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Abstract. For s ∈ (0, 1) small, we show that the only cones in R2 stationary for the s-perimeter
and stable in R2 \ {0} are half-planes. This is in direct contrast with the case of the classical
perimeter or the regime s close to 1, where nontrivial cones as {xy > 0} ⊂ R2 are stable for inner
variations.
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1. Introduction

In this work, we prove that for s close to zero, half-planes are the only s-minimal cones in R2

that are stable in R2 \ {0}. Here, by an s-minimal cone, we mean an open cone E ⊂ R2 that is an
s-minimal surface (that is, a stationary set for the s-perimeter under inner variations). This result
is purely nonlocal since it is in direct contrast with both the classical case (formally s = 1) and the
regime where s is close to 1, where the cross X = {xy > 0} is a nontrivial (i.e., not a half-plane)
stationary cone in the plane that is stable for inner variations, in any reasonable sense.

Nevertheless, for s close to zero, the cross X is unstable in R2 \ {0} (see Appendix), and has
infinite index by Corollary 1.4. Our proof relies on the behavior of the best constant in Hardy’s
inequality for the Hσ(R) seminorm as σ ↓ 1/2.

Classification results for s-minimal cones in Rn have been previously proved in different ranges
of s and n and with various hypotheses on the cone, such as minimality in compact subsets or
stability. Before stating our main result precisely and some consequences in Subsection 1.1, let us
recall the previous literature on this problem. Even though slightly different notions of stability
have been used in the literature—see Subsection 1.2 for a complete discussion about this—the
known classification results for s-minimal cones in Rn can be summarized as follows.

The table below has to be read in this way: for a cone E ⊂ Rn, the hypotheses in each row
imply that the E is a half-space.
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Class of cones: Range of s:

[SV13a,SV13b] Minimizing in R2 ∀ s ∈ (0, 1)

[CSV19] Stable by rearrangements1in R2 ∀s ∈ (0, 1)

[CCS20] Stable and smooth in R3 \ {0} s close to 1

[CDSV23] Stable and smooth in R4 \ {0} s close to 1

[CV13] Minimizing in Rn, for 2 ≤ n ≤ 7 s close to 1

Let us stress that the results in [SV13a, SV13b] provide, for all s ∈ (0, 1), the classification of
cones in R2 minimizing the s-perimeter in compact sets, in accordance with the classical case.
These results do not imply that stable s-minimal cones in R2 are flat. In fact, for the notion
of stability that we consider in this work (Definition 1.1 below), which is the most natural one
induced by inner variations and also used in similar contexts like stationary varifolds, this fact is
not even believed to be true for all s ∈ (0, 1). Indeed, for inner variations, the cross X is expected
to be a stable s-minimal cone in R2 for s close to 1, again in accordance with the classical case.

The following is the notion of stability that we use is this work.

Definition 1.1 (Stability). Let U ⊂ Rn be an open set and E be an s-minimal surface in U (see
Definition 2.4). We say that E is stable in U if for every bounded Lipschitz domain Ω ⋐ U we
have

δ2Pers(E,Ω)[X] :=
d2

dt2

∣∣∣∣
t=0

Pers(ϕ
X
t (E),Ω) ≥ 0, ∀X ∈ C2

c (Ω;Rn),

where ϕX
t : Ω → Ω is the flow of X at time t > 0.

Remark 1.2. By [CFSS24, Lemma 3.11], if Pers(E,Ω) < +∞ and X ∈ C2
c (Ω;Rn) then the map

t 7→ Pers(ϕ
X
t (E),Ω) is well-defined for all t > 0 and of class C2. Thus, the previous definition of

stability is meaningful without any a priori assumption on the regularity of E.

For s close to zero, the situation could differ from that of the classical perimeter. For example,
in [DdPW18, Theorem 4], for s close to zero, the authors construct a non-flat s-minimal cone in R7

that is smooth and stable in R7 \ {0}. This is in contrast with the case of the classical perimeter
since, by a celebrated result by Simons [Sim68], for 3 ≤ n ≤ 7, the only cones in Rn that are
smooth and stable in Rn \ {0} are the hyperplanes. We refer to [Che69, Chapter 9] for a simplified
exposition of Simons’ result and to [CG18, Theorem 1.16] for a modern presentation.

In this work, for small s, we prove the first classification result for stable s-minimal cones in
R2 \ {0} in direct contrast with the case of the classical perimeter or the regime s close to 1. The
precise statement of our main result is as follows.

Theorem 1.3. There exists s◦ ∈ (0, 1/2) with the following property. Let s ∈ (0, s◦) and E ⊂ R2

be an s-minimal cone stable in R2 \ {0} (see Definition 1.1). Then E is a half-plane.

Moreover, using the fact that s-minimal cones with finite Morse index outside the origin are
stable outside the origin (which is a trivial observation in the classical case of the perimeter,
but not entirely trivial for s-minimal cones, see the beginning of Section 4), we deduce that the
conclusialon of Theorem 1.3 also holds for cones of finite Morse index.

Corollary 1.4. The classification of Theorem 1.3 holds for s-minimal cones of finite Morse index
in R2 \ {0} (see Definition 1.5).

1The notion of stability by rearrangements, which is Definition A in Subsection 1.2, is an ad-hoc notion of stability
developed to get rid of cross-like singularities directly from the definition.
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Here and in the rest of this work, by finite Morse index, we mean with respect to the following
notion introduced in [CFSS23,FS24].

Definition 1.5 (Morse index). Let U ⊂ Rn be an open set and E be an s-minimal surface in U
(see Definition 2.4). We say that E has Morse index at most m in U if for every bounded Lipschitz
domain Ω ⋐ U , for every (m+1) vector fields X1, . . . , Xm+1 ∈ C2

c (Ω;Rn), there exists coefficients
a1, . . . , am+1 ∈ R such that a21 + . . .+ a2m+1 = 1 and

δ2Pers(E,Ω)[a1X1 + . . .+ am+1Xm+1] ≥ 0.

In the Appendix, we give a direct proof that the cross X is unstable in R2 \ {0}, for s close to 0.
Since X is not flat, this fact is already contained in Theorem 1.3. Nevertheless, we provide a very
short independent proof since we believe it captures the main idea in the proof of Theorem 1.3.

