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Abstract. We study a generalization of the manifold-valued Rudin-Osher-Fatemi (ROF) mo-
del, which involves an initial datum f mapping from a curved compact surface with smooth
boundary to a complete, connected and smooth n-dimensional Riemannian manifold. We prove
the existence and uniqueness of minimizers under curvature restrictions on the target and topo-
logical ones on the range of f . We obtain a series of regularity results on the associated PDE
system of a relaxed functional with Neumann boundary condition. We apply these results to
the ROF model to obtain Lipschitz regularity of minimizers without further requirements on
the convexity of the boundary. Additionally, we provide variants of the regularity statement
of independent interest: for 1-dimensional domains (related to signal denoising), local Lips-
chitz regularity (meaningful for image processing) and Lipschitz regularity for a version of the
Mosolov problem coming from fluid mechanics.

1. Introduction and main results

1.1. A regularity problem within the framework of image denoising. Let (Σ, g), (N , h)
be respectively a compact surface, possibly with smooth boundary ∂Σ ̸= ∅, and a complete
connected smooth n-dimensional Riemannian manifold. The latter will be treated as an isomet-
rically embedded submanifold N ↪→ RN in some Euclidean space, by Nash theorem [50]. We
further consider the space Ck,α(Σ;N ) of maps u : Σ → N whose kth derivatives are Hölder
continuous with exponent α ∈ (0, 1]. Usually we write Σ = Σ∪∂Σ to stress that a claim is valid
up to the boundary.

Given f ∈ L2(Σ;N ) and λ > 0, we study the regularity of minimizers of the energy functional

E(u) :=
�
Σ
|du| dµg +

λ

2

�
Σ
d2h(u, f)dµg, (1.1)

where dh denotes the geodesic distance on N , and dµg is the volume element corresponding to
g. Here, by considering N as embedded in RN , the energy density reads in local coordinates as

|du|2 =
N∑
α=1

gij
∂uα

∂xi
∂uα

∂xj
.

There are several reasons that underpin the interest on this minimization problem. To start
with, it corresponds to the Rudin-Osher-Fatemi model [55], which is well-established for image

Date: December 20, 2024. The authors have been partially supported by project PID2022-136589NB-I00
funded by MCIN/AEI/10.13039/501100011033 and by ERDF A way of making Europe. E. Cabezas-Rivas is
partially supported by the project CIAICO/2023/035 funded by Conselleria d’Educació, Cultura, Universitats i
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denoising in the Euclidean scalar case. In fact, given f : Ω ⊂ R2 → R an observed noisy grayscale
image, where Ω is a bounded domain, which may be thought of as the computer screen, the
goal is to reconstruct the undistorted or ideal image u : Ω → R by means of the additive ansatz
f = u + η, where η(x) are independent identically distributed zero-mean Gaussian random
variables for each x ∈ Ω.

The minimization of E is equivalent to maximize the probability P (u|f) ∝ P (u)P (η) of
recovering u for known f , when one chooses the total variation (i.e., the first integral in E)
to model P (u). The latter should be understood as a mild regularization term, as the look
for minimizers within the space of bounded variation (BV) functions allows for discontinuities
across curves, which is desirable to preserve edges or boundaries of objects in images. In turn,
the second integral in E plays a fidelity role as it penalizes the restored image to be too far away
from the observed one, while λ may be regarded as a weight balancing the relative relevance of
the two terms involved.

In this framework, we wonder whether regular parts of the image survive to this denoising
process, that is, if the regularity of the source f is inherited by the minimizer u. This can be
obtained under natural curvature restrictions on N and topological ones on the range of f . More
precisely, let us consider the convexity radius

Rκ :=


1
2 min

{
injpN , π√

κ

}
if κ > 0

injpN
2 if κ ≤ 0.

(1.2)

where κ is an upper bound for all sectional curvatures of the geodesic ball Bh(p,R) for R < Rκ,
and injp(N ) denotes the injectivity radius of the ball at its center p. Recall that Bh(p,R) is
strongly convex provided that R ≤ Rκ (cf. [17, Theorem IX.6.1]). With this notation, we prove

Theorem 1.1. Suppose that f(Σ) ⊂ Bh(p,R) for some R < Rκ. Then there exists a minimizer
of the functional E, which also satisfies u(Σ) ⊂ Bh(p,R). If we further assume that κ ≤ 0, then

(a) E is geodesically convex, and hence the minimizer is unique.
(b) If f ∈ C0,1(Σ;N ), then u inherits the same Lipschitz regularity.

Notice that if N is simply connected, the classical Cartan-Hadamard theorem ensures that it
is diffeomorphic to Rn, and thus any ball of finite radius in N fulfils the small range condition
for f(Σ) in the above statement. Let us further remark that the non-positivity of the curvature
plays a crucial role in (a) since one can construct counterexamples where the total variation fails
to be convex in case N = S2 for 1-dimensional domains (see [28]). Concerning (b), we highlight
that Lipschitz continuity is the optimal regularity that one could expect even if the source f is
smooth and with compact support.

As in the context of image processing the map f has typically jumps, it is important to know
which regular parts of the image remain after denoising. Therefore let us stress that a local
version of our main result also holds. Indeed,

Corollary 1.2. Assume that N is non-positively curved and f(Σ) is contained in a strongly
convex geodesic ball of N . If we further assume that f ∈ C0,1(Σ;N ) locally, then u is also
locally Lipschitz in Σ.

We also prove the corresponding regularity result for manifold-valued signal denoising, that
is, when the domain is 1-dimensional. More precisely,

Theorem 1.3. Let f : Γ → N , where Γ is either an interval [0, 1] or S1, so that f(Γ) is contained
in a strictly convex geodesic ball of N . If f ∈ C0,1(Γ;N ), then there exists a minimizer such
that u ∈ C0,1(Γ;N ).
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In addition, the proof of Theorem 1.1 exploits a regularized version of the ROF-functional,
which leads to a perturbed 1-Laplacian problem of independent interest because of its relation
with fluid mechanics (see Theorem 1.4). Before entering into details of this further outcome, let
us contextualize our main results and why they amount to several improvements to the current
state of the art.

1.2. Main results in the perspective of the literature. Despite the plethora of applied
examples in computer vision (see Section 1.4 for details) where the Euclidean space is not the
best match to encode complicated real data, to the best of our knowledge, there is no previous
study of a ROF-like model neither in the manifold-constrained setting nor on curved surface
domains. In fact, not even the regularity for the vectorial version of the problem (that is, for
N = Rn) is tackled, due to the lack of classical results up to the boundary.

In contrast, the problem has been widely studied in the scalar Euclidean case f : Ω ⊂ R2 → R
(cf. [13, 14], or [15, 16] for detailed surveys). Roughly speaking, Caselles, Chambolle and Novaga
showed in [13] that the ROF model creates no new discontinuities in addition to those already
present in the observed f . Later on, the same authors proved in [14] that local Hölder regularity
of the data is acquired by the minimizer, with the same exponent. Moreover, if the domain
Ω is convex, they showed that the same is true for global Lipschitz regularity. The extra
convexity restriction was removed for the continuous case by Mercier in [45], and the general
Lipschitz situation is addressed by Porretta in [53] thanks to a Bernstein-type argument, which
we successfully adapt here to curved spaces both in the domain and the target.

In this framework, our main theorem deals with the corresponding Lipschitz regularity prob-
lem for vector-valued functions u : Ω → RN which minimize the functional E given by (1.4)
subject to a family of smooth non-linear (manifold) constraints. In this sense, our results can
be regarded as the manifold constrained counterpart of [14, 53], with the additional technical
difficulty of considering also non-flat surfaces Σ (abstract 2-manifolds) as domains. Such a
minimization problem leads to the following non-linear elliptic system with Neumann boundary
conditions:  τ1(u) := divg

(
du

|du|

)
= −λ exp−1

u f in Σ,

ν · du = 0 on ∂Σ,

(1.3)

The precise definition of the function du
|du| and the Neumann condition will be given in Section

2.1 and Definition 3.2.
The regularity of the system above appears to be much harder than the parabolic counterpart

(see [27] for λ = 0), as evidenced by the absence of previous references. In short, we generalize the
existing literature in three different directions: vector-valued, manifold-constrained and curved
domain.

1.3. A geometric viewpoint to ground the naturality of the hypotheses. Apart from
the already mentioned interest coming from image processing, the minimization of (1.4) is of
geometric interest because the corresponding Euler-Lagrange equations (1.3) can be interpreted
in the scalar case as the following prescribed mean curvature problem:

H = −λ exp−1
t f on ∂Et,

where H represents the mean curvature of the boundary of the sup-level sets Et := {u > t}. In
fact, the sought regularity statement can be interpreted in terms of distance between any two
level sets Et and Es of the minimizer u. This connection is unsurprising if we recall that the
total variation, when applied to a characteristic function u = χE is the perimeter of E in Σ.
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In a somewhat different spirit, (1.3) can be regarded as a shifted spectral problem for the
so-called 1-tension or rough 1-Laplacian (see Section 2.1 for technicalities of the definition)
associated with the eigenvalue λ and with respect to a model map f , which was introduced by
Jost and Kourouma in [40] for the standard 2-tension or rough Laplacian.

In this sense, the λ = 0 case corresponds to 1-harmonic maps, and hence our results can be
regarded as the extension to p = 1 of regularity theory of p-harmonic maps, which is extensively
studied mainly for 1 < p < ∞, and which is itself an extension of the classical harmonic map
theory (p = 2) started by Eells and Sampson [21] or Schoen and Uhlenbeck [59, Corollary, p.
310], where the non-positive curvature (NPC) hypothesis and the small range condition pops up
naturally. Indeed, it is well-known (see e.g. examples in [54]) that there is no hope of getting
full regularity results unless we impose topologic and/or geometric restrictions on the target.
Notice that our p = 1 case is analytically much harder because the anisotropic diffusivity of
the 1-tension, meaning that its ellipticity degenerates in the direction of du, while it becomes
singular in directions where u is constant.

Indeed, our small range condition was first considered for p = 2 by Hildebrandt, Kaul and
Widman [37] to prove regularity results, which were extended to p ≥ 2 and 1 < p < 2 in
[24] and [35], respectively. As all these papers deal with the friendlier scenario of Dirichlet
boundary conditions, our results are closer to the Neumann problem for harmonic maps studied
by Hamilton in the NPC case [36]. Let us point out that the lack of any harmonicity hypothesis
is a constant technical difficulty in our work, because we have to control tension terms overall
which in these previous references did not play any role because they vanish.

