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Abstract4

We establish partial Hölder continuity of the gradient for equilibrium configurations of vec-5

torial multidimensional variational problems, involving bulk and surface energies. The bulk6

energy densities are uniformly strictly quasiconvex functions with p-growth, 1 < p < 2, with-7

out any further structure conditions. The anisotropic surface energy is defined by means of8

an elliptic integrand Φ not necessarily regular.9

AMS Classifications. 49N15, 49N60, 49N99.10

Key words. Regularity, nonlinear variational problem, free interfaces.11

1 Introduction and statements12

Let us consider a functional F with density energy discontinuous through an interface ∂A, inside13

an open bounded subset Ω of Rn, of the form14

F(v,A) :=

∫
Ω
(F (Dv) + 1AG(Dv)) dx+ P (A,Ω), (1.1)

where v ∈W 1,p
loc (Ω;R

N ), and F,G : Rn×N → R are C2-integrands. Assume that these integrands15

satisfy the following growth and uniformly strict p-quasiconvexity conditions, for p > 1 and16

positive constants ℓ1, ℓ2, L1, L2:17
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0 ≤ F (ξ) ≤ L1(1 + |ξ|2)
p
2 , (F1)

∫
Ω
F (ξ +Dφ) dx ≥

∫
Ω

(
F (ξ) + ℓ1|Dφ|2(1 + |Dφ|2)

p−2
2

)
dx, (F2)

0 ≤ G(ξ) ≤ L2(1 + |ξ|2)
p
2 , (G1)

∫
Ω
G(ξ +Dφ) dx ≥

∫
Ω

(
G(ξ) + ℓ2|Dφ|2(1 + |Dφ|2)

p−2
2

)
dx, (G2)

for every ξ ∈ Rn×N and φ ∈ C1
0 (Ω;RN ).1

Existence and regularity results have been obtained initially in the scalar case (N = 1) in2

[4, 5, 10, 21, 22, 23, 24, 25, 28, 33, 34, 35]. In the vectorial case (N > 1), the authors in3

[11] proved the existence of local minimizers of (1.1), for any p > 1 under the quasiconvexity4

assumption quoted above. In the same paper, the C1,α partial regularity is proved for minimal5

configurations outside a negligible set, in the quadratic case p = 2.6

In [9] the same regularity result has been established in the general case p ≥ 2, also addressing7

anisotropic surface energies. F.J. Almgren was the first to study such surface energies in his8

celebrated paper [3] (see also [8, 20, 26, 38, 39] for subsequent results). This kind of energies9

arises in many physical contexts such as the formation of crystals (see [6, 7]), liquid drops (see10

[16, 27]), capillary surfaces (see [18, 19]) and phase transitions (see [32]).11

In this paper, we consider the same functional as in [9], given by12

I(v,A) :=
∫
Ω
(F (Dv) + 1AG(Dv)) dx+

∫
Ω∩∂∗A

Φ(x, νA(x)) dHn−1(x), (1.2)

in the case of sub-quadratic growth, 1 < p < 2. We achieve analogous regularity results as those13

established in [9], thereby completing the answer to the problem for all p > 1.14

In this setting A ⊂ Ω is a set of finite perimeter, u ∈ W 1,p
loc (Ω;R

N ), 1A is the characteristic15

function of the set A, ∂∗A denotes the reduced boundary of A in Ω and νA is the measure-16

theoretic outer unit normal to A. Moreover, Φ is an elliptic integrand on Ω (see Definition17

2.8), i.e. Φ : Ω × Rn → [0,∞] is lower semicontinuous, Φ(x, ·) is convex and positively one-18

homogeneous, Φ(x, tν) = tΦ(x, ν) for every t ≥ 0, and the anisotropic surface energy of a set A19

of finite perimeter in Ω is defined as follows20

Φ(A;B) :=

∫
B∩∂∗A

Φ(x, νA(x)) dHn−1(x), (1.3)

for every Borel set B ⊂ Ω. The further assumption21

1

Λ
≤ Φ(x, ν) ≤ Λ, (1.4)

with Λ > 1, allows to compare the surface energy introduced in (1.3) with the usual perimeter.22

Let us recall that in the vectorial setting, as in the previously cited papers, the regularity we23

can expect for the gradient of the minimal deformation u : Ω → RN , (N > 1), even in absence24

of a surface term, is limited to a partial regularity result.25
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We say that a pair (u,E) is a local minimizer of I in Ω, if for every open set U ⋐ Ω and every1

pair (v,A), where v − u ∈ W 1,p
0 (U ;RN ) and A is a set of finite perimeter with A∆E ⋐ U , we2

have3 ∫
U
(F (Du) + 1EG(Du)) dx+Φ(E;U) ≤

∫
U
(F (Dv) + 1AG(Dv)) dx+Φ(A;U).

Existence and regularity results for local minimizers of integral functionals with uniformly strict4

p-quasiconvex integrand, also in the non autonomous case, have been widely investigated (see5

[1, 2, 12, 13, 14, 15, 30, 37] and [29, 31]).6

Regarding the functional (1.2), the existence of local minimizers is guaranteed by the following7

theorem, proved in [9].8

Theorem 1.1. Let p > 1 and assume that (F1), (F2), (G1), (G2) hold. Then, if v ∈9

W 1,p
loc (Ω;R

N ) and A ⊂ Ω is a set of finite perimeter in Ω, for every sequence {(vk, Ak)}k∈N such10

that {vk} weakly converges to v in W 1,p
loc (Ω;R

N ) and 1Ak
strongly converges to 1A in L1

loc(Ω),11

we have12

I(v,A) ≤ lim inf
k→∞

I(vk, Ak).

In particular, I admits a minimal configuration (u,1E) ∈W 1,p
loc (Ω;R

N )×BVloc(Ω; [0, 1])13

We emphasize that, in particular, the previous theorem implies the semicontinuity of the14

anisotropic perimeter functional (1.3).15

In this paper, we obtain a C1,α regularity result for the minimizers of (1.2) in the case of16

sub-quadratic growth, 1 < p < 2. If we further assume a closeness condition on F and G (see17

(H) in Theorem 1.2), we prove that u ∈ C1,γ(Ω1) for every γ ∈ (0, 1
p′ ) on a full measure set18

Ω1 ⊂ Ω. Furthermore, we do not assume any regularity on Φ in order to get the regularity of u.19

20

Our main theorem is the following,21

Theorem 1.2. Let (u,E) be a local minimizer of I. Let the bulk density energies F and G22

satisfy (F1), (F2), (G1), (G2), with 1 < p < 2, and let the surface energy Φ be of general type23

(1.3) with Φ satisfying (1.4). Then there exist an exponent β ∈ (0, 1) and an open set Ω0 ⊂ Ω24

with full measure such that u ∈ C1,β(Ω0;RN ). If we assume in addition that25

L2

ℓ1 + ℓ2
< 1, (H)

there exists an open set Ω1 ⊂ Ω with full measure such that u ∈ C1,γ(Ω1;RN ) for every γ ∈26 (
0, 1

p′

)
.27

The proof of the regularity of u is based on a blow-up argument aimed to establish a decay28

estimate for the excess function29

U(x0, r) :=

∫
Br(x0)

∣∣V (Du)− V
(
(Du)x0,r

)∣∣2 dx+
P (E,Br(x0))

rn−1
+ r,

where30

V (ξ) = (1 + |ξ|2)(p−2)/4ξ, ∀ξ ∈ Rk.
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To this aim, we use a comparison argument between the blow-up sequence vh at small scale in1

the balls Brh(xh) and the solution v of a suitable linearized system. The challenging part of the2

argument, as usual, is to prove that the ‘good’ decay estimates available for the function v (see3

Proposition 2.1), are inherited by the vh as h→ ∞.4

To achieve this result, the main tool is a Caccioppoli type inequality that we prove for minimizers5

of perturbed rescaled functionals (see (3.16)) involving the function V (Dvh) and the perimeter6

of the rescaled minimal set Eh. The Caccioppoli inequality combined with the Sobolev Poincarè7

inequality will lead us to a contradiction (see Step 6 of Proposition 3.1). In this final step, the8

issue to deal with the function V (Du) in the sub-quadratic case, is overcome by using a suitable9

Sobolev Poincarè inequality involving V (Du) (see Theorem 2.6), whose proof is due to [12].10

2 Preliminaries11

Let Ω be a bounded open set in Rn, n ≥ 2 , u : Ω → RN , N > 1. We denote by Br(x) :=12

{y ∈ Rn : |y − x| < r} the open ball centered at x ∈ Rn of radius r > 0, Sn−1 represents the unit13

sphere of Rn, c a generic constant that may vary.14

For Br(x0) ⊂ Rn and u ∈ L1(Br(x0);RN ) we denote15

(u)x0,r :=

∫
Br(x0)

u(x) dx

and we will omit the dependence on the center when it is clear from the context.16

17

⟨ξ, η⟩ := trace(ξT η),

for the usual inner product of ξ and η, and accordingly |ξ| := ⟨ξ, ξ⟩
1
2 . If F : Rn×N → R is18

sufficiently differentiable, we write19

DF (ξ)η :=

N∑
α=1

n∑
i=1

∂F

∂ξαi
(ξ)ηαi and D2F (ξ)ηη :=

N∑
α,β=1

n∑
i,j=1

∂F

∂ξαi ∂ξ
β
j

(ξ)ηαi η
β
j ,

for ξ, η ∈ Rn×N .20

It is well known that for quasiconvex C1 integrands the assumptions (F1) and (G1) yield the21

upper bounds22

|DξF (ξ)| ≤ c1L1(1 + |ξ|2)
p−1
2 and |DξG(ξ)| ≤ c2L2(1 + |ξ|2)

p−1
2 (2.1)

for all ξ ∈ Rn×N , with c1 and c2 constants depending only on p (see [31, Lemma 5.2] or [37]).23

Furthermore, if F and G are C2, then (F2) and (G2) imply the following strong Legendre-24

Hadamard conditions25

N∑
α,β=1

n∑
i,j=1

∂F

∂ξαi ∂ξ
β
j

(Q)λiλjµ
αµβ ≥ c3|λ|2|µ|2 and

N∑
α,β=1

n∑
i,j=1

∂G

∂ξαi ∂ξ
β
j

(Q)λiλjµ
αµβ ≥ c4|λ|2|µ|2,

for all Q ∈ Rn×N , λ ∈ Rn, µ ∈ RN , where c3 = c3(p, ℓ1) and c4 = c4(p, ℓ2) are positive constants26

(see [31, Proposition 5.2]).27

We will need the following quite standard regularity result (see [12] for its proof).28
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Proposition 2.1. Let v ∈W 1,1(Ω;RN ) be such that1 ∫
Ω
QijαβDiv

