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Abstract. We deal with bounded W 1,n−1-maps defined in n-dimensional domains, whose graph has finite area and

finite boundary mass. We show that the singular part of the distributional determinant is concentrated on a countable

set of points. A related variational problem is then considered. Finally, we study the analogous problem involving the

distributional minors of fixed order.

Let u : Ω → Rn be a vector valued map defined on an n-dimensional bounded domain Ω ⊂ Rn. If u is
essentially bounded and belongs to the Sobolev space W 1,n−1(Ω,Rn), the distributional determinant Det∇u,
introduced by J.M. Ball in [4], is well-defined in the distributional sense by

Det∇u :=
1
n

n∑

i,j=1

∂

∂xi

(
uj (adj∇u)j

i

)
, (0.1)

where ∇u = Du and adj∇u is the matrix of the adjoints of Du.
In [13] S. Müller and S. Spector studied the distributional determinant in the setting of a theory for

nonlinear elasticity. They showed in particular that if u satisfies the so called ”INV condition”, the pointwise
determinant detDu > 0 a.e. in Ω and the ”geometric image” im(u, Ω) of u has finite perimeter, then the
distributional determinant is a non-negative Radon measure, with absolute continuous part equal to the
pointwise determinant, compare [11]; also, the singular part (Det Du)s is concentrated in a countable set of
points {xl} ⊂ Ω and

Det Du = det Du · dx +
∞∑

l=1

cl δxl
, (0.2)

where cl ≥ 0 and δx is the unit Dirac mass at x. Furthermore

∞∑

l=1

cl
(n−1)/n ≤ C(n) · Per(im(u, Ω)) < ∞ ,

where C(n) > 0 is the isoperimetric constant. This representation result describes the so called cavitations
at the points xi.

In order to show that the singular part of the distributional determinant (DetDu)s does not contain a
diffuse part, let us say a ”Cantor-type” part, in [13] it is made use of the following isoperimetric inequality
for Caccioppoli sets. If U := im(u, Ω), and V := imT (u, Br(x)) denotes the topological image of the n-ball
of radius r centered at x, then for a.e. r > 0

(Det Du)s(Br(x)) = Ln(V \ U)
Ln(V \ U)(n−1)/n ≤ C(n)Hn−1(∂∗U ∩ V )

where ∂∗U is the reduced boundary of U , see [2].
On the other hand, it was proved in Müller [12] that the singular part of the distributional determinant

may in general concentrate on a set of Hausdorff measure α, for any prescribed 0 < α < n. More precisely, e.g.
in the case n = 2, there exists a bounded function u ∈ W 1,p(Ω,R2) for every p < 2, where Ω = (0, 1)2 ⊂ R2,
such that det Du = 0 and |Du1| |Du2| = 0 a.e. in Ω, but

Det Du = V ′ ⊗ V ′ ,

where V is the Cantor-Vitali function. Therefore, the derivatives of u have no masses, but the distributional
determinant has a Cantor-type part and the role played by V ′ in the Cantor set C is here played by DetDu
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in C × C. The ”graph” of u is very similar to the graph of the Cantor-Vitali function V and, actually, has
infinitely many holes; for instance, in [8, Vol. I, Sec. 4.2.5] it is shown that the current Gu associated to the
graph of u has in fact a boundary of infinite mass, M((∂Gu) Ω× R2) = ∞.

The main new result of this paper is contained in Sec. 2, where we prove an isoperimetric inequality
related to the singular part of the distributional determinant. According to the previously cited example by
Müller [12], we shall assume that the graph-current Gu has a boundary of finite mass, i.e.,

M((∂Gu) Ω× Rn) < ∞ , (0.3)

and we shall obtain that for balls Br ⊂⊂ Ω

|(Det∇u)s|(Br) ≤ cn M((∂Gu) Br × Rn)n/(n−1) .

We point out that this isoperimetric inequality is false in general under the hypotheses as in [9, Prop. 3],
see [10] and Remark 3.2 below. However, see Corollary 2.2, it holds true provided that u is a bounded
function in W 1,n−1(Ω,Rn) and with summable pointwise determinant, detDu ∈ L1(Ω). Actually, it will
be proved for a wider class of maps, see Proposition 2.1.

Our isoperimetric inequality is obtained without assuming additional hypotheses as the ”INV condition”,
or the positivity of the pointwise determinant. In our setting, condition (0.3) plays the role of the property
from [13] that the ”geometric image” im(u, Ω) of u has finite perimeter, compare [5].

We shall then make use of some results obtained in [9].
Firstly, in Sec. 3, we shall recover the representation formula (0.2), where this time the coefficients cl

are possibly negative real numbers. Notice that the (at most) countable set of points where the singular part
of the distributional determinant (DetDu)s concentrates may be not finite. More precisely, setting

S0(u) := {xl ∈ Ω | cl 6= 0 in (0.2)} ,

in general we have H0(S0(u)) ≤ +∞, whereas the total variation of (DetDu)s satisfies

|(Det Du)s|(Ω) =
∞∑

l=1

|cl| < ∞ .

Secondly, in Sec. 4, we shall deal with some related variational problems. To this purpose, we denote by
|−→M(Du)|2 the sum of the squares of the determinants of all the minors of Du. We will prove the existence
of the minimum of functionals of the type

F(u) :=
∫

Ω

Φ(|−→M(Du)|) dx +
∫

Ω

|Du|n−1 dx +H0(S0(u)) ,

where Φ is e.g. a non negative convex function satisfying a p-coercivity condition

c |t|p ≤ Φ(t) , p > 1 , c > 0 .

Roughly speaking, the minimum is attained on classes of functions of the type

{u ∈ W 1,n−1(Ω,Rn) ∩ L∞ | det Du ∈ L1(Ω) , ‖u‖∞ + M((∂Gu) Ω× Rn) ≤ K} ,

for K > 0 fixed, under suitable Dirichlet-type boundary conditions.
In Sec. 5, using a slicing argument, we shall finally treat the analogous problem about the distributional

minors of fixed order k = 2, . . . , min(n,N), for vector valued Sobolev maps in W 1,k−1(Ω,RN ).

1 Notation and preliminary results

In this preliminary section we collect some notation and results. We refer to [7, 14] for general facts about
geometric measure theory, and to [8, Vol. I] for further details.
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Rectifiable sets. Let U be an open set in Rm and Hk be the k-dimensional Hausdorff measure
on Rm. We say that M ⊂ U is countably Hk-rectifiable if it is Hk-measurable and Hk-almost all of M
is contained in the union of the images of countably many Lipschitz functions from Rk to U , compare [7,
3.2.14]. Also, M is said to be k-rectifiable if moreover Hk(M) < ∞.

