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1 Introduction and statement of the result

Given a convex function A : [0,+00) — [0,+00) vanishing at 0, briefly a Young function, consider the
Dirichlet-type functional associated with A and defined as

(1.1) /nA(|Vu|)dac

at any real-valued function u from the Sobolev space W1 (IR").
We are concerned with the problem of minimizing the functional (1.1) in the class of all weakly differ-
entiable rearrangements of some prescribed nonnegative function v € WH(IR") at which (1.1) is finite.
Recall that a measurable nonnegative function in IR™ is called a rearrangement of u if it has the same
distribution function as w. Such a distribution function is denoted by g : [0, 400) — [0, 400) and is given
by

p(t) = L"({u>t}) fort >0,

where L™ stands for the Lebesgue measure. Obviously, p is well-defined provided that
(1.2) L"({u>0}) < 400,

an assumption which will be always kept in force throughout.
A classical result, known as the Polya—Szego principle, tells us that if u is nonnegative and belongs
to WHL(IR™), then its spherically symmetric rearrangement u*, defined as

w(x) = sup{t > 0: pu(t) > w,|z|"} forz € R",



is also in WH1(IR"), and is a minimizer of the constrained variational problem under consideration (here,
wy, is the measure of the unit ball in IR"). In other words, v* € WH(IR") and

(1.3) /WA(WU*D de < /WA(WUD do

for every nonnegative u € WH(IR") (see [Bae, BZ, H, K1, S, T]). Thus, every solution to the relevant
minimum problem has to fulfill

(1.4) /WA(WU*D de = /WA(|W|) dz < +oo.

Accordingly, any nonnegative function v € WH(IR") satisfying (1.2) and (1.4) will be called a minimal
rearrangement relative to A.

In recent years, the study of minimal rearrangements (and of related topics) has attracted the attention
of various authors working on symmetrizations (see e.g. [BZ, Bu, CF1, CF2, ET, FV1, FV2, M, K1,
K2, U]). A major contribution to this issue was given by Brothers and Ziemer in [BZ]. The result states
that if
(1.5) A s strictly convex

and u is a minimal rearrangement relative to A satisfying

(1.6) L'{Vu=0}N{0 < u<esssupu}) =0,
then
(1.7) w=u" L"—a.e. (up to translations).

Note that this theorem is proved in [BZ] under a somewhat stronger assumption than (1.5); the conclusion
is however true for any strictly convex Young function A, as observed e.g. in [Bu, CF1]. Notice also that,
in the original statement of [BZ], hypothesis (1.6) is replaced by

LP{Vu =0} N{0 < u* < esssupu}) =0,

a condition equivalent to the absolute continuity of p in [0, esssupu), which is in general weaker than
(1.6), but which is in fact equivalent to (1.6) for functions u satisfying (1.4) ([CF1, Lemma 3.3]).

The aim of the present paper is to investigate minimal rearrangements in the general situation where
even (1.5) and (1.6) are dropped. Counterexamples show that (1.7) need not hold in this case. Actually,
if either (1.5) or (1.6) is removed, then functions u, satisfying (1.4) and whose level sets {u > ¢} are non
concentric balls for ¢ > 0, can be exhibited.

To see that (1.5) is indispensable, suppose first that A is linear in the whole of [0, 400); namely, A(s) = as
for some a > 0 and for s > 0. Then, as a consequence of the coarea formula, any nonnegative function
u € WHH(IR") having (non necessarily concentric) balls as level sets fulfills (1.4). If A is affine just in some
interval [sq,ss] C [0,+00), then, for the same reason, any u € W(IR") whose spherically symmetric
rearrangement satisfies |[Vu*| = (s + s2)/2 in {0 < " < esssup u}, and whose level sets are balls with
centers so close to 0 that |Vu| € [s1, s2] in {0<u<esssupu}, is still a minimal rearrangement.

As for the necessity of (1.6), observe that, if at least one plateau {u = to} with £L"({u=1tp}) > 0 is
allowed for some ty > 0, then any function which is not necessarily globally symmetric, but which is
separately symmetric in {0 <u<tg} and in {to <u} satisfies (1.4) for every A. More subtle examples of
(smooth) non symmetric minimal rearrangements «, not fulfilling (1.6), but yet with £"({u = t}) = 0 for
every t > 0, can also be worked out (see [BZ]). Thus, strict convexity of A and absence of critical points,



as required in (1.6), are essentially sharp assumptions for every minimal rearrangement to be necessarily
symmetric.

