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Abstract. We consider the numbers of positive and negative eigenvalues of
matrices of squared distances between randomly sampled i.i.d. points in a

given metric measure space. These numbers and their limits, as the number

of points grows, in fact contain some important information about the whole
space. In particular, by knowing them, we can determine whether this space

can be isometrically embedded in the Hilbert space. We show that the limits
of these numbers exist almost surely, are nonrandom and the same for all

Borel probability measures of full support, and, moreover, are naturally related

to the operators defining the multidimensional scaling (MDS) method. We
also relate them to the signature of the pseudo-Euclidean space in which the

given metric space can be isometrically embedded. In addition, we provide

several examples of explicit calculations or just estimates of those limits for
sample metric spaces. In particular, for a large class of countable spaces (for

instance, containing all graphs with bounded intrinsic metrics), we get that

the number of negative eigenvalues increases to infinity as the size of samples
grows. However, we are able to provide examples when the number of samples

grows to infinity and the numbers of both negative and positive eigenvalues

increases to infinity, or the number of positive eigenvalues is bounded (but as
large as desired), and the number of positive ones is fixed. Finally, we consider

the example of the universal countable Rado–Erdős–Rényi graph.

1. Introduction

Let (X, d) be a metric space (i.e., X a nonempty set equipped with a distance
d) and µ be a Borel probability measure on X. We further assume, without loss of
generality, that (X, d) is separable. The so-called learning problem for the metric
measure space (X, d, µ) is to recover the information on the triple (X, d, µ) from the
information on distances between points of an appropriately chosen subset of X. In
view of the famous result of M. Gromov (so-called “mm-reconstruction theorem” [8,
section 3. 12 .5]) further reproved and generalized by A. Vershik in [14] and [15],
this problem is completely solved. A Polish (i.e., separable and homeomorphic
to complete) space (X, d, µ) can be reconstructed from distances between points
obtained from the following randomized procedure: for every m ∈ N, one chooses
i.i.d. random points ξi ∈ X drawn from the distribution µ, i = 1, . . . ,m, thus
forming a finite random sequence of points Xm := (ξi)

m
i=1, and calculates the m×m

random distance matrix (d(ξi, ξj))
m
i,j=1. The joint distribution law of all these
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matrices (i.e., for all m ∈ N) then determines (X, d, µ) uniquely up to a measure-
preserving isometry. To reconstruct the space (X, d, µ), this approach requires
the knowledge of the statistics of random distance matrices of all sizes, which is
quite difficult to accomplish in practice. The natural question is to what extent
one may limit himself to the statistics of something less than the whole set of
distance matrices, e.g., to the spectra of the latter, or even to some function of the
spectra (e.g., the numbers of positive and negative eigenvalues). In other words,
what kind of information on (X, d, µ) is encoded by the spectra of random distance
matrices, or even by some functions of the spectra. Several attempts to answer
these questions have been made, even numerically in [3], and for some functions of
Euclidean distances in [4, 17, 18, 10]. However, they still remain very far from even
being partially understood.

In this paper, we mainly concentrate on information on signatures. More pre-
cisely, we focus on the numbers of positive and negative eigenvalues of random
squared distance matrices (d2(ξi, ξj))

m
i,j=1, as m → ∞. The methods in the above-

cited Gromov–Vershik result on distance matrices can be applied to our research on
squared distances at little cost: the joint distribution law of squared distance (or
any monotone function of a distance) matrices still determines (X, d, µ) uniquely
up to a measure-preserving isometry. However, working with d2 instead of d looks
much more natural precisely in terms of the relationship between the spectra of
the respective matrices and the properties of these metric measure spaces. For in-
stance, it follows from the Schoenberg theorem [1, theorem 3.1] that all matrices
(d2(xi, xj))

m
i,j=1 with xi ∈ X, m ∈ N are conditionally negative semidefinite (i.e.,

negative semidefinite on the hyperplane x1 + . . .+ xm = 0) if and only if (X, d) is
isometrically embeddable in a Hilbert space. In this case, when X is finite, an em-
bedding can be explicitly reconstructed using the multidimensional scaling (MDS)
algorithm well known in data science [16]. Thus, we prefer to state our results in
terms of the signatures of the matrices

S(Xm) := −1

2

(
d2(ξi, ξj)

)m
i,j=1

.

The purely “aesthetic” coefficient −1/2 here is only to reflect the fact that exactly
these matrices are involved directly in the MDS algorithm.

We will show that the random numbers s+(S(Xm)) of positive and s−(S(Xm))
of negative random eigenvalues of matrices S(Xm), almost surely converge to some
fixed numbers s+ and s− respectively, and provide several ways to compute them.
In particular, we show that under a rather mild condition on (X, d, µ), the numbers
s+ and s− count the numbers of positive and negative eigenvalues of the operator
K : L2(X,µ) → L2(X,µ) defined by the formula

(Ku)(x) := −1

2

�
X

d2(x, y)u(u) dµ(y).

Therefore, we write in this case s± = s±(K). This is true when µ has finite 4-th
order moment, i.e., �

X

d4(x0, y) dµ(y) < +∞

for some (and hence for all) x0 ∈ X, in particular, when (X, d) is bounded. Under
this condition, the spectra of S(Xm) converge almost surely as m → ∞ in many
reasonable senses to the spectrum of K [11]. The operator K is involved in the
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construction of MDS for general metric measure spaces (X, d, µ) as the limit of
MDS for finite samples from X when the number of samples grows. We will show
further that

(i) s+ and s− do not depend on µ if the latter has full support, i.e., suppµ = X;
(ii) The number s+ may be viewed as a natural lower bound for the dimension

of the MDS embedding of (X, d, µ). More generally, the couple of num-
bers (s−, s+) give the lower bounds for the signature of a pseudo-Euclidean
space in which (X, d) can be isometrically embedded (the respective em-
bedding can be constructed explicitly). These bounds are in fact almost
tight in the sense that (X, d, µ) cannot be isometrically embedded in a
pseudo-Euclidean space with signature (σ−, σ+) with σ± < s± − 1. As an
easy corollary, we get that every finite metric space can be isometrically
embedded in a pseudo-Euclidean one;

(iii) one has that s+ = +∞ when (X, d) is bounded, X is countable and d
is separated from zero, e.g., for countable graphs equipped with bounded
intrinsic distance. As a corollary, the embedding of (X, d, µ) produced by
MDS is not finite-dimensional.

We also

(iv) provide several examples of calculations of s± for particular metric spaces.
In many interesting cases of infinite metric spaces, we get s+ = s− = +∞.

(v) However, we provide examples of metric spaces with arbitrarily large finite
s−. It seems easier to provide examples when both s+ and s− are large.
This corresponds well to the observation of [6] about so-called hollow sym-
metric non-negative (HSN) matrices (symmetric matrices with nonnegative
entries and with zeros on the diagonal) that they “normally” have bigger
number of negative rather than positive eigenvalues (recall that squared
distance matrices are a particular case of HSN matrices).

(vi) Nevertheless, we are able to show a construction of a finite metric space
with s− as large as desired and s+ fixed (up to an error of at most 1).
In particular, this provides a construction of HSN matrices (even stronger,
squared distance matrices) with arbitrarily large number of positive eigen-
values which is alternative to a seemingly much heavier construction of [6].

(vii) We also provide some natural estimates on s±.

Finally,

(viii) in the quite natural example of the Rado–Erdős–Rényi graph (which is a
universal graph containing all the finite graphs as its proper subgraphs),
one has s+ = s− = ∞;

(ix) however, the limits of the ratios s+(S(Xm))/s−(S(Xm)) as m → ∞ may
depend on µ as illustrated by the example of the Rado–Erdős–Rényi graph.

2. Notation and preliminaries

2.1. Notation. The metric measure space (X, d, µ) is always assumed to be sepa-
rable with µ a Borel probability measure.

For a set D, we denote by 1D its characteristic function. If D is a subset of a
metric space, we let D̄ stand for its closure. For a compact linear operator K over
some normed space, we denote by s±(K) the numbers of its positive and negative
eigenvalues, respectively. In this paper, unless otherwise mentioned explicitly, the
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numbers of eigenvalues are always counted with multiplicity. We write suppµ for
the support of a measure µ.

For a Hilbert spaceH we denote by (·, ·) and ∥·∥ the respective scalar product and
the Hilbert norm. The same notation will stand for the (indefinite) scalar product
and the norm (sometimes called “interval” in physics ) in a pseudo-Euclidean space.
For a linear operator A between two Banach spaces, we denote by ImA its range,
by kerA its kernel (i.e. the zero space) and by A∗ its adjoint. If L is a subset of a
linear space, then spanL stands for its linear span.

By Lp(X,µ) we denote the usual Lebesgue space of integrable (with respect to
µ) with power p ≥ 1 (or µ-essentially bounded when p = +∞) functions on X, the
canonical norms in these spaces being denoted by ∥·∥p. Denote by 1⊥ the orthogonal
complement of constant function 1 in L2(X,µ), and by Pµ the orthogonal projector
from L2(X,µ) to 1⊥. Let

(Kµ)(x) := −1

2

�
X

d2(x, y)u(y)dµ(y)(2.1)

Tµ := (PµKµPµ)(u),(2.2)

be linear operators defined on L2(X,µ). We usually avoid the subscript µ and write
the above introduced operators as P,K, T instead of Pµ,Kµ, Tµ respectively, unless
we would like to emphasize their dependence on the measure µ.

If the 4-th moment of µ is infinite, then the domains of K and T are not all
of L2(X,µ). In the opposite case, both K and T are self-adjoint Hilbert-Schmidt
operators over the whole L2(X,µ). Throughout this paper, we call the operator
K and T the MDS defining operators associated with the metric measure space
(X, d, µ). The infinite MDS maps of (X, d, µ) are constructed from the positive
eigenvalues and their corresponding L2(X,µ)-normalized eigenfunctions of T . Note
that

(2.3)

(Tf)(x) =

�
X

kT (x, y)f(y) dµ(y), where

kT (x, y) := k(x, y)−
�
X

k(x, y′) dµ(y′)−
�
X

k(x′, y) dµ(x′)

+

�
X

�
X

k(x′, y′) dµ(x′) dµ(y′).

where for brevity we denoted k(x, y) := −d2(x, y)/2. In particular, (2.3) implies

(2.4) kT (x, x) + kT (y, y)− 2kT (x, y) = d2(x, y).

For the general metric measure space (X, d, µ) and XN := {xi}Ni=1 ⊂ X a finite

subset, we denote S(XN ) :=
(
− 1

2d
2(xi, xj)

)N
i,j=1

. Note that for a finite sequence of

i.i.d. random elements ξi of X, we write Xm := (ξi)
m
i=1 ⊂ X in lower-case index

for the finite random sequence and S(Xm) :=
(
− 1

2d
2(ξi, ξj)

)m
i,j=1

for the respective

random m×m matrix. It is important to note that Xm does not necessarily always
have exactly m elements because some of ξi may occasionally coincide. Therefore,
S(Xm) can be different from S(X̂N ), where X̂N is the set of distinct elements of
the sequence Xm.1

1In what follows we maintain the following notation: if Xm is a finite sequence with possibly

repeating elements, then X̂N will stand for the set of its elements, or, equivalently, the sequence
obtained from Xm by cancelling repetitions. However, if the sequence (random or deterministic)
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We denote by 1n the vector 1n := (1, . . . , 1)T ⊂ Rn and by Idn the identity n×n
matrix (the superscript T in this context stands for the transpose of matrices), and

Πn := Idn − 1n1
T
n

n ∈ Rn×n.

2.2. Spectral theory for matrices. In the sequel, we frequently use the Cauchy
interlacing theorem [13, theorem 17.17]. We state it here for convenience in the
form we need in the sequel.

