
LONG TIME BEHAVIOR AND STABILIZATION FOR DISPLACEMENT

MONOTONE MEAN FIELD GAMES

MARCO CIRANT AND ALPÁR R. MÉSZÁROS

Abstract. This paper is devoted to the study of the long time behavior of Nash equilibria in

Mean Field Games within the framework of displacement monotonicity. We first show that any

two equilibria defined on the time horizon [0, T ] must be close as T → ∞, in a suitable sense,
independently of initial/terminal conditions. The way this stability property is made quantitative

involves the L2 distance between solutions of the associated Pontryagin system of FBSDEs that

characterizes the equilibria. Therefore, this implies in particular the stability in the 2-Wasserstein
distance for the two flows of probability measures describing the agent population density and the

L2 distance between the co-states of agents, that are related to the optimal feedback controls. We
then prove that the value function of a typical agent converges as T →∞, and we describe this limit

via an infinite horizon MFG system, involving an ergodic constant. All of our convergence results

hold true in a unified way for deterministic and idiosyncratic noise driven Mean Field Games, in the
case of strongly displacement monotone non-separable Hamiltonians. All these are quantitative at

exponential rates.

1. Introduction

Since the inception of Mean Field Games (MFGs) theory, these models have been explored in
contexts involving finite time horizons, infinite time horizons, and stationary (or time-independent)
frameworks. Already the foundational papers in the field highlight the distinct nature of each approach
(cf. [LL06a, LL06b, HMC06]). Each model type is motivated by specific applications, and the interplay
between them has raised intriguing questions. One such question is concerned with the long time
behavior of solutions to finite horizon MFGs and in particular whether some sort of ‘stabilization’
phenomena could be observed as the time horizon tends to infinity.

Before the conception of MFGs, similar questions have been studied intensively in the context of
classical control problems and the associated Hamilton–Jacobi–Bellman (HJB) equations. Probably
the first account on this matter is documented in [LPV87], which later turned out to be influential in
many profound directions in fields as homogenization, the weak KAM theory à la Fathi, the Aubry–
Mather theory and elsewhere. Without the intention of being exhaustive, we refer to the classical
works [Fat97, BS00, FM07] and to the monographs and lecture notes [Fat08, Fat12, BCD97, MT17]
for an excellent exposition of some of these directions.

At the same time, the study of the long time asymptotic properties and convergence to equilibrium
of solutions to Fokker–Planck–Kolmogorov (FPK) type or more general parabolic PDEs received great
attention in the literature. It would simply be impossible to mention all the various approaches and
the vast amount of deep results in this context. However, we would like to point to [BGG12], to the
recent work [Por24] and to the references therein for a description of some of these results. The latter
work has a particular connection to our results, as this can be seen as a bridge between the FPK and
HJB worlds.

Returning to MFGs, in the past one and half decades many authors have contributed to the
understanding of asymptotic behavior of MFG systems and the corresponding master equations. The
main actor of this manuscript is the MFG system
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(1.1)


−∂tu− β∆u+H(x,−Dxu, ρ) = 0, in (0, T )× Rd,

∂tρ− β∆ρ+∇ · (ρDpH(x,−Dxu, ρ)) = 0, in (0, T )× Rd,

ρ(0, ·) = ρ0; u(T, ·) = g(T, ρT ), in Rd.

Here the data consists of the Hamiltonian H : Rd × Rd × P2(Rd) → R, the final cost function
g : Rd ×P2(Rd) → R, the initial agent distribution ρ0 ∈ P2(Rd), the time horizon T > 0 and the
intensity of the idiosyncratic noise β ≥ 0 which is allowed to be 0 throughout the text. A solution
to this system is a pair, given by the value function u : [0, T ] × Rd → R of any typical agent, and
(ρs)s∈[0,T ] the actual MFG Nash equilibrium, a flow in P2(Rd) representing the evolution of the
distribution of the agents. To emphasize the dependence on the time horizon T > 0, we sometimes
refer to (u, ρ) as (uT , ρT ).

Our goal in this paper is to present a class of sufficient assumptions on the data H and ρ which
allow the study of the asymptotic behavior of (uT , ρT ) as T → +∞, in a suitable sense. Our aim is
to obtain results which are independent of β ≥ 0, allow a general class of Hamiltonians, which are
non-separable and are valid for general ρ0 ∈P2(Rd).

A brief history on the asymptotic behavior of (uT , ρT ) as T → +∞.

This direction and some of the corresponding ideas were first mentioned by Lions in [Lio09]. A
relatively up to date account on the development of this line of research is given in [CP20, Section
1.3.6]. In what follows we briefly describe this evolution is various contexts. In [GMS10] the limiting
properties were studied for discrete time discrete space MFG. In [CLLP12] and [CLLP13] the authors
studied the long time convergence problem in the case of purely quadratic and separable Hamiltonians,
uniformly parabolic setting (i.e. β > 0) both in the case of Hamiltonians depending locally and
non-locally on the measure variable. [Car13] was concerned with the limiting behavior of first order
nonlocal models in connection with weak KAM theory, while in [CG15] the authors relied on variational
techniques for first order MFG involving Hamiltonians which are local in the measure variable. Similar
results to those in [CLLP13] were developed in the context of the master equation in the work [CP19].

All these results described above used crucially two facts: (i) the separability of the Hamiltonian,
i.e. that H decomposes as

H(x, p, ρ) = H0(x, p)− f(x, ρ),(1.2)

for some H0 : Rd ×Rd → R and f : Rd ×P2(Rd)→ R; and (ii) the convexity of H0 with respect to p
and the (strong/strict) Lasry–Lions monotonicity (LL-monotonicity) of the coupling functions f and
g. This means that

ˆ
Rd

[f(x, ρ1)− f(x, ρ2)] d(ρ1 − ρ2)(x) ≥ c
ˆ
Rd

[f(x, ρ1)− f(x, ρ2)]
2

dx, ∀ρ1, ρ2 ∈P2(Rd),

for some c ≥ 0. For similar monotonicity conditions we refer also to [Por18] and [CP21]. In this latter
reference, the authors in particular were able to allow a bit of loss of LL-monotonicity on the price of
increasing the noise intensity and show exponential turnpike type property for solutions.

Such exponential turnpike property typically reads as follows. Let (uT , ρT ) be the solution to (1.1).
Then there exist C > 0 and ω > 0 (typically depending on the data, and monotonicity constants)
such that

‖ρT (t)− ρ̄‖X + ‖Dxu
T (t)−Dxū‖Y ≤ C

[
e−ωt + e−ω(T−t)

]
, ∀t ∈ (1, T − 1),(1.3)

where (ū, ρ̄, λ̄) is the solution to the stationary MFG system

(1.4)


λ̄− β∆ū+H(x,−Dxū, ρ̄) = 0, in Rd,

−β∆ρ+∇ · (ρDpH(x,−Dxū, ρ̄)) = 0, in Rd,

ρ̄ ≥ 0;
´
Td ūdx = 0;

´
Td ρ̄dx = 1, in Rd.

Depending on the concrete settings, the function spaces X and Y have to be chosen suitably. These
typically range mostly from Lp or L∞ to Ck,α type spaces in the literature. Thus, stability manifests
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itself as the presence of a stationary (ergodic) state that attracts finite-horizon equilibria as T →∞.
Another system that has been used describe the long time asymptotic properties of (1.1) is the infinite
horizon system 

−∂tũ+ λ̃− β∆ũ+H(x,−Dxũ, ρ̃) = 0, in (0,+∞)× Rd,

∂tρ̃− β∆ρ̃+∇ · (ρ̃DpH(x,−Dxũ, ρ̃)) = 0, in (0,+∞)× Rd,

ρ̃(0, ·) = ρ0, in Rd.

With respect to the stationary system above, this one incorporates more information: while the former
merely describes the stationary state, the latter also clarifies how equilibria starting from any initial
state evolve into the stationary one (provided that one can prove that ũ(t) approaches ū as t→∞).

In fact, [CP21] shows that under their standing assumptions, there exists (ũ, ρ̃, λ̃) solution to this
system such that

uT (t, x)− λ̃(T − t)→ ũ(t, x); ρT (t, x)→ ρ̃(t, x), as T → +∞,

locally uniformly in (t, x), and ũ(t) itself converges to ū as t→∞.
Departing completely from the LL-monotone regime, the recent paper [BK24] shows asymptotic

characterization for first order MFGs in lack of LL-monotonicity (for a specific class of quadratic
Hamiltonians), under particular assumption on the minima of the associated cost functions. Further-
more, in this direction in [CM20, Mas19] the authors obtained weak KAM type results in the context
of potential second order MFGs, for separable nonlocal general class of Hamiltonians. These results
can in some sense be seen as the second order versions of the results from [GT14] and [GN16].

These references mentioned above (with the exception of [BK24]) consider always data functions
which are Zd-periodic, and hence rely on the compactness of the space P(Td). In [BK24], even though
set on the whole space Rd, there seem to be a hidden compactness argument, which comes from the
assumption on the location of minima of the cost functions. There are further other interesting results
on the long time behavior, asymptotic analysis on discounted MFGs, and different applications on
these, see for instance [PR24, MSM24, CTZ24, BZ23].

When it comes to the long time asymptotic analysis of MFGs with Rd as a state space, the literature
is sparse. The very recent manuscript [CCDE24] considers the long time behavior of solutions to MFGs
genuinely set on Rd. This work relies mainly on probabilistic techniques (via the so-called ‘coupling
approach’) to obtain exponential turnpike properties. The standing assumptions therein are: a weak
form of asymptotic monotonicity on the drift of the controlled dynamics and regularity and smallness
conditions on the interaction terms. The main results from this paper are for separable Hamiltonians,
and are in the spirit of (1.3). These read informally as

W1

(
ρT (t), ρ̄

)
+ ‖Dxu

T (t)−Dxū‖L∞ ≤ C
[
e−ωt + e−ω(T−t)

]
, ∀t ∈ (0, T − 1),

where (ū, ρ̄, λ̄) is the solution to the stationary MFG system (1.4). It worth mentioning that this
work is also completely outside of the LL-monotone regime, it allows a general uniformly elliptic
smooth state dependent diffusion matrix, and under further assumptions on the data sometimes gives
exponential turnpike properties also for the D2uT .

We finally mention that the general study of the long time behavior of MFG lacking of any monotone
structure is a rather wide open field of research. In particular, in presence of a genuine multiplicity of
stationary states, or more complicated dynamic patterns such as periodic solutions or traveling waves,
only few specific models have been so far addressed ([Cir19, CC21, CC24, GMP23, KMFRB24, PR22]),
and stability/instability properties of those patterns are just partially understood even in these special
cases.

Our contributions and the description of our main results.

As highlighted above, the literature on the long-time behavior of solutions to MFGs remains limited
in the absence of LL-monotonicity (or semi-monotonicity) conditions on the data, particularly outside
the compact regime of P(Td). In this manuscript, we address this gap by imposing displacement
monotonicity (D-monotonicity) conditions on the data in the setting of the non-compact state space
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Rd. More specifically, we impose strong D-monotonicity assumptions, as long time stability fails
in general if one requires only D-monotonicity (see Remark 5.8). Since D-monotonicity is generally
incompatible with LL-monotonicity, our results significantly advance the understanding of the long-
time asymptotic behavior of solutions beyond the LL-monotone regime in the non-compact setting of
P2(Rd).

To recall, D-monotonicity turned out to be an instrumental sufficient condition for obtaining global
in time well-posedness results for MFGs and the corresponding master equations beyond of the LL-
monotone regime. This condition is particularly versatile, accommodating non-separable Hamiltonians
and degenerate idiosyncratic noise. For a comprehensive overview of this research direction, we re-
fer readers to the works [Ahu16, ARY19, CD18, GM22, GMMZ22, BMM24, BM24, MM24, JT24].
Additionally, [GM23] provides a comparative analysis of various monotonicity conditions.

The key contributions of this work can be summarized as follows:

• We consider a broad class of non-separable Hamiltonians, i.e., the structural condition (1.2)
is not imposed at any point in the manuscript.

• We develop a robust approach capable of handling both deterministic models and models with
non-degenerate idiosyncratic noise, allowing for the case β = 0.

• We obtain exponential decay properties not only for ρT , Dxu
T but also for the value function

uT .

Our first set of main results can be summarized informally as follows. We refer to the precise state-
ments in Theorem 5.7 and Theorem 5.11.

Theorem 1.1. Let H : Rd × Rd × P2(Rd) → R be displacement c0-monotone with c0 > 0 and
suppose that it satisfies our standing assumptions. Let

(
u1,T
s , ρ1,T

s

)
s∈[0,T ]

and
(
u2,T
s , ρ2,T

s

)
s∈[0,T ]

be

two solutions to (1.1) with initial/final data
(
ρ1

0, g
1
)

and
(
ρ2

0, g
2
)
, respectively. Suppose that ρ1

0, ρ
2
0 ∈

P2(Rd) and g1, g2 : Rd ×P2(Rd) → R are both D-monotone and satisfy our standing assumptions.
Then, there exists C > 0 depending on H, g1, g2,

´
Rd |x|2dρ1

0(x),
´
Rd |x|2dρ2

0(x) and there exists δ > 0
depending only on c0 such that

(1) W2

(
ρ1,T
s , ρ2,T

s

)
≤ C

[
e−δs + e−δ(T−s)

]
, s ∈ [0, T ].

(2) sup
t∈[0,T/4]

sup
x∈Rd

|Dxu
1,T (t, x)−Dxu

2,T (t, x)|2

1 + |x|2
≤ Ce−δT .

As a consequence of this theorem, we can formulate our second set of main results. For the precise
statement we refer to Theorem 6.4 and Corollary 6.11.

Theorem 1.2. Let (uT , ρT ) be the solution to (1.1) with initial datum ρ0 and any final datum g which
satisfies our standing assumptions. Then there exist λ ∈ R, u : [0,+∞) × Rd → R which is of class

C1,1
loc in space and Lipschitz continuous in time and ρ ∈ C([0,+∞); (P2(Rd),W2)), such that

sup
s∈[0,t]

W 2
2 (ρTs , ρs) ≤ Ce−δ(T−t), ∀t ∈ [0, T ],

sup
t∈[0,T/8],x∈Rd

|uT (t, x)− λ(T − t)− u(t, x)|
1 + |x|2

+
|Dxu

T (t, x)−Dxu(t, x)|
1 + |x|

≤ Ce−δT

where C > 0 depends only on ρ0, H and δ > 0 depends on c0.
Moreover, the triple (u, λ, ρ) is the unique solution to the infinite horizon system

−∂tu− β∆u+H(x,−Dxu, ρ) + λ = 0, in (0,+∞)× Rd,
∂tρ− β∆ρ+∇ · (ρDpH(x,−Dxu, ρ)) = 0, in (0,+∞)× Rd,

ρ(0, ·) = ρ0, sup
t∈[0,+∞)

|u(t, x)|
1 + |x|2

<∞,
(1.5)

where the fist equation is satisfied in the viscosity sense, while the second equation is satisfied in the
sense of distributions.

We now outline the main approach that enabled us to establish our main results Theorems 1.1 and
1.2, which are grounded in techniques based on D-monotonicity. Notably, our analysis does not rely at
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all on solutions to the stationary system of type (1.4). For instance, the analysis in [CCDE24] depends
on a stationary system, requiring the separate construction of a solution, which in turn necessitated
additional (e.g., smallness-type) assumptions on the data.

In contrast, our approach is deeply rooted in the Pontryagin maximum principle and a variety
of FBSDE systems that characterize both Nash equilibria and individual agent trajectories. These
systems write as

(1.6)


Xt,ξ
s = ξ +

ˆ s

t

DpH(Xt,ξ
τ , Y t,ξτ , ρτ )dτ +

√
2βBts,

Y t,ξs = −Dxg(Xt,ξ
T , ρT ) +

ˆ T

s

DxH(Xt,ξ
τ , Y t,ξτ , ρτ )dτ −

√
2β

ˆ T

s

Zt,ξτ dBtτ .

The core of our analysis relies on three main ingredients: (i) uniform in time second moment estimates
for the processes

(
Xt,ξ
τ

)
τ∈[t,T ]

and
(
Y t,ξτ

)
τ∈[t,T ]

; (ii) quantified D-monotonicity propagation estimates

and (iii) the analysis of the dissipation of the W2-distance between distinct MFG Nash equilibria.
To achieve (i), we discover new generalized confining properties for non-separable Hamiltonians

which will guarantee a sort of semi-convexity property for the curves s 7→ E
[∣∣Xt,ξ

s

∣∣2] and s 7→

E
[∣∣Y t,ξs ∣∣2], which in turn will lead to the desired uniform second moment estimates. We demon-

strate in several examples how these generalized confining properties go hand in hand with the D-
monotonicity.

Let (ui,T , ρi,T ), i = 1, 2 be two solutions to (1.1), and we consider (Xi,t,ξi

s , Y i,t,ξ
i

s , Zi,t,ξ
i

s )s∈[t,T ],
i = 1, 2, the solutions to the associated FBSDE systems (1.6).

For steps (ii) and (iii) in our program, we introduce the functions ϕ : (t, T ) → R, Φ : (t, T ) →
[0,+∞), given by

ϕ(s) := E
[
(X1,t,ξ1

s −X2,t,ξ2

s ) ·
(
Y 1,t,ξ1

s − Y 2,t,ξ2

s

)]
and

Φ(s) := E
[∣∣∣X1,t,ξ1

s −X2,t,ξ2

s

∣∣∣2]+ E
[∣∣∣Y 1,t,ξ1

s − Y 2,t,ξ2

s

∣∣∣2] .
A crucial observation is that ϕ and Φ satisfy a joint differential inequality, namely

c0|ϕ(s)| ≤ c0
2

Φ(s) ≤ ϕ′(s) +
C

2c0
W 2

1 (ρ1
s, ρ

2
s),

where c0 > 0 is the strong D-monotonicity constant of H and C > 0 depends only on the data. This
inequality will then unfold a series of important consequences, which eventually lead to Theorem 1.1.
Along the way, we are also using the fact that as an implication of the growth conditions imposed
for DH and Dg, we have that Dxu growth at most linearly at infinity, and so the decay in Theorem
1.1(2) arises naturally.

While Dxu is very naturally connected to the Y t,ξs variable in (1.6), the value function u itself
cannot be directly recovered from (1.6). Therefore, its long time behavior cannot be deduced from
Theorem 1.1 in a straightforward manner. So, in order to establish Theorem 1.2, we rely on the
Lagrangian representation formulas along Nash equilibria and optimal stochastic paths.

A very important role in this analysis is played by a suitably chosen average of a (partial) Lagrangian
action, defined as

λT := E

{ˆ T/2+1

T/2

L(X0,ξ,T
s , DpH(X0,ξ,T

s , Y 0,ξ,T
s , ρTs ), ρTs )ds

}
.

