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Abstract. In this paper we prove the existence of an optimal domain Ωopt

for the shape optimization problem

max
{
λq(Ω) : Ω ⊂ D, λp(Ω) = 1

}
,

where q < p and D is a prescribed bounded subset of Rd. Here λp(Ω) (respec-
tively λq(Ω)) is the first eigenvalue of the p-Laplacian −∆p (respectively −∆q)
with Dirichlet boundary condition on ∂Ω. This is related to the existence of
optimal sets that minimize the generalized Cheeger ratio

Fp,q(Ω) =
λ
1/p
p (Ω)

λ
1/q
q (Ω)

.
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1. Introduction

The starting point of this research is the Cheeger [4] inequality√
λ(Ω)

h(Ω)
≥ 1

2
(1.1)

valid for every open bounded set Ω ⊂ Rd. Here λ(Ω) denotes the first eigenvalue of
the Laplace operator −∆ on the open set Ω, with Dirichlet boundary conditions:

λ(Ω) = inf

{∫
|∇u|2 dx∫
|u|2 dx

: u ∈ C1
c (Ω) \ {0}

}
= min

{∫
|∇u|2 dx∫
|u|2 dx

: u ∈ H1
0 (Ω) \ {0}

}
,

where the integrals without the indicated domain are intended over the entire
space Rd, and the functions in H1

0 (Ω) are considered as extended by zero outside
the domain Ω. Here h(Ω) denotes the Cheeger constant

h(Ω) = inf

{
P (E)

|E|
: E b Ω

}
.
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Other equivalent ways to define the Cheeger constant h(Ω) are:

h(Ω) = inf

{∫
|∇u| dx∫
|u| dx

: u ∈ C1
c (Ω) \ {0}

}
= inf

{∫
|∇u| dx∫
|u| dx

: u ∈ W 1,1
0 (Ω) \ {0}

}
.

When Ω is a Lipschitz domain the infimum above coincides with the infimum on
BV (Ω):

h(Ω) = inf

{∫
Ω
|∇u|+

∫
∂Ω
|u| dHd−1∫

Ω
|u| dx

: u ∈ BV (Ω) \ {0}
}

and in this case we have

h(Ω) = inf

{
P (E)

|E|
: E ⊂ Ω

}
.

In this way the Cheeger constant can be seen as the first eigenvalue λp(Ω) of the
p-Laplacian with Dirichlet boundary conditions:

λp(Ω) = inf

{∫
|∇u|p dx∫
|u|p dx

: u ∈ W 1,p
0 (Ω) \ {0}

}
(1.2)

when p = 1. The quantity λ1/p
p (Ω) can be defined also for p = ∞ since, as it is

well-known (see for instance [10]),

lim
p→∞

λ1/p
p (Ω) = ρ(Ω),

where ρ(Ω) is the so-called inradius of Ω, that is the maximal radius of a ball
contained in Ω, or equivalently the maximum of the distance function from the
boundary ∂Ω.

More generally, defining the shape functional

Fp,q(Ω) =
λ

1/p
p (Ω)

λ
1/q
q (Ω)

, (1.3)

the inequality (1.1) can be seen as a particular case of the more general inequality,
valid for every 1 ≤ q ≤ p ≤ +∞:

Fp,q(Ω) ≥ q

p
for every 1 ≤ q ≤ p ≤ +∞. (1.4)

This can be also rephrased as a monotonicity property:

the map p 7→ pλ1/p
p (Ω) is monotonically nondecreasing.

The proof of the inequalities above is rather simple and relies on a suitable use of
the Hölder inequality (see [1]). The constant q/p in (1.4) is not sharp, although
it becomes asymptotically sharp as the dimension d approaches infinity (see [1]).