1.4. About the meaningfulness of the generalization to manifolds. Let us highlight
that the interest of the manifold constrained version of the ROF model is not by the sake of
meaningless generalization/abstraction; indeed, there are several instances in applied sciences
for which image processing requires this setup (see e.g. [20, 64]). The easiest example to grasp
the need of manifold targets is the tracking of images needed for animation or video surveillance,
where data take values in the space of rigid motions of R3.

Having applications in mind, relevant examples in biomedical imaging are constrained to
NPC manifolds, like DT-MRI (Diffusion tensor magnetic resonance imaging) used in neurology,
where six different data sets measured with different magnetic fields to govern the diffusion
of water molecules is considered for each pixel, and this information is encoded in the space
of symmetric positive definite 3 × 3 matrices. In a completely different direction, hyperbolic
space has become specially relevant in image segmentation [6] and machine learning [46], where
training of the model adds some noise to the process and denoising algorithms may lead to
better pattern recognition. An intuitive reason behind this is that in hierarchies (such as trees
or taxonomies) the number of nodes increases exponentially, which mimics the volume growth
of a ball in hyperbolic ambients, making the latter better suited than Euclidean traditional
geometry, where the growth is polynomial.

On the other hand, positively curved targets (specially round spheres) also play a role in RGB
image processing [60] or in EBSD (electron backscatter diffraction) methods used in materials
science to study the microscopic structure of polycrystals, where data take values in SO(3)
(see [7, 47]). In turn, curved domains arise naturally in sight of non-flat computer screens,
geophysical and medical applications (wind directions or cortical surfaces in brain images) or
3D colouring of surfaces for art or design [42].

In short, dealing with manifold-constrained signals and images is a new challenge coming from
real problems that has been already address in the applied literature (see e.g. [8]) which can
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be considered in this setting some steps ahead the analytical foundations, which are somehow
missing. This motivates the present paper.

1.5. Steady Mosolov problem. To prove existence of minimizers by means of the method
in the Calculus of Variations, we modify the functional in (1.1) by sticking a parameter σ and
introducing a Dirichlet integral to gain some coercivity, that is, we define a new energy as

Eσ(u) :=
�
Σ
|du| dµg +

λ

2

�
Σ
d2h(u, f)dµg +

σ

2

�
Σ
|du|2 dµg, (1.4)

so that E0 = E . The corresponding Euler-Lagrange equations lead to

τ1(u) + σ τ(u) = −λ exp−1
u f in Σ, (1.5)

coupled with Neumann boundary conditions, where τ(u) stands for the usual tension or rough
Laplacian. This is known as perturbed 1-Laplacian system, where the perturbation allows to
expect for better regularity properties (see some Euclidean results in this direction, but without
boundary conditions, in [32] for convex scalar solutions, and [61] in the vector-valued situation,
removing convexity). This intuitive expectation comes from the extra diffusivity (and thus
ellipticity) coming from the usual tension, and in our case allows for regularity results even for
κ > 0. Indeed, we prove an enhanced version of Theorem 1.1 for minimizers of Eσ.

Theorem 1.4. Suppose that f(Σ) ⊂ Bh(p,R) for some R < Rκ. Then for any fixed σ > 0,
there exists a minimizer of the functional Eσ, which also satisfies u(Σ) ⊂ Bh(p,R).

(a) If we further assume that κ ≤ 0, then Eσ is geodesically convex, and hence the minimizer
is unique. If f ∈ C0,1(Σ;N ), then u inherits the same Lipschitz regularity.

(b) In the case κ > 0 there exists a minimizer of Eσ which is also Lipschitz continuous,

provided that f(Σ) ⊂ Bh(p,R) for some R < min
{

injpN
2 , π

4
√
κ

}
.

Notice that the stronger small range condition in (b) was also required in [25] to prove
regularity of stationary p-harmonic maps for p ≥ 2.

Let us highlight that the sought of minimizers for this functional is of independent interest
since, if we view the vector in the right hand side of (1.5) as the gradient of some pressure
function, then this equation models an isothermal steady laminar flow of a non-Newtonian
(Bingham) incompressible fluid, where u stands for the flow velocity and Σ is the cross-section
of and infinitely long duct. In this context, our Neumann condition means that there is no flux
across the boundary, and the parameter σ controls the plastic viscosity. This is usually referred
to as Mosolov problem [48].

1.6. Strategy for the proof of Lipschitz regularity. Let us give a brief sketch of the proof
for Lipschitz regularity. To remove the degeneracy of our system, we need to stick in (1.4)
a further parameter ε > 0 to regularize the energy density in the first term by shifting it to√
|du|2 + ε2. Now the idea is to apply a Bernstein type technique, that is, to differentiate the

resulting PDE system

divg

[( 1√
|du|2 + ε2

+ σ
)
du

]
= −λ exp−1

u f in Σ

in order to prove that w = |du|2 is a subsolution of an elliptic problem to which one can apply
maximum principle arguments to get pointwise estimates at a maximum point. Just to begin
with this strategy we have to deal with two technical difficulties not present in the previous
literature: the right hand side is only Lipschitz and, unlike the scalar Euclidean case from [53],
solutions of this regularized problem are not granted to be smooth by classical standard theory.
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To overcome this issue we substitute f with a smoothed version of it constructed via distance
mollification as in [41] (cf. Section 6.5) and we need to show that solutions of the regularized
problem are at least C3 up to the boundary, and this is precisely a delicate point, as regularity
theory for Neumann elliptic problems is not at hand, and we have to adapt techniques from [5]
to our particular setting in order to prove Hölder estimates for the gradient of u almost from
scratch. Moreover, even interior regularity is only guaranteed in case σ > 2C(R)R (cf. [30, 38]),
but we need to pass to the limit σ → 0 afterwards.

A crucial issue is that the arguments only work for systems in the Euclidean space, and
hence we need to extend our problem suitably to a tubular neighborhood of the target manifold,
following ideas from our previous work in [9], see details in Section 6.1. After the extension and
checking that we get a system of natural growth on the normal part, we can readjust our results
in [9] to get an intrinsic Caccioppoli inequality and higher integrability estimates for solutions
of the present problem (see Proposition 6.3 for details).

To achieve Hölder regularity, we start by flattening the boundary by covering it by a system
of isothermal coordinates. Then the idea is to freeze a point x̄ in the domain and introduce
an auxiliary function v which solves an homogeneous system with mixed boundary conditions
in a suitable neighbourhood of x̄ and for which regularity is known. Next, after a chain of
estimates for the difference v − u performed by choosing appropriate test functions, we prove
that u ∈ C0,β(Σ;N ) for any β ∈ (0, 1) (see Theorem 6.4). Working harder to get finer estimates,
we reach in Theorem 6.5 that u ∈ C1,β0(Σ;N ) for some β0 ∈ (0, 1). The solutions are shown to
be actually smooth up to the boundary (see Proposition 6.6) by combining Schauder estimates
and bootstrapping.

It is a crucial point here that the above arguments can only succeed by working in extrinsic
coordinates, where there is PDE theory available that can be accommodated after non trivial
adaptations. Additionally, the consideration of a curved surface instead of a flat domain imposes
extra complications that cannot be neglected by covering Σ with coordinate neighbourhoods and
arguing as in a flat domain. Indeed, precisely the non-Euclidean metric yields x-dependence
within the elliptic operator that governs the extended problem, which certainly makes the proof
of the Hölder estimates more intricate than the corresponding version for a subset of R2.

Notice that the aforementioned smoothness is not enough for our purposes, because the bounds
arising from the proofs are not uniform either in δ or ε, and hence the estimates will not survive
after passing to the limit to get regularity of the original ROF problem. But this process
allows to differentiate the equation and proceed with the Bernstein technique (see Section 7).
Surprisingly enough and in contrast with the method we have just described, the latter can
only work by working intrinsically (without using Nash embedding). This is why the interplay
between analytical and geometric approaches is essential to achieve our main results.

1.7. Structure of the paper. The paper is structured as follows. In Section 2 we recall the
extrinsic versus intrinsic way to look at the p-Laplacian problems and Sobolev spaces on man-
ifold, we also fix notation, conventions and definitions that will be repeatedly used throughout
the whole paper. Section 3 includes the technicalities that are hidden on purpose for the sake
of simplicity of the introduction to define the minimization problem on the right space of BV
functions between manifolds, which also amounts to define an appropriate notion of solution
and prove lower semicontinuity of the corresponding relaxed energy functionals (cf. Theorem
3.1), which will be crucial for the existence of minimizers.

In turn, uniqueness follows by direct methods of calculus of variations, provided the functional
is convex. Next, Section 4 is devoted to prove geodesic convexity for an even more general
energy functional, where we have to derive the second variation formula from scratch, since
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in all the previous literature both tension and boundary terms are neglected by harmonicity
and boundary conditions, respectively. This is used to derive convexity for smooth functions
between Riemannian manifolds in the NPC case. To conclude the argument, one needs a density
of the latter within Sobolev functions, which is not true without serious topological restrictions;
to overcome this, we apply an idea from [52] of flattening out the ends outside a geodesic ball
to construct a global system of normal coordinates where the squared distance function is still
convex (see Lemma 4.1). As a by-product, we achieve geodesic convexity for the total variation
(cf. Theorem 4.3). Then we are in position to prove existence of minimizers in Section 5, after
showing that the composition of a map u with a retraction into the geodesic ball decreases the
energy Eσ and hence the small range condition also holds for minimizers (see Proposition 5.1).

The aforementioned arguments for Hölder and Lipschitz regularity are carried over in Sections
6 and 7, respectively. Let us remark that the Lipschitz regularity with a uniform bound for the
regularized problem depending on ε, δ follows directly from the elliptic estimate for w = |du|2
(see Proposition 7.3) in the convex case. In order to remove the latter extra assumption, we
need to multiply w by a suitable test function, which only depends on the domain surface, so
that one can still apply Hopf’s maximum principle (see Section 7.3). In this way, one can prove
Lipschitz regularity for the approximated problem in Proposition 7.5, and for the original one
after a limiting process (cf. Proposition 7.6). The corresponding statement for the Mosolov
problem is more complicated, as it requires multiplication of w by a test function that depends
both of Σ and the target manifold, cleverly chosen so that the quadratic terms in w have a good
sign which allows to conclude via maximum principle (see Section 7.6). Finally, the argument
for signal denoising is much simpler and is carried out in Section 8.