αDjφ
β dx = 0,

for every φ ∈ C∞
c (Ω;RN ), where Q = {Qijαβ} is a constant matrix satisfying |Qijαβ| ≤ L and the2

strong Legendre-Hadamard condition3

Qijαβλiλjµ
αµβ ≥ ℓ|λ|2|µ|2,

for all λ ∈ Rn, µ ∈ RN and for some positive constants ℓ, L > 0. Then v ∈ C∞ and, for any4

BR(x0) ⊂ Ω, the following estimate holds5

sup
BR/2

|Dv| ≤ c

Rn

∫
BR

|Dv| dx,

where c = c(n,N, ℓ, L) > 0 .6

We assume that 1 < p < 2 and we refer to the auxiliary function7

V (ξ) = (1 + |ξ|2)(p−2)/4ξ, ∀ξ ∈ Rk, (2.2)

whose useful properties are listed in the following lemma (see [12] for the proof).8

Lemma 2.2. Let 1 < p < 2 and let V : Rk → Rk be the function defined in (2.2), then for any9

ξ, η ∈ Rk and t > 0 the following inequalities hold:10

(i) 2(p−2)/4min{|ξ|, |ξ|p/2} ≤
∣∣V (ξ)

∣∣ ≤ min{|ξ|, |ξ|p/2},11

(ii)
∣∣V (tξ)

∣∣ ≤ max{t, tp/2}
∣∣V (ξ)

∣∣ ,12

(iii)
∣∣V (ξ + η)

∣∣ ≤ c(p)
[∣∣V (ξ)

∣∣+ ∣∣V (η)
∣∣],13

(iv) p
2 |ξ − η| ≤

(
1 + |ξ|2 + |η|2

)(2−p)/4∣∣V (ξ)− V (η)
∣∣ ≤ c(k, p)|ξ − η|,14

(v)
∣∣V (ξ)− V (η)

∣∣ ≤ c(k, p)
∣∣V (ξ − η)

∣∣,15

(vi)
∣∣V (ξ − η)

∣∣ ≤ c(p,M)
∣∣V (ξ)− V (η)

∣∣, if |η| ≤M .16

We will also use the following iteration lemma (see [31, Lemma 6.1])17

Lemma 2.3. Let 0 < ρ < R and let ψ : [ρ,R] → R be a bounded non negative function. Assume18

that for all ρ ≤ s < t ≤ R we have19

ψ(s) ≤ ϑψ(t) +A+
B

(s− t)α
+

C

(s− t)β

where ϑ ∈ [0, 1), α > β > 0 and A,B,C ≥ 0 are constants. Then there exists a constant20

c = c(ϑ, α) > 0 such that21

ψ
(
ρ
)
≤ c

(
A+

B

(R− ρ)α
+

C

(R− ρ)β

)
.
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An easy extension of this result can be obtained by replacing homogeneity with condition (ii)1

of Lemma 2.2.2

Lemma 2.4. Let R > 0 and let ψ : [R/2, R] → [0,+∞) be a bounded function. Assume that for3

all R/2 ≤ s < t ≤ R we have4

ψ(s) ≤ ϑψ(t) +A

∫
BR

∣∣∣∣V ( h(x)t− s

)∣∣∣∣2dx+B,

where h ∈ Lp(Br), A,B > 0, and 0 < ϑ < 1. Then there exists a constant c(ϑ) > 0 such that5

ψ

(
R

2

)
≤ c(ϑ)

(
A

∫
BR

∣∣∣V (h(x)
R

)∣∣∣2dx+B

)
.

Given a C1 function f : Rk → R, Q ∈ Rk and λ > 0, we set6

fQ,λ(ξ) :=
f(Q+ λξ)− f(Q)−Df(Q)λξ

λ2
, ∀ξ ∈ Rk.

In the next sections we will use the following lemma about the growth of fQ,λ and DfQ,λ.7

Lemma 2.5. Let 1 < p <∞, and let f be a C2(Rk) function such that8

|f(ξ)| ≤ L
(
1 + |ξ|p) and |Df(ξ)| ≤ L

(
1 + |ξ|2

)(p−1)/2
,

for any ξ ∈ Rk and for some L > 0. Then for every M > 0 there exists a constant c =9

c(p, L,M) > 0 such that, for every Q ∈ Rk, |Q| ≤M and λ > 0, it holds10

|fQ,λ(ξ)| ≤ c
(
1 + |λξ|2

)(p−2)/2|ξ|2 and |DfQ,λ(ξ)| ≤ c
(
1 + |λξ|2

)(p−2)/2|ξ|, (2.3)

for all ξ ∈ Rk.11

Proof. Applying Taylor’s formula, there exists θ ∈ [0, 1] such that, for every ξ ∈ Rk,12

fQ,λ(ξ) =
1

2
D2f(Q+ θλξ)ξξ,

13

DfQ,λ(ξ) =
1

λ

(
Df(Q+ λξ)−Df(Q)

)
=

∫ 1

0
D2f(Q+ θλξ)ξ dθ.

If we denote KM := max
{
|D2f(ξ)| : |ξ| ≤M + 1

}
, we have14

|fQ,λ(ξ)| ≤
1

2
KM |ξ|2, |DfQ,λ(ξ)| ≤ KM |ξ|, if |λξ| ≤ 1. (2.4)

On the other hand, using growth condition (2.3) and the definitions of fQ,λ and DfQ,λ, we get15

|fQ,λ(ξ)| ≤ c(p, L,M)λp−2|ξ|p, |DfQ,λ(ξ)| ≤ c(L,M)λp−2|ξ|p−1, whereas |λξ| > 1. (2.5)

We get the result by combining (2.4) and (2.5) .16
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A fundamental tool in order to handle the subquadratic case is the following Sobolev-Poincaré1

inequality related to the function V , proved in [12].2

Theorem 2.6. If 1 < p < 2, there exist 2/p < α < 2 and σ > 0 such that if u ∈3

W 1,p(B3R(x0),RN ), then4 (∫
BR(x0)

∣∣∣∣V (u− uxo,R
R

)∣∣∣∣2(1+σ)dx
) 1

2(1+σ)

≤ C

(∫
B3R(x0)

∣∣V (Du)∣∣αdx) 1
α

,

where the positive constant C = C(n,N, p) is independent of R and u.5

2.1 Sets of finite perimeter and anisotropic surface energies6

In this subsection we recall some elementary definitions and well-known properties of sets of7

finite perimeter. We introduce the notion of anisotropic perimeter as well.8

Given a set E ⊂ Rn and t ∈ [0, 1], we define the set of points of E of density t as9

E(t) =
{
x ∈ Rn : |E ∩Br(x)| = t|Br(x)|+ o(rn) as r → 0+

}
.

Let U be an open subset U of Rn. A Lebesgue measurable set E ⊂ Rn is said to be a set of10

locally finite perimeter in U if there exists a Rn-valued Radon measure µE on U (called the11

Gauss-Green measure of E) such that12 ∫
E
∇ϕ dx =

∫
U
ϕdµE , ∀ϕ ∈ C1

c (U).

Moreover, we denote the perimeter of E relative to G ⊂ U by P (E,G) = |µE |(G).13

It is well known that the support of µE can be characterized by14

sptµE =
{
x ∈ U : 0 < |E ∩Br(x)| < ωnr

n, ∀r > 0
}
⊂ U ∩ ∂E, (2.6)

(see [36, Proposition 12.19]). If E is of finite perimeter in U , the reduced boundary ∂∗E ⊂ U of15

E is the set of those x ∈ U such that16

νE(x) := lim
r→0+

µE(Br(x))

|µE |(Br(x))

exists and belongs to Sn−1. The essential boundary of E is defined as ∂eE := Rn \ (E0 ∪E1). It17

is well-understood that18

∂∗E ⊂ U ∩ ∂eE ⊂ sptµE ⊂ U ∩ ∂E, U ∩ ∂∗E = sptµE .

Furthermore, Federer’s criterion (see for instance [36, Theorem 16.2]) ensures that19

Hn−1((U ∩ ∂eE) \ ∂∗E) = 0.

By De Giorgi’s rectifiability theorem (see [36, Theorem 15.9]), the Gauss-Green measure µE is20

completely characterized as follows:21

µE = νEHn−1⌞∂∗E, |µE | = Hn−1⌞∂∗E.

The equality holds in the class of Borel sets compactly contained in U . Here, we have denoted22

µ⌞∂∗E(F ) = µ(∂∗E ∩ F ), for any subset F of Rn.23

24

7



Remark 2.7 (Minimal topological boundary). If E ⊂ Rn is a set of locally finite perimeter1

in U and F ⊂ Rn is such that |(E∆F ) ∩ U | = 0, then F is a set of locally finite perimeter in2

U and µE = µF . In the rest of the paper, the topological boundary ∂E must be understood by3

considering the suitable representative of E in order to have that ∂∗E = ∂E∩U . We will choose4

E(1) as representative of E. With such a choice it can be easily verified that5

U ∩ ∂E =
{
x ∈ U : 0 < |E ∩Br(x)| < ωnr

n,∀r > 0
}
.

Therefore, by (2.6),6

∂∗E = sptµE = ∂E ∩ U.

In what follows, we give the definition of anisotropic surface energies and we recall some prop-7

erties.8

Definition 2.8 (Elliptic integrands). Given an open subset Ω of Rn, Φ : Ω×Rn → [0,∞] is said9

to be an elliptic integrand on Ω if it is lower semicontinuous, with Φ(x, ·) convex and positively10

one-homogeneous for any x ∈ Ω, i.e. Φ(x, tν) = tΦ(x, ν) for every t ≥ 0. Accordingly, the11

anisotropic surface energy of a set E of finite perimeter in Ω is defined as12

Φ(E;B) :=

∫
B∩∂∗E

Φ(x, νE(x)) dHn−1(x), (2.7)

for every Borel set B ⊂ Ω.13

In order to prove the regularity of minimizers of anisotropic surface energies, it is well known that14

a Ck-dependence of the integrand Φ on the variable ν, and a continuity condition with respect15

to the variable x, must be assumed (see the seminal paper [3]). In fact, one more condition is16

essential, that is a non-degeneracy type condition for the integrand Φ. More precisely, we have17

to assume that there exists a constant Λ > 1 such that18

1

Λ
≤ Φ(x, ν) ≤ Λ, (2.8)

for any x ∈ Ω and ν ∈ Sn−1. We emphasize that (2.8) is the only assumption we make for the19

elliptic integrand Φ. We observe that, if the elliptic integrand Φ satisfies the previous condition,20

then the anisotropic surface energy (2.7) satisfies the following comparability condition to the21

perimeter:22

1

Λ
Hn−1(B ∩ ∂∗E) ≤ Φ(E;B) ≤ ΛHn−1(B ∩ ∂∗E),

for any set E of finite perimeter in Ω and any Borel set B ⊂ Ω. A useful relation is given by23

proposition below proved in [9].24

Proposition 2.9. Let U ⊂ Rn be an open set and let E,F ⊂ U be two sets of finite perimeter25

in U . It holds that26

Φ(E ∪ F ;U) = Φ(E;F (0)) +Φ(F ;E(0)) +Φ(E; {νE = νF }).