Our main result tells us that, although a minimal rearrangement can be asymmetric if these assump-
tions are not in force, nevertheless the asymmetry of u can be measured by the size of the set of those
points = where either (1.6) or (1.5) is violated, i.e. which are either critical for u, or for which A fails to
be strictly convex at |Vu(z)|. More precisely, denote by {.J;} the family of all open maximal intervals in
(0,400) on which A is affine, and set
(1.8) L=uJ;.

Then an estimate for the distance in L!(IR") of u* from a suitable translate of u is provided in terms of

£o({|Vaul € {0} U L} N {0<u<esssupu}), £%({u> 0}) and /]RnAqw) da.

Theorem 1.1 A constant C'(n), depending only on n, exists such that, if A is any Young function
vanishing only at 0, and u is any minimal rearrangement relative to A, then

1.9 inf —ur d
(1.9) nf [ Jule +y) = (@) de

. L /nA(|Vu|)dac
< C(n) (ﬁn({u>0})) 2n (,C”({|Vu| e {0} UL}N{0<u<esssup u})) S (W) .

Remarks (i) Inequality (1.9) can be regarded as a quantitative version of the theorem of Brothers and
Ziemer. In particular, the stability of conclusion (1.7) under perturbations of assumption (1.6) follows
from (1.9).

(ii) Estimates like (1.9) with the Ll-norm replaced on the left-hand side by stronger Lebesgue (or Orlicz)
norms could also be derived. This requires an additional step to the proof of (1.9), which makes use of
classical Sobolev inequalities when A(t) = t? for some p > 1, and of suitable extensions to Orlicz-Sobolev
spaces ([C1, C2]) in the general case.

(iii) If A is not even strictly positive in (0,4o00), then any information about minimal rearrangements is
lost. Indeed, assume that a positive number tg exists such that A(t) = 0 for ¢ € [0,¢o]. Then any Lipschitz
continuous function w satisfying (1.2) and such that |Vu(z)| < ¢y for £7- a.e. 2 € R™ is a minimal

rearrangement. Indeed, [nA(|Vu|)dz =0, and hence, by (1.3), [ A(|Vu*|)dz = [ A(]Vu|)dz = 0.

The remaining part of the paper is devoted to the proof of Theorem 1.1. An analysis of the level sets
{w > t} of minimal rearrangements u, and of the behaviour of |Vu| restricted to the level surfaces {u = t},
is carried out in the next section. The results there established refine the first part of the argument of
[BZ]. The core of the proof of Theorem 1.1, where this preliminary study is used to derive information
about the mutual displacement of the level sets {u > ¢} as ¢ ranges in [0, esssupu), is contained in the
last section, and differs substantially from that of [BZ]. Our approach is rather inspired by the methods
of [FV2] (and [FV1]), where an alternate proof of Brothers and Ziemer’s result is given in an even more
general framework.

2 Preliminary results

In this section we establish some basic properties of minimal rearrangements that constitute our starting
point in the proof of Theorem 1.1. These are a variant, concerning the case of non necessarily strictly
convex A, of certain properties which are by now well-known under assumption (1.5). The key tool here



is a sharp version of Jensen’s inequality (Lemma 2.1), which enables us to characterize all the equality
cases (Corollary 2.2).

Let A be a Young function. We denote by A’ : [0, +00) — [0, 400) the unique left-continuous function
such that

- / A'(t) dt forall s> 0.
0

Recall that, since A is convex, then A’ is non-decreasing, and hence its distributional derivative D?4 is
a positive Radon measure. Let us denote by supp(D?A) the complement in (0, +00) of the largest open
set where D?A vanishes. Then we have

(0, +00) \ supp(D U Ji s

where the J;’s are defined as in Section 1.

Lemma 2.1 Let (E,v) be a measure space, with v(E) < 400 and let A be a Young function. Given any

v-integrable function f: F — [0,+00), set fi :][ fla)dv. Then
I

[ AU@ @ = AU [ [ (e -gder | @] - f@)dve).

