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Abstract. We investigate existence, uniqueness and asymptotic behavior of minimizers of a
family of non-local energy functionals of the type

1
4

∫∫
R2n\(Rn\Ω)2

|u(x) − u(y)|2K(x − y) dxdy +
∫

Ω
W (u(x)) dx.

Here, W is a possibly degenerate double well potential with a polynomial control on its second
derivative near the wells. Also, K belongs to a wide class of measurable kernels and is modeled
on that of the fractional Laplacian.
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1. Introduction

1.1. Problem setting. In this paper we deal with the minimization problem of an energy functional
related to phase transition phenomena with long range particle interactions. Specifically, we are
interested in functionals of the form

(1.1) EK(u; Ω) := HK(u,Ω) + P(u,Ω),

where the non-local interaction term HK and the potential term P are given, respectively, by

HK(u,Ω) := 1
4

∫∫
R2n\(Rn\Ω)2

|u(x) − u(y)|2K(x− y) dxdy ,

and

(1.2) P(u,Ω) :=
∫

Ω
W (u(x)) dx.
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Here, K is a positive kernel modeled on that of the fractional Laplacian, while W is a double
well potential, with wells at ±1. Also, differently from the classical literature on this topic, the
derivatives of W , up to any integer order, are allowed to vanish at ±1.

More precisely, K : Rn → [0,+∞] is a measurable function satisfying
K(x) = K(−x) for a. e. x ∈ Rn ,(K1)

and
λ1Br0

(x)
|x|n+2s

≤ K(x) ≤ Λ
|x|n+2s

for a. e. x ∈ Rn,(K2)

for some s ∈ (0, 1), 0 < λ ≤ Λ and r0 > 0.
Given a set A ⊆ Rn, here above and throughout the paper, we use the notation

1A(x) :=
{

1 if x ∈ A,

0 if x ∈ Rn \A.
In order to gain better decay results for the minimizers of EK , we will sometimes ask that K

satisfies

(K3) λ

|x|n+2s
≤ K(x) ≤ Λ

|x|n+2s
for a. e. x ∈ Rn and some s ∈ (0, 1) and 0 < λ ≤ Λ.

We stress that condition (K3) is stronger than (K2) as, for instance, prevents the kernel from having
compact support.

Moreover, in some cases, we will also assume that K satisfies the following “slow oscillation”
assumption:

(K4) lim sup
j→+∞

(
sup

x∈Rn\{0}

K(σjx)
K(x) − 1

)
1

(1 − σj)1−ε
∈ [−∞, 0], for any σj ↗ 1 and ε ∈ (0, 1) .

We refer the reader to Appendix A for examples of kernels satisfying these hypotheses.
We notice here that (K1) allows us to express the kinetic term HK as

HK(u,Ω) = 1
4

∫
Ω

∫
Ω

|u(x) − u(y)|2K(x− y) dx dy

+1
2

∫
Ω

∫
Rn\Ω

|u(x) − u(y)|2K(x− y) dx dy.

Regarding the potential W : R → [0,+∞), we assume that1

W ∈ C2,ϑ
loc (R) for some ϑ > 0 and W (±1) = W ′(±1) = 0 and(W1)

W (t) > 0 for all t ∈ (−1, 1).(W2)
Also, we assume that there exist C2 ≥ C1 > 0, C4 ≥ C3 > 0, ξ ∈ (0, 1), α ≥ β ≥ 2 and γ ≥ δ ≥ 2
such that

(W3)


C1(1 + t)α−2 ≤ W ′′(t) ≤ C2(1 + t)β−2 for t ∈ (−1,−1 + ξ]
and
C3(1 − t)γ−2 ≤ W ′′(t) ≤ C4(1 − t)δ−2 for t ∈ [1 − ξ, 1).

In addition, some of the results will ask for the potential to be symmetric, i.e.
(W4) W (t) = W (−t) for any t ∈ [−1, 1].

We stress that condition (W3) is very general and, for instance, allows W to be degenerate2 and
also to present an oscillatory behavior near the wells.

1As customary, when writing Cϑ(Ω), we suppose that, if ϑ > 1, the notation u ∈ Cϑ(Ω) means u ∈ Ck,θ(Ω)
with k ∈ N, θ ∈ (0, 1] and ϑ = k + θ.

2Throughout this work, given a double well potential V with wells at a and b, we call it non-degenerate if V ′′(a) > 0
and V ′′(b) > 0. If this condition is not satisfied, we call it degenerate
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Remark 1.1. The energy functional EK in (1.1) can be compared to the energy functional F
considered in [22], expressed as
(1.3) F(u,Ω) := H (u,Ω) + P(u,Ω),
where the potential term P coincides with (1.2), while the kinetic one is

H(u,Ω) := 1
2

∫
Ω

∫
Ω

|u(x) − u(y)|2

|x− y|n+2s
dx dy +

∫
Ω

∫
Rn\Ω

|u(x) − u(y)|2

|x− y|n+2s
dx dy.

We mention that, if we set K to be the kernel of the fractional Laplacian, namely K(x) = |x|−n−2s,
then H and HK coincide, up to a constant. In particular, (K2) yields

(1.4) EK(u,Ω) ≤ max
{

Λ
2 , 1

}
F(u,Ω).

In the present paper, we address existence, uniqueness and asymptotic behavior of minimizers
of EK . As a matter of fact, in [9, Remark 2.4], the construction of such minimizers is left as an open
problem and, to the best of the authors’ knowledge, constitutes a new result in literature.

The main novelty of this study is to be found in condition (W3) which provides a polynomial
control on the growth of W ′′ near ±1. Thus, the potential might present an oscillatory nature
and cause different decay rates of minimizers near the wells. In particular, (W3) encodes both the
cases of a symmetric and of a non-symmetric potential, which will be considered separately (see
Theorems 1.5 and 1.6 in Section 1.2).

Moreover, in addition to the existing literature, we show that the decay estimates provided for
the minimizers and their derivatives are optimal (see Remark 1.7 in Section 1.2).

In the local case, degenerate potentials have been considered in [13], where density estimates are
obtained actually in the more general setting of p-Laplace equations and quasiminima of the energy.

We remark that functionals as in (1.1) constitute a non-scaled Ginzburg-Landau-type energy, in
which the kinetic term HK is given by some non-local integrals, in place of the classical Dirichlet
integral. Models of this form have attracted a great deal of attention, due to their capability to
capture long range interactions between particles. They naturally arise, for instance, when dealing
with phase transition phenomena involving non-local tension effects (see e.g [10, 26, 27]), or in the
study of the Peierls-Nabarro model for crystal dislocation (see e. g. [4, 14,15,20]).

In particular, the problem of investigating the qualitative properties of minimizers of such func-
tionals is not new in literature. Indeed, since the breakthrough works of De Giorgi, Modica and
Mortola, it is known that minimizers of the Ginzburg-Landau energy functional are deeply con-
nected with minimal surfaces, leading to the famous conjecture by De Giorgi on the symmetry of
monotone entire solutions of the Allen-Cahn equation (see [4, 16, 17, 19] for a more comprehensive
treatment). Also, we recall that in [26] the authors study the relation between solutions to the frac-
tional Allen-Cahn equation and (non) local minimal surfaces, obtaining the fractional counterpart of
the Γ -convergence result by Modica and Mortola. Moreover, we refer the reader to [3,23] for results
on the Γ -convergence of non-local Allen-Cahn energy functionals in one dimension, respectively for
the cases s = 1/2 and s ∈ (0, 1).

Specifically, the results that we present here are in the direction of [9, 22]. In [22], indeed, the
authors analize the minimizers of the energy F in (1.3), considering the related Euler-Lagrange
equation
(1.5) Lsu = W ′(u),
where W is a non-degenerate potential and Lsu stands for the fractional Laplacian (for which we
mantain the notation used in [15])

Lsu(x) := PVx

∫
Rn

u(y) − u(x)
|x− y|n+2s

dy.

We recall that equation (1.5) is often credited as a non-local analogue of the so-called (elliptic)
Allen–Cahn equation — the classical, local one being just (1.5) with s = 1, formally.
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The paper [9] extends the results of [22] to the case of non-local operators with general kernels
satisfying (K1) and (K2). Hence, (1.5) becomes
(1.6) LKu = W ′(u),
where W is a non-degenerate and even potential, while

(1.7) LKu(x) := PVx

∫
Rn

(u(y) − u(x))K(x− y) dy.

See also [5], where extension techniques are used to deal with existence, uniqueness and qualitative
properties of solutions of (1.5).

The present paper deals with the same operator as in (1.7), nevertheless in our framework the
potential will be allowed to be degenerate and non-symmetric.

Remark 1.2. Being (K1) in force, LK can be represented as a non-singular integral. Indeed, it
holds that

LKu(x) = 1
2

∫
Rn

δu(x, z)K(z) dz,

where δu(x, z) is the second order increment
δu(x, z) := u(x+ z) − u(x− z) − 2u(x).

Note that if K(x) = |x|−n−2s, then LK boils down to the classical fractional Laplacian (for which
we mantain the notation used in [15])

Lsu(x) = 1
2

∫
Rn

δu(x, z)
|z|n+2s

dz.

1.2. Minimizers of EK with general potentials. In order to state the main results of this paper,
some further notation is needed.

Definition 1.3. Let Ω be a bounded domain of Rn. A measurable function u : Rn → R is a local
minimizer of EK in Ω if EK(u; Ω) < +∞ and

EK(u; Ω) ≤ EK(u+ ϕ; Ω),
for any ϕ ∈ C∞

0 (Ω).
Moreover, we say that a measurable function u : Rn → R is a class A minimizer of EK if it is a

local minimizer in any bounded domain Ω ⊂ Rn.

We stress that the introduction of the notion of class A minimizers is due to the fact that the
energy EK may in principle diverge when evaluated in unbounded domains. Therefore, to keep track
of its growth, one introduces the following “renormalized” energy

(1.8) G(u) := lim sup
ρ→+∞

EK(u; [−ρ, ρ])
Ψs(ρ) ,

where the function Ψs is given by

(1.9) Ψs(ρ) :=


ρ1−2s if s ∈ (0, 1/2),
log ρ if s = 1/2,
1 if s ∈ (1/2, 1).

Furthermore, as the next remark points out, this concept of local minimization is consistent with
respect to set inclusion.

Remark 1.4 (Remark 2.2 in [9]). Let Ω′ ⊂ Ω be two given domains of Rn. Then a local minimizer u
for EK in Ω is also a local minimizer3 of EK in Ω′.

3This fact follows from the following inclusion

(1.10) R2n \
(
Rn \ Ω′

)2
⊂ R2n \

(
Rn \ Ω

)2
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We are now in the position to state our main result, dealing with existence, uniqueness and decay
properties of class A minimizers for EK in the class of admissible functions

(1.11) X :=
{
f ∈ L1

loc(R) s. t. lim
x→±∞

f(x) = ±1
}
.

The following theorem guarantees, in dimension 1, the existence and uniqueness (up to transla-
tions) of a class A minimizer for EK and lists some of its qualitative properties. Furthermore, it
proves that such minimizers are the only non-decreasing solutions of (1.6).

Theorem 1.5. Let n = 1. Let (K1), (K2), (K4), (W1), (W2) and (W3) hold true.
Then, in the family X of admissible functions, there exists a unique (up to translations) nontrivial

class A minimizer u(0) of EK .
Moreover, u(0) is strictly increasing.
Also, u(0) ∈ C1+2s+θ(R) for some θ ∈ (0, 1) and there exist C̃ > 0 and R > 0 such that

1 + u(0)(x) ≤ C̃|x|−
2s

α−1 if x ≤ −R,

1 − u(0)(x) ≤ C̃|x|−
2s

γ−1 if x ≥ R.
(1.12)

Furthermore, up to translations, u(0) is the only increasing solution to
(1.13) LKu = W ′(u) in R ,
in the family of admissible functions X and

G(u(0)) < +∞.

In addition, if K satisfies (K3), then there exists Ĉ ∈ (0, C̃] such that

1 + u(0)(x) ≥ Ĉ|x|−
2s(α−β+1)

α−1 if x ≤ −R,

1 − u(0)(x) ≥ Ĉ|x|−
2s(γ−δ+1)

γ−1 if x ≥ R ,
(1.14)

and

(u(0)(x))′ ≥ Ĉ|x|−
(

1+ 2s(α−β+1)
α−1

)
if x ≤ −R,

(u(0)(x))′ ≥ Ĉ|x|−
(

1+ 2s(γ−δ+1)
γ−1

)
if x ≥ R.

(1.15)

Moreover, if K satisfies (K3) and
(1.16) max

{
(α− 2)(α− β), (γ − 2)(γ − δ)

}
< 1,

then

(u(0)(x))′ ≤ C̃|x|−
(

1+ 2s(1−(α−2)(α−β))
α−1

)
if x ≤ −R,

(u(0)(x))′ ≤ C̃|x|−
(

1+ 2s(1−(γ−2)(γ−δ))
γ−1

)
if x ≥ R.

(1.17)

The next theorem can be seen as the dual of the previous one when (W4) is in force. Hypothe-
ses (W4) allows us to drop the assumption (K4) on K and, moreover, to retrieve odd minimizers
of EK . We recall that, in this case, α = γ and β = δ in (W3).

Theorem 1.6. Let n = 1. Let (K1), (K2), (W1), (W2), (W3) and (W4) hold. Then, in the
family X of admissible functions, there exists a unique (up to translations) nontrivial class A mini-
mizer u(0) of EK .

Moreover, u(0) is strictly increasing and odd.

and from the fact that, if u and v coincide in Rn \ Ω′, then

|u(x) − u(y)|2 = |v(x) − v(y)|2 for any (x, y) ∈
(
Rn \ Ω′

)2
.

We refer the interested reader to [10, Remark 1.2] for a more detailed explanation.
In particular, (1.10) implies that the energy EK(u, ·) is non-decreasing with respect to set inclusion.



6 F. DE PAS, S. DIPIERRO, M. PICCININI, AND E. VALDINOCI

Also, u(0) ∈ C1+2s+θ(R) for some θ ∈ (0, 1) and there exist C̃ > 0 and R > 0 such that

(1.18) |u(0)(x) − sign(x)| ≤ C̃|x|−
2s

α−1 if |x| ≥ R.

Furthermore, up to translations, u(0) is the only non-decreasing solution to

LKu = W ′(u) in R,

in the family of admissible functions X and

G(u(0)) < +∞.

In addition, if K satisfies (K3), then there exists Ĉ ∈ (0, C̃] such that

(1.19) |u(0)(x) − sign(x)| ≥ Ĉ|x|−
2s(α−β+1)

α−1 if |x| ≥ R.

and

(1.20) (u(0)(x))′ ≥ Ĉ|x|−
(

1+ 2s(α−β+1)
α−1

)
if |x| ≥ R.

Moreover, if K satisfies (K3) and

(1.21) (α− 2)(α− β) < 1,

then

(1.22) (u(0)(x))′ ≤ C̃|x|−
(

1+ 2s(1−(α−2)(α−β))
α−1

)
if |x| ≥ R.

Remark 1.7. Theorems 1.5 and 1.6 entail that if (K3) and (1.16) (which boils down to (1.21) in
Theorem 1.6) are satisfied and α = β and γ = δ, then the decay estimates for u(0) and (u(0))′ are
optimal. Notice that, thanks to the full generality of our framework, this consideration applies to
the minimizers considered in [22, Theorem 2] and [9, Theorem 1].

We mention that some partial contributions for degenerate potential and general kernels have been
provided in the earlier works [1, 2] and in [11]. In these papers, the authors address the existence
and monotonicity of minimizers properties for energy functionals of the form EK . However, in
their full generality, our results for degenerate potentials are new even in the case of the fractional
Laplacian. On a similar note, our results for general kernels are new even in the case of non-
degenerate potentials, since we do not necessarily assume that the potential is even. Furthermore,
our results are new even when the potentials are degenerate but their second derivative presents
a specific behavior at the potential minima (that is, when α = β and γ = δ in (W3)). In this
spirit, we believe that our general setting is also helpful to provide a unified approach to problems
in which the structures of the interaction and potential energies possess different features which can
potentially influence each other.