8



3 Decay Estimates1

In this section we prove decay estimates for minimizers of functionals (1.2) by using a well-known2

blow-up technique involving a suitable excess function. We consider the bulk excess function3

defined as4

U(x0, r) :=

∫
Br(x0)

∣∣V (Du)− V
(
(Du)x0,r

)∣∣2 dx, (3.1)

for Br(x0) ⊂ Ω.5

When the assumption (H) is in force, we refer to the following “hybrid” excess6

U∗(x0, r) := U(x0, r) +
P (E,Br(x0))

rn−1
+ r.

Proposition 3.1. Let (u,E) be a local minimizer of the functional I in (1.2) and let the as-7

sumptions (F1), (F2), (G1), (G2) and (H) hold. For every M > 0 and every 0 < τ < 1
4 , there8

exist two constants ε0 = ε0(τ,M) > 0 and c∗ = c∗(n, p, ℓ1, ℓ2, L1, L2,Λ,M) > 0 such that if in9

Br(x0) ⋐ Ω it holds10

|(Du)x0,r| ≤M and U∗(x0, r) ≤ ε0,

then11

U∗(x0, τr) ≤ c∗τU∗(x0, r). (3.2)

Proof. In order to prove (3.2), we argue by contradiction. Let M > 0 and τ ∈ (0, 1/4) be such12

that for every h ∈ N, C∗ > 0, there exists a ball Brh(xh) ⋐ Ω such that13

|(Du)xh,rh | ≤M, U∗(xh, rh) → 0 (3.3)

and14

U∗(xh, τrh) ≥ C∗τU∗(xh, rh). (3.4)

The constant C∗ will be determined later. We remark that we can confine ourselves to the case15

in which E ∩Brh(xh) ̸= ∅, since the case in which Brh(xh) ⊂ Ω \ E is easier, being U = U∗.16

Step 1. Blow-up.17

We set λ2h := U∗(xh, rh), Ah := (Du)xh,rh , ah := (u)xh,rh , and we define18

vh(y) :=
u(xh + rhy)− ah − rhAhy

λhrh
, ∀y ∈ B1. (3.5)

One can easily check that (Dvh)0,1 = 0 and (vh)0,1 = 0. We set19

Eh :=
E − xh
rh

, E∗
h :=

E − xh
rh

∩B1.

By using (ii) and (vi) of Lemma 2.2, we deduce20 ∫
B1

|V (Dvh(y))|2 dy ≤
∫
Brh

(xh)

∣∣∣∣V (Du(x)− (Du)xh,rh
λh

)∣∣∣∣2 dx
9



≤c(M)

λ2h

∫
Brh

(xh)

∣∣V (Du(x))− V
(
(Du)xh,rh

)∣∣2 dx.
Then, since1

λ2h = U∗(xh, rh) =

∫
B1

∣∣V (Du(xh + rhy)
)
− V

(
Ah
)∣∣2 dy + P (E,Brh(xh))

rn−1
h

+ rh, (3.6)

it follows that rh → 0, P (Eh, B1) → 0, and2

rh
λ2h

≤ 1,

∫
B1

∣∣V (Dvh(y))∣∣2 dy ≤ c(M),
P (Eh, B1)

λ2h
≤ 1. (3.7)

Therefore, by (3.3) and (3.7), there exist a (not relabeled) subsequence of {vh}h∈N, A ∈ Rn×N3

and v ∈W 1,p(B1;RN ), such that4

vh ⇀ v weakly in W 1,p(B1;RN ), vh → v strongly in Lp(B1;RN ), (3.8)

Ah → A, λhDvh → 0 in Lp(B1;Rn×N ) and pointwise a.e. in B1,

where we have used the fact that (vh)0,1 = 0. Moreover, by (3.7) and (3.3), we have5

lim
h→∞

(P (Eh, B1))
n

n−1

λ2h
≤ lim

h→∞
(P (Eh, B1))

1
n−1 lim sup

h→∞

P (Eh, B1)

λ2h
= 0. (3.9)

Therefore, by the relative isoperimetric inequality,6

lim
h→∞

min

{
|E∗

h|
λ2h

,
|B1 \ Eh|

λ2h

}
≤ c(n) lim

h→∞

(P (Eh, B1))
n

n−1

λ2h
= 0. (3.10)

In the sequel the proof will proceed differently depending on7

min{|E∗
h|, |B1 \ Eh|} = |E∗

h| or min{|E∗
h|, |B1 \ Eh|} = |B1 \ Eh|.

The first case is easier to handle. To understand the reason, let us introduce the expansions of8

F and G around Ah as follows:9

Fh(ξ) :=
F (Ah + λhξ)− F (Ah)−DF (Ah)λhξ

λ2h
, (3.11)

Gh(ξ) :=
G(Ah + λhξ)−G(Ah)−DG(Ah)λhξ

λ2h
,

for any ξ ∈ Rn×N . In the first case the suitable rescaled functional to consider in the blow-up10

procedure is the following11

Ih(w) :=
∫
B1

[
Fh(Dw)dy + 1E∗

h
Gh(Dw)

]
dy. (3.12)

We claim that vh satisfies the minimality inequality12

Ih(vh) ≤ Ih(vh + ψ) +
1

λh

∫
B1

1E∗
h
DG(Ah)Dψ(y) dy, (3.13)

10



for any ψ ∈ W 1,p
0 (B1;RN ). Indeed, using the minimality of (u,E) with respect to (u + φ,E),1

for φ ∈ W 1,p
0 (Brh(xh);RN ), the change of variable x = xh + rhy, setting ψ(y) :=

φ(xh+rhy)
λhrh

, it2

holds that3 ∫
B1

[
(Fh(Dvh(y)) + 1E∗

h
Gh(Dvh(y))

]
dy

≤
∫
B1

[
Fh(Dvh(y) +Dψ(y)) + 1E∗

h
Gh(Dvh(y) +Dψ(y))

]
dy +

1

λh

∫
B1

1E∗
h
DG(Ah)Dψ(y) dy,

and (3.13) follows by the definition of Ih in (3.12).4

In the second case, the suitable rescaled functional to consider in the blow-up procedure is5

Hh(w) :=

∫
B1

[
Fh(Dw) +Gh(Dw)

]
dy.

We claim that6

Hh(vh) ≤ Hh(vh + ψ) +
L2

λ2h

∫
(B1\Eh)∩suppψ

(µ2 + |Ah + λhDvh|2)
p
2 dy, (3.14)

for all ψ ∈ W 1,p
0 (B1;RN ). Indeed, the minimality of (u,E) with respect to (u + φ,E), for7

φ ∈W 1,p
0 (Brh(xh);RN ), implies that8 ∫
Brh

(xh)
(F +G)(Du) dx =

∫
Brh

(xh)

[
F (Du) + 1EG(Du)

]
dx+

∫
Brh

(xh)\E
G(Du)dx

≤
∫
Brh

(xh)

[
F (Du+Dφ) + 1EG(Du+Dφ)

]
dx+

∫
Brh

(xh)\E
G(Du)dx

=

∫
Brh

(xh)
(F +G)(Du+Dφ)dx+

∫
Brh

(xh)\E

[
G(Du)−G(Du+Dφ)

]
dx

≤
∫
Brh

(xh)
(F +G)(Du+Dφ)dx+

∫
(Brh

(xh)\E)∩suppφ
G(Du)dx,

where we used that the last integral vanishes outside the support of φ and that G ≥ 0. Using9

the change of variable x = xh + rhy in the previous formula, we get10 ∫
B1

(F +G)(Du(xh + rhy))dy ≤
∫
B1

(F +G)(Du(xh + rhy) +Dφ(xh + rhy)) dy

+

∫
(B1\Eh)∩suppψ

G(Du(xh + rhy))dy,

or, equivalently, using the definitions of vh,11 ∫
B1

(F +G)(Ah + λhDvh)dy ≤
∫
B1

(F +G)(Ah + λh(Dvh +Dψ)) dy

+

∫
(B1\Eh)∩suppψ

G(Ah + λhDvh)dy

11



where ψ(y) := φ(xh+rhy)
λhrh

, for y ∈ B1. Therefore, setting1

Hh := Fh +Gh,

by the definitions of Fh and Gh in (3.11) and using the assumption (G1), we have that2 ∫
B1

Hh(Dvh)dy ≤
∫
B1

Hh(Dvh +Dψ)dy +
1

λ2h

∫
(B1\Eh)∩suppψ

G(Ah + λhDvh) dy

≤
∫
B1

Hh(Dvh +Dψ) dy +
L2

λ2h

∫
(B1\Eh)∩suppψ

(
1 + |Ah + λhDvh|2

) p
2 dy, (3.15)

i.e. (3.14).3

Step 2. A Caccioppoli type inequality.4

We claim that there exists a constant c = c(n, p, ℓ1, ℓ2, L1, L2,M) > 0 such that for every5

0 < ρ < 1 there exists h0 = h0(n, p,M, ρ) ∈ N such that6 ∫
B ρ

2

∣∣V (λh(Dvh − (Dvh) ρ
2

)∣∣2 dy (3.16)

≤ c

[∫
Bρ

∣∣∣∣V (λh
(
vh − (vh)ρ − (Dvh) ρ

2
y
)

ρ

)∣∣∣∣2 dy + P (Eh, B1)
n

n−1

]
,

for all h > h0. We divide the proof into two steps.7

Substep 2.a The case min{|E∗
h|, |B1 \ Eh|} = |E∗

h|.8

We consider 0 < ρ
2 < s < t < ρ < 1 and let η ∈ C∞

0 (Bt) be a cut off function between Bs and9

Bt, i.e. 0 ≤ η ≤ 1, η ≡ 1 on Bs and |∇η| ≤ c
t−s . Set bh := (vh)Bρ , Bh := (Dvh)B ρ

2
, and set10

wh(y) := vh(y)− bh −Bhy, (3.17)

for any y ∈ B1. Proceeding similarly as in (3.6), we rescale F and G around Ah + λhBh,11

F̃h(ξ) :=
F (Ah + λhBh + λhξ)− F (Ah + λhBh)−DF (Ah + λhBh)λhξ

λ2h
, (3.18)

G̃h(ξ) :=
G(Ah + λhBh + λhξ)−G(Ah + λhBh)−DG(Ah + λhBh)λhξ

λ2h
,

for any ξ ∈ Rn×N . By Lemma 2.5, two growth estimates on F̃h, G̃h and their gradients hold12

with some constants that depend on p, L1, L2,M (see (3.3)) and could also depend on ρ through13

|λhBh|. However, given ρ, we may choose h0 = h0(n, p,M, ρ) large enough to have14

|λhBh| <
c(n, p,M)λh

ρ
n
p

< 1,

for any h ≥ h0. Indeed, by (3.7) the sequence {Dvh}h is equibounded in Lp(B1), then we have15

|Bh| ≤
2n

ωnρ
n
p

[ ∫
B ρ

2
∩{|Dvh|≤1}

|Dvh| dy +
∫
B ρ

2
∩{|Dvh|>1}

|Dvh| dy
]

12



≤ 2n

ωnρ
n
p

[(∫
B ρ

2

|V (Dvh)|2 dy
) 1

2

+

(∫
B ρ

2

|V (Dvh)|2 dy
) 1

p

]
≤ c(n, p,M)

ρ
n
p

,

and so the constant in (2.3) can be taken independently of ρ.1

Set2

ψ1,h := ηwh and ψ2,h := (1− η)wh.