It tuns out that
(
λT
)
T>0

becomes a Cauchy family of real numbers, whose limit will appear as λ in

the infinite horizon system (1.5) in Theorem 1.2. Our construction provides in fact the existence of
solutions to such a system. We also show in Theorem 6.12 that solutions to (1.5) are (almost) unique:
u is defined only up to translations. The reader may observe that no final condition g appears in (1.5),
hence the long-time behavior of uT (0, ·) depends on ρ0 only, as one expects. We stress again that no
stationary behavior in terms of ū nor invariant measures ρ̄ are exploited here, though we believe that
these objects could be a posteriori reconstructed.
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We also observe that the method proposed here, i.e. not relying directly on the stationary structure
of the system (that is, the presence of a sole stationary state), could be used to study problems
involving time dependent Hamiltonians, provided that the D-monotonicity is satisfied for all t. To
the best of our knowledge, the investigation of the stability of nonautonomous systems (such as those
with time-periodic data) is widely open within the context of MFG.

Note finally that the estimate on the rate of convergence of uT to u is restricted to the time horizon
[0, T/8]. In fact, this estimate could be extended to any interval of the form [0, ζT ], with ζ < 1, but
not to the whole [0, T ] as one expects uT to deviate from u in order to achieve the final condition g.
This fact is also evident in the form of the estimate for the distance between ρT and ρ. To describe
precisely what happens at times close to T , we believe that one should study the convergence of uT

to (time shifts of) solutions of the infinite horizon system
−∂tû− β∆û+H(x,−Dxû, ρ̂) + λ = 0, in (−∞, 0)× Rd,
∂tρ̂− β∆ρ̂+∇ · (ρ̂DpH(x,−Dxû, ρ̂)) = 0, in (−∞, 0)× Rd,
û(0, ·) = g(0, ρ̂0), sup

t∈(−∞,0)

M2(ρ̂t) <∞.

As a concluding remark in this introduction, it seems that the method that we propose in this paper
is robust enough to accommodate the study of models with common noise and the time asymptotic
behavior of the associated master equations. To keep this manuscript at a reasonable length, we
decided to pursue these questions in follow-up works.

The structure of the rest of the paper is as follows. In Section 2 we present the setting, recall the
definitions of displacement monotonicity, and we collect a first class of assumptions on the data H and
g. Section 3 is dedicated to the uniform in T second moment estimates on the processes

(
Xt,ξ
τ

)
τ∈[t,T ]

and
(
Y t,ξτ

)
τ∈[t,T ]

from (1.6). This is where we present our proposed generalized confining properties

on H and g and we construct classes of examples of Hamiltonians satisfied these new assumptions.
In the short Section 4 we present some suitable localization argument to recover estimates on Dxu at
generic points (beyond its property along optimal paths). Section 5 can be seen as the main one of
this paper. Based on the results from the previous sections, this is where we essentially give all the
remaining ingredients for proving Theorem 1.1. Section 6 concerns the analysis of the value function
u, using the Lagrangian representation formula. This is where we also construct the solution to the
infinite horizon system and prove Theorem 1.2. Finally, in Appendix A we have proven a global in
time semi-concavity estimate for value functions arising in stochastic control problems. Such a result
is probably well-known for experts, but in lack of a precise reference (which would be applicable both
for uniformly parabolic and degenerate, first order problems, at the same time), we decided to give
the details on this for the convenience of the reader.
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2. Technical setting and assumptions

We denote by P(Rd) the set of Borel probability measures supported on Rd. For p ≥ 1 we set
Pp(Rd) :=

{
µ ∈P(Rd) :

´
Rd |x|pdµ(x) < +∞

}
, to denote the set of probability measures with finite

p-moment. For µ ∈Pp(Rd), we use the notation Mp(µ) :=
(´

Rd |x|pdµ(x)
) 1

p to denote the p-moment
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of µ. We equip Pp(Rd) with the classical Wasserstein distance Wp, defined as

Wp(µ, ν) = inf

{¨
Rd×Rd

|x− y|pdπ(x, y) : π ∈ Π(µ, ν)

} 1
p

,

where Π(µ, ν) stands for the transport plans between µ and ν, i.e. Π(µ, ν) := {π ∈ P2(Rd × Rd) :
(px)]π = µ, (py)]π = ν}. Here px, py denote the canonical projections from Rd × Rd onto Rd and ]
stands for the pushforward operator.

We consider a complete probability space (Ω,F ,P), equipped with a filtration F = (Ft)t≥0, satis-

fying the usual assumptions. We consider furthermore an Rd-valued F-Brownian motion (Bt)t≥0. We
suppose that (Ω,F0,P) is atomless, and so, for any µ ∈ P2(Rd) there exists X ∈ L2(Ω,F0,P;Rd)
such that L(X) = µ. Here, L : L2(Ω,F ,P;Rd)→P2(Rd) stands for the standard law operator.

It is well-known that the W2 distance can be also formulated as

W2(µ, ν) = inf
{
E
[
|X − Y |2

]
: L(X) = µ,L(Y ) = ν

} 1
2 .

Based on [AGS08], for a function f : P(Rd) → R we say that it is Wasserstein differentiable (or
W2-differentiable, or simply differentiable) at µ ∈P2(Rd), if there exists ξ ∈ L2(µ;Rd) such that

f(ν) = f(µ) +

¨
Rd×Rd

ξ(x) · (y − x)dπ(x, y) + o(W2(µ, ν)), ∀π ∈ Π(µ, ν),(2.1)

as W2(µ, ν)→ 0. There is a unique solution ξ̄ ∈ L2(µ;Rd) of the variational problem

inf
{
‖ξ‖L2(µ;Rd) : ξ satisfies (2.1)

}
,

and this vector field is referred to as the W2-derivative of f at µ, that we denote as Dµf(µ, ·) := ξ̄(·).
It is worth noting that a priori Dµf(µ, ·) is defined on spt(µ). If f is differentiable at any µ ∈P2(Rd)
and the vector field Dµf has a unique jointly continuous extension, i.e. Dµf : P2(Rd) × Rd → Rd,
then (referring to [CD18, Chapter 5]) we call f to be fully C1. Similarly, for k > 1, one can define
the class of fully Ck functions over the Wasserstein space (P2(Rd),W2). A deep result from [GT19]
implies that f is differentiable at µ ∈P2(Rd) if and only if there exists ξ ∈ L2(µ;Rd) such that

f(ν) = f(µ) + E [ξ(X) · (Y −X)] + o (‖X − Y ‖L2) ,

for any X,Y ∈ L2(Ω,F0,P;Rd) with L(X) = µ, L(Y ) = ν and ‖Y −X‖L2 → 0.

2.1. Assumptions. We suppose that the non-separable Hamiltonian H : Rd × Rd ×P2(Rd)→ R is
strongly convex in the p-variable and it is sufficiently regular. More precisely,

•H(·, ·, µ) ∈ C3(Rd × Rd), ∀µ ∈P2(Rd);(H1)

•H,DpH,DxH are fully C1;

•D2
pµH(x, p, µ, ·), D2

xµH(x, p, µ, ·) ∈ C1(Rd), ∀(x, p, µ) ∈ Rd × Rd ×P2(Rd);
•D2

ppH,D
2
xxH,D

2
xpH,D

2
xµH,D

2
pµH are uniformly bounded;

•D3
ppxH,D

3
pxxH,D

3
pppH,D

3
xxxH,D

3
pµx̃H,D

3
xµx̃H are uniformly bounded.

We immediately notice that the bounds on the second derivatives in (H1) imply that

DpH and DxH are globally Lipschitz continuous,(2.2)

when the Lipschitz continuity is taken with respect to W1 in the measure variable. This further implies
that

|DpH(x, p, µ)| ≤ C (1 +M1(µ) + |x|+ |p|) , ∀(x, p, µ) ∈ Rd × Rd ×P2(Rd),(2.3)

|DxH(x, p, µ)| ≤ C (1 +M1(µ) + |x|+ |p|) , ∀(x, p, µ) ∈ Rd × Rd ×P2(Rd),

where C > 0 is a constant depending only on the uniform bounds onD2
xxH,D

2
ppH,D

2
pxH, D2

xµH,D
2
pµH

and on |DxH(0, 0, δ0)| and |DpH(0, 0, δ0)|.
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Assume furthermore that H jointly strongly displacement monotone, i.e. there exists c0 > 0 such
that ∀X1, X2, P 1, P 2 ∈ L2(Ω,F ,P;Rd) and µ1, µ2 ∈P2(Rd) such that L(X1) = µ1, L(X2) = µ2, we
have

E
[(
−DxH(X1, P 1, µ1) +DxH(X2, P 2, µ2)

)
· (X1 −X2)

]
(H2)

+ E
[ (
DpH(X1, P 1, µ1)−DpH(X2, P 2, µ2)

)
·
(
P 1 − P 2

) ]
≥ c0E

[
|X1 −X2|2 + |P 1 − P 2|2

]
.

We notice that the strong monotonicity assumption (H2) implies that[
−DxH(x1, p1, µ) +DxH(x2, p2, µ)

]
· (x1 − x2)(2.4)

+
[
DpH(x1, p1, µ)−DpH(x2, p2, µ)

]
·
(
p1 − p2

)
≥ c0

[
|x1 − x2|2 + |p1 − p2|2

]
,

for all x1, x2, p1, p2 ∈ Rd and for all µ ∈ P2(Rd). Indeed, this implication could be deduced from a
straightforward adaptation of [MM24, Lemma 2.5].

For the final cost functions g we assume

• g ∈ C1(Rd ×P2(Rd))(H3)

•D2
xxg,D

2
xµg are uniformly bounded.

Finally, we assume the displacement monotonicity condition on g, i.e. for all ∀X1, X2 ∈ L2(Ω,F ,P;Rd)
and µ1, µ2 ∈P2(Rd) such that L(X1) = µ1, L(X2) = µ2, we have

E
[(
Dxg(X1, µ1)−Dxg(X2, µ2)

)
·
(
X1 −X2

)]
≥ 0.

We note that the bounds on the second derivatives imply that

Dxg is globally Lipschitz continuous,

with respect to W1 in the measure variable, and

|Dxg(x, µ)| ≤ C(1 +M1(µ) + |x|), ∀(x, µ) ∈ Rd ×P2(Rd),(2.5)

where C > 0 depends only on the uniform bounds on D2
xxg, D2

xµg and on |Dxg(0, δ0)|.

3. Global second moment estimates along MFG Nash equilibria

The solution to the MFG can be fully characterized by the solution of an FBSDE system (which
plays the classical Hamiltonian system in the deterministic case). Let t ∈ [0, T ] and let ξ be a
random variable. Let moreover β ≥ 0 and let (Bτ )τ∈[0,T ] be a given Brownian motion on Rd and set
Bts := Bs − Bt, s ∈ [t, T ]. For a given flow of probability measures (ρs)s∈[t,T ], consider the FBSDE
system set on the time interval (t, T )

(3.1)


Xs = ξ +

ˆ s

t

DpH(Xτ , Yτ , ρτ )dτ +
√

2βBts,

Ys = −Dxg(XT , ρT ) +

ˆ T

s

DxH(Xτ , Yτ , ρτ )dτ −
√

2β

ˆ T

s

Zτ dBtτ .

Definition 3.1. We say that the flow of probability measures (ρs)s∈[0,T ] is a mean field game Nash
equilibrium, if when solving (3.1) over [0, T ] with input (ρs)s∈[0,T ] and ξ such that L(ξ) = ρ0, we have
L(Xs) = ρs for all s ∈ [0, T ]. As a consequence of the dynamic programming principle, if t ∈ (0, T )
and (Xs, Ys, Zs)s∈[t,T ] is a solution to (3.1) with L(ξ) = ρt, then L(Xs) = ρs for any s ∈ (t, T ).
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It is well-known that MFG Nash equilibria can be fully characterized by the solutions of the MFG
system: a coupled PDE system of a backward in time Hamilton–Jacobi–Bellman and a forward in
time Kolmogorov–Fokker–Planck equation. This in our setting would write as the system given in
(1.1).

Furthermore, sufficiently regular solution to the HJB equation in (1.1) can be used to construct
decoupling fields for (3.1): in particular, if u ∈ C0,2((0, T ) × Rd), then (ρs)s∈[0,T ] is a MFG Nash
equilibrium if and only if (Xs, Ys, Zs)s∈[0,T ] has the representation

Ys = −Dxu(s,Xs) and Zs = −D2
xxu(t,Xs).(3.2)

Based on [CD18, Proposition 5.102], we will make use of the following Itô lemma.

Lemma 3.2. Let F : Rd × Rd ×P2(Rd) → R be a fully C1 function with the property that for any
compact set K ⊂ Rd × Rd ×P2(Rd) we have

sup
(x,y,µ)∈K

{ˆ
Rd

|DµF (x, y, µ, x̃)|2dµ(x̃) +

ˆ
Rd

|D2
µx̃F (x, y, µ, x̃)|2dµ(x̃)

}
< +∞.

Let moreover (ρs)s∈[t,T ] be a flow in P2(Rd) such that ρs = L(Rs), where (Rs)s∈[t,T ] solves

(3.3) dRs = αsds+
√

2βdBs,

with (αs)s∈[t,T ] given process.
Let (Xs, Ys, Zs)s∈[t,T ] be the solution to (3.1), where (ρs)s∈[t,T ] is given as above. Then, we have

dF (Xs, Ys, ρs) = [DxF (Xs, Ys, ρs) ·DpH(Xs, Ys, ρs)−DyF (Xs, Ys, ρs) ·DxH(Xs, Ys, ρs)] ds

+
√

2β [DxF (Xs, Ys, ρs) +DyF (Xs, Ys, ρs)Zt] · dBs
+ β

{
∆xF (Xs, Ys, ρs) + ∆yF (Xs, Ys, ρs) + trace

[
D2
xyF (Xs, Ys, ρs)Zs

]}
ds

+ Ẽ
[
DµF (Xs, Ys, ρs, R̃s) · α̃s

]
ds

+ βẼ
{

trace
[
D2
µx̃F (Xs, Ys, ρs, R̃s)

]}
ds,

where the process (R̃s, α̃s)s∈[t,T ] is an independent copy of of the process (Rs, αs)s∈[t,T ] on a copy

(Ω̃, F̃ , P̃) of the probability space (Ω,F ,P).

Based on this lemma, we have the following results.

Lemma 3.3. Let H : Rd × Rd ×P2(Rd)→ R satisfy the assumptions in (H1), let (Xs, Ys, Zs)s∈[t,T ]

be a solution to (3.1) and let (ρs)s∈[t,T ] be a flow in P2(Rd) such that ρs = L(Rs), where Rs satisfies
(3.3) for some (αs)s∈[t,T ] given process. Then, we have

d[Xs ·DpH(Xs, Ys, ρs)] =
[
|DpH(Xs, Ys, ρs)|2 + (D2

pxH(Xs, Ys, ρs)Xs) ·DpH(Xs, Ys, ρs)
]

ds

−
[
(D2

ppH(Xs, Ys, ρs)Xs) ·DxH(Xs, Ys, ρs)
]

ds

+
√

2β
[
DpH(Xs, Ys, ρs) +D2

pxH(Xs, Ys, ρs)Xs +D2
ppH(Xs, Ys, ρs)ZsXs

]
· dBs

+ β
{
Dptrace[D2

xxH(Xs, Ys, ρs)] ·Xs + 2trace[D2
pxH(Xs, Ys, ρs)]

}
ds

+ β
{
Dptrace

[
D2
ppH(Xs, Ys, ρs

]
·Xs

}
ds

+ β trace
{[
D3
ppxH(Xs, Ys, ρs)Xs +D2

ppH(Xs, Ys, ρs)
]
Zs
}

ds

+ Ẽ
[
DpµH(Xs, Ys, ρs, R̃s)Xs · α̃s

]
ds

+ βẼ
{

trace
[
D3
pµx̃H(Xs, Ys, ρs, R̃s)Xs

]}
ds.

Proof. We will simply apply Lemma 3.2 for F : Rd × Rd ×P2(Rd)→ R defined as

F (x, y, ρ) = x ·DpH(x, y, ρ).

�



10 M. CIRANT AND A.R. MÉSZÁROS

Lemma 3.4. Let H : Rd × Rd ×P2(Rd)→ R satisfy the assumptions in (H1), let (Xs, Ys, Zs)s∈[t,T ]

be a solution to (3.1) and let (ρs)s∈[t,T ] be a flow in P2(Rd) such that ρs = L(Rs), where Rs satisfies
(3.3) for some (αs)s∈[t,T ] given process. Then, we have

d[Ys ·DxH(Xs, Ys, ρs)] =
[
(D2

xxH(Xs, Ys, ρs)Ys) ·DpH(Xs, Ys, ρs)− |DxH(Xs, Ys, ρs)|2
]

ds

−
[
(D2

xpH(Xs, Ys, ρs)Ys) ·DxH(Xs, Ys, ρs)
]

ds

+
√

2β
{
D2
xxH(Xs, Ys, ρs)Ys + Zs

[
DxH(Xs, Ys, ρs) +D2

xpH(Xs, Ys, ρs)Ys
]}
· dBs

+ β
{
Dxtrace

[
D2
xxH(Xs, Ys, ρs

]
· Ys
}

ds

+ β
{
Dxtrace[D2

ppH(Xs, Ys, ρs)] · Ys + 2trace[D2
pxH(Xs, Ys, ρs)]

}
ds

+ β trace
{[
D3
xxpH(Xs, Ys, ρs)Ys +D2

xxH(Xs, Ys, ρs)
]
Zs
}

ds

+ Ẽ
[
DxµH(Xs, Ys, ρs, R̃s)Ys · α̃s

]
ds

+ βẼ
{

trace
[
D3
xµx̃H(Xs, Ys, ρs, R̃s)Ys

]}
ds.

Proof. We will simply apply Lemma 3.2 for F : Rd × Rd ×P2(Rd)→ R defined as

F (x, y, ρ) = y ·DxH(x, y, ρ).

�

Remark 3.5. In the statements of the previous lemmas we have abused the notation D3
xxpH (also

in the case of other similar terms involving third derivatives). In particular in the products involving
such terms we denote the action of the tensor D3

xxpH in Rd×d×d on the vector Y in Rd. The resulting

object is a standard square matrix in Rd×d. For instance,
(
D3
xxpHY

)
ij

=
∑d
k=1 ∂

3
xixjpk

HYk.