[fE,+o0) {f>t} (0,/B) {r<t}

Proof. We may assume, without loss of generality, that v(F) = 1. Let us fix so > 0. Since

A(s) — A(so) :/ Atydt, ifs>0,and A()= Al(so)+ [ dDA(r)  ift> so,

[s0:t)
an application of Fubini’s theorem yields
(2.1) A(s) — A(so) = A'(s0) (s — s0) + : )(s — 1) dD*A(T) if s > sg.
50,5
Similarly, we have that
(2.2) A(s) — A(so) = A'(s0) (s — s0) + : )(T — 5) dD?*A(T) if s <sg.
5,50

Now, choose s = f(x) and so = fr and integrate (2.1) on {f > fr} and (2.2) on {f < fr}. On adding
up the two resulting equations, one obtains

[ Atwl@) dv@) = AUg) = [ AU (@) = f) dvia)

o @ g@-naho [ wwf - s

= dD?A XUp.r o) () (f(z) —t)dv(2) + dD*A Nty (O (F(2) =) dv(z
[f,409) (o gy A () (f () —t)dv(x) o ey U ) t0) (O (f(2) =) dv ()

_ dD?A(t)/ (f(a) = ) dv(a +/ dD’AWN [ (fl2) = 1) dv(e)

)
(
[fB.+o0) {f>t} {f<t}

where g denotes the characteristic function of a set 5. The conclusion follows. O



Corollary 2.2 Let (E,v), A and f be as in Lemma 2.1. If

(2.3) 4 AU @) o) = A(ﬁ f(z) dv<x>),

then either

(i) f=const. v-a.e. in F

or

(i) an index i exists such that (essinf f,esssup f) C J;.

Proof. Assume that (i) is not true, i.e. f is not constant on F, and set
| @ =nae i ez g
{/>t}

(1) =
/{M}(t—f(x))dy(x) i 0<t< i

Then ®(¢) > 0 for all ¢ € (essinf f,esssup f). Assumption (2.3) and Lemma 2.1 yield
+ oo
/ ®(t) dD?A(t) = 0.
0

Therefore, (essinf f,esssup f) is contained in (0, +0c) \ supp(D?A4), since the latter set is the largest open
subset of (0,4oc) where the positive measure D?4 vanishes. Hence (ii) follows. O

Let u be a function from W (IR") and let ¢ : R — [0, +-oc) be a Borel function. The coarea formula

states that
+ oo
(2.4) | o@ivu@lde = [t o) arn @),
R” —oo {u=t}

where H"~! stands for the (n — 1)-dimensional Hausdorff measure. Observe that the standard version
of this formula involves the essential boundary of {u > t} instead of {u = ¢}. However, every Sobolev
function u possesses representatives @ with the property that, for £!-a.e. ¢ € R, the level surface {4 = t}
and the essential boundary of the level set {u > t} differ by a set of zero-H"~! measure. In (2.4), and in
what follows, it is understood that we are dealing with such representatives.

The main result of this Section, stated in Theorem 2.3 below, provides us with a distinguished
representative of any minimal rearrangement. Henceforth, any minimal rearrangement will be always
identified with such a representative.

Theorem 2.3 Let A be any Young function vanishing only at 0, and let v be a minimal rearrangement
relative to A. Then there exist a function equivalent to w, and still denoted by u, and a family of open

balls {Us} >0 such that:
(i) {u>t}=U fort€[0,esssupu);
(ii)) {u=esssupu} = ﬂ Uy,  and is a closed ball;

0<t<esssupu

(iii) w is lower semicontinuous;
(iv) if u(z) € (0,esssupu) and L ({u = u(x)}) =0, then v € Uy (y);
(v)  for everyt € (0,esssupu) there exists at most one point v € AU, such that u(x) # t;



(vi)  the coarea formula (2.4) holds for u;
(vii)  for L'-a.e. t € (0,esssupu), either

(2.5) |Vu(z)] = |Vu*||jpzsy  for H* t-a.e. z € U,
or
(2.6) there exists an index i such that |Vu(x)| € J; for H" l-a.e. x € IU;.

Proof. Fix any representative of u, still denoted by w, for which (2.4) holds. An application of (2.4)
with ¢ = x{vyu=0o) yields

(2.7) H ' {Vu=0}n{u=1t}) =0 for L1-a.e. t € [0,+00) .

