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Abstract. We survey the implications of our joint work with E. Bruè
and A. Pigati [15] on the structure of blow-downs for a smooth, complete,
Riemannian 4-manifold with nonnegative Ricci curvature and Euclidean
volume growth. Very imprecisely, any such manifold looks like a cone over
a spherical space form at infinity. We present some open questions and
discuss possible future directions along the way.

1. Introduction

In the recent [15], joint work with E. Bruè and A. Pigati, we obtained some
topological regularity and stability results for noncollapsed Ricci limit spaces
and RCD metric measure spaces, i.e., Riemannian metric measure spaces with
Ricci curvature bounded from below in the synthetic sense (see [2, 96, 43]
for some background). This survey aims to review the implications of [15]
on the large-scale structure of a smooth, complete Riemannian 4-manifold
(M4, g) with nonnegative Ricci curvature and Euclidean volume growth. All
Riemannian manifolds will be assumed to be smooth and complete in this
note unless otherwise stated.

Some familiarity with the basics of the theory of Ricci limit spaces, as
covered in J. Cheeger’s notes [22], might help the reader. Most arguments will
be only sketched, as we try to balance precision with informality.

We recall that (M4, g) with Ric ≥ 0 is said to have Euclidean volume
growth provided that there exists c > 0 such that for some (and hence for
every) p ∈ M4 it holds

(1.1) vol(Br(p))
r4 ≥ c for all r > 0 .

By the Bishop-Gromov volume monotonicity, (1.1) is equivalent to

(1.2) lim
r→∞

vol(Br(p))
r4 ∈ [c, ω4] ,

where we denote by ω4 the volume of the unit ball B1(0) ⊂ R4.

We shall see that for every such (M4, g), there exists a spherical space form
S3/Γ such that every blow-down of (M4, g) is a cone with cross-section
≈ S3/Γ. The symbol “≈” will stand for “homeomorphic” hereafter.
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We find it helpful to mention a result obtained by J. Cheeger and A. Naber
for Ricci flat 4-manifolds satisfying (1.1) around ten years ago in [30]. This
should provide some intuition before we give a precise statement.

Theorem 1.1. [30, Corollary 8.85] Let (M4, g) be a Ricci-flat 4-manifold
satisfying (1.1). There exists a finite group Γ < O(4) acting freely on
S3 such that (M4, r−2g, p) → (R4/Γ, geucl, o) as r → ∞ in the pointed
Gromov-Hausdorff sense and in C∞

loc away from p and o.

For later purposes, it is convenient to view (R4/Γ, geucl, o) as the cone over
S3/Γ, where S3/Γ is endowed with the round metric with constant curvature
≡ 1. Our goal below is to illustrate which aspects of Theorem 1.1 continue to
hold and which ones fail when the assumption Ric ≡ 0 is weakened to Ric ≥ 0.

Let (M4, g) have Ric ≥ 0 and satisfy (1.1). By M. Gromov’s precompactness
theorem, for any sequence ri → ∞, up to the extraction of a subsequence that
we do not relabel, (M4, r−2

i g, p) → (Y, dY , q) in the pointed Gromov-Hausdorff
sense (from now on abbreviated as pGH), where (Y, dY , q) is a complete and
pointed metric space. Any such metric space is called a blow-down of (M4, g).
Note that neither the dimension nor the Euclidean volume growth (1.1) play
any role for the moment.
Without further assumptions, the metric structure of blow-downs is not fully
understood. On the other hand, if the manifold has Euclidean volume growth,
Cheeger and T.-H. Colding proved in [24, Theorem 7.6] that every blow-down
is a metric cone. More precisely, there exists a compact metric space (Z, dZ)
(the cross-section of the cone) with diam(Z) ≤ π such that
(1.3) Y = [0, +∞) × Z/{0}×Z ,

and for every (r1, z1), (r2, z2) ∈ Y it holds
(1.4) d2

Y ((r1, z1), (r2, z2)) = r2
1 + r2

2 − 2r1r2 cos(dZ(z1, z2)) .

Remark 1.2. An alternative proof can be obtained by exploiting the volume
convergence [25, Theorem 5.4], the stability of the RCD(0, n) condition under
pointed measured Gromov-Hausdorff convergence [44], and the volume-cone
implies metric cone for RCD spaces proved by G. De Philippis and N. Gigli in
[37, Theorem 1.1].

Remark 1.3. Under the simplifying assumption that the cross-section (Z, dZ)
is a smooth Riemannian manifold with metric gZ , the cone distance in (1.4) is
the distance on the completion of the smooth Riemannian metric dr2 + r2gZ

on (0, +∞) × Z.

In [82], G. Perelman constructed a manifold (M4, g) with Ric ≥ 0 and
Euclidean volume growth (1.1) whose blow-down is not unique. This is the
first fundamental difference with the Ricci flat case. The cross-sections of all
blow-downs in Perelman’s example are Berger spheres, i.e., smooth S3’s
endowed with a left-invariant Riemannian metric where one of the three
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directions in the Lie algebra is shrunk with respect to the others.
Let

C∞ := {(Z, dZ) : (Z, dZ) is the cross-section of a blow-down of (M4, g)} .

Then C∞ is compact and connected with respect to the Gromov-Hausdorff
topology. This is a corollary of Gromov’s compactness theorem, see for
instance [29, Theorem 4.2] for the details. Moreover, by volume convergence
[25, Theorem 5.4], the 3-dimensional Hausdorff measure H3 is constant (and
finite) on C∞.

As will be clear later, the smoothness of all the elements of C∞ is generally
not guaranteed.1 However, under this extra condition, each blow-down C(Z)
of (M4, g) has Ric ≥ 0 in the smooth part. This is quite reasonable to expect
but completely non-trivial to check. An elementary computation shows this
holds if and only if RicZ ≥ 2. By R. Hamilton’s [46, 1.1 Main Theorem], any
cross-section must be diffeomorphic to a spherical space form. Moreover, by
Cheeger and Colding’s stability [25, Theorem A.1.3], the diffeomorphism type
is constant on C∞. This is a completely non-trivial statement, as C∞ is only
known to be connected with respect to the Gromov-Hausdorff topology.

With the help of the RCD theory, we can justify the first assertions
above, althoug only in a weak sense, without any smoothness assumption.
Indeed, any smooth n-dimensional Riemannian manifold with Ric ≥ 0 is an
RCD(0, n) metric measure space when endowed with its volume measure.
Along any pGH converging sequence (M4, r−2

i g, p) → (C(Z), dC(Z), o), the
volume measures converge to the Hausdorff measure of the limit cone H4 by
[25, Theorem 5.4]. Moreover, it is not difficult to check that H4 = r3drH3

Z on
C(Z). By the stability of the RCD(0, n) condition under pointed measured
Gromov-Hausdorff convergence, (C(Z), dC(Z), H4) is an RCD(0, 4) space. By
C. Ketterer’s [57, Theorem 1.1], (Z, dZ , H3) is an RCD(2, 3) space.
Remark 1.4. Strictly speaking, Ketterer’s theorem implies that (Z, dZ , H3) is
an RCD∗(2, 3) space. To infer that it is an RCD(2, 3) space, one must rely on
F. Cavalletti and E. Milman’s [19]. The distinction between RCD and RCD∗

spaces, which was present in most of the early papers on the theory, does
not play any role for the purpose of this note, and the non-expert reader is
encouraged to ignore it.

As we shall clarify below, a straightforward combination of the main results
obtained jointly with Bruè and Pigati in [15] (see in particular the comment
right after [15, Theorem 1.1]) yields:
Theorem 1.5. Let (M4, g) be smooth, complete, with Ric ≥ 0 and satisfying
(1.1). There exists a finite group Γ < O(4) acting freely on S3 such that
for every cross-section of some blow-down (Z, dZ) ∈ C∞, (Z, dZ , H3) is an
RCD(2, 3) space with Z ≈ S3/Γ.

1If (M4, g) has quadratic Riemann curvature decay, as in Perelman’s example, any
(Z, dZ) is a C1,α Riemannian manifold, for every α < 1.
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There are three upshots for Theorem 1.5:
i) The cross-section of every blow-down is a topological manifold;
ii) The possible topologies of the cross-sections are restricted;
iii) For a fixed (M4, g) the homeomorphism type is unique on C∞.

We will discuss in Section 2 in which sense Theorem 1.5 is sharp. The focus of
Section 3 will be on some related previous developments. In Section 4, we will
explain how to obtain Theorem 1.5 from the main results in [15] and outline
the main ideas that enter into the proofs. In Section 5 we will discuss some
related open questions and possible future directions.

Acknowledgements. I am grateful to Elia Bruè and Alessandro Pigati for
the fruitful collaboration resulting in [15]. I wish to thank Shouhei Honda,
Christian Lange, Lucas Lavoyer, Chao Li, Alexander Lytchak, Tristan Ozuch,
Marco Pozzetta, Dušan Repovš, Stephan Stadler, Burkhard Wilking, and
Shengxuan Zhou for some interesting conversations on the topics of [15], for
pointing out some useful references, and for helpful feedback on a preliminary
version of this note.
This survey is an extended version of my two lectures on the occasion of the
School and Conference on Metric Measure Spaces, Ricci Curvature, and
Optimal Transport, at Villa Monastero, Lake Como, in September 2024. I am
grateful to the organizers for putting together such a nice event and the
invitation to speak.

2. Sharpness of Theorem 1.5

The goal of this section is to discuss in which sense Theorem 1.5 is sharp
and in which sense it might not.

2.1. Realizing all possible topologies. In the recent [106], S. Zhou
constructed examples of (M4, g) with Ric ≥ 0 and Euclidean volume growth
asymptotic to C(S3

δ /Γ) for every finite Γ < O(4) acting freely on S3. Here,
0 < δ = δ(Γ) ≤ 1 denotes the radius of S3, which we assume to be endowed
with a round metric with constant curvature. This result shows that every
admissible topology for the cross-section of some blow-down according to
Theorem 1.5 can indeed arise.

Several of the spherical space forms are known to appear as cross-sections
of blow-downs in the Ricci flat context considered in Theorem 1.1. For
Γ < SU(2), this is due to P. Kronheimer in [58], after some earlier important
contributions by N. Hitchin, and G. Gibbons and S. Hawking. More recently,
I. Suvaina [97] and E. P. Wright [104] added some cyclic subgroups of O(4) to
the list by considering some quotients of Kronheimer’s examples. In the Ricci
flat case, it is an open question whether all the spherical space forms can arise
as cross-sections of blow-downs. On the other hand, M. de Borbon and C.
Spotti have shown in [36] that all spherical space forms can arise in the context
of Kähler Ricci-flat metrics with cone singularities. It seems conceivable to the
author that the examples constructed in [36] are RCD(0, 4) spaces.
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The starting point in [106] is the observation that any finite subgroup of
O(4) acting freely on S3 is conjugate to a subgroup of U(2) in O(4), see e.g.
[101, Chapter 4.4]. It is then possible to construct examples asymptotic to
C(S3

δ /Γ) so that the underlying manifold M4 is diffeomorphic to the minimal
resolution of C2/Γ, see [106, Section 2] for the relevant background. Moreover,
for any given Γ, there exist infinitely many non-homotopically equivalent
(M4, g) such that the cross-section of the blow-down is homeomorphic to
S3/Γ, see the remark after the proof of [106, Theorem 1.1].

2.2. Realizing all possible metrics. Recall that the space of Riemann-
ian metrics g with Ric ≥ 2 modulo isometries on a given 3-manifold is
path-connected with respect to the topology induced by Cheeger-Gromov
convergence, thanks to [46]. One can combine this statement with the methods
developed by Colding and Naber in [33], see for instance [106, Section 4] for a
similar argument, to prove the following: if g is a smooth Riemannian metric
with Ric ≥ 2 on a spherical space form S3/Γ, then (S3/Γ, g) can be the
cross-section of a blow-down of (M4, g) as in the assumptions of Theorem 1.5,
up to possibly shrinking the metric. By pushing this observation further and
relying on M. Simon’s smoothing results from [91], one gets:

Proposition 2.1. Let (S3/Γ) be a spherical space form and let gi be smooth
Riemannian metrics on (S3/Γ) such that Rici ≥ 2 and voli(S3/Γ) > v > 0
for each i ∈ N. Assume that

(2.1)
(
S3/Γ, dgi

) GH−−→ (S3/Γ, d) , as i → ∞ .