2. Notation, conventions and background material

Let us be a bit more precise about the definition of relevant operators and Sobolev spaces for
maps between manifolds.

2.1. p-tension or rough p-Laplacian (intrinsic versus extrinsic viewpoint). Let (N , h)
be as before, and take (M, g) be an m-dimensional compact Riemannian manifold with smooth
boundary ∂M ̸= ∅. Recall that for each point x ∈ M the differential of u at x is a linear map
from TxM to Tu(x)N , namely, it holds du(x) ∈ Hom(TxM, Tu(x)N ), and the latter space is in
turn isomorphic to the tensor product T ∗

xM⊗ Tu(x)N .

We take (x1, . . . , xm) and (y1, . . . , yn) local coordinates in M and N , respectively. Then du
as a section of the bundle B := T ∗M⊗ u∗TN can be expressed locally as

du = ∂iu
α dxi ⊗ ∂

∂yα

∣∣∣∣
u

, with ∂i :=
∂

∂xi
.

For convenience and brevity, we will combine du with the notation u∗ as both are quite usual in
the literature. Hereafter we use the convention that an index repeated as sub and superscript in
a product means summation over the range of the index, where Latin indices range in {1, . . . ,m},
while Greek letters take values on {1, . . . , n}.

From an intrinsic viewpoint, given p ≥ 1, the p-Dirichlet energy (or total variation functional
for p = 1) is given by

Ep(u) =
1

p

�
M

|du|p dµg, (2.1)

where dµg denotes the Riemannian volume element and the energy density can be written as

|du|2 = ⟨du, du⟩g�h := trg(u
∗h) = gij(hαβ ◦ u)∂iuα∂juβ,

which follows from the definition of the pull-back metric (u∗h)ij := h(∂iu, ∂ju).
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Given ν the unit outward normal to ∂M, we interpret ν ·du as the inner product with respect
to the induced metric on the boundary. Moreover, notice that ν · du is actually an abuse of
notation for du(ν) = u∗ν ∈ TuN ; for convenience, sometimes we will also use the notations ∇νu
or ∂u

∂ν .

On the other hand, let ∇ be the Levi-Civita connection of (M, g) and h∇ the one of (N , h).

Set ∇̃ the induced connection on u∗TN , which is defined as follows: for X ∈ TM, V ∈ u∗TN ,

∇̃XV :=h∇u∗XV ∈ C∞(u∗TN ). (2.2)

In turn, if ∇∗ denotes the connection on T ∗M dual to ∇, we will work with ∇g�h := ∇∗ ⊗ ∇̃,
which is the unique linear connection of B so that

∇g�h(A⊗B) = (∇∗A)⊗B +A⊗ ∇̃B

for A ∈ C∞(T ∗M) and B ∈ C∞(u∗TN ). Additionally, such a connection fulfils the compatibil-
ity condition

v ⟨X,Y ⟩g�h =
〈
∇g�h
v X,Y

〉
g�h +

〈
X,∇g�h

v Y
〉
g�h

for all sections X,Y ∈ C∞(B) and v ∈ TM.
The critical points of Ep are known as p-harmonic maps, and have vanishing p-tension or

rough p-Laplacian, that is, satisfy τp(u) = 0, where τp(u) := trg
(
∇g�hdu

)
= τp(u)

γ ∂
∂yγ

∣∣∣
u
∈

C∞(u∗TN ), which in local coordinates reads as

τp(u)
γ = divg

(
|du|p−2d(uγ)

)
+ |du|p−2gij hΓγαβ(u)∂iu

α∂ju
β

=
1√
det g

∂i

(
|du|p−2

√
det g gij∂ju

γ
)
+ |du|p−2gij hΓγαβ(u)∂iu

α∂ju
β

for γ = 1, . . . , n, where hΓγαβ(u) denote the Christoffel symbols for the Levi-Civita connection

of the metric h. In particular, we will deal with the cases p = 1, 2, that is,

τ(u)γ = τ2(u)
γ = ∆g(u

γ) + gij hΓγαβ(u)∂iu
α∂ju

β = gij
(
∂2iju

γ − gΓkij∂ku
γ + hΓγαβ(u)∂iu

α∂ju
β
)

and, with a shorter notation,

τ1(u) = divg

(
du

|du|

)
+

1

|du|
Γu(du, du). (2.3)

Alternatively, from an extrinsic perspective, Nash theorem [50] guarantees that there exists
an isometric embedding ι : N ↪→ RN and, by completeness of N , we even know by [49] that
ι(N ) is a closed subset of RN (in other words, that the embedding is proper). Then we can work
with the extended map

ŭ := ι ◦ u : M −→ RN .
In this setting, with ∇ŭ = (∇ŭ1, . . . ,∇ŭN ) ∈ RmN , it holds

|∇ŭ|2 =
N∑
α=1

gij∂iŭ
α ∂j ŭ

α and τp(ŭ) =
(
divg

(
|∇ŭ|p−2∇ŭ

))⊤
,

where RN ∋ X 7→ X⊤ ∈ TuN denotes the orthogonal projection onto the tangent space. As the
normal component can be represented by means of the second fundamental form Au of N , we
get the following expression:

τp(ŭ)
γ = divg

(
|∇ŭ|p−2∇ŭγ

))
+ |∇ŭ|p−2gijAγ

u(∂iŭ, ∂j ŭ), 1 ≤ γ ≤ N.
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being Au(X,Y ) ∈ (TuN )⊥ the second fundamental form of N given by A(X,Y ) = −(DXY )⊥,
where D is the standard directional derivative in RN and X,Y are extended arbitrarily as
tangent vector fields to N in a neighborhood of u ∈ N . Notice that, with a shorter notation for
p = 1, we have

τ1(ŭ) = divg

(
∇ŭ
|∇ŭ|

)
+

1

|∇ŭ|
Au(∇ŭ,∇ŭ),

which formally resembles its intrinsic counterpart (2.3). Hereafter, for simplicity, we will always
write u instead of ŭ, unless the meaning is unclear from the context.

2.2. p-energy on surfaces. In the case that M = Σ, we can further use isothermal coordinates
on the surface. Indeed, let

{
(Uℓ, φℓ)

}
be an atlas of Σ such that the metric g within Uℓ can be

written as gij = ϱ2ℓ δij with ϱℓ ∈ C1(Uℓ;R+). In these coordinates, set Ωℓ := φℓ(Uℓ), and thus
the p-energy functional (2.1) can be written as

Ep(u) =
1

p

∑
ℓ

�
Ωℓ

(
χℓ · ϱ2−pℓ |∇u|p

)
◦ φ−1

ℓ (x) dx =:
1

p

�
Ω
ϱ2−p|∇u|p dx, (2.4)

with {χℓ}ℓ a partition of unity subordinate to Uℓ. Notice that, for simplicity, we just write ϱℓ
instead of χℓ · ϱℓ and, as usual, we omit composition with φ−1

ℓ , unless the meaning is unclear
from the context.

Now, observe that the existence of isothermal coordinates up to the boundary (e.g. [65, Lemma
4]) permits to take a finite covering {Uℓ}ℓ∈I and to suppose that there exists a constant Cp > 0
such that

Cp ≤ ρ2−pi

∣∣
Ωℓ

≤ 1

Cp
for all ℓ ∈ I and p ≥ 1. (2.5)

2.3. Extrinsic versus intrinsic Sobolev spaces. Given a smooth compact manifold M,
with possibly smooth boundary ∂M, Lp(M) = Lp(M;RN ) (1 ≤ p < ∞) and L∞(M) =
L∞(M;RN ) denote, respectively, the set of Lebesgue integrable functions such that the p-power
of the modulus is Lebesgue integrable in M and the set of essentially bounded measurable
functions in M. Complementarily, for p ≥ 1 the spaces W k,p(M) = W k,p(M;RN ) denote the
sets of functions in Lp(M) such that its derivatives up to order k have finite Lp norm. In
particular, we denote by H1(M) the space W 1,2(M). We recall that W 1,p(M) is the closure of
C∞
c (M) functions in the standard W 1,p-norm.
Let Ω ⊂ Rm be an open bounded set with Lipschitz boundary ∂Ω and Γ ⊂ ∂Ω. For 1 ≤ p < m,

W 1,p
Γ (Ω) is the subset of W 1,p(Ω) consisting of functions u ∈W 1,p(Ω) with Tu = 0 on Γ, where

T is the trace operator on ∂Ω. In particular, when Γ = ∂Ω, W 1,p
Γ (Ω) is denoted as W 1,p

0 (Ω).
We will use the following generalization of the Poincaré inequality. We omit the proof since

it is verbatim that for the standard W 1,p
0 (Ω) case (e.g., [22, Thm 3, p. 279]).

Lemma 2.1. Let u ∈W 1,p
Γ (Ω) for some 1 ≤ p < m. Then, the inequality

∥u∥Lq(Ω) ≤ C∥Du∥Lp(Ω)

holds for each q ∈ [1, mp
m−p ], where C > 0 is a constant depending only on p, q,m and Ω.

Concerning N -valued functions, there are two different notions of Sobolev spaces: an extrinsic
version and an intrinsic one. For the first, identifying again a function u with its extension ι ◦u,

W 1,p(M;N ) := {u ∈W 1,p(M) : u(x) ∈ N for a.e. x ∈ M}. (2.6)

It turns out ([18, Proposition 2.7]) that this definition does not depend on the choice of the
embedding ι, contrary to the case of higher order Sobolev spaces (see [19]).
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On the other hand, in the event that the n-dimensional manifold N is covered by a normal
coordinate chart centered at some point p ∈ N , the manifold N can be identified with the
Euclidean space Rn endowed with a metric that can be expressed globally in normal Cartesian
coordinates. Identifying thus u : M → N with its vector valued representation, one can define
the intrinsic Sobolev space of first order as

W 1,p
in (M;N ) :=W 1,p(M). (2.7)

2.4. Further notation and conventions. We recall that b ∈ Bh(p,R) is a barycenter of a

Radon measure µ on Bh(p,R) if b is a minimizer of the function

Bh(p,R) ∋ q 7−→ 1

2

�
N
d2h(·, q) dµ.

In [1, Theorem 2.1], it is proved that, if R < Rκ, a unique barycenter exists. Notice that this is
true for non-positively simply connected curved manifolds without any restriction on R.