1.1. Min-max curves and model singularities. On a closed Riemannian manifold (Mn, g),
the volume spectrum, introduced by Gromov, is a sequence of geometric invariants {ωp(M, g)}p∈N
called p-widths, which can be thought of as a nonlinear analog of the spectrum of the Laplacian.
We refer to [MKSS24, Section 2.2] or [CM23, Section 2] for the precise definition of the p-widths.
These p-widths play a crucial role in the theory of minimal hypersurfaces. In ambient dimension
3 ≤ n ≤ 7, each p-width equals the weighted area of the union of disjoint, connected, smooth,
closed, embedded minimal hypersurfaces. These hypersurfaces can be chosen to satisfy a bound
on their Morse index, meaning that the sum of the Morse indices of the connected components is
at most p.

For n = 2, the situation is different as min-max methods on surfaces typically only produce
stationary geodesic networks with regular support up to finitely many points (e.g., [Pit74]), making
the standard index control techniques ineffective. In this direction, Chodosh and Mantoulidis
recently achieved a significant breakthrough in [CM23], showing that on surfaces, the p-widths are
achieved by finite unions of closed immersed geodesics rather than simply geodesic nets.

In the case of geodesics on surfaces, the regularity of these objects cannot be improved, meaning
that even for generic metrics, the min-max scheme will produce immersed geodesics that are not
embedded. At every self-intersection point, the tangent cone to these geodesics consists of a finite
union of distinct lines intersecting transversely, which cannot be ruled out.

On the other hand, in this case of ambient dimension two, these multiple-junction model
singularities (where the tangent cone consists of a finite union of distinct lines) are the only
obstruction to a complete regularity of these geodesic nets arising from a min-max scheme. If one
knew that there are no points of multiple-junction, then the net would be a finite union of disjoint,
closed, embedded geodesics. This is even true in higher dimensions under suitable hypotheses.
Indeed, by a deep result by Wickramasekera [Wic14], for 3 ≤ n ≤ 7, any stationary, stable on its
regular part codimension 1 varifold without multiple-junctions is smooth (to say, it is supported
on a finite union of disjoint, smooth, embedded, connected hypersurfaces).

Let us now turn to the implications of this work to “fractional geodesics”. Recall that, similarly
to the terminology used for sets of finite perimeter (e.g., [Mag12, Part II]), an s-minimal surface is,
to be precise, a set E ⊂ M with finite s-perimeter and zero first variation (Definition 2.4 below).
Nevertheless, with a bit of abuse of the notion, we often refer to just its boundary ∂E as “the”
surface, which is a codimension one object.

The main result of this work, together with the one by the author and collaborators in [CFSS23],
implies that the situation for the fractional analog of the volume spectrum is, for s small and n = 2,
drastically different from the classical one of geodesics. We refer to [FS24,CFSS23] for the precise
definition of the fractional widths {ℓs,p(M, g)}p∈N and for the proof that these are indeed attained
by s-minimal surfaces Es

p with Morse index at most p on M , in the sense of Definition 1.5 above.



4 M. CASELLI

Moreover, by [CFSS23, Proposition 3.27], these surfaces are slightly more than stationary for inner
variations: they are viscosity solutions of the NMS (i.e., Nonlocal Minimal Surface) equation.

Since having Morse index at most p is a property that is stable under blow-up, by the
monotonicity formula for s-minimal surfaces (see [MSW19, Lemma 6.2] or [CFSS24, Theorem
3.4]) and the BV-estimate in the finite Morse index case [FS24, Theorem 5.4] we have that, for
every x ∈ ∂Es

p, any blow-up of Es
p around x is a cone in Rn of finite Morse index in Rn \{0}. Thus,

if the ambient Riemannian manifold is two-dimensional and s ∈ (0, s◦), where s◦ is the constant of
Theorem 1.3, every such cone is a half-plane. This fact, together with the improvement of flatness
theorem for viscosity solutions of the NMS equation in [CRS10] (see also [CFSS23, Theorem 4.14]),
implies that ∂Es

p has a unique flat tangent cone at every point. Then, one can deduce that ∂Es
p is

smooth by arguing exactly as in the first part of the proof of [CFSS23, Theorem 4.12]. We refer
the reader to [CFSS23, Section 4] for all the details of this blow-up procedure to show regularity.

Hence, on a Riemannian surface (M2, g) and for s small, the fractional widths {ℓs,p(M2, g)}p∈N
are attained by smooth s-minimal surfaces, that are a finite union of smooth embedded curves.

1.2. On the different notions of stability. In recent years, two different notions of stability for
s-minimal surfaces have been used in the literature [CSV19,CCS20]. We refer to [CCS20, Section
2] for a discussion on these two notions of stability and why a second notion (other than the natural
one coming from inner variations) was developed. For the sake of clarity, we recall their major
difference here and the role played in this work.

First, we have the natural notion of stability coming from inner variations of the set, which we
call just stability and is our Definition 1.1. This is the usual notion of stability, which is also used
in the context of stationary varifolds.

Secondly, we have a stronger notion of stability coming from “outer rearrangements” of the set.

Definition A (Definition 1.6 in [CSV19]). Let Ω ⊂ Rn be a bounded open set and E be a set with
Pers(E; Ω) < +∞. Then, E is said to be stable by rearrangements in Ω if, for every vector field
X ∈ C2

c (Ω;Rn) there holds

lim inf
t→0+

1

t2
(
Pers(ϕ

X
t (E) ∩ E,Ω)− Pers(E,Ω)

)
≥ 0,

and

lim inf
t→0+

1

t2
(
Pers(ϕ

X
t (E) ∪ E,Ω)− Pers(E,Ω)

)
≥ 0,

where ϕX
t : Ω → Ω is the flow of X at time t > 0.

In [CSV19], this notion is called just “stability”, but we believe this terminology to be slightly
misleading for the reason that follows. While for sets with C2 boundary in Ω and s ∈ (0, 1],
Definition A is known to be equivalent to Definition 1.1 (see [CCS20, Remark 3.2] for a proof of this
fact), for singular objects they do not coincide in general. In particular, stability by rearrangements
(Definition A) allows to infinitesimally break the topology of the set E, while classical stability
by inner variations does not. We emphasize that the notion of stability by rearrangements was
developed ad-hoc to get rid of cross-like singularities directly from the definition.