Then there exist δ ∈ (0, 1] and a smooth (M4, g) with Ric ≥ 0 and Euclidean
volume growth with a blow-down isometric to C((S3/Γ, δd)).

We can rephrase Proposition 2.1, by saying that, up to possibly scaling the
distances, it holds

(2.2) {(N3, g) : Ricg ≥ 2} ⊆
⋃

C∞(M4, g) .

Above, the union ranges among all (M4, g) with Ric ≥ 0 and Euclidean
volume growth and the closure at the left-hand side is taken with respect to
the Gromov-Hausdorff topology. On the other hand, by Theorem 1.5,

(2.3)
⋃

C∞(M4, g) ⊆
{

(Z, dZ) : (Z, dZ , H3) is an RCD(2, 3) 3-manifold
}

.

In principle, both the inclusions in (2.2) and (2.3) might be strict. We will
come back to this point in Section 5. We also note that in general it is not
clear whether the choice δ = 1 is allowed in Proposition 2.1.

2.3. Failure of topological regularity and uniqueness for n > 4. Both
the topological regularity (i) and the topological uniqueness (iii) for sections of
blow-downs might fail in dimensions n > 4.

To illustrate the failure of topological regularity, we consider the Eguchi-
Hanson metric gEH on T ∗S2, i.e., the cotangent bundle of S2. This is a Ricci
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flat metric with Euclidean volume growth, see [39]. Its blow-down is C(RP3),
where RP3 is endowed with the round metric with constant curvature 1. We
let g := dr2 + gEH be the product metric on R × T ∗S2. It is straightforward
to check that g is Ricci flat and has Euclidean volume growth. The blow-down
of (R × T ∗S2, g) is (unique and) isometric to R × C(RP3) = C(S4/(Z/2Z)).
Here Z/2Z acts as an involution of S4 with two fixed points. The cross-section
S4/(Z/2Z) is an orbifold, but it is not a topological 4-manifold.

The first counterexamples to the topological uniqueness of cross-section for
n > 4 were constructed by Colding and Naber in [33, Theorem 1.3]. The
starting point is the following:

Lemma 2.2. [33, Section 4] There exists a smooth family (gt)t∈(0,1] of smooth
Riemannian metrics on CP2#CP2 such that

i) Rict ≥ 3 for each t ∈ (0, 1];
ii) volt(CP2#CP2) > v > 0 for each t ∈ (0, 1];

iii) (CP2#CP2, dgt)
GH−−→ (S4, d), as t → 0.

The construction of the family in Lemma 2.2 shares some similarities with
some earlier examples due to Perelman [81] and X. Menguy [72].

In Lemma 2.2 (iii), the distance d in the limit cannot be induced by a
smooth Riemannian metric by the diffeomorphic stability [25, Theorem
A.1.3]. However, the underlying topological space of the limit is a topological
manifold, and the distance is induced by a smooth Riemannian metric away
from two points. We note that CP2#CP2 can be viewed as the nontrivial S2

bundle over S2. Hence CP2#CP2 bounds a smooth 5-manifold M
5, namely,

the nontrivial D
3 bundle over S2.

Starting from Lemma 2.2, Colding and Naber construct a smooth metric g
with Ric ≥ 0 and Euclidean volume growth on M5, i.e., the nontrivial D3

bundle over S2, such that the family of cross-sections of blow-downs is

(2.4) C∞(M5, g) =
{

(CP2#CP2, dgt) : t ∈ (0, 1]
} ⋃ {

(S4, d)
}

.

In particular, there are two blow-downs with non-homeomorphic cross-sections.
Recently, P. Reiser has extended Colding and Naber’s construction in [86] and
obtained a large family of interesting examples of cross-sections of blow-downs
in dimensions n > 4.

3. Some previous developments

In this section, we briefly review some of the numerous previous developments
related to Theorem 1.5. We do not claim any completeness, and the choice is
only motivated by the author’s taste.

3.1. Dimensions n ≤ 3. For a complete surface (M2, g) with Ric ≥ 0
(equivalently, with nonnegative Gaussian curvature) and quadratic volume
growth, the blow-down is unique and isometric to C(S1

θ ), where S1
θ is a circle
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of length 0 < θ ≤ 2π. The length of the circle is determined by the asymptotic
volume ratio of (M2, g). More precisely, it holds

(3.1) θ = 2 lim
r→∞

vol(Br(p))
r2 .

For n = 3, the asymptotic can be richer, although it is still quite rigid
with respect to higher dimensions and completely understood. Note that
blow-downs of smooth, complete (M3, g) with Ric ≥ 0 and Euclidean volume
growth need not be unique; see, for instance, [33, Theorem 1.1].

Theorem 3.1. Let (M3, g) be smooth, complete, with Ric ≥ 0 and Euclidean
volume growth. Then every blow-down of (M3, g) is a metric cone C(Z) over
a cross-section (Z, dZ) which is an Alexandrov space with curvature ≥ 1 with
Z ≈ S2. Conversely, for every Alexandrov space (Z, dZ) with curvature ≥ 1
and Z ≈ S2 there exist δ ≤ 1 and (M3, g) with Ric ≥ 0 and Euclidean volume
growth with a blow-down isometric to (Z, δdZ).

That any cross-section (Z, dZ) of some blow-down of (M3, g) must be
an Alexandrov space with curvature ≥ 1 follows from the combination of
two results. Ketterer’s [57, Theorem 1.1], implies that (Z, dZ , H2) is an
RCD(1, 2) space. In dimension two, the smooth intuition suggests that Ricci
curvature and sectional curvature should be the same. This is confirmed by
[69, Theorem 1.1], due to A. Lythchak and S. Stadler, showing that (Z, dZ) is
a 2-dimensional Alexandrov space with curvature ≥ 1.2

Note that any 2-dimensional Alexandrov space is homeomorphic to a surface
(possibly with boundary), see [16, Corollary 10.10.3]. If the curvature is ≥ 1,
then relying on a generalized Bonnet-Myers theorem [16, Theorem 10.4.1], it is
possible to check that Z must be homeomorphic to either D

2, RP2, or S2.
To prove that Z ≈ S2, there are at least three morally independent strategies:

i) We can rely on [107, Corollar 3.1], due to S.-H. Zhu. Since any blow-
down C(Z) of (M3, g) is, in particular, a 3-dimensional noncollapsed
Ricci limit space, it is a homology manifold of dimension 3. Hence, if
o denotes the vertex of C(Z), we have H∗(C(Z), C(Z) \ {o};Z) =
H∗(R3,R3 \ {0};Z), by definition of homology manifold. On the other
hand, for any cone it holds H∗(C(Z), C(Z) \ {o};Z) = H∗(Z,Z), up
to shifting the indexes. In particular, H∗(R3,R3 \ {0};Z) = H∗(S2,Z).
Therefore, Z must be a homology 2-sphere. It follows that Z ≈ S2.
We stress that [107, Corollary 3.1] is stated only for limits of sequences
with uniformly bounded diameters. The statement should generalize
to the noncompact setting without too much effort.3

2More precisely, here we are exploiting the implication from RCD to Alexandrov, which
is only valid in dimension 2. The converse implication is valid in any dimension, as suggested
again by the smooth intuition and proved by A. Petrunin in [85].

3We also warn the reader that the proof of [107, Corollary 3.1] relies on [83, Theorem, pg.
393], which is not correct as stated, see [74] and [40]. However, the statement of [107,
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ii) We can rely on the work of Simon [91] and Simon and P. Topping [93],
who used the Ricci flow to prove that any noncollapsed 3-dimensional
Ricci limit space is a topological 3-manifold (without boundary). Note
that a topological 3-manifold is, in particular, a homology 3-manifold.
One can conclude by arguing as before.

iii) We can rely on the tools developed in [15]. Note that Z cannot
have boundary, by Cheeger and Colding’s (no) boundary stability
[25, Theorem 6.2]. Let p ∈ M3 denote an arbitrary point and
Gp : M \ {p} → (0, ∞) denote the unique positive Green’s function of
the Laplacian with pole at p and vanishing at infinity. In [15], we
prove that there exists a sequence ti → 0 such that ti is noncritical
for Gp and the level set {Gp = ti} is homeomorphic to Z. Since
the surface {Gp = ti} bounds the compact 3-manifold {Gp > ti},
Z cannot be homeomorphic to RP2. Indeed the boundary of any
3-manifold has even Euler characteristics.

For the proof of the converse implication of Theorem 3.1 there are (at least)
two different approaches:

i) Argue as we did in Section 2.2 for the 4-dimensional case. Namely,
one can combine: (a) the methods in [33]; (b) the fact that any
sphere (S2, d) with curvature ≥ 1 in the Alexandrov sense is the
Gromov-Hausdorff limit of a sequence of smooth Riemannian metrics
on S2 with curvature ≥ c > 0, see [1, Chapter 7, Section 6]; (c) the
path connectedness of the space of metrics with curvature ≥ c > 0 on
S2 with respect to the smooth topology, established by H. Weyl in
1916 using the uniformization theorem.

ii) Start from the observation, due to N. Lebedeva, V Matveev, Petrunin,
and V. Shevchishin in [59, Corollary 3.1], that if (Z, dZ) is an
Alexandrov space with curvature ≥ 1 with Z ≈ S2 then C(Z) is
isometric to the surface of a convex cone in R4. This relies on the
classical embedding theorem of A. D. Alexandrov. Such surface can be
written as the graph of a homogeneous convex function f : R3 → R,
up to rotating the coordinates. Regularizing f by convolution, one
obtains a smooth, complete metric g on R3 (i.e., the induced metric
on the graph) with nonnegative sectional curvature and blow-down
C(Z). This option has the clear advantage with respect to (i) of
producing a metric with nonnegative sectional curvature.

3.2. The Ricci-flat case. In the Ricci-flat 4-dimensional case, the large-scale
structure is much more rigid. Many people contributed to the problem before
[30]. M. Anderson in [4, Theorem 3.5], and S. Bando, A. Kasue, and H.
Nakajima in [10, Theorem, pg. 314], obtained the same conclusions as in

Corollary 3.1] is correct, and its proof can be fixed by exploiting the fact that noncollapsed
Ricci limits of dimension n have Hausdorff dimension n.
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Theorem 1.1 under the additional assumption that

(3.2)
ˆ

M4
|Riem|2 dvol < ∞ .

G. Tian obtained similar conclusions in [102], where the focus was on the
Kähler-Einstein case.

We review some of the key ideas of the proof of Theorem 1.1, as they
play an important role in the proof of Theorem 1.5 as well. As explained in
the introduction of [30], it has been understood since [24] that the key step
towards proving Theorem 1.1 would be establishing the following:

Theorem 3.2. [30, Theorem 5.2] Let (Mn
i , gi, pi) be smooth Riemannian

manifolds with | Rici | → 0, such that

(3.3) (Mn
i , dgi , pi)

pGH−−−→ Rn−2 × C(S1
θ ) , 0 < θ ≤ 2π .

Then θ = 2π, i.e., R2 × C(S1
θ ) = Rn.

We can rephrase Theorem 3.2 by saying that codimension 2 singularities
do not appear for noncollapsed limits with bounded Ricci curvature. If
Theorem 3.2 holds, then one can rule out codimension 3 singularities as well,
exploiting Anderson’s ε-regularity theorem from [5]. Namely, one can prove:

Theorem 3.3. [30, Theorem 5.12] Let (Mn
i , gi, pi) be smooth Riemannian

manifolds with | Rici | → 0, vol(B1(pi)) > v > 0 and

(3.4) (Mn
i , dgi , pi)

pGH−−−→ Rn−3 × C(Y ) , i → ∞ ,

for some metric space (Y, dY ). Then (Y, dY ) is the unit 2-sphere, hence
Rn−3 × C(Y ) = Rn.