Using the notion of barycenter, we now recall a mollification technique given in [41] for
Lipschitz continuous functions, C0,1(M;N ): Firstly, for a given 0 < δ < Rκ, we set rh = dh(p, ·)
and consider the mollifier ϕδ : N ×N → R defined as

ϕδ(p, q) = ψ

(
rh(q)

δ

)[�
B(0,δ)

ψ

(
rh ◦ expp(·)

δ

)
dµexp∗p h

]−1

,

where B(0, δ) = expp(Bh(p, δ)) is regarded as a ball in Rn while ψ ∈ C∞(R) is such that
ψ((−∞, δ]) = 1, ψ([1−δ,∞)) = 0 and ψ′ ≤ 0. Then, if we further assume that f(M) ⊂ Bh(p,R)
for some p ∈ N and R < Rκ, we can define fδ : M → N as

fδ(x) := b(f(x), δ) for all x ∈ M, (2.8)

where b(f(x), δ) denotes the barycenter of the Radon measure µ = ϕδ(f(x), ·) dµexp∗
f(x)

h.

By [41, Theorem 4.3], we have that {fδ}δ ⊂ C∞(M;N ) for δ small enough. In addition, as
f ∈ C0,1(M;N ) with Lipschitz constant Lf , [41, Theorem 4.4, 4.6] implies that fδ(p) → f(p)
as δ → 0 and fδ are Lipschitz functions with Lipschitz constant CLf .

Given an open set Ω ⊂ Rm, we represent by Lp,λ(Ω) the Campanato space, which consist of
those functions u ∈ Lp(Ω) satisfying

sup
x∈Ω,

ρ≤diam(Ω)

(
ρ−λ

�
Ω∩Bρ(x)

|u− ux,ρ|pdx
)
<∞,

such that ux,ρ is defined as

ux,ρ :=

 
Ω∩Bρ(x)

u dx.

We specify our conventions for constants. Indexed letters C, i.e. C0, C1, etc. will retain
a specific meaning throughout the whole paper, while the letter C denotes a generic constant,
which is always allowed to change from line to line and depends on the quantities listed in the
corresponding statement. In addition, if the constants depend on some specific variable (e.g. ε),
this will be denoted by an index with the corresponding variable (e.g. Cε)
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3. Total variation functional and technical setup for the Euler-Lagrange
equations

3.1. Manifold constrained functionals with linear growth. In this subsection we extend
the energy functional E1 for functions not necessarily in W 1,1(Σ;N ). In particular, with the
notation in (2.4), we define for u ∈ L1(Σ;N ),

T V(u) :=


∑
ℓ

(�
Ωℓ

ϱℓ|∇u| dx+

�
Ωℓ

ϱℓ d|Dcu|+
�
Ωℓ∩Ju

ϱℓdh(u
+
ℓ , u

−
ℓ ) dH

1

)
, if u ◦ φ−1

ℓ ∈ BV (Ωℓ;N )

+∞, otherwise.
(3.1)

Note that, again, we are omitting composition with φ−1
ℓ inside the integrals. Here we are using

an extrinsic concept of BV functions; i.e. for an open set Ω ⊂ Rm,
BV (Ω;N ) := {u ∈ BV (Ω) : u(x) ∈ N for a.e. x ∈ Ω},

and Ju denotes the jump set of u ∈ BV (Ω) while Dcu is the Cantor part of the Radon measure
Du. Since we do not use any properties of BV functions in our paper, we do not enter into
details of the definition or properties of the space BV (Ω), but we instead refer to [3]. Moreover,
we say that u ∈ BV (Σ;N ) if u ◦ φ−1

ℓ ∈ BV (Ωℓ;N ) for all ℓ ∈ I.
We will prove the next result, concerning functions valued on a geodesic ball Bh(p,R) around

a point p ∈ N with radius R smaller than Rκ defined as in (1.2).

Theorem 3.1. Let R < Rκ. The following holds:

(a) Let {uk}k ⊂W 1,1(Σ;Bh(p,R)) for some p ∈ N be such that uk → u in L1(Σ;Bh(p,R)),
then

T V(u) ≤ lim inf
k→∞

E1(uk).

(b) Given u ∈ BV (Σ;Bh(p,R)) for some p ∈ N , there exists uk ∈ C1(Σ;Bh(p,R)), such
that E1(uk) → T V(u) as k → ∞.

Proof. First, we observe that it is enough to prove the result for Ω := Ωℓ. For simplicity of
notation, we also omit composition with φ−1

ℓ . Under this notation, we observe that the result is
very close (except for the fact of the different open and closed geodesic balls) to prove that T V
is the relaxed functional with respect to the L1-convergence of

u 7→

{
E1(u) if u ∈ C1(Ω;Bh(p,R))

+∞ otherwise
.

In the case that the target space Y is a compact, orientable manifold without boundary with
trivial homotopy group, we could apply directly the results in [31] to obtain that this is the case.

However, in our case Y = Bh(p,R) has a nonempty boundary. To fix this issue, we argue as
follows.

We take R < R′ < Rκ. Since ∂Bh(p;R
′) is geodesically convex, we can consider the double

of R := Bh(p;R
′), RD, which is typically constructed by gluing together two copies of R along

the identity map of the boundary, but this will not give a regular enough closed submanifold in
general. To overcome this, we can argue as in [10, Proposition 4.1], that is, roughly speaking, by
perturbing the metric in a small inner neighborhood of the boundary ∂R to form a cylindrical end
so that the gluing is well defined and the submanifold (RD, g̃) preserves its degree of regularity
and the modified metric g̃ satisfies g̃|Bg(p,R) = g.

Then, [31, Corollary 6.4] applies with Y = RD and the lower semicontinuity in (a) is a direct
consequence. For (b), we observe that [31, Corollary 6.4] yields the existence of a sequence
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{uk}k ⊂ C1(Ω;RD) such that uk → u ∈ L1(Ω;RD) and E1(uk) → T V (u) as k → ∞. By the
strong convergence, we can take a subsequence, not relabeled, such that uk → u a.e. Therefore,
we can suppose that uk ∈ C1(Ω;Bh(p,R)). �

We can now accurately define the functionals in (1.1) and (1.4) for the cases σ = 0 or σ > 0:

E(u) = E0(u) :=

 T V(u) + λ

2

�
Σ
d2h(u, f) dµg if u ∈ BV (Σ;N )

+∞ if u ∈ L1(Σ;N ) \BV (Σ;N )
, and

Eσ(u) :=

 T V(u) + λ

2

�
Σ
d2h(u, f) dµg +

σ

2

�
Σ
|du|2 dµg if u ∈ H1(Σ;N )

+∞ if u ∈ L2(Σ;N ) \H1(Σ;N )
.

3.2. Euler-Lagrange equations. For σ ≥ 0, a minimizer u of Eσ has to be a weak solution to
the corresponding Euler-Lagrange system:{

divgZu = −λ exp−1
u f in Σ,

ν · Zu = 0 on ∂Σ,
(3.2)

where ν represents the outer unit normal of ∂Σ, and Zu is given by

Zu :=

(
1

|du|
+ σ

)
du.

Even in the smooth case; i.e u ∈ H1(Σ;N ), we need to clarify the meaning of du
|du| . Throughout

this work, we understand it as a multivalued function defined as

du

|du|
: x 7−→


du(x)

|du(x)|
, if du(x) ̸= 0,

Bg�h(0, 1) ⊂ T ∗
xΣ⊗ Tu(x)N , if du(x) = 0.

(3.3)

Our definition of a (regular) solution to (3.2) is the following one:

Definition 3.2. Given σ ≥ 0, we say that u ∈ C0,1(Σ;N ) is a (regular) solution of (3.2) if there
exists Z ∈ L∞(Σ;R2N ) with divgZ ∈ L2(Σ;RN ) satisfying

divgZ = −λ exp−1
u f with Z − σdu ∈ du

|du|
L2-a.e. in Σ,

and it fulfills the homogeneous Neumann condition

ν · Zα = 0 H1-a.e. on ∂Σ, for all α = 1, . . . , n.

4. Geodesic convexity of a generalized p-energy

Let us work for this part in a more general framework: (Mm, g) a compact m-dimensional
manifold with ∂M ≠ ∅. Next, Consider a C2 function F : M× R → R+ such that

• F (x, ·) is non-decreasing for all x ∈ M.

• |F (x, s)| ≤ C(1 + |s|
p
2 ) for (x, s) ∈ M× R and some p ≥ 1, and

• the function G(x, ·) := F
(
x, |·|

2

2

)
is convex for all x ∈ M.
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We consider F : L2(M;N ) → R defined as

F(u) :=


�
M
F
(
·, |du|

2

2

)
dµg if u ∈W 1,p(M;N ), u(M) ⊂ Bh(p,R)

+∞ otherwise.

In the above setting, the F -tension field is defined by

τF (u) : =
∑
i

(
∇̃ei

(
F ′
(
x, |du|

2

2

)
u∗ei

)
− F ′

(
x, |du|

2

2

)
u∗(∇eiei)

)
,

being {ei}mi=1 any local orthonormal basis of TM. Hereafter F ′ and F ′′ will denote first and
second partial derivatives of F (x, s) with respect to s.

To prove the convexity of the functional F , one typically needs to derive formulas for its first
and second variation. However, unlike in the previous literature, we have no sort of harmonicity
condition which cancels out terms involving the F -tension and we have to keep track all extra
boundary terms. Taking these difficulties into account, after a tedious but routine computation
(which can be reproduced following the lines of [4, 62]), we obtain

d

dt

∣∣∣∣
t=0

F(ut) = −
�
M

⟨V, τF (u)⟩h dµg +
�
∂M

F ′
(
x, |du|

2

2

)
⟨u∗ν, V ⟩h dµg̃,

where U : M× [0, 1] → N is a one-parameter variation of u ∈ C∞(M,N ) so that U(·, 0) = u,
ut := U(·, t) and V = U∗∂t

∣∣
t=0

. Moreover, g̃ is the induced Riemannian metric on ∂M. In turn,
the second variation formula reads as

d2

dt2

∣∣∣∣
t=0

F(ut) =−
�
M

〈
∇̃∂tV, τF (u)

〉
h
dµg +

�
M
F ′
(
x, |du|

2

2

)
(|∇̃V |2h −R(V, du))dµg

+

�
M
F ′′
(
x, |du|

2

2

) 〈
∇̃V, du

〉2
h
dµg +

�
∂M

F ′
(
x, |du|

2

2

) 〈
∇̃∂tV, u∗ν

〉
h
dµg̃,

with

R(V, du) =
m∑
i=1

hR(V, u∗ei, u∗ei, V ) =
m∑
i=1

Sech(V, u∗ei)
∣∣V ∧ u∗ei

∣∣2
h
.