Remark 1.6. In the case of the classical perimeter (formally s = 1), these two notions of stability
are indeed different, since the cross X is stable in R2 but is not stable by rearrangements in R2.
Nevertheless, since X is smooth outside the origin, X is stable for both notions in R2 \ {0}.

Observe that our Definition 1.1 is weaker than Definition A. Indeed, assume that E is stable by
rearrangements in Ω. For every X ∈ C2

c (Ω;Rn), by the elementary inequality

Pers(ϕ
X
t (E),Ω) + Pers(E,Ω) ≥ Pers(ϕ

X
t (E) ∩ E,Ω) + Pers(ϕ

X
t (E) ∪ E,Ω),
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it follows that

lim inf
t→0+

1

t2
(
Pers(ϕ

X
t (E),Ω)− Pers(E,Ω)

)
≥ 0. (1)

By [CFSS24, Lemma 3.11], the map t 7→ Pers(ϕ
X
t (E),Ω) is of class C2 for all t > 0. Hence, the

limits in

a1 :=
d

dt

∣∣∣∣
t=0

Pers(ϕ
X
t (E),Ω) and a2 :=

d2

dt2

∣∣∣∣
t=0

Pers(ϕ
X
t (E),Ω)

exist. It follows that a1 = 0 (assuming the opposite, for some X ∈ C2
c (Ω;Rn) one would get the

lim inf in (1) to be −∞), and consequently

a2
2

= lim
t→0+

1

t2
(
Pers(ϕ

X
t (E),Ω)− Pers(E,Ω)− ta1

)
= lim

t→0+

1

t2
(
Pers(ϕ

X
t (E),Ω)− Pers(E,Ω)

)
≥ 0.

Thus, E is stable in Ω for Definition 1.1.

Remark 1.7. To be precise, in [CCS20] the authors take (1) as their definition of stability. Even
though this seems to be slightly different from the notion of stability used in this work (Definition
1.1), since t 7→ Pers(ϕ

X
t (E),Ω) is of class C2 for X ∈ C2

c (Ω;Rn), by the argument above the two
notions are equivalent without any additional hypotheses on the set E.

To explain the surprising part of this work further, let us start by recalling the precise statement
of the two available results in the literature on the classification of s-minimal cones in R2.

Theorem 1.8 ([SV13a,SV13b]). Let s ∈ (0, 1) and E ⊂ R2 be an s-minimal cone minimizing the
s-perimeter in compact sets of R2. Then, E is a half-plane.

Theorem 1.9 (Corollary 1.16 in [CSV19]). Let s ∈ (0, 1) and E ⊂ R2 be an s-minimal cone that is
stable by rearrangements in R2 (i.e., for Definition A for every Ω ⋐ R2). Then, E is a half-plane.

Since every set that minimizes the s-perimeter in compact sets is stable by rearrangements, we
see that Theorem 1.9 is stronger than the previous Theorem 1.8. The key point for which our
result is, in the range s small, more surprising than Theorem 1.9 is the following: Theorem 1.9
assumes stability (by rearrangement) also around the vertex of the cone, while our Theorem 1.3
assumes stability just in R2 \ {0}. This is a major difference since Theorem 1.9 does not hold only
assuming that E is stable by rearrangements in R2 \ {0}. Actually, this classification of cones in
the plane stable in R2 \ {0} is not even expected to be true for all s ∈ (0, 1), since the cross X is
expected to be stable in R2 \ {0} for the s-perimeter and s close to 1, in accordance with the case
of the classical perimeter.

In this regard, our classification result Theorem 1.3 for cones in the plane stable in R2 \ {0} is
of purely nonlocal nature and represents a remarkable difference from the theory of the classical
perimeter.

2. Preliminary tools

Our proof relies on the Hardy inequality for the Hσ(R) seminorm and, specifically, on the
asymptotic behavior of its optimal constant as σ ↓ 1/2. The sharp constant in this inequality has
been established in [FS08] (equation (1.6)), and it is also stated in [CCS20, Theorem 3.3]. We
will also use the fact that radially symmetric functions in C2

c (R \ {0}) nearly saturate Hardy’s
inequality; this is proved in Section 3.3 of [FS08].

Theorem 2.1 (Hardy’s inequality). Let n ≥ 1, σ ∈ (0, 1) and u ∈ Hσ
0 (Rn \ {0}). Then

Hn,σ

∫
Rn

u2

|x|2σ
dx ≤ cn,σ

∫∫
Rn×Rn

|u(x)− u(y)|2

|x− y|n+2σ
dxdy,
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where

Hn,σ = 22σ−1(σ − n/2)2
Γ(n/4 + σ/2)2

Γ(n/4− σ/2 + 1)2
,

and

cn,σ = 22σ−1π−n/2Γ(n/2 + σ)

Γ(2− σ)
σ(1− σ).

Moreover, the inequality is saturated by radial functions, that is: for every ε > 0 there exists a
radial function ξ(x) = ξ(|x|) ∈ C2

c (Rn \ {0}) such that(
Hn,σ + ε

) ∫
Rn

ξ(x)2

|x|2σ
dx ≥ cn,σ

∫∫
Rn×Rn

|ξ(x)− ξ(y)|2

|x− y|n+2σ
dxdy.

In particular, for n = 1, s ∈ (0, 1/2) and σ = 1+s
2 the constant reads as

H
1,
1+s
2

= s22s−2Γ(
2+s
4 )2

Γ(4−s
4 )2

,

and, by elementary properties of the Gamma function, it can be easily checked that

H
1,
1+s
2

c
1,
1+s
2

≤ Cs2

C 1+s
2 (1− 1+s

2 )
≤ Cs2,

for some absolute C > 0 and every s ∈ (0, 1/2).

Summarizing, taking the ξ relative to ε = H
1,
1+s
2

in the saturation statement above, for every

s ∈ (0, 1/2) there exists an even function ξ ∈ C2
c (R \ {0}) such that∫

R

ξ(x)2

|x|1+s
dx ≥ 1

Cs2

∫∫
R×R

|ξ(x)− ξ(y)|2

|x− y|2+s
dxdy.