Rectifiable currents. A current T ∈ Dk(U) is said to be of the type (M, θ, ξ), T = τ(M, θ, ξ), if
T acts on smooth compactly supported k-forms ω as

T (ω) =
∫

M
〈ξ(x), ω(x)〉θ(x) dHk(x) ∀ω ∈ Dk(U) , (1.1)

where M ⊂ U is countably Hk-rectifiable, the multiplicity θ : M→]0, +∞] is Hk-measurable and locally
(Hk M)-summable and ξ : M→ ΛkRm is Hk-measurable with |ξ| = 1 (Hk M)-a.e.. Moreover we will
denote

set(T ) := {x ∈ Rm | θk(‖T‖, x) > 0}
and size S of T the number

S(T ) := Hk(set(T )) = Hk(M) ,

so that
SV (T ) := S(T V ) ∀V open, V ⊂ U .

We say that T is a rectifiable current, T ∈ Rk(U), if T has finite mass, M(T ) < ∞, and for Hk-a.e. x ∈M
the unit k-vector ξ(x) ∈ ΛkRm provides an orientation to the approximate tangent space Tank(M, x). If
moreover the size of T is bounded, i.e., S(T ) < ∞, we say that T is a size bounded rectifiable current,
T ∈ Sk(U). If in particular the density θ takes integer values, we say that T = τ(M, θ, ξ) is an integer
multiplicity (i.m) rectifiable current, T ∈ Rk(U).

We finally denote by Nk(U) the class of normal currents, i.e., of k-currents with finite mass and finite
boundary mass, N(T ) := M(T ) + M(∂T ) < ∞.

Lower semicontinuity of the size. For our purposes, we recall a lower semicontinuity result for
the size of suitable rectifiable currents with respect to a suitable flat convergence. This result was proved in
[9, Sec. 6], using some ideas from Almgren [1, Prop. 2.10], see also the closure theorems in [3, Thm. 8.5] and
[6]. For T1, T2 ∈ Rk(U) ∩Nk(U), define the ”flat” metric

d(T1, T2) := inf{M(Q) + M(R) | Q ∈ Nk(U) , R ∈ Nk+1(U)
T1 − T2 = Q + ∂R} .

Theorem 1.1 Let T , {Th} ⊂ Rk(U) ∩ Nk(U) be such that: (i) suph N(Th) < ∞, and (ii) d(Th, T ) → 0
as h →∞. Then for every open set V ⊂ U we have

SV (T ) ≤ lim inf
h→∞

SV (Th) .

Notation for multi-indices. Let n, N ≥ 2 integer. In the sequel, if G is an (N × n)-matrix, β
and α will always denote the multi-indices of row and column of G, respectively. If e.g. α = (α1, . . . , αp)
is a multi-index of length |α| = p ≤ n, with αi ∈ {1, . . . , n}, we say that the positive integer i belongs
to α if it is one of the indices α1, . . . , αp. If i ∈ α we denote by α − i the multi-index of length p − 1
obtained by removing i from α. Also, α is the complement of α in (1, . . . , n) and σ(α, α) is the sign of
the permutation which reorders α and α. A similar notation holds for β, with n replaced by N . Then Gβ

α

denotes the submatrix obtained by selecting the rows and columns by β and α, respectively. For example,
if |α|+ |β| = n, then Gβ

α is a square matrix and we will denote by Mβ
α (G) its determinant

Mβ
α (G) := det Gβ

α ,

and we set M0
0
(G) := 1.

Currents carried by graphs. Let Ω ⊂ Rn be an n-dimensional bounded domain. We shall denote
by A1(Ω,RN ) the class of vector-valued maps u : Ω → RN that are a.e. approximately differentiable and
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such that all the minors of the Jacobian matrix ∇u are summable. We also let
−→
M(∇u) denote the n-vector

that spans the graph of the linear maps associated to ∇u at a given point. More precisely,

−→
M(∇u) :=

(
e1,

N∑

j=1

∇1u
j εj

)
∧ · · · ∧

(
en,

N∑

j=1

∇nuj εj

)
,

(e1, . . . , en) , (ε1, . . . , εN ) being the standard basis in Rn and RN , respectively, so that

−→
M(∇u) =

∑

|α|+|β|=n

σ(α, α) Mβ
α (∇u) eα ∧ εβ .

Remark 1.2 In the case n = N , if u ∈ W 1,n−1(Ω,Rn) and det Du ∈ L1(Ω), then u belongs to the class
A1(Ω,Rn), and the distributional derivative Du agrees with the approximate gradient ∇u.

If u ∈ A1(Ω,RN ), the i.m. rectifiable current Gu ∈ Rn(Ω×RN ) of the type (Gu , 1,
−→
Gu) is well defined

[8, Vol. I, Sect. 3.2.1]. It is given by the integration of n-forms over the rectifiable graph

Gu := {(x, λu(x)) : x ∈ Lu ∩AD(u) ∩ Ω} ,

where Lu is the set of Lebesgue points, λu(x) is the Lebesgue value at x and AD(u) is the set of approximate
differentiability points of u. Moreover

−→
Gu is the tangent unit n-vector

−→
Gu =

−→
M(∇u)

|−→M(∇u)|
.

Also, denoting (Id ./ u)(x) := (x, u(x)), in approximate sense we have

Gu = (Id ./ u)# [[ Ω ]] .

Moreover, since |−→M(∇u)| agrees with the n-dimensional Jacobian of Id ./ u, the area formula yields that
the mass of Gu is equal to the area of the graph of u, i.e.,

M(Gu) = Hn(Gu) =
∫

Ω

|−→M(∇u)| dx < ∞ .

Splitting of currents. For k = 1, . . . , n, every differential k-form ω ∈ Dk(Ω × RN ) splits as a
sum ω =

∑min(k,N)
j=0 ω(j), where the ω(j)’s are the k-forms that contain exactly j differentials in the vertical

y-variables. Every current T ∈ Dk(Ω× RN ) then splits as T =
∑min(k,N)

j=0 T(j), where T(j)(ω) := T (ω(j)).

Boundary. Graphs of smooth maps u : Ω → RN satisfy the null-boundary condition

(∂Gu) Ω× RN = 0 . (1.2)

In fact, for every (n− 1)-form ω ∈ Dn−1(Ω× RN ), by Stokes theorem we have

∂Gu(ω) := Gu(dω) =
∫

Gu

dω =
∫

∂Gu

ω = 0 ,

as ω is compactly supported in Ω × RN . On the other hand, if u ∈ A1(Ω,RN ), in general the interior
boundary of Gu is non zero, i.e.,

(∂Gu) Ω× RN 6= 0 .