Sketch of the proof. Thanks to Theorem 3.2, all blow-ups of (Y, dY ) are
isometric to R2. By Anderson’s ε-regularity theorem from [5], it follows
that (Y, dY ) is a smooth surface endowed with a smooth metric g such that
Ricg = g. Indeed, a cone over a smooth section (Nn−1, gN ) is Ricci-flat away
from the vertex if and only if the cross-section satisfies RicN = (n − 2)gN .
This means that Y is isometric to either S2 or RP2, endowed with the round
metric with constant curvature ≡ 1.

We need to rule out the second option. The origins of the argument below
date back to Cheeger, Colding, and Tian’s [28].

Let o ∈ C(Y ) denote the vertex of the cone. Note that Rn−3 × C(Y )
is a smooth Riemannian manifold away from S := Rn−3 × {o}. By [5]
the pGH convergence in (5.6) can be upgraded to local C1,α convergence
away from S. We consider the coordinate map onto the Euclidean factor
u∞ : Rn−3 × C(Y ) → Rn−3 and the squared distance from the singular set,
d2

S : Rn−3 × C(Y ) → [0, ∞). Note that they satisfy ∆u∞ = 0 and ∆d2
S = 6.

We can approximate them locally uniformly and smoothly away from S with
smooth functions ui : Mi → Rn−3 and hi : Mi → [0, ∞) such that ui(pi) = 0,
∆ui = 0 and ∆hi = 6. By smooth convergence away from S, the level set
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{ui = 0} ∩ {hi = 1} is diffeomorphic to Y for i large enough. Moreover, it
bounds the compact 3-manifold {ui = 0} ∩ {hi ≤ 1}. Since the boundary of
every 3-manifold has even Euler characteristic, Y ≈ S2. □

Sketch of the proof of Theorem 1.1. We can exploit Theorem 3.3 to show
that the cross-section of each blow-down must be a smooth Riemannian
3-manifold. Arguing as we did above, we deduce that any such cross-section
is Einstein with Einstein constant 2. Hence, it is a spherical space form
S3/Γ endowed with the round metric with constant curvature ≡ 1. The
uniqueness of the blow-down easily follows from the connectedness of the
space of cross-sections. □

While Theorem 3.2 is intuitively clear for n = 2, since the distributional
curvature of C(S1

θ ) is a Dirac delta at the vertex unless θ = 2π, no such
elementary heuristics can be made to work for n ≥ 3. To prove Theorem 3.2
for n ≥ 3, Cheeger and Naber introduced a powerful slicing theorem, that we
formulate below in a simplified way.

Theorem 3.4. [30, Theorem 1.23] Let (Mn
i , gi, pi) be smooth Riemannian

manifolds with Rici ≥ −εi → 0, such that

(3.5) (Mn
i , dgi , pi)

pGH−−−→ Rn−2 × Σ ,

for some metric space (Σ, dΣ). Then there exist harmonic “almost-splitting”4

maps ui : B2(pi) → Rn−2 and points qi ∈ ui(B1(pi)) such that for every
x ∈ u−1

i (qi) and every 0 < r < 1 it holds

(3.6) dGH
(
Br(x), Br(0n−2, s)

)
< δir ,

where Br(0n−2, s) ⊂ Rn−2 × Σx,r, (Σx,r, dΣx,r ) is a metric space, and δi → 0
as i → ∞.

Figure 1. The slicing theorem.

4See [22, Section 9] for the relevant background.
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The slicing Theorem 3.4 provides a good slice, i.e., a level set, such that the
almost product structure at the top scale coming from (3.5) is kept at all
locations and scales on the slice.

Figure 2. Zooming in on a good slice.

Sketch of the proof of Theorem 3.2. The proof relies on a blow-up argument
in the spirit of [5]. If the cone angle θ is < 2π, then the minimum of the
harmonic radius rh

5 on the slice u−1
i (qi) is attained at some xi ∈ u−1

i (qi) and
goes to 0 as i → ∞. We set ri := rh(xi), rescale and obtain a sequence

(3.7) (Mn
i , r−1

i dgi , xi)
pGH−−−→ (Rn−2 × Σ̃, d, x∞) ,

where Rn−2 × Σ̃ is a Ricci-flat manifold with Euclidean volume growth. It
follows that Rn−2 × Σ̃ = Rn and the convergence is in C1,α, by [5]. Note
that the harmonic radius of (Mn

i , r−1
i dgi , xi) at xi equals 1 by construction.

The harmonic radius behaves continuously in the limit. This results into a
contradiction, since rh ≡ +∞ on Rn. □

For the above argument, it was clearly crucial that the almost product
structure persists at all locations and scales along the good slice.

Remark 3.5. The slicing [30, Theorem 1.23], stated here as Theorem 3.4, has
no exact counterpart in higher codimensions, i.e., when we replace Rn−2 at
the left-hand side of (3.5) with Rn−k for 3 ≤ k ≤ n − 1. This can be verified
by considering the examples constructed by A. Kasue and T. Washio in [56,
pg. 913-914]. Indeed, they construct metrics g on Rn for n ≥ 4 of the form

(3.8) g := f2(r) dt2 + dr2 + η2(r)gSn−2 ,

with Ric ≥ 0, Euclidean volume growth, and such that the following hold:
i) the projection onto the t-variable is a harmonic function with linear

growth;
ii) translations in the t-direction form a 1-parameter family of isometries;
iii) (R4, g) does not split any line isometrically.

5See [84, Chapter 10] for the relevant background.
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By (i) and [27], the projection onto the t-variable converges to a splitting
function when we blow-down (R4, g), i.e., when we restrict it to balls BRi(p)
with Ri → ∞ it induces εi-splittings with εi → 0 as i → ∞. However, it
cannot have level sets {t = ci} such that Br(q) becomes closer and closer as
i → ∞ to a product at all points in q ∈ {t = ci} and at every scale 0 < r < Ri,
otherwise (R4, g) would split, by (ii).

Remark 3.6. By [33, Theorem 1.2], the conclusion of Theorem 3.4 cannot hold
for every level set in general for n ≥ 3. However, it holds for a large measure
set of level sets.

For n ≥ 4, it is possible to produce examples meeting the assumptions of
Theorem 3.4 where the functions ui do have critical points in B1(pi) for every
i ∈ N. A possible construction combines the techniques in [33] with the gluing
construction developed by Menguy in [72], exploiting the earlier work of
Perelman [81]. One should be able to produce such examples so that the balls
B1(pi) are not contractible inside the balls B2(pi).

3.3. Kähler surfaces. When (M4, g) is a Kähler surface, Theorem 1.5
follows from the works of G. Liu and G. Székelyhidi [63, 64], as detailed in the
Appendix of [105]. Many of the techniques employed in these works heavily
exploit the Kähler structure and, as such, have no counterpart in the setting
of Theorem 1.5.

To give readers an insight as to how the Kähler assumption can restrict the
geometry of noncollapsed Ricci limits, it is worth mentioning that splittings
of Euclidean factors always come into pairs in this setting. This is due to
Cheeger, Colding, and Tian in [28]. In particular, Theorem 4.1 below, which is
a key step towards the proof of Theorem 1.5, is a straightforward corollary of
[28, Theorem 9.1] in the Kähler case.

3.4. Nonnegative sectional curvature. When we strengthen the assumption
Ric ≥ 0 to Sect ≥ 0, much stronger results hold, independently of the
dimension.

The first point worth stressing is that any smooth, complete (Mn, g)
with Sect ≥ 0 and Euclidean volume growth is diffeomorphic to Rn. This
follows from the soul theorem of Cheeger and D. Gromoll, together with the
subsequent refinement due to W.-A. Poor, and the fact that the soul of
any such manifold is a point. Otherwise, the volume growth could not be
Euclidean. Moreover, the blow-down is always unique in this context, as
pointed out by Gromov in [9, pg. 58-59]. See also the work of Kasue [55] for a
detailed proof. The cross-section (Z, dZ) of the blow-down is an Alexandrov
space with curvature ≥ 1, thanks to the work of Y. Burago, Gromov, and
Perelman [17, Corollary 7.10].

There are two other important statements worth recording:

i) Z ≈ Sn−1;
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ii) there is a sequence of smooth Riemannian metrics gi on Sn−1 with
sectional curvature ≥ −1 such that

(3.9) (Sn−1, dgi)
GH−−→ (Z, dZ) , as i → ∞ .

Both i) and ii) follow from the (much more general) results obtained by V.
Kapovitch in [52]. The proofs are based on a slicing method. The slicing uses
convex functions rather than harmonic functions in this case. It is crucial that
lower bounds on the sectional curvature are inherited by level sets of convex
functions.

3.5. CAT(0) four-manifolds. Although the curvature is assumed to have the
opposite sign, we find it worth concluding this overview with the following
result due to Lytchak, K. Nagano, and Stadler in [68].

Theorem 3.7. Let (X, dX) be a CAT(0) four-manifold, i.e., a CAT(0) metric
space whose underlying topological space is a topological four-manifold. Then
X ≈ R4. Moreover, the ideal boundary ∂∞X is homeomorphic to S3 and the
canonical compactification X := X ∪ ∂∞X is homeomorphic to the closed ball
in R4.

The proof of Theorem 3.7 is also based on a slicing method, partly building
on the structure theory for (geodesically complete) CAT(0) spaces developed
earlier by Lytchak and Nagano in [66, 67], as well as on a previous contribution
due to P. Thurston [100]. A second similarity with the proof of Theorem 1.5 is
the use of a series of deep results in geometric topology.

Statements analogous to Theorem 3.7 hold in any dimension less than four.
On the other hand, they fail in higher dimensions, as originally shown by
M.-W. Davis and T. Januszkiewicz in [35].

4. On the proof of Theorem 1.5

The proof of Theorem 1.5 depends on three independent tools, all developed
in [15]. We introduce them below and explain how they lead to Theorem 1.5.
In the forthcoming sections we discuss the ideas that enter into their proofs.

The first tool is a variant of Theorem 3.3 tailored for lower Ricci bounds:

Theorem 4.1. [15, Theorem 1.6] Fix n ≥ 3. Let (Mn
i , gi, pi) be smooth

Riemannian manifolds with Rici ≥ −δi, δi → 0, vol(B1(pi)) > v > 0 and

(4.1) (Mn
i , dgi , pi)

pGH−−−→ Rn−3 × C(Y ) , i → ∞ ,

for some metric space (Y, dY ). Then Y ≈ S2.

Remark 4.2. It is worth pointing out that Theorem 4.1 is original only
for n ≥ 4. For n = 3, it can be obtained by arguing as in the proofs of
Theorem 3.1 that we outlined above. However, both the approach based on
[107], as well as the one based on Ricci flow from [94], fail to extend to n ≥ 4,
as of today.
If the Mi’s are assumed to be all orientable and the distance on Y is induced
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by a smooth Riemannian metric, then the statement follows also from S.
Honda’s [48], in any dimension. Thanks to the recent work of C. Brena, Bruè,
and Pigati [12], the smoothness assumption on the distance on Y can be
dropped.

The “no C(RP2)” Theorem 4.1 prevents the appearance in C∞ of RCD(2, 3)
spaces which are clearly not topological manifolds, such as the spherical
suspension over a round RP2. It turns out that understanding blow-ups is
sufficient to establish topological regularity due to the following manifold
recognition theorem for 3-dimensional RCD spaces:

Theorem 4.3. [15, Theorem 1.8] Let (X, d, H 3) be an RCD(−2, 3) space.
Then X is a topological 3-manifold if and only if the cross-section of every
blow-up of (X, d) at every point is homeomorphic to S2.