Due to the scaling properties of the eigenvalue λp(Ω):

λp(tΩ) = t−pλp(Ω) for every t > 0,

the functional Fp,q is scaling invariant, that is

Fp,q(tΩ) = Fp,q(Ω) for every t > 0.
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By the scaling invariance above, in the minimization problem

min
{
Fp,q(Ω) : Ω bounded subset of Rd

}
(1.5)

it is not restrictive to add the constraint λp(Ω) = 1. Therefore the minimization
problem (1.5) can be rewritten as

max
{
λq(Ω) : Ω bounded subset of Rd, λp(Ω) = 1

}
. (1.6)

The existence of an optimal domain Ωopt for problem (1.6) is not known; in
this paper we prove it assuming that all the competing domains are contained
in a given bounded set D of Rd. Although it is not the focus of this paper, we
mention that the shape optimization problem (1.5) remains interesting even if we
restrict the class of competing domains Ω by adding suitable additional geometric
constraints. In [14] the existence of optimal domains is shown, when q = 1, in
the case where the competing domains Ω are assumed to be convex.

The present paper is organized as follows. In Section 2 we recall the tools
that are crucial in the proof: the notions of p-capacitary measures and the γp
convergence. The key property, proved in Theorem 2.5 is that if a sequence (Ωn)
γp converges to a p-capacitary measure µ and simultaneously γq converges to a
q-capacitary measure ν, with q < p, then ν vanishes on the set where µ is finite.
In Section 3 we show how this result implies the existence of an optimal domain
Ωopt for problem (1.6). Finally, in Section 4 we add some concluding remarks and
list some open questions that, in our opinion, deserve further investigation.

2. Preliminary tools

In the rest of the paper D will be a bounded open set in Rd and all the domains
Ω we consider are supposed to be contained in D. In the following we consider
quasi open sets whose definition is below.

Definition 2.1. A set Ω ⊂ Rd is said p-quasi open if there exists a function
u ∈ W 1,p(Rd) such that Ω = {u > 0}.

By the Sobolev embedding theorem, if p > d, the p-quasi open sets are nothing
but open sets. If Ω is p-quasi open, we may define the Sobolev space W 1,p

0 (Ω)
as the space of all functions u ∈ W 1,p(Rd) such that u = 0 outside Ω; therefore,
the first eigenvalue λp(Ω) can be defined as in (1.2) for every p-quasi open set Ω.
The class of admissible domains we consider is then

A(D) =
{

Ω ⊂ D : Ω p-quasi open
}
.

An essential tool in the proof of existence of optimal domains for the functional
Fp,q is the notion of p-capacitary measure and of γp convergence. Below by capp
we indicate the p-capacity:

cap(E) = inf
{∫ (

|∇u|p+|u|p
)
dx : u ∈ W 1,p

0 (Rd), u = 1 in a neighborhood of E
}
.
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Definition 2.2. Let p ≤ d. We say that a nonnegative Borel measure µ (possibly
taking the +∞ value) is of a p-capacitary type if

µ(E) = 0 for every Borel set E with p-capacity zero.

When p > d every nonempty set has a positive p-capacity, hence p-capacitary
measures simply reduce to Borel measures. Measures of p-capacitary type gener-
alize p-quasi open sets; indeed, if Ω is a p-quasi open set, the Borel measure

∞Rd\Ω(E) =

{
0 if capp(E \ Ω) = 0

+∞ otherwise

is of p-capacitary type. More generally, the eigenvalues λp can be defined for a
p-capacitary measure µ as

λp(µ) = inf

{∫
|∇u|p dx+

∫
|u|pdµ∫

|u|p dx
: u ∈ W 1,p

0 (D) \ {0}
}
,

and we have

λp(∞Rd\Ω) = λp(Ω) for every p-quasi open set Ω.

From the definition above we see immediately that

λp(µ1) ≤ λp(µ2) whenever µ1 ≤ µ2. (2.1)

Definition 2.3. We say that a sequence (µn) of p-capacitary measures γp con-
verges to a p-capacitary measure µ if the sequence of functionals

Fn(u) =

∫
D

|∇u|pdx+

∫
|u|pdµn u ∈ W 1,p

0 (D)

Γ-converges in Lp(D) to the functional

F (u) =

∫
D

|∇u|pdx+

∫
|u|pdµ.