However, if in particular u ∈ W 1,p(Ω,RN ) for some positive integer p ∈ N+, then

(∂Gu)(j) Ω× RN = 0 ∀ j ∈ N , j ≤ p− 1 . (1.3)

This follows from a standard density argument based on the dominated convergence theorem and on condition
(1.2), that holds true for smooth maps.
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Example 1.3 If e.g. Ω := Bn, the unit ball, n = N , and u(x) := x/|x|, then u ∈ W 1,p(Bn,Rn) for any
p < n whereas det Du = 0 a.e., so that u ∈ A1(Bn,Rn). In particular, (1.3) holds true for j = 0, . . . , n− 2.
However, (1.3) is false for j = n− 1, and we have

(∂Gu) Bn × Rn = −δ0 × [[Sn−1 ]] ,

where Sn−1 is the unit sphere in the target space, compare [8, Vol. I, Sect. 3.2.2].

Cartesian maps with fractures. In order to discuss some variational problems, we now recall
some facts from [9, Sec. 5], see also [8, Vol. I].

For every p ≥ 1 consider the class

Ap(Ω,RN ) := {u ∈ Lp(Ω,RN ) | u is Ln-a.e. appr. diff.,
Mβ

α (∇u) ∈ Lp(Ω) ∀α, β with |α|+ |β| = n} .

In Ap we introduce the ”norm”

‖u‖Ap := ‖u‖Lp(Ω,RN ) + ‖ |−→M(∇u)| ‖Lp(Ω)

and we say that a sequence {uh} in Ap(Ω,RN ) weakly converges in Ap to u ∈ Ap(Ω,RN ), say uh ⇀ u
weakly in Ap, if and only if uh → u strongly in Lp(Ω) and for every α and β with |α|+ |β| = n

Mβ
α (∇uh) ⇀ Mβ

α (∇u) weakly in Lp(Ω) .

Note that since Ω is a bounded set, for every p ≥ 1 we have

M(Gu) ≤ c(p, Ω) · (|Ω|+ ‖u‖Ap) < ∞ .

Definition 1.4 For every exponent p ≥ 1 denote

Cfp(Ω,RN ) := {u ∈ Ap(Ω,RN ) ∩ L∞ | M((∂Gu) Ω× RN ) < ∞}

the class of p-Cartesian maps with fractures. For u ∈ Cfp(Ω,RN ) we also define the Cfp-norm

‖u‖Cfp := ‖u‖Ap + ‖u‖L∞ + M((∂Gu) Ω× RN ) .

Finally, for every K > 0 denote

Cfp
K(Ω,RN ) := {u ∈ Cfp(Ω,RN ) | ‖u‖∞ + M((∂Gu) Ω× RN ) ≤ K} .

By the closure theorem for graphs, compare [8, Vol. I, Sec. 3.3.2], we readily obtain that the class
Cfp

K(Ω,RN ) is closed under the weak convergence in the product.

Proposition 1.5 (Closure). Let p ≥ 1, K > 0, and {uh} be a sequence in Cfp
K(Ω,RN ). Let u ∈

L1(Ω,RN ) be an a.e. approximately differentiable map and let vβ
α ∈ L1(Ω), where α and β are multi-indices

with |α|+ |β| = n. Suppose that uh → u strongly in Lp(Ω) and Mβ
α (∇uh) ⇀ vβ

α weakly in Lp(Ω) for every
α and β with |α|+ |β| = n. Then u ∈ Cfp

K(Ω,RN ) and vβ
α(x) = Mβ

α (∇u(x)) a.e. in Ω.

The sequential weak compactness of bounded sets in Lp, p > 1, together with the previous result, readily
yields the following

Proposition 1.6 (Compactness). Let {uh} be a sequence in Cfp(Ω,RN ) such that

sup
h
‖uh‖Cfp < ∞ (1.4)

for some p > 1. There exist a subsequence {uhj} of {uh} and a map u ∈ Cfp(Ω,RN ) such that uhj ⇀ u
weakly in Ap, with Guhj

⇀ Gu weakly in Dn(Ω× RN ).
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Taking into account the lower semicontinuity of the mass with respect to the weak convergence in the
sense of currents, we readily obtain the following.

Proposition 1.7 (Lower semicontinuity). Let {uh} be a sequence in Cfp(Ω,RN ) such that (1.4) holds
for some p > 1. Let u ∈ L1(Ω,RN ) be an a.e. approximately differentiable map such that uh → u in
L1(Ω,RN ). Then

‖u‖Cfp ≤ lim inf
h→∞

‖uh‖Cfp .

More precisely, ‖u‖Ap ≤ lim inf
h→∞

‖uh‖Ap , ‖u‖∞ ≤ lim inf
h→∞

‖uh‖∞ and

M(Gu Ω× RN ) ≤ lim inf
h→∞

M(Guh
Ω× RN ) ,

M((∂Gu) Ω× RN ) ≤ lim inf
h→∞

M((∂Guh
) Ω× RN ) .

Finally, if Ω̃ is a bounded open set in Rn such that Ω ⊂⊂ Ω̃, and ϕ : Ω̃ → RN is a given smooth
function in Cfp

K(Ω̃,RN ), we shall denote

Cfp
K,ϕ(Ω̃,RN ) := {u ∈ Cfp

K(Ω̃,RN ) | (Gu −Gϕ) (Ω̃ \ Ω)× RN = 0} .

The distributional determinant. Assume now n = N ≥ 2, and denote by R̂n the target space.
If u ∈ A1(Ω, R̂n) is bounded, the distributional determinant is again well-defined by (0.1), where this time
adj∇u is the matrix of the adjoints of the approximate Jacobian ∇u, so that

(adj∇u)j
i := (−1)i+j det

∂(u1, . . . , uj−1, uj+1, . . . , un)
∂(x1, . . . , xi−1, xi+1, . . . , xn)

.

More precisely, we set for any ϕ ∈ C∞c (Ω)

〈Det∇u, ϕ〉 = − 1
n

n∑

i,j=1

∫

Ω

Diϕ(x)uj(x) (adj∇u(x))j
i dx .

Notice that if u : Ω → R̂n is a smooth map, we have

Det Du = det Du · dx . (1.5)

Since in fact
∑n

i=1

∂

∂xi
(adj Du)j

i = 0, by the Laplace formulas for every j we have

n∑

i=1

∂

∂xi
(uj (adj Du)j

i ) =
n∑

i=1

∂uj

∂xi
(adj Du)j

i

+ uj

n∑

i=1

∂

∂xi
(adj Du)j

i = det Du .