Hence, by Jensen’s inequality,

/ |VU|d n—1
n—1 n—1 _ n—1
(2'8/ A(IWI)d%n_le {u=t}| Vul _ / L ({U—n_tl}) / dH
{u=t} |Vl / dH {u=t} |Vl / dH fu=t} |Vl
{u=ty |Vl fumt} |V

for L1-a.e. t € [0,esssupu). The derivative of the distribution function u satisfies

n—1 * — ¢ 1
(2.9) %|Vu(*{||z *_t}}) =—u'(t) > /{ —t}m dH" ! for Ll-a.e. t € [0, esssupu).

(see e.g. [BZ] and [CF1, Lemma 3.2 and (3.19)]). Since A(s)/s non decreasing, (2.9) yields

=) | [ (10 =) (= 1))
2.10) A | = — AW > A T gyt e
o [T gl T =y 1= ) T

for L1-a.e. t € [0,esssupu). The standard isoperimetric inequality ensures that
2.11) W (fu = 1) = W ({0 = 1)

for L'-a.e. t € [0,esssupu), and that equality holds in (2.11) if and only if {u > ¢} is equivalent to a
ball. From (2.11) and the monotonicity of A we infer that

Wt ({u=1)) Ht (= 1) AV le=n)
(2.12) A(mwu ||{u*:t}) V] e > T H* ({u” =1t})

(wr=t}  |Vu*]

Combining (2.8), (2.10), (2.12) and making use of the coarea formula (2.4) entails that
+oo A +oo A *
(2.13)/ AV de = / dt/ (Vl) jpyn-t > / dt/ AUV a1 _ / AV ) de.
R™ 0 (=t} |Vl 0 (wr=t} |Vu*] R”

6




Since u is a minimal rearrangement, equality holds in the last inequality. Hence, equality has to hold
also in (2.8), (2.10) and (2.12) for a.e. ¢ € [0, esssup u). In particular, since A is strictly increasing, from
(2.12) we get that

{u >t} is equivalent to a ball for £L1-a.e. t € [0, esssupu).

With this property of u in place, the existence of a representative of u satisfying (i), (ii), (iii) and (iv)
follows quite easily (see [CF'1, Lemma 4.1] for details).

As far as (v) is concerned, assume that 2 € dU; and u(z) # t. Since « ¢ Uy, then u(z) < t. Let 7 be
any number in (u(x),t). We have » € U, C U, and = € U,, whence 2 € dU,. Thus, the balls U; and
U, are tangent at z. If there were another point y € 0U,, with u(y) # ¢, then all the balls U, with
7 € (max{u(z),u(y)},t) would be tangent at « and y, and hence all these balls would coincide. Thus

p would be constant in (max{u(z),u(y)},t) and, consequently, u*, the decreasing rearrangement of u

defined as
(2.14) u™(s) = sup{t > 0: u(t) > s} fors >0,

would be discontinuous at p(max{u(z),u(y)}). This is impossible, since
ut () = u™(wnle|")

and u* is a Sobolev function.

Property (vi) is a straightforward consequence of (v), which ensures that for £l-a.e. t € [0, esssup u)
d{u >t} and {u =t} differ at most for one point.

Finally, to prove assertion (vii), apply inequalities (2.8), (2.10), (2.12) and (2.13) to the representative
constructed above. Since equality holds in (2.8), Corollary 2.2 ensures that for £'-a.e. t € [0, esssup u),
there either exists a positive constant ¢; such that

(2.15) |Vu(z)| = ¢ for H" tae. v € {u=1t},

or an index ¢ such that

(2.16) |Vu(z)| € J; for H" tae. » € {u=1t}.

Thus, to conclude the proof we need only to show that if (2.15) is in force and (2.16) does not hold, then
(2.17) et = |Vu*| | fur=r} -

To this aim, let us denote by .J; the (possibly empty) open interval from the family {.J;}, having the form
(0, s9) and such that A(s) = as for some a € R and for every s € (0, 59). Since

A(s) . ) ) )
——= s strictly increasing for s > sg,
s
and ¢, € J; = [0, so], then
A A
(2.18) (s) + (ct) for all s # ¢;.
S Cy

Thus, inasmuch as (2.10) holds as an equality, (2.17) follows from (2.18). O



The next corollary is a consequence of Theorem 2.3. In the statement, we denote by R; and Cf the
radius and the center, respectively, of the ball U, and set R;- = lim,._,,- R.