3.1. Second moment estimates. A crucial part of the analysis what follows is based on uniform in
time second moment estimates for MFG Nash equilibria. Depending on the Hamiltonian H, it will be

convenient to introduce the functions Q1
H , Q

2
H :

(
L2(Ω,F ,P;Rd)

)2×L2(Ω,F ,P;Rd×d)×P2(Rd)→ R,
defined as

Q1
H(X,Y, Z, ρ) := E

[
|DpH(X,Y, ρ)|2 + (D2

pxH(X,Y, ρ)X) ·DpH(X,Y, ρ)
](3.4)

− E
[
(D2

ppH(X,Y, ρ)X) ·DxH(X,Y, ρ)
]

+ βE
{
Dptrace[D2

xxH(X,Y, ρ)] ·X + 2trace[D2
pxH(X,Y, ρ)]

}
+ βE

{
Dptrace

[
D2
ppH(X,Y, ρ)

]
·X
}

+ β E trace
{[
D3
ppxH(X,Y, ρ)X +D2

ppH(X,Y, ρ)
]
Z
}

+ EẼ
[
(D2

pµH(X,Y, ρ, X̃)X) ·DpH(X̃, Ỹ , ρ)
]

+ βEẼ
{

trace
[
D3
pµx̃H(X,Y, ρ, X̃)X

]}
.

and

(3.5)

Q2
H(X,Y, Z, ρ) := E

[
−(D2

xxH(X,Y, ρ)Y ) ·DpH(X,Y, ρ) + |DxH(X,Y, ρ)|2
]

+ E
[
(D2

xpH(X,Y, ρ)Y ) ·DxH(X,Y, ρ)
]

− βE
{
Dxtrace

[
D2
xxH(X,Y, ρ

]
· Y
}

− βE
{
Dxtrace[D2

ppH(X,Y, ρ)] · Y + 2trace[D2
pxH(X,Y, ρ)]

}
− β Etrace

{[
D3
xxpH(X,Y, ρ)Y +D2

xxH(X,Y, ρ)
]
Z
}

− EẼ
[
D2
xµH(X,Y, ρ, X̃)Y ·DpH(X̃, Ỹ , ρ)

]
− βEẼ

{
trace

[
D3
xµx̃H(X,Y, ρ, X̃)Y

]}
.

Remark 3.6. In fact, both Q1
H and Q1

H will always be evaluated as QiH(X,Y, Z,L(X)), therefore we
in fact just emphasize the concrete dependence on the measure in the last variable for these operators.
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Since our problems are set on the whole space Rd, in order to have uniform in time control on
second moments of MFG Nash equilibria, it will be crucial to have suitable ‘confining’ properties on
the corresponding optimal velocity fields (i.e. the drift term appearing in the KFP equation). We can
achieve such desired property by imposing general structural assumptions on the Hamiltonian H and
final cost function g. These will eventually enter into our list of main assumptions.

∀Z ∈ L∞(Ω,F ,P;Rd×d) ∃c1H = c1H(‖Z‖L∞) ∈ R and δ1
H > 0 such that(H5)

Q1
H(X,Y, Z, µ) ≥ c1H +

δ1
H

2
E
[
|X|2

]
, ∀X,Y ∈ L2(Ω,F ,P;Rd), L(X) = µ.

(H6)

∀Z ∈ L∞(Ω,F ,P;Rd×d), ∀X ∈ L2(Ω,F ,P;Rd), L(X) = µ, ∃c2H = c2H(‖Z‖L∞ , ‖X‖L2) ∈ R
and δ2

H = δ2
H(‖Z‖L∞ , ‖X‖L2) > 0 such that

Q2
H(X,Y, Z, µ) ≥ c2H +

δ2
H

2
E
[
|Y |2

]
, ∀Y ∈ L2(Ω,F ,P;Rd).

∀X ∈ L2(Ω,F ,P;Rd), L(X) = µ,∀ c > 0 ∃c3H = c3H(‖X‖L2 , c) ∈ R(H7)

and δ3
H = δ3

H(c) > 0 such that

E
[
c|Y |2 − Y ·DxH(X,Y, µ)

]
≥ δ3

H

2
E
[
|Y |2

]
+ c3H , ∀Y ∈ L2(Ω,F ,P;Rd).

∃cg ∈ R and δg > 0 such that(H8)

E[X ·DpH(X,−Dxg(X,µ), µ)] ≤ cg −
δg
2
E
[
|X|2

]
, ∀X,Y ∈ L2(Ω,F ,P;Rd), L(X) = µ.

Remark 3.7. Beside their dependence on the data H, we have emphasized the potential dependence
on ‖Z‖L∞ or ‖X‖L2 of the constants ciH , δ

i
H , i = 2, 3, appearing in the previous assumptions.

The first main result of this subsection can be formulated as follows.

Proposition 3.8. Suppose that H : Rd ×Rd ×P2(Rd)→ R and g : Rd ×P2(Rd)→ R satisfy (H1),
(H2) and (H3), respectively. Suppose furthermore that the assumptions (H5) and (H8) are fulfilled.
Let (ρs)s∈[t,T ] be a given MFG Nash equilibrium, corresponding to the solution (Xs, Ys, Zs)s∈[t,T ] of
(3.1). Then we have that there exists C > 0 depending on the data, but independent of T , such that

E
[
|Xs|2

]
≤ E

[
|Xt|2

]
+ C, ∀s ∈ [t, T ].

Proof. Since (ρs)s∈[t,T ] is an MFG Nash equilibrium, we have in particular L(Xs) = ρs for all s ∈ [t, T ].
Let (u, ρ) be the solutions to the MFG system (1.1). As a consequence of displacement monotonicity,
u(s, ·) is convex uniformly in s. Furthermore, by Lemma A.1, we have that u(s, ·) is semi-concave with
a semi-concavity constant independent of T and β (and the initial agent distribution ρ0). Therefore,
there exists Cu > 0 (independent of T, β and ρ0) such that

sup
(s,x)∈[0,T ]×Rd

∣∣D2
xxu(t, x)

∣∣ ≤ Cu.
As a consequence of this, from (3.2) we obtain |Zs| ≤ Cu almost surely, for all s ∈ [t, T ].

Let α > 0 whose value will be set later. We define hα : R→ R as

hα(s) := E
[α

2
|Xs|2 +Xs ·DpH(Xs, Ys, ρs)

]
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and compute

d

ds
hα(s) = E [αXs ·DpH(Xs, Ys, ρs)] + αβd+Q1

H(Xs, Ys, Zs, ρs)

≥ αE [Xs ·DpH(Xs, Ys, ρs)] + αβd+ cH +
δH
2
E|Xs|2

= αhα(s) + αβd+ cH +
(δH − α2)

2
|Xs|2,

where in the inequality above we have used (H5).
We recall that by our assumptions we have that δH > 0 and δg > 0. Then we choose α ∈ (0,

√
δH ],

and so, we deduce that

d

ds
hα(s) ≥ αhα(s) + αβd+ cH = α(hα(s) + cH/α+ βd).

Grönwall’s inequality yields

hα(s) ≤ e−α(T−s)(hα(T ) + cH/α+ βd)− cH/α− βd

= e−α(T−s)
[α

2
|XT |2 +XT ·DpH(XT ,−Dxg(XT , ρT ), ρT ) + cH/α+ βd

]
− cH/α− βd

≤ e−α(T−s)
[
α

2
|XT |2 + cg −

δg
2
E|XT |2 + cH/α+ βd

]
− cH/α− βd,

where in the last inequality we have used (H8). If necessary, we decrease α further such that α ∈ (0, δg)
and so, we obtain

hα(s) ≤ e−α(T−s) [cg + cH/α+ βd]− cH/α− βd ≤ C,
where C is a constant independent of time, depending only on the data (in particular, on the constants
cg, cH , δg, δH). Using the definition of hα, with this choose of α, we have just obtained

E
[α

2
|Xs|2 +Xs ·DpH(Xs, Ys, ρs)

]
≤ C.

This further implies that

d

ds

1

2
E
[
|Xs|2

]
≤ C + βd− α1

2
E|Xs|2,

from where we obtain

E
[
|Xs|2

]
≤ e−α(s−t)E

[
|Xt|2

]
+ C,

and so the claim follows. �

Remark 3.9. Note that the displacement monotonicity assumption (H2) is used in Proposition 3.8
only to guarantee uniform bounds on D2

xxu. One can prove the same second moment bounds by
assuming directly the control on second derivatives of u, which may hold beyond the D-monotone
setting (for instance as a consequence of uniform parabolic estimates).

We can formulate a similar property for the dual precess (Ys)s∈[t,T ] from (3.1).

Proposition 3.10. Suppose that the assumptions from the statement of Proposition 3.8 and the ad-
ditional assumptions (H6) and (H7) take place. Let (ρs)s∈[t,T ] be a given MFG Nash equilibrium,
corresponding to the solution (Xs, Ys, Zs)s∈[t,T ] of (3.1). Then we have that there exists C > 0 de-

pending on the data and E
[
|Xt|2

]
, but independent of T , such that

E|Ys|2 ≤ C
(
1 + E

[
|Xt|2

])
, ∀s ∈ [t, T ].

Proof. The proof follows similar ideas as the one of Proposition 3.8. Let α > 0, to be chosen later
and consider hα : [t, T ]→ R defined as

hα(s) := E
[α

2
|Ys|2 − Ys ·DxH(Xs, Ys, ρs)

]
.
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We compute

d

ds
hα(s) = −E [αYs ·DxH(Xs, Ys, ρs)] + αβd+Q2

H(Xs, Ys, Zs, ρs)

≥ −αE [Ys ·DxH(Xs, Ys, ρs)] + αβd+ c2H +
δ2
H

2
E
[
|Ys|2

]
≥ αhα(s) + C̃ +

(δ2
H − α2)

2
|Ys|2,

where the penultimate inequality we have used (H6), and have set C̃ := αβd+ c2H . Now, one chooses

α <
√
δ2
H , and so, one obtains

d

ds

(
hα(s) + C̃/α

)
≥ α

(
hα(s) + C̃/α

)
.

Thus, e−α(T−s)
(
hα(T ) + C̃/α

)
− C̃/α ≥ hα(s) for all s ∈ [t, T ]. In addition to this,

hα(T ) = E
[α

2
|YT |2 − YT ·DxH(XT , YT , ρT )

]
= E

[α
2
|Dxg(XT , ρT )|2 +Dxg(XT , ρT ) ·DxH(XT ,−Dxg(XT , ρT ), ρT )

]
≤ c+ cE

[
|XT |2

]
,

where we have used the growth properties of DxH and Dxg from (2.3) and (2.5), respectively, and
Young’s inequality, and the constant c > 0 depends only on α, and the constants appearing in the
growth inequalities. By Proposition 3.8, we will be able to say that there is a constant C > 0,
independent of T such that

hα(s) ≤ C + CE
[
|Xt|2

]
, ∀s ∈ [t, T ].

Thus, by the definition of hα and (H7) we obtain from here that

δ3
H

2
E
[
|Ys|2

]
+ c3H ≤ E

[α
2
|Ys|2 − Ys ·DxH(Xs, Ys, ρs)

]
≤ C + CE

[
|Xt|2

]
,

where the constants δ3
H and c3H depend on α and in addition, c3H might depend also on E

[
|Xt|2

]
. We

conclude by Proposition 3.8. �

Remark 3.11. (1) Let us emphasize that in general, one must have strict inequalities, i.e. in all
δ1
H > 0, δ2

H > 0, δ3
H > 0 and δg > 0 appearing in (H5)-(H7) and (H8), in order to be able to

have the previously described uniform in time second moment estimates. This is partly due
to the presence of the idiosyncratic noise. Indeed, one would be able to relax slightly these
assumptions, and allow δiH = 0 or δg = 0, as long as we would be able to have c1H , c

2
H ≥ 0 and

cg ≤ 0. However, in the presence of the idiosyncratic noise one has a Z contribution in the
expressions of Q1

H , Q
2
H (corresponding to D2

xxu), and so it would be in general impossible to
have the inequality ciH ≥ 0 satisfied. In the case of deterministic models, i.e. when β = 0, we
would be able to use such a slightly relaxed version of the assumptions (H5), (H6) and (H8).

(2) In the same time, it is important to remark that these assumptions in fact guarantee a sort
of ‘confining property’ for the driving vector fields in the corresponding MFG models, in the
absence of which in general, one cannot hope for uniform in time second moment estimates
(since we work in the non-compact setting of Rd). Therefore, it would in general not be possible
to allow δiH < 0 or δg < 0, even for deterministic models.

Remark 3.12. It is interesting to observe that the assumptions (H5) and (H8) along the solution
(Xs, Ys, Zs)s∈[t,T ] to (3.1) in fact characterize a sort of semi-convexity property of s 7→ 1

2E|Xs|2.

3.2. Examples of H, g satisfying the ‘generalized confining’ assumptions. Now let us pause
to provide natural examples for H and g, which will satisfy the assumptions imposed in (H5), (H6),
(H7) and (H8).
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3.2.1. Mechanical Hamiltonians and general g. The simplest possible example we can think of is when

H(x, p, µ) =
1

2
|p|2 − f(x, µ).(3.6)

We can formulate the following results.

Lemma 3.13. Suppose that H is of the form (3.6) and f : Rd ×P2(Rd) → R satisfies the standing
smoothness assumptions imposed in (H1).
(i) Suppose that there exists cf ∈ R and δf > 0

E [X ·Dxf(X, ρ)] ≥ cf +
δf
2
E|X|2.(3.7)

Then H satisfies (H5).
(ii) Suppose that

(3.8) E [X ·Dxg(X, ρ)] ≥ cg +
δg
2
E|X|2,

for some cg ∈ R and δg > 0. Then (H8) is fulfilled.
(iii) Suppose that H satisfies (H2). Then (H6) is satisfied.
(iv) All these Hamiltonians satisfy (H7).

Proof. (i) First, the separability implies that D2
pµH vanishes everywhere. In this case we obtain

Q1
H(X,Y, Z, ρ) = E

[
|Y |2

]
+ E [X ·Dxf(X, ρ)] + βE [traceZ] ,

and so, the assumption (H5) boils down to (since Z is supposed to be bounded) to the condition (3.7).

(ii) Similarly, the assumption (3.8) implies (H8).

(iii) Let us check that such Hamiltonians would also satisfy (H6). Direct computation yields

Q2
H(X,Y, Z, ρ) = E

[
(D2

xxf(X, ρ)Y ) · Y + |Dxf(X, ρ)|2
]

+ βE
{
Dxtrace

[
D2
xxf(X, ρ)

]
· Y
}

+ β Etrace
{[
D2
xxf(X, ρ)

]
Z
}

+ EẼ
[(
D2
xµf(X, ρ, X̃)Y

)
· Ỹ
]

+ βEẼ
{

trace
[
D3
xµx̃f(X, ρ, X̃)Y

]}
.

Now, we notice that as (H2) is satisfied, we must have a strong displacement monotonicity for f , i.e.

E
[
Dxf(X1,L(X1))−Dxf(X2,L(X2)) · (X1 −X2)

]
≥ c0E

[
|X1 −X2|2

]
, ∀X1, X2 ∈ L2(Ω,F ,P;Rd).

Using second order derivatives, this is in fact equivalent to

E
[
(D2

xxf(X,L(X))ξ) · ξ
]

+ EẼ
[(
D2
xµf(X,L(X), X̃)ξ

)
· ξ̃
]
≥ c0E

[
|ξ|2
]
,

for any X, ξ ∈ L2(Ω,F ,P;Rd). We combine this strong monotonicity inequality with the growth
property (2.3) for Dxf , with the uniform boundedness of second and third order derivatives of f , to
conclude about (H6) after multiple use of Young’s inequality.

(iv) It remains to check (H7). For this, we compute

E
[
c|Y |2 − Y ·DxH(X,Y, ρ)

]
= E

[
c|Y |2 + Y ·Dxf(X, ρ)

]
.

Again, using the growth property (2.3) for Dxf together with Young’s inequality, we obtain the desired
property.

�
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3.2.2. General classes of Hamiltonians. In general, the fulfillment of the assumption (H5) and (H6) can
be achieved by imposing more transparent assumptions on the data. We present sufficient conditions
for this.

Lemma 3.14. Suppose that H satisfies the standing regularity assumptions (H1). In particular,
suppose that the second and third order derivatives of H are uniformly bounded by a constant CH > 0.
Suppose that Z ∈ L2(Ω,F ,P;Rd×d) is uniformly bounded by a constant CZ > 0.

(i) Suppose that for any c1 > 0, where exists δ̃1
H > 0 and c̃1H ∈ R, such that

−c1E
[
|X|2

]
− E

[
(D2

ppH(X,Y, ρ)X) ·DxH(X,Y, ρ)
]
≥ δ̃1

H

2
E
[
|X|2

]
− c̃1H ,(3.9)

for all X,Y ∈ L2(Ω,F ,P;Rd) and ρ = L(X). Then (H5) is satisfied.

(ii) Suppose that for any c1 > 0, where exists δ̃2
H > 0 and c̃2H ∈ R, such that

−c1E
[
|Y |2

]
− E

[
(D2

xxH(X,Y, ρ)Y ) ·DpH(X,Y, ρ)
]

(3.10)

− EẼ
[
(D2

xµH(X,Y, ρ, X̃)Y ) ·DpH(X̃, Ỹ , ρ)
]
≥ δ̃2

H

2
E
[
|Y |2

]
− c̃2H ,

for all X,Y ∈ L2(Ω,F ,P;Rd) and ρ = L(X). Then (H6) is satisfied.

Proof. (i) After recalling the definition of Q1
H from (3.4), we have

Q1
H(X,Y, Z, ρ) = E

[
|DpH(X,Y, ρ)|2 + (D2

pxH(X,Y, ρ)X) ·DpH(X,Y, ρ)
]

− E
[
(D2

ppH(X,Y, ρ)X) ·DxH(X,Y, ρ)
]

+ βE
{
Dptrace[D2

xxH(X,Y, ρ)] ·X + 2trace[D2
pxH(X,Y, ρ)]

}
+ βE

{
Dptrace

[
D2
ppH(X,Y, ρ)

]
·X
}

+ β E trace
{[
D3
ppxH(X,Y, ρ)X +D2

ppH(X,Y, ρ)
]
Z
}

+ EẼ
[
(D2

pµH(X,Y, ρ, X̃)X) ·DpH(X̃, Ỹ , ρ)
]

+ βEẼ
{

trace
[
D3
pµx̃H(X,Y, ρ, X̃)X

]}
≥ −c1E|X|2 − c2 − E

[
(D2

ppH(X,Y, ρ)X) ·DxH(X,Y, ρ)
]
,

where c1 > 0 depends only on CH (more precisely, it can be chosen to depend only on the uniform
bounds on D2

pxH and D2
pµH), while c2 > 0 depends only on CH and CZ . Therefore, in order to satisfy

the assumption (H5), we need to ‘compensate’ the term −c1E|X|2 with the contribution coming from
−E

[
(D2

ppH(X,Y, ρ)X) ·DxH(X,Y, ρ)
]
. So, to fulfill (H5), a sufficient condition would be precisely

the one imposed in (3.9).

(ii) The proof of the second claim follows similar lines of thought. We recall the definition of Q2
H from

(3.5), that we estimate below. We have

Q2
H(X,Y, Z, ρ) := E

[
−(D2

xxH(X,Y, ρ)Y ) ·DpH(X,Y, ρ) + |DxH(X,Y, ρ)|2
]

+ E
[
(D2

xpH(X,Y, ρ)Y ) ·DxH(X,Y, ρ)
]

− βE
{
Dxtrace

[
D2
xxH(X,Y, ρ

]
· Y
}

− βE
{
Dxtrace[D2

ppH(X,Y, ρ)] · Y + 2trace[D2
pxH(X,Y, ρ)]

}
− β Etrace

{[
D3
xxpH(X,Y, ρ)Y +D2

xxH(X,Y, ρ)
]
Z
}

− EẼ
[
D2
xµH(X,Y, ρ, X̃)Y ·DpH(X̃, Ỹ , ρ)

]
− βEẼ

{
trace

[
D3
xµx̃H(X,Y, ρ, X̃)Y

]}
≥ −c1E

[
|Y |2

]
− c2

− E
[
(D2

xxH(X,Y, ρ)Y ) ·DpH(X,Y, ρ)
]

− EẼ
[
(D2

xµH(X,Y, ρ, X̃)Y ) ·DpH(X̃, Ỹ , ρ)
]
≥ δ̃2

H

2
E
[
|Y |2

]
− c̃2H ,

where we have concluded by (3.10). �
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Corollary 3.15. Lemma 3.14 above gives sufficient conditions on the Hamiltonian, which are straight-
forward to verify. Indeed, Hamiltonians for the form

H(x, p, µ) = H0(x, p, µ) +
C0

2

(
|p|2 − |x|2

)
,

where H0 : Rd × Rd ×P2(Rd) → R is uniformly bounded, with uniformly bounded derivatives up to
order 3, and C0 > 0 is a sufficiently large constant (depending on the uniform derivative bounds of
H0) will satisfy all the generalized confining assumptions (H5), (H6) and (H7).