By the uniformly strict quasiconvexity of F̃h we have3

ℓ1
λ2h

∫
Bs

|V (λhDwh)|2 dy

≤ ℓ1

∫
Bt

(
1 + |λhDψ1,h|2

) p−2
2 |Dψ1,h|2 dy ≤

∫
Bt

F̃h(Dψ1,h) dy

=

∫
Bt

F̃h(Dwh) dy +

∫
Bt

F̃h(Dwh −Dψ2,h) dy −
∫
Bt

F̃h(Dwh) dy

=

∫
Bt

F̃h(Dwh) dy −
∫
Bt

∫ 1

0
DF̃h(Dwh − θDψ2,h)Dψ2,h dθ dy. (3.19)

We estimate separately the two addends in the right-hand side of the previous chain of inequali-4

ties. We deal with the first addend by means of a rescaling of the minimality condition of (u,E).5

Using the change of variable x = xh + rhy, the fact that G ≥ 0 and the minimality of (u,E)6

with respect to (u+ φ,E) for φ ∈W 1,p
0 (Brh(xh);RN ), we have7 ∫

B1

F (Du(xh + rhy))dy ≤
∫
B1

[
F (Du(xh + rhy)) + 1E∗

h
G(Du(xh + rhy))

]
dy

≤
∫
B1

[
F (Du(xh + rhy) +Dφ(xh + rhy)) + 1E∗

h
G(Du(xh + rhy) +Dφ(xh + rhy))

]
dy,

i.e., by the definitions of vh and wh, (3.5) and (3.17) respectively,8 ∫
B1

F (Ah + λhBh + λhDwh)dy

≤
∫
B1

[
F (Ah + λhBh + λh(Dwh +Dψ)) + 1E∗

h
G(Ah + λhBh + λh(Dwh +Dψ)) dy,

for ψ := φ(xh+rhy)
λhrh

∈ W 1,p
0 (B1;RN ). Therefore, recalling the definitions of F̃h and G̃h in (3.18),9

we have that10 ∫
B1

F̃h(Dwh)dy ≤
∫
B1

[
F̃h(Dwh +Dψ) + 1E∗

h
G̃h(Dwh +Dψ)

]
dy

+
1

λ2h

∫
B1

1E∗
h

[
G(Ah + λhBh) +DG(Ah + λhBh)λh(Dwh +Dψ)

]
dy.

Choosing φ such that ψ = −ψ1,h, the previous inequality becomes11 ∫
Bt

F̃h(Dwh) dy ≤
∫
Bt

[
F̃h
(
Dwh −Dψ1,h

)
+ 1E∗

h
G̃h(Dwh −Dψ1,h)

]
dy (3.20)

13



+
1

λ2h

∫
B1

1E∗
h

[
G(Ah + λhBh) +DG(Ah + λhBh)λh(Dwh −Dψ1,h)

]
dy

=

∫
Bt\Bs

[
F̃h(Dψ2,h) + 1E∗

h
G̃h(Dψ2,h)

]
dy

+
1

λ2h

∫
B1

1E∗
h

[
G(Ah + λhBh) +DG(Ah + λhBh)λhDψ2,h

]
dy

≤ c(p, L1, L2,M)

λ2h

∫
Bt\Bs

|V (λhDψ2,h)|2 dy + c(n, p, L2,M)

[
|E∗

h|
λ2h

+
1

λh

∫
E∗

h

|Dψ2,h| dy
]
,

where we have used Lemma 2.5, the second estimate in (2.1), and the fact that |Ah + λhBh| ≤1

M + 1. By applying Hölder’s and Young’s inequalities, we get2

1

λh

∫
E∗

h

|Dψ2,h| dy ≤
|E∗

h|
p−1
p

λ2h

(∫
E∗

h∩(Bt\Bs)
|λhDψ2,h|p dy

) 1
p

≤ 1

λ2h

[
|E∗

h|+
∫
E∗

h∩(Bt\Bs)
|λhDψ2,h|p dy

]
≤ 1

λ2h

[
2|E∗

h|+
∫
E∗

h∩(Bt\Bs)∩{|λhDψ2,h|>1}
|λDψ2,h|p dy

]
≤ 1

λ2h

[
2|E∗

h|+
∫
Bt\Bs

|V (λhDψ2,h))|2 dy
]
.

The previous chain of inequalities combined with (3.20) yields3 ∫
B1

F̃h(Dwh)dy ≤ c(n, p, L1, L2,M)

λ2h

[ ∫
Bt\Bs

|V (λhDψ2,h)|2 dy + |E∗
h|
]
. (3.21)

Now we estimate the second addend in the right-hand side of (3.19). Using the upper bound on4

DF̃h in Lemma 2.5,5 ∫
Bt

∫ 1

0
DF̃h(Dwh − θDψ2,h)Dψ2,h dθdy (3.22)

≤ c(p, L1,M)

∫
Bt\Bs

∫ 1

0

(
1 + λ2h|Dwh − θDψ2,h|2

) p−2
2 |Dwh − θDψ2,h||Dψ2,h|dθdy.

Regarding the integrand in the latest estimate, we distinguish two cases:6

Case 1: |Dψ2,h| ≤ |Dwh − θDψ2,h|.7

By the definition of V , we have8 (
1 + λ2h|Dwh − θDψ2,h|2

) p−2
2 |Dwh − θDψ2,h||Dψ2,h| ≤ λ−2

h |V (λh(Dwh − θDψ2,h)|2.

Case 2: |Dwh − θDψ2,h| < |Dψ2,h|.9

If |Dψ2,h| < 1/λh, using (i) of Lemma 2.2 we get10 (
1 + λ2h|Dwh − θDψ2,h|2

) p−2
2 |Dwh − θDψ2,h||Dψ2,h| ≤ |Dψ2,h|2 ≤ λ−2

h |V (λhDψ2,h)|2.

14



If |Dψ2,h| ≥ 1/λh, using again (i) of Lemma 2.2 we deduce that1 (
1 + λ2h|Dwh − θDψ2,h|2

) p−2
2 |Dwh − θDψ2,h||Dψ2,h| ≤

≤ λp−2
h |Dwh − θDψ2,h|p−1|Dψ2,h| ≤ λ−2

h |λhDψ2,h|p ≤ λ−2
h |V (λhDψ2,h)|2.

By combining the two previous cases, we can proceed in the estimate (3.22) as follows:2 ∫
Bt

∫ 1

0
DF̃h(Dwh − θDψ2,h)Dψ2,h dθ dy (3.23)

≤ c(p, L1,M)

λ2h

∫
Bt\Bs

(
|V (λh(Dwh − θDψ2,h)|2 + |V (λhDψ2,h)|2

)
dy

≤ c(p, L1,M)

λ2h

∫
Bt\Bs

(
|V (λhDwh)|2 + |V (λhDψ2,h)|2

)
dy

Hence, combining (3.19) with (3.21) and (3.23), we obtain3

ℓ1
λ2h

∫
Bs

|V (λhDwh)|2 dy

≤ c(n, p, L1, L2,M)

λ2h

[ ∫
Bt\Bs

(
|V (λhDwh)|2 + |V (λhDψ2,h)|2

)
dy + |E∗

h|
]

By the definition of ψ2,h and (iii) of Lemma 2.2, we infer that4

ℓ1

∫
Bs

|V (λhDwh)|2 dy

≤ C̃

[ ∫
Bt\Bs

(
|V (λhDwh)|2 +

∣∣∣∣V (λh wh
t− s

)∣∣∣∣2) dy + |E∗
h|
]
,

for some C̃ = C̃(n, p, L1, L2,M)5

By adding C̃
∫
Bs

|V (λhDwh)|2 dy to both sides of the previous estimate, dividing by ℓ1 + C̃6

and thanks to Lemma 2.4, we deduce that7 ∫
B ρ

2

|V (λhDwh)|2 dy ≤ c(n, p, ℓ1, L1, L2,M)

(∫
Bρ

∣∣∣∣V (λhwhρ
)∣∣∣∣2 dy + |E∗

h|
)
.

Therefore, by the definition of wh, we conclude that8 ∫
B ρ

2

∣∣V (λh(Dvh − (Dvh) ρ
2
)
∣∣2 dy

≤ c(n, p, ℓ1, L1, L2,M)

[∫
Bρ

∣∣∣∣V (λh
(
vh − (vh)ρ − (Dvh) ρ

2
y
)

ρ

)∣∣∣∣2 dy + |E∗
h|

]

which, by the relative isoperimetric inequality and the hypothesis of this substep, i.e.9

min{|E∗
h|, |B1 \ Eh|} = |E∗

h|, yields the estimate (3.16).10

Substep 2.b The case min{|E∗
h|, |B1 \ Eh|} = |B1 \ Eh|.11
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As in the previous substep, we fix 0 < ρ
2 < s < t < ρ < 1 and let η ∈ C∞

0 (Bt) be a cut1

off function between Bs and Bt, i.e., 0 ≤ η ≤ 1, η ≡ 1 on Bs and |∇η| ≤ c
t−s . Also, we set2

bh := (vh)Bρ , Bh := (Dvh)B ρ
2
and define3

wh(y) := vh(y)− bh −Bhy, ∀y ∈ B1,

and4

H̃h := F̃h + G̃h.