Proposition 2.1 (Cauchy interlacing theorem). Let B be a real symmetric matrix
of order N . Let λ1 ≤ λ2 ≤ · · · ≤ λN be the eigenvalues of B counting multiplicity.
For any principal submatrix B′ of B of order N − 1, the eigenvalues λ′

1 ≤ λ′
2 ≤

· · · ≤ λ′
N−1 of B′ are interlacing such that

λi ≤ λ′
i ≤ λi+1 for all 1 ≤ i ≤ N − 1.

In particular, for any real δ, if the symmetric matrix B has a principal block ad-
mitting at least m eigenvalues greater (resp., less) than or equal to δ, so does the
matrix B.

3. Gromov–Vershik scheme

For a general metric measure space (X, d, µ), we refer to the experiment con-
sisting of choosing i.i.d. random points ξi ∼ µ for i = 1, . . . ,m, and calculat-
ing the random matrix S(Xm) where Xm is the finite random sequence of points
Xm := (ξi)

m
i=1 ⊂ X, as the Gromov–Vershik scheme. Namely, let (Ω,Σ,P) be a

probability space and ξi : Ω → X, i ∈ N, be i.i.d. random elements of X such that
law(ξi) = µ for all i ∈ N. We set then Xm(ω) := (ξi(ω))

m
i=1 for all ω ∈ Ω. Note

that Xm is not necessarily a random set, but rather a random finite sequence of
elements of X, some of which may be repeating. cancelling the repeating elements
of the latter, we obtain a random set X̂N (ω) ⊂ X with N = N(m,ω) := #Xm(ω).

We denote its elements by ξ̂1(ω), . . . , ξ̂N (ω), i.e., X̂N (ω) := {ξ̂i(ω)}Ni=1. We will

then say that the random set X̂N and the respective random matrix S(X̂N ) are
obtained by Gromov–Vershik scheme without repetitions.

The random matrix S(Xm) may be viewed as the m×m principal submatrix of

the infinite random matrix
(
− 1

2d
2(ξi, ξj)

)∞
i,j=1

. The distribution law of the latter

is clearly the measure ν := f#µ
∞ (which may be called matrix distribution follow-

ing [14, 15]) over the space of infinite matrices RN×N, where µ∞ is the countable
tensor product of µ, f : XN → RN×N is defined by

f((x1, x2, . . . , xk, . . .)) :=

(
−1

2
d2(xi, xj)

)∞

i,j=1

,

and f# stands for the usual pushforward of a measure by the map f .
We now reformulate the Gromov–Vershik theorem (“mm-reconstruction theo-

rem”, see [14] or alternatively [15]) which in its original version uses the random

distance matrix (d(ξi, ξj))
∞
i,j=1 instead of

(
− 1

2d
2(ξi, ξj)

)∞
i,j=1

.

Theorem 3.1. If (X, d) is Polish, then the measure ν determines (X, d, µ) uniquely
up to a measure-preserving isometry.

XN does not contain repetitions, i.e., can be viewed as a set, then we do not write X̂N in this
case.
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4. Limit distance signature of separable metric spaces

We introduce the following notion crucial for this paper.

Definition 4.1. Let (X, d) be a metric space. We call the limit distance signature
of (X, d) the couple (s−(X, d), s+(X, d)) with s±(X, d)) ∈ N ∪ {+∞} defined by

(4.1) s±(X, d) = sup{s±(S(XN )) : XN ⊂ X finite}.

In this section we prove the following result.

Theorem 4.2. Let (X, d) be a separable metric space. Then the following asser-
tions hold.

(i) If X is at most countable, then

s±(X, d) = lim
N

s±(S(XN )) = sup
N

s±(S(XN ))

for an arbitrary sequence of finite subsets XN ↗ X as N → ∞. In partic-
ular, if X is finite, then s±(X, d) = s±(S(X)).

(ii) If X is infinite, then s±(X, d) = s±(X̃, d), where X̃ ⊂ X is an arbitrary
countable dense subset of X endowed with the same distance d.

(iii) If µ is a Borel probability measure over X with full support, i.e., with
suppµ = X, then

s±(X, d) = lim
m

s±(S(Xm(ω))) = lim
m

s±(S(X̂N (ω))) a.s.,

where Xm are random finite sequences of i.i.d. points in X chosen according
to the Gromov–Vershik scheme and X̂N are the respective random finite sets
of points in X obtained by cancelling repeated elements in the sequence Xm,
i.e., according to the Gromov–Vershik scheme without repetitions.

(iv) If µ has the finite 4-th moment and full support in X, then

s±(Kµ) = s±(X, d),

where Kµ is the operator defined by (2.1), although the numbers s±(X, d)
do not depend on µ. Furthermore,

s±(Kµ)− 1 ≤ s±(Tµ) ≤ s±(Kµ),

and if 1 ̸⊥ kerKµ, then s±(Tµ) = s±(Kµ), where Tµ is the operator defined
by (2.2).

(v) s±(Tµ) also does not depend on µ once the latter has finite 4-th moment
and full support in X.

Remark 4.3. Note that s±(X, d) ≥ 1 unless X is a singleton (in which case clearly
s±(X, d) = 0 by (i)). In fact, for every finite XN ⊂ X one has s−(S(XN )) ≥ 1
since the Perron–Frobenius theorem guarantees the existence of a strictly negative
eigenvalue of maximum absolute value among the other eigenvalues. Moreover, the
trace of the above matrices is zero, so we have s+(S(XN )) ≥ 1.

Proof. Claim (i) is Proposition 4.4. Claim (ii) is in fact the definition of limit dis-
tance signature, the correctness of which is Proposition 4.6. Claim (iii) is Propo-
sition 4.7. Claim (iv) follows from Proposition 4.11 and Proposition 4.14. Finally,
Claim (v) is part of Proposition4.15. □

The subsections below are dedicated to the detailed proof of the above Theo-
rem 4.2.
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4.1. Deterministic characterization of limit distance signatures. The fol-
lowing purely deterministic statement is valid.

Proposition 4.4. Let (X, d) be an at most countable metric space. Then for all
sequences of finite subsets XN ⊂ X such that XN ↗ X as N → ∞, the limits
always satisfy

s±(X, d) = lim
N

s±(S(XN )).

In particular, the above limits are independent of the sequence (XN )N .

Proof. By the Cauchy interlacing theorem, the sequences
(
s±(S(XN ))

)
N

are non-
decreasing and hence admit a finite or infinite limit. Moreover, by the definition of
s±(X, d), we have s±(X, d) ≥ s±(S(XN )) for every N , and hence

s±(X, d) ≥ lim
N

s±(S(XN )).

To show the other side of the inequality, note for any finite subset X ′ ⊂ X, there
is an M ∈ N such that X ′ ⊂ XM . Thus, by the Cauchy interlacing theorem,
s±(S(X

′)) ≤ s±(S(XM )). Since X ′ is arbitrary, we also have the reverse inequality

s±(X, d) ≤ s±(S(XM )) ≤ sup
N

s±(S(XN )) = lim
N

s±(S(XN )),

concluding the proof. □

We now consider the limit distance signature of a general separable metric spaces.

Proposition 4.5. Let (X, dX) be isometrically embeddable in (Y, dY ), both metric
spaces being separable. Then

s±(X, dX) ≤ s±(Y, dY ).

Proof. By embedding X isometrically into Y we may assume without loss of gen-
erality that X is a subset of Y . The assertion is then straightforward from the
definition of s±. □

Proposition 4.6. Let (X, d) be a separable metric space. Then

s±(X, d) = s±(X̃, d),

where X̃ ⊂ X is an arbitrary countable dense subset of X.

Proof. Consider an arbitrary finite set XN ⊂ X. Since X̃ is dense in X, we can
find a finite X̃N ⊂ X̃ close enough to XN so that s±(S(XN )) ≤ s±(S(X̃N )).

This implies s±(X, d) ≤ s±(X̃, d) and the reverse inequality follows immediately
from the definition of s±(X, d) (alternatively, from Proposition 4.5) concluding the
proof. □

4.2. Random characterization of limit distance signature. Consider now

• the random finite sequencesXm and the respective random matrices S(Xm)
obtained by the Gromov–Vershik scheme,

• as well as the random finite sets X̂N ⊂ X with N ≤ m random which is
obtained from Xm by cancelling repeating elements, and respective random
matrices S(X̂N ) (in other words, the random set X̂N and the matrix S(X̂N )
obtained by Gromov–Vershik scheme without repetitions).

The following assertion is valid.
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Proposition 4.7. Let (X, d) be a separable metric space. If µ has full support, one
has

s±(X, d) = lim
m

s±(S(X̂N(m,ω)(ω))) = lim
m

s±(S(Xm(ω)))

for P-a.e. ω ∈ Ω.

Proof. Since by Lemma 4.8, one has⋃
m

X̂N(m,ω)(ω) = suppµ = X

for P-a.e. ω ∈ Ω, i.e.,
⋃

m X̂N is a countable dense set in X almost surely. Therefore,
we have

s±(X, d) = lim
m

s±(S(X̂N(m,ω)(ω)))

P-a.s. in view of Proposition 4.6. By Lemma 4.9 below, we also get

s±(S(Xm(ω))) = s±(S(X̂N(m,ω)(ω)))

for all ω ∈ Ω, concluding the proof. □

The following lemma has been used in the proof of the above Proposition 4.7.

Lemma 4.8. Let (X, d) be a separable metric space, and µ be a Borel probability
measure over X. Then ⋃

m

X̂N(m,ω)(ω) = suppµ

for P-a.e. ω ∈ Ω, i.e.,
⋃

m X̂N is a countable dense set in suppµ. In particular, if
suppµ is infinite, then limm N(m,ω) = +∞ for P-a.e. ω ∈ Ω and if additionally

suppµ is countable, then also X̂N ↗ suppµ a.s. as m → ∞.

Proof. To prove the first claim, consider an arbitrary open set U ⊂ X satisfying

U
⋂⋃

m

X̂N(m,ω)(ω) = ∅,

hence ξi(ω) ∈ X \ U for all i ∈ N. The probability of this event does not exceed
µ(X \ U)n for all n ∈ N and hence is zero unless µ(U) = 0, i.e. U ∩ suppµ = ∅,
showing that

suppµ ⊂
⋃
m

X̂N(m,ω)(ω) = ∅.

On the other hand, P({ξi ∈ suppµ}) = µ(suppµ) = 1, and hence

suppµ ⊃
⋃
m

X̂N(m,ω)(ω)

a.s., showing the claim.
To prove the second claim, denote for every k ∈ N the set

Ωk := {ω ∈ Ω : lim
m

N(m,ω) ≤ k}

Observe that for all ω ∈ Ωk, one has

#
⋃
m

X̂N(m,ω)(ω) ≤ k.
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Hence,
⋃

m X̂N(m,ω)(ω) ̸= suppµ when suppµ is infinite. The first claim just proven
implies P(Ωk) = 0 in this case. Thus,

P
({

lim
m

N(m,ω) < +∞
})

= P
(
Ω \

⋃
k

Ωk

)
= 1

as claimed. □

Lemma 4.9. Let the symmetric matrix Ŝ ∈ Rp×p be obtained from the symmetric
matrix S ∈ Rq×q cancelling all the repeating rows and all the repeating columns.
Then s±(S) = s±(Ŝ).

Proof. For each k and j, interchanging the k-th with j-th row and the k-th with
j-th column simultaneously does not change the signature of a matrix, so the proof
reduces just to an inductive application of Lemma 4.10 below. □

Lemma 4.10. Let the symmetric matrix S ∈ R(p+1)×(p+1) be of the block form

S =

[
Ŝ v
vt a

]
,

where Ŝ ∈ Rp×p is a symmetric matrix, v ∈ Rp and a ∈ R be such that the p-th and
(p + 1)-th row as well as the p-th and (p + 1)-th column of S are identical. Then

s±(S) = s±(Ŝ).