Such Hamiltonians are also prototypical examples of non-separable displacement monotone Hamil-
tonians, as discussed in [MM24, Remark 2.8].

4. Localization arguments and global in time estimates on Dxu

Now, we turn our attention to derive ‘localized’ properties for Dxu (where (u, ρ) is the solution to
the MFG system (1.1)). As we have discussed above, this is related to the dual process (Ys)s∈[t,T ]

from (3.1). In particular, by (3.2), L2 estimates on Ys and Xs (from Propositions 3.8 and 3.10) result
already in uniform in time L2 estimates on −Dxu(s,Xs). However, we aim to have quantified global
estimates on Dxu(t, ·) in a stronger, pointwise sense. This is the purpose of this section.

Compared to Section 3, we will need to impose stronger assumptions on the data.
Let (ρs)s∈[0,T ] be a given MFG Nash equilibrium. To characterize single agent trajectories starting

at position x ∈ Rd at time t ∈ [0, T ], it is convenient to introduce the system

(4.1)


Xt,x
s = x+

ˆ s

t

DpH(Xt,x
τ , Y t,xτ , ρτ )dτ +

√
2βBts,

Y t,xs = −Dxg(Xt,x
T , ρT ) +

ˆ T

s

DxH(Xt,x
τ , Y t,xτ , ρτ )dτ −

√
2β

ˆ T

s

Zt,xτ dBtτ .

This system is a particular version of the more generic one

(4.2)


Xt,ξ
s = ξ +

ˆ s

t

DpH(Xt,ξ
τ , Y t,ξτ , ρτ )dτ +

√
2βBts,

Y t,ξs = −Dxg(Xt,ξ
T , ρT ) +

ˆ T

s

DxH(Xt,ξ
τ , Y t,ξτ , ρτ )dτ −

√
2β

ˆ T

s

Zt,ξτ dBtτ ,

where ξ ∈ L2(Ω,Ft,P;Rd). Indeed, if we consider ξ such that L(ξ) = δx, we obtain essentially (4.1).
It is important to note that the system (4.2) (and so (4.1) as well) in general does not describe MFG
Nash equilibria (as (ρs)s∈[0,T ] is considered to be an input), unless L(ξ) = ρt and L(Xt,ξ

s ) = ρs for all
s ∈ [0, T ].

It is important to note that just as in the case of (3.2), we also have

Y t,ξs = −Dxu(s,Xt,ξ
s ) and Zt,ξs = −D2

xxu(t,Xt,ξ
s ).(4.3)

We need to introduce the following quantities, similarly to the ones defined in (3.4) and (3.5), to

be defined as Q3
H , Q

4
H :

(
L2(Ω,F ,P;Rd)

)2 × L2(Ω,F ,P;Rd×d) ×P2(Rd) ×
(
L2(Ω,F ,P;Rd)

)2 → R,
defined as

Q3
H(X,Y, Z, ρ,R, α) := E

[
|DpH(X,Y, ρ)|2 + (D2

pxH(X,Y, ρ)X) ·DpH(X,Y, ρ)
]

− E
[
(D2

ppH(X,Y, ρ)X) ·DxH(X,Y, ρ)
]

+ βE
{
Dptrace[D2

xxH(X,Y, ρ)] ·X + 2trace[D2
pxH(X,Y, ρ)]

}
+ βE

{
Dptrace

[
D2
ppH(X,Y, ρ)

]
·X
}

+ β E trace
{[
D3
ppxH(X,Y, ρ)X +D2

ppH(X,Y, ρ)
]
Z
}

+ EẼ
[
(D2

pµH(X,Y, ρ, R̃)X) · α̃
]

+ βEẼ
{

trace
[
D3
pµx̃H(X,Y, ρ, R̃)X

]}
.
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and

Q4
H(X,Y, Z, ρ,R, α) := E

[
−(D2

xxH(X,Y, ρ)Y ) ·DpH(X,Y, ρ) + |DxH(X,Y, ρ)|2
]

+ E
[
(D2

xpH(X,Y, ρ)Y ) ·DxH(X,Y, ρ)
]

− βE
{
Dxtrace

[
D2
xxH(X,Y, ρ

]
· Y
}

− βE
{
Dxtrace[D2

ppH(X,Y, ρ)] · Y + 2trace[D2
pxH(X,Y, ρ)]

}
− β Etrace

{[
D3
xxpH(X,Y, ρ)Y +D2

xxH(X,Y, ρ)
]
Z
}

− EẼ
[
D2
xµH(X,Y, ρ, R̃)Y · α̃

]
− βEẼ

{
trace

[
D3
xµx̃H(X,Y, ρ, R̃)Y

]}
.

Remark 4.1. We can observe the following.

(i) Similarly to the case of Q1
H and Q2

H , Q3
H and Q4

H will always be evaluated as QiH(X,Y, Z,L(R), R, α),
i = 3, 4.

(ii) We can see Q1
H and Q2

H as special cases of Q3
H and Q4

H . Indeed,

Q1
H(X,Y, Z,L(X)) = Q3

H(X,Y, Z,L(X), X,DpH(X,Y,L(X)))

and
Q2
H(X,Y, Z,L(X)) = Q4

H(X,Y, Z,L(X), X,DpH(X,Y,L(X))).

We refine the generalized confining assumptions (H5), (H6), (H7) and (H8) as follows.

∀Z ∈ L∞(Ω,F ,P;Rd×d),∀µ ∈P2(Rd),∀R,α ∈ L2(Ω,F ,P;Rd×d)(H5’)

∃c3H = c3H(‖Z‖L∞ ,M2(µ), ‖α‖L2) ∈ R and δ3
H = δ3

H(‖Z‖L∞ ,M2(µ), ‖α‖L2) > 0 such that

Q3
H(X,Y, Z, µ,R, α) ≥ c3H +

δ3
H

2
E
[
|X|2

]
, ∀X,Y ∈ L2(Ω,F ,P;Rd),L(R) = µ.

(H6’)

∀Z ∈ L∞(Ω,F ,P;Rd×d), ∀X,R, α ∈ L2(Ω,F ,P;Rd), L(R) = µ,

∃c2H = c2H(‖Z‖L∞ , ‖X‖L2 ,M2(µ), ‖α‖L2) ∈ R and δ4
H = δ4

H(‖Z‖L∞ , ‖X‖L2 ,M2(µ), ‖α‖L2) > 0

such that Q4
H(X,Y, Z, µ,R, α) ≥ c4H +

δ4
H

2
E
[
|Y |2

]
, ∀Y ∈ L2(Ω,F ,P;Rd).

∀X ∈ L2(Ω,F ,P;Rd), ∀µ ∈P2(Rd),∀c > 0 ∃c3H = c3H(‖X‖L2 , c) ∈ R(H7’)

and δ3
H = δ3

H(c) > 0 such that

E
[
c|Y |2 − Y ·DxH(X,Y, µ)

]
≥ δ3

H

2
E
[
|Y |2

]
+ c3H , ∀Y ∈ L2(Ω,F ,P;Rd).

∀µ ∈P2(Rd) ∃cg = cg(M2(µ)) ∈ R and δg = δg(M2(µ)) > 0 such that(H8’)

E[X ·DpH(X,−Dxg(X,µ), µ)] ≤ cg −
δg
2
E|X|2, ∀X,Y ∈ L2(Ω,F ,P;Rd).

Remark 4.2. It is important to note that one of the most important differences between the assump-
tions (H5), (H6), (H7), (H8) and those ones imposed in (H5’), (H6’), (H7’), (H8’) is that the random
variable X is in general not related to R and in particular L(X) 6= µ.

As a consequence, the assumptions imposed in (H5’), (H6’), (H7’), (H8’) will imply those in (H5),
(H6), (H7), (H8).
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Remark 4.3. We note that constructions similar to those in Subsection 3.2 would give us suitable
classes of examples which satisfy also the assumptions (H5’) through (H8’).

Similarly to Propositions 3.8 and 3.10, we can formulate the following result.

Proposition 4.4. Assume that the assumptions of Propositions 3.8 and 3.10 takes place, when (H5),
(H6), (H7), (H8) are replaced by (H5’), (H6’), (H7’), (H8’). Suppose that (ρs)s∈[t,T ] is an MFG

Nash equilibrium and let ξ ∈ L2(Ω,Ft,P;Rd) be given. Let (Xt,ξ
s , Y t,ξs , Zt,ξs )s∈[t,T ] be the solution to

(4.2). Then, there exists a constant C > 0 depending on the data (in particular also on M2(ρ0)), but
independent of T such that

E
[
|Xt,ξ

s |2
]
≤ C(1 + E

[
|ξ|2
]
), ∀s ∈ [t, T ],

and

E
[
|Y t,ξs |2

]
≤ C(1 + E

[
|ξ|2
]
), ∀s ∈ [t, T ],

Proof. The proof of this result follows precisely the same steps as the ones of Propositions 3.8 and
3.10, where one needs to rely similar calculations, and the refined assumptions (H5’), (H6’), (H7’),
(H8’). �

Corollary 4.5. Suppose that the assumptions of Proposition 4.4 are fulfilled. Then, there exists a
constant C > 0 depending only on the data and M2(ρ0) (but independent of T ) such that

|Dxu(t, x)| ≤ C(1 + |x|), ∀(t, x) ∈ [0, T ]× Rd.

Proof. This is a direct consequence of Proposition 4.4 and (4.3). Indeed, let (t, x) ∈ [0, T ] × Rd and
consider ξ ∈ L2(Ω,Ft,P;Rd) such that L(ξ) = δx. Consider the (Xt,ξ

s , Y t,ξs , Zt,ξs )s∈[t,T ] to be the
solution to (4.2). Then, by the quoted proposition and (4.3) we obtain

E
[
|Dxu(s,Xt,ξ

s )|2
]

= E
[
|Y t,ξs |2

]
≤ C

(
1 + E

[
|ξ|2
])

= C
(
1 + |x|2

)
.

Sending s→ t from above one obtains

|Dxu(s, x)|2 ≤ C
(
1 + |x|2

)
,

from where the result follows. �

5. Long-time behavior of ρ and Dxu

5.1. Some preparatory results.

Definition 5.1. Let (u1, ρ1) and (u2, ρ2) be two solutions to the mean field game system over [0, T ]
with initial and final data (ρ1

0, g
1) and (ρ2

0, g
2), respectively. Let t ∈ [0, T ] be given and let

(Xi,t,ξi

s , Y i,t,ξ
i

s , Zi,t,ξ
i

s )s∈[t,T ], i = 1, 2, be the solutions to the associated FBSDE systems (3.1), with

initial data ξ1, ξ2 ∈ L2(Ω,Ft,P;Rd) for the first equation (we do not assume in general that L(ξ1) = ρ1
t

or L(ξ2) = ρ2
t ). We define the functions ϕ(ξ1,ξ2) : (t, T )→ R, Φ(ξ1,ξ2) : (t, T )→ [0,+∞) given as

ϕ(ξ1,ξ2)(τ) := E
[(
X1,t,ξ1

τ −X2,t,ξ2

τ

)
·
(
Y 1,t,ξ1

τ − Y 2,t,ξ2

τ

)]
and

(5.1) Φ(ξ1,ξ2)(τ) := E
[
|X1,t,ξ1

τ −X2,t,ξ2

τ |2
]

+ E
[
|Y 1,t,ξ1

τ − Y 2,t,ξ2

τ |2
]
.

When there is no ambiguity regarding the random variables ξ1, ξ2, we simply use the notation ϕ,Φ
instead of ϕ(ξ1,ξ2),Φ(ξ1,ξ2).

These functions will be the essential tools to quantify various decay in time estimates for the MFG
system. We can formulate the following result.

Lemma 5.2. Recall the notations from Definition 5.1. Suppose that the assumptions of Proposition
4.4 take place. There there exists a constant C > 0 depending on the data (but independent of T ) such
that

(5.2) E
[
|Xi,t,ξi

τ |2
]
, E
[
|Y i,t,ξ

i

τ |2
]
, |ϕ(τ)|, Φ(τ) ≤ C

(
1 + E

[
|ξ1|2 + |ξ2|2

])
, ∀τ ∈ [t, T ], i = 1, 2.
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Proof. By Young’s inequality we have

(5.3) |ϕ(τ)| ≤ 1

2
Φ(τ) ∀τ ∈ [t, T ].

Under the assumptions of Proposition 4.4, we notice that E
[
|Xi,t,ξ1

τ |2 + |Y i,t,ξ1τ |2
]

is uniformly

bounded on [t, T ], by a constant depending only on the data and E
[
|ξ1|2 + |ξ2|2

]
, and this dependence

is precisely in the form stated in (5.2). The result follows.
�

Lemma 5.3. Let (u1, ρ1) and (u2, ρ2) be two solutions to the mean field game system over [0, T ] with
initial and final data (ρ1

0, g
1) and (ρ2

0, g
2), respectively. Let t ∈ [0, T ] and let ξ1, ξ2 ∈ L2(Ω,Ft,P;Rd) be

given and let (Xi,t,ξi

s , Y i,t,ξ
i

s , Zi,t,ξ
i

s )s∈[t,T ], i = 1, 2, be the solutions to the associated FBSDE systems

(4.2), with initial data ξ1, ξ2 dnd given MFG Nash equilibria and final data (ρ1
s)s∈[t,T ] and g1 and

(ρ2
s)s∈[t,T ] and g2, respectively . Let ϕ = ϕ(ξ1,ξ2) and Φ = Φ(ξ1,ξ2) be defined as in (5.1). Suppose that

the Hamiltonian H satisfies the standing assumptions (in particular (2.2) and (2.4) are fulfilled).

(1) Then, for any s ∈ [t, T ] we have

c0|ϕ(s)| ≤ c0
2

Φ(s) ≤ ϕ′(s) +
C

2c0
W 2

1 (ρ1
s, ρ

2
s),

where C > 0 depends only on the Lipschitz constant of DxH and DpH in (2.2) and c0 is the
strong monotonicity constant in (2.4).

(2) Assume that ρ1
s = ρ2

s for all s ∈ [t, T ] (i.e. we are considering only one MFG Nash equilibrium,
but two different single agent trajectories), or that ξ1, ξ2 is such that L(ξi) = ρit, i = 1, 2.
Then, for any s ∈ [t, T ] we have

2c0|ϕ(s)| ≤ c0Φ(s) ≤ ϕ′(s).

Proof. A direct computation yields

d

ds
E
[(
Y 1,t,ξ1

s − Y 2,t,ξ2

s

)
·
(
X1,t,ξ1

s −X2,t,ξ2

s

)]
= E

[ (
−DxH(X1,t,ξ1

s , Y 1,t,ξ1

s , ρ1
s) +DxH(X2,t,ξ2

s , Y 2,t,ξ2

s , ρ2
s)
)
·
(
X1,t,ξ1

s −X2,t,ξ2

s

) ]
+ E

[ (
Y 1,t,ξ1

s − Y 2,t,ξ2

s

)
·
(
DpH(X1,t,ξ1

s , Y 1,t,ξ1

s , ρ1
s)−DpH(X2,t,ξ2

s , Y 2,t,ξ2

s , ρ2
s)
) ]

= E
[ (
−DxH(X1,t,ξ1

s , Y 1,t,ξ1

s , ρ1
s) +DxH(X2,t,ξ2

s , Y 2,t,ξ2

s , ρ1
s)
)
·
(
X1,t,ξ1

s −X2,t,ξ2

s

) ]
+ E

[ (
−DxH(X2,t,ξ2

s , Y 2,t,ξ2

s , ρ1
s) +DxH(X2,t,ξ2

s , Y 2,t,ξ2

s , ρ2
s)
)
·
(
X1,t,ξ1

s −X2,t,ξ2

s

) ]
+ E

[ (
Y 1,t,ξ1

s − Y 2,t,ξ2

s

)
·
(
DpH(X1,t,ξ1

s , Y 1,t,ξ1

s , ρ1
s)−DpH(X2,t,ξ2

s , Y 2,t,ξ2

s , ρ1
s)
) ]

+ E
[ (
Y 1,t,ξ1

s − Y 2,t,ξ2

s

)
·
(
DpH(X2,t,ξ2

s , Y 2,t,ξ2

s , ρ1
s)−DpH(X2,t,ξ2

s , Y 2,t,ξ2

s , ρ2
s)
) ]

The assumptions (2.4) and (2.2), combined with Young’s inequality further imply

ϕ′(s) =
d

ds
E
[(
Y 2,t,ξ2

s − Y 2,t,ξ2

s

)
·
(
X2,t,ξ2

s −X2,t,ξ2

s

)]
≥c0E

[
|X2,t,ξ2

s −X2,t,ξ2

s |2 + |Y 2,t,ξ2

s − Y 2,t,ξ2

s |2
]

− C

2c0
W 2

1 (ρ1
s, ρ

2
s)

− c0
2
E
[
|X2,t,ξ2

s −X2,t,ξ2

s |2 + |Y 2,t,ξ2

s − Y 2,t,ξ2

s |2
]
,

where C > 0 depends only on the Lipschitz constant of DxH and DpH. Rearranging and using (5.3)
shows (1). Notice that if ρ1

s = ρ2
s for all s ∈ [t, T ], then there is no need to use Young’s inequality,
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and we have directly by (2.4) that

d

ds
E
{[(

Y 1,t,ξ1

s − Y 2,t,ξ2

s

)
·
(
X1,t,ξ1

s −X2,t,ξ2

s

)]}
≥ c0E

[∣∣∣X1,t,ξ1

s −X2,t,ξ2

s

∣∣∣2 +
∣∣∣Y 1,t,ξ1

s − Y 2,t,ξ2

s

∣∣∣2] .
For the rest of the proof of (2) we argue similarly. We observe that the assumption L(ξi) = ρit,

i = 1, 2 will imply that L(Xi,t,ξi

s ) = ρis for all s ∈ (t, T ). Therefore, in the previous computation we
can use the strong monotonicity assumption (H2) directly. As a consequence, we have

d

ds
E
[(
Y 1,t,ξ1

s − Y 2,t,ξ2

s

)
·
(
X1,t,ξ1

s −X2,t,ξ2

s

)]
= E

[ (
−DxH(X1,t,ξ1

s , Y 1,t,ξ1

s , ρ1
s) +DxH(X2,t,ξ2

s , Y 2,t,ξ2

s , ρ2
s)
)
·
(
X1,t,ξ1

s −X2,t,ξ2

s

) ]
+ E

[ (
Y 1,t,ξ1

s − Y 2,t,ξ2

s

)
·
(
DpH(X1,t,ξ1

s , Y 1,t,ξ1

s , ρ1
s)−DpH(X2,t,ξ2

s , Y 2,t,ξ2

s , ρ2
s)
) ]

≥ c0E
[
|X1,t,ξ1

s −X2,t,ξ2

s |2 + |Y 1,t,ξ1

s − Y 2,t,ξ2

s |2
]
.