We remark that Lemma 2.5 can be applied to H̃h, that is5

|H̃h(ξ)| ≤ c(p, L1, L2,M)
(
1 + |λhξ|2

) p−2
2 |ξ|2, ∀ξ ∈ Rn×N ,

and, by the uniformly strict quasiconvexity conditions (F2) and (G2),6 ∫
B1

H̃h(ξ +Dψ) dx ≥
∫
Bt

[
H̃h(ξ) + ℓ̃

(
1 + |λhDψ|2

) p−2
2 |Dψ|2

]
dy, ∀ψ ∈W 1,p

0 (B1;RN ), (3.24)

where we have set7

ℓ̃ = ℓ1 + ℓ2.

We set again8

ψ1,h := ηwh and ψ2,h := (1− η)wh.

By the quasiconvexity condition (3.24) and since H̃h(0) = 0, we have9

ℓ̃

λ2h

∫
Bs

|V (λhDwh)|2 dy ≤ ℓ̃

∫
Bs

(
1 + |λhDwh|2

) p−2
2 |Dwh|2 dy

≤ ℓ̃

∫
Bt

(
1 + |λhDψ1,h|2

) p−2
2 |Dψ1,h|2 dy ≤

∫
Bt

H̃h(Dψ1,h) dy =

∫
Bt

H̃h(Dwh −Dψ2,h) dy

=

∫
Bt

H̃h(Dwh) dy +

∫
Bt

H̃h(Dwh −Dψ2,h) dy −
∫
Bt

H̃h(Dwh) dy

=

∫
Bt

H̃h(Dwh) dy −
∫
Bt

∫ 1

0
DH̃h(Dwh − θDψ2,h)Dψ2,h dθ dy. (3.25)

Similarly to the previous case, we estimate separately the two addends in the right-hand side10

of the previous chain of inequalities. Using the minimality condition (3.15) for the rescaled11

functions vh and recalling the definition of H̃h, since Dvh = Dwh +Bh, we get12 ∫
B1

H̃h(Dwh)dy ≤
∫
B1

H̃h(Dwh +Dψ) dy

+
L2

λ2h

∫
(B1\Eh)∩suppψ

(
1 + |Ah + λhBh + λhDwh|2

) p
2 dy. (3.26)

Choosing ψ = −ψ1,h as test function in (3.26) and using the fact that H̃h(0) = 0, we estimate13 ∫
Bt

H̃h(Dwh) dy
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≤
∫
Bt

H̃h(Dwh −Dψ1,h) dy +
L2

λ2h

∫
Bt\Eh

(
1 + |Ah + λhBh + λhDwh|2

) p
2 dy

=

∫
Bt\Bs

H̃h

(
Dψ2,h

)
dy +

L2

λ2h

∫
Bt\Eh

(
1 + |Ah + λhBh + λhDwh|2

) p
2 dy

≤ c(p, L1, L2,M)

λ2h

∫
Bt\Bs

∣∣V (λhDψ2,h

)
|2 dy + L2

λ2h

∫
Bt\Eh

(
1 + |Ah + λhBh + λhDwh|2

) p
2 dy.

We note that, since |Ah+λhBh| ≤ c(M), for every fixed ε > 0 there exists a constant C = C(p, ε)1

such that2 (
1 + |Ah + λhBh + λhDwh|2

) p
2 ≤ C(p, ε)c(M)p + (1 + ε)λph|Dwh|

p.

Summarizing, we get3 ∫
Bt

H̃h(Dwh) dy ≤ c(p, L1, L2,M)

λ2h

∫
Bt\Bs

∣∣V (λhDψ2,h

)
|2 dy (3.27)

+ (1 + ε)
L2

λ2h

∫
Bt

1{|λhDwh|≥1} |λhDwh|
p dy + c(p, L2,M, ε)

|B1 \ Eh|
λ2h

.

Now we estimate the second addend in the right-hand side of (3.25). Using the upper bound on4

DH̃h in Lemma 2.5, we obtain5 ∫
Bt

∫ 1

0
DH̃h(Dwh − θDψ2,h)Dψ2,h dθ dy

≤ c(p, L1, L2,M)

∫
Bt\Bs

∫ 1

0

(
1 + λ2h|Dwh − θDψ2,h|2

) p−2
2 |Dwh − θDψ2,h||Dψ2,h| dy.

Proceeding exactly as in the estimate (3.23) of the step 2.a, we obtain6 ∫
Bt

∫ 1

0
DH̃h(Dwh − θDψ2,h)Dψ2,h dθ dy (3.28)

≤ c(p, L1, L2,M)

λ2h

∫
Bt\Bs

(
|V (λhDwh)|2 + |V (λhDψ2,h)|2

)
dy.

Inserting (3.27) and (3.28) in (3.25), we infer that7

ℓ̃

λ2h

∫
Bs

|V (λhDwh)|2 dy

≤ c(p, L1, L2,M)

λ2h

∫
Bt\Bs

(
|V (λhDwh)|2 + |V (λhDψ2,h)|2

)
dy

+ (1 + ε)
L2

λ2h

∫
Bt

1{|λhDwh|≥1} |λhDwh|
p dy + c(p, L2,M, ε)

|B1 \ Eh|
λ2h

≤ c(p, L1, L2,M)

λ2h

∫
Bt\Bs

|V (λhDwh)|2 dy +
c(p,M,L1, L2)

λ2h

∫
Bt\Bs

∣∣∣∣V (λh wh
t− s

)∣∣∣∣2 dy
+ (1 + ε)

L2

λ2h

∫
Bt

|V (λhDwh)|2 dy + c(p, L2,M, ε)
|B1 \ Eh|

λ2h
.
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Taking advantage of the hole filling technique as in the previous case, we obtain1 ∫
Bt\Bs

|V (λhDwh)|2 dy

≤ (c(p, L1, L2,M) + (1 + ε)L2)

(c(p,M,L1, L2) + ℓ̃)

∫
Bt

|V (λhDwh)|2 dy

+ c(p,M,L1, L2)

∫
Bt\Bs

∣∣∣∣V (λh wh
t− s

)∣∣∣∣2 dy + c(p, L2,M, ε)
|B1 \ Eh|

λ2h
.

The assumption (H) implies that there exists ε = ε(p, ℓ1, ℓ2, L2) > 0 such that (1+ε)L2

ℓ1+ℓ2
< 1.2

Therefore we have3

c+ (1 + ε)L2

c+ ℓ̃
=
c+ (1 + ε)L2

c+ ℓ1 + ℓ2
< 1.

So, by virtue of Lemma 2.4, from the previous estimate we deduce that4 ∫
B ρ

2

|V (λhDwh)|2 dy ≤ c(n, p, ℓ1, ℓ2, L1L2,M)

(∫
Bρ

∣∣∣∣V (λhwhρ
)∣∣∣∣2 dy + |B1 \ Eh|

)
.

By definition of wh and the relative isoperimetric inequality, since |B1\Eh| = min{|E∗
h|, |B1\Eh|},5

we get the estimate (3.16).6

Step 3. v solves a linear system in B1.7

Let us divide the proof into two cases, depending on which one is the smallest between |E∗
h|8

and |B1 \ Eh|.9

We divide the proof in two substeps.10

Substep 3.a The case min{|E∗
h|, |B1 \ Eh|} = |E∗

h|. We claim that v solves the linear system11

∫
B1

D2F (A)DvDψ dy = 0,

for all ψ ∈ C1
0 (B1;RN ). Since vh satisfies (3.13), we have that12

0 ≤ Ih(vh + sψ)− Ih(vh) +
1

λh

∫
B1

1E∗
h
DG(Ah)sDψ dy,

for every ψ ∈ C1
0 (B1;RN ) and s ∈ (0, 1). Dividing by s and passing to the limit as s → 0, by13

the definition of Ih, we get (see [9] or [11])14

0 ≤ 1

λh

∫
B1

(DF (Ah + λhDvh)−DF (Ah))Dψ dy

+
1

λh

∫
B1

1E∗
h
DG(Ah + λhDvh)Dψ dy. (3.29)

We partition the unit ball as follows:15

B1 = B+
h ∪B−

h = {y ∈ B1 : λh|Dvh| > 1} ∪ {y ∈ B1 : λh|Dvh| ≤ 1}.
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By (3.7), we get1

|B+
h | ≤

∫
B+

h

λph|Dvh|
p dy ≤ λph

∫
B1

|Dvh|p dy ≤ c(n, p,M)λph. (3.30)

We rewrite (3.29) as follows:2

0 ≤ 1

λh

∫
B+

h

(DF (Ah + λhDvh)−DF (Ah))Dψ dy

+

∫
B−

h

∫ 1

0

(
D2F (Ah + tλhDvh)−D2F (A)

)
dtDvhDψ dy

+

∫
B−

h

D2F (A)DvhDψ dy +
1

λh

∫
B1

1E∗
h
DG(Ah + λhDvh)Dψ dy. (3.31)

By growth condition in (2.1) and Hölder’s inequality, we get3

1

λh

∣∣∣∣∣
∫
B+

h

(DF (Ah + λhDvh)−DF (Ah))Dψ dy

∣∣∣∣∣
≤ c(p, L1,M,Dψ)

[
|B+

h |
λh

+ λp−2
h

∫
B+

h

|Dvh|p−1 dy

]

≤ c(n, p, L1,M,Dψ)

[
λp−1
h + λp−1

h

(∫
B1

|Dvh|p dy
) p−1

p
(
|B+

h |
λph

) 1
p

]
≤ c(n, p, L1,M,Dψ)λp−1

h ,

thanks to (3.3), (3.7) and (3.30). Thus4

lim
h→∞

1

λh

∣∣∣∣ ∫
B+

h

(DF (Ah + λhDvh)−DF (Ah))Dψ dy

∣∣∣∣ = 0. (3.32)

By (3.3) and the definition of B−
h we have that |Ah+λhDvh| ≤M+1 on B−

h . Hence we estimate5 ∣∣∣∣ ∫
B−

h

∫ 1

0

(
D2F (Ah + tλhDvh)−D2F (A)

)
dtDvhDψ dy

∣∣∣∣
≤
∫
B−

h

∣∣∣∣∫ 1

0

(
D2F (Ah + tλhDvh)−D2F (A)

)
dt

∣∣∣∣ |Dvh||Dψ| dy
≤

(∫
B−

h

∣∣∣∣∫ 1

0

(
D2F (Ah + tλhDvh)−D2F (A)

)
dt

∣∣∣∣
p

p−1

dy

) p−1
p

∥Dvh∥Lp(B1)
∥Dψ∥L∞(B1)

≤ c(n, p,M,Dψ)