Proof. Clearly, we have (e.g., by the Cauchy interlace theorem) that s±(S) ≥ s±(Ŝ).
On the other hand, since the p-th and (p+1)-th row as well as the p-th and (p+1)-th

column of S are identical, we have that s0(S) = s0(Ŝ) + 1, where s0(S) stands for
the number of zero eigenvalues of S (i.e. the dimension of the kernel of the latter).
Since also

s−(S) + s0(S) + s+(S) = p+ 1, s−(Ŝ) + s0(Ŝ) + s+(Ŝ) = p,

we get

s−(S) + s0(S) + s+(S) = (s−(Ŝ) + s0(Ŝ) + s+(Ŝ)) + 1 =

= s−(Ŝ) + s0(S) + s+(Ŝ),

which implies s−(S) + s+(S) = s−(Ŝ) + s+(Ŝ), hence the claim. □

4.3. Limit distance signature of the space and signatures of MDS defining
operators. The following result relates the limit distance signature of (X, d, µ) to
the numbers of negative and positive eigenvalues of any MDS defining operator.

Proposition 4.11. Let (X, d) be a separable metric space. If µ has finite 4-th
moment and full support in X, one has

s±(Kµ) = s±(X, d),

where Kµ is defined by (2.1).

Remark 4.12. When µ has finite 4-th moment but does not have full support in X,
we only can assert that

(4.2) s±(Kµ) ≤ s±(X, d).

In fact, by the above Proposition 4.11 one has

s±(Kµ) = s±(suppµ, d),
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and s±(suppµ, d) ≤ s±(X, d) by Proposition 4.5. The inequality in (4.2) can be
sharp as easily seen from the example, say, ofX just a Euclidean plane (i.e.,X = R2

equipped with the Euclidean distance), so that s+(X, d) = 2. and µ having a line
as a support, so that s+(Kµ) = s+(suppµ, d) = s+(R, d) = 1, see Example 5.5.

Proof. Without loss of generality, we may assume (X, d) to be complete (if not, we
may extend d and µ to the completion of (X, d) and work in the latter completion).
Then by the estimate (A.4) from Lemma A.3(ii) (applied with A := Kµ, a :=
−d2/2), one has for some sequence of finite subsets XN ⊂ X, the following chain
of inequalities

(4.3) s+(Kµ) ≤ lim inf
N

s+(S(XN )) ≤ s+(X, d).

On the other hand,

s+(Kµ) ≥ s+(S(XN ))

for every finite XN ⊂ X by estimate (A.2) in Lemma A.3(i), applied with A := Kµ,
a := −d2/2. Hence

s+(Kµ) ≥ s+(X, d).

This inequality together with (4.3) gives the claim

s+(Kµ) = s+(X, d).

The analogous claim for s− is completely symmetric. □

Remark 4.13. An alternative proof of (4.3) may be obtained by observing that for
P-a.e. ω ∈ Ω, one has

(4.4) lim
m

inf

{∣∣∣∣π(σ( 1

m
S(Xm(ω))

))
− σ(Kµ)

∣∣∣∣ : π ∈ S∞

}
= 0

using theorem 3.1 from [11]. Here σ(Kµ) stands for the spectrum ofKµ, σ(
1
mS(Xm))

stands for the spectrum of the random matrix 1
mS(Xm), both being considered as

elements of the space ℓ2 of square summable sequences; and S∞ stands for the set
of all possibly infinite permutations of a countable set. This provides

lim
m

s±

(
1

m
S(Xm(ω))

)
≥ s±(Kµ)

for P-a.e. ω ∈ Ω. Hence (4.3) holds because

s± (S(Xm(ω))) = s±

(
1

m
S(Xm(ω))

)
for all ω ∈ Ω and

lim
m

s± (S(Xm(ω))) = s±(X, d)

for P-a.e. ω ∈ Ω by Proposition 4.7. The nice feature of this argument is that it
requires neither the completion of the space nor the use of continuity of the operator
kernel.

The following result on the relationship between the signatures of the operators
Kµ and Tµ is also worth being mentioned.
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Proposition 4.14. Let (X, d, µ) be a metric measure space with a Borel probability
measure µ having finite 4-th moment and full support in X, and the operators
K = Kµ and T = Tµ are defined by (2.1) and (2.2), respectively. Then

(4.5) s±(K)− 1 ≤ s±(T ) ≤ s±(K).

Moreover, if 1 ̸⊥ kerK, then s±(T ) = s±(K).

Proof. The estimates (4.5) are just Lemma A.4(i) and (ii) applied with A := K,
Q := P , and B := T , H1 = H2 := L2(X,µ), k = 1. Lemma A.4(iii) with the same
notations implies also the last claim since (ImP )⊥ = 1⊥ and 1 /∈ kerK (otherwise
µ is a Dirac delta measure, T = K = 0, and kerK = {0}, a contradiction), and
hence 1 ̸⊥ kerK implies (ImP )⊥ ∩ (kerK)⊥ = {0}. □

Note that if 1 is an eigenfunction ofK with a nonzero eigenvalue, then 1 ⊥ kerK.
Finally, we provide the following characterization of s±(Tµ), similar to Proposi-

tion 4.11 for s±(Kµ).

Proposition 4.15. Let (X, d) be a separable metric space. If µ has finite 4-th
moment and full support in X, then one has

(4.6) s±(Tµ) = sup{s±(ΠNS(XN )ΠN ) : XN ⊂ X finite,#XN = N},
where Tµ is defined by (2.2). In particular, s±(Tµ) are the same for all µ with finite
4-th moment and full support in X.

Proof. It suffices to replicate word-to-word the proof of Proposition 4.11 replacing
the use of the estimate (A.2) by (A.3) and (A.4) by (A.5). □

5. The role of s+ and s−

5.1. Embedding in a Hilbert space. We feel almost obliged to mention first
the following theorem on existence of an isometric embedding into a Hilbert space,
which is essentially just a reformulation of the classical Schoenberg theorem [1,
theorem 3.1].

Proposition 5.1. The following statements for a separable metric space (X, d) are
equivalent.

(i) The space (X, d) is isometrically embeddable in a Hilbert space.
(ii) For some Borel probability measure µ on X with full support and finite 4-th

moment, one has s−(Tµ) = 0, i.e., Tµ is positive semidefinite.
(iii) For every Borel probability measure µ on X, one has s−(Tµ) = 0.

In case (ii), for an isometric embedding of X in ℓ2, we may take the map f : X → ℓ2

defined by

(5.1) f(x) :=
(√

λiui(x)
)
i
,

where λi ∈ R be strictly positive eigenvalues (counting multiplicities) and ui ∈
L2(X,µ) the respective eigenfunctions of the operator Tµ : L

2(X,µ) → L2(X,µ)
(defined by (2.2)) normalized so that ∥ui∥2 = 1 for all i.

In all these cases, one necessarily has s−(X, d) = 1.

Proof. If (i) holds, we identify X with the image of the respective isometric em-
bedding and µ with its push-forward through this embedding. We may assume
thus without loss of generality that X ⊂ H, for some Hilbert space H, and µ be a
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measure in H. Then every finite set XN ⊂ X is isometrically embedded in a finite-
dimensional Euclidean space (the subspace spanXN ⊂ H). By Theorem 5.62, for
the operator TN := TµN

with µN an arbitrary Borel probability measure supported
on XN , we have s−(TN ) = 0. Thus, by Lemma A.3(ii) with A := Kµ and H instead
of X, we have

s−(Tµ) ≤ lim inf s−(TN ) = 0,

thus proving (i)⇒(iii).
The implication (iii)⇒(ii) is trivial. We prove (ii)⇒(i). To this aim, let µ be as

in (ii) and let T := Tµ. Observe that by Lemma A.2 (with A := T , a := kT ), one
has

(5.2)
∑
i

λiui(x)ui(y) = kT (x, y),

with the equality formally valid only in the sense of L2(X ×X,µ ⊗ µ). But since
T is positive definite, by Mercer’s theorem, the convergence in (5.2) is uniform so
that this equation holds for all (x, y) ∈ X ×X. We act now exactly as in the proof
of the first part of Theorem 5.6. Namely, from (5.2), we get

(5.3)
∑
i

λiu
2
i (x) = kT (x, x)

for all x ∈ X. Now, (5.3) and (5.2) imply∑
i

λi (ui(x)− ui(y))
2
=
∑
i

λiu
2
i (x) +

∑
i

λiu
2
i (y)− 2

∑
i

λiui(x)ui(y)

= kT (x, x) + kT (y, y)− 2kT (x, y),

which in view of (2.4) gives

(5.4)

∑
i

λi (ui(x)− ui(y))
2
= d2(x, y)

for all (x, y) ∈ X × X. The latter implies for the map f defined by (5.1) the
relationship holds

∥f(x)− f(y)∥2ℓ2 =
∑
i

λi (ui(x)− ui(y))
2
= d2(x, y),

i.e., f is an isometry onto the image, proving (i).
The final claim of the statement follows from the estimate s−(X, d) ≥ 1 valid for

every metric space, and from Theorem 4.2(iv) which implies the estimates

s−(X, d) = s−(Kµ) ≤ s−(Tµ) + 1 = 1

for every µ Borel probability measure with full support and finite 4-th moment in
X. This completes the proof. □

Remark 5.2. When the metric spaces (X, d) is isometrically embeddable in a Hilbert
space, then s−(X, d) = 1, but the converse is false. There exist even finite metric
spaces (X, d) not embeddable isometrically in a Hilbert space, which still satisfy
s−(X, d) = 1, as the following example shows.

2We may hare referred here to the celebrated Schoenberg’s theorem. We use a more general
Theorem 5.6 instead to be self-consistent
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Example 5.3. Let X := {1, 2, 3, 4} with d(i, j) := 2 unless either i = j, in which case
d(i, i) = 0 or either i = 1, 2, 3 and j = 4, or, symmetrically, j = 1, 2, 3 and i = 4. In
the latter cases d(1, 4) = d(2, 4) = d(3, 4) = 1. Note that the points 1, 2, 3 embed
isometrically in the Euclidean plane R2 as vertices of some equilateral triangle of
sidelength a = 2. However, the points 1, 2, 3, 4 cannot embed isometrically in R3

(hence in any Hilbert space) since 4 should be otherwise the midpoint of each of
the segments [ij], i, j = 1, . . . , 3. Nevertheless, s−(X, d) = 1 and s+(X, d) = 3.

The following easy example shows the metric space isometrically embeddable in
an infinite-dimensional Hilbert space.

Example 5.4. Let X := N, with d(i, j) := 1 when i ̸= j (and, of course, d(i, i) = 0).
Then S(XN ) for every N -element subset XN ⊂ X has an eigenvalue 1/2 with
multiplicity N − 1 and one eigenvalue −(N − 1)/2. Then s+(S(XN )) = N − 1 and
s−(S(XN )) = 1 implies s+(X) = +∞ and s−(X) = 1. Note that this space can
be easily isometrically embedded in a Hilbert space (e.g., in the space ℓ2 of square

summable sequences, via the map k 7→ ek/
√
2, ek standing for the k-th coordinate

vector).

Example 5.5. Let Rn stand for the usual Euclidean n-dimensional space. Then
s−(Rn) = 1, and s+(Rn) = n, and hence for a metric space (X, d) to be isometrically
embeddable in Rn, it is necessary and sufficient that s−(T ) = 0 and s+(X, d) ≤ n
(clearly, in this case s+(X, d) = n unless (X, d) can be isometrically embedded in
some Rm with m < n).

5.2. Embedding in pseudo-Euclidean spaces. The pseudo-Euclidean space
Rn,p with signature (n, p) is the linear space of vectors Rn+p equipped with the
bilinear form

(u, v) := −
n∑

i=1

uivi +

n+p∑
j=n+1

ujvj .

The latter defines a pseudo-distance dn,p(u, v) :=
√
(u− v, u− v) on every set

Σ ⊂ Rn,p such that the Minkowski difference Σ − Σ := {u − v : u ∈ Σ, v ∈ Σ}
belongs to the positive cone

Cn,p :=

v ∈ Rn,p : (v, v) := −
n∑

i=1

v2i +

n+p∑
j=n+1

v2j ≥ 0

 .