Lastly, for the same ξ, this directly implies∫ ∞

0

ξ(x)2

x1+s
dx ≥ 1

Cs2

∫ ∞

0

∫ ∞

0

|ξ(x)− ξ(y)|2

|x− y|2+s
dxdy. (2)

Before stating precisely all the tools that we will need on the first and second variation of
the fractional perimeter, we recall the notion of fractional s-perimeter, which was introduced by
Caffarelli, Roquejoffre, and Savin in [CRS10].

Definition 2.2. For s ∈ (0, 1), the fractional perimeter (or s-perimeter) of a measurable set
E ⊂ Rn is defined as

Pers(E) :=
1

2
[χE ]

2
Hs/2(Rn)

=

∫∫
E×Ec

1

|x− y|n+s
dxdy.

The s-perimeter also has a natural localized version in a bounded open set Ω ⊂ Rn, in the same
spirit of the localized fractional Sobolev spaces Hs(Ω). This is of use because, for example, one
would like to say that a hyperplane in Rn is an s-minimal surface (see Definition 2.4 below) even
though a half-space has infinite s-perimeter for Definition 2.2.

Definition 2.3. Let s ∈ (0, 1) and Ω ⊂ Rn be a bounded, open set. The fractional perimeter (or
s-perimeter) of a measurable set E in Ω is defined as

Pers(E,Ω) :=
1

2

∫∫
Rn×Rn\Ωc×Ωc

|χE(x)− χE(y)|2

|x− y|n+s
dxdy.

Note that for Ω = Rn we recover Definition 2.2.
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Definition 2.4 (s-minimal surface). Given U ⊂ Rn open, a set E is said to be an s-minimal
surface in U if for every bounded Lipschitz domain Ω ⋐ U we have Pers(E,Ω) < +∞ and

d

dt

∣∣∣∣
t=0

Pers(ϕ
X
t (E),Ω) = 0, ∀X ∈ C2

c (Ω;Rn),

where ϕX
t : Ω → Ω is the flow of X at time t > 0.

By the first variation formula (e.g, [FFM+15, Theorem 6.1] or [FS24, Proposition 5.1]), if E is
an s-minimal surface in Rn and ∂E is of class C2 then

P.V.

∫
Rn

χEc(y)− χE(y)

|x− y|n+s
dy = 0, ∀x ∈ ∂E. (3)

The left-hand side is denoted by HE
s (x) and called the nonlocal mean curvature of E at x.

Remark 2.5. Inspecting the proof of the first variation formula in [FFM+15, FS24], it follows
that if ∂E is C2 just in a neighborhood of x ∈ ∂E and is globally Lipschitz, then (3) holds at x.

It is well known that, for sets with C2 boundary, the nonlocal mean curvature can be expressed
as a boundary integral (see, for example, the introduction of [CFSMW18] or [CFMN18]). Precisely

HE
s (x) =

2

s
P.V.

∫
∂E

(y − x) · ν∂E(y)
|y − x|n+s

dσ(y), (4)

where ν denotes the outer unit normal to ∂E.

In the proof of our main theorem, we will need to use this fact for a cone in R2, which is not
necessarily C2 globally. The validity of this representation formula (4) at some x ∈ ∂E does not
really require the smoothness of ∂E everywhere, but just smoothness in a neighborhood of x and
mild regularity of ∂E outside this neighborhood. Since the author could not find any precise
statement of this fact, and since we will crucially need it, we state and prove it here.

Lemma 2.6. Let s ∈ (0, 1), and let E ⊂ Rn be a set that is a finite union of open domains with
Lipschitz boundary. Let x ∈ ∂E and assume that ∂E is C2 in a neighborhood of x. Then HE

s (x)
can be expressed as in (4).

Proof. Fix ε > 0 small. As the statement is invariant by translations, we can assume x = 0 ∈ ∂E.
Observe that

div

(
y

|y|n+s

)
= − s

|y|n+s
.

We want to apply the divergence theorem to the vector field F ∈ C1(Rn \ Bε;Rn) defined by

F (y) = y|y|−(n+s), but this has not compact support. Nevertheless, since |F | = o(|y|1−n) as
|y| → +∞, it is a classical fact that the divergence theorem can be applied (e.g., [Ser83, Corollary
5.2]). Hence, by the divergence theorem, we can infer∫

∂(E\Bε)

y · ν(y)
|y|n+s

dσ(y) =

∫
E\Bε

div

(
y

|y|n+s

)
dy = −s

∫
E\Bε

1

|y|n+s
dy,

where ν is the outer unit normal to ∂(E \Bε). Similarly∫
∂(Ec\Bε)

y · ν̃(y)
|y|n+s

dσ(y) = −s

∫
Ec\Bε

1

|y|n+s
dy,

where ν̃ is the outer unit normal to ∂(Ec \Bε). Note that

∂(E \Bε) = (∂E \Bε) ∪ (∂Bε ∩ Ec), and ∂(Ec \Bε) = (∂Ec \Bε) ∪ (∂Bε ∩ E),
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and that ν̃ = −ν on the shared part of the boundary ∂E \Bε = ∂Ec \Bε. Thus, subtracting the
two equalities above

s

∫
Rn\Bε

χEc(y)− χE(y)

|y|n+s
dy =

∫
∂(E\Bε)

y · ν(y)
|y|n+s

dσ(y)−
∫
∂(Ec\Bε)

y · ν̃(y)
|y|n+s

dσ(y)

= 2

∫
∂E\Bε

y · ν(y)
|y|n+s

dσ(y)−
∫
∂Bε∩Ec

dσ(y)

|y|n+s−1
+

∫
∂Bε∩E

dσ(y)

|y|n+s−1
.

Moreover

−
∫
∂Bε∩Ec

dσ(y)

|y|n+s−1
+

∫
∂Bε∩E

dσ(y)

|y|n+s−1
=

1

εn+s−1

(
Hn−1(∂Bε ∩ E)−Hn−1(∂Bε ∩ Ec)

)
,

and it easily follows from the hypothesis that ∂E is C2 in a neighborhood of 0 that

Hn−1(∂Bε ∩ E)−Hn−1(∂Bε ∩ Ec) = O(εn).

Thus

−
∫
∂Bε∩Ec

dσ(y)

|y|n+s−1
+

∫
∂Bε∩E

dσ(y)

|y|n+s−1
= O(ε1−s) → 0, as ε → 0+.

Letting ε → 0+ above and diving both sides by s gives

P.V.