We also point out that extending the results in [9,22] to a degenerate and non-symmetric potential
asks for a careful approach. More specifically, these changes in the hypotheses lead to significant
modifications in the structure of the problem itself. For instance, we point out that hypotheses (W4)
plays a major role in order to prove the existence of particular class A minimizers of EK . Indeed, an
even potential gives rise to an odd minimizer in bounded intervals (see Proposition 6.7 below) and
this allows, in Section 8, to successfully perform a passage to the limit. Without this condition, we
have to add to the more standard hypotheses (K1) and (K2) an “upper semicontinuity” property
for K, i.e. (K4) which is not present in [9].

Also, whenever W ′′(±1) > 0, decay estimates as in (1.12) can be inferred relying on barriers like
the ones in [9, Lemma 4.1] (that are inspired by the barriers in [27, Lemma 3.1] and adapt them to
the case of more general kernels), that are well established in literature. Nevertheless, the general
framework that we work in asks for more refined barriers, inspired by the ones built in the recent
paper [12].

Moreover, we stress that the estimates for the derivative of u(0) cannot rely on a “linearization
argument”, as done in [9, 22], since in our general setting W ′′ may degenerate at the wells. Our
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strategy requires instead a suitable “convexity property”, as provided by Lemma 4.1, and estimates
on the decay of u(0) in order to employ a suitable barrier argument.

Furthermore, we note that the decay estimates for the solution and for its derivatives, as presented
in (1.12), (1.14), (1.15), (1.17), (1.18), (1.19) (1.20) and (1.22), showcase the interesting feature that
the behavior of u(0) and its derivatives at +∞ only depends on the structure of the potential at +1
(and, likewise, the behavior of u(0) and its derivatives at −∞ only depends on the structure of the
potential at −1): this is not completely obvious, due to the non-local nature of the problem, and
allows us to consider the case in which the potential is degenerate at one well but non-degenerate
at the other (namely, W ′′(+1) > 0 = W ′′(−1), or W ′′(−1) > 0 = W ′′(+1)), which is also a new
feature with respect to the existing literature.

Remark 1.8. As a natural direction for further investigation, one may consider the possibility of
improving the decay estimates for minimizers in the presence of oscillatory potentials.

For instance, the decay estimates in (1.12) depends solely on the parameters α or γ, which
suggests that a sharp lower bound in (1.14) should similarly depend only on the parameters β or δ.

Moreover, in [15, Proposition 6.4], the authors refine the asymptotics of their minimizer to a
higher order. Extending such results to our framework would enable a deeper investigation on the
evolution of the atom dislocation function in the Peierls-Nabarro model for crystals. We plan to
address these lines of research in a forthcoming paper.

1.3. Organization of the paper. The rest of the paper is organized as follows. In Section 2,
we address some regularity properties related to the fractional Allen-Cahn equation, providing the
definitions of weak and pointwise solutions to (1.6) and a suitable variational framework.

Section 3 constructs a barrier used later on to prove the decay estimates in (1.12).
Section 4 contains three separate subsections: the first one investigating the convexity property

of W , the second one stating a strong comparison principle for LK , while the third one providing
some regularity results related to the fractional Allen-Cahn equation.

Then, in Section 5 we collect some asymptotic estimates for the operator LK in dimension n = 1.
Some preliminary results on 1-D minimizers are collected in Sections 6 and 7.

Finally, we prove Theorems 1.5 and 1.6 in Section 8.

2. Preliminaries

In this section we provide the analytical setting that we work in and recall some regularity results
for solutions of

(2.1) −LKu = f in Ω ,

and of their associated Dirichlet problem

(2.2)
{

−LKu = f in Ω,
u = g in C Ω,

where Ω is a domain of Rn and f and g are measurable functions.
We mention here that this section is meant to be self contained, does not contain any new results

and only addresses the regularity theory that we need in the rest of the paper. A more exhaustive
treatise of these topics can be found, e. g. in [6, 7, 9, 24,25,28].

2.1. Analytical setting. In this subsection, K is assumed to satisy (K1) and (K2). Given a
domain Ω ⊂ Rn, we consider the linear space

HK(Ω) :=
{
u : Rn → R measurable s. t. u|Ω ∈ L2(Ω) and [u]HK (Ω) < +∞

}
,

where

(2.3) [u]2HK(Ω) := 2HK(u,Ω) = 1
2

∫∫
R2n\(CΩ)2

|u(x) − u(y)|2K(x− y) dx dy.
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Furthermore, we consider the space

HK
0 (Ω) :=

{
u ∈ HK(Ω) : u = 0 a. e. in Rn \ Ω

}
.

If Ω has continuous boundary (in the sense of [18, Definition 4]), we have that

(2.4) HK
0 (Ω) = C∞

0 (Ω)
∥·∥HK (Ω) ,

where
∥u∥HK(Ω) := ∥u∥L2(Ω) + [u]HK (Ω),

see [9, Remark 3.1] and [18, Theorem 6]
We also set

⟨u, v⟩HK(Ω) := 1
2

∫∫
R2n\(Rn\Ω)2

(u(x) − u(y))(v(x) − v(y))K(x− y) dx dy.

2.2. Regularity results. With this bit of notation, we can give the definition of weak solutions
to (2.1) and to the Dirichlet problem (2.2).

Definition 2.1. Given a bounded Lipschitz domain Ω ⊂ Rn and f ∈ L2(Ω), we say that u ∈ HK(Ω)
is a weak solution to (2.1) in Ω if

(2.5) ⟨u, ϕ⟩HK (Ω) = ⟨f, ϕ⟩L2(Ω) for any ϕ ∈ HK
0 (Ω).

For any g ∈ HK(Ω) we say that u ∈ HK(Ω) is a weak solution to (2.2) if (2.5) is satisfied
and u− g ∈ HK

0 (Ω).
If Ω is unbounded, we say that u is a weak solution to (2.1) if, for any Lipschitz subdomain Ω′ ⋐ Ω,

we have that u ∈ HK(Ω′) and (2.5) is satisfied in Ω′.

Notice that, in light of (2.4), one can relax the assumption ϕ ∈ HK
0 (Ω) in (2.5), by requiring

instead that ϕ ∈ C∞
0 (Ω).

In order to strenghten the notion of solution under consideration, further notation is needed. In
particular, we consider the “tail space”

L1
2s(Rn) :=

{
u : Rn → R measurable s. t. ∥u∥L1

2s(Rn) < +∞
}
,

where

∥u∥L1
2s(Rn) :=

∫
Rn

|u(x)|
1 + |x|n+2s

dx.

Clearly L∞(Rn) ⊂ L1
2s(Rn), and therefore the space L1

2s(Rn) is not empty.

Definition 2.2. A function u ∈ L1
2s(Rn) ∩ C2s+θ

loc (Ω), with θ > 0, is a pointwise solution to (2.1)
in Ω if f is continuous and the equation is satisfied at any point x ∈ Ω.

Moreover, given g ∈ C2s+θ(Rn \ Ω), we say that u is a pointwise solution to (2.2) if (2.1) is
satisfied in the pointwise sense and u ≡ g in Rn \ Ω.

We mention here some regularity results for semilinear equations of the type (2.1).

Proposition 2.3 (Proposition 3.12 in [9]). Let s ∈ (0, 1) and let K satisfy (K1) and (K2). Let Ω ⊂
Rn be a bounded C1,1-domain, W ∈ C1,ϑ

loc (R), for some ϑ ∈ (0, 1), and g ∈ C2s+σ(Rn \ Ω), for
some σ ∈ (0, 2 − 2s).

Let u ∈ HK(Ω) ∩ L∞(Rn) be a weak solution to{
LKu = W ′(u) in Ω,
u = g in C Ω.

Then, u ∈ Cθ(Rn) ∩ C2s+θ
loc (Ω), for some θ ∈ (0, s), depending only on n, s, λ, Λ, ϑ and σ.
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Proposition 2.4 (Proposition 3.13 in [9]). Let s ∈ (0, 1) and let K satisfy (K1) and (K2). Let W ∈
C2,ϑ

loc (R), for some ϑ > 0, and u ∈ L∞(Rn) be a weak solution to

LKu = W ′(u) in Rn.

Then, u ∈ C1+2s+θ(Rn) for some θ > 0.

3. Construction of a useful barrier

In this section we construct an auxiliary function that will be used as a barrier to retrieve the
decay estimates in (1.12) and (1.18).

Barriers like the one that we propose here have been already introduced in the literature. But,
while in both [22, Lemma 8] and [9, Lemma 4.1] the authors consider barriers that match the non-
degenerancy condition of the potential W (see also [27]), in our framework, W can possibly decay
faster at the wells ±1 and so the need of a more refined approach. A similar barrier, constructed in
the p-Laplacian framework, can be found in [12].

Proposition 3.1. Let K satisfy (K1) and (K2).
Then, for any ζ > 0 and m ≥ 2, there exist two constants R0 > 0, depending on n, s, Λ, ζ

and m, and C ≥ 1, depending on n, s, Λ and ζ, such that the following holds.
For any R ≥ R0 there exists a rotationally symmetric function

(3.1) w ∈ C(Rn, (−1, 1]) ,

such that

(3.2) w ≡ 1 in Rn \BR ,

and

(3.3) |LKw| ≤ ζ(1 + w)m−1 in BR.

Also, for any x ∈ BR,

(3.4) 1
C(1 +R− |x|)

2s
m−1

≤ 1 + w(x) ≤ C

(1 +R− |x|)
2s

m−1
.

Proof. We set

(3.5) q := 2
m− 1 ,

and take r1 ≥ 2
5

qs and r ≥ r1 (notice that these choices imply that r ≥ 4
√

2 > 4).
We also set ℓ(t) := (r − t)−qs for any t ∈ (0, r) and define

γr :=
(
ℓ(r − 1) − ℓ

(
r

2

)
− ℓ′

(
r

2

)(
r

2 − 1
))−1

.

We notice that

γ−1
r = 1 − 2qsr−qs − qs2qs+1r−(qs+1)

(
r

2 − 1
)

≥ 1 − 2qs(1 + qs)r−qs
1

≥ 1 − 12r−qs
1

>
1
2 .

Thus, γr is well defined and

(3.6) 1 < γr < 2.
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Now, we consider the function h : [0,+∞) → [0, 1] defined by

(3.7) h(t) :=


0 if t ∈ [0, r/2),
γr(ℓ(t) − ℓ(r/2) − ℓ′(r/2)(t− r/2)) if t ∈ [r/2, r − 1),
1 if t ∈ [r − 1,+∞).

Obviously
h(r/2) = 0, h′(r/2) = 0 and h(r − 1) = 1,

so that h is Lipschitz continuous.
Moreover, thanks to (3.6), for any t ∈ (r/2, r − 1),

|h′(t)| = γr|ℓ′(t) − ℓ′(r/2)| ≤ qsγr(r − t)−(qs+1) ≤ 4(r − t)−(qs+1)

and |h′′(t)| = γr|ℓ′′(t)| = qs(qs+ 1)γr(r − t)−(qs+2) ≤ 12(r − t)−(qs+2).
(3.8)

On the other hand,

lim
t→(r−1)−

h′(t) = γrqs
(

1 − 2qs+1r−(qs+1)
)

̸= 0 = lim
t→(r−1)+

h′(t).

In light of this, we see that h is not C1,1 and we now want to modify it in the interval (r− 2, r− 1)
in order to obtain a C1,1 function.

For this, we take η ∈ C∞([0,+∞), [0, 1]) such that η = 1 in (0, r − 7/4), η = 0 in (r − 5/4,+∞),
η′ ∈ (−4, 0) and |η′′| ≤ 32. Also, we set

g(t) := η(t)h(t) + 1 − η(t) for any t ∈ [0,+∞).
We notice that g(t) ∈ [h(t), 1] and g coincides with h outside the interval (r − 2, r − 1).

Moreover, we have that g ∈ C1,1([0,+∞)) and, by (3.8), we obtain that, for any t ∈ (r−2, r−1),
|g′(t)| ≤ |η′(t)|(1 − h(t)) + |h′(t)|1(r/2,r−5/4)(t) ≤ 8

and
|g′′(t)| ≤ |η′′(t)|(1 − h(t)) + 2|η′(t)h′(t)| + |h′′(t)|1(r/2,r−5/4)(t) ≤ 76.

In particular, this and (3.8) imply that there exists a constant c1 > 0 (e. g. c1 := 27) such that, for
any t ∈ [0, r],

(3.9) |g′(t)| ≤ c1 min
{

(r − t)−(qs+1), 1
}

and |g′′(t)| ≤ c1 min
{

(r − t)−(qs+2), 1
}
.

In addition, we claim that, for any t ∈ [0, r],
(3.10) min{(r − t)−qs, 1} ≤ g(t) + 12r−qs ≤ 18 min{(r − t)−qs, 1} for any t ∈ [0, r].
In order to show this claim, we start proving the left-hand inequality. If t ∈ [r− 1, r], then g(t) = 1
and the inequality is straightforward. If instead t ∈ [0, r/2), then

g(t) + 12r−qs = 12r−qs ≥ 4r−qs ≥ 2qsr−qs ≥ (r − t)−qs.

Also, if t ∈ [r/2, r − 1), we use (3.6) to see that

g(t) ≥ h(t) ≥ (r − t)−qs − 2qsr−qs
(

1 + qs2r−1(t− r/2)
)

≥ (r − t)−qs − 2qsr−qs
(

1 + qs2r−1(r/2)
)

= (r − t)−qs − 2qsr−qs(1 + qs)
≥ (r − t)−qs − 12r−qs.

For what concerns the right-hand inequality in (3.10), if t ∈ [r − 1, r] then we observe that

g(t) + 12r−qs ≤ 1 + 12r−qs
1 ≤ 2.

If instead t ∈ [0, r − 1), then
g(t) + 12r−qs ≤ h(t)1(0,r−5/4)(t) + 1(r−7/4,r−1)(t) + 12(r − t)−qs
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≤ 2(r − t)−qs +
(

7
4

)qs

(r − t)−qs + 12(r − t)−qs

≤ 18(r − t)−qs,

and this completes the proof of (3.10).
Let now v(x) := g(|x|) for any x ∈ Rn. By the properties of g, we see that v ∈ C1,1(Rn) is

radially symmetric, radially non-decreasing and satisfies v = 0 in Br/2 and v = 1 in Rn \ Br−1.
Also, from (3.10), we infer that, for any x ∈ Br,

(3.11) min{(r − |x|)−qs, 1} ≤ v(x) + 12r−qs ≤ 18 min{(r − |x|)−qs, 1}.

Thus, recalling the definition of q in (3.5), it follows that, for any x ∈ Br,

(3.12) min{(r − |x|)−2s, 1} ≤ (v(x) + 12r−qs)m−1.

We now claim that there exists a constant c2 > 0, depending on n, such that, for any x ∈ Br,

(3.13) ∥D2v∥L∞(B(max{(r−|x|)/2,1)}(x) ≤ c2 max
{
r − |x|

2 , 1
}−(qs+2)

.

To prove this, we observe that, by (3.9), for any y ∈ Br \Br/2,

|D2v(y)| ≤ n2
(

|g′′(|y|)| + 2 |g′(|y|)|
|y|

)
≤ 2n2c1

(
min

{
(r − |y|)−(qs+2), 1

}
+ |y|−1 min

{
(r − |y|)−(qs+1), 1

})
≤ 4n2c1 min

{
(r − |y|)−(qs+2), 1

}
,(3.14)

where the last inequality exploits the fact that |y| > r− |y| and r ≥ r1 ≥ 2. Since v = 0 in Br/2, we
can say that (3.14) holds true for any x ∈ Br.