To prove the convexity of the energy functional we need the following result about density of
smooth functions into manifolds with boundary.

Lemma 4.1. Let R < Rκ. Then, the space C∞(M;Bh(p,R)) is dense in W 1,q(M;Bh(p,R)),
for any q ≥ 1.

Proof. Recall that we have an isometric embedding ι : N ↪→ RN by Nash. Then for any
R′ ∈ (R,Rκ) we can modify the metric outside ι(Bh(p,R

′)) ⊂ RN by flattening it out (see
Figure 1) via a bi-Lipschitz ambient diffeomorphism which keeps the Euclidean metric outside
a larger ball so that we get a Riemannian metric on all of Rn for which the squared distance to
the origin is smooth and still strictly convex (for a proof, see [52, Theorem 5]).

The latter implies that (N , h) can be covered by a global, normal coordinate chart centered
at p, meaning that (N , h) can be regarded as Rn endowed with a metric that can be expressed
globally in normal Cartesian coordinates, and hence the extrinsic definition (2.6) ofW 1,p(M,N )

coincides with the intrinsic one W 1,p
in (M,N ) given by (2.7), cf. [52, Theorem 4].

In this setting, given u ∈ W 1,q(M;N ) with u(M) ⊂ Bh(p,R), by [52, Corollary 7], we can
find a sequence uk ∈ C∞(M;N ) such that uk → u in W 1,q(M;N ) as k → ∞. Accordingly, up
to extracting a subsequence, we can assume that the convergence is pointwise a.e. and hence
that uk(M) ⊂ Bh(p,R). �
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Figure 1. Schematic view of the idea of flattening the ends to construct a global coor-
dinate system outside a geodesic ball.

Theorem 4.2. If κ ≤ 0 and R < Rκ, the functional F is geodesically convex.

Proof. We split the proof into several steps:
Step 1. Second variation estimate. In the case that κ ≤ 0 and U is a variation along a

geodesic, then

d2

dt2

∣∣∣∣
t=0

F(u) ≥
�
M

(
F ′
(
x, |du|

2

2

)
|∇̃V |2h + F ′′

(
x, |du|

2

2

) 〈
∇̃V, du)

〉2
h

)
dµg ≥ 0,

since G is convex in the second argument.
Step 2. Convexity for smooth functions. Given u, v ∈ C∞(M;N ) with u(M), v(M) ⊂

Bh(p,R) for R < Rκ, one can always construct (see [58, proof of Theorem 2.9]) a geodesic
homotopy U : M× [0, 1] → Bh(p,R) with U(·, 0) = u and U(·, 1) = v. Let us denote for brevity
U(t) = U(·, t) and recall that t 7→ U(t) are geodesics in N for each fixed point in M. Then, by
the previous computations, since t 7−→ F(U(t)) is a convex function, it holds:

F(U(t)) ≤ tF(u) + (1− t)F(v) for all t ∈ [0, 1]. (4.1)

Step 3. Convexity for W 1,q(M;N ) functions. We now observe that, since Bh(p,R) is an
NPC-space for R < Rκ, then L2(M, Bh(p,R)) is also an NPC-space [33, §4.1.1]. Therefore,
given u, v ∈ L2(M;Bh(p,R)) there exists a unique geodesic U(t) such that U(0) = u, U(1) = v.
In order to prove that (4.1) holds for u, v, it suffices to suppose that both belong toW 1,q(M;N )
since, otherwise, the right hand side is infinite.

Accordingly, we can apply Lemma 4.1 to ensure that we can take uk, vk ∈ C∞(M;Bh(p,R))
such that uk, vk → u, v strongly in W 1,q(M;Bh(p,R)). Consider now Uk the geodesic such that
Uk(0) = uk and Uk(1) = vk. Then, since we are in an NPC space we have that�
M
dh(U(t), Uk(t))

2 ≤ (1− t)

�
M
dh(U(t), uk)

2 + t

�
M
dh(U(t), vk)

2 − t(1− t)

�
M
dh(uk, vk)

2

k→∞→ (1− t)

�
M
dh(U(t), u)2 + t

�
M
dh(U(t), v)2 − t(1− t)

�
M
dh(u, v)

2 = 0,

where all the integrals above are computed with respect to dµg.
Therefore, by lower semicontinuity with respect to the L2-convergence of the energy and

strong convergence of the approximations, we can pass to the limit in (4.1) and show that (4.1)
is satisfied by u, v ∈W 1,q(M;Bh(p,R)). �

This result permits to show that the convexity also holds for the functional T V given in (3.1).
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Theorem 4.3. If κ ≤ 0 and R < Rκ, then the functional T V is geodesically convex with N
replaced by Bh(p,R).

Proof. We let

Fε(u) :=


�
Σ

√
ε+ |du|2 dµg if u ∈W 1,1(Σ;Bh(p,R))

+∞ otherwise.

Then, by Sobolev embedding and Theorem 4.2, we have that Fε is geodesically convex in
L2(Σ;N ). Note, however, that due to boundedness of both domain and target in the case
when the functional is finite, L1 and L2 topologies are equivalent.

We reason now as in the last part of the proof of Theorem 4.2. We take u, v ∈ BV (Σ;Bh(p,R)),

then by Theorem 3.1, there exist {uk, vk}k ⊂ C1(Σ;Bh(p,R)) such that uk, vk → u, v in L1(Ω)
and T V(uk) → T V(u) as k → ∞.

As before, consider Uk the geodesic in L2(Σ;Bh(p,R)) such that Uk(0) = uk and Uk(1) = vk.
Then, again since L2(Σ;Bh(p,R)) is an NPC space, we obtain that Uk → U in the L2-topology,
with U being the geodesic joining u and v. Therefore, letting ε = εk → 0 as k → ∞, by the
lower semicontinuity given by Theorem 3.1 and by convexity of Fε, we have

T V (U) ≤ lim inf
k→∞

T V(Uk(t)) ≤ lim sup
k→∞

(Fεk(Uk(t))) ≤ lim sup
k→∞

(tFεk(uk) + (1− t)Fεk(vk))

= tT V(u) + (1− t)T V(v).
�

5. Existence and uniqueness of minimizers

We begin this section with the following invariance principle for minimizers, which guarantees
that the small range condition of the source is inherited by any minimizer.

Proposition 5.1. Given σ ≥ 0, let u be a minimizer of Eσ. If f satisfies f(Σ) ⊂ Bh(p,R) for
some p ∈ N and R < Rκ, then u(Σ) ⊂ Bh(p,R).

Proof. By assumption, we can introduce geodesic polar coordinates (r, θ) in Bh(p, 2R) centered
at p. We consider the following Lipschitz retraction: π : N → Bh(p,R), with

π(q) :=


(r, θ) if q = (r, θ) , r < R

(2R− r, θ) if q = (r, θ) , R ≤ r < 2R

p if q ∈ N \Bh(p, 2R)
,

We will show that π is length decreasing; i.e dh(π(q), π(q̃)) ≤ dh(q, q̃) for any q, q̃ ∈ N as in
the proof of [39, Lemma 10.2.4]. First, observe that it is enough to prove

dh(π(r, θ), π(r̃, θ̃)) ≤ dh((r, θ), (r̃, θ̃)) for q, q̃ ∈ Bh(p, 2R). (5.1)

By construction, π is clearly length decreasing in r; i.e. (5.1) holds with θ fixed. Therefore,
we will only prove the case that r = r̃, for which we take a curve γ(s) := (r, θ(s)). Now, for
each s fixed, cs(t) := (t, θ(s)) is a radial geodesic with cs(0) = p and cs(r) = γ(s). Accordingly,
Js(t) := ∂

∂scs(t) is a Jacobi field with Js(0) = 0, Js(r) = γ′(s) and dπ(γ′(s)) = Js(rπ), with
(rπ, θ) = π(γ(s)) (rπ = 2R− r < R < r ≤ 2R).

Thus, assuming without loss of generality that γ′(s) ̸= 0, by Rauch comparison theorem and
a straightforward computation, we obtain that

|γ′(s)|
|dπ(γ′(s))|

=
|Js(r)|
|Js(rπ)|

≥ sinκ(r)

sinκ(2R− r)
> 1,
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where sinκ(·) = sin(
√
max{κ, 0} ·). Hence π is also length decreasing in the θ directions.

Consequently, Eσ(π ◦ u) ≤ Eσ(u), with strict inequality unless π ◦ u = u. Thus, by the
minimality of u, we conclude that u(Σ) ⊂ Bh(p,R). �

As a by-product, under the hypothesis of the above statement, we can restrict the search of
admissible minimizers of Eσ to the following set:

ΛσR :=

{
{u ∈ H1(Σ;N ) : u(Σ) ⊂ Bh(p,R)} if σ > 0

{u ∈ BV (Σ;N ) : u(Σ) ⊂ Bh(p,R)} if σ = 0

Proposition 5.2. Given σ ≥ 0, if f satisfies f(Σ) ⊂ Bh(p,R) for some p ∈ N and R < Rκ,
then there exists a minimizer of Eσ in ΛσR.

Proof. We follow the direct method in the calculus of variations. However, we will only give the
proof in the case σ = 0, the other case being similar, but easier.

We note that E(u) ≥ 0. Thus there exists a minimizing sequence {uk}k such that E(uk) →
inf E as k → ∞. Moreover, by Proposition 5.1, we can assume that uk(Σ) ⊆ Bh(p,R). Now, by
(2.5) and the definition of T V , we have that E is coercive. Therefore, there is a subsequence,
not relabeled, and u ∈ BV (Σ) such that uk → u ∈ L1(Σ). Hence we may further assume that
uk → u a.e. in Σ. This yields that u ∈ Λ0

R. Finally, by lower semicontinuity, we conclude that
u is a minimizer of E . �

As a direct consequence of the convexity results in Theorems 4.2, 4.3 and the fact that d2h is
strictly convex in Bh(p,R) for R < Rκ, we obtain the following result.

Proposition 5.3. Under the hypothesis of Proposition 5.2, if κ ≤ 0, then Eσ has a unique
minimizer in ΛσR.