The following statement is valid.

Theorem 5.6. Let µ be a Borel probability measure with full support and finite 4-th
moment in the metric space (X, d). Suppose that s−(Tµ) = n ∈ N and s+(Tµ) = p ∈
N. Let λi ∈ R be nonzero eigenvalues (counting multiplicities) and ui ∈ L2(X,µ)
be the respective eigenfunctions of the operator Tµ : L

2(X,µ) → L2(X,µ) (defined
by (2.2)), normalized so that ∥ui∥2 = 1, i = 1, . . . , n+p. Without loss of generality,
assume λi < 0 for i = 1, . . . n and λi > 0 for i = n + 1, . . . n + p. Then the map
f : X → Rn,p defined by

f(x) :=

n+p∑
i=1

√
|λi|ui(x),

is an isometry onto the image such that its image Σ := f(X) satisfies Σ−Σ ⊂ Cn,p.
In particular, every finite metric space can be isometrically embedded into some
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pseudo-Euclidean space with the image Σ such that Σ − Σ belongs to the positive
cone.

Vice versa, if µ is a Borel probability measure with finite 4-th moment (not
necessarily of full support in X) and there is an f : X → Rn,p isometry onto the
image such that Σ := f(X) satisfies Σ−Σ ⊂ Cn,p, then s−(Tµ) ≤ n and s+(Tµ) ≤ p.

Proof. By Lemma A.2 (with A := T , a := kT ), one has

(5.5)

ν∑
i=1

λiui(x)ui(y) = kT (x, y),

where ν := n + p, with the equality in (5.5) formally valid only in the sense of
L2(X×X,µ⊗µ). Since the functions on both sides of this equality are continuous,
then (5.5) is also valid pointwise, i.e., for all (x, y) ∈ X ×X. In particular, we also
get

(5.6)

ν∑
i=1

λiu
2
i (x) = kT (x, x)

for all x ∈ X.
From (5.6) and (5.5), we get

ν∑
i=1

λi (ui(x)− ui(y))
2
=

ν∑
i=1

λiu
2
i (x) +

ν∑
i=1

λiu
2
i (y)− 2

ν∑
i=1

λiui(x)ui(y)

= kT (x, x) + kT (y, y)− 2kT (x, y)

for all (x, y). The identity (2.4) gives then

(5.7)

ν∑
i=1

λi (ui(x)− ui(y))
2
= d2(x, y)

for all (x, y). We observe now that one can view f as a map between X and Rn,p

with (5.7) reading as

dn,p(f(x), f(y))
2 = −

n∑
i=1

|λi| (ui(x)− ui(y))
2
+

n+p∑
j=n+1

|λj | (uj(x)− uj(y))
2

=

ν∑
i=1

λi (ui(x)− ui(y))
2
= d2(x, y).

Hence, f is an isometry onto the image Σ := f(X) with Σ− Σ ⊂ Cn,p, concluding
the proof of the first part.

For the converse statement, we consider XN = {xi}Ni=1 ⊂ suppµ. Identifying
XN with f(XN ), we may assume that XN ⊂ Rn,p with XN − XN ⊂ Cn,p. Then
TN := ΠNS(XN )ΠN is the matrix

Tij = (x̄i, x̄j)n,p, where x̄i := xi − x̄, x̄ :=
1

N

N∑
i=1

xi.

Thus, one can view TN as the difference between two matrices, TN = T+ − T−,
where

(T−)ij = (P−
n x̄i) · (P−

n x̄j), (T+)ij = (P+
p x̄i) · (P+

p x̄j),
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P−
n (resp. P+

p ) standing for the projections from Rn+p to Rn identified with the

subspace of Rn+p with all coordinates zero except the first n ones (resp. to Rp

identified with the subspace of Rn+p with all coordinates zero except the last p
ones). Also, u · v stands for the usual dot product between two vectors in Rn+p.
Both T− and T+ are clearly positive semidefinite with s+(T−) ≤ n, s+(T+) ≤ p,
and s−(T−) = s−(T+) = 0. From Lemma A.1(i), we get that

s+(TN ) ≤ s+(T+) + s+(−T−) = s+(T+) + s−(T−) ≤ p.

A completely symmetric reasoning yields s−(TN ) ≤ n. Then Proposition 4.15
applied to the space (suppµ, d) yields the desired claim

s+(Tµ) ≤ p, s−(Tµ) ≤ n,

since L2(X,µ) is isomorphic to L2(suppµ, µ). □

Note that not every subset Σ of a pseudo-Euclidean space Rn,p is an image of an
isometric embedding of a metric space. In particular, the condition Σ − Σ ∈ Cn,p

is a strong restriction, see the example below.

Example 5.7. If n = 1, and Σ ⊂ Rn,p satisfies Σ−Σ ⊂ Cn,p, then the intersection of
Σ with every line parallel to x1 axis must be either empty or a singleton. In other
words, Σ belongs to a hypersurface which, if seen in Rn+p = Rp+1, is a graph G of
some function: x1 = g(x2, . . . , xp+1). Clearly, g : Rp → R is a 1-Lipschitz function,
since G− x ⊂ Cn,p for every x ∈ G.

5.3. On feasible signatures. The following result shows that for a generic finite
metric space there exists an arbitrarily small perturbation of the distance which
preserves s+ and makes s− maximum possible.

Proposition 5.8. Let (X, d) be a finite metric space with X = {x1, . . . , xN} such
that the triangle inequality is strict for any distinct triplet from X. Consider the
matrix T := ΠNS(X)ΠN . Then for any sufficiently small ε > 0, there is a distance
dε over X such that

max
i,j

|d(xi, xj)− dε(xi, xj)| ≤ ε

and the corresponding matrix Tε has signature

s+(Tε) = s+(T ), s−(Tε) = N − 1− s+(T ).

Proof. Fix linearly independent vectors v1, . . . , vN ∈ RN . For any ε > 0 define

gε(xi, xj) = d2(xi, xj)− ε∥vi − vj∥2.

Note gε → d2 uniformly as ε → 0+. For sufficiently ε > 0, we have dε :=
√
gε ≥ 0.

Moreover, since for any distinct i, j, k, the strict triangle inequality

d(xi, xj) < d(xi, xk) + d(xk, xj)

holds, then for all sufficiently small ε, one has the triangle inequality

dε(xi, xj) ≤ dε(xi, xk) + dε(xk, xj).

Thus, dε is a distance over X for small ε > 0. We set then Xε := (X, dε)).
Now, it is easy to see that the matrix corresponding to (X, dε) has the form

Tε := ΠNS(Xε)ΠN = T − εG,
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where G :=
(
(vi − v̄, vj − v̄)

)N
i,j=1

with v̄ := 1
N

∑N
i=1 vi. In particular, G is a Gram

matrix with s+(G) = N − 1, s−(G) = 0, thus due to Lemma A.1(i) one has

s+(Tε) ≤ s+(T ) + s+(−εG) = s+(T ),

s−(Tε) ≥ s−(−εG)− s−(−T ) = N − 1− s+(T ).

Moreover, for small enough ε, one has s+(Tε) = s+(T ) by Lemma A.1(ii). Since
kerT is non-trivial, we have s−(Tε) ≤ N − 1− s+(Tε) = N − 1− s+(T ). Thus, we
get the equality for s−(Tε). The claim follows. □

Corollary 5.9. For any p ≥ 2 and n ≥ 1, there is an (n+p+1)-point metric space
(X, d) such that the corresponding matrix T has signature s+(T ) = p, s−(T ) = n.

Proof. It is enough to apply the above Proposition 5.8 to N := n + p + 1 distinct
points in a general position (i.e. spanning Rp) on the unit sphere in Rp, endowed
with the Euclidean distance. □

Remark 5.10. Under the conditions of the above Corollary 5.9, one clearly has
s+(X, d) ∈ {p, p + 1}, s−(X, d) ∈ {n, n + 1} in view of Theorem 4.2(iv). Thus,
in particular, this corollary gives a construction of hollow symmetric nonnegative
(HSN) matrices (in this particular case even stronger, squared distance matrices)
with arbitrarily large number of positive eigenvalues. This provides an alternative
proof to the main theorem of [6] (the latter seems to be much more complicated
and gives just HSN matrices, not necessarily related to any distances).

We are also able to provide the following example of an infinite metric space
(X, d) with s−(X, d) = +∞ and s+(X, d) finite (arbitrary up to the error of 1).

Example 5.11. Let p ∈ N be fixed. In the following construction we assume the
pseudo-Euclidean spaces Rn,p with different n ∈ N to be hierarchically embedded
one into another, in such a way that a vector x ∈ Rn,p is identified with the vector
y ∈ Rm,p, m > n, defined by

yi := xi, i = 1, . . . , n,

yi := 0, i = n+ 1, . . . ,m,

ym+j := xn+j , j = 1, . . . , p.

This gives a natural embedding of Rn,p into Rm,p. In the same way, we identify
Rn (resp. Rp) with the subspace of Rn,p with last p coordinates (resp. first n co-
ordinates) zero. As in the proof of Theorem 5.6, we denote by P−

n (resp. P+
p ) the

projections from Rn+p to Rn (resp. Rp), both identified with subspaces of Rn+p,
defined by (P−

n z)i := zi, and (P−
n z)j := 0 (resp. (P+

p z)i := 0, (P+
p z)j := zj), where

i = 1, . . . , n, j = n+ 1, . . . , n+ p).
We are going to construct inductively a sequence of increasing sets

XN = {z1, . . . , zN} ⊂ RN−1,p, N ≥ p+ 1,

with special properties. For brevity, we denote

SN := S(XN ), TN := ΠNSNΠN .
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As in the proof of Theorem 5.6, one has

TN = T+
N − T−

N , where

(T−
N )ij := (P−

N−1z̄
i) · (P−

N−1z̄
j),

(T+
N )ij := (P+

p z̄i) · (P+
p z̄j), i, j = 1, . . . N,

z̄i := zi − 1

N

N∑
j=1

zj ,

where the dot product is the Euclidean one. Clearly, T±
N are both positive semidef-

inite. We will construct (XN )∞N=p+1 in such a way that

(i) both P−
N−1XN and P+

p XN are sets of points in a general position in RN−1

and Rp respectively (i.e. not contained in any hyperplane in these spaces),
(ii) dN−1,p is a distance over XN and for every triple of distinct points in XN ,

the triangle inequality for dN−1,p is strict,
(iii) P+

p XN ⊂ S, where S is the unit sphere in Rp,

(iv) u · P+
p (zk − z1) < dN−1,p(z

k, z1)|u| for all k = 2, . . . , N and non-zero u ∈
Ty1(S), where Ty1(S) is the tangent space to S at point y1 := P+

p z1, and
| · | stands for the Euclidean norm in Rp.

In view of (i) we will have then

s+(T
−
N ) = N − 1, s+(T

+
N ) = p, s−(T

−
N ) = s−(T

+
N ) = 0.

Thus from TN = T+
N − T−

N with the help of Lemma A.1(i) we get

(5.8)
s−(TN ) ≥ s−(−T−

N )− s−(−T+
N )

= s+(T
−
N )− s+(T

+
N ) = N − p− 1,

as well as s+(TN ) ≤ s+(T
+
N ) + s−(T

−
N ) = p.

We start with N := p+ 1: take p+ 1 points {y1, . . . , yp+1} in a general position
on the unit sphere S ⊂ Rp. Now, let {x1, . . . , xp+1} ⊂ Rp be in a general position
and with the norms |xk|, k = 1, . . . , p + 1, so small that for dp,p satisfies strict
triangle inequalities over the set

Xp+1 := {z1, . . . , zp+1}, zk := (xk, yk) ∈ Rp,p,

the property (iv) holds for N := p + 1 and s+(Tp+1) = s+(T
+
p+1) = p (where the

last equality is due to Example 5.5). Then, in particular,

(5.9) s+(S(Xp+1)) = p

in view of Theorem 4.2(iv) and the fact that s−(S(Xp+1)) ≥ 1. The possibility to
satisfy (iv) follows from the strict convexity of the unit ball in Rp which implies

u · (yk − y1) < |yk − y1| · |u|

for all k ̸= 1 and nonzero u ∈ Ty1(S), and

dp,p(z
k, z1) → |yk − y1| as xk → 0, x1 → 0.