Also, if x ∈ Br with r − |x| > 2 and y ∈ B(r−|x|)/2(x), then y ∈ Br and

|y| ≤ |y − x| + |x| ≤ r − |x|
2 + |x| = r + |x|

2 ,

and therefore
r − |y| ≥ r − r + |x|

2 = r − |x|
2 .

As a consequence, by (3.14) we obtain that, for any y ∈ B(r−|x|)/2(x),

|D2v(y)| ≤ 4n2c1(r − |y|)−(qs+2) ≤ 4n2c1

(
r − |x|

2

)−(qs+2)
= 4n2c1 max

{
r − |x|

2 , 1
}−(qs+2)

.

If instead r − |x| < 2, for any y ∈ B1(x) ∩Br, it holds that

|D2v(y)| ≤ 4n2c1 = 4n2c1 max
{
r − |x|

2 , 1
}−(qs+2)

,

this completing the proof of (3.13).
Now, for any σ > 0, we define the scaled kernel

Kσ(z) := σn+2sK(σz), for a. e. z ∈ Rn.

Notice that Kσ satisfies conditions (K1) and (K2) with the same λ,Λ of K and with r0/σ in place
of r0. Then, we apply [8, Lemma 6.9] with ρ := max{(r − |x|)/2, 1} and, by (3.12) and (3.13), we
obtain that, for any x ∈ Br,

|LKσv(x)| ≤ c3

[
∥v∥L∞(R) max

{
r − |x|

2 , 1
}−2s
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+∥D2v∥L∞(Bmax{(r−|x|)/2,1}(x)) max
{
r − |x|

2 , 1
}2(1−s)

]
≤ c4 min

{
(r − |x|)−2s, 1

}
≤ c4(v(x) + 12r−qs)m−1,(3.15)

for some c3, c4 > 0 depending on n, s and Λ.
We are now able to construct the function w. We set

(3.16) R0 :=
(
c4

ζ

) 1
2s

r1

and we take R ≥ R0. Also, let

(3.17) r := r1

R0
R and β := 24r−qs

and notice that r ≥ r1 and β ∈ (0, 1). Then, we define

(3.18) w(x) := (2 − β)v
(
rx

R

)
+ β − 1.

We observe that the function w inherits all the qualitative properties of v. In particular, w is of
class C1,1(Rn), is radially symmetric and radially non-decreasing. In addition, w = β − 1 in BR/2
and w = 1 in Rn \B[(r−1)R]/r.

Now, we show that w satisfies (3.3). To do this, we exploit (3.15) and we recall the definitions
in (3.16), (3.17) and (3.18) to see that, for any x ∈ BR,

|LKw(x)| = (2 − β)

∣∣∣∣∣∣LK

(
v

(
rx

R

))∣∣∣∣∣∣
≤ (2 − β)m−1

(
R

r

)−2s
∣∣∣∣∣LKR/r

v

(
rx

R

)∣∣∣∣∣
≤ c4

(
R

r

)−2s
(

(2 − β)v
(
rx

R

)
+ 24r−qs

)m−1

= ζ
(
1 + w(x)

)m−1
,

which establishes (3.3).
We now focus on the estimates in (3.4). For this, we set

c5 := 36 max
{
c4

ζ
, 1
}1 +

(
ζ

c4

) 1
2s

2

and we claim that, for any x ∈ B[(r−1)R]/r,

(3.19) min
{
c4

ζ
, 1
}

(R+ 1 − |x|)−qs ≤ 1 + w(x) ≤ c5(R+ 1 − |x|)−qs.

To show this, we preliminarly notice that x ∈ B[(r−1)R]/r if and only if r|x|/R < r − 1, which is
equivalent to (

c4

ζ

) q
2

(R− |x|)−qs < 1.

From this and (3.11), we have that

1 + w(x) ≤ 2
(
v

(
rx

R

)
+ 12r−qs

)
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≤ 36
(
c4

ζ

) q
2 (
R− |x|

)−qs

≤ 36 max
{
c4

ζ
, 1
}(

R+ 1 − |x|
R− |x|

)qs

(R+ 1 − |x|)−qs

≤ c5(R+ 1 − |x|)−qs.

Similarly, we observe that

1 + w(x) ≥

(
v

(
rx

R

)
+ 12r−qs

)

≥
(
c4

ζ

) q
2 (
R− |x|

)−qs

≥ min
{
c4

ζ
, 1
}(

R+ 1 − |x|
)−qs

,

thus yielding (3.19).
Moreover, if x ∈ BR \B[(r−1)R]/r, we have that

(3.20) 2(R+ 1 − |x|)−qs ≤ 1 + w(x) ≤ 2

1 +
(
c4

ζ

) 1
2s

2

(R+ 1 − |x|)−qs.

Indeed, the left-hand inequality follows from the fact that w = 1 in Rn \B[(r−1)R]/r. The right-hand
inequality can be shown as follows

1 + w(x) = 2(R+ 1 − |x|)qs(R+ 1 − |x|)−qs

≤ 2
(

1 + R

r

)qs

(R+ 1 − |x|)−qs

= 2

1 +
(
c4

ζ

) 1
2s

qs

(R+ 1 − |x|)−qs.

Finally, putting together (3.19) and (3.20), we obtain that, for any x ∈ BR, there exist two
constants c6, c7 depending on n, s, Λ and ζ such that

c6(R+ 1 − |x|)−qs ≤ 1 + w(x) ≤ c7(R+ 1 − |x|)−qs,

and the estimates in (3.4) can be obtained setting, for instance, C := max{1, c−1
6 , c7} and recall-

ing (3.5). □

Remark 3.2. The barrier reported in [9, Lemma 4.1] can be retrieved setting m = 2 in Proposi-
tion 3.1.

4. Some auxiliary results

In this section we prove some useful statements, that will be employed to prove the main results
of the paper.

4.1. On the potential W . We provide here a regularity result on the potential W . We stress that
this result plays a fundamental role in the study of the decay estimates in (1.12).

Lemma 4.1. Let W : R → R be a function satisfying (W1) and (W3).
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Then, for any r, t ∈ [−1,−1 + ξ] with r ≤ t, it holds
C1

α(α− 1)
(
(1 + t)α − (1 + r)α

)
≤ W (t) −W (r) ≤ C2

β(β − 1)

(
(1 + t)β − (1 + r)β

)
and
C1

α− 1

(
(1 + t)α−1 − (1 + r)α−1

)
≤ W ′(t) −W ′(r) ≤ C2

β − 1

(
(1 + t)β−1 − (1 + r)β−1

)
.

(4.1)

Moreover, for any r, t ∈ [1 − ξ, 1] with r ≤ t, it holds
C3

γ(γ − 1)
(
(1 − t)γ − (1 − r)γ

)
≤ W (t) −W (r) ≤ C4

δ(δ − 1)

(
(1 − t)δ − (1 − r)δ

)
and
C3

γ − 1

(
(1 − r)γ−1 − (1 − t)γ−1

)
≤ W ′(t) −W ′(r) ≤ C4

δ − 1

(
(1 − r)δ−1 − (1 − t)δ−1

)
.

(4.2)

Proof. We will only show (4.1), since (4.2) can be proved in a similar way. Moreover, we will focus
on the upper bounds in (4.1), being the lower bounds based on analogous calculations.

Let r, t ∈ [−1,−1+ξ] and r ≤ t. Then, thanks to (W1) and (W3), we can apply the Fundamental
Theorem of Calculus and obtain that

W ′(t) −W ′(r) =
∫ t

r

W ′′(σ) dσ ≤ C2

∫ t

r

(1 + σ)β−2 dσ

= C2

β − 1

(
(1 + t)β−1 − (1 + r)β−1

)
which establishes the upper bound in the second line of (4.1).

We now show the upper bound in the first line of (4.1). For this, we use the Fundamental
Theorem of Calculus and the fact that W ′(−1) = 0 to write

W (t) −W (r) =
∫ t

r

W ′(σ) dσ =
∫ t

r

(
W ′(σ) −W ′(−1)

)
dσ.

Since σ ≥ r ≥ −1, we can exploit the upper bound in the second line of (4.1) and we obtain that

W (t) −W (r) ≤ C2

β − 1

∫ t

r

(1 + σ)β−1 dσ = C2

β(β − 1)

(
(1 + t)β − (1 + r)β

)
,

as desired. □

We point out that in the case α = β = γ = δ = 2, Lemma 4.1 implies that

W ′(t) ≥ W ′(r) + c(t− r) for any r ≤ t, r, t ∈ [−1,−1 + c] ∪ [1 − c, 1]

and for some c > 0. This inequality is the so called convexity property for a non-degenerate potential
W and is used in [9, 22] in order to compute the decay estimates for the minimizers.

4.2. Barriers and comparison principle. In this subsection we recall a strong comparison prin-
ciple related to the operator LK , that will be extensively used in the proof of the estimates in (1.12)
and (1.17).

Proposition 4.2 (Proposition 4.4 in [9]). Let s ∈ (0, 1) and K satisfy (K1) and (K2). Let f1,
f2 : Rn × R → R be two continuous functions.

Let Ω be a domain of Rn and v, w ∈ L∞(Rn) ∩ C2s+θ(Ω), for some θ > 0, be such that
LKv ≤ f1(·, v) in Ω,
LKw ≥ f2(·, w) in Ω,
v ≥ w in R.
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Suppose also that, for any x ∈ Ω,
f1(x,w(x)) ≤ f2(x,w(x)).

If there exists a point x0 ∈ Ω such that v(x0) = w(x0), then v ≡ w in the whole Ω.

4.3. Basic properties of the fractional Allen-Cahn equation. We mention here two handful
lemmata. The first one poses sufficient conditions in order for the fractional Allen-Cahn equation to
behave well under limit procedures. The second one relates the solutions of the fractional Allen-Cahn
equation to class A minimizers of EK .

Lemma 4.3 (Lemma 4.8 in [9]). Let s ∈ (0, 1) and K satisfy (K1) and (K2). Let W ∈ C1,ϑ
loc (R) for

some ϑ ∈ (0, 1).
Let Ω ⊂ Rn be a Lipschitz domain and let (vj)j∈N ⊂ HK(Ω) ∩ L∞(Rn) be a sequence of weak

solutions of
LKvj = W ′(vj) in Ω,

such that there exists c > 0 such that, for any j ∈ N,
[vj ]HK(Ω) + ∥vj∥L∞(Rn) ≤ c.

Suppose also that vj converges to a function v uniformly on compact subset of Rn, as j → +∞.
Then, v ∈ HK(Ω) ∩ L∞(Rn) is a weak solution of

LKv = W ′(v) in Ω.

Lemma 4.4 (Theorem 3 in [9]). Let n ≥ 1, s ∈ (0, 1) and K satisfy (K1) and (K2). Let W be such
that

W (±1) = W ′(±1) = 0.
Let u : Rn → (−1, 1) belong to C1+2s+θ(Rn), for some θ > 0. Suppose that u is a solution of

LKu = W ′(u) in Rn,

satisfying
∂xn

u(x) ≥ 0, for all x ∈ Rn,

and
lim

xn→±∞
u(x′, xn) = ±1, for all x′ ∈ Rn−1.

Then, u is a class A minimizer of EK .

We also refer the reader to [22, Lemma 7] and [22, Theorem 1] for the proofs of, respectively,
Lemmata 4.3 and 4.4, when the kernel K(z) := |z|−n−2s.

5. Asymptotic estimates for LK in dimension n = 1

In this section we collect asymptotic results regarding the operator LK , defined in (1.7), in
dimension n = 1. They will be used in the proofs of Theorems 1.5 and 1.6.

Proposition 5.1. Let κ ∈ (0,+∞) and σ, τ ∈ (1,+∞). Let K satisfy (K1) and (K2).
Let ϕ ∈ C∞(R) be such that

ϕ(x) =
{

|x|−σ if x < −κ,
|x|−τ if x > κ

and
(5.1) ϕ(x) ≥ γ for all x ∈ [−κ, κ], for some γ ∈ (0,+∞).

Then,

(5.2) lim
|x|→+∞

|x|1+2sLKϕ(x) ≤ Λ
(
κ1−σ

σ − 1 +
∫ κ

−κ

ϕ(y) dy + κ1−τ

τ − 1

)
,

where Λ is the quantity appearing in (K2).
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Proof. We will only prove (5.2) as x → −∞, being the limit as x → +∞ analogous.
For any x < −2κ, we set

AK(x) := PVx

∫ −κ

−∞

(
ϕ(y) − ϕ(x)

)
K(x− y) dy,

BK(x) :=
∫ κ

−κ

(
ϕ(y) − ϕ(x)

)
K(x− y) dy

and DK(x) :=
∫ +∞

κ

(
ϕ(y) − ϕ(x)

)
K(x− y) dy.

(5.3)

In the following computations we will omit the principal value notation, for the sake of readability.
We claim that

(5.4) lim
x→−∞

|x|1+2sAK(x) ≤ Λκ1−σ

σ − 1 .

In order to show this, we apply the change of variable y := |x|θ and compute

AK(x) =
∫ −κ

−∞

(
|y|−σ − |x|−σ

)
K(x− y) dy = |x|1−σ

∫ −κ/|x|

−∞

(
|θ|−σ − 1

)
K
(
x(1 + θ)

)
dθ.

We also set

AK,I(x) := |x|1−σ

∫ −3/2

−∞

(
|θ|−σ − 1

)
K
(
x(1 + θ)

)
dθ,

AK,II(x) := |x|1−σ

∫ −1/2

−3/2

(
|θ|−σ − 1

)
K
(
x(1 + θ)

)
dθ

and AK,III(x) := |x|1−σ

∫ −κ/|x|

−1/2

(
|θ|−σ − 1

)
K
(
x(1 + θ)

)
dθ.

(5.5)

Exploiting (K2), we obtain that

(5.6) |AK,I(x)| ≤ Λ|x|−(σ+2s)
∫ −3/2

−∞

1 − |θ|−σ

|1 + θ|1+2s
dθ ≤ C|x|−(σ+2s),

for some C > 0, depending on s, σ and Λ.
Moreover, we check that

(5.7) |AK,II(x)| ≤ C|x|−(σ+2s).

To this aim, we use the change of variable z := 1 + θ and the symmetry of K in (K1) to see that∫ −1/2

−3/2

(
|θ|−σ − 1

)
K
(
x(1 + θ)

)
dθ =

∫ 1/2

−1/2

(
(1 − z)−σ − 1

)
K(xz) dz

=
∫ 1/2

−1/2

(
σz +O(|z|2)

)
K(xz) dz =

∫ 1/2

−1/2
O(|z|2)K(xz) dz.

As a consequence,∣∣∣∣∣
∫ −1/2

−3/2

(
|θ|−σ − 1

)
K
(
x(1 + θ)

)
dθ

∣∣∣∣∣ =

∣∣∣∣∣
∫ 1/2

−1/2
O(|z|2)K(xz) dz

∣∣∣∣∣
≤ CΛ|x|−(1+2s)

∫ 1/2

−1/2
|z|1−2s dz ≤ C|x|−(1+2s),

up to renaming C > 0. This leads to (5.7), as desired.
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Furthermore, observing that θ−σ > 1 if θ ∈ (0, 1/2), we obtain that

AK,III(x) ≤ Λ|x|−(σ+2s)
∫ −κ/|x|

−1/2

|θ|−σ − 1
(1 + θ)1+2s

dθ

= Λ|x|−(σ+2s)

(∫ 1/2

κ/|x|
θ−σ

(
1 +O(θ)

)
dθ −

∫ 1/2

κ/|x|

dθ

(1 + θ)1+2s

)

= Λ|x|−(σ+2s)

(
1

1 − σ

(
2σ−1 − κ1−σ|x|σ−1

)
+O(|x|σ−2) −

∫ 1/2

κ/|x|

dθ

(1 + θ)1+2s

)
.

Combining this with (5.6) and (5.7), and noticing that AK(x) = AK,I(x) + AK,II(x) + AK,III(x),
we obtain (5.4).

