
STABLE s-MINIMAL CONES IN R2 ARE FLAT FOR s ∼ 0

MICHELE CASELLI

Abstract. For s ∈ (0, 1) small, we show that the only cones in R2 stationary for the s-perimeter
and stable in R2 \ {0} are hyperplanes. This is in direct contrast with the case of the classical
perimeter or the regime s close to 1, where nontrivial cones as {xy > 0} ⊂ R2 are stable for inner
variations.
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1. Introduction

In this note, we prove that in R2 and for s close to zero, half-spaces are the only s-minimal
cones that are stable in R2 \ {0}. Here, by an s-minimal cone, we mean an open cone E ⊂ R2 that
is an s-minimal surface (that is, stationary for the s-perimeter under inner variations). This result
is purely nonlocal since it is in direct contrast with both the classical case (formally s = 1) and
the regime where s is close to 1, where the cross X = {xy > 0} is a non-flat stationary cone in the
plane that is stable for inner variations, in any reasonable sense. Nevertheless, for s close to zero,
the cross X is unstable in R2 \ {0}, and has infinite index (see Corollary 1.2). Our proof relies on
the behavior of the best constant in Hardy’s inequality for the Hσ(R) seminorm as σ ↓ 1/2.

The classification s-minimal cones in R2 has been previously studied for s ∈ (0, 1) under stronger
hypotheses. Specifically, Savin and Valdinoci [SV13a,SV13b] proved that half-spaces are the unique
cones locally minimizing the s-perimeter in R2 for all s ∈ (0, 1), in accordance with the classical
case. Our result achieves the same rigidity for cones that are just stable compactly away from the
origin, albeit in the restricted regime of small s.

In higher dimension 3 ≤ n ≤ 7, the classification of stable s-minimal cones in Rn smooth
outside the origin is only expected for s close to 1. Indeed, in [DdPW18], among other things, the
authors construct a nontrivial, stable, s-minimal cone in R7 for s close to zero. On the other hand,
this classification for s close to 1 has been proved for n = 3 in [CCS20] and recently for n = 4
in [CDSV23, Theorem 1.5].

The main result of this note is the following.

Theorem 1.1. There exists s◦ ∈ (0, 1/2) with the following property. Let s ∈ (0, s◦) and E ⊂ R2

be an s-minimal cone stable in R2 \ {0}. Then E is a half-space.
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Moreover, using the fact that s-minimal cones with finite Morse index outside the origin are
stable outside the origin (which is a trivial observation in the classical case of the perimeter, but
not entirely trivial for s-minimal cones, see the beginning of Section 5), we deduce that the same
holds for finite Morse index cones.

Corollary 1.2. The classification of Theorem 1.1 holds for s-minimal cones of finite Morse index
in R2 \ {0}.

In Appendix 6, we give direct proof that the cross X is unstable outside the origin, for s close
to 0. Since X is not flat, this fact is already contained in Theorem 1.1. Nevertheless, we provide
a very short independent proof since we believe it captures the main idea in the proof of Theorem
1.1.

2. Preliminary tools

Our proof relies on the Hardy inequality for the Hσ(R) seminorm and, specifically, on the
asymptotic behavior of its optimal constant as σ ↓ 1/2. The sharp constant in this inequality has
been established in [FS08] (equation (1.6)), and it is also stated in [CCS20, Theorem 3.3]. We
will also use the fact that radially symmetric functions in C2

c (R \ {0}) nearly saturate Hardy’s
inequality; this is proved in Section 3.3 of [FS08].

Theorem 2.1 (Hardy’s inequality). Let n ≥ 1, σ ∈ (0, 1) and u ∈ Hσ
0 (Rn \ {0}). Then

Hn,σ

∫
Rn

u2

|x|2σ
dx ≤ cn,σ

∫∫
Rn×Rn

|u(x)− u(y)|2

|x− y|n+2σ
dxdy,

where

Hn,σ = 22σ−1(σ − n/2)2
Γ(n/4 + σ/2)2

Γ(n/4− σ/2 + 1)2
,

and

cn,σ = 22σ−1π−n/2Γ(n/2 + σ)

Γ(2− σ)
σ(1− σ).