We can rephrase Theorem 4.3 by saying that for an RCD(−2, 3) space
(X, d, H 3) the following are equivalent:

i) every x ∈ X has a neighbourhood homeomorphic to R3;
ii) all blow-ups of (X, d) at all points are homeomorphic to R3.

For every x ∈ X, all the blow-ups of (X, d) at x have cross-sections
homeomorphic to each other, thanks to [69]. In particular, they are all
homeomorphic to each other. Hence, ii) is equivalent to asking that one
blow-up of (X, d) at each point is homeomorphic to R3. Moreover, it is clear
from the proof that Theorem 4.3 can be localised to open sets.

Remark 4.4. A characterisation of the local topology in terms of blow-ups is
not possible for RCD(−(n − 1), n) spaces (X, d, H n) when n ≥ 4. Indeed,
Menguy constructed in [72, Theorem 0.6] a noncollapsed 4-dimensional Ricci
limit space (Z, dZ) which is a smooth Riemannian manifold away from a
single point z ∈ Z and such that no neighbourhood of z has finite topological
type. All the blow-ups of (Z, dZ) at z (and hence at every point in Z) are
homeomorphic to R4.

On the other hand, it seems conceivable that if (X, d, H 4) is an RCD(−3, 4)
space and X is a topological 4-manifold then all the cross-sections of all
blow-ups of (X, d) should be homeomorphic to S3.

The last tool for the proof of Theorem 1.5 is a topological stability theorem.

Theorem 4.5. [15, Theorem 1.11] Let (Xi, di, H 3) be RCD(−2, 3) spaces
such that Xi is a topological 3-manifold for every i ∈ N. Assume that

(4.2) (Xi, di)
GH−−→ (X, d) as i → ∞ ,

without collapse, for some compact RCD(−2, 3) space (X, d, H 3). Then there
exists i0 ∈ N such that Xi is homeomorphic to X for every i ≥ i0.

Remark 4.6. When the (Xi, di) are all smooth Riemannian 3-manifolds
Theorem 4.5 was obtained in [91], based on Ricci flow.
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Figure 3. Menguy’s example.

We can view Theorem 4.5 as a counterpart of Perelman’s stability theorem,
see [78] and the exposition in [53], in the context of synthetic lower Ricci
curvature bounds. There are two key differences with the case of Alexandrov
spaces with curvature bounded from below:

i) the restriction on the dimension being (less or equal than) 3;
ii) the restriction on the spaces being topological manifolds.

The restriction on the dimension is unavoidable in this context. Indeed,
Anderson constructed in [6] a sequence of (M4

i , gi) with Rici ≥ 3, vol(Mi) ≥
v > 0, and diam(Mi) ≤ D < ∞ for each i ∈ N and such that

(4.3) (M4
i , gi)

GH−−→ (X, d) as i → ∞ ,

but for no i ∈ N the manifold M4
i is homeomorphic to X. See also the work

of Y. Otsu [76] for some similar constructions and note that the failure of this
topological stability is at the heart of Lemma 2.2 as well.

Remark 4.7. The topological stability does not hold even for noncollapsing
sequences of Einstein manifolds when n ≥ 4. For instance, C. LeBrun and M.
Singer constructed in [60] sequences of Ricci flat metrics gi on a K3 surface
Gromov-Hausdorff converging without collapse to the flat orbifold T 4/ι, where
ι is an involution of T 4 acting by reflection on each side. The existence of such
sequences had been suggested earlier by G.-W. Gibbons and C.-N. Pope, and
by D.-N. Page, in the late Seventies.

Concerning ii), it seems conceivable that Theorem 4.5 generalises to any
noncollapsing sequence of RCD(−2, 3) spaces (Xi, di, H 3), although this
generalisation requires some new ideas; see Section 5 for a thorough discussion.

Sketch of the proof of Theorem 1.5. We follow the proof of [15, Theorem
12.14]. Let (Z, dZ) ∈ C∞ be the cross-section of a blow-down of (M4, g). We
noted in Section 1 that (Z, dZ , H 3) is an RCD(2, 3) space.

Claim 1: Z is a topological 3-manifold.
Thanks to Theorem 4.3 it suffices to prove that if z ∈ Z and C(W ) is a
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blow-up of (Z, dZ) at z, then W ≈ S2. Note that, if C(W ) is a blow-up of
(Z, dZ) at z, then R × C(W ) is a blow-up of C(Z) at (1, z). Since C(Z) is a
noncollapsed Ricci limit space (it is a blow-down of (M4, g)), R × C(W ) is a
noncollapsed Ricci limit space as well by a standard diagonal argument. By
Theorem 4.1 W ≈ S2.

Claim 2: Z is homeomorphic to a spherical space form.
It suffices to show that Z is compact with finite fundamental group. The
resolution of the elliptization conjecture due to Perelman then yields the
homeomorphism with a spherical space form. The compactness of (Z, dZ)
follows from the generalized Bonnet-Myers theorem for CD(n − 1, n) spaces,
due to K.-T. Sturm [95] and independently J. Lott and C. Villani [65]. The
finiteness of the fundamental group follows from the generalized Bonnet-Myers
as well. Indeed, A. Mondino and G. Wei proved in [73, Theorem 1.1] that the
universal cover of an RCD(n − 1, n) space is an RCD(n − 1, n) space.

Claim 3: The homeomorphism type is fixed on C∞.
The claim follows from the connectedness of C∞ with respect to the Gromov-
Hausdorff topology, Claim 1, and the stability Theorem 4.5. □

4.1. The “no C(RP2)” Theorem 4.1. We can view Theorem 4.1 as a
counterpart for Theorem 3.3, with the characterization of the section (Y, dY )
up to isometry being replaced by a characterization up to homeomorphism.
Again, Theorem 3.1 shows that Theorem 4.1 is optimal in this setting.

The proof starts from the same slicing idea of the proof of Theorem 3.3, and
it hinges on a variant of Theorem 3.4. The key difference with the bounded
Ricci case dealt with in [30] is the need to rule out topological codimension 3
singularities without being able to rule out metric codimension 2 ones. Indeed,
Theorem 3.2 fails when we drop the upper Ricci curvature bound from the
assumptions.

To begin, it is worth introducing a variant of Theorem 3.4, which is better
suited for our purposes.

Theorem 4.8. [15, Theorem 5.2] Fix n ≥ 3. Let (Mn
i , gi, pi) be smooth

Riemannian manifolds with Rici ≥ −δi, δi → 0, vol(B1(pi)) > v > 0 and

(4.4) (Mn
i , dgi , pi)

pGH−−−→ Rn−3 × C(Y ) , i → ∞ ,

for some metric space (Y, dY ). Then, we can approximate the function

(4.5) (πRn−3 , dRn−3×{o}(·)) : Rn−3 × C(Y ) → Rn−3 × [0, ∞)

in the uniform and W 1,2 sense with a sequence of (smooth) functions

(4.6) (vi, ui) : B10(pi) → Rn−3 × [0, ∞) ,

such that the following holds. There exist εi > 0 with εi → 0 as i → ∞ and
Borel sets Bi ⊂ B1(0n−3) × [0, 10] such that

(i) Ln−2(Bi) ≤ εi;
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(ii) for every (x, y) ∈ B1(0n−3) × [0, 10] with

(4.7) 8 ≤
√

|x|2 + y2 ≤ 9 , (x, y) /∈ Bi ,

the corresponding level set {(vi, ui) = (x, y)} is not empty;
(iii) for every s ∈ (0, c(εi, n, v)) and every q ∈ (B9(pi)\B8(pi))∩{|vi| < 1}

with (vi, ui)(q) /∈ Bi, there exists an (n − 2) × (n − 2) matrix Lq,s such
that

(4.8) Lq,s ◦ (vi, ui) : Bs(q) → Rn−2

is an εi-splitting map.6

The proof of Theorem 4.8 follows the same strategy as the proof of [30,
Theorem 1.23], stated here as Theorem 3.4, although there are some additional
error terms that are more delicate to control.

For n = 3, the functions ui in (4.6) are obtained starting from Green’s
functions of the Laplacian with constant Dirichlet boundary conditions
on B10(pi) and poles at pi. Note that on the limit cone C(Y ) the Green’s
function of the Laplacian with pole at the vertex o is a power of the distance
function do(·). See [15, Section 4] for the details.
The Green’s function of the Laplacian has played an important role in several
previous works on manifolds and spaces with Ricci bounded from below; see,
for instance, [32, 51].
Remark 4.9. There is some freedom with the choice of the approximating
functions ui and vi in Theorem 4.8. This is important for the applications.
Remark 4.10. Item (iii) implies that every “good slice” contains only noncritical
points, see [29, Section 7.5] for the key idea of the proof. In particular, any
such slice is an embedded surface inside the ambient Mn

i . Of course, the
existence of many noncritical level sets could be achieved with a much more
standard argument based on Sard’s lemma. The crucial aspect of Theorem 4.8
is that a suitable nondegeneracy of the maps (vi, ui) can be obtained at all
scales along the good slices.

The level sets of (πRn−3 , dRn−3×{o}(·)) : Rn−3 × C(Y ) → Rn−3 × [0, ∞),
endowed with the induced metric, are (almost) all isometric to (Y, dY ), up to
scaling. Hence, the level sets of the approximating functions in (4.6) should
approximate well (Y, dY ). A potential issue related to the very nature of
Gromov-Hausdorff convergence is that these approximations might be very
good at scales comparable to 1 without having any control when we zoom up at
much smaller scales. The slicing Theorem 4.8 fixes this issue. Namely, we can
find many values (cf. with (i) above) such that the corresponding level sets of
the functions (vi, ui) converge to the section (Y, dY ) in the Gromov-Hausdorff
sense, and the ambient manifolds have (n − 2) almost splitting directions at
all locations and scales on the level (cf. with (iii) above).

6Note that we drop the harmonicity from the usual conditions in the definition of
ε-splitting maps, see [30, Definition 1.20]).
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If n = 3, then Theorem 4.8 holds also in the non-smooth case where the
manifolds (M3, gi) in (5.6) are replaced by RCD(−δi, 3) spaces (Xi, di, H 3).
This is key to the proof of the manifold recognition Theorem 4.3. A precise
and more effective statement follows.
Proposition 4.11. [15, Proposition 9.4] For every η > 0, if ε ≤ ε0(η, v) the
following holds. Let (X, d, H 3) be an RCD(−ε, 3) space with empty boundary
(see [38, 54, 14] for some background about the notion of boundary in this
setting) and p ∈ X be such that H 3(B1(p)) ≥ v. Assume that
(4.9) dGH (B20(p), B20(o)) ≤ ε , o ∈ C(Z) ,

where (Z, dZ) is a 2-dimensional Alexandrov surface with curvature ≥ 1. Then
there exist a good “Green distance” bp : B2(p) → R and a Borel set of radii
r ∈ (1/4, 1) of measure at least (1−η)3

4 such that the topological boundary Sr(p)
of the sub-level set B(1−η)r(p) ⊂ Br(p) := {bp < r} ⊂ B(1+η)r(p) satisfies:

(i) Sr(p) = {bp = r};
(ii) up to rescaling by r, Sr(p) (endowed with the restriction of d) is

η-GH-close to (Z, d̃Z), where d̃Z := 2 sin(dZ/2);
(iii) Sr(p) is a closed topological surface;
(iv) for every q ∈ Sr(p) and every 0 < s < c(η, ν),

(4.10) bp − rffl
Bs(q) |∇bp|

: Bs(q) → R

is an η-splitting function.

Figure 4. Slicing with a good Green-distance.

Remark 4.12. Even in the case where (X, d) is smooth Riemannian, it is not
clear whether the Green distance bp induces a (trivial) fibration on an annulus.
This is a major difference with respect to the context of lower sectional
curvature bounds. The proof of Theorem 4.3 would vastly simplify in the
presence of such a fibration result. It would be interesting to see whether any
counterexample exists.
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The next step is to turn the metric control along the good slices coming
from Theorem 4.8 (iii) (or Proposition 4.11 (iv)) into topological information.
The starting point is to deal with the rigid case, which arises through a
blow-up argument in the spirit of the proof of Theorem 3.3.

