
diffusive effects in the singular limit €, § \, 0 of {uc s} s>0-

This zero—dispersion limit problem was first addressed by Lax and Levermore, using inverse
scattering theory, in the case of the Korteweg—de Vries equation,

(1.2)

Oyus + usOpus = —803us, t>0, v eR,
us(0, ) = ug 5(z), z€R,
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who showed that solutions do not converge in a strong topology (oscillatory effect of capillarity).
On the other hand, in the presence of competing diffusion and dispersion, i.e., for the KdV—-Burgers
equation

(1.3) {(%us,g + us,gazu575 = 60gu575 — 55211575, t>0, reR,

uE,J(OvZE) = uO,E,&(x)a rzeR,

Schonbek, in [60], used a novel LP compensated compactness technique to prove that the strong
convergence to the (unique) entropy admissible solution of the Burgers equation

(1.4) Oiu+ udzu =0, t>0, zeR,
' u(0,2) = up(x), zeR,

holds under a suitable balance condition between € and . This convergence result has been later
extended in various directions (cf., e.g., [48, 44, 1, 49, 46, 3, 2, 30, 31])1. In conclusion, depending
on the relationship between £ and § when taking the limit €, N\ 0, different results are obtained:
the family {uc, 5}e, 5>0 may converge to a weak solution of the Burgers equation, or to the entropy
solution, or be highly oscillatory and not converge to a solution.

For the Benjamin—Ono equation, on the other hand, much less is known. If § > 0 is fixed,
the vanishing viscosity limit, € N\, 0, was studied in [43, 55] (as a byproduct of the uniform well-
posedness results mentioned above). For the inviscid Benjamin—Ono equation (i.e., in case ¢ = 0),
the zero dispersion limit, 6 Y\, 0, was studied (either on the torus or on the real line) in [54, 53,
52, 40, 41] using inverse scattering theory for the Lax operator inherited from the integrability
of the Benjamin—Ono equation. More recently, in [42], the zero-dispersion limit was identified by
relying on an explicit solution formula and a combination of suitable approximation arguments and
computations carried out in the special case of rational initial data (see also [8, 7, 5] for further
studies). However, as in the case of the zero-dispersion limit for KdV, this weak limit is not a weak
solution of the Burgers equation (1.4). Roughly speaking, the shock happening for the inviscid
Burgers equation is converted into a dispersive shock wave for solutions to the Benjamin—Ono
equation: for small dispersion parameters, it becomes strongly oscillatory in a localized region that
is precisely where the inviscid Burgers solution is multivalued.

We are interested in showing that, in the presence of a vanishing viscosity, provided that § is
small enough compared to ¢, the family {u. s} s>0 of solutions of (1.1) converges to the (unique)
entropy solution of the Burgers equation (1.4).

Going forward, we assume that the initial datum satisfies

(1.5) ug € L*(R) n L*(R)

and that it is regularized as follows:

(1.6) ug, e, s € H*(R),

(17) Hu0,575 ‘%4(]1{) + EQHQUO,E’(; |%2(R) < C,

(1.8) [wo,e,5llz2®) < |uolz2(m),

(1.9) luo, e, sllamy < [uwollLacr)s

(1.10) U, e, 5 — Uo, a.e. and in L}, (R), 1<p<4, ase §\,0,

(for some constant C' > 0 that does not depend on ¢ and ¢). Owing to [43, Theorem 1], we already
know that, if ug, ., € H*(R), with s > 1, then there exists a unique solution u. s € C(R;; H*(R))
of (1.1).

We remark that assumption (1.7) prescribes how the regularization ug, ., s blows up in H! as
g, 8 \\, 0, namely, as 6! and will play a key role in Lemma 2.2 below.

Our main result is as follows.

Theorem 1.1 (Zero diffusion-dispersion limit for the Benjamin—Ono equation). Let us assume

that €, 6 > 0 and & = O(e3). Let us consider an initial datum g, satisfying (1.5), and a family
{uo,¢,6}e, 650 such that (1.6)-(1.10) holds.