∫
Rn

χEc(y)− χE(y)

|y|n+s
dy =

2

s
P.V.

∫
∂E

y · ν∂E(y)
|y|n+s

dσ(y),

which is what we wanted to prove. □

If ∂E is smooth, the second variation can be written in a form very reminiscent of the second
variation formula for classical minimal surfaces. This second variation formula for smooth s-
minimal surfaces was proved in [DdPW18,FFM+15] , and has recently been generalized to ambient
Riemannian manifolds in [FS24].

Theorem 2.7. Let E be an s-minimal surface in Rn, and assume that ∂E is C2 in some bounded
open set Ω. Then, for every X ∈ C2

c (∂E ∩ Ω;Rn), setting φ := X · ν∂E, we have

δ2Pers(E; Ω)[X] =

∫∫
∂E×∂E

(
|φ(x)− φ(y)|2

|x− y|n+s
− |ν∂E(x)− ν∂E(y)|2

|x− y|n+s
φ(x)2

)
dσ(x)dσ(y),

where ν∂E is the outer unit normal to ∂E. In particular, if E is stable in Ω, there holds∫∫
∂E×∂E

|ν∂E(x)− ν∂E(y)|2

|x− y|n+s
φ(x)2 dσ(x)dσ(y) ≤

∫∫
∂E×∂E

|φ(x)− φ(y)|2

|x− y|n+s
dσ(x)dσ(y), (5)

for every φ ∈ C2
c (Ω).

2.1. The BV-estimate for small s. It is known [CSV19,FS24] that stable s-minimal surfaces
enjoy a uniform interior BV-estimate, and that the same holds for stable solutions of the fractional
Allen-Cahn equation [CCS21,CFSS23]. The results in these references only control the dependence
of the constant from s as s → 1. In this work, we need the same type of BV-estimate with a control
of the constant as s → 0.

Theorem 2.8. Let R > 0, s ∈ (0, 1/2), and E ⊂ Rn be an s-minimal surface which stable in
BR(x) and such that ∂E is C2 in BR(x). Then

Per(E,BR/2(x)) ≤
C

s
,

for some dimensional constant C > 0.
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We first recall a useful interpolation inequality for the s-perimeter that accounts for the
dependence on s both for s → 1 and s → 0. The inequality in the form we use here is not explicitly
stated anywhere; it is written throughout the lines of the proof of Theorem 3.1 in [Tho24], or it
follows from [FS24, Lemma 3.13] and Young’s inequality.

Lemma 2.9. Let s ∈ (0, 1), R > 0, and E be a set with locally finite perimeter. Then

Pers(E,BR(x)) ≤ C

(
R1−s

1− s
Per(E,B5R(x)) +

Rn−s

s

)
,

for some dimensional constant C > 0.

With this inequality, we can deduce the BV-estimate for small s.

Proof of Theorem 2.8. Similarly to [CCS20], the theorem follows by inspection of the proof of
Theorem 1.7 in [CSV19], taking care of the explicit dependence of the constants as s → 0. For
the sake of clarity, we rewrite here the crucial estimates in the proof of Theorem 1.7 in [CSV19],
with the precise dependence of all constants on s, as s → 0. In the proof that follows C > 0 is a
dimensional constant that can change from line to line.

Since the statement is scaling and translation invariant, we can assume R = 1 and x = 0. Since
E is stable in B1, by Theorem 1.9 in [CSV19] applied to the kernel K(z) = 1/|z|n+s, we get

Per(E,B1) ≤ C
(
1 +

√
Pers(E,B4)

)
. (6)

Moreover, by Lemma 2.9 applied with R = 4 we have

Pers(E,B4) ≤ C

(
1

1− s
Per(E,B20) +

1

s

)
≤ C

(
Per(E,B20) +

1

s

)
,

where we have also used that s ≤ 1/2. Thus, by (6) and Young’s inequality we get

Per(E,B1) ≤ C

(
1 +

√
Per(E,B20) +

1

s

)
≤ C

(
1 + δPer(E,B20) +

δ

s
+

1

δ

)
= C

(
1 +

δ

s
+

1

δ

)
+ δPer(E,B20),

for every δ > 0. From here, arguing exactly as the end of the proof of [CSV19, Theorem 1.7]
or [CFSS23, Proposition 3.14], choosing δ smaller than a dimensional constant δ◦ = δ◦(n) > 0 and
a covering argument one concludes the uniform bound

Per(E,B1/2) ≤ C

(
1 +

δ◦
s

+
1

δ◦

)
≤ C

s
.

□

3. Classification of stable cones for small s

Let us fix the notation that we will use for cones in the plane. For a cone E ⊂ R2, we write
Σ = ∂E and observe that Σ is a union of half-lines from the origin. Write

E =
N⋃
i=1

Ei , Σ =
2N⋃
i=1

Σi , ∂Ei = {Σi,Σi+1},

with the convention that Σ2N+1 = Σ1. Here Ei are disjoint conical sectors from the origin, that is
λEi = Ei for every λ > 0, Σi are rays from the origin with the induced orientation from Ei, and
the number N could be +∞ in general, but will be finite in our proof.

We also denote by θji the counterclockwise angle from Σi and Σj .
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Lemma 3.1. In the notation above, there is c > 0 such that for every x ∈ Σj there holds∫
Σi

1

|x− y|2+s
dσ(y) ≥ c

|x|1+s(1− cos(θji ))
1+s

.

Proof. We have∫
Σi

1

|x− y|2+s
dσ(y) =

∫
Σi

dσ(y)

(|x|2 + |y|2 − 2 cos(θji )|x||y|)
2+s
2

=

∫ ∞

0

dz

(|x|2 + z2 − 2 cos(θji )|x|z)
2+s
2

=
1

|x|1+s

∫ ∞

0

dt

(1 + t2 − 2t cos(θji ))
2+s
2

,

where we have substituted z = t|x| in the last line. Moreover∫ ∞

0

dt

(1 + t2 − 2t cos(θji ))
2+s
2

=

∫ ∞

0

dt

((t− 1)2 + 2t(1− cos(θji )))
2+s
2

≥
∫ 3/2

1/2

dt

((t− 1)2 + 2t(1− cos(θji )))
2+s
2

≥
∫ 3/2

1/2

dt

((t− 1)2 + 3(1− cos(θji )))
2+s
2

=

∫ 1/2

−1/2

dt

((t− 1)2 + 3(1− cos(θji )))
2+s
2

≥
∫ 3/2

1/2

dt

(t2 + 3(1− cos(θji )))
2+s
2

≥ 1

(1− cos(θji ))
1+s

∫ 1/10

−1/10

dt

(t2 + 3)
2+s
2

≥ c

(1− cos(θji ))
1+s

.