�

Lemma 5.4. Let t ∈ [0, T ], let (ρis)s∈[t,T ] (i = 1, 2) be two given flows of probability measures, let

ξ1, ξ2 ∈ L2(Ω,Ft,P;Rd) and let (Xi
s, Y

i
s , Z

i
s)s∈[t,T ] = (Xi,t,ξi

s , Y i,t,ξ
i

s , Zi,t,ξ
i

s )s∈[t,T ] (i = 1, 2) stand for

the corresponding solutions to the FBSDE system (4.2), with Xi,t,ξi

t = ξi, where (ρis)s∈[t,T ] are given.
Suppose that H satisfies (2.2).

Then there exists C > 0 depending on H such that for any s1, s2 ∈ [t, T ], s1 < s2 we have

(i) E
[
|X1

s2 −X
2
s2 |

2
]
≤ E

[
|X1

s1 −X
2
s1 |

2
]
+C

ˆ s2

s1

{
E
[
|X1

τ −X2
τ |2 + |Y 1

τ − Y 2
τ |2
]

+W 2
2 (ρ1

τ , ρ
2
τ )
}

dτ,

(ii) E
[
|X1

s1 −X
2
s1 |

2
]
≤ E

[
|X1

s2 −X
2
s2 |

2
]
+C

ˆ s2

s1

{
E
[
|X1

τ −X2
τ |2 + |Y 1

τ − Y 2
τ |2
]

+W 2
2 (ρ1

τ , ρ
2
τ )
}

dτ,

(iii) E
[
|Y 1
s2 − Y

2
s2 |

2
]
≤ E

[
|Y 1
s1 − Y

2
s1 |

2
]

+ C

ˆ s2

s1

{
E
[
|X1

τ −X2
τ |2 + |Y 1

τ − Y 2
τ |2
]

+W 2
2 (ρ1

τ , ρ
2
τ )
}

dτ,

(iv) E
[
|Y 1
s1 − Y

2
s1 |

2
]
≤ E

[
|Y 1
s2 − Y

2
s2 |

2
]

+ C

ˆ s2

s1

{
E
[
|X1

τ −X2
τ |2 + |Y 1

τ − Y 2
τ |2
]

+W 2
2 (ρ1

τ , ρ
2
τ )
}

dτ,

Proof. Taking the difference of the equations from (4.2) written for X1 and X2, we compute

d

ds

1

2
E
[
|X1

s −X2
s |2
]
.

Then integrating the obtained expression from s = s1 to s = s2 we obtain

E
[
|X1

s2 −X
2
s2 |

2
]

= E
[
|X1

s1 −X
2
s1 |

2
]

+ 2

ˆ s2

s1

E
[
(DpH(X1

τ , Y
1
τ , ρ

1
τ )−DpH(X2

τ , Y
2
τ , ρ

2
τ )) · (X1

τ −X2
τ )
]

dτ

and equivalently

E
[
|X1

s1 −X
2
s1 |

2
]

= E
[
|X1

s2 −X
2
s2 |

2
]
− 2

ˆ s2

s1

E
[
(DpH(X1

τ , Y
1
τ , ρ

1
τ )−DpH(X2

τ , Y
2
τ , ρ

2
τ )) · (X1

τ −X2
τ )
]

dτ.

Taking absolute values of the right hand sides of the previous two equations, using the Lipschitz
continuity of DpH and Young’s inequality, we obtain (i) and (ii).

Similar computations for the Y i variables yield (iii) and (iv). �

Corollary 5.5. Under the assumptions of Lemma 5.4 we have the following.

(1) Using the definition of Φ from (5.1), we observe that the previous lemma implies that there
exists a constant C > 0 (depending on the data), such that

Φ(s1) ≤ Φ(s2) + C

ˆ s2

s1

[
Φ(s) +W 2

2 (ρ1
s, ρ

2
s)
]

ds
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and

Φ(s2) ≤ Φ(s1) + C

ˆ s2

s1

[
Φ(s) +W 2

2 (ρ1
s, ρ

2
s)
]

ds,

for any [s1, s2] ⊆ [t, T ].
(2) If in addition we have that (ρis)s∈[t,T ], i = 1, 2 are MFG Nash equilibria and (Xi

τ , Y
i
τ , Z

i
τ ),

i = 1, 2 are the solutions to the corresponding (3.1), we in particular have that L(Xi
s) = ρis

and so W 2
2 (ρ1

τ , ρ
2
τ ) ≤ E

[
|X1

s −X2
s |2
]
, for s ∈ [t, T ]. Therefore (by potentially increasing the

constants C > 0) the inequalities in the statement of the lemma further imply

E
[
|X1

s2 −X
2
s2 |

2
]
≤ E

[
|X1

s1 −X
2
s1 |

2
]

+ C

ˆ s2

s1

E
[
|X1

τ −X2
τ |2 + |Y 1

τ − Y 2
τ |2
]

dτ,

and similarly for all the three other inequalities as well.
(3) Under the additional assumptions in (2), we have

Φ(s1) ≤ Φ(s2) + C

ˆ s2

s1

Φ(s)ds and Φ(s2) ≤ Φ(s1) + C

ˆ s2

s1

Φ(s)ds,

for any [s1, s2] ⊆ [t, T ].

Proposition 5.6. Let (u1, ρ1) and (u2, ρ2) be two solutions to the mean field game system over [0, T ]
with initial and final data (ρ1

0, g
1) and (ρ2

0, g
2), respectively. Suppose that the assumptions of Lemma

5.3 are fulfilled.

Let t ∈ [0, T ] and ξ1, ξ2 ∈ L2(Ω,Ft,P;Rd) be given and let (Xi,t,ξi

s , Y i,t,ξ
i

s , Zi,t,ξ
i

s )s∈[t,T ], i = 1, 2 be

the solutions to the associated FBSDE systems (4.2), with Xi,t,ξi

t = ξi. Let ϕ = ϕ(ξ1,ξ2),Φ = Φ(ξ1,ξ2)

defined as in (5.1).

(1) There exists C > 0 depending on the data such that for any t ≤ t1 < t2 ≤ T

c0
2

ˆ t2

t1

Φ(s)ds ≤ e−c0(T−t2)|ϕ(T )|+ e−c0(t1−t)|ϕ(t)|

+ C

(ˆ t1

t

e−c0(t1−s)W 2
2 (ρ1

s, ρ
2
s)ds+

ˆ t2

t1

W 2
2 (ρ1

s, ρ
2
s)ds+

ˆ T

t2

e−c0(s−t2)W 2
2 (ρ1

s, ρ
2
s)ds

)
.

(2) Assuming that L(ξi) = ρit (i = 1, 2) and that L(Xi,t,ξi

s ) = ρis, for all s ∈ [t, T ], i = 1, 2, then

c0

ˆ t2

t1

Φ(s)ds ≤ e−2c0(T−t2)|ϕ(T )|+ e−2c0(t1−t)|ϕ(t)|

(3) Assuming L(ξi) = ρit, (i = 1, 2) or that ρ1
s = ρ2

s, ∀s ∈ [t, T ], and that g1 = g2 = g and g is
displacement monotone, then

c0

ˆ t2

t1

Φ(s)ds ≤ e−2c0(t1−t)|ϕ(t)|

Proof. Setting

h(s) :=
C

2c0
W 2

2 (ρ1
s, ρ

2
s),

where C > 0 is given in Lemma 5.3 (1). This means that there exist a constant C > 0, depending
only on the data (that we do not relabel) such that

(5.4) h(s) ≤ CW 2
2 (ρ1

s, ρ
2
s).

Lemma 5.3 (1) yields the following inequalities for any s ∈ [t, T ]:

−c0ϕ(s) ≤ c0
2

Φ(s) ≤ ϕ′(s) + h(s), c0ϕ(s) ≤ c0
2

Φ(s) ≤ ϕ′(s) + h(s).(5.5)

By integrating the first one on (t, τ) and the second one on (τ, T ) we get

e−c0(τ−t)ϕ(t)− e−c0τ
ˆ τ

t

ec0sh(s)ds ≤ ϕ(τ) ≤ e−c0(T−τ)ϕ(T ) + ec0τ
ˆ T

τ

e−c0sh(s)ds.
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Finally, by integrating (5.5) on (t1, t2) we obtain

c0
2

ˆ t2

t1

Φ(s)ds ≤ ϕ(t2)− ϕ(t1) +

ˆ t2

t1

h(s)ds.

The two previous inequalities together with (5.4) show (1).
The proof of (2) is almost identical, noticing that Lemma 5.3 (2) provides the same kind of inequality

with h ≡ 0.
To prove (3) one may argue in the same way as for (2), noticing in addition that integration on

(t1, t2) gives c0
´ t2
t1

Φ(s)ds ≤ ϕ(t2)− ϕ(t1), and the inequality

ϕ(t2) = E
[
(X1,t,ξ1

t2 −X2,t,ξ2

t2 ) ·
(
Y 1,t,ξ1

t2 − Y 2,t,ξ2

t2

)]
≤ 0

can be used in view of the propagation of displacement monotonicity (see [MM24, Theorem 4.2]),
which applies in view of (H2) if L(ξi) = ρit, or in view of (2.4) if ρ1

s = ρ2
s, for all s ∈ [t, T ]. �

5.2. Decay results in time for ρ and for Dxu. We are now ready to prove the first main result of
this work, on the distance between two Nash equilibria for large T .

Theorem 5.7. Let
(
u1, ρ1

)
and

(
u2, ρ2

)
be the unique solutions to two mean field games systems

with the same Hamiltonian and final/initial data (g1, ρ1
0) and (g2, ρ2

0), respectively, on a given time
interval [0, T ].

Let ξ1, ξ2 ∈ L2(Ω,F0,P;Rd) be given and let (Xi,0,ξi

s , Y i,0,ξ
i

s , Zi,0,ξ
i

s )s∈[0,T ], i = 1, 2 be the solutions

to the associated FBSDE systems (3.1), with Xi,0,ξi

0 = ξi. In particular, we suppose that L(ξi) = ρi0
and L(Xi,0,ξi

s ) = ρis for all s ∈ [0, T ], i = 1, 2. Let ϕ = ϕ(ξ1,ξ2),Φ = Φ(ξ1,ξ2) defined as in (5.1).
Suppose that the assumptions of Proposition 5.6 are fulfilled.

Then we have the following.

(1) There exists C > 0 such that for any t ∈ [0, T ],

Φ(t) ≤ C
(
e−2c0(T−t) + e−2c0t

)
.

(2) Assuming in addition that ρ1
0 = ρ2

0, for any t ∈ [0, T ] we have

Φ(t) ≤ Ce−2c0(T−t).

(3) Assuming otherwise that g1 = g2 = g and g is displacement monotone, for any t ∈ [0, T ] we
have

Φ(t) ≤ Ce−2c0t.

The constants C above depend on the data and E
[
|ξ1|2 + |ξ2|2

]
.

Proof. We start from the inequality in Proposition 5.6 (2), applied to t = 0, t1 = T/2 − 1/2 and
t2 = T/2 + 1/2, i.e.

c0

ˆ T/2+1/2

T/2−1/2

Φ(s)ds ≤ e−2c0(T/2−1/2)|ϕ(T )|+ e−2c0(T/2−1/2)|ϕ(0)|.

Hence, in view of bounds (5.2) and (5.3) and the Mean Value Theorem, there exists ζT ∈ [T/2 −
1/2, T/2 + 1/2] and a constant C (depending on the data and E

[
|ξ1|2 + |ξ2|2

]
, but independent of T )

such that

Φ(ζT ) ≤ Ce−2c0T/2.

Therefore, by Corollary 5.5 (3) and again Proposition 5.6 (2) we have for any t ∈ [0, ζT ]

Φ(t) ≤ Φ(ζT ) + C

ˆ ζT

t

Φ(s)ds ≤ C
(
e−2c0T/2 + e−2c0(T−ζT )|ϕ(T )|+ e−2c0t|ϕ(0)|

)
≤ C(e−c0(T−t) + e−2c0t),

where in the last inequality we used that T − ζT ≥ T/2− 1/2 and T − t ≤ T . Arguing similarly, one
obtains the same inequality for any t ∈ [ζT , T ], and this shows (1).
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To obtain (2), we note that the additional assumption implies ϕ(0) = 0. Hence, Proposition 5.6
(2) gives

c0

ˆ t

0

Φ(s)ds ≤ e−2c0(T−t)|ϕ(T )|

for any t ∈ [0, T ].Setting t = 1 in the previous inequality, we can pick now ζT ∈ [0, 1] such that

Φ(ζT ) =
´ 1

0
Φ(s)ds ≤ Ce−2c0T . By Corollary 5.5 (3), for any t ∈ [ζT , T ]

Φ(t) ≤ Φ(ζT ) + C

ˆ t

ζT

Φ(s)ds ≤ Ce−2c0T + C

ˆ t

0

Φ(s)ds ≤ Ce−2c0(T−t),

and the inequality is easily extended to any t ∈ [0, T ].
To prove (3) we can argue as before (using the fact now that ϕ(T ) = 0), starting from Proposition

5.6 (3) and the existence of ζT ∈ [T − 1, T ] such that

c0Φ(ζT ) = c0

ˆ T

T−1

Φ(s)ds ≤ e−2c0(T−1)|ϕ(0)| ≤ Ce−2c0T .

The conclusion again follows by applying Corollary 5.5 (3) and Proposition 5.6 (3).
�

Remark 5.8. The previous result says that different equilibria have to “collapse” as T → ∞, that
is: two equilibria starting from different initial conditions ρ1

0, ρ
2
0 and approaching different final values

g1, g2 must be exponentially close in the sense of Theorem 5.7(1). This is a consequence of strong
D-monotonicity of the data. We show below that the same conclusion may not hold if one has only
D-monotonicity. This is in contrast with the Lasry–Lions monotone setting, where it is known (see for
instance [CP21]) that the presence of the diffusion guarantees this kind of long time stability even with
the presence of some mild anti-monotonicity. A similar compensation phenomenon does not appear
in the D-monotone setting. Consider indeed the following system −∂tu− β∂

2
xxu+

1

2
|∂xu|2 =

(
x−
ˆ
R
yρ(t, y)dy

)2

, in (0, T )× R,

∂tρ− β∂2
xxρ−∇ · (ρ∂xu) = 0, in (0, T )× R,

which is solved, for all β > 0 and T > 0, by the couple (u, ρ), where

u(t, x) =

√
2

2
x2 − β(t− T )

√
2,

and ρ is a normal distribution with zero mean and variance β/
√

2. Note that the Hamiltonian is
displacement monotone, but not strongly displacement monotone, in the sense that it satisfies (H2)
with c0 = 0. Note also that any space translation (u(t, · + z), ρ(t, · + z)), for z ∈ R solves the same
system of PDE, so we have a continuum of stationary equilibria (with the corresponding final condition

g(x, ρ) =
√

2
2 (x+ z)2, which satisfies our standing assumptions, and is in fact strongly D-monotone).

We note also that for such MFG systems the measure component is always stationary, Gaussian
centered at −z. Therefore, it is clear that any two such equilibria do not satisfy the stability property,
as their (positive) W2-distance (in the sense quantified by Φ(t)) remains constant in t, uniformly with
respect to the time horizon T .

Remark 5.9. Let (Xi,t,ξi

s , Y i,t,ξ
i

s , Zi,t,ξ
i

s )s∈[t,T ], i = 1, 2 be solutions to the FBSDE system (4.2), with

Xi,t,ξi

t = ξi ∈ L2(Ω,F0,P;Rd), with the same final data g1 = g2 = g and with the same input flows of
measures ρ1

s = ρ2
s = ρs for s ∈ [t, T ], where (ρs)s∈[t,T ] is an MFG Nash equilibrium. It is immediate

to see that the conclusion of Theorem 5.7 (3) holds true in this case, i.e.

Φ(s) ≤ Ce−2c0(s−t), s ∈ (t, T ),

where the constant C > 0 depends on the data and E
[
|ξ1|2 + |ξ2|2

]
. Indeed, one may argue as in the

previous proof, and use Proposition 5.6 (3) and Corollary 5.5 (1).

Corollary 5.10. As a consequence of Theorem 5.7, under our standing assumptions we have that if
(ρit)t∈[0,T ], i = 1, 2 are two MFG Nash equilibria, then
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(1) W 2
2 (ρ1

t , ρ
2
t ) ≤ C(e−2c0(T−t) + e−2c0t), for all t ∈ [0, T ].

(2) If ρ1
0 = ρ2

0, then W 2
2 (ρ1

t , ρ
2
t ) ≤ Ce−2c0(T−t), for all t ∈ [0, T ].

(3) If g1 = g2, then W 2
2 (ρ1

t , ρ
2
t ) ≤ Ce−2c0t, for all t ∈ [0, T ],

where the constants C > 0 above depend on the data and M2(ρ1
0) +M2(ρ2

0).

5.2.1. Localization arguments for Dxu. We can see that Theorem 5.7 gives decay result for Dxu only

along the flow, i.e. for Dxu(t,X0,ξ
t ) = −Y 0,ξ

t , where (X0,ξ
t , Y 0,ξ

t , Z0,ξ
t )t∈[0,T ] corresponds precisely to

MFG Nash equilibria. In order to have a result which is pointwise in the spatial variable, we need
to have some additional work. In particular, we need to ‘localize’ the initial data ξi in the FBSDE

system, and hence consider (4.2) instead of (3.1), and like that the resulting flow is such that L(Xi,t,ξi

s )
does not correspond to ρis.

We can formulate the following result.

Theorem 5.11. Let
(
u1, ρ1

)
and

(
u2, ρ2

)
be the unique solutions to two mean field games systems

with the same Hamiltonian and final/initial data (g1, ρ0) and (g2, ρ0), respectively, on a given time
interval [0, T ]. Then there exists C > 0 depending on the data (and in particular on M2(ρ0), but
independent of T ) such that

(5.6) sup
t∈[0,T/4]

sup
x∈Rd

|Dxu
1(t, x)−Dxu

2(t, x)|2

1 + |x|2
≤ Ce−c0T/2.