1 Schonbek’s LP compensated compactness method has been also applied to the study of other kinds of higher-
order approximations for scalar conservation laws (cf., e.g., |9, 21, 25, 24, 13, 23, 14, 12, 27, 17, 29, 19, 20, 16, 11,
15, 18, 26, 10, 22, 28, 39, 38, 32, 37, 36, 45, 61]).
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Let uc, 5 be the (unique) solution of the Cauchy problem (1.1). Then, with u the (unique) entropy
solution of (1.4), we have that

ue,s —> u  strongly in LY (Ri x R), for every 1 <p <4

loc

when € — 0.

1.1. Outline of the proof of Theorem 1.1. The key ingredient of the proof of Theorem 1.1 is
Schonbek’s LP-compensated compactness framework (see [60, 50]).

Lemma 1.2 (LP compensated compactness). Let Q be a bounded open subset of Ry x R. Let
f e C*(R) satisfy

|f(u)| < Clul*** for ueR, |f'(w)] < Clul® forueR,
for some s = 0, and

meas {u € R : f”"(u) =0} = 0.
Given £ > 0, let us define functions Iy, fo, Fp : R = R as follows:
{ Iye C?(R), |Li(u)| < |u| forueR, |Ij(u)] <2 forueR,

[Te(w)] < Ju| for |u| <1, I)(u) =0 for |u] =21

and
flw = [ 1or©w. Biw = [ oo

Let us suppose {uy,}_, = L*TV(Q) is such that the two sequences
{atIl (un) + amf[ (un)}:):1 ) {atfé (un) + amFK (un)};ozl

of distributions belong to a compact subset of ngcl(Q), for each fixed | > 0. Then there exists
a subsequence of {u,}._, that converges to a function u € L**+Y(Q) strongly in L™(Q) for any
1<r<2(s+1).

In order to apply Lemma 1.2, we need to establish a uniform L{ -estimate and to prove that

the entropy production (for a compactly supported entropy) is compact in ngi.

First, in Section 2, we establish a uniform energy estimate. The form of the energy dissipation
will ultimately yield (when combined to a suitable balance condition on the ratio d/¢) the com-
pactness of the entropy production. Second, we deduce a uniform Lﬁ)c—estimate assuming now that

§ = O(e?).

2. A PRIORI ESTIMATES

In this section, we obtain several a priori estimates that will be needed to gain strong compact-
ness in L?(R) of the family {u. s}c s>0-
We start by recalling some properties of the Hilbert transform that will be needed in the proofs
(see [62, 58]):
(H-i) Anti-involution: H?*u = —u;
(H-ii) Anti-self adjointness: J uHvdz = —J vHudz if w € LP(R) and v € LY(R), with 1 <
R

R
p,q < oo Holder conjugates;

(H-iii) Corollary I of anti-involution and anti-self adjointness: f uvHudz = 0 if u € LP(R) n
R
LY(R), with 1 < p,q < oo Holder conjugates;
(H-iv) Corollary II of anti-involution and anti-self adjointness: J HuHvdz = f wodx if u €
R R

LP(R) and v € LY(R) with 1 < p, g < oo Holder conjugates;
(H-v) Product rule: H(uv) = uHv + vHu + H(HuHv);
(H-vi) Behavior with respect to differentiation: Hoku = 0¥ Hu if u e WFP(R) with 1 < p < 0.

(H-vii) Relationship with the fractional Laplacian: J uHozuder = f [(—A) Y42 de = HuHip/Q(R)
R R
if ue LP(R) and 0,u € LY(R) with 1 < p,q < oo Holder conjugates.
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As a first step, we prove the following L?-estimate. The dissipative term in it will play a key
role in showing that the entropy production {d;n(uc s) + 0zq(uc, 5)}e, 50 is compact in H, !

loc*

Lemma 2.1 (L?-estimate). Let u. s be the solution of (1.1). Then the following estimates hold:
¢
(2.1) | st de s 2z | [ josue st )P deds < | fuofo) da,
R 0 JR R