Now, we want to show that

(5.8) lim
x→−∞

|x|1+2sBK(x) ≤ Λ
∫ κ

−κ

ϕ(y) dy.

For this, we take γ as in (5.1) and we suppose that |x| > γ−1/σ. In this way, we have that ϕ(x) =
|x|−σ < γ ≤ ϕ(y) for all y ∈ (−κ, κ), thanks to (5.1). Therefore, by (K2),

|x|1+2sBK(x) = |x|1+2s

∫ κ

−κ

(
ϕ(y) − ϕ(x)

)
K(x− y) dy

≤ Λ
∫ κ

−κ

(
ϕ(y) − ϕ(x)

) ∣∣∣∣1 − y

x

∣∣∣∣−(1+2s)
dy.

We can now take the limit as x → −∞ and use the Dominated Convergence Theorem to deduce (5.8).
Furthermore, we claim that

(5.9) lim
x→−∞

|x|1+2sDK(x) ≤ Λκ1−τ

τ − 1 ,

Indeed, the change of variable y := |x|θ and (K2) give that

DK(x) =
∫ +∞

κ

(y−τ − |x|−σ)K(x− y) dy

= |x|
∫ +∞

κ/|x|

(
|x|−τθ−τ − |x|−σ

)
K(x(1 + θ)) dθ

≤ Λ|x|−2s

∫ +∞

κ/|x|

|x|−τθ−τ + |x|−σ

(1 + θ)1+2s
dθ

≤ Λ|x|−(τ+2s)
∫ +∞

κ/|x|

θ−τ

(1 + θ)1+2s
dθ + Λ|x|−(σ+2s)

∫ +∞

κ/|x|

dθ

(1 + θ)1+2s
.

We notice that∫ +∞

κ/|x|

θ−τ

(1 + θ)1+2s
dθ =

∫ 1/2

κ/|x|
θ−τ

(
1 +O(θ)

)
dθ +

∫ +∞

1/2

θ−τ

(1 + θ)1+2s
dθ

= 1
1 − τ

(
2τ−1 − κ1−τ |x|τ−1

)
+O(|x|τ−2) +

∫ +∞

1/2

θ−τ

(1 + θ)1+2s
dθ.

As a result,

|x|1+2sDK(x) ≤ Λ|x|1−τ

(
1

1 − τ

(
2τ−1 − κ1−τ |x|τ−1

)
+O(|x|τ−2) +

∫ +∞

1/2

θ−τ

(1 + θ)1+2s
dθ

)

+Λ|x|1−σ

∫ +∞

κ/|x|

dθ

(1 + θ)1+2s
,
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which gives the desired claim in (5.9).
Thus, since LKϕ(x) = AK(x) +BK(x) +DK(x), combining together (5.4), (5.8) and (5.9) yields

the thesis. □

Proposition 5.2. Let κ ∈ (0,+∞) and σ, τ ∈ (1,+∞). Let K satisfy (K1) and (K3).
Let ϕ ∈ C∞(R) be such that

ϕ(x) =
{

|x|−σ if x < −κ,
|x|−τ if x > κ

and
(5.10) ϕ(x) ≥ γ for all x ∈ [−κ, κ], for some γ ∈ (0,+∞).

Then,

(5.11) lim
|x|→+∞

|x|1+2sLKϕ(x) ≥ λ

(
κ1−σ

σ − 1 +
∫ κ

−κ

ϕ(y) dy + κ1−τ

τ − 1

)
,

where λ is the quantity appearing in (K3).

The proof of Proposition 5.2 is similar to the one of Proposition 5.1, but requires some care in the
estimates of some terms, therefore we provide here below the details for the facility of the reader.

Proof of Proposition 5.2. We will only prove (5.11) as x → −∞, being the limit as x → +∞
analogous.

For any x < −2κ, we take AK(x), BK(x) and DK(x) as in (5.3).
We claim that

(5.12) lim
x→−∞

|x|1+2sAK(x) ≥ λκ1−σ

σ − 1 .

In order to show this, in the notation of (5.5), we write AK(x) = AK,I(x) +AK,II(x) +AK,III(x).
Moreover, using the estimates in (5.6) and (5.7), we see that

(5.13) |AK(x)| ≥ AK,III(x) − |AK,I(x)| − |AK,II(x)| ≥ AK,III(x) − C|x|−(σ+2s),

for some C > 0, depending on s, σ and Λ (being Λ the quantity appearing in (K3)).
Furthermore, since θ−σ > 1 if θ ∈ (0, 1/2), we obtain that

AK,III(x) ≥ λ|x|−(σ+2s)
∫ −κ/|x|

−1/2

|θ|−σ − 1
(1 + θ)1+2s

dθ

= λ|x|−(σ+2s)

(∫ 1/2

κ/|x|
θ−σ

(
1 +O(θ)

)
dθ −

∫ 1/2

κ/|x|

dθ

(1 + θ)1+2s

)

= λ|x|−(σ+2s)

(
1

σ − 1

(
κ1−σ|x|σ−1 − 2σ−1

)
+O(|x|σ−2) −

∫ 1/2

κ/|x|

dθ

(1 + θ)1+2s

)
.

Therefore, from this and (5.13) we deduce (5.12).
Now, we show that

(5.14) lim
x→−∞

|x|1+2sBK(x) ≥ λ

∫ κ

−κ

ϕ(y) dy.

For this, we take γ as in (5.10) and we suppose that |x| > γ−1/σ. In this way, we have that ϕ(x) =
|x|−σ < γ ≤ ϕ(y) for all y ∈ (−κ, κ), thanks to (5.10). Therefore, by (K3),

|x|1+2sBK(x) = |x|1+2s

∫ κ

−κ

(
ϕ(y) − ϕ(x)

)
K(x− y) dy

≥ λ

∫ κ

−κ

(
ϕ(y) − ϕ(x)

) ∣∣∣∣1 − y

x

∣∣∣∣−(1+2s)
dy.
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We can now take the limit as x → −∞ and use the Dominated Convergence Theorem to de-
duce (5.14).

Also, we claim that

(5.15) lim
x→−∞

|x|1+2sDK(x) ≥ λκ1−τ

τ − 1 ,

Indeed, the change of variable y := |x|θ and the positivity of the kernel give that

DK(x) =
∫ +∞

κ

(y−τ − |x|−σ)K(x− y) dy

= |x|
∫ +∞

κ/|x|

(
|x|−τθ−τ − |x|−σ

)
K(x(1 + θ)) dθ

≥ |x|1−τ

∫ +∞

k/|x|
θ−τK(x(1 + θ)) dθ − |x|1−σ

∫ +∞

0
K(x(1 + θ)) dθ.

(5.16)

Now, from the upper bound in (K3) we infer that

|x|1−σ

∫ +∞

0
K(x(1 + θ)) dθ ≤ Λ|x|1−σ

∫ +∞

0

dθ

|x|1+2s(1 + θ)1+2s
= C|x|−(σ+2s),

for some C > 0 depending on s and Λ.
Moreover, from the lower bound in (K3), we deduce that

|x|1−τ

∫ +∞

k/|x|
θ−τK(x(1 + θ)) dθ ≥ λ|x|1−τ

∫ +∞

k/|x|

θ−τ

|x|1+2s(1 + θ)1+2s
dθ

= λ|x|−(τ+2s)

(∫ 1
2

k/|x|
θ−τ

(
1 +O(θ)

)
dθ +

∫ +∞

1
2

θ−τ

(1 + θ)1+2s
dθ

)

= λ|x|−(τ+2s)

(
k1−τ

τ − 1 |x|τ−1 − 2τ−1

τ − 1 +
∫ +∞

1
2

θ−τ

(1 + θ)1+2s
dθ

)
+O(|x|−2−2s).

Plugging the last two displays into (5.16) give that

DK(x) ≥ λ|x|−(τ+2s)

(
k1−τ

τ − 1 |x|τ−1 − 2τ−1

τ − 1 +
∫ +∞

1
2

θ−τ

(1 + θ)1+2s
dθ

)
+O(|x|−2−2s) − C|x|−(σ+2s).

Multiplying by |x|1+2s and taking the limit show (5.15).
Thus, since LKϕ(x) = AK(x) + BK(x) + DK(x), combining together (5.12), (5.14) and (5.15)

yields the thesis. □

6. Minimizing the energy in intervals

In this section, we deal with the problem of minimizing the energy EK in bounded intervals I ⊂ R.
More precisely, in Lemma 6.5 below, we provide the existence of a minimizer vI and present an

upper bound for its energy as a function of the lenght of the interval I. Moreover, in Propositions 6.6
and 6.7 we investigate respectively the monotonicity property and the oddness of vI (in case (W4)
is in force). Also, Proposition 6.9 studies the asymptotic behavior of the minimizer v[0,R] in the
interval [0, R] as R → +∞.

In the rest of this section, the analytic framework introduced in Section 2.1 is assumed.

Lemma 6.1. Let K satisfy (K1) and (K2). Let Ω be a domain of Rn and u and v be two measurable
functions in HK(Ω).

Then
(6.1) EK(min{u, v},Ω) + EK(max{u, v},Ω) ≤ EK(u,Ω) + EK(v,Ω).



20 F. DE PAS, S. DIPIERRO, M. PICCININI, AND E. VALDINOCI

Moreover, equality holds in (6.1) if and only if
(6.2) either u(x) ≤ v(x) or u(x) ≥ v(x) for any x ∈ Rn.

In [22, Lemma 3], the authors prove the same result in the particular case K(z) := |z|−n−2s.
In [10, Lemma 3.2], this result is then stated for rough kernels, but we provide here the full proof,
since we add the claim in (6.2).

Proof of Lemma 6.1. We define
(6.3) m(x) := min{u(x), v(x)} and M(x) := max{u(x), v(x)}.
Also, since
(6.4) P(min{u, v},Ω) + P(max{u, v},Ω) = P(u,Ω) + P(v,Ω),
we will just focus on the kinetic term HK .

Let x, y ∈ Rn and consider the two possible scenarios:
(i) either u(x) ≤ v(x) and u(y) ≤ v(y), or u(x) ≥ v(x) and u(y) ≥ v(y),
(ii) either u(x) ≤ v(x) and u(y) ≥ v(y), or u(x) ≥ v(x) and u(y) ≤ v(y).

If (i) holds, then (6.1) plainly follows with the equal sign. Thus, we might suppose that (ii) holds.
If this is the case, we compute

|m(x) −m(y)|2 + |M(x) −M(y)|2

= |u(x) − v(y)|2 + |v(x) − u(y)|2

= |u(x) − u(y)|2 + |v(x) − v(y)|2 + 2
(
u(x) − v(x)

) (
u(y) − v(y)

)
≤ |u(x) − u(y)|2 + |v(x) − v(y)|2,

(6.5)

thus leading to (6.1).
Furthermore, the claim in (6.2) follows by inspection of (6.4) and (6.5). □

We recall the following statement, that guarantees the existence of a minimizer for the energy in
a given domain.

Lemma 6.2 (Lemma 4.7 in [9]). Let n ≥ 1 and s ∈ (0, 1). Let K satisfy (K1) and (K2). Assume
that4 W (±1) = 0.

Let Ω ⊂ Rn be a bounded Lipschitz domain. Let w0 : Rn → [−1, 1] be a measurable function and
suppose that there exists another measurable function w which coincides whith w0 in Rn \ Ω and
such that

EK(w,Ω) < +∞.

Then, there exists a local minimizer vΩ : Rn → [−1, 1] for EK in Ω which coincides with w0
in Rn \ Ω.

We include here another preliminary result which takes care of the growth of the energy EK of
local minimizers inside large intervals.

Proposition 6.3. Let K satisfy (K1) and (K2) and let W ∈ L∞(R) be such that W (±1) = 0.
Let α, β ∈ [−1, 1] and J := [a, b] ⊂ R such that |J | > 6.

If v : R → [−1, 1] is a local minimizer of EK in J satisfying
v = α if x ≤ a and v = β if x ≥ b,

then there exists a positive constant C, depending only on s, Λ and ∥W∥L∞(R) such that
EK(v, J ′) ≤ C Ψs(|J ′|),

for any J ′ ⊂ J and |J ′| > 6.
Here above, Ψs is the function introduced in (1.9).
4In [9] the authors refer to a condition on W reading as: W (±1) = W ′(±1) = 0. Nevertheless, the proof only

exploits W (±1) = 0.
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Proof. We will denote by C any positive constant that depends only on s, Λ and ∥W∥L∞(R).
Without loss of generality we suppose that J = [−a, a] for some a > 3. Also, if dist(J ′,R \

(−a, a)) > 2, then Proposition 6.3 follows5 from [10, Proposition 3.1] and by observing that v is also
a local minimizer in any sub interval of J (see Remark 1.4). Consequently, we might set J ′ := [−c, d],
such that a− c < 2 and a− d < 2.

Now, we define the following function

ψ(x) :=



α if x ≤ −a,
−x(α+ 1)/2 + α− a(1 + α)/2 if x ∈ [−a,−a+ 2],
−1 if |x| ≤ a− 2,
x(β + 1)/2 + β − a(β + 1)/2 if x ∈ [a− 2, a],
β if x ≥ a

and we claim that

(6.6) EK(ψ, J) ≤ C Ψs(|J ′|),

for some C > 0 depending only on s, Λ and ∥W∥L∞(R).
Indeed, let x ∈ [−a, a] and set d(x) := max

{
a− 2 − |x|, 1

}
. Then, for any y ∈ R,

|ψ(x) − ψ(y)| ≤

{
d(x)−1|x− y| if |x− y| ≤ d(x),
2 if |x− y| > d(x).

As a consequence, recalling (K2),∫
R

|ψ(x) − ψ(y)|2K(x− y) dy

≤ 4Λ
(
d(x)−2

∫
{|x−y|≤d(x)}

|x− y|−1+2(1−s) dy +
∫

{|x−y|>d(x)}
|x− y|−1−2s dy

)

= 8Λ
(
d(x)−2

∫ d(x)

0
|y|−1+2(1−s) dy +

∫ +∞

d(x)
|y|−1−2s dy

)
≤ Cs,Λ d(x)−2s.

From this inequality, we deduce that

HK(ψ, J) ≤ Cs,Λ

∫ a

−a

d(x)−2s dx ≤ Cs,Λ

(∫ a−3

0

dx

(a− 2 − x)2s
+ 1
)

≤ Cs,Λ + Cs,Λ

{
log(a− 2) if s = 1/2,

1
1−2s

(
(a− 2)1−2s − 1

)
if s ̸= 1/2

≤ Cs,Λ Ψs(a− 2) ≤ Cs,Λ Ψs(|J ′|),

up to relabeling Cs,Λ. Since exploiting the boundedness of W we also have that

P(ψ, J) =
∫ a

−a

W (ψ(x)) dx =
∫ −a+2

−a

W (ψ(x)) dx+
∫ a

a−2
W (ψ(x)) dx ≤ C∥W ∥L∞(R) ,

it follows that (6.6) holds true.
Being v a local minimizer of EK in J and ψ a suitable competitor, (6.6) yields the thesis. □

5We point out that Proposition 3.1 in [10] is proved under an analogue assumption of (K2) here, with r0 = 1.
Nevertheless, the proof only exploits the right-hand inequality in (K2) and thus it is valid in our framework too.
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Remark 6.4. We stress that Proposition 6.3 is an adaption of [10, Proposition 3.1] to our frame-
work. In particular, in [10], the authors operate in higher dimensions and impose no constraints on v
outside J (other than v ∈ [−1, 1]). On the other hand, Proposition 6.3 allows J ′ to be arbitrarily
close to J .

We are now in the position to prove the first main result of this section.

Lemma 6.5. Let K satisfy (K1) and (K2) and let W ∈ L∞(R) be such that W (±1) = 0. Let I :=
[a, b] ⊂ R be an interval with length |I| = b− a > 6.

Then, there exists a local minimizer vI : R → [−1, 1] for EK in I.
In particular,

(6.7) vI(x) = −1 if x ≤ a and vI(x) = 1 if x ≥ b.