6. Regularity results for an approximate problem

6.1. Setup of the regularized functional/system. In this section, we will study the regu-
larity of the minimizers of Eσ. Firstly, we consider the following approximation to Eσ:

Eσ,ε(u) :=


�
Σ

√
|du|2 + ε2 dµg +

λ

2

�
Σ
d2h(u, f) dµg +

σ

2

�
Σ
|du|2 dµg if u ∈ H1(Σ;N )

+∞ otherwise.

with ε, σ > 0. As in Proposition 5.2, one can guarantee the existence of a minimizer for Eσ,ε.

Lemma 6.1. Given f ∈ L2(Σ;N ), there exists u ∈ H1(Σ;N ) which minimizes Eσ,ε.

Proof. Let {uk}k ⊂ H1(Σ;N ) be a minimizing sequence. Then, identifying again N -valued
functions with their extension by Nash embedding, we obtain a subsequence, not relabeled, and
a function u ∈ H1(Σ) such that uk ⇀ u in H1(Σ) and uk → u a.e. in Σ. Therefore, by lower
semicontinuity, we conclude that u ∈ H1(Σ;N ) is a minimizer. �

Any minimizer of Eσ,ε is a weak solution to the corresponding Euler-Lagrange system{
divgZε,σ = −λ exp−1

u f in Σ

ν · du = 0 on ∂Σ
(Sfε,σ)

such that Zε,σ is defined as

Zε,σ = Zε,σ(x, du) :=
(

1√
|du|2 + ε2

+ σ

)
du.
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Now the goal is to study the regularity of weak solutions to (Sfε,σ). In order to do this, we write
the system locally using extrinsic coordinates in the target, by Nash theorem and isothermal
coordinates in the domain, as described in Sections 2.1 and 2.2. Moreover, since we want to
obtain regularity estimates up to the boundary of Σ, we will focus on neighborhoods around any
point in ∂Σ, the proofs for interior neighborhoods being similar, but easier than the boundary
case.

We now fix some notation. For x ∈ Σ and r > 0, Br(x) denotes the open ball in R2 with
center x = (x1, x2) and radius r > 0. We consider the following sets:

B+
r (x) = Br(x) ∩ {x2 > x2}
Ωr(x) = Br(x) ∩B+

1 (0)

The first step towards regularity is to flatten ∂Σ around a fixed point z ∈ ∂Σ. As ∂Σ is
smooth, there exists a smooth transformation Ψz for a some neighborhood U of z such that

Ψz(U ∩ Σ) = B1(0) ∩ {x2 > 0} =: B+
1 , Ψz(U ∩ ∂Σ) = B1(0) ∩ {x2 = 0} =: Γ1.

Figure 2. Setup for the problem after locally flattening the boundary. The blue area
denotes the neighborhood U in the left figure and B+

1 in the right figure. The striped
area represents Ωr(x̄), the red segment indicates Γ1∩∂Ωr, and the green segment marks
the region where u = v.

Without loss of generality, we may assume that U = Uℓ and Ψz = φℓ for some ℓ. For simplicity

we write ϱ := ϱℓ (recall the notation from Section 2.2). Therefore, any weak solution to (Sfε,σ)
must satisfy 

∑
i

∂ia
α
i (x,∇u) = Φα(x, u,∇u) for x ∈ B+

1

aα2 (x,∇u)|Γ1 = 0

(6.1)

for α ∈ {1, ..., N}, with aαi (x, ξ) = (b(x, ξ) + σ)ξαi , whereas b and Φ are defined as

b(x, ξ) :=
ϱ(x)√

|ξ|2 + ε2ϱ2(x)
,

Φ(·, p, ξ) := −(b(·, ξ) + σ)
∑
i

Ap(ξi, ξi)− λϱ2 exp−1
p f.

In particular, we note that a satisfies by definition that

(H1) |a(x, ξ)| ≤
(
C

ε
+ σ

)
|ξ|.

Moreover, the matrix Aαβij (x, ξ) :=
∂aαi (x,ξ)

∂ξβj
satisfies the following ellipticity condition:
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(H2)
∑
i,j,α,β

Aαβij (x, ξ)ηαi η
β
j =

−b(x, ξ)
ξ2 + ϱ2(x)ε2

∑
i,α

(ξαi η
α
i )

2+(b(x, ξ)+σ)|ξ|2 ≥ σ|η|2 for all η ∈ R2N .

Furthermore, for every pair p, q ∈ R2N the next inequalities hold:

(H3)
∑
i,α

(aαi (x, ξ)− aαi (x, η))(ξ
α
i − ηαi ) ≥ σ|ξ − η|2,

(H4)
∑
i,α

aαi (x, ξ)ξ
α
i ≥ σ|ξ|2.

(H5) |a(x, ξ)− a(y, ξ)| ≤ C

min ϱ
|x− y|

(H6) |a(x, ξ)− a(x, η)| ≤
(

C

min ϱ
+ σ

)
|ξ − η|.

Now, we observe that

Φ(x, p, ξ) = n(x, p, ξ) + t(x, p) ∈ TpN ⊕ T⊥
p N ,

with t(x, p) = −λϱ2 exp−1
p f.

Therefore, we can unconstrain the problem by extending n and t to B+
1 ×RN ×R2N as in [9,

Section 2]. Thus, we assume that n, t (and therefore Φ) have already been extended in such a
way that the following holds:

(H7) |t(x, p)| ≤ C|p|, |Φ(x, p, ξ)| ≤ C1 + C2|ξ|2.

We will also need a generalized Poincaré inequality for hemispheres. The proof of the following
result, which we omit, is an easy adaptation of the Poincaré inequality for balls in [22, Theorem
2 p.291], combined with Lemma 2.1.

Lemma 6.2. Let x ∈ B+
1 and r0 < dist(x, ∂B+

1 \ Γ1). Then, there exists C > 0 such that, for
all r ≤ r0, it holds

(a) ∥u∥L1(Ωr) ≤ Cr∥∇u∥L1(Ωr), for any u ∈W 1,1
∂Ωr\Γ1

(Ωr),

(b) ∥u− (u)x,r∥L1(Ωr) ≤ Cr∥∇u∥L1(Ωr), for any u ∈W 1,1(Ωr)

6.2. Higher integrability of solutions. Let x ∈ B+
1 and r < dist(x, ∂B+

1 \ Γ1) and suppose

that u(Ωr(x)) ⊂ Bg(p,R) with R < Rκ. We define the barycenter of u in Ωr(x) as the barycenter
of the measure µ := u#Lm|

Br(x0)
,; that is, it can be regarded just as the minimizer of

b 7→
�
Ωr(x)

d2b(u(x), b) dx.

Let

R∗
κ :=


injpN

2 if κ ≤ 0

min
{

injpN
2 , π

4
√
κ

}
if κ > 0

. (6.2)

With the same proof as [9, Propositions 1 and 2] we obtain the following result (we omit the
details).

Proposition 6.3. Let f ∈ L2(Σ;N ) be such that f(Σ) ⊂ Bh(p,R) with some p ∈ N and R < R∗
κ

and let u ∈ ΛσR be a weak solution of (Sfε,σ). Then the next intrinsic Caccioppoli inequality is
satisfied �

Ωr(x)
|∇u|2dx ≤ C

r2

�
Ω2r(x)

(1 + d2h(u, b2r))dx (6.3)
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for all x ∈ B
+
1 and r <

dist(x,∂B+
1 \Γ1)

2 , where C > 0 and b2r denotes the barycenter of u in

Ω2r(x). Consequently, there exist q > 2 and C̃ > 0 such that u ∈W 1,q(B+
1 ) and( 

Ωr(x)
(1 + |∇u|)qdx

)1/q

≤ C̃

( 
Ω2r(x)

(1 + |∇u|)2dx

)1/2

(6.4)

for all x ∈ B
+
1 and r <

dist(x,∂B+
1 \Γ1)

2 .

From now on, we will assume that f(Σ) ⊆ Bh(p,R) for some p ∈ N and R < R∗
κ.

6.3. Hölder regularity of the approximate solutions. The next step is to prove Hölder

regularity of weak solutions to (Sfε,σ).

Theorem 6.4. Let u ∈ H1(Σ;N ) be a weak solution of (Sfε,σ). Then u ∈ C0,β(Σ;N ) for all
β ∈ (0, 1).

Proof. Fix x ∈ B+
1−δ(0), with 0 < δ < 1, take r < δ

2 < 1, and consider v a solution to the system
∑
i

∂ia
α
i (x,∇v) = 0, in Ωr(x), α = 1, . . . N,

aα2 (x,∇v)|∂Ωr(x)∩Γ1
= 0, v|∂Ωr(x)\Γ1

= u.

(6.5)

We note that it is easy to adapt [12, Theorem 3.I] to our case, which leads to the inequality�
Ωρ(x)

|∇v|2dx ≤ C
(ρ
r

)2 �
Ωr(x)

|∇v|2dx (6.6)

for all ρ ≤ r and some C > 0. Hereinafter, we will omit x if it is not needed. As v is a weak
solution of (6.5), it satisfies ∑

i,α

�
Ωr

aαi (x,∇v)∂iϕα dx = 0

for all ϕ ∈ H1
∂Ωr\Γ1

(Ωr) ∩ L∞(Ωr). If ϕ = v − u, by (H1) and (H4) one can estimate

σ

�
Ωr

|∇v|2dx ≤
∑
i,α

�
Ωr

aαi (x,∇v)∂iuα dx ≤
(C
ε
+ σ

)�
Ωr

|∇v||∇u| dx,

which by means of Young’s inequality yields�
Ωr

|∇v|2dx ≤ C

�
Ωr

|∇u|2dx (6.7)

for some C > 0 which depends on σ and ε.
On the other hand, from equations (6.1) and (6.5), we deduce that u and v fulfill∑

i,α

�
Ωr

(aαi (x,∇u)− aαi (x,∇v))∂iϕα dx =
∑
α

�
Ωr

Φα(x, u,∇u)ϕαdx (6.8)

+
∑
i,α

�
Ωr

(aiα(x,∇u)− aiα(x,∇u))∂iϕα dx

for all ϕ ∈ H1
∂Ωr\Γ1

(Ωr) ∩ L∞(Ωr). In particular, set w = u− v and take M > 0 so that

|w|L∞(Ωr/2) ≤M. (6.9)
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Let us consider ϕ = w · (T s − (|w| +M)s)+ with s ∈ (0, 1) and T > 0 to be specified later on.
Then, by (H4) and (H6) the left side of (6.8) can be estimated as follows∑

i,α

�
Ωr

(aαi (x,∇u)− aαi (x,∇v))∂iϕα dx ≥σ

�
Ωr

|∇w|2(T s − (|w|+M)s)+dx

−
( C

min ϱ
+ σ

)
s

�
KT

|∇w|2(|w|+M)sdx

where KT := {x ∈ Ωr : |w(x)| < T −M}. Concerning the right side of (6.8), from (H7) we
deduce that∑

α

�
Ωr

|Φα(x, u,∇u)ϕα|dx ≤
�
Ωr

(C1 + C2|∇u|2)|w|(T s − (|w|+M)s)+dx,

while (H5) implies∑
i,α

�
Ωr

(aαi (x,∇u)− aαi (x,∇u))∂iϕα dx ≤ C

min ϱ

�
Ωr

|x− x||∇ϕ| dx

≤ C

�
Ωr

|x− x||∇w|(T s − (|w|+M)s)+dx

+ Cs

�
KT

|x− x||∇w|(|w|+M)sdx.