¢
(2.2) f |Hue s(t, )| dx+2€f J |Hopue, 5(s,2)|? dads <J luo(z)|? d.
R 0 JR R

Proof. We compute

d1
%3 JR ug,(g dx = JR Ue, 50tUe, 5 A

= J Ugyg(&'aiug’g — 57—[6§u575 + Ug, 50z Ue, 5) AT
R

= —gf |6xu£’5|2dw — (5J ue,(;’Hé’qu,gdx—J ug’(;@wum;dx
R R R
- A

=0 =0

—EJ |§_»,3u€75|2 dz.
R

Integrating on (0,t), and recalling (1.8), this yields (2.1). The claim in (2.2) is equivalent to (2.1)
owing to property (H-iv) of the Hilbert transform. O

Secondly, we need to prove (uniform) Li -integrability of {uc s} s=0. As noted in [51], the
quantity

1 3
Iy = fR <4|u€,5(t,x)|4 + §§u§ sHOzue s(t, ) + 267 |(?zu€’5(t,x)|2> dz

is conserved by the inviscid Benjamin—-Ono equation (but not by the viscous one). In the following
lemma, we are able to use a suitable perturbation of Z, to obtain a uniform bound on the L*-norm
of uc, 5 provided that § = O(¢2) and that assumption (1.7) holds on the regularized initial data.

Lemma 2.2 (L*-estimate). Let u. s be the solution of (1.1). Let us suppose that § = O(e?).
Then, there exists K > 0 (depending only on the constant C from (1.7)) such that

J uia(t,x) dr < K.
R

Proof of Lemma 2.2. We introduce the functional
1 3
Iy, = J <4u5,5|4 + iéuié?{&mu&g + 2¢2 |(7mu5,5|2) dzx,
R

which is equal to the conserved quantity Z,, up to replacing the 62 in the last term by 2. We
will compute its time-evolution in three pieces and then put them together and estimate them to
deduce a suitable differential inequality.

Step 1. L*-norm contribution:

d1
ETol J;R uéé dx = fR ug”(;(?tusﬁ dx

3 2 2
- J. Ue, s (gaxuﬁ,(s - &Haacu&(; - us’éamufa‘;) dz
R

—3€f u§75\6wu5’5|2 dz + 35f u;(;é‘ggug, sHOzue, s dx — J- uﬁ,(;(?:qu,g dz
R R R

| —
=0

—3EJ ug 5|0z te, 5|2 dx + 35f ug 5O0zUe, s HOz U, 5 d;
R R
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Step 2. H'-norm contribution:

d
a252 J |é’wu575|2 dz = 4¢2 f 6wu5758752wu875 dr
R R
= 452f 6$u875agg (Eaiu&(; — (57‘[592;%375 — uE,gému&g)
R

2 2 2 2
= —4¢ J Oy Ue, s (anu&g — OHOGue, 5 — uag&wu&(;)
R

—4525J |8§u5, 5% da 4 40e? J (ﬁu& 57{637%, sdx
R R

=0

+ 4¢? J U, 56’1u5’56§u5’5 dx
R

I

—4¢° J |02ue, 5| d + 4& J Ue, 503 e, 502U, 5 d;
R R

Step 3. ui&’}{é’muaﬁ contribution:

das3

3
i 2(5J u§757—18$u875 dr = 35J- Ue, §OtUe, s HOgUe, 5 + §5f ué(;?-té’fzug,g dzx
R R R

= 35J Ue, s HOzUe 5 (56211875 — 57—[8511575 — ue,gﬁwu&(;) dz
R
— 35[ Ue, §0zUe, 5 H (Eaiu&(; — 57{(937%,5 — U, 5(3;3%75) dzx
R
= 35€J Ue, 589201167 sHOzue, 5 dx — 342 J Ue, s HOgUe, 57{55%, § dx735f ug §O0zUe sHOzue 5 da
R R R

— 35{-:[ Ue, 50 Us, 57-[(93251157 5 dz—362 J Ue, 507U, 5(93251157 sdx + 35J Ue, 50z Us, s H(Ue, §02Ue, 5) dT
R R R

=0

= 355f Ue, 56§u5, sHOzue, 5 do —362 J Ue, s H Oy U, 57'19325%, sdx —36J u? 50zUe, s HOpue 5 dx
R R R