Also, there exists C > 0, depending only on s, Λ and W , such that

(6.8) EK(vI ; J) ≤ C Ψs(|J |),

where J is either I or any subinterval of I with |J | > 6.
Here above, Ψs is the function introduced in (1.9).

In [9, Lemma 6.1] a proof of this result is presented. Nevertheless, the authors in [9] work with
an even potential W , which allows them to retrieve an odd minimizer vI . Since we dropped this
hypothesis on W , we provide here a self contained proof.

Proof of Lemma 6.5. For any interval I = [a, b], we would like to prove the existence of the func-
tion vI by means of Lemma 6.2. In this way, we only need to construct a suitable competitor
in [a, b].

Without loss of generality, we suppose that a < −3 and b > 3. We consider the function

h(x) =


−1 if x ≤ −1,
x if x ∈ (−1, 1),
1 if x ≥ 1.

By [22, Lemma 2] and exploiting that |I| > 6, we have that

F (h, I) ≤


Cs(1 + |I|1−2s) if s ∈ (0, 1/2),
Cs(1 + log |I|) if s = 1/2,
Cs if s ∈ (1/2, 1)

≤ 2Cs Ψs(|I|).

where Cs > 1 is a constant depending only on s and F has been defined in (1.3).
Thus, taking advantage of (1.4), we see that

EK(h, I) ≤ (Λ + 2)Cs Ψs(|I|).

Then, Lemma 6.2 yields (6.7) and (6.8) with J = I and C := (Λ + 2)Cs.
Proposition 6.3 completes the proof of (6.8) for any subinterval J of I with |J | > 6. □

Proposition 6.6. The minimizer vI given by Lemma 6.5 is non-decreasing.

Proof. We remark that for any functions w and z such that w = z outside a set J ′ ⊆ J , it holds
that

(6.9) EK(w, J ′) − EK(z, J ′) = EK(w, J) − EK(z, J).

Now, for any τ > 0 we set

u(x) := vI(x) and v(x) := vI(x+ τ)
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and recall the setting in (6.3). In view of Lemma 6.1, we set J ′ := [a− τ, b− τ ] and J := [a− τ, b]
and we see that

(6.10) EK(m,J) + EK(M,J) ≤ EK(u, J) + EK(v, J).

Also, since
M(x) = −1 if x ≤ a− τ and M(x) = 1 if x ≥ b− τ,

we exploit (6.9) and the minimality of v in J ′ to obtain that

(6.11) EK(M,J) − EK(v, J) ≥ 0.

Analogously, one can infer that

EK(m,J) − EK(u, J) ≥ 0.

Putting this and (6.11) together, we conclude that

EK(m,J) + EK(M,J) ≥ EK(u, J) + EK(v, J).

This and (6.10) imply that

EK(m,J) + EK(M,J) = EK(u, J) + EK(v, J).

We now exploit formula (6.2) of Lemma 6.1 to deduce that u−v does not change sign. Namely vI −
vI(· + τ) does not change sign, which means that vI is monotone.

The fact that vI is non-decreasing follows from the external conditions (6.7). □

Proposition 6.7. Let v[−M,M ] be the minimizer given by Lemma 6.5. Assume, in addition,
that (W4) holds true.

Then, v[−M,M ] is an odd function.

Proof. We set w(x) := −v[−M,M ](−x) and we claim that

(6.12) EK(w, [−M,M ]) = EK(v[−M,M ], [−M,M ]).

Indeed, one can easily check that HK(w, [−M,M ]) = HK(v[−M,M ], [−M,M ]). Moreover, by (W4),

P(w, [−M,M ]) =
∫ M

−M

W (−v(−x)) dx =
∫ M

−M

W (v(−x)) dx = P(v[−M,M ], [−M,M ]).

Thus, (6.12) holds and, in particular, both w and v[−M,M ] are local minimizers of EK in [−M,M ].
As a consequence,

EK(max{w, v[−M,M ]}, [−M,M ]) + EK(min{w, v[−M,M ]}, [−M,M ])
≥ EK(w, [−M,M ]) + EK(v[−M,M ], [−M,M ]).

On the other hand, by Lemma 6.1,

EK(max{w, v[−M,M ]}, [−M,M ]) + EK(min{w, v[−M,M ]}, [−M,M ])
= EK(w, [−M,M ]) + EK(v[−M,M ], [−M,M ]).

Therefore, equality holds and so, by (6.2), either w ≥ v[−M,M ] or v[−M,M ] ≥ w. Now, the definition
of w yields the thesis. □

Corollary 6.8. Let v[0,R] be the minimizer given by Lemma 6.5. Assume, in addition, that K
satisfies (K4).

Then, for any ℓ > 0, there exists a function αℓ : (0,+∞) → (0,+∞) satisfying

(6.13) lim
R→+∞

αℓ(R) = 0

such that, for any ϕ ∈ C∞
c (−ℓ, ℓ),

(6.14) EK(v[0,R], [−ℓ, ℓ]) ≤ EK(v[0,R] + ϕ, [−ℓ, ℓ]) + αℓ(R).
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Proof. Let ℓ > 0. In this proof we will make use of the following notations: for all R > 0,

K̄R := sup
x∈Rn\{0}

K( xR
R+2ℓ )
K(x) and CR := K̄R

(
R

R+ 2ℓ

)2
.

We recall that Ψs is the function introduced in (1.9) and we define the functions

β̃ℓ(R) := 2
(

max
{
CR,

R

R+ 2ℓ

}
− 1
)

Ψs(R) and βℓ(R) := max
{
β̃ℓ(R), 0

}
.

Also, let s ∈ (0, 1) be as in (K2) and set

γℓ(R) :=


2Λ log

(
1 + 2ℓ

R

)
if s = 1/2,

Λ
s(1 − 2s)

(
(R+ 2ℓ)1−2s −R1−2s

)
if s ̸= 1/2.

We notice that

(6.15) lim
R→+∞

γℓ(R) = 0.

Now, we claim that, for any ε ∈ (0, 1),

(6.16) lim sup
R→+∞

(CR − 1)R1−ε ≤ 0.

Indeed, we observe that K̄R ∈ [0,+∞]. Therefore, if R is sufficiently large, possibly in dependence
of ℓ,

(CR − 1)R1−ε =
(
K̄R

(
1 − 2ℓ

R+ 2ℓ

)2
− 1
)
R1−ε

=

K̄R

(
1 − 4ℓ

R+ 2ℓ + 4ℓ2

(R+ 2ℓ)2

)
− 1

R1−ε

=
(
K̄R − 1

)
R1−ε − 4ℓK̄RR

1−ε

R+ 2ℓ

(
1 − ℓ

R+ 2ℓ

)
≤

(
K̄R − 1

)
R1−ε

≤
(
K̄R − 1

)
(R+ 2ℓ)1−ε.(6.17)

We point out that(
K̄R − 1

)
(R+ 2ℓ)1−ε = (2ℓ)1−ε

(
sup

x∈Rn\{0}

K( xR
R+2ℓ )
K(x) − 1

)(
R+ 2ℓ

2ℓ

)1−ε

,

and thus, using (K4) with σj replaced by R/(R+ 2ℓ), we have that

lim sup
R→+∞

(
K̄R − 1

)
(R+ 2ℓ)1−ε = (2ℓ)1−ε lim sup

R→+∞

(
sup

x∈Rn\{0}

K( xR
R+2ℓ )
K(x) − 1

)(
R+ 2ℓ

2ℓ

)1−ε

≤ 0.

This and (6.17) give (6.16).
From (6.16), we also find that

lim sup
R→+∞

β̃ℓ(R) = lim sup
R→+∞

2 max
{
CR − 1,− 2ℓ

R+ 2ℓ

}
Ψs(R)

= lim sup
R→+∞

2 max
{

(CR − 1)R1−ε,−2ℓR1−ε

R+ 2ℓ

}
Ψs(R)
R1−ε

≤ 0,
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and, as a result,
(6.18) lim

R→+∞
βℓ(R) = 0.

Now, we let v[−ℓ,R+ℓ] be a local minimizer for EK in [−ℓ, R+ ℓ], as given by Lemma 6.5, and we
define the function

zR(x) := v[−ℓ,R+ℓ]

(
(R+ 2ℓ)x

R
− ℓ

)
.

We observe that zR(x) = −1 if x ≤ 0 and zR(x) = 1 if x ≥ R, thanks to the properties of v[−ℓ,R+ℓ]
in (6.7). Also, by minimality,

EK(v[0,R], [0, R]) ≤ EK(zR, [0, R]).
Moreover, we claim that

(6.19) EK(v[0,R], [0, R]) ≤ EK(v[−ℓ,R+ℓ], [−ℓ, R+ ℓ]) + βℓ(R).
In the aim of proving (6.19), we notice that

HK(zR, [0, R]) ≤ CRHK(v[−ℓ,R+ℓ], [−ℓ, R+ ℓ])

and P(zR, [0, R]) = R

R+ 2ℓP(v[−ℓ,R+ℓ], [−ℓ, R+ ℓ]).

As a consequence of this and formula (6.8) in Lemma 6.5, we obtain that

EK(zR, [0, R]) ≤ max
{
CR,

R

R+ 2ℓ

}
EK(v[−ℓ,R+ℓ], [−ℓ, R+ ℓ])

= EK(v[−ℓ,R+ℓ], [−ℓ, R+ ℓ]) +
(

max
{
CR,

R

R+ 2ℓ

}
− 1
)

EK(v[−ℓ,R+ℓ], [−ℓ, R+ ℓ])

≤ EK(v[−ℓ,R+ℓ], [−ℓ, R+ ℓ]) + 2
(

max
{
CR,

R

R+ 2ℓ

}
− 1
)

Ψs(R)

= EK(v[−ℓ,R+ℓ], [−ℓ, R+ ℓ]) + βℓ(R),

which is (6.19).
Furthermore, we claim that

(6.20) 0 ≤ EK(v[0,R], [−ℓ, R+ ℓ]) − EK(v[0,R], [0, R]) ≤ γℓ(R).
The left-hand inequality in (6.20) follows by the minimality of v[0,R] and Remark 1.4.

We now focus on the proof of the right-hand inequality in (6.20). Exploiting the properties
of v[0,R] and the assumptions on the kernel and the potential in (K1), (K2) and (W3), we find that

P(v[0,R], [−ℓ, R+ ℓ]) = P(v[0,R], [0, R])
and that
HK(v[0,R], [−ℓ, R+ ℓ]) − HK(v[0,R], [0, R])

≤ 1
2

(∫ 0

−ℓ

∫ +∞

R

|v[0,R](x) − v[0,R](y)|2K(x− y) dy dx+
∫ R+ℓ

R

∫ −ℓ

−∞
|v[0,R](x) − v[0,R](y)|2K(x− y) dy dx

)

≤ Λ
2

(∫ 0

−ℓ

∫ +∞

R

|v[0,R](x) − v[0,R](y)|2

|x− y|1+2s
dy dx+

∫ R+ℓ

R

∫ −ℓ

−∞

|v[0,R](x) − v[0,R](y)|2

|x− y|1+2s
dy dx

)
.

In particular, when s ∈ (0, 1) \ {1/2},∫ 0

−ℓ

∫ +∞

R

|v[0,R](x) − v[0,R](y)|2

|x− y|1+2s
dy dx ≤ 4

∫ 0

−ℓ

∫ +∞

R

(y − x)−(1+2s) dy dx

= 2
s

∫ 0

−ℓ

(R− x)−2s dx = 2
s(1 − 2s)

(
(R+ ℓ)1−2s −R1−2s

)
,
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and ∫ R+ℓ

R

∫ −ℓ

−∞

|v[0,R](x) − v[0,R](y)|2

|x− y|1+2s
dy dx ≤ 4

∫ R+ℓ

R

∫ −ℓ

−∞
(x− y)−(1+2s) dy dx

= 2
s

∫ R+ℓ

R

(x+ ℓ)−2s dx = 2
s(1 − 2s)

(
(R+ 2ℓ)1−2s − (R+ ℓ)1−2s

)
,

so that ∫ 0

−ℓ

∫ +∞

R

|v[0,R](x) − v[0,R](y)|2

|x− y|1+2s
dy dx+

∫ R+ℓ

R

∫ −ℓ

−∞

|v[0,R](x) − v[0,R](y)|2

|x− y|1+2s
dy dx

≤ 2
s(1 − 2s)

(
(R+ 2ℓ)1−2s − (R+ ℓ)1−2s

)
+ 2
s(1 − 2s)

(
(R+ ℓ)1−2s −R1−2s

)
= 2γℓ(R)

Λ
In the same spirit, when s = 1/2, we see that∫ 0

−ℓ

∫ +∞

R

|v[0,R](x) − v[0,R](y)|2

|x− y|2
dy dx ≤ 4

∫ 0

−ℓ

(R− x)−1 dx = 4 log(R+ ℓ) − 4 log(R)

and∫ R+ℓ

R

∫ −ℓ

−∞

|v[0,R](x) − v[0,R](y)|2

|x− y|2
dy dx ≤ 4

∫ R+ℓ

R

(y + ℓ)−1 dy = 4 log(R+ 2ℓ) − 4 log(R+ ℓ) ,

so that ∫ 0

−ℓ

∫ +∞

R

|v[0,R](x) − v[0,R](y)|2

|x− y|1+2s
dy dx+

∫ R+ℓ

R

∫ −ℓ

−∞

|v[0,R](x) − v[0,R](y)|2

|x− y|1+2s
dy dx

≤ 4 log(R+ 2ℓ) − 4 log(R+ ℓ) + 4 log(R+ ℓ) − 4 log(R)

= 2γℓ(R)
Λ

These considerations establish (6.20).
As a consequence of (6.19), (6.20) and the minimality of v[−ℓ,R+ℓ], we have that

EK(v[0,R], [−ℓ, R+ ℓ]) − βℓ(R) − γℓ(R) ≤ EK(v[0,R], [0, R]) − βℓ(R)
≤ EK(v[−ℓ,R+ℓ], [−ℓ, R+ ℓ]) ≤ EK(v[0,R] + ϕ, [−ℓ, R+ ℓ]),

(6.21)

for any ϕ ∈ C∞
c (−ℓ, ℓ).

Also, exploiting the fact that ϕ is supported in [−ℓ, ℓ], we see that

EK(v[0,R] + ϕ, [−ℓ, R+ ℓ]) − EK(v[0,R] + ϕ, [−ℓ, ℓ])

= 1
4

∫ R+ℓ

ℓ

∫ R+ℓ

ℓ

|v[0,R](x) − v[0,R](y)|2K(x− y) dx dy

+ 1
2

∫ R+ℓ

ℓ

∫
((−∞,−ℓ)∪(R+ℓ,+∞))

|v[0,R](x) − v[0,R](y)|2K(x− y) dx dy +
∫ R

ℓ

W
(
v[0,R](x)

)
dx

≤ EK(v[0,R], [−ℓ, R+ ℓ]) − EK(v[0,R], [−ℓ, ℓ]).

By plugging this inequality into (6.21), we obtain the desired result in (6.14) with αℓ(R) := βℓ(R)+
γℓ(R).

From (6.15) and (6.18), we also obtain the limit property in (6.13). □

Proposition 6.9. Let v[0,R] be the minimizer given by Lemma 6.5. Assume, in addition, that K
satisfies (K4).

Then, the function v[0,R] converges to −1 locally unformly as R → +∞.
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Proof. We observe that, by minimality, the function v[0,R] is a weak solution of
LKv[0,R] = W ′(v[0,R]) in (0, R).

In particular, in view of Proposition 2.3, we have that v[0,R] ∈ C θ̄(R)∩C2s+θ̄(0, R) for some θ̄ ∈ (0, s)
and its Hölder norm is bounded independently of R (see6 [25, Proposition 1.1]). Therefore, by means
of the Ascoli-Arzelá Theorem, there exist θ ∈ (0, θ̄) and a function v ∈ C2s+θ

loc (0,+∞) ∩L∞(R) such
that, up to subsequences, v[0,R] → v as R → +∞ locally uniformly in R.