Moreover, the inequality is saturated by radial functions, that is: for every ε > 0 there exists a
radial function ξ(x) = ξ(|x|) ∈ C2

c (Rn \ {0}) such that(
Hn,σ + ε

) ∫
Rn

ξ(x)2

|x|2σ
dx ≥ cn,σ

∫∫
Rn×Rn

|ξ(x)− ξ(y)|2

|x− y|n+2σ
dxdy.

In particular, for n = 1, s ∈ (0, 1/2) and σ = 1+s
2 the constant reads as

H
1,
1+s
2

= s22s−2Γ(
2+s
4 )2

Γ(4−s
4 )2

,

and, by elementary properties of the Gamma function, it is easily checked that

H
1,
1+s
2

c
1,
1+s
2

≤ Cs2

C 1+s
2 (1− 1+s

2 )
≤ Cs2,

for some absolute C > 0 and every s ∈ (0, 1/2).

Summarizing, taking the ξ relative to ε = H
1,
1+s
2

in the saturation statement above, for every

s ∈ (0, 1/2) there exists an even function ξ ∈ C2
c (R \ {0}) such that∫

R

ξ(x)2

|x|1+s
dx ≥ 1

Cs2

∫∫
R×R

|ξ(x)− ξ(y)|2

|x− y|2+s
dxdy.
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Lastly, for the same ξ, this directly implies∫ ∞

0

ξ(x)2

x1+s
dx ≥ 1

Cs2

∫ ∞

0

∫ ∞

0

|ξ(x)− ξ(y)|2

|x− y|2+s
dxdy. (1)

Before stating precisely all the tools that we will need on the first and second variation of
the fractional perimeter, we recall the notion of fractional s-perimeter, which was introduced by
Caffarelli, Roquejoffre, and Savin in [CRS10].

Definition 2.2. For s ∈ (0, 1), the fractional perimeter (or s-perimeter) of a measurable set
E ⊂ Rn is defined as

Pers(E) =
1

2
[χE ]

2
Hs/2(Rn)

=

∫∫
E×Ec

1

|x− y|n+s
dxdy.

The s-perimeter also has a natural localized version in a bounded open set Ω ⊂ Rn, in the same
spirit of the localized fractional Sobolev spaces Hs(Ω). This is of use because, for example, one
would like to say that a hyperplane in Rn is an s-minimal surface (see Definition 2.4 below) even
though a half-space has infinite s-perimeter for Definition 2.2.

Definition 2.3. For s ∈ (0, 1), the fractional perimeter (or s-perimeter) of a measurable set
E ⊂ Rn in a bounded, open set Ω is defined as

Pers(E; Ω) =
1

2

∫∫
Rn×Rn\Ωc×Ωc

|χE(x)− χE(y)|2

|x− y|n+s
dxdy.

Note that for Ω = ∅ we recover Definition 2.2.

Definition 2.4 (s-minimal surface). Let Ω be a bounded open set and E ⊂ Rn be a set with locally
finite s-perimeter in Ω. Then, E is said to be an s-minimal surface in Ω if, for every vector field
X with compact support in Ω there holds

d

dt

∣∣∣∣
t=0

Pers(ϕ
X
t (E),Ω) = 0.

By the first variation formula, see for example [FFM+15, FS24], if E is an s-minimal surface
and ∂E is C2 then

P.V.

∫
Rn

χEc(y)− χE(y)

|x− y|n+s
dy = 0 , for all x ∈ ∂E. (2)

The left-hand side is called the s-mean curvature of E at x.

Remark 2.5. It follows by inspecting the proof of the first variation formula in [FFM+15,FS24]
that if ∂E is C2 only in a neighborhood of some x ∈ ∂E, then (2) holds at x.

If Ω is a bounded open set and E ⊂ Rn is an s-minimal surface in Ω, then E is said to be stable
in Ω if, for every vector field X with compact support in Ω, there holds

δ2Pers(E; Ω)[X] :=
d2

dt2

∣∣∣∣
t=0

Pers(ϕ
X
t (E),Ω) ≥ 0.