I Iy

*358[ u57501u575H0§u5,5 dx—362J u57561u5756§u5,5 dz.
R R
To deal with I3, we use the formula H(uHu) = % ((Hu)? — u?) and compute as follows:
2 2 3 ¢ 2
-36 J Ue, s HOzUe sHOZUs, 5 AT = 756 J Ue, 505 (HOgpue, 5)°) da
R R
3
= 552J Ozte, 5 (HOpus, 5)? dx
R
3
= —§5zf Oze, s H(Opue sHOzue, 5) dz
R

- _§5zf Optte, s(HOzue, )% dz + §52f (Ozte,5)* dz
47 Jgre ’ 4k

3 3
= 552 J Ue s HOz U, 57{65%7 5 dx—§52 J Ug, 50U, 56§u57 sdx,
R R

ie.,

(—3 — 3) 52f u5757{(9xu6,57{8§u5,5 dr = —§52f u&(;amua,(sé’iu&g dz,
2 R 2 Jr

which means
Ir = —52‘[ u5)561u5756§u575d$.
R
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For I, integration by parts yields
I = —35€J (é’qu,g)Q’H@zuE’(g dr — 3(5€J- u5756$u875H8§u575 dzx.
R R

Regrouping, we have
d3
—féf ug sHOgue s dr = —35J u? §O0zUe sHOgUe, s dT — 452 f Ue, 503U, 562%75 dz
dt2 Jgp © R R

— 655J Ue, 603U, 57—[632611875 dr — 3éef |0pte, 5|27{6qu, sdz.
R R

Step 4. Interpolation. In conclusion, summing up the three contributions, we obtain

d

—T4. = —3€J ug 5]O0ntic s)% da —453J \(ﬁua 5% da
de R 7 R 7

Ue,5 0z U, 56926%75 dz — 65ef Ue, 603U, 57-[,(992611575 dzx
R

(2.3) +4(e* — 52)f

R

— 3d¢ J |0z tte,5|* Hozue, 5 da.
R

By Cauchy—Schwarz and Young’s inequalities, we estimate

1 1
2 2
< ([ o) ([ 2uesP)
R R

1 £
<§JUQWWMF®+*JW@MFMa
£ R ’ 2 R

3 3
< (J. ug’5|8mu€}5|2dx> (J |’Hé’zu€’5|2dx>
R R

< (J u§,5|6mu575|2dz> (J |8§u575|2 dx)
R R

1
< —J u? 5|0pue, 5| da + 35J |02ue s|* da.
126 Jo = * Ot

2
f U, 505 Ue 505 Ue, 5 AT
R

as well as

U u6,56Iu5,57-{83u5,5 dx
R

Therefore, assuming for now only that 6 = 0._,(g), for € > 0 small enough,

‘4(52 — 52) J us’gazu5756§u5’5 do
R

+ ‘655J Ue, 50U, 57-[6926115’ sdx
R

2 _ 52
(2.4) < <28 - + ;) J u§’5|6mu5,5|2 dz + (2(e? = 6%)e + 18 525)J |02u. 5|* d
R R

11
< —EJ u? 5|0puc, 5> do + 3€3f |02ue s|* d.
4 R s 5 . s
For the remaining term in (2.3), we use first Cauchy—Schwarz’ inequality, then Gargliardo—

Nirenberg’s inequality (in the form [[v]Ls(®) < C’Hava}:/f(R) HvHi/f(R), with v = dzu. 5), and finally

Young’s inequality to deduce

3

J |0pue s|*Horue, 5 do
R

<3 <J |53,u575|4dx> (J |53,u575|2d1:>
R R
<C <(J |63u5’5|2 dx> <J 8zu5752dx) ) (J |8mu5,52dx)
R R R
<C (J |6§u5,5|2dx> (J |6mus,5|2 dx)
R R
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27! 2 2 —251 2 :
< |0Zue 5|°dx + Ce™ 3463 |Ope 5% da
2 Jr 7 R ’