Also, we claim that v is a pointwise solution of
(6.22) LKv = W ′(v) in (0,+∞).
In the aim of showing (6.22), we set an arbitrary open set (a, b) ⋐ (0,+∞). Then, we obtain
by (2.3), Remark 1.4 and Proposition 6.3 that

[v[0,R]]2HK(a,b) = 2HK

(
v[0,R], (a, b)

)
≤ 2HK

(
v[0,R], (a, b+ 6)

)
≤ 2EK

(
v[0,R], (a, b+ 6)

)
≤ CΨs(b− a+ 6).

Consequently, we can apply Lemma 4.3 and obtain that v ∈ HK(a, b) ∩ L∞(R) is a weak solution
of (6.22). Then, Proposition 2.3 gives that v is a pointwise solution, and therefore the claim (6.22)
is established.

Now we show that, for any ℓ > 0,
(6.23) lim

R→+∞
EK(v[0,R], [−ℓ, ℓ]) = EK(v, [−ℓ, ℓ]).

For this, we observe that (K2) and the uniform boundedness of v[0,R] imply that(
|v[0,R](x) − v[0,R](y)|2K(x− y)

)
∈ L1([−ℓ, ℓ] × (R \ [−2ℓ, 2ℓ])).

Consequently, by the Dominated Convergence Theorem,

lim
R→+∞

∫∫
[−ℓ,ℓ]∪(R\[−2ℓ,2ℓ])

|v[0,R](x) − v[0,R](y)|2K(x− y) dx dy

=
∫∫

[−ℓ,ℓ]∪(R\[−2ℓ,2ℓ])
|v(x) − v(y)|2K(x− y) dx dy.

From this and the uniform convergence of v[0,R] on compact sets of Rn, we obtain that
(6.24) lim

R→+∞
HK(v[0,R], [−ℓ, ℓ]) = HK(v, [−ℓ, ℓ]).

Moreover, the regularity of the potential W implies
lim

R→+∞
P(v[0,R], [−ℓ, ℓ]) = P(v, [−ℓ, ℓ]).

This and (6.24) give (6.23).
Similarly, one obtains that, for any ϕ ∈ C∞

c (−ℓ, ℓ),
(6.25) lim

R→+∞
EK(v[0,R] + ϕ, [−ℓ, ℓ]) = EK(v + ϕ, [−ℓ, ℓ]).

Accordingly, from (6.23), (6.25) and Corollary 6.8, we deduce that v is a class A minimizer for EK .
In particular, this implies that v solves

LKv = W ′(v) in R.
Thus, since v(0) = −1 and W ′(−1) = 0, we can exploit (K2) and gather that

0 = LKv(0) =
∫
R
(v(y) + 1)K(y) dy ≥ λ

∫ r0

−r0

(v(y) + 1)
|y|1+2s

dy ≥ 0.

6A careful analysis of the proof of [25, Proposition 1.1] shows that the Hölder norm of the solution to the Dirichlet
problem (2.2) is bounded by a constant that is independent from Ω as a whole, but only depends on the C1,1 norm
of its boundary. Then, since in our case n = 1, this constant is given regardless from the value of R.
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As a consequence, v = −1 in (−∞, r0).
Hence, we can write

0 = LKv(r0) =
∫
R
(v(y) + 1)K(r0 − y) dy ≥ λ

∫ 2r0

0

(v(y) + 1)
|r0 − y|1+2s

dy ≥ 0,

so that v = −1 in (−∞, 2r0).
Repeating this argument iteratively yields that v ≡ −1 in R, wich completes the proof of Propo-

sition 6.9. □

Remark 6.10. We point out that a similar statement to the one in Proposition 6.9 holds true
for v[−R,0]. In this case, one obtains that the function v[−R,0] converges locally uniformly to 1
as R → +∞.

7. A useful lemma

In this section we present a result that will be useful in the proofs of Theorems 1.5 and 1.6.
We recall the definition of the renormalized energy G in (1.8) and of the space X in (1.11), and

we define

(7.1) M :=
{
u ∈ X s. t. G (u) < +∞ and u is a class A minimizer of EK

}
.

In addition, for any x0 ∈ R, we define the following subset of M

(7.2) M (x0) :=
{
u ∈ M s. t. x0 = sup{x ∈ R : u(x) < 0}

}
.

Lemma 7.1. Let (K1), (K2), (W1), (W2) and (W3) be satisfied. Let u(0) be a non-decreasing
function such that u(0) ∈ M (0).

Then, for any x0 ∈ R, the function u(x0) := u(0)(x− x0) is such that
(i) u(x0) ∈ M (x0),

(ii) u(x0) is strictly increasing,
(iii) M (x0) is a singleton, in particular M (x0) = {u(x0)},
(iv) u(x0) satisfies the decay estimates in (1.12).

Moreover, if (K3) holds, then
(v) u(x0) satisfies the decay estimates in (1.14) and (1.15).

In addition, if both (K3) and (1.16) hold, then
(vi) u(x0) satisfies the decay estimates in (1.17).

Being quite long, the proof of Lemma 7.1 is divided in five separate subproofs.

Proof of statements (i) and (ii) of Lemma (7.1). Let us recall that, by minimality, u(0) is a weak
solution of
(7.3) LKu

(0) = W ′(u(0)) in R.

Thus, u(0) : R → [−1, 1] is such that

u(0) ∈ C1+2s+θ(R) ∩ L∞(R) for some θ ∈ (0, 1),
u(0) is non-decreasing and u(0)(0) = 0,

(7.4)

where the regularity follows from Proposition 2.4.
Now, (i) is a consequence of the translation invariance.
Moreover, since (K1) and (K2) hold true, we can make use of [9, Lemma 4.6] and infer that u(0)

is strictly increasing, which is (ii). □

We mention here that u(x0) ∈ X and (ii) implies that

(7.5) |u(0)(x)| < 1 for any x ∈ R.
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Proof of statement (iii) of Lemma (7.1). Let u ∈ M (x0). In order to establish (iii), we prove that

(7.6) u ≡ u(x0).

Since u is a weak solution of (7.3), by Proposition 2.4 we have that u ∈ C1+2s+θ(R) for some θ > 0.
Also, we know that |u| ≤ 1 in R. Thus, for any ε ∈ (0, 1), we can find k(ε) ∈ R such that, for

any k ∈ [k(ε),+∞),
u(x+ k) + ε > u(x0)(x) for any x ∈ R.

Now, we take k as small as possible with this property; that is, we take kε such that

(7.7) u(x+ kε) + ε > u(x0)(x) for any x ∈ R

and there exist a sequence ηj,ε ∈ [0, 1) and points xj,ε ∈ R satisfying

(7.8) lim
j→+∞

ηj,ε = 0

and

(7.9) u(xj,ε + (kε − ηj,ε)) + ε ≤ u(x0)(xj,ε) for any j ∈ N.

We point out that xj,ε must be bounded in j. Otherwise, if

lim
j→+∞

xj,ε = ±∞,

we would have by (7.8) and (7.9) that

±1 + ε = lim
j→+∞

u(xj,ε + (kε − ηj,ε)) + ε ≤ lim
j→+∞

u(x0)(xj,ε) = ±1,

which gives a contradiction.
As a consequence, there exists xε ∈ R such that, up to a subsequence,

lim
j→+∞

xj,ε = xε.

Accordingly, setting uε(x) := u(x+ kε) + ε, formulas (7.7) and (7.9) give that

(7.10) uε(x) ≥ u(x0)(x) for any x ∈ R and uε(xε) = u(x0)(xε).

Also, by translation invariance, we see that

LKuε(x) = W ′(uε(x) − ε),

and therefore, by (7.10),

W ′
(
u(x0)(xε) − ε

)
−W ′

(
u(x0)(xε)

)
= W ′ (uε(xε) − ε

)
−W ′

(
u(x0)(xε)

)
= LKuε(xε) − LKu

(x0)(xε) =
∫
R

(
uε(y) − u(x0)(y)

)
K(xε − y) dy ≥ 0.

(7.11)

Now, we claim that

(7.12) xε is bounded uniformly in ε.

For this, we argue by contradiction and suppose that, up to subsequences, xε → +∞ as ε ↘ 0 (the
contradiction in case xε → −∞ would be obtained through a symmetric argument). Then, there
exists ε̄ ∈ (0, 1) such that, for any ε ∈ (0, ε̄),

u(x0)(xε) ≥ 1 − ξ

2 ,

where ξ is given in (W3). Therefore, for any ε ∈ (0,min{ε̄, ξ/2}),

1 − ξ ≤ u(x0)(xε) − ε ≤ u(x0)(xε) ≤ 1.
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In this way, we can exploit Lemma 4.1 with t := u(x0)(xε) and r := u(x0)(xε) − ε and obtain that

W ′(u(x0)(xε)) ≥ W ′(u(x0)(xε) − ε) + C3

γ − 1

[(
1 − u(x0)(xε) + ε

)γ−1
−
(

1 − u(x0)(xε)
)γ−1

]
> W ′(u(x0)(xε) − ε).

This is in contradiction with (7.11), and therefore the claim in (7.12) is established.
Now, by (7.12), we have that, up to subsequences,

(7.13) lim
ε→0

xε = x̄ ∈ R.

Furthermore, we show that there exists k̄ ∈ R such that, up to subsequences,

(7.14) lim
ε→0

kε = k̄.

Indeed, if kε → ±∞, then it would follow from (7.10) and (7.13) that

±1 = lim
ε→0

u(xε + kε) + ε = lim
ε→0

u(x0)(xε) = u(x0)(x̄),

which is not the case since u(x0)(x̄) ∈ (−1, 1) by (7.5). This proves (7.14).
We can then take the limit as ε ↘ 0 in (7.10) and use (7.13) and (7.14) to obtain that

(7.15)
{
u(x+ k̄) ≥ u(x0)(x) for any x ∈ R,
u(x̄+ k̄) = u(x0)(x̄).

Now, we claim that

(7.16) u(x+ k̄) = u(x0)(x) for all x ∈ R.

In order to show this, we define the function v := u(· + k̄) − u(x0) and observe that, by (7.15), it
holds that v ≥ 0 in R and v(x̄) = 0. Thus, since both u(· + k̄) and u(x0) belong to M , we have that

LKv(x̄) = W ′(u(x̄+ k̄)) −W ′(u(x0)(x̄)) = 0.

Therefore, exploiting (K2),

0 = LKv(x̄) =
∫
R
v(y)K(x̄− y) dy ≥ λ

∫ x̄+r0

x̄−r0

v(y)
|x̄− y|1+2s

dy ≥ 0.

As a consequence, u(x+ k̄) = u(x0)(x) for all x ∈ [x̄− r0, x̄+ r0].
Then, we see that

0 = LKv(x̄+ r0) =
∫
R
v(y)K(x̄+ r0 − y) dy ≥ λ

∫ x̄+2r0

x̄

v(y)
|x̄+ r0 − y|1+2s

dy ≥ 0

and

0 = LKv(x̄− r0) =
∫
R
v(y)K(x̄− r0 − y) dy ≥ λ

∫ x̄

x̄−2r0

v(y)
|x̄− r0 − y|1+2s

dy ≥ 0.

Therefore, u(x+ k̄) = u(x0)(x) in [x̄− 2r0, x̄+ 2r0].
Repeating this argument iteratively yields (7.16).
Now, since u ∈ M (x0) and is continuous, it must be that u(x0) = 0. Moreover, by (7.16),

u(x0 + k̄) = u(x0)(x0) = u(0)(0) = 0.

Therefore,
u(x0)(x0) = u(x0 + k̄) = u(x0) = u(x0)(x0 − k̄).

Since u(x0) is strictly increasing (thanks to (ii)), this implies that k̄ = 0. Plugging this information
into (7.16), we obtain (7.6), as desired. □
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Proof of statement (iv) of Lemma (7.1). For simplicity, we show that (iv) holds for u(0) (as this
implies the estimate for u(x0) for any x0 ∈ R).

We recall the notation in (W3) and we set

(7.17) c := min
{

C1

α− 1 , ξ
}
.

We exploit Proposition 3.1 with ζ := c and m := α, and we consider the barrier w constructed
there.

From the properties of w in (3.1) and (3.2) and the fact that u(0) ∈ X , we deduce that there
exists κ ∈ (0,+∞) such that w(x + k) > u(0)(x) for all x ∈ R and all k ∈ [κ,+∞). In particular,
we can choose k̄ ≤ κ, an infinitesimal sequence ηj ∈ [0, 1) and points xj ∈ R such that

w(x+ k) > u(0)(x) for all k > k̄ and any x ∈ R,(7.18)

and w(xj + k̄ − ηj) ≤ u(0)(xj) for any j.(7.19)
In particular, this and (7.5) give that

|w(xj + k̄ − ηj)| < 1.
As a consequence, for any R sufficiently large, as given by Proposition 3.1,

(7.20)
∣∣∣xj + k̄ − ηj

∣∣∣ < R.

This gives that
|xj | ≤ R+ |k̄| + 1,

namely, xj is bounded uniformly in j, and therefore there exists x̄ ∈ R such that, up to a subsequence,
(7.21) lim

j→+∞
xj = x̄.

Also, using (7.20) we gather that
(7.22) |x̄+ k̄| ≤ R.

Moreover, from (7.18), (7.19) and (7.21) we find that

(7.23) w(x̄+ k̄) = u(0)(x̄).
In light of this and (7.5), we can refine (7.22) into
(7.24) |x̄+ k̄| < R.

Now we claim that
(7.25) u(0)(x̄) ≥ −1 + c.

We prove this fact by contradiction, by supposing instead that
(7.26) u(0)(x̄) ∈ (−1,−1 + c).
We define

Ω :=
{
x ∈ (−k̄ −R,−k̄ +R) s. t. u(0)(x) ∈ (−1,−1 + c)

}
.

By (7.24) and (7.26) we obtain that x̄ ∈ Ω. Then, the monotonicity of u(0) gives that, for every x ∈
(−k̄ −R, x̄],

u(0)(x) ≤ u(0)(x̄) < −1 + c,

and therefore (−k̄ −R, x̄] ⊂ Ω. In addition, Ω is open since u(0) is continuous.
Now, Lemma 4.1 (used here with t := u(0)(x) and r := −1) gives that, for all x ∈ Ω,

(7.27) LKu
(0)(x) = W ′(u(0)(x)) ≥ C1

α− 1(1 + u(0)(x))α−1 ≥ c(1 + u(0)(x))α−1.

Furthermore, we set wk̄(x) := w(x+ k̄) and we obtain by (3.3) that, for any x ∈ (−k̄−R,−k̄+R),
LKwk̄(x) ≤ c(1 + wk̄(x))α−1.
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This, (7.18) and (7.27) lead to the following situation:
LKwk̄ ≤ c(1 + wk̄)α−1 in Ω,
LKu

(0) ≥ c(1 + u(0))α−1 in Ω,
wk̄ ≥ u(0) in R.

That is, the assumptions of Proposition 4.2 are satisfied with f1(x,w(x)) = f2(x,w(x)) = c(1 +
w(x))α−1. Hence, since x̄ ∈ Ω, from (7.23) we conclude that ωk̄ = u(0) in Ω.

Thus, exploiting the continuity of u(0) and (7.5), and recalling also (3.2), we obtain that

1 = lim
x→−k̄−R

w(k̄ + x) = lim
x→−k̄−R

wk̄(x) = lim
x→−k̄−R

u(0)(x) < 1,

which is a contradiction. The claim in (7.25) is thereby established.
We now show that

(7.28) x̄+ k̄ ∈ [0, R).