If ∂E is smooth, the second variation can be written in a form very reminiscent of the second
variation formula for classical minimal surfaces. This second variation formula for smooth s-
minimal surfaces was proved in [DdPW18,FFM+15] , and has recently been generalized to ambient
Riemannian manifolds in [FS24].
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Theorem 2.6. Let E be an s-minimal surface in Rn, and assume that ∂E is C2 in some open set
Ω. Then, for every X ∈ C2

c (∂E ∩ Ω;Rn), setting φ := X · ν∂E, we have

δ2Pers(E)[X] =

∫∫
∂E×∂E

(
|φ(x)− φ(y)|2

|x− y|n+s
− |ν∂E(x)− ν∂E(y)|2

|x− y|n+s
φ(x)2

)
dσ(x)dσ(y), (3)

where ν∂E is the outer unit normal to ∂E. In particular, if E is stable in Ω, there holds∫∫
∂E×∂E

|ν∂E(x)− ν∂E(y)|2

|x− y|n+s
φ(x)2 dσ(x)dσ(y) ≤

∫∫
∂E×∂E

|φ(x)− φ(y)|2

|x− y|n+s
dσ(x)dσ(y),

for every φ ∈ C2
c (Ω).

3. The BV-estimate for small s

It is known [CSV19,FS24] that stable s-minimal surfaces enjoy a uniform interior BV-estimate,
and that the same holds for stable solution of the fractional Allen-Cahn equation [CCS21,CFS23].
The results in these references only control the dependence of the constant from s as s → 1. In
this work, we need the same type of BV-estimate with a control of the constant as s → 0.

Theorem 3.1. Let R > 0, s ∈ (0, 1/2), and E ⊂ Rn be an s-minimal surface which stable in
BR(x) and such that ∂E is C2 in BR(x). Then

Per(E,BR/2(x)) ≤
C

s
,

for some dimensional constant C > 0.

We first recall a useful interpolation inequality for the s-perimeter that accounts for the
dependence on s both for s → 1 and s → 0. The inequality in the form we use here is not explicitly
stated anywhere; it is written throughout the lines of the proof of Theorem 3.1 in [Jac24], or it
follows from [FS24, Lemma 3.13] and Young’s inequality.

Lemma 3.2. Let s ∈ (0, 1), R > 0 and E be a set with locally finite perimeter. Then

Pers(E;BR(x)) ≤ C

(
R1−s

1− s
Per(E;B5R(x)) +

Rn−s

s

)
,

for some dimensional constant C > 0.

With this inequality, we can deduce the BV-estimate for small s.

Proof of Theorem 3.1. Similarly to [CCS20], the theorem follows by inspection of the proof of
Theorem 1.7 in [CSV19], taking care of the explicit dependence of the constants as s → 0. For
the sake of clarity, we rewrite here the crucial estimates in the proof of Theorem 1.7 in [CSV19],
with the precise dependence of all constants on s, as s → 0. In the proof that follows C > 0 is a
dimensional constant that can change from line to line.

Since the statement is scaling and translation invariant, we can assume R = 1 and x = 0. Since
E is stable in B1, by Theorem 1.9 in [CSV19] applied to the kernel K(z) = 1/|z|n+s, we get

Per(E;B1) ≤ C
(
1 +

√
Pers(E;B4)

)
. (4)

Moreover, by Lemma 3.2 applied with R = 4 we have

Pers(E;B4) ≤ C

(
1

1− s
Per(E;B20) +

1

s

)
≤ C

(
Per(E;B20) +

1

s

)
.
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Thus, by (4) and Young’s inequality we get

Per(E,B1) ≤ C

(
1 +

√
Per(E;B20) +

1

s

)
≤ C

(
1 + δPer(E;B20) +

δ

s
+

1

δ

)
= C

(
1 +

δ

s
+

1

δ

)
+ δPer(E;B20),

for every δ > 0. From here, arguing exactly as the end of the proof of [CSV19, Theorem 1.7]
or [CFS23, Proposition 3.14], choosing δ smaller than a dimensional constant δ◦ = δ◦(n) > 0 and
a covering argument one concludes the uniform bound

Per(E;B1/2) ≤ C

(
1 +

δ◦
s

+
1

δ◦

)
≤ C

s
.