(∫
B−

h

∣∣∣∣∫ 1

0

(
D2F (Ah + tλhDvh)−D2F (A)

)
dt

∣∣∣∣
p

p−1

dy

) p−1
p

,

where we have used (3.7). Since, by (3.8), λhDvh → 0 a.e. in B1, the uniform continuity of6

D2F on bounded sets implies that7

lim
h→∞

∣∣∣∣ ∫
B−

h

∫ 1

0

(
D2F (Ah + tλhDvh)−D2F (A)

)
dtDvhDψ dy

∣∣∣∣ = 0. (3.33)
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Note that (3.30) yields that 1B−
h
→ 1B1 in Lr(B1), for every r < ∞. Therefore, by the weak1

convergence of Dvh to Dv in Lp(B1), it follows that2

lim
h→∞

∫
B−

h

D2F (A)DvhDψ dy =

∫
B1

D2F (A)DvDψ dy. (3.34)

By growth condition (2.1), we deduce3

1

λh

∣∣∣∣∫
B1

1E∗
h
[DξG(Ah + λhDvh)Dψ dy

∣∣∣∣ ≤ c(p, L2)

λh

∫
B1

1E∗
h

(
1 + |Ah + λhDvh|2

) p−1
2 |Dψ| dy

≤ c(p, L2,M,Dψ)

[
1

λh
|E∗

h|+ λp−2
h

∫
E∗

h

|Dvh|p−1 dy

]

≤ c(p, L2,M,Dψ)

[
1

λh
|E∗

h|+ λ
p−2+ 2

p

h

(∫
B1

|Dvh|p dy
) p−1

p
(
|E∗

h|
λ2h

) 1
p
]

≤ c(n, p, L2,M,Dψ)

[
1

λh
|E∗

h|+ λ
p−2− 2

p

h

(
|E∗

h|
λ2h

) 1
p
]
,

where we have used (3.3) and (3.7). Since min{|E∗
h|, |B1 \ Eh|} = |E∗

h|, by (3.10), we have4

lim
h→∞

|E∗
h|

λ2h
= 0,

and so5

lim
h→∞

1

λh

∫
B1

1E∗
h
DG(Ah + λhDvh)Dψ dy = 0. (3.35)

By (3.32), (3.33), (3.34) and (3.35), passing to the limit as h→ ∞ in (3.31), we get6 ∫
B1

DF (A)DvDψ dy ≥ 0.

Furthermore, plugging −ψ in place of ψ, we get7 ∫
B1

DF (A)DvDψ dy = 0,

i.e. v solves a linear system with constant coefficients.8

Substep 3.b The case min{|E∗
h|, |B1 \ Eh|} = |B1 \ Eh|.9

We claim that v solves the linear system10 ∫
B1

D2(F +G)(A)DvDψ dy = 0,

for all ψ ∈ C1
0 (B1;RN ). Dividing by s and passing to the limit as s→ 0, by the definition of Hh11

we get (see [9] or [11])12

0 ≤ 1

λh

∫
B1

[
D(F +G)(Ah + λhDvh)Dψ −D(F +G)(Ah)Dψ

]
dy (3.36)
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+ c(p, L2,M)

[
1

λh

∫
B1\Eh

|Dψ|dy +
∫
B1\Eh

λp−2
h |Dvh|p−1|Dψ| dy

]
.

As before, we partition B1 as follows:1

B1 = B+
h ∪B−

h = {y ∈ B1 : λh|Dvh| > 1} ∪ {y ∈ B1 : λh|Dvh| ≤ 1}.

We rewrite (3.36) as2

0 ≤ 1

λh

∫
B+

h

(D(F +G)(Ah + λhDvh)−D(F +G)(Ah))Dψ dy (3.37)

+
1

λh

∫
B−

h

(D(F +G)(Ah + λhDvh)−D(F +G)(Ah))Dψ dy

+ c(p, L2,M)

[
1

λh

∫
B1\Eh

|Dψ|dy +
∫
B1\Eh

λp−2
h |Dvh|p−1|Dψ| dy

]
.

Arguing as in (3.32), we obtain that3

lim
h→∞

1

λh

∣∣∣∣∣
∫
B+

h

(D(F +G)(Ah + λhDvh)−D(F +G)(Ah))Dψ dy

∣∣∣∣∣ = 0, (3.38)

and, as in (3.33) and (3.34),4

lim
h→∞

1

λh

∫
B−

h

[D(F +G)(Ah + λhDvh)−D(F +G)(Ah)]Dψ dy

=

∫
B1

D(F +G)(A)DvDψ dy. (3.39)

Moreover, we have that5

1

λh

∫
B1\Eh

|Dψ|dy +
∫
B1\Eh

λp−2
h |Dvh|p−1|Dψ| dy

≤ c(p,Dψ)

[
|B1 \ Eh|

λh
+ λ

p−2+ 2
p

h

(∫
B1

|Dvh|p dy
) p−1

p
(
|B1 \ Eh|

λ2h

) 1
p

]

≤ c(n, p,Dψ)

[
|B1 \ Eh|

λh
+ λ

p−2+ 2
p

h

(
|B1 \ Eh|

λ2h

) 1
p

]
,

where we used (3.7). Since min{|E∗
h|, |B1 \ Eh|} = |B1 \ Eh|, by (3.10), we have6

lim
h→∞

|B1 \ Eh|
λ2h

= 0,

and we obtain7

lim
h→∞

[
1

λh

∫
B1\Eh

|Dψ|dy +
∫
B1\Eh

λp−2
h |Dvh|p−1|Dψ| dy

]
= 0. (3.40)
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By (3.38), (3.39) and (3.40), passing to the limit as h→ ∞ in (3.37) we conclude that1 ∫
B1

D2(F +G)(A)DvDψ dy ≥ 0

and, with −ψ in place of ψ, we finally get2 ∫
B1

D2(F +G)(A)DvDψ dy = 0,

as claimed.3

By Proposition 2.1 and the theory of linear systems (see [29, Theorem 2.1 and Chapter 3]),4

we deduce in both cases that v ∈ C∞ and there exists a constant c̃ = c̃(n,N, p, ℓ1, ℓ2, L1, L2) > 05

such that6 ∫
Bτ

|Dv − (Dv)τ |2 ≤ c̃τ2
∫
B 1

2

|Dv − (Dv) 1
2
|2 dx,

for any τ ∈
(
0, 12
)
. Moreover, by Proposition 2.1 again,7 ∫

B 1
2

|Dv − (Dv) 1
2
|2 dx ≤ sup

B 1
2

|Dv|2 ≤ c̃

(∫
B1

|Dv|p dx
)2/p

.

Observing that8

∥Dv∥Lp(B1)
≤ lim sup

h
∥Dvh∥Lp(B1)

≤ c(n, p),

it follows that9 ∫
Bτ

|Dv − (Dv)τ |2 ≤ Cτ2, (3.41)

for some fixed C = C(n,N, p, ℓ1, ℓ2, L1, L2).10

Step 4. An estimate for the perimeters.11

Our aim is to show that there exists a constant c = c(n, p, L2,Λ,M) > 0 such that12

P (Eh, Bτ ) ≤ c

[
1

τ
P (Eh, B1)

n
n−1 + rhτ

n + rhλ
p
h

]
. (3.42)

By the minimality of (u,E) with respect to (u, Ẽ), where Ẽ is a set of finite perimeter such that13

Ẽ∆E ⋐ Brh(xh) and Brh(xh) are the balls of the contradiction argument, we get14 ∫
Brh

(xh)
1EG(Du) +Φ(E;Brh(xh)) ≤

∫
Brh

(xh)
1
Ẽ
G(Du) +Φ(Ẽ;Brh(xh)).

Using the change of variable x = xh + rhy and dividing by rn−1
h , we have15

rh

∫
B1

1Eh
G(Ah + λhDvh)dy +Φh(Eh;B1) ≤ rh

∫
B1

1
Ẽh
G(Ah + λhDvh)dy +Φh(Ẽh;B1),
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where1

Φh(Eh;V ) :=

∫
V ∩∂∗Eh

Φ(xh + rhy, νEh
(y)) dHn−1(y),

for every Borel set V ⊂ Ω. Assume first that min{|B1 \ Eh|, |E∗
h|} = |B1 \ Eh|. Choosing2

Ẽh := Eh ∪Bρ, we get3

Φh(Eh;B1) ≤ rh

∫
B1

1BρG(Ah + λhDvh)dy +Φh(Ẽh;B1). (3.43)

By the coarea formula, the relative isoperimetric inequality, the choice of the representative E
(1)
h4

of Eh, which is a Borel set, we get5 ∫ 2τ

τ
Hn−1(∂Bρ \ Eh) dρ ≤ |B1 \ Eh| ≤ c(n)P (Eh, B1)

n
n−1 .

Therefore, thanks to Chebyshev’s inequality, we may choose ρ ∈ (τ, 2τ), independent of n, such6

that, up to subsequences, it holds7

Hn−1(∂∗Eh ∩ ∂Bρ) = 0 and Hn−1(∂Bρ \ Eh) ≤
c(n)

τ
P (Eh, B1)

n
n−1 . (3.44)

We remark that Proposition 2.9 holds also for Φh. Thus, thanks to the choice of ρ, being8

Hn−1(∂∗Eh ∩ ∂Bρ) = 0, we have that9

Φh(Ẽh;B1) = Φh(Eh;B
(0)
ρ ) +Φh(Bρ;E

(0)
h ) +Φh(Eh; {νEh

= νBρ})

= Φh(Eh;B1 \Bρ) +Φh(Bρ;E
(0)
h ).

By the choice of the representative of Eh (see Remark 2.7), taking into account (2.8) and the10

inequality in (3.44), it follows that11

Φh(Ẽh;B1) ≤ Φh(Eh;B1 \Bρ) + ΛHn−1(∂Bρ ∩ E(0)
h ) (3.45)

≤ Φh(Eh;B1 \Bρ) + ΛHn−1(∂Bρ \ Eh).

≤ Φh(Eh;B1 \Bρ) + Λ
c(n)

τ
P (Eh, B1)

n
n−1 .