Therefore, by the W 1,n-density of smooth maps, (1.5) holds true for maps u ∈ W 1,n(Ω, R̂n) ∩ L∞.

Example 1.8 If Ω = Bn and u(x) := x/|x|, one easily verifies that det∇u = 0 while Det∇u = |Bn| δ0,
where δ0 is the unit Dirac mass centered at the origin. Notice that the boundary of Gu is non zero, see
Example 1.3. Similarly for the map

u(x) := (|x|n + |a|n)1/n x

|x| , a > 0 ,

we have det∇u = 1 a.e. and Det∇u = 1 · dx + |Bn(0, a)| δ0.
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2 An isoperimetric inequality

In this section we prove an isoperimetric inequality that is the main new result of the paper. We shall assume
n = N ≥ 2, and we will focus on maps satisfying

M((∂Gu) Ω× R̂n) < ∞ . (2.1)

Denote by ωn the smooth (n− 1)-form in R̂n

ωn :=
1
n

n∑

j=1

(−1)j−1yj d̂yj , (2.2)

where d̂yj := dy1 ∧ · · · ∧ dyj−1 ∧ dyj+1 ∧ · · · ∧ dyn. Moreover, in the sequel we will let π : Rn × RN → Rn

and π̂ : Rn × RN → RN denote the orthogonal projection onto the x and y coordinates, respectively.

Proposition 2.1 (Isoperimetric inequality). Let u ∈ A1(Ω, R̂n) ∩ L∞ be such that (2.1) holds and

(∂Gu)(n−2) Ω× R̂n = 0 . (2.3)

Then for every x0 ∈ Ω and for a.e. r > 0 such that Br(x0) ⊂⊂ Ω we have

|((∂Gu) Br × R̂n)(π̂#ωn)| ≤ cn M((∂Gu)(n−1) Br × R̂n)n/(n−1) , (2.4)

where Br = Br(x0) and cn > 0 is an absolute constant.

As a consequence of Remark 1.2 and property (1.3), where p = n− 1, we readily obtain the following

Corollary 2.2 (Isoperimetric inequality). Let u ∈ W 1,n−1(Ω, R̂n) ∩ L∞ be such that detDu ∈ L1(Ω)
and (2.1) holds. Then (2.4) holds for every x0 ∈ Ω and for a.e. r > 0 such that Br(x0) ⊂⊂ Ω.

Proof of Proposition 2.1: Let Su ∈ Dn(Ω× R̂n) be the n-current

Su := h#(∂Gu × [[ 0, 1 ]]) ,

where h : Ω× R̂n × [0, 1] → Ω× R̂n is the affine homotopy map h(x, y, t) := (x, ty).
Similarly to (2.2), to every vector field g ∈ C∞(R̂n, R̂n) we associate the (n− 1)-form

ωg(y) :=
n∑

j=1

(−1)j−1gj(y) d̂yj , g = (g1, . . . , gn) ,

so that dωg = div g dy, where dy := dy1 ∧ · · · ∧ dyn. We shall make use of the following

Lemma 2.3 For every η ∈ D1(Ω) and g ∈ C∞c (R̂n, R̂n) we have Su(η ∧ ωg) = 0.

Remark 2.4 Lemma 2.3 is false if (2.3) is not satisfied, as the function u from Remark 3.2 shows.

Proof of Lemma 2.3: We write

Su(η ∧ ωg) = (∂Gu × [[ 0, 1 ]])(η ∧ h̃#ωg) ,

where h̃(y, t) := ty. Moreover, we can decompose the pull-back of ωg as

h̃#ωg = Φ(y, t) ∧ dt + Ψ(y, t) ,

where the forms Φ(·, t) ∈ Dn−2(R̂n) and Ψ(·, t) ∈ Dn−1(R̂n) for every t ∈ (0, 1). By definition of cartesian
product of currents we get

(∂Gu × [[ 0, 1 ]])(η ∧Ψ(y, t)) = 0 ,
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as η ∧Ψ(y, t) does not contain the differential dt. Moreover, we have

(∂Gu × [[ 0, 1 ]])(η ∧ Φ(y, t) ∧ dt) = ∂Gu(η(x) ∧ Φ̃(y))

for some ”vertical” (n− 2)-form Φ̃(y) ∈ Dn−2(R̂n). Property (2.3) yields the assertion. ¤

Setting Π(x, y) := (x, 0), we have

∂Su = (−1)n−1∂Gu + (−1)nΠ#(∂Gu) on Dn−1(Ω× R̂n) .

For any ϕ ∈ C∞c (Ω) and g ∈ C∞c (R̂n, R̂n), since Π#(∂Gu)(ϕ ∧ ωg) = 0, we thus obtain

∂Su(ϕ ∧ ωg) = (−1)n−1∂Gu(ϕ ∧ ωg) .

By Lemma 2.3 we then obtain
(−1)n−1∂Gu(ϕ ∧ ωg) = Su(ϕ ∧ dωg) . (2.5)

Let µr be the signed measure on R̂n

〈µr, g〉 := (−1)n−1((∂Gu) Br × R̂n)(π̂#ωg) , g ∈ C∞c (R̂n, R̂n) .

Since ‖ωg‖ = ‖g‖∞, by (2.1) we infer that µr has bounded total variation

|µr|(R̂n) ≤ M((∂Gu)(n−1) Br × R̂n) < ∞ .

Moreover, taking a sequence {ϕj} ⊂ C∞c (Ω) converging in L1 to the characteristic function χBr
of the

closed ball Br, by (2.5) we deduce that

〈µr, g〉 = (Su Br × R̂n)(π̂# div g dy) .

By the boundary rectifiability theorem, the current ∂Gu is i.m. rectifiable. Therefore, it turns out that
Su ∈ Rn(Ω × R̂n). By using the degree theory from [8, Vol. I, Sect. 4.3.2], for every x0 ∈ Ω and for a.e.
r > 0 small we have

〈µr, g〉 = (Su Br × R̂n)(π̂# div g dy) =
∫
bRn

∆̃r(y) div g(y) dy

for some integer valued L1-function ∆̃r, namely

∆̃r(y) := deg(Su Br × R̂n, π̂, y) ∈ L1(R̂n,Z) .

As a consequence, ∆̃r is a function of bounded variation in R̂n, with

|D∆̃r|(R̂n) = |µr|(R̂n) ≤ M((∂Gu)(n−1) Br × R̂n) < ∞ .

By Sobolev embedding theorem, and by density of smooth maps in BV (R̂n), we have

‖∆̃r‖Ln/(n−1)(bRn) ≤ cn |D∆̃r|(R̂n)

whereas, taking into account that ∆r(y) ∈ Z,
∫
bRn

|∆̃r(y)| dy ≤
∫
bRn

|∆̃r(y)|n/(n−1) dy = ‖∆̃r‖n/(n−1)

Ln/(n−1)(bRn)
.