Once XN = {z1, . . . , zN} ⊂ RN−1,p is constructed, we denote

yk := P+
p zk ∈ S, xk := P−

N−1z
k.
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We will choose zN+1 = (xN+1, yN+1) such that yN+1 ∈ S and xN+1 ∈ RN has the
form

(xN+1)i := (x1)i, i = 1, . . . , N − 1,

(xN+1)N := εN ,

where εN > 0. First, note that

dist

(
y − y1

|y − y1|
, Ty1(S)

)
→ 0 as y → y1,

where dist stands for the distance in Rp between a point and a set. Then, due
to (iv), one can choose yN+1 close enough to y1, so that for an auxiliary point
z̃N+1 := (x1, yN+1) one has

(z̃N+1 − z1, z1 − zk)N,p = (yN+1 − y1) · (y1 − yk)

< dN,p(z
k, z1)|yN+1 − y1|,

(z1 − z̃N+1, z̃N+1 − zk)N,p = (y1 − yN+1) · (yN+1 − yk)

< dN,p(z
k, z̃N+1)|yN+1 − y1|,

and

|yN+1 − y1| < dN,p(z
1, zk),

hence

dN,p(z̃
N+1, z1) = |yN+1 − y1| < dN,p(z

1, zk) + dN,p(z
k, z̃N+1),

for all k = 2, . . . , N , with a · b standing for the Euclidean dot product in Rp. Thus,
by Lemma A.5,

dN,p(z̃
N+1, zk) < dN,p(z̃

N+1, z1) + dN,p(z
1, zk),

dN,p(z̃
1, zk) < dN,p(z

1, z̃N+1) + dN,p(z̃
N+1, zk).

for all k = 2, . . . , N , and hence dN,p satisfies the strict triangle inequality on the set
XN ∪ {z̃N+1}. Now, we can choose εN small enough, such that dN,p is a distance
over XN+1 := XN ∪ {zN+1} satisfying the strict triangle inequality, and

u · (yN+1 − y1) < dN,p(z
N+1, z1)|u|

for all nonzero u ∈ Ty1
S. The latter follows from the fact that

u · (yN+1 − y1) < |yN+1 − y1| · |u|

due to the strict convexity of the unit ball in Rp, and

dN,p(z
N+1, z1) =

√
|yN+1 − y1|2 − ε2N → |yN+1 − y1| as εN → 0.

Therefore, XN+1 satisfies (i)-(iv).
To conclude, let X :=

⋃∞
N=p+1 XN , and equip this set with the distance coin-

ciding with dN,p over each XN . Then

s±(X, d) = lim
n

s±(SN ).

by Theorem 4.2(i). Clearly, in view of Theorem 4.2(iv) and (5.8), one has

s−(SN ) ≥ N − p− 1,
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and hence s−(X, d) = +∞. On the other hand, by Theorem 5.6 combined with
Theorem 4.2(iv), we get s+(X, d) ≤ p + 1. Finally, s+(X, d) ≥ s+(S(Xp+1)) = p
by (5.9), thus

s+(X, d) ∈ {p, p+ 1} and s−(X, d) = +∞,

concluding the example.

The following example shows another construction of an infinite metric space
(X, d) with s+(X, d) = +∞ and s−(X, d) finite but different from 1.

Example 5.12. Let X := N, and define the distance

d(i, j) :=


1, i < 4, j = 4 or i = 4, j < 4,

0, i = j,

2, otherwise.

Note that the points 1, 2, 3, 4 form the same tripod from Example 5.3, which cannot
be embedded in any Hilbert space. The subset XN := {1, . . . , N} has the N × N
squared distance matrix

BN :=



0 4 4 1 4 . . . 4
4 0 4 1 4 . . . 4
4 4 0 1 4 . . . 4
1 1 1 0 4 . . . 4
4 4 4 4 0 . . . 4
. . . . . . . . . . . . . . . . . . . . .
4 4 4 4 4 . . . 0


and by the Haynsworth inertia additivity formula [9, theorem 1] its signature sat-
isfies

(s−, s0, s+)(BN ) = (s−, s0, s+)(B4) + (s−, s0, s+)(BN/B4),

where BN/B4 stands for the Schur complement of B4 in BN . The explicit calcula-
tion shows (s−, s0, s+)(B4) = (3, 0, 1) and

BN/B4 :=
4

3


8 11 11 11 . . . 11
11 8 11 11 . . . 11
11 11 8 11 . . . 11
. . . . . . . . . . . . . . . . . .
11 11 11 11 . . . 8

 .

For N := 4 + k the latter k × k matrix has one eigenvalue −4 of multiplicity k − 1
and one strictly positive simple eigenvalue (the Perron–Frobenius one), that is,
(s−, s0, s+)(B4+k/B4) = (k − 1, 0, 1). Thus, (s−, s0, s+)(B4+k) = (k + 2, 0, 2) for
k ≥ 1, and therefore, s−(X, d) = 2 and s+(X, d) = +∞.

Now, we extend the previous Example 5.12 to show that s− can be arbitrarily
large.

Example 5.13. Let (Xi, di), i = 1, . . . ,m, be a finite metric space with the squared
distance matrix Di := (d2i (xj , xk))j,k. Assume diam(Xi) ≤ 2h for some h > 0.

Denote for the sake of brevity Ni := #Xi, Si := S(Xi) and

Ri :=
h2

2
1Ni

1T
Ni

+ Si =
1

2
(h21Ni

1T
Ni

−Di).
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Now we define a metric space (X, d) with X :=
⊔m

i=1 Xi and

d(x, y) :=

{
di(x, y), x, y ∈ Xi,

h, x ̸= y otherwise.

The respective squared distance matrix is given by

D :=


D1 h2 . . . h2

h2 D2 . . . h2

...
...

. . .
...

h2 h2 . . . Dm

 .

Let also

S := S(X) = − 1
2D,

R := h2

2 1N1T
N + S = 1

2 (h
21N1T

N −D) = diag(R1, . . . , Rm),

where N :=
∑m

i=1 Ni. Note that s±(R) =
∑m

i=1 s±(Ri). Further, since
h2

2 1N1T
N is

positive semidefinite rank one matrix, by Lemma A.1, we get

s+(S) ≤ s+(R) ≤ s+(S) + 1, s−(S)− 1 ≤ s−(R) ≤ s−(S).

Let us consider a specific example, where all Xi for i = 1, . . . ,m−1, are isometric
with

Di =


0 4 4 1
4 0 4 1
4 4 0 1
1 1 1 0


as in the previous example, and Xm is such that dm(x, y) = 2 if x ̸= y. Since
diam(Xi) = 2 for all Xi, one can set h := 1. Thus, for i = 1, . . . ,m− 1

Ri =
1

2


1 −3 −3 0
−3 1 −3 0
−3 −3 1 0
0 0 0 1


with σ(Ri) = (−5/2, 1/2, 2, 2) and s+(Ri) = 3, s−(Ri) = 1. Furthermore, Xm can
be isometrically embedded into a Euclidean space, and

Dm = 41Nm
1T
Nm

− 4IdNm
, Sm = 2IdNm

− 2, Rm = 2IdNm
− 3

2
1Nm

1T
Nm

,

with s+(Rm) = Nm − 1, s−(Rm) = 1. Thus,

s+(R) = 3(m− 1) +Nm − 1, s−(R) = m,

and therefore,

s+(X, d) = s+(S) ∈ {3m−5+Nm, 3m−4+Nm}, s−(X, d) = s−(S) ∈ {m,m+1}.

Note that the constructed space X can be represented as a graph endowed with
its intrinsic distance.
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6. Some further properties and examples of limit distance signatures

6.1. Further examples of infinite limit distance signature.

Example 6.1. Let Sn be the standard unit n-dimensional sphere equipped with its
intrinsic distance d. Then s±(S

n, d) = +∞ (see [12, proof of proposition 6.1]). On
the other hand, s+(S

n, d1/2) = +∞ and s−(S
n, d1/2) = 1 since (Sn, d1/2) can be

isometrically embedded in the Hilbert space ℓ2 by proposition 6.1 from [12].

Example 6.2. Let Tn be the standard n-dimensional flat torus equipped with its
intrinsic distance d. Then s±(Tn, d) = +∞ due to Example 6.1 above and Propo-
sition 4.5.

Example 6.3. In view of the above Proposition 4.5, for the Urysohn universal space
U [15], one has s±(U) = +∞, because U contains an isometric copy of every sepa-
rable metric space, e.g., of the unit circle equipped with its intrinsic distance. For
the same reason s±(c0) = +∞, where c0 stands for the Banach space of vanishing
sequences, equipped with its usual supremum norm. Again by the same reason,
we have that s±(X, d) = +∞ when (X, d) is either the cylinder S1 × R or the
revolution torus in R3, equipped with their intrinsic distances.

Squared distance matrices are special cases of hollow symmetric non-negative
(HSN) matrices, i.e., symmetric matrices with nonnegative entries and with zeros
on the diagonal. Using the spectral theory of HSN matrices from [6], we obtain the
following result for countable metric spaces.

Proposition 6.4. Suppose (X, d) is a bounded infinite separable metric space, and
there exists δ0 > 0 such that δ0 ≤ d(x, y) for all x ̸= y. Then s+(X, d) = +∞, in
particular, s+(Tµ) = s+(Kµ) = +∞ for every Borel probability measure µ on X
with full support.

Proof. For every finite subsetXN ⊂ X, the squared distance matrix ofXN is a HSN
matrix with off-diagonal entries from the interval [δ20 , δ

2
1 ], where δ1 is the diameter

of (X, d). Since δ0 > 0 and δ1 < +∞, by theorem 3.3 from [6], there exists some
n0 ∈ N such that any HSN matrix of order at least n0 with off-diagonal entries from
[δ20 , δ

2
1 ] admits at least m strictly negative eigenvalues. Therefore, for any fixed m,

there exists some n0 such that for any finite XN ⊂ X with #XN ≥ n0, one has
that s+(S(XN )) ≥ m, proving the claim. □

The assumptions of the above corollary are satisfied, for instance, when the
metric space (X, d) is induced by a connected countable graph with its intrinsic
metric on vertices being bounded.

6.2. Limits and tangent cones.

Proposition 6.5. Let (Xk, dk) be a sequence of separable metric spaces with pk ∈
Xk, and the sequence of pointed metric spaces (Xk, dk, pk) converge as k → ∞ to
a pointed separable metric space (X, d, p) in the pointed Gromov–Hausdorff sense.
Assume that all (Xk, dk) and (X, d) satisfy the Heine–Borel property (i.e., closed
balls are compact). Then

s±(X, d) ≤ lim inf
k

s±(Xk, dk).
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Proof. We prove the statement for s+, and the proof for s− is completely analogous.
Fix a finite set ΣN ⊂ X and let B̄r(p) ⊂ X be a closed ball centered at p such
that ΣN ⊂ B̄r(p). It follows from the definition of the pointed Gromov–Hausdorff
convergence [5, definition 8.1.1] that for an arbitrary ε > 0 there are k̄ ∈ N and
maps fk

ε : B̄r(p) ⊂ X → B̄r+ε(pk) ⊂ Xk with fk
ε (p) = pk such that∣∣dk(fk

ε (x), f
k
ε (y))− d(x, y)

∣∣ ≤ ε

for all x, y ∈ B̄r(p) and k ≥ k̄. Choosing ε > 0 sufficiently small, by Lemma A.1(ii)
one has

s+(S(f
k
ε (ΣN ))) ≥ s+(S(ΣN ))

for all k ∈ N sufficiently large. We obtain the bound

lim inf
k

s+(Xk, dk) ≥ lim inf
k

s+(S(f
k
ε (ΣN ))) ≥ s+(S(ΣN )).