Proof. First, let us notice that as ρ1
0 = ρ2

0 = ρ0, Theorem 5.7 (2) implies that

W 2
2 (ρ1

s, ρ
2
s) ≤ C0e

−2c0(T−s), for all s ∈ [0, T ](5.7)

for some C0 that depends on second moment of ρ0 (and on the data). Let t ∈ [0, T/4] and let
ξ ∈ L2(Ω,Ft,P;Rd) be a random variable. We are going to restrict the two MFGs to the time interval
[t, T ]. In particular, we consider the two FBSDE systems (4.2) with ξ1 = ξ2 = ξ and g1, g2 as final
conditions. According to Proposition 5.6 (1), there exists a positive constant Cξ > 0 such that

c0
2

ˆ T/2+1

T/2

Φ(s)ds ≤ e−c0(T/2−1)|ϕ(T )|+ e−c0(T/2−t)|ϕ(t)|

+Cξ

(ˆ T/2

t

e−c0(T/2−s)W 2
2 (ρ1

s, ρ
2
s)ds+

ˆ T/2+1

T/2

W 2
2 (ρ1

s, ρ
2
s)ds

ˆ T

T/2+1

e−c0(s−T/2−1)W 2
2 (ρ1

s, ρ
2
s)ds

)
.

Since ϕ(t) = 0, by the estimate (5.7) on W 2
2 (ρ1,T

s , ρ2,T
s ), the uniform bounds on |ϕ(T )| and the Mean

Value Theorem we get

Φ(ζT ) =

ˆ T/2+1

T/2

Φ(s)ds ≤ Cξ
(
e−c0T/2 +

ˆ T/2+1

0

e−2c0(T−s)ds+

ˆ T

T/2+1

e−c0(3T/2−s)ds
)

≤ Cξe−c0T/2

for some ζT ∈ [T/2, T/2 + 1]. Note that Cξ may vary from line to line, but it always depends in an
affine way on E

[
|ξ|2
]
. Arguing similarly on the interval [t, ζT ] we get by Proposition 5.6 (1) that

ˆ ζT

t

Φ(s)ds ≤ Cξe−c0T/2.

Let us now apply Corollary 5.5 (1) and plug in the estimates obtained so far:

Φ(t) ≤ Φ(ζT ) + C1

ˆ ζT

t

[
Φ(s) +W 2

2 (ρ1
s, ρ

2
s)
]

ds ≤ Cξe−c0T/2.

For any x ∈ Rd, choosing L(ξ) = δx yields Φ(t) = E
[
|Y 1,t,ξ
t − Y 2,t,ξ

t |2
]

= |Dxu
1(t, x) −Dxu

2(t, x)|2.

Since Cξ is an affine function of |x|2, we obtain the assertion. �
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Remark 5.12. In the previous results, in general we cannot expect uniform exponential decay for
|Dxu

1(t, x) −Dxu
2(t, x)|2 for the whole time interval t ∈ [0, T ], as we did not impose any additional

(joint) assumptions on the final data g1 and g2. Indeed, even in the simplest case when g1 and g2

would be independent of the measure variable, we would have

|Dxu
1(T, x)−Dxu

2(T, x)|2 = |Dxg
1(x)−Dxg

2(x)|,

which is a function of x. This not only does not have exponential decay in T , but nothing would
prevent that

sup
x∈Rd

|Dxg
1(x)−Dxg

2(x)| = +∞.

Therefore, in Theorem 5.11 it is indeed expected that we need to consider a potentially smaller time
interval to get such a strong result as the one in (5.6).

6. Asymptotic behavior of the value function

In this section our goal is to study the long time behavior of the value function. For this reason
we consider the following objects. For a fixed time horizon T > 0, g : Rd ×P2(Rd) → R given
final condition and ρ0 ∈P2(Rd) initial measure, let (ρTs )s∈(0,T ) stand for the MFG Nash equilibrium.

In particular, if (X0,ξ
s , Y 0,ξ

s , Z0,ξ
s )s∈(0,T ) is the solution to (3.1) with ξ ∈ L2(Ω,F0,P;Rd) such that

L(ξ) = ρ0, then we have ρTs = L(X0,ξ
s ) for all s ∈ [0, T ].

In a similar way, we define the associated value function uT : [0, T ]× Rd → R as

uT (t, x) := E

{ˆ T

t

L(Xt,x
s , DpH(Xt,x

s , Y t,xs , ρTs ), ρTs )ds+ g(Xt,x
T , ρTT )

}
,

where (Xt,x
s , Y t,xs , Zt,xs )s∈(t,T ) is the solution to (4.2) with L(ξ) = δx, and in the definition of uT the

Nash equilibrium (ρTs )s∈(0,T ) has been used.

The couple (uT , ρT ) solves the MFG system −∂tu
T − β∆uT +H(x,−DuT , ρT ) = 0, in (0, T )× Rd,

∂tρ
T − β∆ρT +∇ · (ρTDpH(x,−DuT , ρT )) = 0, in (0, T )× Rd,

ρT0 = ρ0; uT (T, ·) = g, in Rd.

In this section we need to assume further hypotheses on H and g. We collect these ones here.

∃C > 0, |DµH (x, p, µ, x̃)| ≤ C (1 + |x̃|+ |x|+ |p|) , ∀(x, p, µ, x̃) ∈ Rd × Rd ×P2(Rd)× Rd.(H9)

∃C > 0, such that(H10)

• |g(x, µ)| ≤ C
(
1 +M2

2 (µ) + |x|2
)
, ∀(x, µ) ∈ Rd ×P2(Rd);

• |Dµg (x, µ, x̃) | ≤ C (1 + |x̃|+ |x|) , ∀(x, µ, x̃) ∈ Rd ×P2(Rd)× Rd.

Remark 6.1. The inequality in (H9) could be achieved if in addition to the assumptions in (H1) one
would impose uniform bounds on D2

µµH and D2
µx̃H.

Similarly, a sufficient condition for the fulfillment of (H10), in addition to (H3), would be uniform
bounds on D2

µµg and D2
µx̃g. Both of these additional hypotheses are slightly weaker than imposing

additional regularity and derivative bounds on the data.

Remark 6.2. In what follows, it will be frequent to estimate the difference∣∣∣∣Eˆ t2

t1

L(X1
s , DpH(X1

s , Y
1
s , ρ

1
s), ρ

1
s)ds− E

ˆ t2

t1

L(X2
s , DpH(X2

s , Y
2
s , ρ

2
s), ρ

2
s)ds

∣∣∣∣
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where (ρis)s∈[0,T ] and the associated (Xi
s, Y

i
s , Z

i
s)s∈[0,T ] are MFG Nash equilibria, in terms of the func-

tion Φ defined in (5.1), i.e.

Φ(s) = E
[
|X1

s −X2
s |2
]

+ E
[
|Y 1
s − Y 2

s |2
]
,

having the information that Xi
s, Y

i
s enjoy universal second moment bounds. By employing the Legendre–

Fenchel duality

L(x,DpH(x, p, ρ), ρ) = p ·DpH(x, p, ρ)−H(x, p, ρ), ∀(x, p, ρ) ∈ Rd × Rd ×P2(Rd),

and the fact that W 2
2 (ρ1

s, ρ
2
s) ≤ E

[
|X1

s −X2
s |2
]
, one checks that assumptions (H1) guarantee

(6.1)

∣∣∣∣Eˆ t2

t1

L(X1
s , DpH(X1

s , Y
1
s , ρ

1
s), ρ

1
s)ds− E

ˆ t2

t1

L(X2
s , DpH(X2

s , Y
2
s , ρ

2
s), ρ

2
s)ds

∣∣∣∣
≤ C

ˆ t2

t1

√
Φ(s)ds,

where C > 0 depends only on H and on the second moment bounds on Xi, Y i. For the sake of
completeness we prove this fact in the following lemma.

Lemma 6.3. Suppose that H satisfies the regularity assumptions in (H1) and (H9). Then (6.1) holds
true for a constant C > 0 depending only on second moment bounds and on H.

Proof. Let (xi, pi, ρi) ∈ Rd × Rd ×P2(Rd), i = 1, 2 be given. First let us estimate∣∣H(x2, p2, ρ2)−H(x1, p1, ρ1)
∣∣ .

For this, let (ρs)s∈[0,1] be a W2-geodesic connecting ρ1 to ρ2, so, in particular ρ0 = ρ1 and ρ1 = ρ2.
In particular, we recall that there exists a family of Borel vector fields (vt)s∈[0,1] such that ∂sρs+∇·

(vsρs) = 0 in the sense of distributions, W 2
2 (ρ1, ρ2) =

´ 1

0

´
Rd |vs|2dρsds and for any f : P2(Rd)→ R,

W2-differentiable, we have that∣∣f(ρ2)− f(ρ1)
∣∣ =

∣∣∣∣ˆ 1

0

ˆ
Rd

Dµf(ρs)(x̃) · vs(x̃)dρs(x̃)ds

∣∣∣∣
≤
(ˆ 1

0

ˆ
Rd

|Dµf(ρs)(x̃)|2dρs(x̃)ds

) 1
2
(ˆ 1

0

ˆ
Rd

|vs(x̃)|2dρs(x̃)ds

) 1
2

≤
(ˆ 1

0

ˆ
Rd

|Dµf(ρs)(x̃)|2dρs(x̃)ds

) 1
2

W2(ρ1, ρ2).

Furthermore as the function ρ 7→M2
2 (ρ) is displacement convex, it is well known that

M2
2 (ρs) ≤ max

{
M2

2 (ρ1),M2
2 (ρ2)

}
.

With these tools in hand, we can perform the following computation∣∣H(x2, p2, ρ2)−H(x1, p1, ρ1)
∣∣ =

∣∣∣∣ˆ 1

0

d

ds
H
(
(1− s)x1 + sx2, (1− s)p1 + sp2, ρs

)
ds

∣∣∣∣
≤ |x1 − x2|

ˆ 1

0

∣∣DxH
(
(1− s)x1 + sx2, (1− s)p1 + sp2, ρs

)∣∣ ds

+ |p1 − p2|
ˆ 1

0

∣∣DpH
(
(1− s)x1 + sx2, (1− s)p1 + sp2, ρs

)∣∣ ds

+W2(ρ1, ρ2)

(ˆ 1

0

ˆ
Rd

∣∣DµH
(
(1− s)x1 + sx2, (1− s)p1 + sp2, ρs, ·

)∣∣2 dρsds

) 1
2

By (2.3) and by the second moment estimates we have that there exists a constant C > 0 such that∣∣DxH
(
(1− s)x1 + sx2, (1− s)p1 + sp2, ρs

)∣∣ ≤ C (1 + max
{
M2(ρ1),M2(ρ2)

}
+ |x1|+ |x2|+ |p1|+ |p2|

)
and∣∣DxH

(
(1− s)x1 + sx2, (1− s)p1 + sp2, ρs

)∣∣ ≤ C (1 + max
{
M2(ρ1),M2(ρ2)

}
+ |x1|+ |x2|+ |p1|+ |p2|

)
,
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for all s ∈ [0, 1]. Furthermore, as D2
xµH,D

2
pµH are uniformly bounded and (H9) is imposed, there

exists a constant C > 0 depending on these uniform bounds such that∣∣DµH
(
(1− s)x1 + sx2, (1− s)p1 + sp2, ρs, x̃

)∣∣ ≤ C (1 + |x̃|+ |x1|+ |x2|+ |p1|+ |p2|
)
, s ∈ [0, 1].

Therefore, all in all we can conclude that there exists a constant C > 0 depending only on H such
that ∣∣H(x2, p2, ρ2)−H(x1, p1, ρ1)

∣∣(6.2)

≤ C
(
1 +M2(ρ1) +M2(ρ2) + |x1|+ |x2|+ |p1|+ |p2|

) (∣∣x1 − x2
∣∣+
∣∣p1 − p2

∣∣+W2(ρ1, ρ2)
)
.

Then∣∣L(x,DpH(x1, p1, ρ1), ρ1)− L(x2, DpH(x2, p2, ρ2), ρ2)
∣∣

≤
∣∣p1 ·DpH(x1, p1, ρ1)− p2 ·DpH(x2, p2, ρ2)

∣∣+
∣∣H(x1, p1, ρ1)−H(x2, p2, ρ2)

∣∣
≤
∣∣p1 ·DpH(x1, p1, ρ1)− p1 ·DpH(x2, p2, ρ2)

∣∣+
∣∣p1 ·DpH(x2, p2, ρ2)− p2 ·DpH(x2, p2, ρ2)

∣∣
+
∣∣H(x1, p1, ρ1)−H(x2, p2, ρ2)

∣∣
≤ C

(
|p1|+ |DpH(x2, p2, ρ2)|

) (∣∣x1 − x2
∣∣+
∣∣p1 − p2

∣∣+W2(ρ1, ρ2)
)

+
∣∣H(x1, p1, ρ1)−H(x2, p2, ρ2)

∣∣
≤ C

(
1 + |p1|+M1(ρ2) + |x2|+ |p2|

) (∣∣x1 − x2
∣∣+
∣∣p1 − p2

∣∣+W2(ρ1, ρ2)
)

+
∣∣H(x1, p1, ρ1)−H(x2, p2, ρ2)

∣∣
≤ C

(
1 + |x1|+ |p1|+M2(ρ1) +M2(ρ2) + |x2|+ |p2|

) (∣∣x1 − x2
∣∣+
∣∣p1 − p2

∣∣+W2(ρ1, ρ2)
)
,

where we have used that (H1) implies (2.2) and (2.3), and in particular C > 0 depends only on
Lipschitz constants. �

Our main convergence result in this section reads as follows.

Theorem 6.4. Let ρ0 ∈ P2(Rd) and g : Rd ×P2(Rd) be given, (uT , ρT ) be as above. Then, there
exists λ ∈ R such that the family of functions{

uT (t, x)− λ(T − t)
}
T≥0

,

converges locally uniformly on [0,+∞) × Rd as T → ∞ to a function u : [0,+∞) × Rd → R which

is C1,1
loc in space and Lipschitz continuous in time, and ρT converges to a flow of probability measures

ρ : [0,+∞)→P2(Rd) in C([0, t]; (P2(Rd),W2)) for every t > 0. Moreover, the couple (u, ρ) solves
−∂tu− β∆u+H(x,−Du, ρ) + λ = 0, in (0,+∞)× Rd,
∂tρ− β∆ρ+∇ · (ρDpH(x,−Du, ρ)) = 0, in (0,+∞)× Rd,

ρ(0, ·) = ρ0, sup
t∈[0,+∞)

|u(t, x)|
1 + |x|2

<∞,

where the fist equation is satisfied in the viscosity sense, while the second equation is satisfied in the
sense of distributions.

From now onwards, we suppose without loss of generality that T ≥ 2. Let ρ0 ∈ P2(Rd), g :
Rd ×P2(Rd)→ R be given. We introduce the following quantity

(6.3) λT := E

{ˆ T/2+1

T/2

L(X0,ξ,T
s , DpH(X0,ξ,T

s , Y 0,ξ,T
s , ρTs ), ρTs )ds

}
where (X0,ξ,T

s , Y 0,ξ,T
s , Z0,ξ,T

s )s∈(0,T ) is the solution to (3.1) with ξ such that L(ξ) = ρ0.

We define moreover ũT : [0, T ]× Rd → R as

(6.4) ũT (t, x) := uT (t, x)− λT (T − t), ∀ (t, x) ∈ (0, T )× Rd
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and, for any t ∈ [0, T ] we introduce ΨT : [0, T ]→ R given as

ΨT (t) := E
[
ũT (t,X0,ξ,T

t )
]
.

Lemma 6.5. Let ρ0 ∈ P2(Rd), g : Rd ×P2(Rd) → R be given and let (ũT , ρT , λT ) be defined as
above. Then there exists a constant C > 0, depending on the data ρ0, H, g, but independent of T , such
that

(1) sup
t∈[0,T ]

M2(ρTs ) < C,

(2) sup
t∈[0,T ]

|ũT (t, x)| ≤ C
(
1 + |x|2

)
,

(3) for any 0 ≤ t1 ≤ t2 ≤ T ,∣∣∣∣λT (t1 − t2) + E
[ˆ t2

t1

L(X0,ξ,T
s , DpH(X0,ξ,T

s , Y 0,ξ,T
s , ρTs ), ρTs )ds

]∣∣∣∣ ≤ C [e−c0T/4 + e−c0t1 + e−c0(T−t2)
]
.

Proof. First, by Proposition 3.8, we find that sups∈(0,T ) E
[
|X0,ξ,T

s |2
]

is uniformly bounded, from

where we conclude point (1) immediately.

Recall that

E
[
uT (t,X0,ξ,T

t )
]

= E

{ˆ T

t

L(X0,ξ,T
s , DpH(X0,ξ,T

s , Y 0,ξ,T
s , ρTs ), ρTs )ds+ g(X0,ξ,T

T , ρTT )

}
.

Using the definition (6.4), we have

E
[
ũT (t,X0,ξ,T

t )
]

+ λT (T − t) = E

{ˆ T

t

L(X0,ξ,T
s , DpH(X0,ξ,T

s , Y 0,ξ,T
s , ρTs ), ρTs )ds+ g(X0,ξ,T

T , ρTT )

}
,

hence for any 0 ≤ t1 ≤ t2 ≤ T ,

ΨT (t1)−ΨT (t2) = λT (t1 − t2) + E
ˆ t2

t1

L(X0,ξ,T
s , DpH(X0,ξ,T

s , Y 0,ξ,T
s , ρTs ), ρTs )ds

and so, for any t ∈ [0, T ]

(6.5)
d

dt
ΨT (t) = λT − E

[
L(X0,ξ,T

t , DpH(X0,ξ,T
t , Y 0,ξ,T

t , ρTt ), ρTt )
]

Claim 1. There exists C > 0 such that for any 0 ≤ t ≤ T we have∣∣∣∣ d

dt
ΨT (t)

∣∣∣∣ ≤ C [e−c0T/2 + e−c0t + e−c0(T−t)
]
.

Proof of Claim 1. Set, for 0 ≤ t1 ≤ t2 ≤ T and s ∈ [0, T − t2 + t1],

(X̄0,ξ,T
s , Ȳ 0,ξ,T

s , Z̄0,ξ,T
s ) := (X0,ξ,T

s+t2−t1 , Y
0,ξ,T
s+t2−t1 , Z

0,ξ,T
s+t2−t1) and ρ̄Ts := ρTs+t2−t1 .

Then, we have∣∣∣∣ d

dt
ΨT (t1)− d

dt
ΨT (t2)

∣∣∣∣
≤ E

[∣∣∣L(X̄0,ξ,T
t1 , DpH(X̄0,ξ,T

t1 , Ȳ 0,ξ,T
t1 , ρ̄Tt1), ρ̄Tt1)− L(X0,ξ,T

t1 , DpH(X0,ξ,T
t1 , Y 0,ξ,T

t1 , ρTt1), ρTt1)
∣∣∣] .