In light of (7.24), to obtain (7.28) it is enough to check that x̄+k̄ ≥ 0. This is proved by contradiction
supposing that x̄+ k̄ < 0 and setting k̃ := −(x̄+ k̄) > 0. We exploit the fact that w is even (recall
Proposition 3.1) and (7.18) (used here for x := k̃ − k̄) and we find that

(7.29) wk̄(x̄) = w−k̄(−x̄) = w(k̃) = w((k̃ − k̄) + k̄) > u(0)(k̃ − k̄) = u(0)(−x̄− 2k̄).

Notice that, since −(x̄+k̄) > 0, we have that −x̄−2k̄ > x̄, and therefore from the strict monotonicity
of u(0) we deduce that u(0)(−x̄− 2k̄) > u(0)(x̄). This and (7.29) give that wk̄(x̄) > u(0)(x̄), which is
in contradiction with (7.23). Thus (7.28) holds true.

Now, let

(7.30) y ∈
[
R

3 ,
R

2

]
.

In this way, by (7.28), we get that

x̄+ k̄ − y ∈
[
−R

2 ,
2R
3

]
⊂
[
−2R

3 ,
2R
3

]
.

As a consequence, in light of (3.4),

(7.31) 1 + w(x̄+ k̄ − y) ≤ C
(
R+ 1 − |x̄+ k̄ − y|

)− 2s
α−1 ≤ C(R/3)− 2s

α−1 ≤ C̃ y− 2s
α−1 ,

for some positive constant C̃.
Now, let x̃ ∈ R be such that u(0)(x̃) = −1 + c/2. By the strict monotonicity of u(0) and (7.25),

it follows that x̃ < x̄. Consequently, putting together (7.18) and (7.31), we obtain that

(7.32) u(0)(x̃− y) < u(0)(x̄− y) ≤ w(x̄+ k̄ − y) ≤ −1 + C̃ y− 2s
α−1 ,

for any y as in (7.30).
Since x̃ and C̃ are independent of R, and R can be taken as large as desired, (7.32) says that,

if x ∈ (−∞, 0) and |x| is sufficiently large,

(7.33) u(0)(x) ≤ −1 + C̃|x|−
2s

α−1 ,

which establishes the first estimate in (1.12).
We now show the second estimate in (1.12). To this aim, we define the function v(0)(x) :=

u(0)(−x) and we notice that v(0) inherits the regularity properties from u(0) and it is strictly de-
creasing.

From (7.5) and the fact that u(0) ∈ X , we also see that

|v(0)| < 1 in R and lim
x→±∞

v(0)(x) = ∓1.
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Moreover, for all x ∈ R,

LKv
(0)(x) = LKu

(0)(−x) = W ′(u(0)(−x)).

Hence, we are in the position of exploiting the first part of this proof that took care of the first
estimate in (1.12), applied now to v(0), with the only caveat that Proposition 3.1 must be used here
with c in (7.17) replaced by

min
{

C3

γ − 1 , ξ
}

and m := γ.
In this way, we obtain that

1 − v(0)(x) ≤ C̃|x|−
2s

γ−1 if x ≤ −R.

Namely,
1 − u(0)(−x) ≤ C̃|x|−

2s
γ−1 if x ≤ −R,

which gives the second estimate in (1.12), as desired. □

Proof of statement (v) of Lemma 7.1. For simplicity, we show that (v) holds for u(0) (as this implies
the estimates for u(x0) for any x0 ∈ R).

Thanks to the regularity of u(0), as provided by (7.4), we can differentiate (1.13) and find that,
for all x ∈ R,

LK(u(0))′(x) = W ′′(u(0)(x))(u(0))′(x).
Therefore, using (W3) and (1.12), and recalling also that u(0) is strictly increasing, we obtain that
there exist C̃ > 0 and x0 > 0 such that

LK(u(0))′(x) ≤

C2

(
1 + u(0)(x)

)β−2
(u(0))′(x) if x ≤ −x0,

C4

(
1 − u(0)(x)

)δ−2
(u(0))′(x) if x ≥ x0.

≤

C̃|x|−
2s(β−2)

α−1 (u(0))′(x) if x ≤ −x0,

C̃|x|−
2s(δ−2)

γ−1 (u(0))′(x) if x ≥ x0.

(7.34)

Now, we consider ϕ ∈ C∞(R) such that

(7.35) ϕ(x) :=

|x|−
(

1+ 2s(α−β+1)
α−1

)
if x ≤ −x0,

|x|−
(

1+ 2s(γ−δ+1)
γ−1

)
if x ≥ x0.

Also, we ask that ϕ > 0 in R and that ∫ x0

−x0

ϕ(x) dx ≥ 2C̃
λ
,

where λ is the quantity appearing in (K3).
As a consequence, by means of Proposition 5.2 (used here with κ := x0, σ := 1 + 2s(α−β+1)

α−1
and τ := 1 + 2s(γ−δ+1)

γ−1 ) we have that,

lim
|x|→+∞

|x|1+2sLKϕ(x) ≥ λ

x− 2s(α−β+1)
α−1

0 (α− 1)
2s(α− β + 1) +

∫ x0

−x0

ϕ(y) dy + x
− 2s(γ−δ+1)

γ−1
0 (γ − 1)
2s(γ − δ + 1)


≥ λ

∫ x0

−x0

ϕ(y) dy ≥ 2C̃.
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Hence, for some x1 > x0, we have that, for all x ∈ (−∞, x1) ∪ (x1,+∞),

(7.36) LKϕ(x) ≥ C̃

|x|1+2s
.

We now point out that, if x ≤ −x0,

ϕ(x)

|x|
2s(β−2)

α−1

= |x|−
(

1+ 2s(α−β+1)
α−1

)
|x|

2s(β−2)
α−1

= 1
|x|1+2s

and similarly, if x ≥ x0,
ϕ(x)

|x|
2s(δ−2)

γ−1

= |x|−
(

1+ 2s(γ−δ+1)
γ−1

)
|x|

2s(δ−2)
γ−1

= 1
|x|1+2s

.

Hence, from these observations and (7.36), we deduce that

(7.37) LKϕ(x) ≥

C̃|x|−
2s(β−2)

α−1 ϕ(x) if x ≤ −x1,

C̃|x|−
2s(δ−2)

γ−1 ϕ(x) if x ≥ x1.

Now, we set

Ĉ := max
x∈[−x1,x1]

ϕ(x)
(

min
x∈[−x1,x1]

(u(0))′(x)
)−1

and we notice that, for any |x| < x1,

(7.38) Ĉ(u(0))′(x) − ϕ(x) ≥ 0.
We claim that

(7.39) Ĉ(u(0))′(x) ≥ ϕ(x) for any x ∈ R.

In order to prove the claim, we define, for any b ∈ [0,+∞), the function vb := Ĉ(u(0))′ + b− ϕ.
Since (u(0))′ > 0 and ϕ is bounded, for any b ≥ ∥ϕ∥L∞(R), we have that vb > 0 in R.

Now, if vb > 0 in R for any b ∈ [0,+∞), the claim in (7.39) plainly follows taking b = 0. Hence,
from now on, we suppose that there exists b0 ∈ (0,+∞) such that vb > 0 for all b ∈ (b0,+∞)
and vb0(z) = 0 at some point z ∈ R.

By the definition of b0, there exist points xk such that vb0(xk) < 2−k. Without loss of generality,
we may suppose that xk ≤ 0 (otherwise, in what follows, we use the information coming from the
decay at +∞).

Furthermore, the sequence xk is bounded from below since, if not, we would have

b0 = lim sup
k→−∞

(
Ĉ(u(0))′(xk) + b0 − ϕ(xk)

)
= lim

k→−∞
vb0(xk) = 0,

which is a contradiction.
Moreover, exploiting (7.38), we obtain for any |x| ≤ x1 and k > − log2 b0

2−k < b0 ≤ Ĉ(u(0))′(x) − ϕ(x) + b0 = vb0(x).
As a consequence, since vb0(xk) ≤ 2−k, we have that xk ∈ (−∞,−x1] for any k > − log2 b0.

Gathering these pieces of information, we conclude that there exists x∞ ∈ (−∞,−x1] such
that xk → x∞, up to a subsequence, as k → +∞. The continuity of vb0 also gives that vb0(x∞) = 0.

As a result, since x∞ ≤ −x1, we can exploit (7.34) and (7.37) to compute

LKvb0(x∞) = ĈLK(u(0))′(x∞) − LKϕ(x∞)

≤ C̃|x∞|−
2s(β−2)

α−1 (Ĉ(u(0))′(x∞) − ϕ(x∞))

= −b0C̃|x∞|−
2s(β−2)

α−1

< 0.
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On the other hand, we have that

LKvb0(x∞) =
∫
R
(vb0(y) − vb0(x∞))K(x∞ − y) dy =

∫
R
vb0(y)K(x∞ − y) dy ≥ 0.

We thereby obtain the desired contradiction, which completes the proof of (7.39).
Formulas (7.35) and (7.39) yield the estimates in (1.15).
Hence we now focus on the proof of the estimates in (1.14). To this aim, exploiting the regularity

of u(0), we apply the Fundamental Theorem of Calculus and use the first estimate in (1.15) to obtain
that, for any x ≤ −x0,

u(0)(x) + 1 =
∫ x

−∞
(u(0))′(y) dy ≥ Ĉ

∫ +∞

x

y
−
(

1+ 2s(α−β+1)
α−1

)
dy

= (α− 1)
2sĈ(α− β + 1)

|x|−
2s(α−β+1)

α−1 .

This provides the first estimate in (1.14).
Similarly, making use of the second estimate in (1.15), for any x ≥ x0,

1 − u(0)(x) =
∫ +∞

x

(u(0))′(y) dy ≥ Ĉ

∫ +∞

x

y
−
(

1+ 2s(γ−δ+1)
γ−1

)
dy

= (γ − 1)
2sĈ(γ − δ + 1)

|x|−
2s(γ−δ+1)

γ−1 ,

which completes the proof of (1.14). □

Proof of statement (vi) of Lemma 7.1. For simplicity, we show that (vi) holds for u(0) (as this im-
plies the estimates for u(x0) for any x0 ∈ R).

By (W3) and (1.14), there exists C̃ > 0 and x0 > 0 such that

W ′′(u(0)(x)) ≥

{
C1(1 + u(0)(x))α−2 if x ≤ −x0,

C3(1 − u(0)(x))γ−2 if x ≥ x0

≥

C̃|x|−
2s(α−2)(α−β+1)

α−1 if x ≤ −x0,

C̃|x|−
2s(γ−2)(γ−δ−1)

γ−1 if x ≥ x0.

(7.40)

Possibly taking x0 larger, thanks to (1.16) we can assume that

(7.41) C̃

2Λ −

x− 2s(1−(α−2)(α−β))
α−1

0 (α− 1)
2s
(
1 − (α− 2)(α− β)

) + x
− 2s(1−(γ−2)(γ−β))

γ−1
0 (γ − 1)
2s
(
1 − (γ − 2)(γ − δ)

)
 > 0.

Now, thanks to the regularity of u(0) (recall (7.4)), we can differentiate the equation in (7.3) and
we see that, for all x ∈ R,

LK(u(0))′(x) = W ′′(u(0)(x))(u(0))′(x).
Thus, exploiting (7.40) and recalling that u(0) is strictly increasing,

(7.42) LK(u(0))′(x) ≥

C̃|x|−
2s(α−2)(α−β+1)

α−1 (u(0))′(x) if x ≤ −x0,

C̃|x|−
2s(γ−2)(γ−δ−1)

γ−1 (u(0))′(x) if x ≥ x0.

We now take ϕ ∈ C∞(R) such that

(7.43) ϕ(x) =


|x|

−
(

1+ 2s(1−(α−2)(α−β))
α−1

)
if x < −x0,

|x|
−
(

1+ 2s(1−(γ−2)(γ−δ))
γ−1

)
if x > x0.
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Also, we ask that ϕ > 0 in [−x0, x0] and

(7.44)
∫ x0

−x0

ϕ(y) dy ≤ C̃

2Λ −

x− 2s(1−(α−2)(α−β))
α−1

0 (α− 1)
2s
(
1 − (α− 2)(α− β)

) + x
− 2s(1−(γ−2)(γ−β))

γ−1
0 (γ − 1)

2s
(
1 − (γ − 2)(γ − β)

)


and we remark that this is possible thanks to (7.41).
Now, thanks to (1.16) we are allowed to exploit Proposition 5.1 to find that

lim
|x|→+∞

|x|1+2sLKϕ(x) ≤ Λ

x− 2s(1−(α−2)(α−β))
α−1

0 (α− 1)
2s
(
1 − (α− 2)(α− β)

) +
∫ x0

−x0

ϕ(y) dy + x
− 2s(1−(γ−2)(γ−β))

γ−1
0 (γ − 1)

2s
(
1 − (γ − 2)(γ − β)

)
 .

This and (7.44) imply that

lim
|x|→+∞

|x|1+2sLKϕ(x) ≤ C̃

2 .

We now point out that, if x ≤ −x0,

ϕ(x)

|x|
2s(α−2)(α−β+1)

α−1

= |x|
−
(

1+ 2s(1−(α−2)(α−β))
α−1

)
|x|

2s(α−2)(α−β+1)
α−1

= 1
|x|1+2s

and similarly, if x ≥ x0,

ϕ(x)

|x|
2s(γ−2)(γ−δ+1)

γ−1

= |x|
−
(

1+ 2s(1−(γ−2)(γ−δ))
γ−1

)
|x|

2s(γ−2)(γ−δ+1)
γ−1

= 1
|x|1+2s

.

As a consequence, we have that there exists x1 ≥ x0 such that

(7.45) LKϕ(x) ≤

C̃|x|−
2s(α−2)(α−β+1)

α−1 ϕ(x) if x < −x1,

C̃|x|−
2s(γ−2)(γ−δ+1)

γ−1 ϕ(x) if x > x1.

Now, we set

x2 := max{x1, 1} and Ĉ := 4∥(u(0))′∥L∞(R)

(
min

x∈[−x2,x2]
ϕ(x)

)−1

and we claim that
(7.46) (u(0))′(x) < Ĉϕ(x) for any x ∈ R.

In order to prove the above inequality, we take b ∈ [0,+∞) and we define vb := Ĉϕ+ b− (u(0))′. We
recall that, by (7.4) and (7.5), (u(0))′ is bounded and vanishes at infinity. Therefore, for any b >
∥(u(0))′∥L∞(R), we have that vb > 0 in R.

Now, if vb > 0 in R for any b ∈ [0,+∞), then the claim in (7.46) plainly follows taking b = 0.
Hence, from now on, we suppose that there exists b0 ∈ (0,+∞) such that vb > 0 for all b ∈ (b0,+∞)
and vb0(z) = 0 at some point z ∈ R.

By the definition of b0, there exist points xk such that vb0(xk) < 2−k. Without loss of generality,
we may suppose that xk ≥ 0 (otherwise, in what follows, we use the information coming from the
decay at −∞). Moreover, xk are bounded from above since, if not, we would have

b0 = lim sup
k→+∞

(
Ĉϕ(xk) + b0 − (u(0))′(xk)

)
= lim

k→+∞
vb0(xk) = 0,

which is a contradiction.
Also, for k sufficiently large, we have that

∥(u(0))′∥L∞(R) ≥ 2−k > vb0(xk) ≥ Ĉϕ(xk) − (u(0))′(xk) ≥ Ĉϕ(xk) − ∥(u(0))′∥L∞(R).
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Accordingly, recalling the definition of Ĉ,

ϕ(xk) ≤
minx∈[−x2,x2] ϕ(x)

2 .

This implies that xk > x2.
Gathering these pieces of information, we conclude that there exists x∞ ∈ [x2,+∞) such that xk →

x∞, up to a subsequence, as k → +∞.
In addition, thanks to the continuity of vb0 ,

(7.47) vb0(x∞) = 0.
Now, by means of (7.42) and (7.45),

LKvb0(xk) = ĈLKϕ(xk) − LK(u(0))′(xk) ≤ C̃x
− 2s(γ−2)(γ−δ+1)

γ−1
k

(
Ĉϕ(xk) − (u(0))′(xk)

)
= C̃x

− 2s(γ−2)(γ−δ+1)
γ−1

k vb0(xk) − C̃x
− 2s(γ−2)(γ−δ+1)

γ−1
k b0

≤ C(2−k − b0),
for some C > 0.