Taking a supremum with respect to all finite subsets ΣN ⊂ X, we get the claim. □

Corollary 6.6. Suppose that the metric space (X, d) with Heine–Borel property

has a tangent cone (Tp, d̃) at p ∈ X. Then s±(X, d) ≥ s±(Tp, d̃). In particular, if
(X, d) is a smooth Riemannian manifold equipped with its intrinsic distance, then
s+(X, d) ≥ dimX.

Similarly, if (X, d) has a (Gromov–Hausdorff) asymptotic cone (Cp, d̃) at p ∈ X,

then s±(X, d) ≥ s±(Cp, d̃).

Proof. Recall that the pointed metric space (Tp, d̃, p) (resp., (Cp, d̃, p)) is the pointed
Gromov–Hausdorff limit of the sequence (X, kd, p) (resp., (X, d/k, p)) as k → +∞.
Apply the above Proposition 6.5, having in mind that

s±(X, kd) = s±(X, d/k) = s±(X, d).

If (X, d) is a smooth Riemannian manifold, it suffices to recall that Tp = Rn with

n = dimX, and (Tp, d̃) is isometric to Rn with the Euclidean distance so that

s+(Tp, d̃) = s+(Rn) = n by Example 5.5. □

7. Limit signature of the Rado graph

7.1. Preliminaries on the spectral theory of random matrices and the
Wigner semi-circle law. Random matrices play an important role in the study
of the Rado graph, so we outline the relevant results on random matrices used in
our paper.

Recall the following terminology in matrix spectral distribution. Let WN ∈
RN×N be a real symmetric matrix. Denote by λ1 ≤ λ2 ≤ · · · ≤ λN the eigenvalues
of WN counting multiplicity. Then the empirical spectral distribution (ESD) of the

normalized matrix
1√
N

WN is the probability measure

µN :=
1

N

N∑
j=1

δλj/
√
N .(7.1)

Now, we consider a sequence of random matrices (WN )∞N=1 constructed as fol-
lows. Let (Yk)

∞
k=1 be a sequence of i.i.d. random variables, and (Zij) with 1 ≤ i < j



SIGNATURE OF SQUARED DISTANCE MATRICES FOR COUNTABLE MMS 23

be a family of i.i.d. random variables. For each N ≥ 1, WN is a symmetric matrix
of order N with entries given by

(WN )k,k = Yk, (WN )i,j = (WN )j,i = Zij , for all 1 ≤ k ≤ N, 1 ≤ i < j ≤ N.

Thus, WN can be viewed as upper left submatrices of order N of the same infinite
size random matrix. For each N ≥ 1, by taking the ESD of the normalized random

matrix
1√
N

WN , we obtain a random probability measure of the form (7.1). The

following version of the Wigner semi-circle law from [2, theorem 2.5] indicates the
ESDs of these normalized random matrices converge to the semi-circle distribution.

Proposition 7.1 (Wigner semi-circle law). Let WN be the order N random real
symmetric matrix such that the diagonal terms are i.i.d. random variables, and the
off-diagonal terms are i.i.d. random variables with variance σ2 > 0, constructed as

above. Then with probability 1, the ESDs of normalized random matrices
1√
N

WN

weakly converge to the semi-circle law, i.e., to a measure with density

ρσ(x) =

{
1

2πσ2

√
4σ2 − x2, −2σ ≤ x ≤ 2σ,

0, otherwise.

In particular, the above theorem implies that the signatures of the matrices
(WN )∞N=1 almost surely satisfy

lim
N→∞

s±(WN ) = ∞, lim
N→∞

s+(WN )

s−(WN )
= 1.(7.2)

7.2. Signatures of the MDS operators and limit signature of the Rado
graph. The Rado graph R is a homogeneous, countable, and universal graph in the
sense that it contains all finite graphs as its induced subgraphs. The Rado graph
also has the following finite extension property: given any two finite disjoint subsets
U, V of R, there exists an x ∈ R \ (U ∪ V ) such that x is adjacent to all points in
U , but not adjacent to any point in V . The Rado graph is known to be unique
up to graph isomorphism, see [7, chapter VII] for details. Let d be the intrinsic
(graph) metric on R, and µ be any Borel probability measure on (R, d) having full
support. The above properties immediately imply that the intrinsic metric d of R
is bounded with d ≤ 2.

We also recall that the Rado graph admits the following random construction
(infinite Erdős–Rényi graph). Fix any real number 0 < p < 1. Let (Zij) with
i < j ∈ N be a family of i.i.d. Bernoulli random variables: Zij ∼ Be(p). Then
we define a random graph G with the set of vertices N and the random adjacency
matrix A defined by

Aij = Aji = Zij , Aii = 0, for all 1 ≤ i < j.(7.3)

With probability 1, this construction yields a graph isomorphic to the Rado graph—
thus, it can be considered as a “random enumeration” of R. Furthermore, for each
N ≥ 1, let SN be the random matrix of order N such that

(7.4) (SN )ij =
3

2
Aij − 2, (SN )ii = 0 for all 1 ≤ i ̸= j ≤ N.

Then almost surely one has (SN )ij = −d2
G(i,j)
2 for 1 ≤ i, j ≤ N , where dG is

the intrinsic metric on G. Therefore, provided that G is isomorphic to R, there
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is a sequence of finite subsets RN ⊂ R such that RN ↗ R, #RN = N , and
SN = S(RN ). Since the random matrices (SN )N≥1 also satisfy the assumptions of
Proposition 7.1, we obtain the following theorem on the limit distance signature of
(R, d, µ).

Theorem 7.2. One has
s±(R, d) = +∞

and s±(K) = s±(T ) = +∞ for every probability measure µ over R having full
support. Moreover, the only functions in L2(R,µ) in the kernel of T are constants.

Proof. By the Wigner semi-circle law (Proposition 7.1), with probability 1, we have

lim
N→∞

s±(SN ) = +∞.

On the other hand, by the random construction of the Erdős–Rényi–Rado graph,
almost surely there is a sequence of finite subsets RN ⊂ R with RN ↗ R as N → ∞
such that

SN = S(RN ).

Thus by Theorem 4.2(i), we have s±(R, d) = +∞, which by Theorem 4.2(v) implies
s±(K) = +∞. Finally, Proposition 4.14 yields s±(T ) = +∞.

It remains to compute the dimension of the kernel kerT of T . Since T = PKP ,
clearly 1 ∈ kerT . Since P is self-adjoint in L2(R,µ), we have 0 ̸= f ∈ 1⊥ ∩ kerT
if and only if K(f) is collinear to the constant function 1 in L2(R,µ). Number
the vertices of R by positive integers. The fact µ has full support implies (Kf)i =
(Kf)j for all i, j ∈ N. The sequence (Kf)i has an infinite “matrix multiplication”
representation. More specifically, set

S = −1

2

(
d2(i, j)

)∞
i,j=1

, vj = fjµ({j}).

We then have

(Kf)i =

∞∑
j=1

Sijvj .

For any n ≥ 1, define

v+n =
∑

j≤n, vj≥0

vj , v−n =
∑

j≤n, vj<0

vj

Because µ has full support and f ̸= 0, we see v+n ↗ v+ > 0 and v−n ↘ v− < 0. Since
f ∈ L2(R,µ) and µ(R) = 1, the sequence (vj) is absolutely convergent and v+, v−

are finite. Using the finite extension property of the Rado graph, for any fixed
n ≥ 1, we can find i1 > n such that i1 is adjacent to all vertices in the summation
of v+n while non-adjacent to all vertices in the summation of v−n . Therefore, we
obtain

(Kf)i1 = −1

2

v+n + 4v−n +
∑
j>n

vjd
2(i1, j)


Similarly we can find i2 > n such that

(Kf)i2 = −1

2

4v+n + v−n +
∑
j>n

vjd
2(i2, j)


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Using (Kf)i1 = (Kf)i2 , we get

−3v+n + 3v−n +
∑
j>n

(d2(i1, j)− d2(i2, j))vj = 0(7.5)

Since the diameter of (R, d) is 2, we find∣∣∣∣∑
j>n

(
d2(i1, j)− d2(i2, j)

)
vj

∣∣∣∣ ≤ 4
∑
j>n

|vj |

Since {vj} is absolutely convergent, we find a contradiction to (7.5) for sufficiently
large n. It follows that kerT ∩ 1⊥ = {0}. Since 1⊥ has codimension 1 in L2(R,µ),
the dimension of kerT cannot exceed 1. Because kerT contains constants, they are
the only elements of the kernel of T as claimed. □

Remark 7.3. In [12], the authors showed for a homogeneous closed connected Rie-
mannian manifold X equipped with the canonical distance d and Riemannian vol-
ume µ, the constants are in the kernel of the MDS defining operator T for (X, d, µ).
The results on such smooth manifolds given by these authors appear to share sim-
ilarities with the theorem above. However, in contrast to the Riemannian volume
measure on homogeneous spaces, a probability measure with full support on a ho-
mogeneous countable metric space can never be homogeneous, i.e., invariant under
automorphisms of the graph.

7.3. Signature ratio limit of i.i.d. generated finite subsets of the Rado
graph. We examine the following question on the Rado graph. Let (RN )N≥1 be
an increasing sequence of finite subsets of R such that RN ↗ R, endowed the
restriction of the metric d. Denote by ∆(RN ) the ratio of the number of positive
eigenvalues over the number of negative eigenvalues of the associated matrix S(RN ),
that is,

∆(RN ) :=
s+(S(RN ))

s−(S(RN ))
.

We ask whether the limit limN→∞ ∆(RN ) exists on the extended real line, and
whether this limit is independent of the choice of (RN )N≥1. Note first that the
Wigner semicircle law and the random construction of R imply there exists a se-
quence RN ↗ R such that limN→∞ ∆(RN ) = 1, see Section 7.2. However, this is
not true for all sequences, as the following example shows.

Example 7.4. Fix any point R′
1 = {r1}. By the finite extension property, if R′

N ⊂ R
is finite such that all pairs of vertices are adjacent, there exists rN+1 ∈ R \R′

k such
that R′

N+1 = R′
N ∪ {rN+1} has all pairs of vertices adjacent. Thus, we obtain a

strictly increasing sequence (R′
N )N≥1 of finite subsets of R such that the vertices

of R′
N are all adjacent for each N ≥ 1. Each R′

N with the metric induced by d can
be isometrically embedded into RN−1, but not in RN−2. By the Proposition 5.1,
we have s+(S(R

′
N )) = N − 1 and s−(S(R

′
N )) = 1 for this sequence. Note that

R \ ∪∞
N=1R

′
N is infinite, i.e.

R \ ∪∞
N=1R

′
N = {t1, t2, . . .}.

Define RN = R′
N2 ∪{t1, . . . , tN}, so we have RN ↗ R. using the Cauchy interlacing

theorem, it is easy to show for the sequence (RN )N≥1 defined as above, we have
limN→∞ ∆(RN ) = ∞.



26 ALEXEY KROSHNIN, TIANYU MA, AND EUGENE STEPANOV

Thus we see the limit limN→∞ ∆(RN ) is not unique. Moreover, similarly one
can show that it does not always exist on the extended real line. Although the limit
of the ratios ∆(RN ) depends on the choice of RN ↗ R, they typically converge to
1 in the following sense.

Proposition 7.5. Let G be a random Erdős–Rényi–Rado graph, µ be a probability
measure on N with full support, and ξi ∈ N, be i.i.d. random elements with law(ξi) =
µ, i ∈ N, independent of G. Then, for Xm := (ξi)

m
i=1 one has

lim
m→∞

∆(Xm) = 1

almost surely.