For all the details concerning Γ-convergence we refer to the book [6], and for
shape optimization problems, p-quasi open sets, and capacitary measures, we
refer to the book [3] and references therein. What is important here is to recall
the following facts.

• When p > d the γp convergence of a sequence (Ωn) of open sets simply
reduces to the Hausdorff convergence of the closed sets D \ Ωn.
• The γp convergence is compact, that is every sequence (µn) of p-capacitary
measures admits a subsequence that γp converges to a p-capacitary mea-
sure µ.
• The class of capacitary measures, endowed with the γp convergence, is a
metrizable space and the γp convergence of a sequence (µn) is equivalent
to the Lp convergence of the solutions w(µn) of the PDEs{

−∆pw + µnw
p−1 = 1 in D

w ∈ W 1,p
0 (D), w ≥ 0.

(2.2)
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This allows to define the γp-distance

dγp(µ, ν) = ‖w(µ)− w(ν)‖Lp .

• The eigenvalue λp(µ) is continuous with respect to the γp convergence.
• When p ≤ d the class of all the γp limits of sequences (Ωn) is exactly the
class of p-capacitary measures. When p > d on the contrary, the class of
open sets Ω with the Hausdorff convergence of D \Ω is already compact.
The first example of a sequence (Ωn) for which the γ2 limit is the Lebesgue
measure was obtained in [5], while the full characterization above in terms
of capacitary measures, when p = 2, was obtained in [8]. Finally the full
proof for any p ≤ d was obtained in [7].

Definition 2.4. Given a p-capacitary measure µ we define the set Ωµ where µ is
finite as

Ωµ = {w(µ) > 0},
being w(µ) the solution of (2.2).

The key result we need in order to prove the existence of an optimal set Ωopt

for the shape functional Fp,q in (1.3) is the following.

Theorem 2.5. Let q < p and let (Ωn) be a sequence of open sets such that:

Ωn
γp→ µ and Ωn

γq→ ν.

Then ν = 0 on the p-quasi open set Ωµ where µ is finite.

Proof. Let w be the solution of (2.2) related to µ and let (wn) be an optimal
sequence for w in the Γ-convergence, that is such that wn ∈ W 1,p

0 (Ωn) and

lim
n

∫
|∇wn|pdx =

∫
|∇w|pdx+

∫
wpdµ.

Let α > 0 be fixed and let

ϕ(x) =
(
w(x)− α

)+
.

We also denote by H(s) the function

H(s) = (s/α) ∧ 1.

Taking un = ϕH(wn) we have that un ∈ W 1,p
0 (Ωn) and un → u = ϕH(w) in Lq,

so that, by the Γ-liminf inequality, we have

lim inf
n

∫
|∇un|qdx ≥

∫
|∇u|qdx+

∫
uqdν

=

∫ ∣∣H(w)∇ϕ+ ϕH ′(w)∇w
∣∣qdx+

∫ (
ϕH(w)

)q
dν.

By the definition of ϕ and H we have H(w)∇ϕ = ∇ϕ, ϕH ′(w) = 0, and ϕH(w) =
(w − α)+, so that∫ (

(w − α)+
)q
dν ≤ −

∫
|∇ϕ|qdx+ lim inf

n

∫
|∇un|qdx

≤ lim sup
n

∫ [∣∣H(wn)∇ϕ+ ϕH ′(wn)∇wn
∣∣q − |∇ϕ|q]dx.
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By using the inequality

|b|q − |a|q ≤ C|b− a|
(
|a|q−1 + |b|q−1

)
we obtain∫ (

(w − α)+
)q
dν ≤ C lim sup

n

∫ [∣∣H(wn)− 1
∣∣|∇ϕ|+ ∣∣ϕH ′(wn)∇wn

∣∣]
·
[
|∇ϕ|q−1 +

∣∣ϕH ′(wn)∇wn
∣∣q−1

]
dx.