□

4. Classification of stable cones for small s

Let us fix the notation that we will use for cones in the plane. For a cone E ⊂ R2, we write
Σ = ∂E and observe that Σ is a union of half-lines from the origin. Write

E =
N⋃
i=1

Ei , Σ =
2N⋃
i=1

Σi , ∂Ei = {Σi,Σi+1},

with the convention that Σ2N+1 = Σ1. Here Ei are disjoint conical sectors from the origin, that is
λEi = Ei for every λ > 0, Σi are rays from the origin with the induced orientation from Ei, and
the number N could be +∞ in general, but will be finite in our proof.

We also denote by θji the counterclockwise angle from Σi and Σj .

Lemma 4.1. In the notation above, there is c > 0 such that for every x ∈ Σj there holds∫
Σi

1

|x− y|2+s
dσ(y) ≥ c

|x|1+s(1− cos(θji ))
1+s

.

Proof. We have∫
Σi

1

|x− y|2+s
dσ(y) =

∫
Σi

dσ(y)

(|x|2 + |y|2 − 2 cos(θji )|x||y|)
2+s
2

=

∫ ∞

0

dz

(|x|2 + z2 − 2 cos(θji )|x|z)
2+s
2

=
1

|x|1+s

∫ ∞

0

dt

(1 + t2 − 2t cos(θji ))
2+s
2

,

where we have substituted z = t|x| in the last line. Moreover∫ ∞

0

dt

(1 + t2 − 2t cos(θji ))
2+s
2

=

∫ ∞

0

dt

((t− 1)2 + 2t(1− cos(θji )))
2+s
2

≥
∫ 3/2

1/2

dt

((t− 1)2 + 2t(1− cos(θji )))
2+s
2

≥
∫ 3/2

1/2

dt

((t− 1)2 + 3(1− cos(θji )))
2+s
2

=

∫ 1/2

−1/2

dt

((t− 1)2 + 3(1− cos(θji )))
2+s
2

≥
∫ 3/2

1/2

dt

(t2 + 3(1− cos(θji )))
2+s
2

≥ 1

(1− cos(θji ))
1+s

∫ 1/10

−1/10

dt

(t2 + 3)
2+s
2

≥ c

(1− cos(θji ))
1+s

.

This concludes the proof. □
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Now, we have all the ingredients to prove our main result Theorem 1.1. In the proof, we plug in
the stability inequality a radial test function that nearly saturates Hardy’s inequality on (0,∞),
in the sense that (1) holds.

Proof of Theorem 1.1. By Theorem 3.1, that is the BV-estimate for stable s-minimal surfaces for
s ∈ (0, 1/2), and a standard covering argument we get that

2N = Per(E;B2 \B1) ≤
C

s
.

Hence Σ = ∂E is a finite number of rays from the origin, whose number is bounded by

2N ≤ C

s
. (5)

Recall the stability inequality (3), and let νi be the outer unit normal to Σi from Ei. For the
left hand side, for every φ ∈ C2

c (R2 \ {0}), we have

∫∫
Σ×Σ

|νΣ(x)− νΣ(y)|2

|x− y|2+s
φ(x)2 dσ(x)dσ(y) =

∑
i,j

∫∫
Σi×Σj

|νi(x)− νj(y)|2

|x− y|2+s
φ(x)2 dσ(x)dσ(y)

= 2
∑
i ̸=j

(1− (−1)i+j cos(θji ))

∫∫
Σi×Σj

φ(x)2

|x− y|2+s
dσ(x)dσ(y).

By Lemma 4.1 we can estimate∫∫
Σi×Σj

φ(x)2

|x− y|2+s
dσ(x)dσ(y) ≥ c

(1− cos(θji ))
1+s

∫
Σj

φ(x)2

|x|1+s
dx.