Now, plugging the above estimates into (6.8), taking into account that |w| +M < T on KT

and |x− x̄| < r, we derive

σ

�
Ωr

|∇w|2(T s − (|w|+M)s)+dx ≤ (C + σ)sT s
�
KT

|∇w|2dx

+

�
Ωr

(C1 + C2|∇u|2)|w|(T s − (|w|+M)s)+dx

+ Cr

�
Ωr

|∇w|(T s − (|w|+M)s)+dx+ CrsT s
�
KT

|∇w|dx,

Young’s inequality applied to the last two terms, joint with r, s < 1, yields

σ

2

�
Ωr

|∇w|2(T s − (|w|+M)s)+dx ≤ CsT s
�
KT

|∇w|2dx+ CT sr2

+ C1T
s

�
Ωr

|w|dx+ C2T
s

�
KT

|∇u|2|w|dx.

Now we take T = 2
1
s
+1M so that, by definition of M in (6.9), one gets

σ

�
Ωr

|∇w|2(T s − (|w|+M)s)+dx ≥ σT s

2

�
Ωr/2

|∇w|2dx.

Then we deduce that�
Ωr/2

|∇w|2dx ≤ Cs

�
Ωr

|∇w|2dx+ C1

�
Ωr

|w|dx+ C2

�
KT

|w||∇u|2dx+ Cr2 (6.10)

for some C > 0. In the sequel we will estimate the integrals of the right side. For the first one,
from (6.7) we reach�

Ωr

|∇w|2dx ≤
�
Ωr

(
|∇u|2 + |∇v|2

)
dx ≤ C

�
Ωr

|∇u|2 dx.
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To estimate the second integral, by means of Poincaré’s inequality, Lemma 6.2(a), Hölder and
the previous inequality, we observe that

�
Ωr

|w| dx ≤ Cr

�
Ωr

|∇w| dx ≤ C̃r2
(�

Ωr

|∇u|2 dx
)1/2

≤ CRr
2,

where we have also applied the Caccioppoli inequality in (6.3). Finally, for the third integral we
have that

�
KT

|w||∇u|2dx ≤ Cr2
( 

Ωr

|∇u|qdx
) 2

q
( 

Ωr

|w|
q

q−2dx

) q−2
q

≤ CT
2
q r2

 
Ω2r

(1 + |∇u|2)dx
( 

Ωr

|w|dx
) q−2

q

≤ CT
2
q

(�
Ωr

|∇u|2dx
) q−2

2q
�
Ω2r

(1 + |∇u|2)dx

using Hölder’s and (6.4) inequalities and the definition of KT . Thus, we deduce from (6.10) that

�
Ωr/2

|∇w|2dx ≤ C

((
s+ T

2
q

(�
Ωr

|∇u|2dx
) q−2

2q

)�
Ω2r

|∇u|2dx+ (1 + T
2
q )r2

)
(6.11)

If we define φ(ρ) :=
�
Ωρ

|∇u|2dx, we deduce for all ρ < r/2 that

φ(ρ) ≤ C

(�
Ωr/2

|∇w|2dx+
(ρ
r

)2 �
Ωr/2

|∇v|2dx

)

≤ C

�
Ωr/2

|∇w|2dx+ C
(ρ
r

)2
φ(r)

≤ C

(
s+

(ρ
r

)2
+ T

2
qφ(r)

q−2
2q

)
φ(2r) + C(1 + T

2
q )r2

applying (6.6), (6.7) and (6.11) inequalities. Possibly increasing C we deduce, for ρ < r/4,

φ(ρ) ≤ C

(
s+

(ρ
r

)2
+ T

2
qφ(r)

q−2
2q

)
φ(r) + C(1 + T

2
q )r2.

Observe that for r/4 < ρ < r, we obviously have φ(ρ) ≤ φ(r) ≤ 16
(ρ
r

)2
φ(r). Then, the previous

inequality holds for any ρ < r.

Setting ρ = τr, β ∈ (0, 1) and s = τ2, with 3Cτ2 = τ2β̃, β̃ ∈ (β, 1). Since T
2
qφ(r)

q−2
q ≤ τ2,

for φ(r) ≤ ε1, we get

φ(τr) ≤ τ2β̃φ(r) + C(1 + T
2
q )r2 ≤ τ2β̃φ(r) + C(1 + T

2
q )r2β.

Therefore, by induction, we get

φ(τkr) ≤ τ2β̃kφ(r) + C(1 + T
2
q )(τk−1r)2β

∞∑
s=0

(τ2(β̃−β))s

=

(
φ(r) + C(1 + T

2
q )

r2β

τ2β − τ2β̃

)
τ2βk < ε1τ

2βk,
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if we choose φ(r) ≤ ε1
2 and C(1 + T

2
q ) r2α

τ2α−τ2β ≤ ε1
2 , which holds for r ≤ r0 for some r0 <

δ
2 .

Then,

φ(ρ) ≤ C

(
ρ

r0

)2β

, for every ρ ≤ r0.

Applying Poincaré’s inequality, Lemma 6.2(b) it leads to u ∈ L2+2β(Ωr), and thus C0,β(Ωr0)
for all β ∈ (0, 1) thanks to [11, Theorem I.2]. Therefore, u ∈ C0,β(Σ;N ) for all β ∈ (0, 1). �

6.4. Hölder regularity of the gradient.

Theorem 6.5. Let u be a weak solution of (Sfε,σ). Then u ∈ C1,β0(Σ;N ) for some β0 ∈ (0, 1).

Proof. Again, for 0 < δ < 1, we fix x ∈ B+
1−δ(0), and take r < δ

2 . Recall that Theorem 6.4

ensures that u ∈ C0,β(Σ;N ) for every β ∈ (0, 1) and thus, u satisfies

osc
Ωr(x)

u ≤ Crβ,

�
Ωr(x)

|∇u|2 ≤ Cr2β. (6.12)

for r < δ
2 and β ∈ (0, 1).

Let v be again a solution to (6.7), and set w := u − v. Now we will apply (6.8) with
ϕ = wmin{1, ℓ/|w|} for ℓ ≥ 1. From the left side of (6.8), we deduce that∑

i,α

�
Ωr

(aαi (x,∇u)− aαi (x,∇v))∂iϕα dx ≥σ

�
Ωr

|∇w|2min

{
1,

ℓ

|w|

}
dx

− (C + σ)

�
Kℓ

|∇w|2dx,

where Kℓ := {x ∈ Ωr : |w(x)| > ℓ}.
From the right side of (6.8), by means of (H7), we have that∑

α

�
Ωr

|Φα(x, u,∇u)ϕα|dx≤
�
Ωr

(C1 + C2|∇u|2)|ϕ|dx

≤ C1

�
Ωr

|w|dx+ C2

�
Ωr

|∇u|2min {|w|, ℓ}} dx

Moreover, using (H5) and Young’s inequality, we can write∑
i,α

�
Ωr

(aαi (x,∇u)− aαi (x,∇u))∂iϕα dx ≤ C

�
Ωr

|x− x̄||∇ϕ|dx

≤ Cr

(�
Ωr

|∇w|min

{
1,

ℓ

|w|

}
dx+

�
Kℓ

|∇w| dx
)

≤ C̃r

�
Ωr

|∇w| dx

≤ σ

4

�
Ωr

|∇w|2 dx+ Cσr
4.

Consequently, plugging the above estimates into (6.8), we reach the next inequality

σ

�
Ωr

|∇w|2min

{
1,

ℓ

|w|

}
dx ≤ C1

�
Ωr

|w|dx+ C2

�
Ωr

|∇u|2min{|w|, ℓ}dx

+ C

�
Kℓ

|∇w|2dx+
σ

4

�
Ωr

|∇w|2 dx+ Cσr
4. (6.13)
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Now we note that, applying Lemma 6.2(a), Hölder and Young for any θ > 0, it holds�
Ωr

|w|dx ≤ Cr

�
Ωr

|∇w|dx ≤ θ

�
Ωr

|∇w|2dx+ Cθr
4 (6.14)

On the other hand, notice that�
Ωr

|∇w|2min

{
1,

ℓ

|w|

}
dx ≥

�
Kc

ℓ

|∇w|2dx =

�
Ωr

|∇w|2dx−
�
Kℓ

|∇w|2dx.

Substituting this and (6.14) into (6.13) and taking C1θ =
σ
4 , we attain

σ

2

�
Ωr

|∇w|2dx ≤ (C + σ)

�
Kℓ

|∇w|2dx+ C2

�
Ωr

|∇u|2min{|w|, ℓ}dx+ Cr4 (6.15)

Parallel to this, we recall that u satisfies∑
i,α

�
Ωr

aαi (x,∇u)∂iϕα dx =
∑
α

�
Ωr

Φα(x, u,∇u)ϕα(x)dx,

for ϕ ∈ H1(Ωr ∪ γr) ∩ L∞(Ωr). By setting ϕ := (u − u(x))min{|w|, ℓ} and using the notation
∂iw = (∂iw

1, . . . , ∂iw
N ), we have the equality∑

i,α

�
Ωr

aαi (x,∇u)∂iuαmin{|w|, ℓ}dx+
∑
i,α

�
Kc

ℓ

aαi (x,∇u)(uα − uα(x))
1

|w|
w · ∂iw dx

=
∑
α

�
Ωr

Φα(x, u,∇u)(uα − uα(x))min{|w|, ℓ}dx

≤ osc
Ωr

u

(
C1

�
Ωr

|w|dx+ C2

�
Ωr

|∇u|2min{|w|, ℓ}dx
)
,

where the latter follows from (H7). Thanks to (H4) and (H1), applied to the first anf second
term on the left hand side above, we reach∑

i,α

�
Ωr

aαi (x,∇u)∂iuαmin{|w|, ℓ}dx≥σ

�
Ωr

|∇u|2min{|w|, ℓ}dx,

−
∑
i,α

�
Kc

ℓ

aαi (x,∇u)(uα − uα(x))
w · ∂iw
|w|

dx≤
(C
ε
+ σ

)
osc
Ωr

u

�
Ωr

|∇u||∇w|dx.