This implies that

3 3
< J |62u5 5|2dx+C§3 3 (J |6mu5,5|2dx>
R

Step 4. Differential inequality argument. Putting (2.4)—(2.5) into (2.3), we deduce that

d ‘3 P 5
(2.6) &1475 < Cozes (J |8zu5,5|2dx> < Co3e™3 <52J |6zu575|2dw> .
R R

Recalling that

(2.5) ‘358f |0z tte 5| HOpue, 5 dz| <
R

u} 3
Iye = J % dx + 7(5J- u? sHOzue, s dz + 2€2J |6wu5,5|2 dz,
r 4 2 Rk R

we use Cauchy—Schwarz’ inequality, still assuming that 6 = o._,0(¢) and taking £ > 0 small enough,

to deduce
< §5 (J ul 5dx> <J |Horue, 5|2 dx)
2 R R

3
J §5U§75/H51U5,5 dz
R

3 3 3
< =4 (J uégdx) <J |3xua,6|2d$>
2 ’ R
1
<7J 5m+cﬁfwwwﬁm
8 Jr '
1
<§f 5dx+eJ\8u55\ dz,

and, therefore,

(2.7) Tie>

0| =

J u;l,(; dz + &2 f |0 e, 5|2 da.
R R
We also remark that

(2.8) f ut sdz <87y
R

Combining (2.7) with (2.6) gives
4

Cos t 5
(2.9) oo g(t) = &2 JR|8qu,5(t,m)|2dx <T.0)+ 5 L oo s(s) 5 ds.

Now, if § < Meg, for some constant M, then ¢ is bounded uniformly in ¢,5. To see this, we
argue as follows: By continuity of o.s it suffices to bound o, s(T") for any T > 0 satisfying
0c,5(T) = maxyero, 1) 0c,5(t). For such a T', we use (2.9) and compute

ol

0es(T) <Too(0) + TY ( L ' as,s(s)ds> 0. 5(T)’

19
CM 2
ST, (0) + 5 unlFazy 7 (T)
CM 20. s(T
<Z1,00) + 5 (S wolagey) + %

where the second inequality used Lemma 2.1. Rearranging yields

3,.(0) , (CM)?

0'6,5(T) < 9 16 HUO“%z(R) = M
Thus, returning to (2.6), we find
CM [t CMM?3 |u
(2.10) I4’E(t) < 1'475(0) 4+ — 0'5(8) ds < I47a(0) + ” OHL2(R)

e Jo 2
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In conclusion,

CMMS5||u
f uz sz <8 Ty . <8 <I4,s(0) + ” OLQ(R>> .
R

2
]

Remark 2.3 (On the assumption § = O(e2)). It is natural to conjecture (also in light of the
computations in Section 3; cf. Remark 3.2) that one should require § = O(e) to obtain a uniform
Lf‘oc—bound. Indeed, from the computation of the L*-norm contribution and the beginning of the
proof, we see that if we could remove the H in

30 J U?, 561’“57 67"[(}1“5, ) d(E,
R

we directly have a uniform bound on the L? norm assuming only § = O(g). However, we find
0 = O(E%) instead. The loss of sharpness in the estimates comes from the use of Gagliardo—
Nirenberg’s inequality in estimating the term

30e J (Orptic, §)*Horue, s dx,
R

where there is, in a sense, a loss of derivatives. As such, we do not believe that § = O(ag) is the
optimal condition.

3. LP COMPENSATED COMPACTNESS AND PROOF OF THE CONVERGENCE RESULT

In order to verify the entropy dissipation assumption in Lemma 1.2, we shall use Murat’s compact
embedding (see [56] or and [33, Lemma 17.2.2]).

Lemma 3.1 (Murat’s compact embedding). Let 2 be a bounded open subset of RN, N > 2.
Suppose the sequence {/Jn}f=1 of distributions is bounded in W—1%(Q). Suppose also that

Ln=L),+L;,

where {'6111}:?:1 lies in a compact subset of H,}(Q) and {ﬁ%}:):l lies in a bounded subset of

Mioe(Q). Then {L,},-_, lies in a compact subset of H,!(S2).
We are now ready to combine the ingredients prepared in Section 2 to prove Theorem 1.1.

Proof of Theorem 1.1. We divide the proof into several steps.