Now, taking φ(x) = ξ(|x|) with ξ saturating Hardy’s inequality on (0,∞) as in (1), gives∫
Σj

ξ(x)2

|x|1+s
dσ(x) ≥ 1

Cs2

∫∫
Σj×Σj

|ξ(x)− ξ(y)|2

|x− y|2+s
dσ(x)dσ(y),

thus ∫∫
Σ×Σ

|νΣ(x)− νΣ(y)|2

|x− y|1+s
ξ(|x|)2 dσ(x)dσ(y)

≥ c

s2

2N∑
j=1

(∫∫
Σj×Σj

|ξ(x)− ξ(y)|2

|x− y|2+s
dσ(x)dσ(y)

) ∑
1≤i≤2N, i̸=j

1− (−1)i+j cos(θji )

(1− cos(θji ))
1+s

.

=
c

s2

(∫ ∞

0

∫ ∞

0

|ξ(x)− ξ(y)|2

|x− y|2+s
dxdy

) 2N∑
j=1

∑
{1≤i≤2N, i̸=j}

1− (−1)i+j cos(θji )

(1− cos(θji ))
1+s

. (6)

Claim. There exists s◦ < 1/2 sufficiently small with the following property. For every
s ∈ (0, s◦), there exists j ∈ {1, 2, . . . , 2N} such that∑

{1≤i≤2N, i̸=j}

1− (−1)i+j cos(θji )

(1− cos(θji ))
1+s

≤ 1

100
. (7)

Indeed, suppose this is not the case. Then, for s arbitrary small, (6) implies∫∫
Σ×Σ

|νΣ(x)− νΣ(y)|2

|x− y|1+s
ξ(|x|)2 dσ(x)dσ(y) ≥ cN

100s2

∫ ∞

0

∫ ∞

0

|ξ(x)− ξ(y)|2

|x− y|2+s
dxdy.
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From this inequality, using that E is stable gives

cN

100s2

∫ ∞

0

∫ ∞

0

|ξ(x)− ξ(y)|2

|x− y|2+s
dxdy

≤
∫∫

Σ×Σ

|νΣ(x)− νΣ(y)|2

|x− y|1+s
ξ(|x|)2 dσ(x)dσ(y)

(Stability)

≤
∫∫

Σ×Σ

|ξ(|x|)− ξ(|y|)|2

|x− y|2+s
dσ(x)dσ(y)

= N

∫ ∞

0

∫ ∞

0

|ξ(x)− ξ(y)|2

|x− y|2+s
dxdy +

∑
i ̸=j

∫∫
Σi×Σj

|ξ(|x|)− ξ(|y|)|2

|x− y|2+s
dσ(x)dσ(y).

Moreover, since |x− y| ≥ ||x| − |y||, we have∫∫
Σi×Σj

|ξ(|x|)− ξ(|y|)|2

|x− y|2+s
dσ(x)dσ(y) ≤

∫∫
Σi×Σj

|ξ(|x|)− ξ(|y|)|2

||x| − |y||2+s
dσ(x)dσ(y)

=

∫ ∞

0

∫ ∞

0

|ξ(x)− ξ(y)|2

|x− y|2+s
dxdy,

for every i ̸= j. Thus

cN

100s2

∫ ∞

0

∫ ∞

0

|ξ(x)− ξ(y)|2

|x− y|2+s
dxdy ≤ N2

∫ ∞

0

∫ ∞

0

|ξ(x)− ξ(y)|2

|x− y|2+s
dxdy,

which implies, together with (5), that

s2 ≥ c

100N
≥ c

50C
s,

which gives a contradiction if s is small. Hence, the claim is proved.

Now, we conclude the proof of our theorem by contradiction, with s◦ the one given by the claim
above. Assume by contradiction that N ≥ 2. Then, for the index j such that (7) holds we get
that (here the indices are modulo 2N)

1− (−1)j+(j+2) cos(θj+2
j )

(1− cos(θj+2
j ))1+s

=
1

(1− cos(θj+2
j ))s

≤ 1

100
,

holds for every s ≤ s◦. Clearly, this is not possible for any value of θj+2
j ∈ [0, 2π), and hence we

conclude that N = 1 and E is made only of one conical sector of angle θ.
With no loss of generality, up to rotation and complementation, assume that θ ∈ (0, π] and

E = {(ρ, φ) : ρ > 0, φ ∈ (0, θ)}.