On the other hand, by (2.8) and the additivity of the measure Φh(Eh, ·) it holds that12

1

Λ
P (Eh, Bτ ) ≤ Φh(Eh;Bτ ) ≤ Φh(Eh;B1)−Φh(Eh;B1 \Bρ), (3.46)

since ρ > τ . Combining (3.43), (3.45) and (3.46), we obtain13

1

Λ
P (Eh, Bτ ) ≤ Φh(Eh;B1)−Φh(Eh;B1 \Bρ) (3.47)

≤ Φh(Ẽh;B1) + rh

∫
B1

1BρG(Ah + λhDvh)dy −Φh(Eh;B1 \Bρ)

≤ Λ
c(n)

τ
P (Eh, B1)

n
n−1 + rh

∫
B1

1BρG(Ah + λhDvh)dy
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≤ Λ
c(n)

τ
P (Eh, B1)

n
n−1 + c(p, L2)rh

∫
B2τ

(1 + |Ah + λhDvh|2)
p
2 dy

≤ Λ
c(n)

τ
P (Eh, B1)

n
n−1 + c(n, p, L2,M)rhτ

n + c(p, L2)rhλ
p
h

∫
B2τ

|Dvh|p dy

≤ Λ
c(n)

τ
P (Eh, B1)

n
n−1 + c(n, p, L2,M)rhτ

n + c(n, p, L2)rhλ
p
h,

where we used (3.7). The previous estimate leads to (3.42). We reach the same conclusion if1

min{|B1 \ Eh|, |E∗
h|} = |E∗

h|, choosing Ẽh = Eh \Bρ as a competitor set.2

Step 5. Higher integrability of vh.3

We need to prove that there exist two positive constants C and δ depending on n, p, ℓ1, ℓ2, L1, L24

such that for every Br ⊂ B1 it holds5 ∫
B r

2

|V (λhDvh)|2(1+δ) dy ≤ C

[(∫
B1

|V (λhDv)|2 dy
)1+δ

+ 1

]
.

We remark that6

|Fh(ξ)|+ |Gh(ξ)| ≤
c(p, L1, L2,M)

λ2h
|V (λhξ)|2, ∀ξ ∈ Rn×N ,

and7 ∫
B1

Fh(Dϕ) dy ≥ ℓ1
λ2h

∫
B1

|V (λhDϕ)|2 dy, ∀ϕ ∈ C1
c (B1,RN )

Let r > 0 be such that B3r ⊂ B1,
r
2 < s < t < r and η ∈ C1

c (Bt) be such that 0 ≤ η ≤ 1, η = 18

on Bs, |Dη| ≤ c
t−s , for some positive constant c. We define9

ϕ1 := [vh − (vh)r]η, ϕ2 := [vh − (vh)r](1− η).

We deal with the case min{|E∗
h|, |B1\Eh|} = |E∗

h|, the other one is similar. Using the minimality10

relation (3.13) and the usual growth conditions, we get11

ℓ1
λ2h

∫
Bt

|V (λhDϕ1)|2 dy ≤
∫
Bt

Fh(Dϕ1) dy

=

∫
Bt

Fh(Dvh) dy +

∫
Bt\Bs

[Fh(Dvh −Dϕ2)− Fh(Dvh)] dy

≤ Ih(vh) +
∫
Bt\Bs

[Fh(Dvh −Dϕ2)− Fh(Dvh)] dy

≤ Ih(ϕ2) +
∫
Bt\Bs

[Fh(Dvh −Dϕ2)− Fh(Dvh)] dy +
1

λ2h

∫
Bt∩E∗

h

DG(Ah)|Dϕ1| dy

≤ c(p, L1, L2,M)

λ2h

[ ∫
Bt\Bs

[
|V (λhDϕ2)|2 + |V (λhDϕ1)|2 + |V (λhDvh)|2

]
dy

+
1

λh

∫
Bt∩E∗

h

|Dϕ1| dy
]
.
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By the properties of V , it holds that1

|ξ| ≤ C(p)
(
1 + |V (ξ)|

2
p
)
, ∀ξ ∈ Rn×N .

Thus it follows2

1

λ2h

∫
Bt∩E∗

h

|λhDϕ1| dy ≤ c(p)

λ2h

[
|E∗

h ∩Bt|+
∫
Bt∩E∗

h

V (|λhDϕ1|)
2
p dy

]
≤ c(p)

λ2h

[
c(ε)|E∗

h ∩Bt|+ ε

∫
Bt∩E∗

h

|V (λhDϕ1)|2 dy
]
.

Combining the previous two chains of inequalities, we deduce that3

ℓ1
λ2h

∫
Bt

|V (λhDϕ1)|2 dy

≤ c(p, L1, L2,M)

λ2h

[ ∫
Bt\Bs

[
|V (λhDϕ2)|2 + |V (λhDϕ1)|2 + |V (λhDvh)|2

]
dy

+ c(ε)|E∗
h ∩Bt|+ ε

∫
Bt∩E∗

h

|V (λhDϕ1)|2 dy
]
.

Choosing ε sufficiently small, we absorb the last integral to the left-hand side4

1

λ2h

∫
Bt

|V (λhDϕ1)|2 dy

≤ c(p, ℓ1, L1, L2,M)

λ2h

[ ∫
Bt\Bs

[
|V (λhDϕ2)|2 + |V (λhDϕ1)|2 + |V (λhDvh)|2

]
dy + |E∗

h ∩Bt|
]
.

By (ii) of Lemma 2.2, it follows5 ∫
Bs

|V (λhDvh)|2 dy

≤ c(p, ℓ1, L1, L2,M)

[∫
Bt\Bs

|V (λhDvh)|2 dy +
∫
Bt\Bs

∣∣∣∣V (λh vh − (vh)r
t− s

)∣∣∣∣2 dy + |E∗
h ∩Bt|

]
.

By applying the hole-filling technique, we add c(p, ℓ1, L1, L2,M)
∫
Bs

|V (λhDvh)|2 dy, and we get6 ∫
Bs

|V (λhDvh)|2 dy

≤ c(p, ℓ1, L1, L2,M)

c(p, ℓ1, L1, L2,M) + 1

[∫
Bt

|V (λhDvh)|2 dy +
∫
Bt\Bs

∣∣∣∣V (λh vh − (vh)r
t− s

)∣∣∣∣2 dy + |E∗
h ∩Bt|

]
.

Now we can apply Lemma 2.4 and derive7 ∫
Br/2

|V (λhDvh)|2 dy ≤ c(p, ℓ1, L1, L2,M)

[∫
Br

∣∣∣∣V (λh vh − (vh)r
r

)∣∣∣∣2 dy + |E∗
h ∩Br|

]
.
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Finally, by Hölder’s inequality and Theorem 2.6 we gain1 ∫
Br/2

|V (λhDvh)|2 dy ≤ c(p, ℓ1, L1, L2,M)

{[∫
Br

∣∣∣∣V (λh vh − (vh)r
r

)∣∣∣∣2(1+σ) dy
] 1

1+σ

+ |Br|

}

≤ c(p, ℓ1, L1, L2,M)

{[∫
B3r

|V (λhDvh)|α dy
] 1

2α

+ |Br|

}
.

We conclude the proof by applying Theorem 6.6 in [31].2

Step 6. Conclusion. By the change of variable x = xh + rhy, (v) of Lemma 2.2 and the3

Caccioppoli inequality in (3.16), for every 0 < τ < 1
4 we have4

lim sup
h→∞

U∗(xh, τrh)

λ2h

≤ lim sup
h→∞

∫
Bτrh

(x0)

∣∣V (Du)− V
(
(Du)x0,r

)∣∣2 dx+ lim sup
h→∞

P (E,Bτrh(xh))

λ2hτ
n−1rn−1

h

+ lim sup
h→∞

τrh
λ2h

≤ lim sup
h→∞

1

λ2h

∫
Bτ

∣∣V (λhDvh +Ah)− V
(
Ah + λh(Dvh)τ

)∣∣2 dy + lim sup
h→∞

P (Eh, Bτ )

λ2hτ
n−1

+ τ

≤ lim sup
h→∞

c(n, p)

λ2h

∫
Bτ

∣∣V (λh
(
Dvh − (Dvh)τ

)∣∣2 dy + lim sup
h→∞

P (Eh, Bτ )

λ2hτ
n−1

+ τ

≤ c(n, p, ℓ1, ℓ2, L1, L2,Λ,M)

{
lim sup
h→∞

1

λ2h

∫
B2τ

∣∣∣∣V (λh
(
vh − (vh)2τ − (Dvh)τ y

)
2τ

)∣∣∣∣2 dy
+

1

τn
lim sup
h→∞

P (Eh, B1)
n

n−1

λ2h
+

1

τn−1
lim sup
h→∞

(
rhτ

n

λ2h
+
rh
λ2h
λph

)
+ τ

}
,

where we have used (3.7) and estimate (3.47).5

Now we want to prove that6

lim sup
h→∞

1

λ2h

∫
B2τ

∣∣∣∣V (λh
(
vh − (vh)2τ − (Dvh)τ y

)
2τ

)∣∣∣∣2 dy
= lim sup

h→∞

1

λ2h

∫
B2τ

∣∣∣∣V (λh
(
v − (v)2τ − (Dv)τ y

)
2τ

)∣∣∣∣2 dy ≤
∫
B2τ

|v − (v)2τ − (Dv)τy|2

τ2
dy,

where we have used that v and Dv are bounded, λh → 0 and |V (ξ)| ≤ |ξ| for |ξ| ≤ 1.7

In view of this aim it is enough to prove that8

I := lim
h→∞

1

λ2h

∫
B2τ

∣∣∣∣V (λh
(
(vh − v)− (vh − v)2τ − (Dvh −Dv)τ y

)
2τ

)∣∣∣∣2 dy = 0.

In the sequel σ will denote the exponent given in the Sobolev-Poincaré type inequality of the9

Theorem 2.6. We can assume that the higher integrability exponent δ given in the step 5 is such10

that δ < σ.11

Let us choose θ ∈ (0, 1) such that 2θ + 1−θ
1+σ = 1. Applying Hölder’s inequality, it holds that12

0 ≤ I ≤ lim sup
h→∞

1

λ2h

(∫
B2τ

∣∣∣∣V (λh
(
(vh − v)− (vh − v)2τ − (Dvh −Dv)τ y

)
2τ

)∣∣∣∣ dy)2θ
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·
(∫

B2τ

∣∣∣∣V (λh
(
(vh − v)− (vh − v)2τ − (Dvh −Dv)τ y

)
2τ

)∣∣∣∣2(1+σ)dy) 1−θ
1+σ

.

Using the fact that |V (ξ)| ≤ |ξ| and (iii) of Lemma 2.2, for the first factor in the previous1

product, and using also Theorem 2.6 applied to (vh−v)− (vh−v)2τ − (Dvh−Dv)τ y, we deduce2

0 ≤ I ≤ lim sup
h→∞

c

λ2h

(
λh

∫
B2τ

(∣∣∣∣vh − v

τ

∣∣∣∣+ ∣∣∣∣(Dvh −Dv)τ
τ

∣∣∣∣) dy)2θ

×
(∫

B6τ

∣∣V (λh(Dvh −Dv)
)∣∣αdy) 2(1−θ)

α

.