Now, arguing as in (6.1) we find

(6.6)

∣∣∣∣ d

dt
ΨT (t1)− d

dt
ΨT (t2)

∣∣∣∣ ≤ C√Φ(t1) ≤ C
[
e−c0(T−t2) + e−c0t1

]
,

where in the last inequality we have used Theorem 5.7 (1) (here, C > 0 depends on M2(ρ0), and in
what follows it may increase from line to line). Indeed, it is crucial to mention that the results from
Theorem 5.7 have been used for the two flows (X0,ξ,T

s , Y 0,ξ,T
s , Z0,ξ,T

s ) and (X̄0,ξ,T
s , Ȳ 0,ξ,T

s , Z̄0,ξ,T
s ) only

on the time interval [0, T − t2 + t1]. In particular, the inequality on Φ reads as

Φ(s) ≤ C
[
e−2c0(T−t2+t1−s) + e−2c0s

]
, ∀s ∈ (0, T − t2 + t1).
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Restricting now t1 ≤ T/2 and integrating (6.6) on (T/2, T/2 + 1) with respect to dt2 we deduce

−C
[
e−c0T/2 + e−c0t1

]
≤ d

dt
ΨT (t1)−ΨT (T/2 + 1) + ΨT (T/2) ≤ C

[
e−c0T/2 + e−c0t1

]
but

ΨT (T/2)−ΨT (T/2 + 1) = −λT + E

[ˆ T/2+1

T/2

L(X0,ξ,T
s , DpH(X0,ξ,T

s , Y 0,ξ,T
s , ρTs ), ρTs )ds

]
= 0

by (6.3), so we get the claim for t = t1 ≤ T/2. For t ≥ T/2 we argue similarly, and integrate (6.6)
on (T/2 − 1, T/2) with respect to dt1, for t2 ≥ T/2 fixed. The conclusion follows in this case by
substituting t2 = t.

We notice that in this case we need to also use that

−λT + E

[ˆ T/2

T/2−1

L(X0,ξ,T
s , DpH(X0,ξ,T

s , Y 0,ξ,T
s , ρTs ), ρTs )ds

]
is comparable to e−c0T/2. Indeed, we have∣∣∣∣∣−λT + E

ˆ T/2

T/2−1

L(X0,ξ,T
s , DpH(X0,ξ,T

s , Y 0,ξ,T
s , ρTs ), ρTs )ds

∣∣∣∣∣
=

∣∣∣∣∣E
[ˆ T/2+1

T/2

L(X0,ξ,T
s , DpH(X0,ξ,T

s , Y 0,ξ,T
s , ρTs ), ρTs )ds

]

− E

[ˆ T/2

T/2−1

L(X0,ξ,T
s , DpH(X0,ξ,T

s , Y 0,ξ,T
s , ρTs ), ρTs )ds

] ∣∣∣∣∣
=

∣∣∣∣∣E
[ˆ T/2+1

T/2

[
L(X0,ξ,T

s , DpH(X0,ξ,T
s , Y 0,ξ,T

s , ρTs ), ρTs )− L(X̄0,ξ,T
s , DpH(X̄0,ξ,T

s , Ȳ 0,ξ,T
s , ρ̄Ts ), ρ̄Ts )

]
ds

]∣∣∣∣∣ ,
where

(
X̄0,ξ,T
s , Ȳ 0,ξ,T

s , ρ̄Ts
)

:=
(
X0,ξ,T
s+1 , Y 0,ξ,T

s+1 , ρTs+1

)
. Now, again, by (6.1) and Theorem 5.7 (1) we

find∣∣∣∣∣− λT + E
[ ˆ T/2

T/2−1

L(X0,ξ,T
s ,DpH(X0,ξ,T

s , Y 0,ξ,T
s , ρTs ), ρTs )ds

]∣∣∣∣∣
≤ C

ˆ T/2+1

T/2

√
Φ(s)ds ≤ C

ˆ T/2+1

T/2

[
e−c0(T−s) + e−c0s

]
ds ≤ Ce−c0T/2,

as desired.

Claim 2. ΨT (t) is uniformly bounded in t, T .
For this, it is sufficient to observe that

ΨT (t) = ΨT (T )−
ˆ T

t

d

ds
ΨT (s)ds,

and one concludes by the estimate of Claim 1 and the fact that ΨT (T ) is uniformly bounded with
respect to T using the assumption (H10) on g.

Claim 3. There exists a constant C > 0 such that |ũT (t, x)| ≤ C
(
1 + |x|2

)
.

We have ∣∣ũT (t, x)
∣∣ ≤ E

[∣∣∣ũT (t, x)− ũT (t,X0,ξ,T
t )

∣∣∣]+ E
[∣∣∣ũT (t,X0,ξ,T

t )
∣∣∣]

≤ E
[∣∣Dxũ

T (t, y)
∣∣ ∣∣∣x−X0,ξ,T

t

∣∣∣]+
∣∣ΨT (t)

∣∣
≤ CE

[(
1 + |x|+

∣∣∣X0,ξ,T
t

∣∣∣) ∣∣∣x−X0,ξ,T
t

∣∣∣]+ C ≤ C
(
1 + |x|2

)
,
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where in the penultimate line y is a vector on the line segment connecting x to X0,ξ,T
t and in the last

line we have used that Dxũ
T (t, ·) = Dxu

T (t, ·) grows at most linearly at infinity (cf. Corollary 4.5).
This concludes the proof of Claim 3 and shows point (2) in the statement of this lemma.

To get the last point (3) of the lemma, recall that (6.5) reads

λT (t1 − t2) + E
[ˆ t2

t1

L(X0,ξ,T
s , DpH(X0,ξ,T

s , Y 0,ξ,T
s , ρTs ), ρTs )ds

]
= ΨT (t1)−ΨT (t2) = −

ˆ t2

t1

d

ds
ΨT (s)ds,

and again by the estimates on the derivative of ΨT in Claim 1 one concludes.
�

Proposition 6.6. We suppose that we are in the setting of Lemma 6.5. Then the limit

lim
T→∞

λT = λ

exists and it is finite, and it is independent of ρ0 and g. Moreover, |λT − λ| ≤ Ce−c0T/2, where C
depends on the data and the second moment of ρ0.

Proof. Let us consider two MFG Nash equilibria (ρTs )s∈(0,T ) and (ρT̂s )s∈(0,T̂ ) with data (ρ1
0, g

1) and

(ρ2
0, g

2), set on time horizons of T and T̂ , respectively. We set the Hamiltonian to be the same for both

of them, and without loss of generality, we assume that T̂ > T . Recall the definition of λT and λT̂

from (6.3). Let (X0,ξ,T
s , Y 0,ξ,T

s , Z0,ξ,T
s )s∈(0,T ) and (X̂0,ξ̂,T̂

s , Ŷ 0,ξ̂,T̂
s , Ẑ0,ξ̂,T̂

s )s∈(0,T̂ ) be the corresponding

solutions to (3.1) with L(ξ) = ρ1
0 and L(ξ̂) = ρ2

0. Set

(X̄0,ξ̂,T̂
s , Ȳ 0,ξ̂,T̂

s , Z̄0,ξ̂,T̂
s ) := (X̂0,ξ̂,T̂

s+T̂ /2−T/2
, Ŷ 0,ξ̂,T̂

s+T̂ /2−T/2
, Ẑ0,ξ̂,T̂

s+T̂ /2−T/2
) and ρ̄T̂s := ρT̂

s+T̂ /2−T/2,

for s ∈ [0, T ]. We notice that if s ∈ [0, T ], then s+ T̂ /2− T/2 ∈ [T̂ /2− T/2, T/2 + T̂ /2] ⊂ [0, T̂ ] , and
so these new curves are well-defined.

Now, arguing as in (6.1), we can deduce

(6.7)
∣∣∣λT − λT̂ ∣∣∣ =

≤
ˆ T/2+1

T/2

E
[∣∣∣L(X0,ξ,T

s , DpH(X0,ξ,T
s , Y 0,ξ,T

s , ρTs ), ρTs )− L(X̄0,ξ̂,T̂
s , DpH(X̄0,ξ̂,T̂

s , Ȳ 0,ξ̂,T̂
s , ρ̄T̂s ), ρ̄T̂s )

∣∣∣] ds

≤ Ce−c0T/2,

where in the last inequality we have used that since the flows are taken on the interval [0, T ], hence
for s ∈ [T/2, T/2 + 1] we have by Theorem 5.7 (1)

Φ(s) ≤ C
[
e−2c0(T−s) + e−2c0s

]
= Ce−c0T .

Now, (6.7) shows that λT is a Cauchy sequence, and yields the desired result. The above arguments
show also that λ does not depend on ρ0, g. �

Proposition 6.7. We suppose that we are in the setting of Lemma 6.5. Let T 1 ≤ T 2 and t ≤ T 1/2.

Let (X0,ξ,T 1

s , Y 0,ξ,T 1

s , Z0,ξ,T 1

s )s∈(0,T ) and (X0,ξ,T 2

s , Y 0,ξ,T 2

s , Z0,ξ,T 2

s )s∈(0,T ) denote the corresponding so-

lutions to (3.1) with ξ ∈ L2(Ω,F0,P;Rd) such that L(ξ) = ρ0, with the same final datum g, on time
horizons (0, T 1) and (0, T 2), respectively. Then,∣∣∣E [ũT 1

(t,X0,ξ,T 1

t )
]
− E

[
ũT

2

(t,X0,ξ,T 2

t )
]∣∣∣ ≤ C [e−c0t + e−c0(T 1−t) + e−c0T

1/4
]

for some C > 0 depending on the data ρ0, H, g.
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Proof. Let us consider two MFG Nash equilibria (ρT
1

s )s∈(0,T 1) and (ρT
2

s )s∈(0,T 2) with data (ρ0, g) set

on time horizons of T 1 and T 2. Recall that

(6.8) E
[
ũT

1

(t,X0,ξ,T 1

t )
]

+ tλT
1

= E

{ˆ T 1−t

t

L(X0,ξ,T 1

s , DpH(X0,ξ,T 1

s , Y 0,ξ,T 1

s , ρT
1

s ), ρT
1

s )ds

}
−
(
T 1 − 2t

)
λT

1

+ E

{ˆ T 1

T 1−t
L(X0,ξ,T 1

s , DpH(X0,ξ,T 1

s , Y 0,ξ,T 1

s , ρT
1

s ), ρT
1

s )ds+ g(X0,ξ,T 1

T 1 , ρT
1

T 1)

}
.

and

(6.9) E
[
ũT

2

(t,X0,ξ,T 2

t )
]

+ tλT
2

= E

{ˆ T 2−t

t

L(X0,ξ,T 2

s , DpH(X0,ξ,T 2

s , Y 0,ξ,T 2

s , ρT
2

s ), ρT
2

s )ds

}
−
(
T 2 − 2t

)
λT

2

+ E

{ˆ T 2

T 2−t
L(X0,ξ,T 2

s , DpH(X0,ξ,T 2

s , Y 0,ξ,T 2

s , ρT
2

s ), ρT
2

s )ds+ g(X0,ξ,T 2

T 2 , ρT
2

T 2)

}
.

Notice first that using Lemma 6.5 (3),∣∣∣∣∣E
[ˆ T 1−t

t

L(X0,ξ,T 1

s , DpH(X0,ξ,T 1

s , Y 0,ξ,T 1

s , ρT
1

s ), ρT
1

s )ds

]
−
(
T 1 − 2t

)
λT

1

∣∣∣∣∣ ≤ C [e−c0T 1/4 + e−c0t
]
.

and∣∣∣∣∣E
[ˆ T 2−t

t

L(X0,ξ,T 2

s , DpH(X0,ξ,T 2

s , Y 0,ξ,T 2

s , ρT
2

s ), ρT
2

s )ds

]
−
(
T 2 − 2t

)
λT

2

∣∣∣∣∣ ≤ C [e−c0T 2/4 + e−c0t
]
.

Furthermore, by time shift s(s̄) = s− T 2 + T 1 we can compare∣∣∣∣∣E
ˆ T 1

T 1−t
L(XT 1

s , DpH(XT 1

s , Y T
1

s , ρT
1

s ), ρT
1

s )ds− E
ˆ T 2

T 2−t
L(XT 2

s , DpH(XT 2

s , Y 0,ξ,T 2

s , ρT
2

s ), ρT
2

s )ds

∣∣∣∣∣ =∣∣∣∣∣E
ˆ T 1

T 1−t
L(XT 1

s , DpH(XT 1

s , Y T
1

s , ρT
1

s ), ρT
1

s )ds− E
ˆ T 1

T 1−t
L(XT 2

s(s̄), DpH(XT 2

s(s̄), Y
0,ξ,T 2

s(s̄) , ρT
2

s(s̄)), ρ
T 2

s(s̄))ds̄

∣∣∣∣∣
≤ Ce−c0(T 1−t),

arguing as in (6.1) and applying Theorem 5.7 (3) (note that we are using the crucial fact that, after
time-shift, the two MFG Nash equilibria enjoy the same final condition at time T 1). Similarly, we will
have ∣∣∣E [g(X0,ξ,T 1

T 1 , ρT
1

T 1)
]
− E

[
g(X0,ξ,T 2

T 2 , ρT
2

T 2)
]∣∣∣ ≤ Ce−c0T 1

.

Indeed, for s ∈ (t, T 1) let us consider(
X̄T 2

s , Ȳ 0,ξ,T 2

s , Z̄0,ξ,T 2

s , ρ̄T
2

s

)
:=
(
XT 2

s−T1+T2
, Y 0,ξ,T 2

s−T1+T2
, Z̄0,ξ,T 2

s−T1+T2
, ρT

2

s−T1+T2

)
.

With this choice, we have in particular that both flows,
(
XT 1

s , Y 0,ξ,T 1

s , Z0,ξ,T 1

s , ρT
1

s

)
s∈(t,T 1)

and(
X̄T 2

s , Ȳ 0,ξ,T 2

s , Z̄0,ξ,T 2

s , ρ̄T
2

s

)
s∈(t,T 1)

are defined on the same time interval (t, T 1) and both MFG Nash

equilibria correspond to the same final condition g (and possible different initial conditions). With
this in mind we find that Φ, when associated to these two flows will satisfy in particular (see again
Theorem 5.7 (3))

Φ(T 1) ≤ Ce−2c0T
1

.

Now, using (H10) and the exact same arguments which led to (6.2), we find that∣∣∣E [g(X0,ξ,T 1

T 1 , ρT
1

T 1)
]
− E

[
g(X0,ξ,T 2

T 2 , ρT
2

T 2)
]∣∣∣ ≤ C√Φ(T 1) ≤ Ce−c0T

1

,
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where the constant C > 0 depends on the data and on M2(ρ0), and so our claim follows.

Taking finally the difference between (6.8) and (6.9), and plugging in all the previous inequalities
we obtain∣∣∣E [ũT 1

(t,X0,ξ,T 1

t )
]
− E

[
ũT

2

(t,X0,ξ,T 2

t )
]∣∣∣ ≤ C [e−c0T 1/4 + e−c0T

2/4 + e−c0t + e−c0(T 1−t)
]
,

which shows the desired assertion. �

Now, let us discuss about the convergence of optimal trajectories. We have the following result.

Proposition 6.8. We suppose that we are in the setting of Lemma 6.5. For T > 0 recall that
(X0,ξ,T

s , Y 0,ξ,T
s , Z0,ξ,T

s )s∈(0,T ) denotes the corresponding solutions to (3.1) with ξ ∈ L2(Ω,F0,P;Rd)
such that L(ξ) = ρ0. Then there exists a unique process (Xξ

s )s∈(0,+∞), independent of the final

condition g, such that Xξ
0 = ξ and

lim
T→+∞

sup
s∈[0,t]

E
[∣∣X0,ξ,T

s −Xξ
s

∣∣2] = 0, ∀t > 0.

Note that, since ρTs = L(X0,ξ,T
s ), we have that there exists a unique continuous curve ρ : [0,+∞) →

P2(Rd) starting at ρ0, such that limT→+∞ sups∈[0,t]W2(ρTs , ρs) = 0 for all t > 0. More precisely,

W 2
2 (ρTs , ρs) ≤ Ce−2c0(T−t),∀ s ∈ [0, t].

Proof. First, by Proposition 3.8, we know that sups∈(0,T ) E
[∣∣X0,ξ,T

s

∣∣2] is uniformly bounded with

respect to T > 0. Therefore, it is enough to prove that the family (X0,ξ,T
s )s∈(0,T ) is Cauchy with

respect to T in C([0, t];L2(Ω,F ,P;Rd)), for any t > 0. For this, fix t > 0 and let T and T̂ be given

with the property t < T < T̂ . Let ĝ : R ×P2(Rd) → R be any final datum which satisfies our

standing assumptions. Let us consider (X̂0,ξ,T̂
s , Ŷ 0,ξ,T̂

s , Ẑ0,ξ,T̂
s )s∈(0,T̂ ) be the corresponding solutions

to (3.1) with ξ ∈ L2(Ω,F0,P;Rd) such that L(ξ) = ρ0 and ĝ as a final datum.
Now, when restricting both triples to the time interval (0, T ), they will both describe MFG Nash

equilibria, with the final data given by g and û(T, ·), this being the value function associated to the
second game, at time T .

Therefore, by Theorem 5.7(2), using the definition of Φ from Definition 5.1, we deduce that

(6.10) E
[∣∣∣X0,ξ,T

s − X̂0,ξ,T̂
s

∣∣∣2] ≤ Ce−2c0(T−s) ≤ Ce−2c0(T−t),∀ s ∈ (0, t).

Then, the result follows. �

Remark 6.9. It is important to remark that the limit process (Xξ
s )s∈(0,+∞) that we obtain in Propo-

sition 6.8 could in general have very low regularity. Indeed, in particular a priori we do not even know
if (Xξ

s (ω))s∈(0,+∞) is a continuous path, for ω ∈ Ω. However, by construction we must have that Xξ
s

is Fs-measurable for all s ≥ 0.
It remains an interesting open question to investigate whether the process (Xξ

s (ω))s∈(0,+∞) could
be related to an infinite horizon FBSDE system, such as the ones appearing in [BZ23] for instance.

Proposition 6.10. We suppose that we are in the setting of Lemma 6.5. Then, for any τ ≤ T 1/4,∣∣∣ũT 1

(τ, 0)− ũT
2

(τ, 0)
∣∣∣ ≤ C [e−c0T 1/4 + e−c0(T 1/4−τ)

]
,

for some C > 0 depending on the data ρ0, H, g.

Proof. Let us denote by (Xi,0,ξ
s , Y i,0,ξs , Zi,0,ξs )s∈[0,T i], i = 1, 2 the solutions to the FBSDE system

(3.1) associated with the Mean Field equilibria originating from ρ0, on time horizons T 1 and T 2

respectively, and by (X̂i,τ,ξ̂
s , Ŷ i,τ,ξ̂s , Ẑi,τ,ξ̂s )s∈[τ,T i], i = 1, 2 the solutions to the FBSDE system (4.2)

with input ρis = L(Xi,0,ξi

s ) and ξ̂ = δ0.
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Step 1. Recall first that by (6.10) we have that W2(ρT
1

s , ρT
2

s ) ≤ Ce−c0(T 1−s) for any s ∈ [0, T 1].
Hence, denoting by

Φ̂(s) := E
[∣∣∣X̂1,τ,ξ̂

s − X̂2,τ,ξ̂
s

∣∣∣2]+ E
[∣∣∣Ŷ 1,τ,ξ̂

s − Ŷ 2,τ,ξ̂
s

∣∣∣2] ,
and the associated function ϕ̂ along these flows (as defined in Definition 5.1). First, we observe that
by (5.2) and (5.3) we have that ϕ̂(T 1) is uniformly bounded and ϕ̂(τ) = 0 (as we consider the same

starting random variable ξ̂ at time τ).
Then, for any t > τ , we get by Proposition 5.6 (1) (by setting (t, t1, t2, T ) from that proposition as

(τ, τ, t, T 1))

(6.11) C

ˆ t

τ

Φ̂(s)ds ≤ e−c0(T 1−t) +

(ˆ t

τ

e−c0(T 1−s)ds+

ˆ T 1

t

e−2c0(T 1−t)ds

)
≤ C ′e−c0(T 1−t),

for some C ′ > 0 depending only on the data and M2(ρ0). Recall that for i = 1, 2 it holds

ũT
i

(τ, 0) + λT
i

(t− τ) = E
{ˆ t

τ

L(X̂i,τ,ξ̂
s , DpH(X̂i,τ,ξ̂, Ŷ i,τ,ξ̂, ρT

i

s ), ρT
i

s )ds+ ũT
i

(t, X̂i,τ,ξ̂
t )

}
.