Hölder inequality gives∫ [∣∣H(wn)− 1
∣∣|∇ϕ|+ ∣∣ϕH ′(wn)∇wn

∣∣]
·
[
|∇ϕ|q−1 +

∣∣ϕH ′(wn)∇wn
∣∣q−1

]
dx.

≤C
[ ∫
|∇ϕ|q

∣∣H(wn)− 1
∣∣q +

∣∣ϕH ′(wn)∇wn
∣∣qdx]1/q

·
[ ∫
|∇ϕ|q +

∣∣ϕH ′(wn)∇wn
∣∣qdx](q−1)/q

.

Now, Hölder inequality again provides∫ ∣∣ϕH ′(wn)∇wn
∣∣qdx ≤ [ ∫ |∇wn|p]q/p[ ∫ ∣∣ϕH ′(wn)

∣∣p/(p−q)](p−q)/p

.

Since (wn) is an optimal sequence related to w in the Γ-convergence, as n → ∞
the right-hand side above tends to[ ∫

|∇w|pdx+

∫
wpdµ

]q/p[ ∫ ∣∣ϕH ′(w)
∣∣p/(p−q)](p−q)/p

,

which vanishes, since ϕH ′(w) = 0. The term∫
|∇ϕ|q

∣∣H(wn)− 1
∣∣qdx

tends, as n→∞, to ∫
|∇ϕ|q

∣∣H(w)− 1
∣∣qdx

which also vanishes, by the definition of ϕ an H. Then, putting all together, we
obtain ∫ (

(w − α)+
)q
dν = 0.

This concludes the proof, since α > 0 was arbitrary. �

3. The existence result

In this section we prove the existence of an optimal p-quasi open domain Ωopt

for the problem

max
{
λq(Ω) : Ω ∈ A(D), λp(Ω) = 1

}
. (3.1)
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Theorem 3.1. For every q < p there exists a p-quasi open set Ωopt that that
solves the optimization problem (3.1).

Proof. Let (Ωn) be a maximizing sequence for the optimization problem (3.1).
Since the γp and γq convergences are compact, possibly passing to subsequences,
we may also assume that

Ωn
γp→ µ and Ωn

γq→ ν,

for some p-capacitary measure µ and q-capacitary measure ν. If p > d, since the
γp convergence reduces to the Hausdorff convergence of the complements D \Ωn,
the measure µ will be of the form µ = ∞D\Ω for a suitable open set Ω, and
similarly for ν when q > d.

By the continuity of λp and λq with respect to the γp and γq convergences
respectively, we have

λp(µ) = 1, λq(ν) = lim
n
λq(Ωn) = sup (3.1).

By Theorem 2.5 we have that ν = 0 on the set Ωµ where µ is finite; therefore,
from the monotonicity property (2.1) we deduce that

λp(Ωµ) ≤ λp(µ) = 1 and λq(ν) ≤ λq(Ωµ).

Take now t ≤ 1 such that λp(tΩµ) = 1; we clain that the p-quasi open set tΩµ is
optimal for the problem (3.1). In fact we have tΩµ ⊂ D, λp(tΩµ) = 1, and

λq(tΩµ) ≥ λq(Ωµ) ≥ λq(ν) = sup (3.1),

which achieves the existence proof. �

4. Concluding remarks and open questions

Before entering into comments and open questions, let us summarize the known
facts about the optimization problems related to the Cheeger ratio shape func-
tional Fp,q. It is convenient to set

m(p, q) = inf
{
Fp,q(Ω) : Ω bounded subset of Rd

}
,

M(p, q) = sup
{
Fp,q(Ω) : Ω bounded subset of Rd

}
.

The following facts are known (see [1]).