We thus have
|〈µr, g〉| ≤

∫
bRn

|∆̃r(y) div g(y)| dy

≤ ‖ div g‖∞
∫
bRn

|∆̃r(y)| dy

≤ ‖ div g‖∞ cn (|D∆̃r|(R̂n))n/(n−1) ,

and hence
|((∂Gu) Br × R̂n)(π̂#ωg)| ≤ cn ‖div g‖∞M((∂Gu)(n−1) Br × R̂n)n/(n−1) .

Finally, taking g(y) = y/n on the compact set {y ∈ R̂n : |y| ≤ ‖u‖∞} we obtain (2.4). ¤
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3 A representation result

In this section, making use of the isoperimetric inequality, we prove that the singular part of the distributional
determinant is concentrated on a countable set of points.

Proposition 3.1 Let n = N ≥ 2 and u : Ω → R̂n satisfy the hypotheses of Proposition 2.1 or Corollary 2.2.
Then for every g ∈ C∞c (Ω) we have

〈Det∇u, g〉 − 〈det∇u · dx, g〉 = −π#((∂Gu)(n−1) π̂#ωn)(g) (3.1)

and Det∇u is a signed Radon measure with finite total variation. The density of its absolute continuous
part is equal to the pointwise determinant of ∇u

Det∇u = det∇u · dx + (Det∇u)s , (Det∇u)s⊥Ln . (3.2)

Moreover the singular part is supported on an at most countable set and

(Det∇u)s =
∞∑

l=1

cl δxl
,

∞∑

l=1

|cl| < ∞ , (3.3)

where cl ∈ R and δxl
is the unit Dirac mass centered at the point xl ∈ Ω. Finally, for every open set U ⊂ Ω

the total variation of (Det∇u)s is given by

|(Det∇u)s|(U) =
∑

xl∈U

|cl| = ‖π#((∂Gu)(n−1) π̂#ωn)‖(U) .

Remark 3.2 On account of (3.1), that holds true even if (2.3) is not satisfied, the isoperimetric inequality
(2.4) reads as

|(Det∇u)s|(Br) ≤ cn M((∂Gu)(n−1) Br × Rn)n/(n−1) . (3.4)

We now see that (3.4) is false, if (2.3) is not satisfied. In dimension n = 2, this happens if e.g. u ∈ BV (Ω, R̂2)
is not a W 1,1-function. Taking for example Ω = (−1, 1)×(−1, 1) and u(x1, x2) = (x1, x2) if x1 < 0, whereas
u(x1, x2) = (x1 + 1, x2) if x1 > 0, we have

(∂Gu) Ω× R̂2 = γ1#I − γ2#I , I := [[−1, 1 ]] ,

where γ1(λ) := (0, λ, 0, λ) and γ2(λ) := (0, λ, 1, λ), for −1 < λ < 1. Moreover, we have

(Det∇u)s =
1
2
H1 Ju , Ju = {0} × (−1, 1) .

As a consequence, (3.3) fails to hold, too, if (2.3) is not satisfied.

Formula (3.2) goes back to [11]. We recall that in general the singular part of Det∇u is not a sum of
Dirac masses, see [12]. However, since Det∇u is a Borel measure, thanks to a classical result by L. Schwartz,
to prove (3.3) it suffices to show that (Det∇u)s is concentrated on a countable set. In view of this let us
first prove

Lemma 3.3 Let λ and µ be respectively a non-negative and a signed Radon measure on Ω, with finite
total variation, such that for every x0 ∈ Ω and for a.e. r > 0 for which Br(x0) ⊂⊂ Ω we have

|µ(Br(x0)| ≤ c λ(Br(x0))α

for some fixed constants c > 0 and α > 1. Then µ is purely atomic.

Proof: Let
A := {a ∈ Ω | lim sup

r→0+
λ(Br(a)) > 0}

9



denote the set of atoms of λ. Since λ is finite on compact sets of Ω, then A is at most countable. For every
x0 ∈ Ω and a.e. r > 0 small we have

µ(Br)
λ(Br)

≤ c λ(Br)α−1,

where Br = Br(x0), and hence, since α > 1, letting r → 0 we infer that the density of µ with respect to λ
is zero at all points x0 which are not in A. This yields that µ is concentrated on A, as required. ¤

We also recall from [8, Vol. I, Sect. 3.2.3] the integration by parts formula

∂Gu(φ(x, y) d̂yj) = (−1)j−1
n∑

i=1

∫

Ω

∇i[φ(x, u(x))] (adj∇u(x))j
i dx , (3.5)

that holds true for every function φ ∈ C1(Rn × R̂n) with bounded derivatives, where j = 1, . . . , n.

Proof of Proposition 3.1: Taking φ(x, y) := (−1)j−1 g(x)yj in (3.5), since

∇i[g(x)uj(x)] (adj∇u(x))j
i = Dig(x)uj(x) (adj∇u(x))j

i

+ g(x)∇iu
j(x) (adj∇u(x))j

i

by summing over i = 1, . . . , n and by the Laplace formulas we have

π#((∂Gu) π̂#((−1)j−1 yj d̂yj))(g) = (−1)j−1 ∂Gu(gyj d̂yj)

=
n∑

i=1

∫

Ω

Dig uj (adj∇u)j
i dx +

∫

Ω

g det∇u dx

hence, by taking the sum over j and dividing by n, we obtain (3.1).
By (2.1), and by the boundary rectifiability theorem, the current π#((∂Gu) Ω×RN ) is i.m. rectifiable

in Rn−1(Ω) and hence it is supported on an (n− 1)-rectifiable set of Ω. As a consequence (3.2) holds and
Det∇u is a signed Radon measure in Ω. Moreover, for every point x0 ∈ Ω and a.e. small radius r, so that
Br(x0) ⊂⊂ Ω, by (3.1) we have

−(Det∇u)s(Br) = π#((∂Gu) π̂#ωn)(Br)
= 〈(∂Gu) π̂#ωn, Br × Rn〉
= ((∂Gu) Br × R̂n)(π̂#ωn) ,

where Br = Br(x0), thus by the isoperimetric inequality (2.4) we obtain (3.4).
We then apply Lemma 3.3 with µ(B) := (Det∇u)s(B) and λ(B) := M((∂Gu)(n−1) B × Rn), taking

α := n/(n − 1), to conclude that (Det∇u)s is a purely atomic measure with finite total variation. If
µ± = ((Det∇u)s)± are the positive and negative part of (Det∇u)s, the Radon differentiability theorem
yields that for each ai ∈ A the limit

α±i = lim
r→0+

µ±(B(ai, r))

exists and hence (3.3) holds as
(Det∇u)s =

∑

ai∈A

(α+
i − α−i ) δai .