Corollary 2.4 Let x € R” and let t = u(z). Ift € (0,esssupu), then
26" ({u=t})

Y !

(2.19) dist(z, 0Uy) <

Proof. If £"({u=1t}) =0, then (2.19) follows from assertion (iv) in Theorem 2.3. If, on the contrary,
Lr({u=1t}) >0, then {u=1t} = ( ﬂ UT) \ Uy, and ﬂ U, is equivalent to a ball of radius R;-. Thus
0<T<t 0<T<t

dist(z, 0U;) < 2R,— — 2R, .
2Ry~ By)

n—1
=

Since 2R~ — 2R; < , inequality (2.19) follows. ]

3 Proof of Theorem 1.1

Throughout this section u denotes (the representative provided by Theorem 2.3 of) a minimal rearrange-
ment relative to a Young function A vanishing only at 0.
Define the functions o : IR” — [0, +00) as

(3.1) o(z) = p(u(z)) forz € R".
and ® : IR" - R as '/n
(3.2) O(z) = (?) forz € R".

Since the decreasing rearrangement u* is continuous, then u*(u(t)) =t for t € [0, esssup u]. Hence, u can
be factored as in [FV1, FV2] by

(3.3) w(z) = v (p(u(z))) = v (w, @(2)") for L™-a.e. . € R™.

Starting from this expression for u, the proof consists in showing that, if u is suitably translated, then
the function ®(z) does not differ too much from |z| in a large subset of the support of u, and consequently
u is close to w* in L'(IR™). A difficulty here is that, in contrast to the case of Brothers and Ziemer’s
theorem, the function p need not be absolutely continuous. This is apparent from the representation
formula

dH !
wer} [V ()]

(3.4) wp(t)=L"({u=-esssupu}) + L"({Vu=0}N{t < u < esssupu})+ /tesssupu dr/{

for every ¢ € [0, esssup u), which follows from the coarea formula (2.4). Further complications arise due
to the presence of a set of non strict convexity of A.

The idea is then to work with appropriate modifications ji, & and ® of 1, o and &, respectively, which
enjoy suitable regularity properties and take into account only the set of strict convexity of A, and whose
deviation from p, o and @ can be quantified. To this purpose, we set

F={zeR": |Vu(z) € {0}UL}N{0 < u < esssupu},



where L is given by (1.8), and we define

XRe\F(2)

dH™™ Y fort > 0.
w=r}y |[Vu(z)]|

(3.5) A(t) = L"({u = esssupu})+ /tesssupu dr/{

Observe that, on setting
G={t>0: H" ' Hu=t}nF)=0},

then, owing to (vii) of Theorem 2.3, the function g admits the alternate representation

esssup u n—1 —
(3.6) pa(t) = L7 ({u = esssup u}) —I—/ Xg(r)% {u=7}) dr  fort > 0.
¢ IVl |fu=ry
Parallely to (3.1) and (3.2), we define
(3.7) o(x) = pi(u(z)) forz € R",
and B Y
d(z) = (ﬁ) forz € R".
Wn,
We begin with an estimate for p in terms of i and of the ratio
o
-~ Lr({u>03)

Lemma 3.1 Assume that ¢ < 1. Then there exists t. € (0,+o00] such that

(3-8) L' ({u>te}) < Vel ({u>0}),

39) (1= VAl < i) Fo<i<t.,
and

(3.10) LP{Vu=0}n{t <u<esssupu}) < VL' ({u > t}) ifo<t<t..
Proof. Set

te=inf {t>0: i(t) < (1 -},

where we agree that inf ) = +o00. Since

X{Vugtopnr ()

d/}_ln—l
[Vu(z)|

(B11) pu(t) — a(t) = L"({Vu=0}N{t < u < esssupu}) + /tesssupu dr/{u:T}
=L"{u>t}NF) <eL({u>0})

for every t € [0,esssupu), and since ¢ < 1, then pu(t) — fi(t) < +/ep(t) if ¢ is sufficiently small, then
te > 0. Now, (3.9) holds by the very definition of ¢.. As for (3.8), if {. = 400, there is nothing to prove.