Step 1. Hl;(}—Compactness of the entropy production. Let (1n,q) be a compactly supported
entropy—entropy flux pair. By Lemma 2.2, we already know that wu. s is uniformly bounded in
L*(R; x R). Therefore, in order apply Lemma 1.2 and conclude that

Us s — ue, s strongly in LY (R; x R), for 1 < p <4,

loc

we only need to show that the entropy production {0in(uc 5) + 0xq(uc, 5)}e 60 is compact in
H YR, x R).

loc

The entropy production is given by
Oin(ue, ) + 0xq(ue,5) = 1 (ue, 5)05ue, s — 61 (uz, 5)HO2uz 5,
where the terms on the right-hand side can be rewritten as follows:

577/(U5, J)agus, 6 — az (577,(“5, 6)amus, 5) - Enl/(us, 5) (axus, 6)2;

E! E?
g,68 £, 6
677/('“6, 5)7{6;%“8, 5= 0z (577,(u€, 5)7{812“6, 62 - (E"]”(ua, 6)690”57 67'[31“575 .

Since 7 is compactly supported, we have that {0;1(ues, 5) + 0z¢(ue, 5)}e, 5>0 is uniformly bounded
in W~*(Ry x R). Therefore, due to Lemma 3.1, it suffices to prove that E! 5 and E? s lie in

a compact set of H ! (R, x R) and that Ei(; and E;{(; lie in a bounded set of M(R; x R) to
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conclude that the entropy production is compact in H, 1;:1 (R4 x R) and Es s To this end, we fix a
compact set Q := [0,T] x K € R; x R and compute (relying on Lemma 2.1)

T
len’ Waé)axueﬁ”i%m < HTIIHQLOO(]R) EZL ”‘996“675(57‘)H2L2(R) ds

(3.1)

< ||T’/Hioo(R) € ”UOH2L2(R) — 0 aseg, 6\ 0;

T
e ) @rte ) lnoy < I ey | 100t 011y s

1
< 5 Hn”HLoc (R) HuOHiQ(R) 5

H577/(U5, 5)Hazu5, )

T
oy < 171y j M0yt 5(5, ) 2o e s

(3.2)
62 ,
< ?”77 |z mylwollL2@y —> 0 as e, 6\ 0;
and
[6n" (ue, §)Oxtic, s HOzue, 5| L1 (02)
T
< 5”77”HL@(]R)f J |0z, s HOpue, 5| da dt
0 R
(3.3) 5 € T c T
<l (5 ][ e s andes 5[ [ Mol doa
€ 2J)o Jr 2J)o Jr
1)
< g||77"HLw(R)Hu0HL2(R) = O)|n"|| oo vy o] L2 (w) -

This concludes the proof that {0;n(ues, 5) + 0zq(ue, s5)}e, 550 s compact in ngcl (R4 x R). We stress
that we used the assumption 6 = O(¢) in (3.2) and (3.3).

Step 2. Strong convergence of {uc s}e 550 to a limit point. Using the result of Step 1 and
L} -bound from Lemma 2.2, which requires § = O(e%), we can apply Lemma 1.2 (with s = 1)
and conclude that there exists a subsequence of {uc, 5}e, 5>0 that converges strongly in LP(R), with
1 < p <4, to alimit function wu.

Step 3. Conwvergence to a weak solution. By applying Lebesgue’s dominated convergence theo-
rem, we can deduce that u is a weak solution of (1.4).

Step 4. Convergence to the entropy solution. Assuming 6 = o(e), we can improve (3.3) and
deduce that

(34) Hénﬂ(u&‘, 6)696”5,57'[6:8”6,5“[/1(0) —0 as g,6 \, 0.

From (3.1), (3.2), and (3.4), we infer that E;’(;, Eg,a» Eié — 0 in the sense of distributions
as €, 6 \, 0. Combining this with the observation that —en” (u.,s) (8xu575)2 < 0, we can conclude
that u is the entropy solution of (1.4).

Finally, owing to Urysohn’s subsequence principle, from the uniqueness of the entropy solution
of (1.4), we also obtain that the whole family {u. s} s>0 converges to u (not just up to extracting
a subsequence). O

Remark 3.2. In the proof of Theorem 1.1, we need § = O(e) to show the ngi—compactness of the
entropy production and § = o(¢e) to prove that the limit point of the family {u. s}c, 5>0 (provided
it exists) is the entropy solution of the conservation law (1.4). The only point where we needed
the assumption § = 0(5%) is for the uniform Lf‘oc—bound needed to apply Schonbek’s compensated
compactness lemma (cf. Lemma 1.2).
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