Lemma 4.13. Fix n ≥ 2. Let (Mn
i , gi, pi) be smooth Riemannian manifolds

with Rici ≥ −δi → 0, such that

(4.11) (Mn
i , dgi , pi)

pGH−−−→ Rn−2 × Σ ,

for some metric space (Σ, dΣ). Assume that Σ has quadratic volume growth
when endowed with the measure H2. Then Σ is an Alexandrov space with
Sect ≥ 0 homeomorphic to R2.

Sketch of the proof. By the stability of synthetic Ricci curvature lower bounds,
Rn−2×Σ is an RCD(0, n) space when endowed with the Hausdorff measure H n.
By the stabilty of the RCD condition under splittings, see [42], (Σ, dΣ, H 2) is
an RCD(0, 2) space. By [69, Theorem 1.1], (Σ, dΣ) is an Alexandrov space
with Sect ≥ 0. Moreover, (Σ, dΣ) has empty boundary by [25, Theorem 6.2];
hence it is a topological surface. The quadratic volume growth then yields the
homeomorphism with R2. □

Our goal is to combine Theorem 4.8 (and Proposition 4.11) with Lemma 4.13
to show that when we zoom up enough on each good slice, we see no topology.
Moreover, there should be a quantitative estimate of what “enough” means. It
is key for this aim that the homeomorphism between Σ and R2 arising from
Lemma 4.13 is quantitatively well-behaved. To clarify what this means, we
recall:

Definition 4.14 (Local uniform contractibility). Let F be a family of
metric spaces. Let C0, ρ0 > 0 be fixed. We say that the family F is locally
(C0, ρ0)-contractible provided that for every (X, d) ∈ F , every x ∈ X and
every 0 < r < ρ0 the inclusion Br(x) → BC0r(x) is homotopic to a constant
map in BC0r(x).

K. Grove and P. Petersen proved in [45] that the collection Fv,n of all
Riemannian manifolds (Mn, g) with sectional curvature ≥ −1 and volume of
each unit ball ≥ v is locally linearly (C0(n, v), ρ0(n, v))-contractible. See also
[83]. By a scaling argument, it follows that in the class of complete (Mn, g)
with Sect ≥ 0 and Euclidean volume growth, one can take ρ0 = +∞ and C0
depending only on the asymptotic volume ratio. This applies also to the limit
slices (Σ, dΣ) arising in Lemma 4.13, although they only have Sect ≥ 0 in the
Alexandrov sense. See Perelman’s [79] for a more general statement.

We can combine the linear contractibility of Alexandrov surfaces with
Sect ≥ 0 and quadratic volume growth with Lemma 4.13 and Theorem 4.8
(iii). The result is that the good slices of (vi, ui) in the Mi’s are locally
uniformly linearly contractible along the sequence.
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Proposition 4.15. [15, Proposition 7.1] Under the same assumptions and with
the same notation of Theorem 4.8, there exist C0 = C0(v) > 0, ρ0 = ρ0(v) > 0
and i0 ∈ N such that for every i ≥ i0 and for every (x, y) ∈ B1(0n−3) × [0, 10]
with
(4.12) 8 ≤

√
|x|2 + y2 ≤ 9 , (x, y) /∈ Bi ,

the level set {(vi, ui) = (x, y)} ⊂ Mi endowed with the restriction of the
ambient distance of Mi is a locally (C0, ρ0)-contractible closed surface.

The rough idea of the proof of Proposition 4.15 is that the failure of local
uniform contractibility can be ruled out by a blow-up argument, exploiting
Lemma 4.13.

An important insight due to Petersen in [83] is that on a locally uniformly
contractible family of finite dimensional metric spaces, the homotopy type is
stable under Gromov-Hausdorff convergence. With the help of these tools,
the completion of the proof of Theorem 4.1 is virtually identical to that of
Theorem 3.3.

Sketch of the proof of Theorem 4.1. Any sequence of good slices {(vi, ui) =
(xi, yi)}, endowed with the restrictions of the ambient distances of (Mi, gi)
converges to the section (Y, dY ), up to subsequences and scaling. By
Proposition 4.15, such slices are closed surfaces homotopically equivalent to Y
for every sufficiently large i ∈ N. Moreover, we can assume without loss of
generality that xi is a regular value of vi for each i ∈ N. Hence the slice
{(vi, ui) = (xi, yi)} bounds the embedded 3-manifold {vi = xi} ∩ {ui ≤ yi}.
Therefore the slices cannot be homeomorphic to RP2. Hence, Y ≈ S2. □

Arguing in a similar way, we can prove the following:
Proposition 4.16. [15, Proposition 9.4] Under the same assumptions and
with the same notation of Proposition 4.11 the following hold:

(i) there exist ρ0 = ρ0(v) > 00 and C = C(v) > 0 such that, whenever q ∈
Sr(p) and 0 < s ≤ ρ0r, Bs(q) ∩Sr(p) is 2-connected in BCs(q) ∩Sr(p).

(ii) Sr(p) ≈ Z. Hence they are both either homeomorphic to S2 or to RP2.
4.2. The manifold recognition Theorem 4.3. Unfortunately, in the
context of Theorem 4.3, we are not able to construct homeomorphisms
between blow-ups and neighbourhoods of points directly. Luckily, this is not
the only circumstance where one would like to prove that some metric space is
a topological manifold without being able to construct manifold charts directly.
We address the reader to the survey papers of J.-W. Cannon [18], D. Repovš
[87], and A. Cavicchioli, Repovš, and T.-L. Thickstun [20], for an enlightening
discussion about the manifold recognition problem, of which Theorem 4.3 is
an instance.

The most delicate implication in the proof of Theorem 4.3 is the one from
the assumption on the blow-ups to the manifold regularity of X. The roadmap
for that is as follows:
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i) establish the local (uniform) simple-connectedness of (X, d);
ii) establish the local (uniform) contractibility of (X, d);
iii) prove that X is a generalized 3-manifold;
iv) prove that X is a topological 3-manifold.

Definition 4.17 (Generalized manifold). Let (X, d) be a metric space.
We say that X is a generalized n-manifold if it is locally compact, locally
contractible, finite-dimensional (in the sense of the covering dimension) and it
has the local relative homology of Rn, i.e., the groups H∗(X, X \ {x};Z) are
isomorphic to H∗(Rn,Rn \ {0};Z) for all x ∈ X.

Clearly, (i), (ii), and (iii) are necessary conditions for being a topological
3-manifold. The proof, however, is designed in such a way that to complete
each step it is necessary that we have already completed the previous ones.
We will discuss each step separately below, with the help of some toy models.

The starting point for the proof is that any RCD(−2, 3) space is already
known to be a manifold on a large dense set. We will exploit the assumption
on the blow-ups to see that taking the completion does not mess up the
manifoldness.

Before we move to the outline, it is worth making the above sentence more
precise. Kapovitch and A. Mondino proved in [54, Theorem 1.7] that for any
RCD(−(n − 1), n) space (X, d, H n) with empty boundary the following holds.
If we let

Rε := {x ∈ X : dpGH(Rn, (Y, dY , y)) < ε if (Y, dY , y) ∈ Tanx(X, d)} ,

then, for 0 < ε < ε(n), Rε is open and dense in X, dimH (X \ Rε) ≤ n − 2,
and Rε is biHölder homeomorphic to a smooth Riemannian manifold. The
proof is based on two ingredients:

• the ε-regularity theorem for spaces with Ricci bounded below, originally
due to Colding, and Cheeger and Colding for smooth manifolds and
Ricci limits, see [22, Theorem 9.67], and generalized to RCD spaces by
Kapovitch and Mondino in [54];

• the metric Reifenberg theorem, due to Cheeger and Colding in [25,
Theorem A.1.1].

For n = 3, we see that there is a gap of one dimension between the topological
regularity obtained with these techniques and the full topological regularity
we aim at. In particular, there are certainly examples where X \ Rε is a
1-dimensional set, and the metric Reifenberg theorem does not apply therein.

Remark 4.18. It is expected that X \ Rε is 1-rectifiable with locally finite
H 1-measure for every RCD(−2, 3) space (X, d, H 3). This is known, thanks
to the work of Cheeger, W. Jiang, and Naber [29], when (X, d, H 3) is a
noncollapsed Ricci limit, or the cross-section of a blow-down as in Theorem 1.5.
However, this information would not simplify the present proof of Theorem 4.3.

Given an RCD(−2, 3) space (X, d, H 3), we define the non-manifold
set Stop(X) = Stop as the set of those points in X with no neighbourhood
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homeomorphic to R3. Clearly, Stop is a closed subset of X. The discussion
above can be rephrased by saying that Stop ⊂ X \ Rε has Hausdorff dimension
at most 1. We will argue that Stop = ∅ provided that every blow-up of (X, d)
is homeomorphic to R3.

4.3. Local simple-connectedness. The first step of the proof of Theorem 4.3
is to establish the following:

Proposition 4.19. Let v > 0. There exist C = C(v) > 0 and ρ = ρ(v) > 0
such that the following holds. If (X, d, H 3) is an RCD(−2, 3) space with
H 3(B1(p)) ≥ v for any p ∈ X and such that the cross-sections of all blow-ups
are homeomorphic to S2, then Br(p) is 1-connected inside BCr(p) for every
r ≤ ρ and every p ∈ X.

Remark 4.20. J. Wang proved in [103] that every RCD space (X, d,m) is
semi-locally simply connected. It is an open question whether RCD spaces are
locally simply connected in general.

The key idea of the proof of Proposition 4.19 is better illustrated with the
help of a toy model.

Proposition 4.21. Let (M3, g) be smooth, complete with Ric ≥ 0 and
Euclidean volume growth. Then M is simply-connected.

Sketch of the proof. We fix p ∈ M and let G : M \ {p} → (0, ∞) be the
(unique) positive Green’s function of the Laplacian with pole at p, i.e., G
solves ∆G = −δp on M in the sense of distributions. We can apply the slicing
Theorem 4.8 and Proposition 4.15 to the function G−1 (suitably rescaled and
normalized) along any sequence (M, r−2

i g, p) converging to some blow-down
C(Y ) of (M, g). Arguing as in the proof of Theorem 4.1, we obtain a sequence
si → 0 such that the level sets {G = si} are all homeomorphic to Y . Since
the level sets bound the respective super level sets, they are all homeomorphic
to S2.

Note that M has finite π1, as shown by P. Li [61], and, independently,
Anderson [8]. We consider the universal cover π : M → M , where π1(M) acts
by deck transformations. Such universal cover has Ric ≥ 0 and Euclidean
volume growth as well. Since π1(M) is finite, we can apply the same slicing
argument as before to G := G ◦ π : M → (0, ∞) and check that the level sets
{G = si} are homeomorphic to the cross-section of the blow-downs of M .
For the same reasons as above, this implies that they are homeomorphic to
S2. Since π1 acts by deck transformations on each {G = si} with quotient
{G = si}, π1 must be trivial, i.e., M is simply connected. □

Remark 4.22. The conclusion of Proposition 4.21 is well known. However, the
original proof in [107] argues that the universal cover is contractible in the
first place. This is enough to rule out the torsion in the fundamental group
for topological reasons and, hence, to complete the proof. To prove the
contractibility of the universal cover, the idea, originally due to R. Schoen and
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S.-T. Yau in [88, Section 2, Lemma 2], is to combine the sphere theorem in
3-manifolds topology with the Cheeger-Gromoll splitting theorem. This
strategy heavily relies on the information that M is a (topological) 3-manifold.
As such, it is not feasible for our roadmap.

The argument that we sketched above is robust in the sense that it uses
very little of the regularity of M , and it can be localized. Namely we can use
it to prove the following:

Proposition 4.23. [15, Proposition 9.15] There exists ε > 0 such that if
(X, d, H 3) is an RCD(−ε, 3) space, p ∈ X and
(4.13) dGH (B20(p), B20(o)) < ε ,

where B20(o) is the ball centred at a vertex of some cone C(Y ) with Y ≈ S2,
then there is a simply connected domain B such that
(4.14) B1−ε(p) ⊂ B ⊂ B1+ε(p) .