In the last term we can increase choosing α = 2 and accordingly, observing that3 ∫
B1

∣∣V (λhDvh)∣∣2dy ≤ c(n)λ2h,

we conclude that4

0 ≤ I ≤ lim
h→∞

c

λ2h
λ2θh

(∫
B2τ

(∣∣∣∣vh − v

τ

∣∣∣∣+ ∣∣∣∣(Dvh −Dv)τ
τ

∣∣∣∣) dy)2θ

· cλ2(1−θ)h

= lim
h→∞

C

(∫
B2τ

(
|vh − v|+ |(Dvh −Dv)τ |

)
dy

)2θ

= 0.

By virtue of (3.7), (3.9), (3.10), (3.41), the Poincaré-Wirtinger inequality and (3.41), we get5

lim sup
h→∞

U∗(xh, τrh)

λ2h
≤ c(n, p, ℓ1, ℓ2, L2,Λ,M)

{∫
B2τ

|v − (v)2τ − (Dv)τy|2

τ2
dy + τ

}
≤ c(n, p, ℓ1, ℓ2, L2,Λ,M)

{∫
B2τ

|Dv − (Dv)τ |2 dy + τ

}
≤ c(n,N, p, ℓ1, ℓ2, L1, L2,Λ,M)

[
τ2 + τ

]
≤ C(n,N, p, ℓ1, ℓ2, L1, L2,Λ,M)τ.

The contradiction follows, by choosing C∗ such that C∗ > C, since, by (3.4),6

lim inf
h

U∗(xh, τrh)

λ2h
≥ C∗τ.

7

If assumption (H) is not taken into account, it is still possible to establish a decay result for8

the excess, analogous to the previous one. However, this requires employing a modified ”hybrid”9

excess, defined as:10

U∗∗(x0, r) := U(x0, r) +

(
P (E,Br(x0))

rn−1

) δ
1+δ

+ rβ,

where U(x0, r) is defined in (3.1), δ is the higher integrability exponent given in the Step 5 of11

Proposition 3.1 and 0 < β < δ
1+δ . The following result still holds true.12
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Proposition 3.2. Let (u,E) be a local minimizer of I in (1.2) under the assumptions (F1),1

(F2), (G1) and (G2). For every M > 0 and 0 < τ < 1
4 , there exist two positive constants2

ε0 = ε0(τ,M) and c∗∗ = c∗∗(n, p, ℓ1, ℓ2, L1, L2,Λ, δ,M) for which, whenever Br(x0) ⋐ Ω verifies3

|(Du)x0,r| ≤M and U∗∗(x0, r) ≤ ϵ0,

then4

U∗∗(x0, τr) ≤ c∗∗ τ
β U∗∗(x0, r).

In order to avoid unnecessary repetition we do not include the proof here, as it is almost5

identical to the proof of the Proposition 3.1, with the obvious adjustments, see [9].6

4 Proof of the Main Theorem7

Here we give the proof of Theorem 1.2 through a suitable iteration procedure. It is easy to show8

the validity of the following lemma by arguing exactly in the same way as in [11, Lemma 6.1].9

Lemma 4.1. Let (u,E) be a minimizer of the functional I and let c∗ the constant introduced10

in Proposition 3.1. For every α ∈ (0, 1) and M > 0 there exists ϑ0 = ϑ0(c∗, α) < 1 such11

that for ϑ ∈ (0, ϑ0) there exists a positive constant ε1 = ε1(n, p, ℓ1, ℓ2, L1, L2,M, ϑ) such that, if12

Br(x0) ⋐ Ω,13

|Du|x0,r < M and U∗(x0, r) < ε1,

then14

|Du|x0,ϑhr < 2M and U∗(x0, ϑ
hr) ≤ ϑhαU∗(x0, r), ∀h ∈ N0. (4.1)

Proof. Let M > 0, α ∈ (0, 1) and ϑ ∈ (0, ϑ0), where ϑ0 < 1. Let ε1 < ε0, where ε0 is the15

constant appearing in Proposition 3.1. We first prove by induction that16

|Du|x0,ϑhr < 2M, ∀h ∈ N0. (4.2)

If h = 0, the statement holds. Assuming that (4.2) holds for h > 0, applying properties (i) and17

(vi) of Lemma 2.2, we compute:18

|Du|x0,ϑh+1r ≤ |Du|x0,r +
h+1∑
j=1

||Du|x0,ϑjr − |Du|x0,ϑj−1r|

≤M +
h+1∑
j=1

∫
B

ϑjr

|Du− (Du)x0,ϑj−1r| dx

≤M + ϑ−n
h+1∑
j=1

[
1

|Bϑj−1r|

∫
B

ϑj−1r
∩{|Du−(Du)

x0,ϑ
j−1r

|≤1}
|Du− (Du)x0,ϑj−1r| dx

+
1

|Bϑj−1r|

∫
B

ϑj−1r
∩{|Du−(Du)

x0,ϑ
j−1r

|>1}
|Du− (Du)x0,ϑj−1r| dx

]

≤M + ϑ−n
h+1∑
j=1

[(∫
B

ϑj−1r

|V (Du− (Du)x0,ϑj−1r)|2 dx
) 1

2
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+

(∫
B

ϑj−1r

|V (Du− (Du)x0,ϑj−1r)|2 dx
) 1

p

]

≤M + c(p,M)ϑ−n
h+1∑
j=1

[
U∗(x0, ϑ

j−1r)
1
2 + U∗(x0, ϑ

j−1r)
1
p
]

≤M + c(p, c∗,M)ε
1
2
1 ϑ

−n
h+1∑
j=1

ϑ
j−1
2 ≤M + c(p, c∗,M)ε

1
2
1

ϑ−n

1− ϑ
1
2

≤ 2M,

where we have chosen ε1 = ε1(p, c∗,M, ϑ) > 0 sufficiently small. Now we prove the second1

inequality in (4.1). The statement is obvious for h = 0. If h > 0 and (4.1) holds, we have that2

U∗(x0, ϑ
hr) ≤ ϑhαU∗(x0, r) < ε1, (4.3)

by our choice of ϑ and ε1. Thus thanks to (4.2) we can apply Proposition 3.1 with ϑhr in place3

of r to deduce that4

U∗(x0, ϑ
h+1r) ≤ ϑαU∗(x0, ϑ

hr) ≤ ϑ(h+1)αU∗(x0, r),

where we have chosen ϑ0 = ϑ0(c∗, α) sufficiently small and we have used (4.3). Therefore, the5

second inequality in (4.1) is also true for every k ∈ N.6

Analogously, it is possible to prove an iteration lemma for U∗∗.7

Lemma 4.2. Let (u,E) be a minimizer of the functional I and let β be the exponent of Propo-8

sition 3.2. For every M > 0 and ϑ ∈ (0, ϑ0), with ϑ0 < min
{
c∗∗,

1
4

}
, there exist ε1 > 0 and9

R > 0 such that, if r < R and x0 ∈ Ω satisfy10

Br(x0) ⋐ Ω, |Du|x0,r < M and U∗∗(x0, r) < ε1,

where c∗∗ is the constant introduced in Proposition 3.2, then11

|Du|x0,ϑhr < 2M and U∗∗(x0, ϑ
kr) ≤ ϑkβU∗∗(x0, r), ∀k ∈ N.

Proof of Theorem 1.2. We consider the set12

Ω1 :=

{
x ∈ Ω : lim sup

ρ→0
|(Du)x,ρ| <∞ and lim sup

ρ→0
U∗(x, ρ) = 0

}
and let x0 ∈ Ω1. For every M > 0 and for ε1 determined in Lemma 4.1 there exists a radius13

RM,ε1 > 0 such that14

|Du|x0,r < M and U∗(x0, r) < ε1,

for every 0 < r < RM,ε1 . Let 0 < ρ < ϑr < R and h ∈ N be such that ϑh+1r < ρ < ϑhr, where15

ϑ = ϑ0
2 and ϑ0 is the same constant appearing in Lemma 4.1. By Lemma 4.1, we obtain16

|Du|x0,ρ ≤
1

ϑn
|Du|x0,ϑhr ≤ c(M, c∗, α).
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Using (iv) of Lemma 2.2 and reasoning as in the proof of Lemma 4.1, we estimate1

|V ((Du)x0,ϑhr)− V ((Du)x0,ρ)|2 ≤ c(n, p)|(Du)x0,ϑhr − (Du)x0,ρ|2

≤ c(n, p, c∗,M)ϑ−2n
0 ϑhαU∗(x0, r).

Thus, taking the previous two inequalities into account, applying again Lemma 4.1, we estimate2

U∗(x0, ρ) ≤ 2

∫
Bρ(x0)

|Du− (Du)x0,ϑhr|
2 dx+ 2|(Du)x0,ϑhr − (Du)x0,ρ|2 +

P (E,Bρ(x0))

ρn−1
+ ρ

≤ c(n, p,M, c∗ϑ0)

[∫
B

ϑhr
(x0)

|Du− (Du)x0,ϑhr|
2 dx+ ϑhαU∗(x0, r) +

P (E,Bϑhr(x0))

(ϑhr)n−1
+ ϑhr

]
≤ c(n, p, c∗,M, ϑ0)

[
U∗(x0, ϑ

hr) + ϑhαU∗(x0, r)
]
≤ c(n, p, c∗,M, ϑ0)

(ρ
r

)α
U∗(x0, r).

The previous estimate implies that3

U(x0, ρ) ≤ C∗

(ρ
r

)α
U∗(x0, r),

where C∗ = C∗(n, p, c∗,M, ϑ0). Since U∗(y, r) is continuous in y, we have that U∗(y, r) < ε1 for4

every y in a suitable neighborhood I of x0. Therefore, for every y ∈ I we have that5

U(y, ρ) ≤ C∗

(ρ
r

)α
U∗(y, r).

The last inequality implies, by the Campanato characterization of Hölder continuous functions6

(see [31, Theorem 2.9]), that u is C1,α in I for every 0 < α < 1
2 , and we can conclude that the7

set Ω1 is open and the function u has Hölder continuous derivatives in Ω1.8

When the assumption (H) is not enforced, the proof goes exactly in the same way provided9

we use Lemma 4.2 in place of Lemma 4.1, with10

Ω0 :=

{
x ∈ Ω : lim sup

ρ→0
|(Du)x0,ρ| <∞ and lim sup

ρ→0
U∗∗(x0, ρ) = 0

}
.

11
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coefficients, Calc. Var. Partial Differential Equations 62 (2023), 156.16

[25] L. Esposito, L. Lamberti and G. Pisante, Epsilon-regularity for almost-minimizers of17
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