Consider the set Ẽ := E + e1. Since Ẽ ⊂ E and e1 ∈ ∂E ∩ ∂Ẽ we have, for every ε > 0, that∫
Bε(e1)

χEc(y)− χE(y)

|y − e1|2+s
dy ≥

∫
Bε(e1)

χ
Ẽc(y)− χ

Ẽ
(y)

|y − e1|2+s
dy

=

∫
Bε(0)

χEc(z)− χE(z)

|z|2+s
dz

= 2π

∫ ∞

ε

(2π − θ)− θ

r1+s
dr =

4π(π − θ)

sεs
.
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Since E is an s-minimal surface and is smooth in a neighborhood of e1 ∈ ∂E, by the first variation
formula (2) at x = e1 (see Remark 2.5) we get

0 = lim
ε→0

∫
Bε(e1)

χEc(y)− χE(y)

|y − e1|2+s
dy ≥ lim

ε→0

4π(π − θ)

sεs
.

Since θ ∈ (0, π], this implies θ = π and thus E is flat.
□

5. Extension to cones of finite index

First, let us recall the definition of finite Morse index for smooth s-minimal surfaces as introduced
in [CFS23] or [FS24].

Definition 5.1. Let E be an s-minimal surface in Rn, and assume that ∂E is C2 in some
open set Ω. Then, E is said to have Morse index at most m in Ω if for every (m + 1) vector
fields X1, . . . , Xm+1 with compact support in Ω, there exists coefficients a1, . . . , am+1 such that
a21 + . . .+ a2m+1 = 1 and

δ2Pers(E; Ω)[a1X1 + . . .+ am+1Xm+1] ≥ 0.

In this section, we show that our classification for s-minimal cones stable in R2 \{0} implies the
classification of cones with finite Morse index in R2 \ {0}. However, to establish this implication,
we must verify that any regular cone E ⊂ Rn stationary for the s-perimeter and with finite Morse
index in Rn \ {0} is stable in Rn \ {0}.

Proposition 5.2. Let s ∈ (0, 1) and E ⊂ Rn be cone with C2 boundary in Rn \ {0}, stationary
for the s-perimeter, and with finite Morse index in Rn \ {0}. Then E is stable in Rn \ {0}.

In the classical case of the perimeter (formally s = 1), this property follows easily by a scaling
argument; if E were unstable in Rn \{0}, one could construct infinitely many disjoint scaled copies
of an unstable variation, contradicting the finite index assumption. The fractional setting presents
additional difficulty since the nonlocal interactions between different scales prevent such a direct
argument, as functions with disjoint support are not orthogonal for the Hs scalar product.

This kind of result has been previously established in [CFS23] for blow-ups of s-minimal surfaces
arising as limits of the fractional Allen-Cahn equation. Our proof follows a similar strategy and is
essentially already contained in the union of [CFS23] and [FS24]. Nevertheless, since the result as
needed in this work is never stated explicitly nor proved, we provide a proof in this section.

Lemma 5.3. Let E ⊂ Rn be a set stationary for the s-perimeter, and with finite Morse index
m in Ω. Assume also that Σ = ∂E is C2 in Ω. Let X1, X2, ..., Xm+1 be smooth vector fields
on Ω with disjoint compact supports A1, ..., Am+1 ⊂ Ω, and denote Dkℓ := dist(Ak, Aℓ). For
1 ≤ i < ℓ ≤ m + 1, fix positive weights λiℓ > 0. Then, for at least one of the i (depending on E)
we have that

δ2Pers(E)[Xi] ≥ −C∥Xi∥2L∞diam(Ai)
2(n−1)

(∑
ℓ<i

1

λℓi
D

−(n+s)
iℓ +

∑
ℓ>i

λiℓD
−(n+s)
iℓ

)
,

for some constant C = C(n, s,m) > 0.