The domain B in Proposition 4.23 is a sublevel set {bp < r}. Here bp := G−1
p

(up to normalization) and Gp is a local Green’s function Gp with pole at p
such that the corresponding level set {bp = r} is a good slice as obtained
through Proposition 4.11. We will call Br(p) := {bp < r} a good Green-ball
and Sr(p) := {bp = r} a good Green-sphere in this situation.

Remark 4.24. In the context of Proposition 4.23 we can actually prove that
every good Green-ball B1/2(p) ⊂ Br(p) ⊂ B1(p) is simply connected.

Remark 4.25. We warn the reader that Green-balls and Green-spheres are not
uniquely defined, as they depend on choosing a local Green’s function Gp

(equivalently, a Green-distance bp). This ambiguity does not cause any trouble.

The relevance of Proposition 4.23 depends on the possibility of verifying its
assumptions sufficiently often. This is possible thanks to the following lemma,
originally due to Cheeger and Colding for smooth Riemannian manifolds, in
[24, Theorem 4.91], and generalized to RCD spaces thanks to De Philippis
and Gigli’s [37]:

Lemma 4.26. Let (X, d, H 3) be an RCD(−2, 3) space such that H 3(B1(p)) >
v > 0 for every p ∈ X. For every ε > 0 there exist C = C(ε, v) > 0 and
ρ = ρ(ε, v) > 0 such that the following holds. For every p ∈ X and every
0 < r < ρ there exists r < r′ < Cr such that
(4.15) dGH (B20r′(p), B20r′(o)) < 20εr′ ,

where B2r′(o) ⊂ C(Y ) is the ball centred at a vertex of a cone C(Y ), and
(Y, dY , H 2) is an RCD(1, 2) space.

Sketch of proof of Proposition 4.19. The conclusion follows from Lemma 4.26
and Proposition 4.23 provided that we can show that all the sections of
the cones appearing in (4.15) are homeomorphic to S2. Note that such
sections cannot be topological disks by the (no-)boundary stability [14,



24

Theorem 1.6]. Moreover, they are homeomorphic to S2 for every sufficiently
small r, depending on p, thanks to the assumption on the blow-ups. In the
context of Theorem 1.5, it is possible to rule out sections Y ≈ RP2 exploiting
Theorem 4.1. For a general RCD(−2, 3) space as in the assumptions of
Theorem 4.3, the argument is more delicate, and we omit it. □

Figure 5. The general setup.

4.4. Good Green-spheres are nicely embedded. If (X, d) is a smooth
Riemannian manifold, we observed in Remark 4.10 that the good Green-spheres
Sr(p) are regular level sets of smooth functions. Hence, they are smoothly
embedded submanifolds, bounding the respective Green-balls Br(p). Recall,
however, that there exist topological embeddings ι : S2 → R3 such that ι(S2)
separates R3 into two components, whose closures are not manifolds with
boundary. A well-known example is Alexander’s horned sphere. It is crucial
that for (generic) good Green-spheres this kind of pathologies cannot occur.

The set of good radii in Proposition 4.11 has a positive measure.
Assumption: From now on, we will assume that a good Green-sphere is
always a slice corresponding to a good value which is an accumulation point of
good values. Almost every good radius obtained in Proposition 4.11 satisfies
such restriction, by Lebesgue’s density theorem.
Definition 4.27. Let (X, d) be a metric space. A subset C ⊆ X is said to be
locally 1-coconnected (abbreviated to 1-LCC) if every neighbourhood U ⊆ X
of an arbitrary point x ∈ X contains another neighbourhood V ⊆ X such
that all continuous maps ∂I2 → V \ C extend to maps I2 → U \ C, where
I := [0, 1].

Exploiting the approximation from both sides (i.e., from the interior
and from the exterior of the respective Green-ball) with locally uniformly
contractible good slices, we can prove:
Proposition 4.28. Any good Green-sphere Sr(p) is 1-LCC.

R.-H. Bing proved in [11] that 1-LCC subsets of a 3-manifold which are
homeomorphic to closed surfaces are tamely embedded.
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Figure 6. Approximating good slices from both sides.

Corollary 4.29. If for a good Green-ball it holds Br(p) ⊂ X \ Stop, then
Br(p) is a 3-manifold with boundary, with boundary Sr(p).

We can readily use Corollary 4.29 to prove the implication from manifold
regularity to the blow-ups being homeomorphic to R3 of Theorem 4.3. Indeed,
if (X, d) is a topological 3-manifold we can apply Corollary 4.29 to any good
Green-ball Br(p). If r is sufficiently small, then Sr(p) is homeomorphic to the
cross-section of any blow-up at p by Proposition 4.16 (ii). Since Sr(p) also
bounds a 3-manifold, Sr(p) ≈ S2.

Corollary 4.30. Any good Green-ball Br(p) ⊂ X \ Stop is homeomorphic to
the closed Euclidean ball in R3.

Proof. Any such good Green-ball Br(p) is a simply connected 3-manifold with
boundary homeomorphic to S2. The conclusion follows from the resolution of
the Poincaré conjecture. □

Remark 4.31. If one is only interested in the conclusion that Br(p) is
contractible, then by Whitehead’s theorem it is sufficient to argue that it
has the homotopy type of a point. This can be verified with a standard
argument based on Lefschetz duality; we address the reader to the proof of
[15, Proposition 9.23] for the details.

4.5. Local linear contractibility. The proof of the local linear contractibility
of (X, d) is one of the most delicate steps of the argument. We begin with a
precise statement:

Proposition 4.32. Let v > 0. There exist C = C(v) > 0 and ρ = ρ(v) > 0
such that if (X, d, H 3) is an RCD(−2, 3) space with H 3(B1(p)) ≥ v for any
p ∈ X and such that all blow-ups are homeomorphic to R3, then Br(p) is
contractible inside BCr(p) for every r ≤ ρ and every p ∈ X.

As for local linear simple connectedness before, Proposition 4.32 follows
from Lemma 4.26 and the more precise statement that all good Green-balls
are contractible, corresponding to [15, Proposition 10.2].
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The contractibility of the good Green-balls can be reduced to showing that
they are k-connected for each k ≤ 3, i.e., they have trivial k-homotopy groups.
See [15, Proposition 10.7] for the details about this reduction. We prove
this claim by arguing by induction over k. The base step of the induction,
corresponding to k = 1, follows from Proposition 4.23 (see also Remark 4.24).

Idea of the proof of the inductive step. By Hurewicz, it is sufficient to argue
that Hk+1(Br(p);Z) is trivial for each good Green-ball Br(p). We assume that
Hk(Bs(q);Z) is trivial for each good Green-ball Bs(q).

We consider a (k + 1)-cycle [σ] supported in Br(p). By construction Br(p)
looks (scale invariantly) very close in the GH sense to Br(o) ⊂ C(Y ), where
(Y, dY ) is a topological sphere with Sect ≥ 1 in the Alexandrov sense. By the
Cheeger-Colding Reifenberg theorem, we understand the topology of Br(p)
completely away from a (scale invariantly) small tubular neighbourhood
U ⊂ Br(p) of C({p1, . . . , pℓ}), where p1, . . . , pℓ ∈ Y are the points whose
blow-up is not ε-close to R2. In particular, we can deformation retract Br(p)
onto U . Hence [σ] is homologous to a (k + 1)-cycle [σ′] supported in U .

With a careful covering argument and Mayer-Vietoris, we can break up [σ′]
into a homologous sum

∑
[σ′

j ] of (k + 1)-cycles each supported in a good
Green-ball Bs(q) with a diameter much smaller than the original Br(p). Here
the inductive hypothesis plays a key role.

Morally, one would like to iterate this procedure with each of the cycles [σ′
j ]

and pass to the limit until [σ] vanishes in homology. See [15, Lemma 10.9] for
the key technical lemma that justifies this limiting procedure. Making this
moral work requires quite some care. In particular, it is crucial to know that
good Green-balls supported away from Stop (which might be nonempty at this
stage of the proof) are contractible, see Corollary 4.30. □

Figure 7. The inductive step.

Remark 4.33. Inductive and iterative arguments with a similar flavour have
appeared before in the study of the topology of spaces with lower Ricci
bounds. For instance, in [80], or more recently, in [77, 103]. With respect to
these references, a key difference is the need to argue by contradiction with
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the help of Baire’s category theorem, to gain some uniformity which might not
be guaranteed a priori. See the discussion at the beginning of [15, Section 10]
for the details of this reduction.

4.6. Generalized manifold regularity. To complete the proof that (X, d)
is a generalized 3-manifold we are left with the verification of the isomorphism
H∗(X, X \ {x};Z) ∼= H∗(R3,R3 \ {0};Z) for all x ∈ X.

For a 3-manifold M , the sought isomorphism is easily established by
considering a closed neighbourhood Ux ∋ x homeomorphic to the closed ball
D centred at the origin of R3. Indeed
(4.16) H∗(M, M \ {x};Z) ∼= H∗(Ux, Ux \ {x};Z) ,

by excision, and clearly
(4.17) H∗(Ux, Ux \ {x};Z) ∼= H∗(R3,R3 \ {0};Z) .

We replace the neighbourhood homeomorphic to D, whose existence is not
clear at this stage, with a sufficiently small good (closed) Green-ball Br(x).
The local uniform contractibility of X, i.e., Proposition 4.32, together with
the local uniform contractibility of the boundary Green-sphere Sr(x), i.e.,
Proposition 4.16 (i), yield:

Lemma 4.34. [15, Lemma 10.12] Any punctured good Green-ball Br(x) \ {x}
deformation retracts onto the Green-sphere Sr(x), if r is sufficiently small.

Figure 8. Retraction.

Exploiting Lemma 4.34, the contractibility of Br(x), and the homeomorphism
between Sr(x) and S2, proving that
(4.18) H∗(Br(x),Br(x) \ {x};Z) ∼= H∗(R3,R3 \ {0};Z)
is an easy exercise in algebraic topology.

4.7. Manifold regularity. The last step of our roadmap corresponds to
upgrading the information that (X, d) is a generalized 3-manifold to the
sought statement that it is a topological 3-manifold.

Remark 4.35. In [89, Section 4], S. Semmes constructed some Ahlfors 3-regular
generalized 3-manifolds (X, d), which are topological manifolds away from a
single point which is not a manifold point.



28

Remark 4.36. The spherical suspension over the Poincaré homology sphere
(endowed with a round metric with constant curvature ≡ 1) is a well-known
example of a 4-dimensional Alexandrov space with curvature ≥ 1, which is
a generalised 4-manifold but is not a topological 4-manifold. It is not a
noncollapsed limit of manifolds with sectional curvature uniformly bounded
from below by Perelman’s stability theorem [78]. On the other hand it is a
noncollapsed Ricci limit space.