This concludes the proof. □

Now, we have all the ingredients to prove our main result Theorem 1.3. In the proof, we plug in
the stability inequality a radial test function that nearly saturates Hardy’s inequality on (0,∞),
in the sense that (2) holds.

Proof of Theorem 1.3. By Theorem 2.8, that is the BV-estimate for stable s-minimal surfaces for
s ∈ (0, 1/2), and a standard covering argument we get that

2N = Per(E,B2 \B1) ≤
C

s
.

Hence Σ = ∂E is a finite number of rays from the origin, whose number is bounded by

2N ≤ C

s
. (7)

Recall the stability inequality (5), and let νi be the outer unit normal to Σi from Ei. For the
left hand side, for every φ ∈ C2

c (R2 \ {0}), we have

∫∫
Σ×Σ

|νΣ(x)− νΣ(y)|2

|x− y|2+s
φ(x)2 dσ(x)dσ(y) =

∑
i,j

∫∫
Σi×Σj

|νi(x)− νj(y)|2

|x− y|2+s
φ(x)2 dσ(x)dσ(y)

= 2
∑
i ̸=j

(1− (−1)i+j cos(θji ))

∫∫
Σi×Σj

φ(x)2

|x− y|2+s
dσ(x)dσ(y).

By Lemma 3.1 we can estimate∫∫
Σi×Σj

φ(x)2

|x− y|2+s
dσ(x)dσ(y) ≥ c

(1− cos(θji ))
1+s

∫
Σj

φ(x)2

|x|1+s
dx.
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Now, taking φ(x) = ξ(|x|) with ξ saturating Hardy’s inequality on (0,∞) as in (2), gives∫
Σj

ξ(x)2

|x|1+s
dσ(x) ≥ 1

Cs2

∫∫
Σj×Σj

|ξ(x)− ξ(y)|2

|x− y|2+s
dσ(x)dσ(y),

thus ∫∫
Σ×Σ

|νΣ(x)− νΣ(y)|2

|x− y|1+s
ξ(|x|)2 dσ(x)dσ(y)

≥ c

s2

2N∑
j=1

(∫∫
Σj×Σj

|ξ(x)− ξ(y)|2

|x− y|2+s
dσ(x)dσ(y)

) ∑
1≤i≤2N, i̸=j

1− (−1)i+j cos(θji )

(1− cos(θji ))
1+s

.

=
c

s2

(∫ ∞

0

∫ ∞

0

|ξ(x)− ξ(y)|2

|x− y|2+s
dxdy

) 2N∑
j=1

∑
{1≤i≤2N, i̸=j}

1− (−1)i+j cos(θji )

(1− cos(θji ))
1+s

. (8)

Claim. There exists s◦ < 1/2 sufficiently small with the following property. For every
s ∈ (0, s◦), there exists j ∈ {1, 2, . . . , 2N} such that∑

{1≤i≤2N, i̸=j}

1− (−1)i+j cos(θji )

(1− cos(θji ))
1+s

≤ 1

100
. (9)

Indeed, suppose this is not the case. Then, for s arbitrary small, (8) implies∫∫
Σ×Σ

|νΣ(x)− νΣ(y)|2

|x− y|1+s
ξ(|x|)2 dσ(x)dσ(y) ≥ cN

100s2

∫ ∞

0

∫ ∞

0

|ξ(x)− ξ(y)|2

|x− y|2+s
dxdy.

From this inequality, using that E is stable gives

cN

100s2

∫ ∞

0

∫ ∞

0

|ξ(x)− ξ(y)|2

|x− y|2+s
dxdy

≤
∫∫

Σ×Σ

|νΣ(x)− νΣ(y)|2

|x− y|1+s
ξ(|x|)2 dσ(x)dσ(y)

(stability)

≤
∫∫

Σ×Σ

|ξ(|x|)− ξ(|y|)|2

|x− y|2+s
dσ(x)dσ(y)

= N

∫ ∞

0

∫ ∞

0

|ξ(x)− ξ(y)|2

|x− y|2+s
dxdy +

∑
i ̸=j

∫∫
Σi×Σj

|ξ(|x|)− ξ(|y|)|2

|x− y|2+s
dσ(x)dσ(y).

Moreover, since |x− y| ≥ ||x| − |y||, we have∫∫
Σi×Σj

|ξ(|x|)− ξ(|y|)|2

|x− y|2+s
dσ(x)dσ(y) ≤

∫∫
Σi×Σj

|ξ(|x|)− ξ(|y|)|2

||x| − |y||2+s
dσ(x)dσ(y)

=

∫ ∞

0

∫ ∞

0

|ξ(x)− ξ(y)|2

|x− y|2+s
dxdy,

for every i ̸= j. Thus

cN

100s2

∫ ∞

0

∫ ∞

0

|ξ(x)− ξ(y)|2

|x− y|2+s
dxdy ≤ N2

∫ ∞

0

∫ ∞

0

|ξ(x)− ξ(y)|2

|x− y|2+s
dxdy,

which implies, together with (7), that

s2 ≥ c

100N
≥ c

50C
s,

which gives a contradiction if s is small. Hence, the claim is proved.
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Now, we conclude the proof of our theorem by contradiction, with s◦ the one given by the claim
above. Assume by contradiction that N ≥ 2. Then, for the index j such that (9) holds, we get
that (here, as above, the indices are modulo 2N)

1− (−1)j+(j+2) cos(θj+2
j )

(1− cos(θj+2
j ))1+s

=
1

(1− cos(θj+2
j ))s

≤ 1

100
,

holds for every s ≤ s◦. Clearly, this is not possible for any value of θj+2
j ∈ [0, 2π), and hence we

conclude that N = 1 and E is made only of one conical sector of angle θ.
At this point, we would formally like to argue that, being E an s-minimal surface, the first

variation formula (3) at x = 0 implies that E is a half-space. Nevertheless, the first-variation
formula holds only at points x ∈ ∂E where ∂E is C2 in a neighborhood of x (see Remark 2.5),
and this is not the case for the tip of the cone. Hence, we have to argue in this spirit but a bit
more indirectly.