• When d = 1 the functional Fp,q is constant, and for every Ω ⊂ R we have

Fp,q(Ω) =
πp
πq

where

πp =

2π
(p− 1)1/p

p sin(π/p)
for 1 < p <∞

2 for p = 1 and p =∞.
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• For every p ≥ q

m(p, q) ≥ q

p

and the inequality above becomes asymptotically sharp as the dimension
d tends to infinity. Moreover, the value m(p, q) depends decreasingly on
the dimension d.
• For every q < p we have:{

M(p, q) = +∞ for q ≤ d

M(p, q) < +∞ for q > d.

4.1. Existence of optimal domains for D = Rd. By Theorem 3.1 we obtain
the existence of an optimal domain Ω, that minimizes the shape functional Fp,q, in
the case when all competing domains are constrained to stay in a given bounded
set D. The question is now to see what happens when D = Rd. Similar problems
have been considered in the literature in the framework of spectral optimization,
where the shape functional depends on the eigenvalues of the Laplace operator
−∆ with Dirichlet conditions on ∂Ω. It is possible that some of the tools de-
veloped in [2] (that use concentration compactness arguments) and in [11] (that
use suitable surgery techniques) could also be applied to the case of the shape
functional Fp,q.

Concerning the maximization problem when q > d it is not clear if a domain
Ω (possibly unbounded) maximizing Fp,q exists. Good candidates could be the
domains of the form Ω = Rd \ Z with Z a discrete set; in particular with Z
periodic. See the comments in Subsection 4.3 below for the case p =∞.

4.2. Optimization problems for convex domains. When Ω is convex it is
possible to prove that (see [1])

max
{q
p
,
πp
dπq

}
≤ Fp,q(Ω) ≤ πp min

{q
2
,
d

πq

}
.

In particular, the supremum

Mconv(p, q) = sup
{
Fp,q(Ω) : Ω bounded convex subset of Rd

}
is always finite. A reasonable conjecture, formulated by Parini in [13] is that
Mconv(p, q) coincides with πp/πq and is asymptotically reached by thin slabs Ωε =
A×]0, ε[, being A a d− 1 dimensional open set. Additional remarks on the case
Ω convex can be found in [9] and in [12].

In spite of the strong geometrical constraint imposed by the convexity, the
existence of optimal convex domains minimizing Fp,q is not yet completely proved.
The only available result is for Fp,1 in [14]. An interesting conjecture in [12] is
that in the case d = 2 the optimal convex set minimizing F2,1 is the square.
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4.3. The case p =∞. Since

F∞,q(Ω) =
1

ρ(Ω)λ
1/q
q (Ω)

,

we have
m(∞, q) = F∞,q(B1) =

1

λ
1/q
q (B1)

,

where B1 is a ball of unitary radius. Concerning M(∞, q), taking Ωn = B1 \ Zn
where Zn is a set of n points in B1 “uniformly” distributed, since points have zero
q-capacity when q ≤ d, it is easy to see that

M(∞, q) = +∞ for every q ≤ d.

On the contrary, M(∞, q) is finite when q > d. It would be interesting to inves-
tigate the following questions in the case q > d.

- Is there a domain Ω (possibly unbounded) such that

M(∞, q) = F∞,q(Ω)?

- Are there optimal domains Ω of the form Ω = Rd \ Z with Z a discrete
set?

- The discrete set Z above can be periodic? In particular, in dimension
d = 2, is the domain Ω = R2 \ Z, with Z consisting of the centers of a
regular hexagonal tiling of R2, a domain that maximizes F∞,q?

4.4. Regularity issues. The question that arises now, and which is not ad-
dressed in this work, is related to the regularity of the optimal sets Ωopt; here we
only prove that they are p-quasi open, but we expect that they are much more
regular. As already done for other shape optimization problems, the steps to
follow would be: prove that optimal domains Ωopt are open (this is automatic if
p > d), prove that they have a finite perimeter, and finally obtain higher regular-
ity results.
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