The two remarks above are meant to convince the reader that the last step
in our roadmap requires some work. We start again from two toy models.
Proposition 4.37. Let (M3, g) have Ric ≥ 0 and Euclidean volume growth.
Then M ≈ R3.
Sketch of the proof. We fix p ∈ M and consider the Green’s function of the
Laplacian Gp : M3 \ {p} → (0, ∞). There exists a sequence ti → 0 such
that the super level sets {Gp ≥ ti} are simply connected 3-manifolds with
boundary, with boundary homeomorphic to S2. By the resolution of the
Poincaré conjecture the 3-manifold {Gp ≥ ti} is homeomorphic (actually
diffeomorphic) to the closed Euclidean 3-ball. Hence M3 admits an exhaustion
into Euclidean 3-balls. By [13], M ≈ R3. □

Remark 4.38. The statement of Proposition 4.37 is certainly not original. Our
goal above was to present a proof based on the methods developed in [15].
There are (at least) two other morally independent proofs of Proposition 4.37:

i) One can rely on the work of G. Liu [62] where complete (noncompact)
(M3, g) with Ric ≥ 0 are classified up to diffeomorphism. The options
which are not diffeomorphic to R3 are easily ruled out by the Euclidean
volume growth condition.
The proof in [62] relies on the resolution of the Poincaré conjecture in
the very last step to prove that M3 is irreducible, i.e., any embedded
S2 bounds a standard 3-ball. As pointed out to me by Chao Li, under
the Euclidean volume growth condition one can check this in an
alternative way by observing that (M3, g) admits an exhaustion into
bounded strictly mean convex domains, see for instance [41]. Indeed,
any strictly mean convex domain in a 3-manifold with Ric ≥ 0 is
diffeomorphic to a handlebody, as proved by N.-G. Anonov, Yu.-D.
Burago, and V.-A. Zalgaller in [3], and independently by W.-H. Meeks
III, L. Simon, and Yau in [71] with a different method.

ii) Using the work of Simon and Topping [93, 94] based on Ricci flow, it
is possible to exhaust M3 with open domains homeomorphic to the
ball centred at the vertex of any blow-down cone of (M3, g). Such
balls are homeomorphic to the Euclidean ball. The conclusion follows
again from [13].

Both approaches rely on the smoothness of (M3, g) very heavily. On the other
hand, the proof of Proposition 4.37 that we sketched above works for any
RCD(0, 3) manifold (X, d, H 3) with Euclidean volume growth.
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To prove that an RCD(−2, 3) space (X, d, H 3) with all blow-ups home-
omorphic to R3 is a topological 3-manifold, we need to contend with the
presence of a possibly 1-dimensional nonmanifold set Stop. It is instructive to
discuss the case of isolated point singularities first.

Proposition 4.39. Let (X, d, H 3) be an RCD(−2, 3) space such that
X \ {x1, . . . , xk} is a topological 3-manifold, i.e., Stop ⊂ {x1, . . . , xk}, and
every blow-up of X at xi is homeomorphic to R3, for every i = 1, . . . , k. Then
X is a topological 3-manifold.

Sketch of the proof. The argument is local. We assume that there is only one
singularity, i.e., k = 1, and set x := x1. The key idea is to “reverse” the
moral that we exploited in the proof of Proposition 4.37. We consider a
strictly decreasing sequence ti → 0 such that the Green-balls Bti(x) are all
good. Thanks to the assumption on the blow-ups at x, we can assume that
all the corresponding Green-spheres Sti(x) are homeomorphic to S2. Since
X \ {x} is a topological 3-manifold, all the Green-annuli Bti(x) \ Bti+1(x) are
3-manifolds with boundary (cf. with Proposition 4.28), with two boundary
components homeomorphic to S2. Arguing as in the proof of Lemma 4.34,
we infer that all such annuli are homotopically equivalent to S2. By the
resolution of the Poincaré conjecture, they are homeomorphic to S2 × [0, 1].
We can “paste together” these homeomorphisms into a homeomorphism
between Bt0(x) \ {x} and B1(0) \ {0} ⊂ R3. The conclusion follows by the
uniqueness of the one-point compactification. □

The general case is clearly more challenging with respect to Proposition 4.39.
Indeed, the nonmanifold set Stop in principle might be 1-dimensional. Hence,
reconstructing the topology of X starting from the topology of X \ Stop is
highly nontrivial. What is particularly important for us is that, although
removing X \ Rε from X might mess up the local simple connectedness, we
can control the way this occurs. To make this precise, following [99], we
introduce:

Definition 4.40. If X is a generalized 3-manifold and A ⊂ X is a closed
subset, we say that A has general-position dimension one in X if any
continuous map f : D → X can be approximated arbitrarily well by maps
g : D → X such that g(D) ∩ A is 0-dimensional. Here D ⊂ R2 denotes the
closed 2-ball.

Proposition 4.41. [15, Proposition 11.1] Let (X, d, H 3) be an RCD(−2, 3)
space such that all the blow-ups are homeomorphic to R3. Then X \ Rε has
general-position dimension one. A fortiori, Stop ⊂ X \ Rε has general-position
dimension one.

Sketch of the proof. There are two main steps:
i) for every good Green-sphere Sr(p), Sr(p) ∩ (X \ Rε) is a finite set;
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ii) any continuous map f : D → X can be approximated aribtrarily well
by continuous fε : D → X such that

(4.19) Bε(Stop) ∩ fε(D) ⊂
⋃
i≤k

Sri(pi) ,

where Bε(C) denotes the ε-enlargment of a set C ⊂ X.
Step (i) exploits Proposition 4.11 (iv). Roughly speaking, on X \ Rε there is
at most one approximate splitting at every scale. By Proposition 4.11 (iv),
this splitting must be in the normal direction of the slice. This forces the
Green-spheres to intersect X \ Rε transversely, and hence finiteness of the
intersection set.

For Step (ii), we can cover X \ Rε with a locally finite collection of good
Green-balls Bri(pi). After perturbing away f(D) from the centers pi, we can
apply Lemma 4.34 to push it iteratively onto the boundary Green-spheres
Sri(pi). □

Remark 4.42. Step (i) above generalizes the well-known statement that for a
2-dimensional Alexandrov space (Y, dY ) with empty boundary, the effective
singular set Y \ Rε(Y ) is locally finite.

Through the work of T.-L. Thickstun [98, 99] and Perelman’s resolution
of the Poincaré conjecture, Proposition 4.41 implies that the generalized
3-manifold (X, d) is resolvable, i.e., there exist a 3-manifold N and a proper,
cell-like, surjective, and continuous map Φ : N → X.

To complete the proof of Theorem 4.3, we borrow a general recognition
theorem from the work of R.-J. Daverman and D. Repovš [34]:

Theorem 4.43. [34, Proposition 1.2, Theorem 3.4] A resolvable generalized
3-manifold (X, d) is a 3-manifold if any x ∈ X is 1-LCC and admits arbitrarily
small neighbourhoods U such that there exist maps g : S2 → U \ {x} with the
following properties:

(i) g : S2 → g(S2) ⊂ X is a homeomorphism;
(ii) g(S2) is 1-LCC in X;

(iii) g : S2 → U is homotopically trivial;
(iv) g : S2 → U \ {x} is not homotopically trivial.

Completing the proof of Theorem 4.3. We are left with the proof of the
implication from the blow-ups being homeomorphic to R3 to X being a
topological 3-manifold. We argued above that (X, d) is a resolvable generalized
3-manifold. The maps g as in the assumptions of Theorem 4.43 can be taken to
be homeomorphic parameterizations of (sufficiently small) good Green-spheres
Sr(x). That such good Green-spheres are homeomorphic to S2 follows from
the assumption about the blow-ups of (X, d) and Proposition 4.16. Item (ii)
corresponds to Proposition 4.28. Item (iii) follows from Proposition 4.32. Item
(iv) follows from Lemma 4.34. □
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4.8. Remarks. We conclude this section with an informal discussion about
some of the key 3-dimensional aspects of the proof of Theorem 4.3.

(i) The almost conicality away from uniformly finitely many scales at all
points, i.e., Lemma 4.26, holds in any dimension. However, being close
to a cone in the Gromov-Hausdorff sense is enough to activate a
slicing mechanism only in dimension 3, unless the cone almost splits a
factor Rn−3, see Remark 3.5.

(ii) In any dimension n, the combination of a lower bound on the Ricci
curvature with a lower bound on the volume yields uniform finiteness
for fundamental groups. However, while for a (closed) 3-manifold the
fundamental group carries a great deal of information about the
topology, this is not the case in higher dimensions. Indeed, in the
counterexamples to a manifold recognition theorem based on the
blow-up behaviour discussed in Remark 4.4, the main issues are at the
level of the second homotopy groups.

(iii) As clearly illustrated by Theorem 3.1, in dimension 3 a qualitative
information, i.e., being a manifold, combined with the nonnegativity of
Ricci curvature and Euclidean volume growth, uniquely determines the
large-scale topological behaviour, i.e., the blow-down is homeomorphic
to R3. The proof of Theorem 4.3 heavily hinges on this moral. On
the regions where the manifold regularity is already known, we
propagate this qualitative information from infinitesimal scales to
finite ones, as in Corollary 4.30. Simultaneously, we reverse the moral
to push the nonmanifoldness to infinitesimal scales, where we can
exploit the information on the blow-up behaviour, as in the proof of
Proposition 4.32.

4.9. The stability Theorem 4.5. The proof of Theorem 4.5 hinges on a
local uniform contractibility statement:

Theorem 4.44. [15, Theorem 1.10] Let v > 0 be fixed. There exist constants
C = C(v) > 0 and ρ = ρ(v) > 0 such that if (X, d, H 3) is an RCD(−2, 3)
topological manifold with H 3(B1(p)) ≥ v for any p ∈ X, then the ball Br(p)
is contractible inside BCr(p) for every 0 < r ≤ ρ and every p ∈ X.

Remark 4.45. For smooth Riemannian manifolds Theorem 4.44 corresponds
to [107, Proposition 3.1], whose proof is based on a different idea. It is
conceivable that the arguments in [107] could be used to prove Theorem 4.44
as well.

Remark 4.46. Note that Theorem 4.44 fails to extend to higher dimensions.
Indeed, the local uniform 1-contractibility of the class of n-dimensional
Riemannian manifolds with Ricci curvature and volume uniformly bounded
from below fails as soon as n ≥ 4; see [76, Remark 2, pg. 262].

We already proved Theorem 4.44 in the previous section when we proved
Proposition 4.32.
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Remark 4.47. Actually, under the same assumptions, we proved something
stronger: for every p ∈ X and every 0 < r < ρ, there is an open domain
Br(p) ⊂ U ⊂ BCr(p) homeomorphic to the Euclidean 3-ball.

We can exploit Theorem 4.44 in combination with the results from [83] to
establish a weak version of Theorem 4.5, with homeomorphisms replaced by
homotopy equivalences.

Proposition 4.48. Under the assumptions of Theorem 4.5 there exists
i0 ∈ N such that for every i ≥ i0 there exist εi-equivalences fi : Xi → X with
εi → 0 as i → ∞, i.e., the fi’s are continuous and there exists continuous
gi : X → Xi such that, for every i ≥ i0:

i) fi ◦ gi is homotopic to idX through a homotopy Gi;
ii) gi ◦ fi is homotopic to idXi through a homotopy Fi;

iii) all the flow lines of Fi and Gi have diameter less than εi.

The imprecise idea is that local uniform contractibility removes the
obstruction to extend maps continuously.

While the proof of Theorem 4.44 in [15] is (essentially) self-contained, the
proof of Theorem 4.5 is definitely not, as it heavily relies on some deep tools
from controlled homotopy theory. We sketch it below.

Sketch of the proof of Theorem 4.5. All the blow-ups of the limit (X, d) in
(5.4) have cross-section homeomorphic to S2 by a mild generalisation of
Theorem 4.1. Hence, X is a topological 3-manifold, by Theorem 4.3. Thus, we
can invoke the 3-dimensional α-approximation theorem due to W. Jakobsche
in [49], taking into account the resolution of the Poincaré conjecture, to
perturb the εi-equivalences in Proposition 4.48 to homeomorphisms. □

Remark 4.49. The terminology α-approximation comes from the work of T.-A.
Chapman and S. Ferry [21], where an analogous statement was obtained
before in dimensions n ≥ 5.

Remark 4.50. The proof of Theorem 4.5 is very similar in spirit to the proof of
Perelman’s stability theorem for noncollapsing limits of smooth Riemannian
manifolds with sectional curvature bounded below discussed in [53, Section 3].

5. Open questions

We end this survey with a collection of conjectures and open questions.
Some of them are well-known, and some are original, to the best of the
author’s knowledge.