Finally, the last assertion trivially holds. ¤

Remark 3.4 Proposition 3.1 yields that the 0-current

π#((∂Gu)(n−1) π̂#ωn) (3.6)

is rectifiable in R0(Ω). However, in general (3.6) is not size bounded. In fact, in [9, Sec. 7] we showed the
existence of Sobolev functions u satisfying the hypotheses of Proposition 2.1, actually of Corollary 2.2, such
that (3.3) holds for some countable family {xl} of pairwise distinct points in Ω.
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4 A variational problem

In this section we discuss a variational problems that is naturally related to the results of the previous
sections. Assume again n = N ≥ 2.

Definition 4.1 Let u : Ω → R̂n satisfy the hypotheses of Proposition 2.1 or Corollary 2.2. The 0-
dimensional singular set of u is defined by the set of points of concentration of (Det∇u)s, i.e.,

S0(u) := {xl ∈ Ω | cl 6= 0 in (3.3)} .

Remark 4.2 S0(u) is the countable set of points of positive multiplicity of the rectifiable current (3.6), and
it detects the so-called points of cavitation. As a consequence, we infer that H0(Su) agrees with the size of
the current (3.6), i.e.,

H0(Su) = S(π#((∂Gu)(n−1) π̂#ωn)) .

Lower semicontinuity of the size. We fix p ≥ 1, K > 0, and ϕ ∈ Cfp
K(Ω̃, R̂n) smooth.

Theorem 4.3 Let {uh} ⊂ Cf1K,ϕ(Ω̃, R̂n) ∩W 1,n−1 be such that

sup
h

M(Guh
) < ∞ , sup

h
M((∂Guh

) Ω̃× R̂n) < ∞ (4.1)

and Guh
⇀ Gu weakly in Dn(Ω̃× R̂n), where u ∈ Cf1K,ϕ(Ω̃, R̂n) ∩W 1,n−1. Then we have

H0
(
S0(u)

) ≤ lim inf
h→∞

H0
(
S0(uh)

)
.

Proof: We wish to apply Theorem 1.1 with U = Ω̃, m = n, k = 0, and

T := π#((∂Gu)(n−1) π̂#ωn) , Th := π#((∂Guh
)(n−1) π̂#ωn) .

By Proposition 3.1 we have T, {Th} ⊂ R0(Ω̃)∩N0(Ω̃). Moreover, condition (i) in Theorem 1.1 follows from
(4.1), so that it remains to check condition (ii). To this purpose, notice that ∂Guh

, ∂Gu ∈ Rn−1(Ω̃× R̂n),
that suph(‖uh‖∞ + ‖u‖∞) < ∞, and that for every open set W , with Ω ⊂⊂ W ⊂⊂ Ω̃,

∂(∂Guh
W × R̂n − ∂Gu W × R̂n) = 0 .

Therefore, as in [14, 31.2], the weak convergence of ∂Guh
to ∂Gu and (4.1) yield the existence of a sequence

{Σh} ⊂ Rn(Ω̃ × R̂n) of integral currents, with support spt(Σh) ⊂ Ω̃ ×K for some compact set K ⊂ R̂n,
such that

∂Guh
− ∂Gu = ∂Σh and lim

h→∞
M(Σh) = 0 .

Set now Qh := π#(Σh π̂#dy) and Rh := (−1)n−1π#(Σh π̂#ωn). Since {Σh} ⊂ Nn(Ω̃× R̂n) satisfies

sup
h

M(∂Σh) < ∞ , lim
h→∞

M(Σh) = 0 , spt(Σh) ⊂ Ω̃×K ,

we infer that Qh ∈ N0(Ω̃), Rh ∈ N1(Ω̃) and limh[M(Qh) + M(Rh)] = 0. Therefore, condition (ii) in
Theorem 1.1 holds true if we show that

Th − T = Qh + ∂Rh . (4.2)

To this aim, we notice that for every φ ∈ D0(Ω̃× R̂n)

(−1)n−1Σh(π̂#ωn ∧ dφ) = Σh(d(π̂#ωn ∧ φ))− Σh(dπ̂#ωn ∧ φ) ,

whereas dπ̂#ωn = π̂#dωn = π̂#dy. We thus obtain

(−1)n−1∂(Σh π̂#ωn) = −Σh π̂#dy + (∂Σh) π̂#ωn

= −Σh π̂#dyn + (∂Guh
) π̂#ωn − (∂Gu) π̂#ωn ,
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which clearly yields (4.2). As a consequence, by Definition 4.1 and Theorem 1.1 we have

H0(S0(u)) = S(T ) ≤ lim inf
h→∞

S(Th) = lim inf
h→∞

H0(S0(uh)) ,

as required. ¤

Existence results. We conclude this section by proving an existence result. Let c1, c2, c3 > 0, and
consider the energy functional

F(u) := c1

∫

Ω

Φ(|−→M(Du)|) dx + c2

∫

Ω

|Du|n−1 dx + c3H0(S0(u)) . (4.3)

Theorem 4.4 (Existence result I). Let Φ : R+ → R+ be a non negative and convex function satisfying
a p-coercivity condition

c |t|p ≤ Φ(t) , c > 0 , p > 1 .

Then for every K > 0 and ϕ ∈ Cfp
K(Ω̃, R̂n) smooth, there exists a solution of the problem

inf{F(u) | u ∈ Cfp
K,ϕ(Ω̃, R̂n) ∩W 1,n−1} .

Proof: Let {uh} ⊂ Cfp
K,ϕ(Ω̃, R̂n) ∩ W 1,n−1 be a minimizing sequence. Since (1.4) holds true, then by

the closure, compactness and lower semicontinuity properties of Propositions 1.5, 1.6 and 1.7, and possibly
passing to a subsequence, we find the existence of u ∈ Cfp

K,ϕ(Ω̃, R̂n) ∩W 1,n−1 such that uh ⇀ u weakly
in Ap and in W 1,n−1, with Guh

⇀ Gu weakly in Dn(Ω̃ × R̂n). Moreover, by Theorem 4.3, by the lower
semicontinuity of u 7→ ∫

Ω
|Du|n−1 dx, and by the standard lower semicontinuity of convex functionals with

p-coercivity, we obtain
F(u) ≤ lim inf

h→∞
F(uh)

and hence the assertion. ¤

In a similar way one may consider functionals with more general bulk energies given by the integral
of a polyconvex function of the gradient Du, satisfying a suitable growth condition. Moreover, since the
zero boundary condition (2.3) is preserved by the weak convergence as currents, one may consider similar
variational problems involving the wider class of functions in Cf1K,ϕ(Ω̃,RN ) satisfying (2.3), this time taking
the constant c2 = 0 in (4.3), and ∇u instead of Du.