With no loss of generality, up to rotation and complementation, assume that θ ∈ (0, π] and

E = {ρeiφ : ρ > 0, φ ∈ (0, θ)}.

Let (t1, t2) = t := eiθ ∈ S1, so that ∂E = Σ = Σ0 ∪ Σ1 where Σ0 = {λe1 : λ > 0} and
Σ1 = {λt : λ > 0}. Observe that, since θ ∈ (0, π], we have that t2 ≥ 0.

Since e1 = (1, 0) ∈ Σ and Σ is smooth in a neighborhood of e1 (see Remark 2.5), by the
first-variation formula

HE
s (e1) = P.V.

∫
R2

χEc(y)− χE(y)

|y − e1|2+s
dy = 0.

Moreover, by Lemma 2.6 this implies

P.V.

∫
Σ

(y − e1) · νΣ(y)
|y − e1|2+s

dσ(y) = 0.

Note that the respective outer-unit normals to Σ0 and Σ1 are −e2 and t⊥ := it, respectively.
Hence (y − e1) · νΣ(y) = 0 for all y ∈ Σ0, and (y − e1) · νΣ(y) = −t⊥1 = t2 ≥ 0 for all y ∈ Σ1. In
particular (y − e1) · νΣ(y) ≥ 0 for all y ∈ Σ. Thus

0 = P.V.

∫
Σ

(y − e1) · νΣ(y)
|y − e1|2+s

dσ(y) ≥ 0.

This means that all the inequalities above are equalities, that is

t2 = 0 =⇒ t = ±e1 =⇒ θ ∈ {0, π}.

Since θ ∈ (0, π], necessarily θ = π and thus E is a half-space. □

4. Extension to cones of finite index

In this section, we show that our classification for s-minimal cones stable in R2 \{0} implies the
classification of cones with finite Morse index in R2 \ {0}. However, to establish this implication,
we must show that every regular cone E ⊂ Rn stationary for the s-perimeter and with finite Morse
index in Rn \ {0} is stable in Rn \ {0}.

Proposition 4.1. Let s ∈ (0, 1) and E ⊂ Rn be an s-minimal cone with C2 boundary in Rn \ {0}
and with finite Morse index in Rn \ {0} (see Definition 1.5). Then E is stable in Rn \ {0}.

In the classical case of the perimeter (formally s = 1), this property follows easily by a scaling
argument; if E were unstable in Rn \{0}, one could construct infinitely many disjoint scaled copies
of an unstable variation, contradicting the finite index assumption. The fractional setting presents
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additional difficulty since the nonlocal interactions between different scales prevent such a direct
argument, as functions with disjoint support are not orthogonal for the Hs scalar product.

This kind of result has been previously established in [CFSS23] for blow-ups of s-minimal surfaces
arising as limits of the fractional Allen-Cahn equation. Our proof follows a similar strategy and is
essentially already contained in the union of [CFSS23] and [FS24]. Nevertheless, since the result
as needed in this work is never stated explicitly nor proved, we provide a proof in this section.

Lemma 4.2. Let U ⊂ Rn be an open set and E be an s-minimal surface in U with Morse index
at most m in U (see Definition 1.5). Assume also that Σ := ∂E is C2 in U . For every bounded
Lipschitz domain Ω ⋐ U let X1, X2, ..., Xm+1 ∈ C2

c (Ω;Rn) be vector fields with disjoint compact
supports A1, ..., Am+1 ⊂ Ω, and denote Dkℓ := dist(Ak, Aℓ). For 1 ≤ i < ℓ ≤ m + 1, fix positive
weights λiℓ > 0. Then, for at least one of the i (depending on E) we have that

δ2Pers(E;Ai)[Xi] ≥ −C∥Xi∥2L∞diam(Ai)
2(n−1)

(∑
ℓ<i

1

λℓi
D

−(n+s)
iℓ +

∑
ℓ>i

λiℓD
−(n+s)
iℓ

)
,

for some constant C = C(n, s,m) > 0.

Proof. The statement is a more precise version of Lemma 5.8 in [FS24], and the proof proceeds
similarly. Using the second variation formula, which can be used since Σ is C2 in U , we compute
the second variation of E for linear combinations of m+1 vector fields Xi , supported each in the
corresponding Ai. We denote by ξi := Xi · νΣ the scalar normal component of these vector fields.

By the second variation formula of Theorem 2.7 we have

δ2Pers(E; Ω)[a1X1 + a2X2 + . . .+ am+1Xm+1]

= a21δ
2Pers(E;A1)[X1] + . . .+ a2m+1δ

2Pers(E;Am+1)[Xm+1]

+ 2a1a2

∫∫
(Σ∩A1)×(Σ∩A2)

(ξ1(x)− ξ1(x))(ξ2(y)− ξ2(y))

|x− y|n+s
dσ(x)dσ(y)

+ . . .

+ 2amam+1

∫∫
(Σ∩Am)×(Σ∩Am+1)

(ξm(x)− ξm(x))(ξm+1(y)− ξm+1(y))

|x− y|n+s
dσ(x)dσ(y).

Recall that the supports of ξi and ξj are Ai and Aj respectively, which are disjoint. Then, the
term containing the double integral over Ai ×Aj with i < j can be bounded as

2aiaj

∫∫
(Σ∩Ai)×(Σ∩Aj)

(ξi(x)− ξi(x))(ξj(y)− ξj(y))

|x− y|n+s
dσ(x)dσ(y)

= −2aiaj

∫∫
(Σ∩Ai)×(Σ∩Aj)

ξi(x)ξj(y)

|x− y|n+s
dσ(x)dσ(y)

≤ 2|aiaj |D−(n+s)
ij ∥ξi∥L1(Σ∩Ai)∥ξj∥L1(Σ∩Aj)

≤ λija
2
iD

−(n+s)
ij ∥ξi∥2L1(Σ∩Ai)

+
1

λij
a2jD

−(n+s)
ij ∥ξj∥2L1(Σ∩Aj)

,

where we have used Young’s inequality in the last line. Substituting this into the second variation
expression above gives