The regularity of vb0 then implies that
LKvb0(x∞) = lim

k→+∞
LKvb0(xk) ≤ −Cb0 < 0.

On the other hand, by (7.47),

LKvb0(x∞) =
∫
R
(vb0(y) − vb0(x∞))K(x∞ − y) dy =

∫
R
vb0(y)K(x∞ − y) dy ≥ 0.

We thereby obtain the desired contradiction, and therefore (7.46) is established.
The desired estimates now follow from (7.43) and (7.46). □

8. Proofs of Theorems 1.5 and 1.6

We are now ready to deal with the 1-D minimizers of EK and provide the proofs of the main
results of this paper.

We recall the definitions of M and of M (x0), respectively in (7.1) and (7.2).

Proof of Theorem 1.5. For any R > 3, we use Lemma 6.5 with a := −R and b := R to obtain
a minimizer v[−R,R] : R → [−1, 1] such that v[−R,R](x) = −1 if x ≤ −R and v[−R,R](x) = 1
if x ≥ R. Also, the energy bound (6.8) holds for v[−R,R] and, in view of Proposition 6.6, v[−R,R] is
non-decreasing.

The minimization property of v[−R,R] yields that
LKv[−R,R] = W ′(v[−R,R]) in (−R,R).

Therefore, by Proposition 2.3, we have that v[−R,R] ∈ Cθ(R) ∩ C2s+θ(−R,R), for some θ ∈ (0, s),
and its Hölder norm is bounded independently of R.

Now, by continuity, there must be a point x̄R ∈ R such that v[−R,R](x̄R) = 0. We claim that
(8.1) lim

R→+∞
(R− |x̄R|) = +∞.

To check this, we argue by contradiction and we suppose that
(8.2) either lim

R→+∞
(R+ x̄R) ≤ C or lim

R→+∞
(R− x̄R) ≤ C,

for some C > 0.
We suppose that the first case in (8.2) occurs (the other being analogous). In this case, we

consider the minimizer v[−2R,0] and notice that, in view of the translation invariance, v[−2R,0](x) =
v[−R,R](x−R). Then, taking C as in (8.2) and exploiting the monotonicity of v[−2R,0], we see that,
for R large enough,

v[−2R,0](C) = v[−R,R](C −R) ≥ v[−R,R](x̄R) = 0.
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This inequality gives that
lim

R→+∞
v[−2R,0](C) ≥ 0,

which is in contradiction with Proposition 6.9 and Remark 6.10. The proof of (8.1) is thereby
complete.

Now, we set
v

(0)
R (x) := v[−R,R](x+ x̄R).

In this way, v(0)
R (0) = 0.

Moreover, v(0)
R is a local minimizer of EK in [−R− x̄R, R− x̄R] and, thanks to (8.1),

lim
R→+∞

(−R− x̄R) = −∞ and lim
R→+∞

(R− x̄R) = +∞.

Consequently, we may suppose that v(0)
R converges locally uniformly in R to some u(0) : R → [−1, 1]

such that u(0) ∈ C2s+θ
loc (R) ∩ L∞(R). Also, we obtain the pointwise equality

(8.3) LKu
(0) = W ′(u(0)) in R.

Furthermore, we have that
(8.4) u(0) ∈ C1+2s+θ(R) ∩ L∞(R) for some θ ∈ (0, 1), u(0) is non-decreasing and u(0)(0) = 0,
where we deduce the first property from Proposition 2.4.

Now, we prove that
(8.5) G (u(0)) < +∞.

In order to show this, we fix ρ > 0 and take R large enough such that R − x̄R > ρ. Then, by the
Fatou’s Lemma and Proposition 6.3, we obtain, for some C > 0,

EK(u(0), [−ρ, ρ]) ≤ lim inf
R→+∞

EK(v(0)
R , [−ρ, ρ]) ≤ CΨs(ρ),

thus showing (8.5).
Furthermore,

(8.6) lim
x→±∞

u(0)(x) = ±1.

Indeed, we first notice that, by (8.4), the limits in (8.6) exist. Now, we take a−, a+ ∈ [−1, 1] such
that

lim
x→−∞

u(0)(x) = a− and lim
x→+∞

u(0)(x) = a+.

By (8.4), we know that a+ ∈ [0, 1]. Moreover, if a+ ̸= 1, then (W2) gives that
CW := inf

x∈[0,a+]
W (x) > 0.

As a consequence, for any ρ > 0,

EK(u(0), [−ρ, ρ]) ≥
∫ ρ

0
W (u(0)(x)) dx ≥ CW ρ,

this contradicting (8.5) if ρ is sufficiently large. Therefore a+ = 1, and similarly one can check
that a− = −1. This completes the proof of (8.6).

Now, thanks to (8.4), (8.6) and [9, Remark 2.7], we exploit [9, Theorem 3] to infer that u(0) is a
class A minimizer of EK .

Consequently, u(0) ∈ M (0) and we can apply Lemma 7.1 to obtain that u(0) satisfies the decay
estimates (1.12), (1.14), (1.15) and (1.17). Moreover, Lemma 7.1 also gives that u(0) is, up to
translations, the unique class A minimizer of EK .

Finally, it holds that, up to translations, u(0) is the only non-decreasing solution to (8.3) in the
family of admissible functions X . Indeed, let us consider v ∈ X to be a non-decreasing solution
to (8.3). Then, by Lemma 4.4, v is a class A minimizer of EK and thus v ∈ M (x0) for some x0.
Hence, (iii) gives that v(x) = u(0)(x− x0).



FRACTIONAL ALLEN-CAHN EQUATIONS 39

Proof of Theorem 1.6. For any R > 3, we use Lemma 6.5 with a := −R and b := R to obtain
a minimizer v[−R,R] : R → [−1, 1] such that v[−R,R](x) = −1 if x ≤ −R and v[−R,R](x) = 1
if x ≥ R. Also, the energy bound (6.8) holds for v[−R,R] and, in view of Proposition 6.6, v[−R,R] is
non-decreasing. Furthermore, by Proposition 6.7, v[−R,R] is odd and so v[−R,R](0) = 0 for any R.

The minimization property of v[−R,R] implies that

LKv[−R,R] = W ′(v[−R,R]) in (−R,R).

Then, by Proposition 2.3, v[−R,R] ∈ Cθ(R) ∩C2s+θ(−R,R) for some θ ∈ (0, s), and its Hölder norm
is bounded independently of R.

Consequently, we may suppose that v[−R,R] converges locally uniformly in R to some u(0) : R →
[−1, 1] such that u(0) ∈ C2s+θ

loc (R) ∩ L∞(R). Also, we obtain the pointwise equality

(8.7) LKu
(0) = W ′(u(0)) in R.

Furthermore, we have that

(8.8) u(0) ∈ C1+2s+θ(R) ∩ L∞(R) for some θ ∈ (0, 1), u(0) is non-decreasing and odd,

where we deduce the first property from Proposition 2.4 and we stress that u(0)(0) = 0 by symmetry.
Now, we prove that

(8.9) G (u(0)) < +∞.

For this, we fix ρ > 0 and take R > ρ. Then, by the Fatou’s Lemma and Proposition 6.3, we obtain
that

EK(u(0), [−ρ, ρ]) ≤ lim inf
R→+∞

EK(v[−R,R], [−ρ, ρ]) ≤ CΨs(ρ),

which gives 8.9.
Furthermore,

(8.10) lim
x→±∞

u(0)(x) = ±1.

Indeed, we first notice that by (8.8) the limits in (8.10) exist. Now, we take a−, a+ ∈ [−1, 1] such
that

lim
x→−∞

u(0)(x) = a− and lim
x→+∞

u(0)(x) = a+.

By (8.8), we know that a+ ∈ [0, 1]. Moreover, if a+ ̸= 1, then (W2) gives that

CW := inf
x∈[0,a+]

W (x) > 0.

As a consequence, for any ρ > 0 we compute

EK(u(0), [−ρ, ρ]) ≥
∫ ρ

0
W (u(0)(x)) dx ≥ CW ρ,

which contradicts (8.9) when ρ is large enough. Accordingly, we have that a+ = 1, and similarly
one can show that a− = −1 and complete the proof of (8.10).

Finally, thanks to (8.8), (8.10) and [9, Remark 2.7], we can use [9, Theorem 3] to infer that u(0)

is a class A minimizer of EK . Consequently, u(0) ∈ M (0) and we can apply Lemma 7.1 to obtain
that u(0) satisfies the decay estimates (1.18), (1.19), (1.20) and (1.22). By Lemma 7.1 we also have
that u(0) is, up to translations, the unique class A minimizer of EK .

Finally, it holds that, up to translations, u(0) is the only non-decreasing solution to (8.7) in the
family of admissible functions X . Indeed, let us consider v ∈ X to be a non-decreasing solution
to (8.7). Then, by Lemma 4.4, v is a class A minimizer of EK and thus v ∈ M (x0) for some x0.
Hence, (iii) gives that v(x) = u(0)(x− x0).
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Appendix A. On the kernel K

In this section, we provide three explicit examples of “admissible” kernels K, where we define
“admissible” any kernel K : Rn → [0,+∞] satisfying (K1), (K2) and (K4).

Example A.1. The kernel of the fractional Laplacian
K(x) := |x|−(n+2s)

is admissible. Indeed, it obviously satisfies (K1) and (K2).
We now check that it also satisfies (K4). For this, let σj ↗ 1 as j → +∞ and ε ∈ (0, 1). Then,(

sup
x∈Rn\{0}

K(σjx)
K(x) − 1

)
1

(1 − σj)1−ε
=

σ
−(n+2s)
j − 1

(1 − σj)1−ε

= (n+ 2s)(1 − σj) +O(|1 − σj |2)
(1 − σj)1−ε

.

Taking the limit as j → +∞, we thereby see that (K4) holds true.

We mention here that condition (K2) is very general and allows us to consider a great variety
of translation invariant kernels, only locally comparable to that of the fractional Laplacian. For
instance, a kernel satisfying (K2) is

(A.1) K(x) := 1Br0
(x) a(x)

|x|n+2s
,

with r0 > 0 and a bounded and bounded away from zero. Kernels of this form have been widely
considered in the literature (see for instance [21] and the references therein).

Nevertheless, a kernel as in (A.1) does not satisfy (K4). To show this, we consider σj ↗ 1 such
that σjr0 < r0 < r0/σj . Also, we pick x̄ ∈ ∂Br0/

√
σj

and consider a sequence of points xk ∈ Br0/
√

σj

converging to x̄. In particular, xk ∈ Br0/
√

σj
\Br0 for any k large enough, while σjxk ∈ B√

σjr0 ⋐
Br0 . Then, we see that

sup
x∈Rn

K(σjx)
K(x) ≥

inf
x∈Rn

a(x)

sup
x∈Rn

a(x)σ
−(n+2s)
j lim

k→+∞

1Br0
(σjxk)

1Br0
(xk) = +∞,

which entails that (K4) fails to hold.

Example A.2. An admissible kernel that exploits the generality of (K2) is the following:

(A.2) K(x) :=
{

|x|−(n+2s) if |x| < ρ,

2ρ(θ−1)(n+2s)|x|−θ(n+2s) if |x| ≥ ρ

for some θ > 1 and ρ > 0. This kernel satisfies (K1) and (K2).
In order to show (K4), we can reason as follows. Let σj ↗ 1 and ε ∈ (0, 1). We claim that, for

any x ∈ Rn,

(A.3) K(σjx)
K(x) ≤ σ

−θ(n+2s)
j .

Indeed, if x ∈ Bρ, it holds that
K(σjx)
K(x) = σ

−(n+2s)
j ≤ σ

−θ(n+2s)
j .

Moreover, if x ∈ Bρ/σj
\Bρ, we have that

K(σjx)
K(x) =

σ
−(n+2s)
j |x|−(n+2s)

2ρ(θ−1)(n+2s)|x|−θ(n+2s) =
σ

−(n+2s)
j

2

(
|x|
ρ

)(θ−1)(n+2s)

≤
σ

−θ(n+2s)
j

2 ≤ σ
−θ(n+2s)
j .
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Furthermore, it is immediate to check that, for any x ∈ Rn \Bρ/σj
it holds

K(σjx)
K(x) = σ

−θ(n+2s)
j .

Gathering these pieces of information, we obtain (A.3).
From (A.3) we thus conclude that(

sup
x∈Rn\{0}

K(σjx)
K(x) − 1

)
1

(1 − σj)1−ε
≤
σ

−θ(n+2s)
j − 1
(1 − σj)1−ε

= θ(n+ 2s)(1 − σj) +O(|1 − σj |2)
(1 − σj)1−ε

.

Passing to the limit as j → +∞ shows (K4).

Example A.3. Given τ ∈ R and ζ ≥ 1, we define the function

g(x) := e−|x|2
cos(τ |x|) + ζ.

Also, taking K as in (A.2), we define the kernel

K̃(x) := CK(x)g(x),

for some C > 0.
The kernel K̃ is admissible. Indeed, it clearly satisfies (K1) and (K2), thus we only focus on

showing (K4). To this aim, let σj ↗ 1 and ε ∈ (0, 1). In light of (A.3), we have see that, for
any x ∈ Rn \ {0},

K̃(σjx)
K̃(x)

− 1 ≤
σ

−θ(n+2s)
j g(σjx) − g(x)

g(x)

=
(σ−θ(n+2s)

j − 1)g(σjx)
g(x) + g(σjx) − g(x)

g(x)

≤
sup

x∈Rn

g(x)

inf
x∈Rn

g(x)

(
σ

−θ(n+2s)
j − 1

)
+ |g(σjx) − g(x)|

inf
x∈Rn

g(x) .

(A.4)

Now, we claim that, for any x ∈ Rn,

(A.5) |g(σjx) − g(x)| ≤ C(1 − σj),

for some C > 0.
In order to show (A.5), we observe that, if j is sufficiently large,

|g(σjx) − g(x)| =
∣∣∣e−σ2

j |x|2
cos(τσj |x|) − e−|x|2

cos(τ |x|)
∣∣∣

≤
∣∣∣e−σ2

j |x|2 (
cos(τσj |x|) − cos(τ |x|)

)∣∣∣+
∣∣∣∣cos(τ |x|)

(
e−σ2

j |x|2
− e−|x|2

)∣∣∣∣
≤ τe−|x|2/2|x|(1 − σj) +

∣∣∣e−σ2
j |x|2

− e−|x|2
∣∣∣

≤ C(1 − σj) + e−σ2
j |x|2

− e−|x|2
,

(A.6)

for some C > 0.
Now, we define the function f(x) := e−|x|2 |x|2 and we point out that, if t ∈ R \ {0},

e−t2|x|2
t = f(tx)

t|x|2
≤

∥f∥L∞(Rn)

t|x|2
.
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Thus, exploiting the Fundamental Theorem of Calculus and a Taylor expansion of the logarithm
near 1, we get that

e−σ2
j |x|2

− e−|x|2
=
∫ σj

1

d

dt
e−t2|x|2

dt = 2|x|2
∫ 1

σj

e−t2|x|2
t dt ≤ 2∥f∥L∞(Rn)

∫ 1

σj

dt

t

= 2∥f∥L∞(Rn) ln(σ−1
j ) ≤ C(1 − σj),

for some C > 0. Combining this with (A.6) yields (A.5).
As a consequence of (A.4) and (A.5), we obtain that

sup
x∈Rn\{0}

K̃(σjx)
K̃(x)

− 1 ≤
sup

x∈Rn

g(x)

inf
x∈Rn

g(x)

(
σ

−θ(n+2s)
j − 1

)
+ C(1 − σj)

inf
x∈Rn

g(x) ≤ C(1 − σj),

up to relabeling C.
This entails that (K4) holds true, as desired.
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