Therefore, taking differences and arguing as in (6.1), with the estimate in (6.11) we get∣∣∣ũT 1

(τ, 0)− ũT
2

(τ, 0)
∣∣∣ ≤ ∣∣∣λT 1

− λT
2
∣∣∣ (t−τ)+Ce−c0(T 1−t)/2 +

∣∣∣E [ũT 1

(t, X̂1,τ,ξ̂
t )

]
− E

[
ũT

2

(t, X̂2,τ,ξ̂
t )

]∣∣∣ .
By the rate of convergence of λT provided in Proposition 6.6 we the conclude∣∣∣ũT 1

(τ, 0)− ũT
2

(τ, 0)
∣∣∣ ≤ Ce−c0T 1/4 + Ce−c0(T 1−t)/2 +

∣∣∣E [ũT 1

(t, X̂1,τ,ξ̂
t )

]
− E

[
ũT

2

(t, X̂2,τ,ξ̂
t )

]∣∣∣ .
Step 2. We now proceed by estimating the last term of the previous inequality. By the triangle

inequality, that is controlled by∣∣∣E [ũT 1

(t, X̂1,τ,ξ̂
t )

]
− E

[
ũT

1

(t,X0,ξ,T 1

t )
]∣∣∣+

∣∣∣E [ũT 1

(t,X0,ξ,T 1

t )
]
− E

[
ũT

2

(t,X0,ξ,T 2

t )
]∣∣∣

+
∣∣∣E [ũT 2

(t,X0,ξ,T 2

t )
]
− E

[
ũT

2

(t, X̂2,τ,ξ̂
t )

]∣∣∣ .
We start by the second term, that can be controlled by Proposition 6.7 by∣∣∣E [ũT 1

(t,X0,ξ,T 1

t )
]
− E

[
ũT

2

(t,X0,ξ,T 2

t )
]∣∣∣ ≤ C (e−c0t + e−c0(T 1−t) + e−c0T/4

)
.

To estimate the first one, define

Φ(s) = E
[∣∣∣X̂1,τ,ξ̂

s −X0,ξ,T 1

s

∣∣∣2]+ E
[∣∣∣Ŷ 1,τ,ξ̂

s − Y 0,ξ,T 1

s

∣∣∣2] ,
and apply Remark 5.9 to conclude that for any s ∈ [τ, T 1].

Φ(s) ≤ Ce−2c0(s−τ)

Therefore, employing the gradient bounds of Corollary 4.5 and uniform second moment bounds we
get∣∣∣E [ũT 1

(t, X̂1,τ,ξ̂
t )

]
− E

[
ũT

1

(t,X0,ξ,T 1

t )
]∣∣∣ ≤ CE [(1 +

∣∣∣X̂1,τ,ξ̂
t

∣∣∣+
∣∣∣X0,ξ,T 1

t

∣∣∣) ∣∣∣X̂1,τ,ξ̂
t −X0,ξ,T 1

t

∣∣∣]
≤ C

√
Φ(t) ≤ Ce−c0(t−τ).

Since the term
∣∣∣E [ũT 2

(t,X0,ξ,T 2

t )
]
− E

[
ũT

2

(t, X̂2,τ,ξ̂
t )

]∣∣∣ can be handled analogously, we conclude that∣∣∣ũT 1

(τ, 0)− ũT
2

(τ, 0)
∣∣∣ ≤ C [e−c0T 1/4 + e−c0(T 1−t)/2 + e−c0t + e−c0(t−τ)

]
.

Choosing finally t = T 1/4 yields the desired assertion.
�
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Corollary 6.11. We suppose that we are in the setting of Lemma 6.5. Let λ be as in Proposition
6.6. Then, the family of functions {

uT (t, x)− λ(T − t)
}
T≥0

converges locally uniformly on [0,+∞) × Rd as T → ∞ to a function u which is C1,1
loc is space and

Lipschitz in time. In particular, for every t ≤ T/8, x ∈ Rd,

(6.12)

∣∣uT (t, x)− λ(T − t)− u(t, x)
∣∣ ≤ Ce−c0T 1/8

(
1 + |x|2

)
,∣∣Dxu

T (t, x)−Dxu(t, x)
)∣∣ ≤ Ce−c0T 1/4 (1 + |x|)

for some C > 0 depending on the data ρ0, H, g. Moreover, u is a viscosity solution to
−∂tu− β∆u+H(x,−Du, ρ) + λ = 0, in (0,+∞)× Rd,

sup
t∈[0,+∞)

|u(t, x)|
1 + |x|2

<∞

where ρ is as in Proposition 6.8.

Proof. Let T 2 > T 1 > 0 and note first that for all x ∈ Rd and t ≤ T1,∣∣∣uT 1

(t, x)− λ(T 1 − t)−
(
uT

2

(t, x)− λ(T 2 − t)
)∣∣∣ =∣∣∣ũT 1

(t, x) + (λT
1

− λ)(T 1 − t)− ũT
2

(t, x)− (λT
2

− λ)(T 2 − t)
)∣∣∣ ≤ ∣∣∣ũT 1

(t, x)− ũT
2

(t, x)
∣∣∣+ Ce−c0T

1/4,

by Proposition 6.6. Moreover, the Mean Value Theorem, Proposition 6.10 and Theorem 5.11 show
that for t ≤ T 1/4,∣∣∣ũT 1

(t, x)− ũT
2

(t, x)
∣∣∣ ≤ ∣∣∣ũT 1

(t, 0)− ũT
2

(t, 0)
∣∣∣+ |x| sup

|y|≤|x|

(∣∣∣Dxũ
T 1

(t, y)−Dxũ
T 2

(t, y)
∣∣∣)

≤ C
[
e−c0T

1/4 + e−c0(T 1/4−t) + e−c0T
1/4|x|(1 + |x|)

]
.

By combining the two previous inequalities we get that, for all x and t ≤ T 1/8,∣∣∣uT 1

(t, x)− λ(T 1 − t)−
(
uT

2

(t, x)− λ(T 2 − t)
)∣∣∣ ≤ Ce−c0T 1/8(1 + |x|2).

Recall also that Theorem 5.11 gives, for all x and t ≤ T 1/4,

|Dxu
T 1

(t, x)−Dxu
T 2

(t, x)
)
| ≤ Ce−c0T

1/4(1 + |x|).
Therefore, the sequences{

uT − λ(T − t)
}
T≥0

,
{
Dx

(
uT − λ(T − t)

)}
T≥0

are Cauchy in C([0, τ ]× Ω) for every compact Ω ⊂ Rd and τ > 0 (and T ≥ 8τ), hence uT − λ(T − t)
(and its gradient Dxu

T ) converges locally uniformly to u (to Dxu, respectively) as T →∞.
Finally, since

(
ρTs
)
s∈[0,T ]

converges locally uniformly (in time) to (ρs)s∈[0,+∞), with sups≥0M2(ρs) <

+∞ and H is assumed to be locally Lipschitz continuous in the measure variable, then H(x, p, ρTt )
converges locally uniformly in (t, x, p)) to H(x, p, ρt), and that u is a viscosity solution to the PDE
follows by standard stability arguments in the theory of viscosity solutions. The uniform control (in
time) on the quadratic growth of u is a consequence of Lemma 6.5 (2).

�

We are now ready to conclude the proof of Theorem 6.4, which is Theorem 1.2 of the introduction.

Proof of Theorem 6.4. This almost follows from Proposition 6.8, on the convergence of ρT , and Corol-
lary 6.11, on the convergence of uT . We are just left to show that the limit (u, ρ) satisfies the Fokker–
Planck equation in the sense of distributions, but this is a consequence of the convergence of ρT in
Cloc([0,+∞),P2(Rd)), the estimates on the gradients in (6.12) and the regularity assumptions on
DpH. �

We conclude this section with a uniqueness result for the limit system satisfied by (u, λ, ρ).
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Theorem 6.12. For i = 1, 2, let λi ∈ R, ui : [0,+∞) × Rd → R be C1,1
loc in space and Lipschitz

continuous in time and ρi ∈ C([0,+∞); (P2(Rd),W2)) be solutions of
−∂tu− β∆u+H(x,−Dxu, ρ) + λ = 0, in (0,+∞)× Rd,
∂tρ− β∆ρ+∇ · (ρDpH(x,−Dxu, ρ)) = 0, in (0,+∞)× Rd,

ρ(0, ·) = ρ0, sup
t∈[0,+∞)

|u(t, x)|
1 + |x|2

<∞,

Then, λ1 = λ2, ρ1 ≡ ρ2 and u1 ≡ u2 + c for some c ∈ R.

Proof. Note first that, for any T > 0, we can make use of the two triples (Xi,T
s , Y i,Ts , Zi,Ts )s∈[0,T ],

i = 1, 2 that solve the FBSDE system (1.6) with g(x) = u1(x, T ) and g(x) = u2(x, T ) respectively,
and L(ξ) = ρ0. Now, since for i = 1, 2,

E
[
u(0, Xi,T

0 )
]

= E
[
u(T,Xi,T

T )
]
− λiT + E

[ˆ T

0

L(Xi,T
s , DpH(Xi,T

s , Y i,Ts , ρis), ρ
i
s)ds

]
,

we have that

∣∣λ1 − λ2
∣∣ ≤

∣∣∣E [u(0, X1,T
0 )

]∣∣∣+
∣∣∣E [u(T,X1,T

T )
]∣∣∣+

∣∣∣E [u(0, X2,T
0 )

]∣∣∣+
∣∣∣E [u(T,X2,T

T )
]∣∣∣

T

+
1

T

ˆ T

0

E
[∣∣L(X1,T

s , DpH(X1,T
s , Y 1,T

s , ρ1
s), ρ

1
s)− L(X2,T

s , DpH(X2,T
s , Y 2,T

s , ρ2
s), ρ

2
s)
∣∣] ds.

The first term of the right hand side of the previous inequality vanishes as T → ∞ by uniform
second moment bounds of Proposition 3.8. Similarly, the integral on (0, T ) appearing in the second
term remains bounded uniformly in T , by means of Theorem 5.7(2) and Remark 6.2. Therefore, we
conclude that λ1 = λ2 by letting T →∞.

Fix now an arbitrary t > 0. To show that ρ1
t = ρ2

t , apply Corollary 5.10(2) and let T → ∞.
Similarly, Theorem 5.11 implies that Dxu

1 ≡ Dxu
2, which means that u1(t, ·) and u2(t, ·) differ by a

constant c(t) that may depend on time. Nevertheless, ui solve

−∂tui − β∆ui = −H(x,−Dxu
1, ρ1)− λ1, in (0,+∞)× Rd

hence, for any T > 0, u1(T, ·) − u2(T, ·) = c(T ) forces c(t) = u1(t, ·) − u2(t, ·) to coincide with c(T )
for any t ≤ T (clearly if β = 0, and as a consequence of the maximum principle if β > 0). Therefore,
c(t) must be identically constant on [0,+∞).

�

Appendix A. Uniform in time semi-concavity and convexity estimates

It is well-known that the value function arising in finite time horizon stochastic or deterministic
control problems is in general semi-concave, under suitable semi-concavity assumptions on the data.
However, most classical proofs available in the literature (cf. [CS04, Theorem 7.4.11]) provide semi-
concavity constants that blow up when the time horizon tends to infinity. For our analysis in this
paper it is crucial to obtain semi-concavity estimates which are uniform in T .

A great number of contributions in the literature address semi-concavity results for value functions.
Besides [CS04, Theorem 7.4.11]), we refer for instance to [GGIS91], [BCQ10], [CP20, Theorem 1.7],
[GPV16, Theorem 5.9] or [CGM24, Theorem 3.11]. However, none of these references address these
estimates in the precise setting suitable for us, i.e. independently of the time horizon or under the
same umbrella regarding first and second order problems. Therefore, for the sake of completeness we
provide the desired semi-concavity results, that are uniform with respect to the time horizon T and
the noise intensity β. These results might be known for experts, but in lack of a precise reference, we
have decided to include the details of the proof.

Lemma A.1. Let L : (0,+∞)×Rd ×Rd → R be continuous, convex and super linear in the velocity
variable, and be such that R2d 3 (x, v) 7→ L(t, x, v) is semi-concave with a constant CL ∈ R, uniformly
in t (i.e. supt>0D

2
(x,v)L(t, ·, ·) ≤ CLI2d in the sense of distributions). Suppose moreover that g :
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Rd → R is semi-concave with the constant Cg ∈ R (i.e. D2g ≤ CgId in the sense of distributions).
Let T > 0. We define the value function u : [0, T ]× Rd → R in the classical way as

u(t, x) := inf E

{ˆ T

t

L(s,Xs, αs)ds+ g(XT )

}
,

subject to

(A.1) Xs = x+

ˆ s

t

ατ dτ +
√

2βBts,

where (t, x) ∈ [0, T ] × Rd, β ≥ 0 and (Bτ )τ∈[0,T ] is a given Brownian motion and Bts := Bs − Bt,
s ∈ [t, T ]. Then u(t, ·) is semi-concave for all t ∈ [0, T ], with a semi-concavity constant depending only
on CL and Cg, which is in particular independent of T and β.

Proof. First, we notice that our standing assumptions ensure the existence of and optimal control and
an optimal state process (αs, Xs)s∈[t,T ] in the definition of the value function.

Let δ > 0 be fixed and let t ∈ (0, T − δ) be fixed. Then the dynamic programming principle yields

u(t, x) = inf E

{ˆ t+δ

t

L(s,Xs, αs)ds+ u(t+ δ,Xt+δ)

}
.

Let x, y ∈ Rd, λ ∈ [0, 1] and set xλ := (1 − λ)x + λy. Let (Xs)s∈(t,T ) and (αs)s∈(t,T ) be such that
Xt = xλ and

u(t, xλ) = E

{ˆ t+δ

t

L(s,Xs, αs)ds+ u(t+ δ,Xt+δ)

}
.

By carefully following the proof of [CS04, Theorem 7.4.11] (in the case of β = 0), our assumptions
imply that that u(t, ·) is semi-concave with a constant depending linearly on (T − t). Now, we are
going to show that this semi-concavity constant can in fact be chosen independent of T .

Let us consider the processes

Xx
s := (1− (s− t)/δ)x+ xλ(s− t)/δ +

ˆ s

t

ατ dτ +
√

2βBts = (1− (s− t)/δ)(x− xλ) +Xs,

and

Xy
s := (1− (s− t)/δ)y + xλ(s− t)/δ +

ˆ s

t

ατ dτ +
√

2βBts = (1− (s− t)/δ)(y − xλ) +Xs.

We notice that Xx
t = x, Xy

t = y and Xx
t+δ = Xy

t+δ = Xt+δ. We have furthermore that (1 − λ)Xx
s +

λXy
s = Xs, i.e.

(1− λ)Xx
s + λXy

s = xλ +

ˆ s

t

ατ dτ +
√

2βBts.
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Thus

(1− λ)u(t, x) + λu(t, y)

≤ (1− λ)E

{ˆ t+δ

t

L(s,Xx
s , (xλ − x)/δ + αs)ds+ u(t+ δ,Xx

t+δ)

}

+ λE

{ˆ t+δ

t

L(s,Xy
s , (xλ − y)/δ + αs)ds+ u(t+ δ,Xy

t+δ)

}

= E

{ˆ t+δ

t

[(1− λ)L(s,Xx
s , (xλ − x)/δ + αs) + λL(s,Xy

s , (xλ − y)/δ + αs)] ds+ u(t+ δ, xt+δ)

}

≤ E

{ˆ t+δ

t

L(s,Xs, (1− λ)(xλ − x)/δ + λ(xλ − y)/δ + αs)ds

}

+
C

2
λ(1− λ)E

{ˆ t+δ

t

[
|Xx

s −Xy
s |2 +

1

δ2
|x− y|2

]
ds+ u(t+ δ, xt+δ)

}

= u(t, xλ) +
C

2
λ(1− λ)

ˆ t+δ

t

[
(1− (s− t)/δ)2 + 1/δ2

]
|x− y|2ds

= u(t, xλ) +
C

2
λ(1− λ)|x− y|2

ˆ 1

0

[
δ(1− r)2 + 1/δ

]
dr = u(t, xλ) +

C

2
(δ/3 + 1/δ)λ(1− λ)|x− y|2.

These arguments show that u(t, ·) is semi-concave, uniformly with respect to t ∈ (0, T − δ), with a
constant depending on the data and on (δ/3 + 1/δ).

Now, for t ∈ [T − δ, T ], we can use classical arguments to have a semi-concavity estimate with a
constant that depends on the length of the interval, i.e. δ in a linear way. Indeed, for x, y ∈ Rd, as
above, we consider xλ = (1−λ)x+λy and (Xs)s∈(t,T ) and (αs)s∈(t,T ) as in (A.1) optimal for u(t, xλ).
Now, we have

(1− λ)u(t, x) + λu(t, y)

≤ (1− λ)E

{ˆ T

t

L(s,Xs + x− xλ, αs)ds+ g(XT + x− xλ)

}

+ λE

{ˆ T

t

L(s,Xs + y − xλ, αs)ds+ g(XT + y − xλ)

}

≤ E

{ˆ T

t

[
L(s,Xs, αs) +

C

2
λ(1− λ)|x− y|2

]
ds+ g(XT ) +

C

2
λ(1− λ)|x− y|2

}

≤ u(t, xλ) + (1 + δ)
C

2
λ(1− λ)|x− y|2,

which indeed proves our claim.

Combining the two previous arguments for t ∈ (0, T − δ) and t ∈ [T − δ, T ], respectively, we can
choose a small (universal) constant δ, such that u(t, ·) is semi-concave with a constant depending on
the data (but independent of β and T ). �

It is also well-known that for fully convex control problems, the value function inherits this con-
vexity. We recall this result here (see for instance [MM24, Lemma 3.4] or [BMM24] on this matter).

Lemma A.2. Suppose that we are precisely in the setting of Lemma A.1. Suppose that the functions
Rd × Rd 3 (x, v) 7→ L(t, x, v) and Rd 3 x 7→ g(x) are convex. Then Rd 3 x 7→ u(t, x) is convex for all
t ∈ [0, T ].
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This, together with the implications of Lemma A.1 implies that there exists a constant C > 0
depending only on CL and Cg (but independent of T or β) such that

ess sup
(t,x)∈[0,T ]×Rd

|D2
xxu(t, x)| ≤ C.
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