δ2Pers(E; Ω)[a1X1 + a2X2 + . . .+ am+1Xm+1]

≤
m+1∑
i=1

a2i

δ2Pers(E;Ai)[Xi] + ∥ξi∥2L1(Σ∩Ai)

∑
j<i

1

λji
D

−(n+s)
ij +

∑
j>i

λijD
−(n+s)
ij

 .
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The condition that the Morse index is at most m implies that the expression cannot be < 0 for
all (a1, . . . , am+1) ̸= 0. Hence, we find that there must exist some i such that

δ2Pers(E;Ai)[Xi] ≥ −∥ξi∥2L1(Σ∩Ai)

∑
j<i

1

λji
D

−(n+s)
ij +

∑
j>i

λijD
−(n+s)
ij


holds for all ξi ∈ C1

c (Σ ∩Ai). Moreover, for z ∈ Ai, we have

∥ξi∥2L1(Σ∩Ai)
=

(∫
Ai∩Σ

Xi · νΣ dσ

)2

≤ ∥Xi∥2L∞Hn−1(Ai ∩ Σ)2

≤ ∥Xi∥2L∞Per(E,Bdiam(Ai)(z))
2 ≤ C∥Xi∥2L∞diam(Ai)

2(n−1).

Putting everything together concludes the proof. □

Recall also the following result, which is [CFSS23, Lemma 4.15].

Lemma 4.3. Let s ∈ (0, 1) and E ⊂ Rn be a cone with Pers(E,B1(0)) < +∞. Assume that E is
an s-minimal surface and that satisfies the property in Lemma 4.2 with U = Rn \ {0}. Then E is
stable in Rn \ {0}.

With this, we can easily deduce Proposition 4.1.

Proof of Proposition 4.1. Since E has finite Morse index in Rn \ {0}, it satisfies the property of
Lemma 4.2 with U = Rn \ {0}. Moreover, by [FS24, Theorem 5.4] and a simple covering argument
we have that

Pers(E,B1(0)) < +∞.

From here, the result follows by Lemma 4.3. □

5. Appendix

Here, we give a direct proof that X = {xy > 0} ⊂ R2 is unstable for variations compactly
supported in R2 \ {0}. First, note that by symmetry, it is clear that X satisfies (3) at every
x ∈ ∂X and for every s ∈ (0, 1). Hence, since X is smooth away from the origin, X is an s-minimal
surface for every s ∈ (0, 1).

Proposition 5.1. There exists s◦ ∈ (0, 1/2) such that, for s ∈ (0, s◦), X is unstable in R2 \ {0}.

Proof. Let Lx := {(x, 0) ∈ R2 : x > 0} and Ly := {(0, y) ∈ R2 : y > 0}. Choose a radial test
function φ = φ(|x|) ∈ C2

c (R2 \ {0}). With a little abuse of notation, we still denote by φ its trace
on the lines in ∂X. Let also ν be the outer unit normal to ∂X.

On the one hand∫∫
∂X×∂X

|ν(x)− ν(y)|2

|x− y|2+s
φ(|x|)2 dσ(x)dσ(y)

= 4

∫ ∞

0

∫ 0

−∞

22

|x− y|2+s
φ(x)2dxdy + 8

∫
Lx

∫
Ly

(
√
2)2

|x− y|2+s
φ(|x|)2dσ(x)dσ(y)

= 16

∫ ∞

0

∫ 0

−∞

φ(x)2

|x− y|2+s
dxdy + 16

∫
Lx

∫
Ly

φ(|x|)2

|x− y|2+s
dσ(x)dσ(y).
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Note that ∫
Lx

∫
Ly

φ(|x|)2

|x− y|2+s
dσ(x)dσ(y) =

∫
Lx

φ(|x|)2 dσ(x)
∫
Ly

dσ(y)

(x2 + y2)
2+s
2

=

∫ ∞

0
φ(x)2

(
1

x1+s

∫ ∞

0

dt

(1 + t2)
2+s
2

)
dx

=

√
π Γ
(
1+s
2

)
2Γ
(
2+s
2

) ∫ ∞

0

φ(x)2

x1+s
dx,

and similarly ∫ ∞

0

∫ 0

−∞

φ(x)2

|x− y|2+s
dxdy =

1

1 + s

∫ ∞

0

φ(x)2

x1+s
dx.

Hence∫∫
∂X×∂X

|ν(x)− ν(y)|2

|x− y|2+s
φ2(x) dσ(x)dσ(y) = 16

(
1

1 + s
+

√
π Γ
(
1+s
2

)
2Γ
(
2+s
2

) )∫ ∞

0

φ(x)2

x1+s
dx. (10)

On the other hand, for the Sobolev part in the stability inequality∫∫
∂X×∂X

|φ(|x|)− φ(|y|)|2

|x− y|2+s
dσ(x)dσ(y) ≤ 100

∫ ∞

0

∫ ∞

0

|φ(x)− φ(y)|2

|x− y|2+s
dxdy. (11)

Now, we use the fact that Hardy’s inequality is saturated. Choose φ(x) = ξ(|x|) where ξ
saturates the Hardy’s inequality as in (2). Applying (10) and (11) with φ(x) = ξ(|x|) we obtain∫∫

∂X×∂X

|ν(x)− ν(y)|2

|x− y|2+s
ξ2(x) dσ(x)dσ(y) = 16

(
1

1 + s
+

√
π Γ
(
1+s
2

)
2Γ
(
2+s
2

) )∫ ∞

0

ξ(x)2

x1+s
dx

(2)

≥ 16

Cs2

(
1

1 + s
+

√
π Γ
(
1+s
2

)
2Γ
(
2+s
2

) )∫ ∞

0

∫ ∞

0

|ξ(x)− ξ(y)|2

|x− y|2+s
dxdy

≥ 16

100Cs2

(
1

1 + s
+

√
π Γ
(
1+s
2

)
2Γ
(
2+s
2

) )∫∫
∂X×∂X

|ξ(x)− ξ(y)|2

|x− y|2+s
dσ(x)dσ(y).

Thus, in order to contradict stability, it is sufficient that

16

100Cs2

(
1

1 + s
+

√
π Γ
(
1+s
2

)
2Γ
(
2+s
2

) ) ≥ 1,

which is clearly the case if s is sufficiently small. Hence, X is unstable in this range. □
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