Proof. Since µ has an infinite support, a random sequence ξ = (ξi)
∞
i=1 a.s. has

infinitely many distinct elements. For such a realization of ξ, define an auxiliary

sequence ξ̂ = (ξ̂i)
∞
i=1 ⊂ N which is obtained from ξ by cancelling the repeating

elements in the order of their appearance. Since G and ξ are independent, the
conditional law of G given ξ (uniquely defined for a.e. ξ) does not depend on ξ
and coincides with the marginal law of G, that is, the distributional law of an
Erdős–Rényi–Rado random graph. The matrices ŜN corresponding to SN (defined
by (7.4)) are given by the formulae

(ŜN )ij :=
3

2
Aξ̂i,ξ̂j

− 2, (ŜN )ii = 0, 1 ≤ i ̸= j ≤ N.

Since all ξ̂i are by definition distinct, by the construction of an Erdős–Rényi–Rado
graph and Proposition 7.1 we obtain that ESDs of ŜN converge to the semicircle

law a.s. (conditioned on ξ, i.e. with ξ and hence also ξ̂ fixed). Therefore,

lim
N→∞

s+(ŜN )

s−(ŜN )
= 1,

and by the Fubini theorem, this holds (unconditionally) a.s.

Finally, by the properties of the Rado graph, one a.s. has (ŜN )ij = − 1
2d

2
G(ξ̂i, ξ̂j),

i.e. ŜN = S(X̂N ), where X̂N := {ξ̂i}Ni=1. Then by Lemma 4.9 we get

lim
m→∞

∆(Xm) = lim
N→∞

∆(X̂N ) = lim
N→∞

s+(S(X̂N ))

s−(S(X̂N ))
= lim

N→∞

s+(ŜN )

s−(ŜN )
= 1 a.s.

as claimed. □

The above Proposition 7.5 shows that the limit of the ratios limm→∞ ∆((ξi)
m
i=1)

is equal to 1 almost surely for almost every realization of the random Rado graph
G, once the random points ξi in the Gromov–Vershik scheme are independent of
G. This is however not the case when we fix a specific realization of the Rado
graph as the following examples show. In fact, we show that the limit of the ratios
limm→∞ ∆((ξi)

m
i=1) may become as large as desired (Example 7.6) or even infinity

(Example 7.7), all this of course, with some positive probability and depending on
the choice of the measure µ.

Example 7.6. Let (R, d) be as before. Let E := {e1, e2, . . .} ⊂ R be the infinite
Hilbertian simplex, i.e., d(ei, ej) = δij (we call it Hilbertian since (E, d) can be
isometrically embedded in the Hilbert space ℓ2). The set E0 := R \ E is clearly
infinite, and we enumerate its elements so that

E0 = {e01, e02, . . .}.
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Fix any integer j ≥ 1. For k = 1, . . . , j, define

Ek := {ekl := elj+k : l ∈ N},

so that E =
⋃j

k=1 Ek, and the sets Ek, k = 1, . . . , j, are disjoint. We construct
a probability measure µ of full support on R such that µ({e0l }) = µ({ekl }) for all
l ≥ 0 and k = 1, . . . , j. Note that in this way

(7.6) µ(E0) = µ(E1) = . . . = µ(Ej) =
1

j + 1

Let ξ = (ξi)i≥1 with ξi : Ω → R be the i.i.d. random sequence from (R, d, µ). For
each k = 0, . . . , j, denote by NEk

(m) the number of distinct elements in Ek of the
finite random sequence (ξ1, ξ2, . . . , ξm).

We show first that for pj := 1/(j + 1) > 0, one has

(7.7) P ({NE0(m,ω) ≤ NEk
(m,ω), k = 1, . . . , j}) ≥ pj

for all m ∈ N. In fact, setting

Ωk := {ω ∈ Ω : NEk
(m,ω) ≤ NEi

(m,ω), i = 0, . . . , j} ,

we clearly get

P(Ω0) = P(Ω1) = . . . = P(Ωj),

and
⋃j

k=0 Ωk = Ω. Therefore,

1 = P(Ω) ≤
j∑

k=0

P(Ωk) = (j + 1)P(Ω0),

hence the claim (7.7).

Once (7.7) is proven, we consider the set R̂N(m) of distinct elements of the finite

random sequence (ξi)
m
i=1, and the respective square matrix S(R̂N(m)) as well as the

square matrices

Ŝ0
N(E0,m)

:= −1

2
(d2(ξi, ξj))i,j=1,...,m,ξi,ξj∈E0∩R̂N(m)

,

ÊNE(m) := −1

2
(d2(ξi, ξj))i,j=1,...,m,ξi,ξj∈E∩R̂N(m)

,

where the lower index stands for the size of the respective matrix. One has

s+
(
ENE(m)

)
= NE(m)− 1,

since ENE(m) is NE(m)×NE(m) matrix and (E, d) is isometrically embedded in a
Hilbert space. Hence

(7.8) s+

(
ÊNE(m)

)
= NE(m)− 1.

We observe now that the matrix S(R̂N(m)) has the block form

S(R̂N(m)) =

(
Ŝ0
NE0

(m) ∗
∗ ÊNE(m)

)
(where ∗ stands for some blocks). Thus in view of the Cauchy interlacing theorem,
we get

(7.9) s+(S(R̂N(m))) ≥ s+(ÊNE(m)) = NE(m)− 1,
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the latter equality due to (7.8). On the other hand, S(R̂N(m)) is an N(m)×N(m)
matrix, and hence

(7.10)

s−(S(R̂N(m))) ≤ N(m)− s+(S(R̂N(m)))

≤ N(m)− (NE(m)− 1) by (7.9)

= NE0(m) + 1.

From (7.8) by (7.7), of probability at least pj > 0, one has

(7.11) s+

(
ÊNE(m)

)
= NE(m)− 1 =

j∑
k=1

NEk
(m)− 1 ≥ jNE0

(m)− 1

for sufficiently large m. Hence, combining (7.10), (7.11), and (7.9), we arrive at

∆(R̂N(m)) ≥
jNE0

(m)− 1

NE0(m) + 1
≥ j

3
.(7.12)

Hence, for any j ≥ 1, we have

lim inf
m→∞

P
({

∆(R̂N(m)) ≥
j

3

})
≥ pj > 0.

Setting j sufficiently large, we may have limm→∞ ∆((ξi)
m
i=1) as large as desired

with a positive probability.

Example 7.7. Let (R, d) be as before. According to the Example 7.4, there exists
an enumeration R = {ri}∞i=1 such that ∆(RN ) → ∞ with RN := {r1, . . . , rN}. For
the sake of brevity, let us identify R with N according to this enumeration. Define

a probability measure µ on N by µ({k}) := C2−k2

with the normalizing constant

C :=
(∑∞

k=1 2
−k2
)−1

. As usual, let (ξi)
∞
i=1 be a sequence of i.i.d. random elements

of R with law µ and (ξ̂j)
∞
j=1 be the corresponding sequence obtained from ξ by

cancelling the repeating elements in the order of their appearance. It is easy to see

that ξ̂i = i for all i ∈ N if and only if ξj ≤ max1≤i<j ξi + 1 for all j ∈ N, with a
convention max ∅ = 0. Furthermore,
(7.13)

P
({

∃j ∈ N : ξj > max
1≤i<j

ξi + 1

})
≤

∞∑
j=1

P
({

ξj > max
1≤i<j

ξi + 1

})

=

∞∑
j=1

∞∑
k=0

P
({

ξj = k + 2, max
1≤i<j

ξi ≤ k

})
.

Since all ξi are i.i.d., we have (with convention 00 = 1 in the case k = 0, j = 1)

P
({

ξj = k + 2, max
1≤i<j

ξi ≤ k

})
= P({ξ1 = k + 2})

(
P({ξ1 ≤ k})

)j−1
.

Note that

P({ξ1 ≤ k}) = 1− P({ξ1 ≥ k + 1}) ≤ 1− P({ξ1 = k + 1}) = 1− µ({k + 1}).
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Thus, we continue the chain of estimates (7.13) by

P
({

∃j ∈ N : ξj > max
1≤i<j

ξi + 1

})
≤

∞∑
j=1

∞∑
k=0

µ({k + 2})
(
1− µ({k + 1})

)j−1

=

∞∑
k=0

µ({k + 2})
∞∑
j=1

(
1− µ({k + 1})

)j−1

=

∞∑
k=0

µ({k + 2})
µ({k + 1})

=

∞∑
k=0

2(k+1)2−(k+2)2

=

∞∑
k=0

2−2k−3 =
1

6
.

Therefore, with probability at least 5
6 , one has ξj ≤ max1≤i<j ξi + 1 for all j ∈ N,

hence ξ̂i ≡ i, and thus

lim
m→∞

∆
(
(ξi)

m
i=1

)
= lim

N→∞
∆
(
(ξ̂i)

N
i=1

)
= lim

N→∞
∆(RN ) = ∞.

Appendix A. Auxiliary lemmas on operators and their spectra

We collect here some technical results on the spectra of operators on Hilbert
spaces used throughout the paper.

Lemma A.1. Let H be a Hilbert space.

(i) If A, B are compact self-adjoint operators on H, then

s±(A+B) ≤ s±(A) + s±(B).

(ii) If A and {An}n≥1, are compact self-adjoint operators on H such that An →
A in operator norm, then

s±(A) ≤ lim inf s±(An).

Proof. We prove the claims for s+. The proof for s− is identical.
We start with the proof of (i). Assume that s+(A) < ∞ and s+(B) < ∞,

otherwise the claim is trivial. Suppose that s+(A+B) > s+(A)+s+(B). Then there
are at least m+1 = s+(A)+s+(B)+1 linearly independent eigenvectors u1, . . . , um

of A+B corresponding to positive eigenvalues. Let LA (resp., LB) be the linear span
of all eigenvectors of A (resp., B) corresponding to positive eigenvalues. Clearly, we
have that dimLA = s+(A) and dimLB = s+(B). Then dim(LA + LB) ≤ sA(A) +
s+(B) < m and there is a non-zero vector u ∈ span{ui}mi=1 ∩ (LA +LB)

⊥. Since A
and B are self-adjoint, this yields (u,Au) ≤ 0, (u,Bu) ≤ 0, hence (u, (A+B)u) ≤ 0
what leads to a contradiction. Therefore, s+(A+B) ≤ s+(A) + s+(B) as claimed.

Now, let us prove (ii). Let u1, . . . , um be unit norm eigenvectors of A correspond-
ing to positive eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λm > 0. Define symmetric matrices
Ā := ((ui, Auj))

m
i,j=1 = diag(λ1, . . . , λm) and Ān := ((ui, Anuj))

m
i,j=1. Then for

∥An −A∥ < λm, we have

λmin(Ān) ≥ λmin(Ā) + λmin(Ān − Ā) ≥ λm − ∥Ān − Ā∥ ≥ λm − ∥An −A∥ > 0.

In this case, s+(An) ≥ s+(Ān) ≥ m, therefore,

m ≤ lim inf
n

s+(An).

Taking supremum over all m ≤ s+(A), we get the result. □
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Lemma A.2. Let (X, d) be a metric space, µ be a Borel probability measure, and
A : L2(X,µ) → L2(X,µ) be an integral linear compact operator defined by the for-
mula

(Au)(x) :=

�
X

a(x, y)u(y) dµ(y)

with a ∈ L2(X×X,µ⊗µ) satisfying a(x, y) = a(y, x) for µ⊗µ-a.e. (x, y) ∈ X×X,
so that A is self-adjoint. Let λi ∈ R and ui ∈ L2(X,µ) be an enumeration of its
eigenvalues (counting multiplicities) and the respective eigenfunctions of unit norm
in L2(X,µ). Then

(A.1) a(x, y) =
∑
i

λiui(x)ui(y),

the equality in the sense of L2(X ×X,µ⊗ µ).

Proof. By the Hilbert–Schmidt theorem, {ui} form a topological basis in L2(X,µ).
Thus representing a in terms of the Fourier series in ui ⊗ uj in L2(X ×X,µ⊗ µ),
we get

a(x, y) =
∑
i,j

cijui(x)ui(y).