5 The distributional minors.

In this section we extend the previous results to the case of distributional minors of the Jacobian matrix ∇u
of fixed order k. In the sequel u is a bounded function in A1(Ω,RN ), where n,N ≥ 2.

Let us fix the order 2 ≤ k ≤ min(n,N). Also, let α and β be any multi-indices with length |α|+|β| = n,
where |β| = k.

Definition 5.1 The distributional minor of indices α and β of ∇u is defined by

Divβ
α u :=

1
|β|

∑

j∈β

∑

i∈α

∂

∂xi

(
uj(x) ((adj∇u)β

α)j
i

)

i.e., for every g ∈ C1
c (Ω)

〈Divβ
α u, g〉 := − 1

|β|
∑

j∈β

∑

i∈α

〈uj(x) ((adj∇u)β
α)j

i , Dig〉 .
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Remark 5.2 In the case k = 1, if β = j and α = i, we have (adj∇u)β
α = 1 and Divβ

α u = Diu
j . Therefore,

we have assumed k ≥ 2, the case k = 1 being reduced to well-known facts from the theory of BV -functions,
compare [2]. Moreover, if u is smooth we infer that

Divβ
α u = Mβ

α (∇u) · dx , (5.1)

where Mβ
α (∇u) is the pointwise determinant of the corresponding minor of ∇u. In fact, by the Laplace

formulas, for every j ∈ β we have

∑

i∈α

∂

∂xi

(
uj ((adj Du)β

α)j
i

)
=

∑

i∈α

∂uj

∂xi
((adjDu)β

α)j
i

+ uj
∑

i∈α

∂

∂xi
((adjDu)β

α)j
i

= Mβ
α (∇u) ,

where we used that
∑

i∈α

∂

∂xi
((adjDu)β

α)j
i = 0. Therefore, by the W 1,k-density of smooth maps, (5.1) holds

true for maps u ∈ W 1,k(Ω,RN ) ∩ L∞.

In Proposition 5.3, we will show that if the boundary of Gu has finite mass, see (2.1), and u satisfies the
additional zero boundary condition

(∂Gu)(k−2) Ω× RN = 0 , (5.2)

then Divβ
α u is a signed Radon measure with density of the absolute continuous part given by the pointwise

determinant Mβ
α (∇u) and singular part concentrated on a countably Hn−k-rectifiable set of Ω, so that

Divβ
α u has no Cantor-type part. We recall that (5.2) is satisfied if u ∈ W 1,k−1(Ω,RN ), see (1.3).
To this aim, we associate to every g ∈ C∞c (Ω) the (n− k)-form ωα

g ∈ Dn−k(Ω) given by

ωα
g (x) := (−1)|α|σ(α, α) g(x)dxα .

Also, we will denote by

ωβ :=
1
|β|

∑

j∈β

σ(j, β − j) yjdyβ−j

the (k − 1)-form in Dk−1(RN ) associated to β, so that dωβ = dyβ . Finally we will set

σn
k := (−1)(k−1)(n−k),

so that, ωα
g and yjdyβ−j being of degree n− k and k − 1, respectively, then

yjdyβ−j ∧ ωα
g = σn

k ωα
g ∧ yjdyβ−j .

Proposition 5.3 Let 2 ≤ k ≤ min(n, N). Let u ∈ A1(Ω,RN ) ∩ L∞ be such that (2.1) holds. Assume in
addition that u ∈ W 1,k−1(Ω,RN ) or, more generally, that (5.2) holds true. Let α and β be multi-indices
with length |α|+ |β| = n and |β| = k. Then for every g ∈ C∞c (Ω) we have

〈Divβ
α u, g〉 − 〈Mβ

α (∇u) · dx, g〉 = −σn
k π#((∂Gu)(k−1) π̂#ωβ)(ωα

g ) (5.3)

and Divβ
α u is a signed Radon measure with finite total variation. The density of its absolute continuous part

is equal to the pointwise determinant Mβ
α (∇u)

Divβ
α u = Mβ

α (∇u) · dx + (Divβ
α u)s , (Divβ

α u)s⊥Ln . (5.4)

Also, the singular part is supported on a countably Hn−k-rectifiable set. Finally, for every open set U ⊂ Ω
the total variation of (Divβ

α u)s is given by

|(Divβ
α u)s|(U) = ‖(π#((∂Gu)(k−1) π̂#ωβ)) dxα‖(U) . (5.5)
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As a consequence, we also have

Corollary 5.4 Let k, u and β be as in Proposition 5.3. Then the (n− k)-current

T := π#((∂Gu)(k−1) π̂#ωβ) (5.6)

is rectifiable in Rn−k(Ω).

Remark 5.5 In general the rectifiable (n− k)-current (5.6) is not size bounded, if k ≥ 2, see [9, Sec. 7].

Proof of Proposition 5.3: The integration by parts formula

∂Gu(φ(x, y)dxα ∧ dyβ−j) =

(−1)|α| σ(α, α)σ(j, β − j)
∑

i∈α

∫

Ω

∇i[φ(x, u(x))] (adj(∇u(x))β
α)j

i dx (5.7)

holds for every j ∈ β and every function φ ∈ C1(Rn × RN ) with bounded derivatives, compare [8, Vol. I,
Sect. 3.2.3]. We apply (5.7) with φ(x, y) := (−1)|α|σ(α, α) σ(j, β − j) g(x)yj and j ∈ β. Since

σ(j, β − j) ωα
g ∧ yjdyβ−j = φ(x, y)dxα ∧ dyβ−j

and
∇i[g(x)uj(x)] (adj(∇u(x))β

α)j
i = Dig(x)uj(x) (adj(∇u(x))β

α)j
i

+ g(x)∇iu
j(x) (adj(∇u(x))β

α)j
i

by summing over i ∈ α and by the Laplace formulas we have

σn
k π#((∂Gu) π̂#σ(j, β − j) yjdyβ−j)(ωα

g ) =
= ∂Gu(σ(j, β − j) ωα

g ∧ yjdyβ−j)

=
∑

i∈α

∫

Ω

Dig uj (adj(∇u)β
α)j

i dx +
∫

Ω

g Mβ
α (∇u) dx .