Proof. The statement is a more precise version of Lemma 5.8 in [FS24], and the proof proceeds
similarly. Using the second variation formula, we compute the second variation of E for linear
combinations of m + 1 vector fields Xi , supported each in the corresponding Ai. We denote by
ξi := Xi · νΣ the scalar normal component of these vector fields.
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By the second variation formula of Theorem 2.6 we have

δ2Pers(E)[a1X1 + a2X2 + . . .+ am+1Xm+1]

= a21δ
2Pers(E)[X1] + . . .+ a2m+1δ

2Pers(E)[Xm+1]

+ 2a1a2

∫∫
(Σ∩A1)×(Σ∩A2)

(ξ1(x)− ξ1(x))(ξ2(y)− ξ2(y))

|x− y|n+s
dσ(x)dσ(y)

+ . . .

+ 2amam+1

∫∫
(Σ∩Am)×(Σ∩Am+1)

(ξm(x)− ξm(x))(ξm+1(y)− ξm+1(y))

|x− y|n+s
dσ(x)dσ(y).

Recall that the supports of ξi and ξj are the disjoint subsets of Ai and Aj , respectively. Then, the
term containing the double integral over Ai ×Aj with i < j can be bounded as

2aiaj

∫∫
(Σ∩Ai)×(Σ∩Aj)

(ξi(x)− ξi(x))(ξj(y)− ξj(y))

|x− y|n+s
dσ(x)dσ(y)

= −2aiaj

∫∫
(Σ∩Ai)×(Σ∩Aj)

ξi(x)ξj(y)

|x− y|n+s
dσ(x)dσ(y)

≤ 2|aiaj |D−(n+s)
ij ∥ξi∥L1(Σ∩Ai)∥ξj∥L1(Σ∩Aj)

≤ λija
2
iD

−(n+s)
ij ∥ξi∥2L1(Σ∩Ai)

+
1

λij
a2jD

−(n+s)
ij ∥ξj∥2L1(Σ∩Aj)

,

where we have used Young’s inequality in the last line. Substituting this into the second variation
expression above gives

δ2Pers(E)[a1X1 + a2X2 + . . .+ am+1Xm+1]

≤
m+1∑
i=1

a2i

δ2Pers(E)[Xi] + ∥ξi∥2L1(Σ∩Ai)

∑
j<i

1

λji
D

−(n+s)
ij +

∑
j>i

λijD
−(n+s)
ij

 .

The condition that the Morse index is at most m implies that the expression cannot be < 0 for
all (a1, . . . , am+1) ̸= 0. Hence, we find that there must exist some i such that

δ2Pers(E)[Xi] ≥ −∥ξi∥2L1(Σ∩Ai)

∑
j<i

1

λji
D

−(n+s)
ij +

∑
j>i

λijD
−(n+s)
ij


holds for all ξi ∈ C1

c (Σ ∩Ai). Moreover, for z ∈ Ai, we have

∥ξi∥2L1(Σ∩Ai)
=

(∫
Ai∩Σ

Xi · ν dσ
)2

≤ ∥Xi∥2L∞Hn−1(Ai ∩ Σ)2

≤ ∥Xi∥2L∞Per(E;Bdiam(Ai)(z))
2 ≤ C∥Xi∥2L∞diam(Ai)

2(n−1).

Putting everything together concludes the proof. □

Recall also the following result, which is [CFS23, Lemma 4.15].

Lemma 5.4. Let s ∈ (0, 1) and E ⊂ Rn be a cone with Pers(E;B1(0)) < +∞. Assume that E is
stationary for the s-perimeter and that it satisfies the property in Lemma 5.3. Then E is stable in
Rn \ {0}.

With this, we can easily deduce Proposition 5.2.
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Proof of Proposition 5.2. Since E has finite Morse index, it satisfies the conclusion of Lemma 5.3.
Moreover, by [FS24, Theorem 5.4] and a simple covering argument we have that

Pers(E;B1(0)) < +∞.

From here, the result follows by Lemma 5.4. □

6. Appendix

Here we give a direct proof that

X = {xy > 0} ⊂ R2

is unstable for variations compactly supported in R2 \{0}. First, note that by symmetry, it is clear
that X satisfies (2) at every x ∈ ∂X and for every s ∈ (0, 1). Hence, since X is smooth away from
the origin, X is an s-minimal surface for every s ∈ (0, 1).