For the Fourier coefficients cij , we have

cij =

�
X

(�
X

a(x, y)ui(u) dµ(y)

)
uj(x) dµ(x) =

�
X

λiui(x)uj(x) dµ(x)

= λiδij ,

where δij stands for the Kronecker delta, which implies (A.1). □

The following lemmas have been used in the proof of Proposition 4.11.

Lemma A.3. Let (X, d) be a metric space, µ be a Borel probability measure, and
A : L2(X,µ) → L2(X,µ) be an integral linear operator defined by the formula

(Au)(x) :=

�
X

a(x, y)u(y) dµ(y)

with a continuous function a ∈ L2(X ×X,µ⊗ µ) satisfying a(x, y) = a(y, x). The
following assertions hold.

(i) For every finite subset XN = {x1, . . . , xN} ⊂ suppµ, one has

s±(A) ≥ s±(A(XN )),(A.2)

s±(PµAPµ) ≥ s±(ΠNA(XN )ΠN ),(A.3)

where A(XN ) := (a(xi, xj))
N
i,j=1 ∈ RN×N .

(ii) If µ is a Radon measure (which is automatically guaranteed when (X, d) is
Polish), then there is a sequence of finite subsets XN ⊂ X such that

s±(A) ≤ lim inf
N

s±(A(XN )),(A.4)

s±(PµAPµ) ≤ lim inf
N

s±(ΠNA(XN )ΠN ).(A.5)

Proof. To prove (i), let ε > 0 be such that all the positive eigenvalues of A(XN )
belong to the interval [ϵ,+∞). Choose an r > 0 sufficiently small such that all open
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balls Bi := Br(xi), i = 1, . . . , N , are pairwise disjoint, and for all i, j = 1, . . . , N
the estimate ∣∣a(x′

i, x
′
j)− a(xi, xj)

∣∣ ≤ ε

2
, for all x′

i ∈ Bi, x′
j ∈ Bj .(A.6)

holds. Define

vi :=
1

µ(Bi)
1Bi

∈ L2(X,µ), i = 1, . . . , N,

(recall that µ(Bi) > 0 since xi ∈ suppµ). Let QN : L2(X,µ) → L2(X,µ) be
the orthogonal projector onto LN := span{vi}Ni=1. Define the linear operator

ÃN : L2(X,µ) → L2(X,µ) by

(ÃNu)(x) :=

N∑
i,j=1

�
X

a(xi, xj)1Bi
(x)1Bj

(y)u(y) dµ(y).

For every u ∈ LN , setting U :=
⋃N

i=1 Bi, we have

(A.7) ∥1UAu− ÃNu∥2 ≤ ∥1UAu− ÃNu∥∞ ≤ ε

2
∥u∥1 ≤ ε

2
∥u∥2,

where the first and the last estimates are just Höder inequality minding that µ is a
probability measure, and the second one is due to (A.6). Since QNv = QN (1Uv) for

all v ∈ L2(X,µ), then from (A.7) we get that the operator norm of QNAQN−ÃN =

QN (A − ÃN )QN is bounded by ε
2 . Now, let us define the embedding operator

EN : RN → LN as ENx :=
∑N

i=1 xivi, so that ImEN = LN and

(E∗
Nvi)k =

1

µ(Bi)
δik

with δik standing for the Kronecker delta. Since

ÃN (vk)(x) =

N∑
i=1

1Bi
(x)

N∑
j=1

�
X

a(xi, xj)1Bj
(y)

1

µ(Bk)
1Bk

(y)dµ(y),

=

N∑
i=1

1Bi
(x)a(xi, xk) =

N∑
i=1

a(xi, xk)µ(Bi)vi,

then E∗
N ÃNEN = A(XN ). We have therefore

s+(A) ≥ s+(QNAQN )

by Lemma A.4(i) with Q := QN , B := QNAQN , H1 = H2 = L2(X,µ)

≥ s+(ÃN ) by the Weyl inequality

= s+(E
∗
N ÃNEN ) by Lemma A.4(iii) since (ker ÃN )⊥ ⊂ LN = ImEN

= s+(A(XN )).

Now, let Q̄N : L2(X,µ) → L2(X,µ) be the orthogonal projector onto LN ∩ 1⊥.

In the same way as above, Q̄N (A− ÃN )Q̄N is bounded by ε
2 . Furthermore,

(1, ENx) =

N∑
i=1

(1, vi)xi = (1N , x),
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hence Im(ENΠN ) = LN ∩ 1⊥ and Q̄NENΠN = ENΠN . Therefore,

s+(PµAPµ) ≥ s+(Q̄NAQ̄N ) by Lemma A.4 since PµQ̄N = Q̄N

≥ s+(Q̄N ÃN Q̄N ) by the Weyl inequality

≥ s+(ΠNE∗
N ÃNENΠN ) by Lemma A.4 since Q̄NENΠN = ENΠN

= s+(ΠNA(XN )ΠN ).

The proofs of s−(A) ≥ s−(A(XN )) and s−(PµAPµ) ≥ s−(ΠNA(XN )ΠN ) are
completely symmetric.

We now prove (ii). To this aim, for an arbitrary ε > 0, using that µ is the Radon
measure, we can find a compact K ⊂ X with µ(X \K) be so small that�

(X×X)\(K×K)

a2(x, y) dµ(x)dµ(y) < ε2.

This can be done in view of by absolute continuity of the integral and of the fact
that

µ((X ×X) \ (K ×K)) = µ(((X \K)×X) ∪ (K × (X \K)))

≤ 2µ(X \K).

We find a δ > 0, a δ-net XN := {x1, . . . , xN} ⊂ K, and a partition of K into N
disjoint Borel subsets B1, . . . , BN such that∣∣a(x′

i, x
′
j)− a(xi, xj)

∣∣ < ε, for all x′
i ∈ Bi, x

′
j ∈ Bj(A.8)

(e.g., Bi being a “Voronoi cell” for xi).
Much similar to the prof of (i), let QN : L2(X,µ) → L2(X,µ) be the orthogonal

projection onto span{1Bi
}Ni=1 and denote by Ã(XN ) : L2(X,µ) → L2(X,µ) the

linear operator defined by the formula

(ÃNu)(x) :=

N∑
i,j=1

�
X

a(xi, xj)1Bi(x)1Bj (y)u(y) dµ(y).

For every u ∈ L2(X,µ), we have

∥QNAQNu− ÃNu∥2 ≤ ∥QNAQNu− ÃNu∥∞ ≤ ε∥u∥1 ≤ ε∥u∥2,

and

∥Au−QNAQNu∥22 ≤
�
X

dµ(x)

(�
X

|a(x, y)− 1K(x)a(x, y)1K(y)| · |u(y)| dµ(y)
)2

≤ ∥u∥22
�
X

dµ(x)

(�
X

|a(x, y)− 1K(x)a(x, y)1K(y)|2 dµ(y)

)
≤ ε2∥u∥22.

This implies

∥Au− ÃNu∥2 ≤ ∥Au−QNAQNu∥2 + ∥QNAQNu− ÃNu∥2 ≤ 2ε∥u∥2.

In other words, we constructed a sequence of XN ⊂ X such that ÃN → A as linear
bounded operators over L2(X,µ) as N → ∞. This implies

s±(A) ≤ lim inf
N

s±(ÃN )
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by Lemma A.1(ii). In the same way one can show that

s±(PµÃNPµ) ≤ lim inf
N

s±(ΠNA(XN )ΠN ),

hence concluding the proof. □

Lemma A.4. Let H1, H2 be Hilbert spaces, A and B be linear compact self-adjoint
operators over H2 and H1, respectively, such that B = Q∗AQ, where Q : H1 → H2

is a linear bounded operator. Then

(i) s±(B) ≤ s±(A).
(ii) If, moreover, the codimension of the image of Q is k ∈ N, then

s±(B) ≥ s±(A)− k.

(iii) If (ImQ)⊥ ∩ (kerA)⊥ = {0}, then s±(A) = s±(B).

Proof. Let {uj}nj=1 ⊂ H1 be a set of linearly independent eigenvectors of B cor-
responding to strictly positive eigenvalues. The vectors Quj , j = 1, . . . , n are also
linearly independent since otherwise kerB∩span{uj}nj=1 ̸= {0} which is impossible.
Hence, (Av, v) > 0 for every v ∈ span{Quj}nj=1, v ̸= 0. This implies s+(A) ≥ n,
and therefore, taking the supremum over all n ∈ N such that n ≤ s+(B), we get
s±(B) ≤ s±(A), proving Claim (i).

We now prove (ii). Let {wj}mj=1 ⊂ H2 be a set of linearly independent eigenvec-
tors of A corresponding to strictly positive eigenvalues. Then

dim
(
span{wj}mj=1 ∩ ImQ

)
≥ m− k.

Thus we may choose at least m− k linearly independent elements

{vj}m−k
j=1 ⊂ span{wj}mj=1 ∩ ImQ

Pick then linearly independent uj ∈ H1 with Quj = vj , j = 1, . . . ,m− k. One has

(u,Bu) = (Qu,AQu) > 0

for all u ∈ span{uj}m−k
j=1 unless u = 0. Thus implies s+(B) ≥ m− k and taking the

supremum over all m ∈ N satisfying m ≤ s+(A), we have s±(B) ≥ s±(A)− k, i.e.,
Claim (ii).

Finally, to prove Claim (iii), we first note that for the orthogonal projector PA

from H2 onto (kerA)⊥ one has PAA = A. Hence, A = A∗ = A∗P ∗
A = APA, and

this again implies

A = PAA = PAAPA.

Therefore,

(A.9) B = Q∗AQ = Q∗PAAPAQ = Q∗P ∗
AAPAQ = (PAQ)∗A(PAQ).

Furthermore,

(ImQ)⊥ ∩ (kerA)⊥ = (ImQ+ kerA)⊥ = {0},
hence ImQ+kerA is dense in H2, thus Im(PAQ) is dense in ImPA = (kerA)⊥. Let
again {wj}mj=1 ⊂ H2 be a set of linearly independent eigenvectors of A correspond-
ing to strictly positive eigenvalues, thus the matrix (Awi, wj)

m
i,j=1 is positive defi-

nite. Since all wj clearly belong to (kerA)⊥, then one can find {w̃j}mj=1 ⊂ Im(PAQ)
with each w̃j so close to wj that they are all still linearly independent and the ma-
trix (Aw̃i, w̃j)

m
i,j=1 is positive definite (which gives in particular (Aw̃, w̃) > 0 for all

w̃ ∈ span{w̃j}mj=1, w̃ ̸= 0).
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Choosing uj ∈ H linearly independent such that PAQuj = w̃j , in view of (A.9)
we get

(u,Bu) = ((PAQ)u,A(PAQ)u) > 0

for all u ∈ span{uj}mj=1, u ̸= 0. Thus, s+(B) ≥ m and taking the supremum over
all m ∈ N satisfying m ≤ s+(A), we have s±(B) ≥ s±(A). This together with
Claim (i) gives Claim (iii). □

Lemma A.5. Let Σ = {zi}3i=1 ⊂ Rn,p be such that Σ−Σ ⊂ Cn,p (thus, dn,p(zi, zj)
is defined). Then the strict triangle inequality

dn,p(z1, z3) < dn,p(z1, z2) + dn,p(z2, z3)

is equivalent to the strict one-sided Cauchy-Schwarz inequality

(z1 − z2, z2 − z3)n,p < dn,p(z1, z2)dn,p(z2, z3).

Proof. The strict triangle inequality is clearly equivalent to

d2n,p(z1, z3) < d2n,p(z1, z2) + 2dn,p(z1, z2)dn,p(z2, z3) + d2n,p(z2, z3).

Since

d2n,p(z1, z3) := (z1 − z3, z1 − z3)

= (z1 − z2, z1 − z2) + 2(z1 − z2, z2 − z3) + (z2 − z3, z2 − z3)

= d2n,p(z1, z2) + 2(z1 − z2, z2 − z3) + d2n,p(z2, z3),

we get the result. □
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