Otherwise, note that, since u is right continuous and i is continuous, ¢, is in fact a minimum. Therefore,
by (3.11),

VER(t) < plts) - (L) < L7 ({u > 0})
Hence, (3.8) follows. Finally, (3.10) is a consequence of (3.9) and of the first equality in (3.11). O



The next lemma tells us that & is Lipschitz continuous, and gives a formula for its gradient.
Lemma 3.2 The function & € W1 (Uy). Moreover,

(3.12) Va(z) = -H" ({u= U($>})%X{Vu?go}\p'($) for L7-a.e. x € Up.

Proof. Set

XRe\F(2)

dH™™ Y fort >0,
u=r} 1+ [Vu(z)]

(3.13) Py (t) = L"({u = esssupu}) + /tesssupu dr/{

and note that, analogously to (3.6), fi,(t) can be alternatively written as

H ({u=r))

dr fort > 0.
N+ [Vuljpu=ry

esssup u
(3.14) filt) = £7(u=esssupup) + [ xo(7)
Clearly, fi,(t) 1 fi(t) for every t > 0 as | 0. Moreover, fi, is Lipschitz continuous in [0, 400), and, by
(3.14),
W ({u=t})

— Yalt for Ll-ae. t >0,
n+ [Vl fu=g )

(1) =

whence

i) — () < T {u=tva ()

< for Ll-a.e. t > 0.
|Vl fu=r) (77 + |VU||{u:t})

Thus, 7, (1) — p#'(t) Lla.e. in [0,+00) as 5 — 0, since |Vl u=ty # 0 for Ll'-a.e. t € G, inasmuch as

ot (u=t))

(t) € L*(0,00). This membership and the fact that
|Vl fu=r)

H ({u=t})

xal(t for L'-a.e. t >0
IVl fu=n )

i, (1) = ' (1)) <
entail that g, — i’ in L1(0,00). Hence, fi, — ji uniformly in (0,00). Consequently, the real-valued
functions &, in R” defined as &,(z) = fi,(u(2)) for x € R”, converge uniformly to &. Furthermore, by
(3.13) and by the chain rule for Sobolev functions (see e.g. [AFP, Theorem 3.96]),

Vu(z)

ng(x) - ﬁ%(u(x))Vu(x) = "1 {u=nu(z)}) n—+ |VU||{u:u(x)}

XIR"\F(x) fOf ,Cn—a.e. T E UO .

Clearly, the last expression converges to the right-hand side of (3.12) £"-a.e. as n — 0. Now, recall
that, for L™-a.e. 2 € Uy satisfying £"({u = u(z)}) > 0, we have Vu(z) = 0; on the other hand, by
Theorem 2.3, L"-a.e. @ € Uy such that £L*({u=u(z)}) = 0 fulfills 2 € U, ), and hence H"~' ({u=
u(z)}) = nwy (Rypy)" ' < nw, RG~. Thus,

VG, (2)| < nw, RG™! for L™-a.e. x € Uy.

By dominated convergence, V&, converges to the right-hand side of (3.12) in L!(Up). The conclusion
follows. |

10



We conclude our preparatory results with a lemma dealing with perturbations of radial Sobolev
functions. In the statement Bpr denotes the ball, centered at 0, having radius R.

Lemma 3.3 Let R be a positive number, and let g be a monotone function from I/Vllo’cl(O7 R). Letry,ry
and & be real numbers satisfying 0 < 6 < ry <rog <re+ 98 < R, and let 1p: Bg — [0, R] be a measurable
function such that

(3.15) | (x) — ||| < o for L"-a.e. © € Br.
Then
r1 n—1
(3.16) fo o 900 = lelde <25 (2) T [ Sige) e

Proof. Assume, for instance, that ¢ is non-decreasing (the case where ¢ is non-increasing being com-
pletely analogous). Owing to (3.15),

g(z] = 0) < g(lz]) < g(|z|+ ) and g(|z|-0) <g(v(x)) < g(lz|+6) for L7-ae. z € By, \ By,
whence
l9((x)) — g(lz)| < g(|=| +6) — g(|=| = 9) for L"-a.e. w € By, \ By, .