Proposition 6.1. There exists s◦ ∈ (0, 1/2) such that, for s ∈ (0, s◦), X is unstable in R2 \ {0}.

Proof. Let Lx := {(x, 0) ∈ R2 : x > 0} and Ly := {(0, y) ∈ R2 : y > 0}. Choose a radial test
function φ = φ(|x|) ∈ C2

c (R2 \ {0}). With a little abuse of notation, we still denote by φ its trace
on the lines in ∂X.

On the one hand∫∫
∂X×∂X

|ν(x)− ν(y)|2

|x− y|2+s
φ(|x|)2 dσ(x)dσ(y)

= 4

∫ ∞

0

∫ 0

−∞

22

|x− y|2+s
φ(x)2dxdy + 8

∫
Lx

∫
Ly

(
√
2)2

|x− y|2+s
φ(|x|)2dσ(x)dσ(y)

= 16

∫ ∞

0

∫ 0

−∞

φ(x)2

|x− y|2+s
dxdy + 16

∫
Lx

∫
Ly

φ(|x|)2

|x− y|2+s
dσ(x)dσ(y).

Note that ∫
Lx

∫
Ly

φ(|x|)2

|x− y|2+s
dσ(x)dσ(y) =

∫
Lx

φ(|x|)2 dσ(x)
∫
Ly

dσ(y)

(x2 + y2)
2+s
2

=

∫ ∞

0
φ(x)2

(
1

x1+s

∫ ∞

0

dt

(1 + t2)
2+s
2

)
dx

=

√
π Γ
(
1+s
2

)
2Γ
(
2+s
2

) ∫ ∞

0

φ(x)2

x1+s
dx,

and similarly ∫ ∞

0

∫ 0

−∞

φ(x)2

|x− y|2+s
dxdy =

1

1 + s

∫ ∞

0

φ(x)2

x1+s
dx.

Hence∫∫
∂X×∂X

|ν(x)− ν(y)|2

|x− y|2+s
φ2(x) dσ(x)dσ(y) = 16

(
1

1 + s
+

√
π Γ
(
1+s
2

)
2Γ
(
2+s
2

) )∫ ∞

0

φ(x)2

x1+s
dx. (8)

On the other hand, for the Sobolev part in the stability inequality∫∫
∂X×∂X

|φ(|x|)− φ(|y|)|2

|x− y|2+s
dσ(x)dσ(y) ≤ 100

∫ ∞

0

∫ ∞

0

|φ(x)− φ(y)|2

|x− y|2+s
dxdy. (9)
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Now, we use the fact that Hardy’s inequality is saturated. Choose φ(x) = ξ(|x|) where ξ
saturates the Hardy’s inequality as in (1). Applying (8) and (9) with φ(x) = ξ(|x|) we obtain∫∫

∂X×∂X

|ν(x)− ν(y)|2

|x− y|2+s
ξ2(x) dσ(x)dσ(y) = 16

(
1

1 + s
+

√
π Γ
(
1+s
2

)
2Γ
(
2+s
2

) )∫ ∞

0

ξ(x)2

x1+s
dx

(1)

≥ 16

Cs2

(
1

1 + s
+

√
π Γ
(
1+s
2

)
2Γ
(
2+s
2

) )∫ ∞

0

∫ ∞

0

|ξ(x)− ξ(y)|2

|x− y|2+s
dxdy

≥ 16

100Cs2

(
1

1 + s
+

√
π Γ
(
1+s
2

)
2Γ
(
2+s
2

) )∫∫
∂X×∂X

|ξ(x)− ξ(y)|2

|x− y|2+s
dσ(x)dσ(y).

Thus, in order to contradict stability, it is sufficient that

16

100Cs2

(
1

1 + s
+

√
π Γ
(
1+s
2

)
2Γ
(
2+s
2

) ) ≥ 1,

which is clearly the case if s is sufficiently small. Hence, X is unstable in this range. □
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