Therefore, taking the sum over j ∈ β and dividing by |β| we obtain (5.3). Arguing as in Proposition 3.1, by
(2.1) and by the boundary rectifiability theorem we then deduce (5.4) and that Divβ

α u is a signed Radon
measure in Ω. It remains to show that (Divβ

α u)s is concentrated on an countably Hn−k-rectifiable set.
If k = n we have

π#((∂Gu)(n−1) π̂#ωβ) = π#((∂Guβ )(n−1) π̂#ωβ) ,

where uβ := (uβ1 , . . . , uβk). Since uβ ∈ W 1,n−1(Ω,Rn) or, more generally, by (5.2),

(∂Guβ )(n−2) Ω× Rn = 0 ,

the assertion follows from Proposition 3.1 applied to uβ : Ω → Rn.
If 2 ≤ k ≤ n − 1, we recall from slicing theory, see [14], that if T ∈ Nn−k(Ω) is a normal current and

πα : Rn → Rn−k denotes the orthogonal projection onto the α-components of x, i.e., πα(x) = xα, then

T dxα =
∫

Rn−k

〈T, πα, xα〉 dxα , (5.8)

where 〈T, πα, xα〉 is for a.e. xα the 0-current obtained by slicing T with respect to πα. We may and will
apply (5.8) to the current T in (5.6), since ∂T = ∂π#((Gu)(k) π̂#yβ) and hence T ∈ Nn−k(Ω). Moreover,
without loss of generality, we assume xα = (x1, . . . , xn−k), so that x = (xα, xα), and we let

Ωxα := {xα ∈ Rk | (xα, xα) ∈ Ω}
denote the k-dimensional section of Ω with the k-plane πα

−1(xα). Let uβ
xα

: Ωxα → Rk be given by

xα 7→ uβ
xα

(xα) := (uβ1 , . . . , uβk)(xα, xα).

For a.e. choice of xα ∈ Rn−k such that Ωxα is non-empty, we have:
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i) 〈π#((∂Gu) π̂#ωβ), πα, xα〉(g(x)) = π#((∂Guβ
xα

) π̂#ωβ)(g(xα, ·));

ii) uβ
xα

belongs to A1(Ωxα ,Rk) ∩ L∞;

iii) property M((∂Guβ
xα

) Ωxα × Rk) < ∞ holds;

iv) uβ
xα
∈ W 1,k−1(Ωxα

,Rk) or, more generally, (5.2) yields (∂Guβ
xα

)(k−2) Ωxα
× Rk = 0.

Applying Proposition 3.1 with k and uβ
xα

for of n and u, we infer that 〈π#((∂Gu)(k−1) π̂#ωβ), πα, xα〉
is concentrated on a countable set of points. Therefore, by (5.8) we conclude that (Divβ

α u)s is concentrated
on a countably Hn−k-rectifiable set. Finally, (5.5) trivially follows. ¤

Proof of Corollary 5.4: Proposition 5.3 yields that the (n− k)-current (5.6) is of the type (M, θ, ξ0),
see (1.1). Let ξ be the unit (n − 1)-vector that provides an orientation to the i.m. rectifiable current
(∂Gu) Ω× RN . Define φ̃ := (φ1, . . . , φk−1) : Rn+N → Rk−1, by

φ̃(x, y) :=
∑

j∈β

σ(j, β − j) yβ−j ,

and let φ := φ1 ∧ · · · ∧φk−1. By Prop. 3 from [8, Vol. I, Sec. 5.2.2], we infer that for Hn−1-a.e. (x, y) ∈ ∂Gu,
the (n−k)-vector (ξ φ)(x, y) is simple and tangent to ker φ̃|Σ, where Σ is the approximate tangent (n−1)-
space to ∂Gu at (x, y). As a consequence, the (n − k)-vector π#ξ φ, modulo a renormalization, provides
an orientation to M, as required. ¤

Singular set. Similarly to Definition 4.1, we now set:

Definition 5.6 Let 2 ≤ k ≤ min(n, N). Let u : Ω → RN satisfy the hypotheses of Proposition 5.3. The
(n− k)-dimensional singular set of u is defined by

Sn−k(u) :=
⋃

|β|=k

Mβ(u) ,

where Mβ(u) is the set of points of positive multiplicity of the rectifiable current (5.6), i.e.,

Mβ(u) := set
(
π#((∂Gu)(k−1) π̂#ωβ

)
.

Lower semicontinuity of the size. Fix p ≥ 1, K > 0, and ϕ ∈ Cfp
K(Ω̃, R̂n) smooth.

Theorem 5.7 Let 2 ≤ k ≤ min(n,N). Let {uh} ⊂ Cf1K,ϕ(Ω̃,RN ) ∩W 1,k−1 be such that

sup
h

M(Guh
) < ∞ , sup

h
M((∂Guh

) Ω̃× RN ) < ∞

and Guh
⇀ Gu weakly in Dn(Ω̃× RN ), where u ∈ Cf1K,ϕ(Ω̃,RN ) ∩W 1,k−1. Then we have

Hn−k
(
Sn−k(u)

) ≤ lim inf
h→∞

Hn−k
(
Sn−k(uh)

)
.

Proof: As in the proof of Theorem 4.3, we apply Theorem 1.1 with n− k instead of k and

T := π#((∂Gu)(k−1) π̂#ωβ) , Th := π#((∂Guh
)(k−1) π̂#ωβ) ,

for every β. Using a covering argument as in the second part of the proof of [9, Thm. 5.8], we obtain the
assertion. ¤

Existence results. We conclude this section by stating an existence result. Let 2 ≤ k ≤ min(n, N),
and consider the energy functional

Fk(u) := c1

∫

Ω

Φ(|−→M(Du)|) dx + c2

∫

Ω

|Du|k−1 dx + c3Hn−k(Sn−k(u)) , (5.9)

where c1, c2, c3 > 0. We have:
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Theorem 5.8 (Existence result II). Let Φ be as in Theorem 4.4, where p > 1. Then for every K > 0
and ϕ ∈ Cfp

K(Ω̃,RN ) smooth, there exists a solution of the problem

inf{Fk(u) | u ∈ Cfp
K,ϕ(Ω̃,RN ) ∩W 1,k−1} .

The proof of Theorem 5.8 is omitted, being similar to the one of Theorem 4.4, on account of Theorem 5.7.
We notice again that one may similarly consider functionals with more general bulk energies given by the
integral of a polyconvex function of the gradient Du, satisfying a suitable growth condition. Finally, since
the zero boundary condition (5.2) is preserved by the weak convergence as currents, one may also consider
similar variational problems involving the wider class of functions in Cf1K,ϕ(Ω̃,RN ) satisfying (5.2), this
time taking the constant c2 = 0 in (5.9), and ∇u instead of Du.
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