Thus, (3.16) holds thanks to the following chain of inequalities:

/13T2\Brl|g(¢($)) g(|z]) |dx</ d,o/ g(p+3) — (p—5)|d’]-[”_1:nwn/r2gn—1|g(p+5)_g(p_5)|dp

r1
r

n— 1 r
= nwn(S/ g”_ldp/ g (p+dt)dt < nwn(S( ! 5) 1/ dt/ 2g’(p—|—5t)(p—|—5t)”_1dp
r - —1 r1

r1

< e n 1/ dt/r2+5 ety 25( )n—l/ |V( (| |))|d
< nw, 6 r= g(|z z.
7’1—5 L= 5 Br2+§\Br1—(5

We are now in position to accomplish the proof of Theorem 1.

Proof of Theorem 1. Throughout the proof, we assume that Uy is translated in such a way to coincide
with Bp,. Hence, both u and u* are supported in Uy. Suppose, for the time being, that ¢ < 1/2. By
(3.9),

0< o(z) - 5(z) < Veo(z) if u(z) < t.
whence
(3.17) () — B(2)] < w}j/” (0(z) — 5(2))/" < B(2)e if u(z) < ..
By Lemma 3.2, we have that
V() = ﬁ(a(a@»%—lvm - ﬁ(&(z)ﬁ*%n*({u - u<x>}>%xwo}w<w> ,
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for @ € L"-a.e. & € Uy. Thus, for L™-a.e. & € Uy such that u(z) < t.,

~ 1 _ 1 B ,u(u(ac)) 1-1/n 1 1-1/n
3.18) |V®(2)] < —— (fi(u(2)) 7 'nwt/ ™ (u(u(z 11/n=<~ ) S( ) .
(318 V8] < (o)) (u(u(2))) o —
Observe that the first inequality holds owing to (iv) of Theorem 2.3 and to the fact that Vu = 0 L£"-a.e.
in {fu=wu(z)} if L*({u=u(x)}) > 0, whereas the second inequality is a consequence of (3.9). Thus, if
u(z),u(y) < te, then by (3.17)-(3.18)

- . 2=y .

(3.19) [@(z)—@(y)| < [®(z) —(x)| + |(y) —P(y)| + [®(2) —P(y)| £ ———F= + (®(2) +P(y))e2.
(1—vB)=

Fix t and 7 such that 0 < 7 < ¢ < t.. By (v) of Theorem 2.3, sequences {z,,} C dU; and {y,,} C oU;

exist such that w(z,,) = t, w(y,) = 7 and 1i_r>n |%m — ym| =dist(0U;, dU;). Since ®(z,,) = R; and

®(y,,) = R, applying (3.19) with z and y replaced by z,, and y,,, respectively, and passing to the limit

as m — o0, yield

dist(0Uy, OU;
R, — Ry < IS(—t’n;l)—F(Rt—FRT)%?%-
(1-v&) =
Thus,
1
|Ct - Cq—| = Rq— - Rt - dist(@Ut, 8Uq—) S dist((?Ut, 8Uq—) T a1 T 1| + (Rt + Rq—){fﬁ .
TEVCE
Hence, a constant ¢1(n), depending only on n, exists such that
(3.20) ICy — C+| < e1(n)Roe?n
We claim that there exists a constant cz(n) such that
(3.21) 1B(2) — |2|| < ca(n)Ros2w if0 < u(z) <.,

where t. is provided by Lemma 3.1. Indeed, fix any « satisfying 0 < u(z) < t., and set t = u(z). Then,
¢(z) = Ry, and
20" ({u=1)

R !

(3.22) |®(2)—|e|| < [Ri—|o = Cil[ 4[|z = Ci| =[2]] < dist(z, 0U;) +[C4] < + e1(n) Roc?7,

where, in the last inequality, we have made use of Corollary 2.4 and of (3.20) with 7 = 0. Since

Lr({u=t}) . LP{Vu=0}n{r<u<esssupu)})
ot S £ ({u>7)) |

then (3.21) follows from (3.22) and (3.10).
We next notice that

(3.23) L7 ({u>t}) < 2w, VeRg if t. < esssupu.
Actually, by (3.10),

(3.24) L"({u=t:}) < lim L"({Vu=0} n{t<u<esssupu}) < lim eL"({u>1t}) < VeL"({u>0}).