5.1. Improving the regularity in the manifold recognition. In the
context of the manifold recognition Theorem 4.3, it would be interesting
to understand whether a more regular homeomorphism with a smooth
Riemannian manifold can be constructed. In [15] we raised the following:
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Conjecture 5.1. [15, Conjecture 1.18] Let (X, d, H 3) be an RCD(−2, 3)
space such that all blow-ups are homeomorphic to R3. Then (X, d) is locally
biHölder homeomorphic to a smooth, complete Riemannian manifold (M3, g).

If (X3, d) is a noncollapsed Ricci limit, then Conjecture 5.1 holds, thanks to
the already mentioned works of Simon and Simon and Topping [91, 93, 94],
and A. McLeod and Topping [70].
As we stressed in Remark 4.47, an RCD(−2, 3) space (X, d, H 3) with all
blow-ups homeomorphic to R3 is a manifold in an “effective” way, at least
locally. This corresponds to condition (∗) in Seemes’ [89, Definition 1.3]. As
shown therein, there exist Ahlfors 3-regular metric 3-manifolds satisfying
condition (∗) which are not biHölder homeomorphic to smooth Riemannian
3-manifolds. It seems conceivable that RCD(−2, 3) manifolds satisfy condition
(∗∗) in [89, Definition 1.7] as well. To the best of the author’s knowledge, it is
an open question whether the combination of Ahlfors regularity and the said
condition (∗∗) yields the existence of locally biHölder homeomorphisms with a
smooth Riemannian manifold for general metric manifolds; see the discussion
in [89, Section 12].
Of course, establishing Conjecture 5.1 would pave the way for a biHölder
version of the stability Theorem 4.5.

For 3-dimensional Alexandrov spaces (X3, d) which are topological manifolds,
the biLipschitz version of the stability theorem (an unpublished result of
Perelman, see the discussion in [53]) together with the argument sketched at
the very end of Section 3.1 yield (locally) biLipschitz homeomorphisms with
subsets of R3 near to every point. It is natural to ask:

Question 5.2. Is there any RCD(−2, 3) space (X, d, H 3) with all blow-ups
homeomorphic to R3 which is not (locally) biLipschity homeomorphic to a
smooth, complete, Riemannian (M3, g)?

We stress that for a general RCD(−2, 3) space (X, d, H 3) as above, it is
an open question whether there exists an open subset U ⊂ X biLipschitz
homeomorphic to an open set in R3. The question is open for noncollapsed
Ricci limits as well, see [25, pg. 411] and [75, Open Problem 2.2].

5.2. Regularization. The next question has been around for some time,
although it did not appear in print before [15]. See also the recent survey [92,
Section 7].

Question 5.3. Let (X, d, H 3) be an RCD(−2, 3) space which is a topological
manifold. Is it a noncollapsed Ricci limit space?

The analogous question for 3-dimensional Alexandrov spaces with curvature
bounded from below has been open from the Eighties; see, for instance, the
discussion around [59, 2.4 Open Problem].

We mentioned in Section 3.4 that the cross-section of the blow-down of
every (Mn, g) with Sect ≥ 0 and Euclidean volume growth is a smoothable
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Alexandrov space homeomorphic to Sn−1, thanks to [52]. By Theorem 3.1,
this is the case also for every (M3, g) with Ric ≥ 0 and Euclidean volume
growth. In view of Theorem 1.5, the next question can be seen as dealing with
a special case of Question 5.3.

Question 5.4. Let (M4, g) be smooth, complete, with Ric ≥ 0 and Euclidean
volume growth. Let (Z, dZ , H 3) be the cross-section of a blow-down of
(M4, g). Is (Z, dZ) a noncollapsed Ricci limit space?

Similarly, one might ask:

Question 5.5. Let (Mn
i , gi, pi) be smooth, complete Riemannian manifolds

with Rici ≥ −δi, δi → 0 as i → ∞. Assume that

(5.1) (Mn
i , gi, pi)

pGH−−−→ (Rn−3 × Z, dRn−3 × dZ , (0, p)) , as i → ∞ ,

and H 3(Br(p)) ≥ vr3 for every r > 0, for some v > 0. Is (Z, dZ) a
noncollapsed Ricci limit space?

The slice Z arising in Question 5.5 is homeomorphic to R3, by [15, Theorem
1.7, Theorem 1.9]. It seems tempting to approach Question 5.5 and Question 5.4
via Ricci flow. Thanks to an unpublished result due to R. Hochard [47,
Lemma I.3.12], to answer Question 5.5 in the affirmative, it would suffice to
construct a smooth complete Ricci flow (Mn, g(t))t∈(0,T ) such that, for every
t ∈ (0, T ) and for some K > 0,

(5.2) |Riem(g(t))| ≤ K

t
, injx(g(t)) ≥

√
K

t
, Ric(g(t)) ≥ 0 ,

and
(5.3) lim

t→0
(M, dt) = (Rn−3 × Z, dRn−3 × dZ) .

We address the reader to Hochard’s PhD thesis [47] for the precise notion of
convergence employed in (5.3) and a thorough discussion about some of the
difficulties related to this approach.

5.3. Topology of (M4, g) with Ric ≥ 0 and Euclidean volume growth.
The examples with infinite topological type constructed by Menguy in [72]
clearly illustrate that the topology of manifolds within this class might be
quite complicated. As far as the author is aware, the only general topological
results are:

i) |π1(M)| < ∞, due to Li [61] and Anderson [8] independently;
ii) H3(M ;Z) = 0, due to Y. Itokawa and R. Kobayashi in [50];
iii) H2(M ;Z) is torsion-free, due to Z. Shen and C. Sormani in [90].

Up to changing 3 into (n − 1) and 2 with (n − 2), (i), (ii), and (iii) above hold
for any (Mn, g) with Ric ≥ 0 and Euclidean volume growth.
Brena, Bruè and Pigati recently proved that any (M4, g) with Ric ≥ 0 and
Euclidean volume growth is orientable in [12], partly relying on Theorem 1.5.
Such a result does not generalize to n > 4. Indeed, RP2 × R3 admits a
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complete metric g with Ric ≥ 0 and Euclidean volume growth; see [76]. It
seems conceivable to the author that Theorem 1.5 could help classify all
possible fundamental groups of (M4, g) with Ric ≥ 0 and Euclidean volume
growth.

If Ric ≡ 0, then M4 can be compactified to a smooth manifold with
boundary with boundary diffeomorphic to the cross-section of the blow-down.
No such statement can hold, in general, when we only assume that Ric ≥ 0. It
seems natural to ask whether the finiteness of the topological type is the only
obstruction.

Question 5.6. Let (M4, g) be smooth complete with Ric ≥ 0, Euclidean
volume growth, and finite topological type. Does there exist a compact
topological manifold with boundary M such that ∂M is homeomorphic to the
cross-section of a blow-down of (M, g) and M \ ∂M is homeomorphic to M?

In all the examples available in the literature at the time of writing, a
nontrivial fundamental group for the cross-section of the blow-down of (M4, g)
can only appear at the price of nontrivial homotopy groups for M .

Question 5.7. Let (M4, g) be smooth complete with Ric ≥ 0 and Euclidean
volume growth. Assume that M is contractible. Can the cross-sections of the
blow-downs of (M, g) be not simply connected?

The examples constructed by S. Zhou in [105] suggest that Question 5.7
might be a subtle one.

To the best of the author’s knowledge, the unique smooth contractible
4-manifold which is known to admit a complete metric with Ric ≥ 0 and
Euclidean volume growth is R4 (with the standard smooth structure).

Question 5.8. Do there exist contractible 4-manifolds M which admit a
complete smooth metric g with Ric ≥ 0 and Euclidean volume growth and are
not homeomorphic (or diffeomorphic) to R4?

Note that if a contractible M4 admits a Ricci-flat metric with Euclidean
volume growth, then M4 is diffeomorphic to R4 and the metric is flat. This
follows from [4, Lemma 6.3] combined with [30, Corollary 8.85], stated here as
Theorem 1.1.

As pointed out to me by Shengxuan Zhou, the questions discussed in this
section are mostly open also in the case of Kähler surfaces, unless one assumes
that they are polarized or Stein.

5.4. Generalizations to RCD spaces. It is conceivable that for every
RCD(−2, 3) space (X, d, H 3) every x ∈ X should have a neighbourhood
homeomorphic to a blow-up of (X, d) at x. Such a statement would (almost)
extend Perelman’s conical neighbourhood theorem for Alexandrov spaces with
curvature bounded from below from [78] to the present setting. Moreover, it
would resolve in the affirmative the following:
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Conjecture 5.9 (Mondino ’22). Every RCD(−2, 3) space (X, d, H 3) is
homeomorphic to an orbifold (possibly with boundary).

To address Conjecture 5.9, one needs to handle blow-ups homeomorphic to
C(RP2), corresponding to interior orbifold points, or R3

+ (i.e., a half-space),
corresponding to boundary points. The case of boundary points seems more
delicate. In particular, to deal with it, it might be helpful to have positive
answers to [54, Question 4.9] and [14, Open Question 7.3].

If Conjecture 5.9 holds true, then it is very likely that the manifold
assumption could be removed from the stability Theorem 4.5. This would
amount to settle in the affirmative the following:

Conjecture 5.10. Let (Xi, di, H 3) be RCD(−2, 3) spaces. Assume that

(5.4) (Xi, di)
GH−−→ (X, d) as i → ∞ ,

without collapse, for some compact RCD(−2, 3) space (X, d, H 3). Then there
exists i0 ∈ N such that Xi is homeomorphic to X for every i ≥ i0.

In the context of noncollapsed Gromov-Hausdorff convergence under lower
sectional curvature bounds, cross-sections of blow-ups are topologically stable,
as illustrated by Kapovitch’s [52]. See, in particular, Theorem 5.1 and Remark
5.4 therein. The combination of [14, Theorem 1.6] with [15] shows that
something similar holds for (synthetic) lower Ricci bounds in dimension 3.

Theorem 5.11. Let (Xi, di, H 3, pi) be RCD(−2, 3) spaces with empty
boundary such that

(5.5) (Xi, di, H
3, pi)

pmGH−−−−→ (X, d, H 3, p) , as i → ∞ .

Let C(Y ) be a blow-up of (X, d) at p. There exist qi ∈ Xi such that the
cross-sections of every blow-up of (Xi, di) at qi are homeomorphic to Y .

The examples discussed in Section 2.1 clearly illustrate that the topology of
cross-sections (of blow-ups) need not be stable under noncollapsed Gromov-
Hausdorff convergence with lower Ricci bounds in dimensions larger than
4. However, the singularities of the form Rn−3 × C(RP2) enjoy some form
of stability, as shown by Theorem 4.1. We conjecture that Theorem 4.1
generalizes to RCD spaces if suitably reformulated.

Conjecture 5.12. Fix n ≥ 4. Let (Xi, di, H n, pi) be RCD(−δi, n) spaces,
with δi → 0, H n(B1(pi)) > v > 0 and such that

(5.6) (Xi, di, pi)
pGH−−−→ Rn−3 × C(Y ) , i → ∞ ,

for some metric space (Y, dY ). Assume that each (Xi, di) has no blow-up of
the form Rn−3 × C(W ) with W ≈ RP2. Then Y ≈ S2 or Y ≈ D

2. If the
Xi’s have empty boundaries, then only the first possibility can occur.
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Besides the technical challenge in generalizing the slicing Theorem 4.8 to
RCD spaces, the present proof of Theorem 4.1 hinges on the smoothness in a
crucial way. As such, proving Conjecture 5.12 would require some new idea.

We pointed out before that a (smooth) 3-manifold M3 admits a smooth
Riemannian metric g with Ric ≥ 2 if and only if it admits a distance d
compatible with the topology and such that (M3, d, H 3) is an RCD(2, 3)
space. We end the survey with the following:

Conjecture 5.13. There exist n ≥ 4 and a smooth simply connected
n-manifold Mn such that:

i) there is no smooth metric g with Ric ≥ n − 1 on Mn;
ii) there is a distance d compatible with the topology of Mn such that

(Mn, d, H n) is an RCD(n − 1, n) space.
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