12



Combining (3.24) with (3.8) yields (3.23).
We are now ready to estimate [ |u—u*|dz. We split Uy in the subsets {u* > t.} and {u* < t.}. Consider

the former first. If ¢, < esssup u? then an application of Hélder inequality, of the Sobolev inequality, and
of (3.23) tells us that

1
* *|n' n! n *
(3.25) /{u%}m— v de < (/{u*zn}m—u | dx) (" = 1.1)

1

1
nwn/ "

1
n

21—|—1/n

< Qwa) ez Ry | |Vu — Vut|de < cwm Ry | |Vu|da.
UO UO

Note that here we have made use of the fact that u and w* have the same distribution function and of
(1.3). If t. = esssupu, then by (ii) of Theorem 2.3, the set {u>1.} is a closed ball whose center is the
limit of Cy as t 1 esssup u. Hence, the ball {u>t.} has radius smaller than or equal to Rg and, by (3.20)

with 7 = 0, its center has norm not exceeding cl(n)Roeﬁ. Easy geometric considerations entail that, if
two balls have the same radius r and centers with distance equal to d, then the Lebesgue measure of their
symmetric difference does not exceed c3(n)r"~1d for some constant c3(n). Consequently, there exists a

constant c4(n) such that L7 ({u"=esssup u} \ {u=esssupu}) < cq(n) 35%. Since

/ |u—u*|dw:/ |u — u*|da
{u*=esssupu} {u*=esssupu}\{u=esssupu}

then an analogous chain of inequalities as in (3.25) yields
(3.26) / lu — | de < c5(n)g#30/ V| da
{u*=esssupu} Uo

for some constant c5(n).
Let us finally consider the subset {u*<t.}. By (3.8), Ry, < €ﬁRo. Set r, = QCQ(n)Roeﬁ, where ¢3(n)
is the constant appearing in (3.21). Assume first that Ry, > r.. By (3.3),

(3.27) / lu — u*| da g/ |u—u*|dac:/ 0% (w0, @ (2)) — ™ (wn]2[™)] da .
(ur<t.) (ur<t.) Bro\Bx,,

By Lemma 3.3 applied with g(s) = u*(w,s"), ¥(z) = ®(z), ro = Ry, r1 = Ry, and § = cz(n)Roeﬁ, and
by (3.21), the last integral in (3.27) is smaller than or equal to
Ry

n—1
QCQ(H)ROQS% ( : - ) / |Vu™| da .
Rta — Cz(n)Roe’fﬁ BRO

In conclusion,
(3.28) / lu— | dz < zncz(n)ROgﬁ/ V| de < 27co(n)Roc? | [Vu| da.
{ur<te} Uo Uo
In the case where r. > R;,, we write
(3.29) / |u—u*|dw:/ |u—u*|dx—|—/ |u — w*|da .
{u*<te} Bro\Bre By \Bg,,
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The former integral on the right-hand side of (3.29) can be estimated as in (3.28). As for the latter, an
analogous chain of inequalities as in (3.25) yields

/ |u — u*|da < (/
B, B,

for some constant cg(n). Thus,

, 1/n’
|lu — u*|™ dx) (worm/m < 06(71)5%]%0/ |Vu| dz
Ug

€

(3.30) / |lu — w|de < (2"¢c(n) + CG(n))eﬁRo/ |Vu|dz .
{U«*<ta} UO

Combining either (3.25) or (3.26) with either (3.28) or (3.30) ensures that there exists a constant c7(n)
such that

/ |lu —u*| de < w(n)]ﬁﬁ#/ |Vu|dz .
n Uy

Note that here we have made use of the fact that € does not exceed 1. Since, by Jensen’s inequality,

/UOA(|Vu|)dac

(3.31) /Uo|vu| dv < L™(Ug) A™! (W) 7

inequality (1.9) follows in the case where 0 < e < 1/2.
If ¢ > 1/2, then an application of Holder’s inequality, of the Sobolev inequality and of the Pélya—Szegd
inequality with A(s) = s as in (3.25) tells us that

2
/|u—u*|dac§ : /J”(Uo)l/”/ V| de
Us /m Us

nwWn,

whence, by (3.31),

, / A(IVul)da
= | da < Lo (U gt (S )
U0| | N nw}z/n ( 0) 'Cn(UO)

Since we are assuming that ¢ > 1/2, this inequality obviously implies that

e | AQvulyda
u—u*|de < L (U Ten? AT Freeee—— |,
U0| | dw < ne/™ (o) ( L (Uy) )
and (1.9) holds also in this case. O
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