Then we deduce that there exists a C > 0 such that

(σ − C2 osc
Ωr

u)

�
Ωr

|∇u|2min{|w|, ℓ} dx ≤ osc
Ωr

u

(
C1

�
Ωr

|w|dx+ C

�
Ωr

|∇u||∇w|dx
)

(6.16)

Applying Young’s inequality for any ζ > 0 and both estimates in (6.12), we find for the last
term that

osc
Ωr

u

�
Ωr

|∇u||∇w|dx ≤ ζ

�
Ωr

|∇w|2dx+ Cζr
4β.

Consequently, (6.16) leads us to the next inequality

(σ − C2 osc
Ωr

u)

�
Ωr

|∇u|2min{|w|, ℓ} ≤ C1 osc
Ωr

u

�
Ωr

|w|dx+ ζ

�
Ωr

|∇w|2dx+ Cζr
4β
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for all ζ > 0. Let us choose r0 < δ/2 < 1 such that C2 oscΩr0
u ≤ σ/2 . Then, arguing as in

(6.14) and using r < 1, we conclude that

σ

2

�
Ωr

|∇u|2min{|w|, ℓ} ≤ 2ζ

�
Ωr

|∇w|2dx+ Cζr
4α, (6.17)

for all ζ > 0 and r < r0.

Combining (6.15) and (6.17) with ζ = σ2

16 C2
, we have

σ

4

�
Ωr

|∇w|2dx ≤ (C + σ)

�
Kℓ

|∇w|2dx+ Cr4β

where C does not depend on ℓ. Thus, when ℓ→ ∞ we obtain�
Ωr

|∇w|2 ≤ Cr4β for r ≤ r0 <
δ

2

Adapting [12, Theorem 3.I] to our case, we deduce that�
Ωρ

|∇v − (∇v)x,ρ|2dx ≤ C
(ρ
r

)2+2β0
�
Ωr

|∇v − (∇v)x,r|2dx,

for some β0 > 0 and ρ < r. Thus,�
Ωρ

|∇u− (∇u)x,ρ|2dx ≤ 2

�
Ωr

|∇w − (∇w)x,r|2 + 2

�
Ωr

|∇v − (∇v)x,r|2

≤ Cρ4β + C
(ρ
r

)2+2β0
�
Ωr

|∇v − (∇v)x,r|2dx

≤ Cρ4β + 2C
(ρ
r

)2+2β0
(�

Ωr

|∇u− (∇u)x,r|2dx+ r4β
)
.

Set β = 1+β0
2 . Accordingly, we get that

1

ρ2+2β0

�
Ωρ

|∇u− (∇u)x,ρ|2 dx ≤ 3C +
2C

r2+2β0

�
Ωr

|∇u− (∇u)x,r|2dx,

so ∇u ∈ L2,2+2β0(Ωr/2). By [11, Theorem I.2], ∇u ∈ C0,β0(Ωr/2). Therefore, we can conclude

that u ∈ C1,β0(Σ). �

6.5. Higher regularity via extension and bootstrapping methods. In order to obtain a
higher order of regularity, we need to smooth out the function f and to use classical results in
regularity theory.

Since f is a Lipchitz function, we can approximate it by a mollified sequence, which we call
fδ, as in Section 2.4. Thanks to the extra regularity of this approximation, we can obtain the
next statement.

Proposition 6.6. Let u be a weak solution of (Sfε,σ). Then u ∈ C∞(Σ;N ).

Proof. To avoid technicalities, we assume that Σ is an open bounded set in R2 (otherwise, we
argue by partition of unity subordinate to a cover by isothermal coordinates, as usual).

We note that u is a C1,β0(Σ;RN ) solution to div

((
ϱ√

ε2ϱ2 + |∇w|2
+ σ

)
∇w

)
= Ψ(x) in Σ

∇w · ν = 0 on ∂Σ,

(6.18)
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with Ψα(x) := −(b(·,∇u) + σ)
∑
i

Aα
u (∂iu, ∂iu) − λϱ2(exp−1

u fδ)
α ∈ C0,β0(Σ). Moreover, by

standard comparison technique, we can show that the solution to (6.18) is unique.
We rewrite (6.18) as Lw :=

∑
i,j

Aij(x,∇w)∂2ijw + Ξ(x,∇w) = Ψ in Σ

∇w · ν = 0 on ∂Σ,
(6.19)

with

Aij(x, P ) =
ϱ√

ε2ϱ2 + |P |2

[
δijI

N×N −

(
Pi√

ε2ϱ2 + |P |2
⊗ Pj√

ε2ϱ2 + |P |2

)]
+ σδijI

N×N ,

Ξ[x, P ] =
⟨∇ϱ, P ⟩|P |2

(ε2ϱ2 + |P |2)
3
2

.

It is easy to see that the system (6.19) satisfies the classical Agmon-Douglis-Nirenberg con-
ditions [2]. Note also that the system has at most one solution in C2,β0(Σ) due to uniqueness
for (6.18). Therefore, the following Schauder estimates hold for solutions [2, Remark 2]:

∥w∥C2,β0 (Σ) ≤ C∥Ψ∥C0,β0 (Σ).

As before, one can check that w = 0 is the unique solution to the homogeneous Neumann
problem for the system

t∆w + (1− t)Lw = 0.

Hence, by the continuity method (e.g. [29, Theorem 5.25]), we can prove that there exists a
solution to (6.19) w ∈ C2,β0(Σ). By uniqueness, u = w. Finally, a bootstrap technique shows
that u ∈ C∞(Σ).

�

7. Lipschitz regularity

In this section and afterwards, we will use repeatedly the following notations:

sκ(t) =


sin(

√
κt)√
κ

, κ > 0,

t. κ = 0,
sinh(

√
|κ|t)√

|κ|
, κ < 0,

cκ = s′κ, taκ =
sκ
cκ

and coκ =
cκ
sκ
.

7.1. Energy density as a subsolution of an elliptic PDE. As in [53] we get Lipschitz
regularity for general (non-necessarily convex) domains, but we have the extra difficulty of
dealing with maps into a target manifold (instead of scalar-valued) and on a curved domain.
Typically, regularity follows from integral estimates as in [27], but with the drawback of having
to require convexity of the boundary. To overcome this, we adapt to our setting the Bernstein
technique used in [53]; let us highlight that this approach only works arguing with the intrinsic

version of our elliptic system (Sfδε,σ), namely, set w := |du|2 where u := uδε,σ solves the system divg

[( 1√
w + ε2

+ σ
)
du

]
= −λ exp−1

u fδ in Σ

ν · du = 0 on ∂Σ

(Sfδε,σ)

with fδ the mollified version of the initial f defined as in (2.8).
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The goal is to get uniform bounds for w, which are independent of the parameters ε, σ and
δ in order to allow a limiting process when any of these values goes to 0. As a prior step, we
derive an elliptic PDE for w to which we will apply a maximum principle argument. With this

aim, first notice that the system at the first line in (Sfδε,σ) can be rewritten as(
1√

w + ε2
+ σ

)
τ(u)α − 1

2(w + ε2)3/2
⟨∇w,∇uα⟩g = −λ

(
exp−1

u fδ
)α

(7.1)

for α = 1, . . . , n and τ be the 2-tension (recall Section 2.1).
We define the operator

Lw := −
(

1√
w + ε2

+ σ

)
∆gw +

1

(w + ε2)3/2
(hαβ ◦ u)∇2w(∇uα,∇uβ). (7.2)

Observe that taking normal coordinates around a fixed but arbitrary point x ∈ Σ and corres-
pondingly around u(x) ∈ N , it is easy to check L is an elliptic operator.

Lemma 7.1. Suppose that the supremum of the sectional curvatures of N within Bh(p,R) is
non-positive. Then w as above satisfies

Lw + λw + 2

(
1√

w + ε2
+ σ

)(∣∣∇g�hdu
∣∣2
g�h − R

)
≤3

2

〈
dw ⊗ ⟨∇w,∇u⟩g , du

〉
g�h

(w + ε2)5/2
+ λ|dfδ|2

−
⟨dw ⊗ τ(u), du⟩g�h

(w + ε2)3/2
−

|∇w|2g
2(w + ε2)3/2

,

where the curvature term R is given by

R :=
2∑

i.j=1

〈
Ru∗h(ei, ej)ej , ei

〉
u∗h

− RicΣ(du, du), with Ru∗h(X,Y )Z := Rh(u∗X,u∗Y )u∗Z,

(7.3)
for a local orthonormal frame {ei}i=1,2 of Σ.

Proof. Recall that on T ∗Σ ⊗ u∗TN we have the natural bundle metric g � h := g−1 ⊗ u∗h so

that ⟨A,B⟩g�h := gij(hαβ ◦ u)Aαi B
β
j , while ∇̃ denotes the linear connection on u∗TN given by

(2.2). Differentiating (7.1) and multiplying with du, using the inner product induced by g � h,
we reach(

1√
w + ε2

+ σ

)〈
∇̃τ(u), du

〉
g�h − 1

2

⟨dw ⊗ τ(u), du⟩g�h
(w + ε2)3/2

+
3

4

〈
dw ⊗ ⟨∇w,∇u⟩g , du

〉
g�h

(w + ε2)5/2

− 1

2(w + ε2)3/2

(
(hαβ ◦ u)∇2w(∇uα,∇uβ) + 1

2
|∇w|2g

)
= −λ

〈
∇̃
(
exp−1

u fδ
)
, du
〉
g�h.

Replacing the first term on the right hand side by means of Bochner-Weitzenböck formula (see
e.g. [51, p. 128]), we have(

1√
w + ε2

+ σ

)(
∆gw

2
−
∣∣∇g�hdu

∣∣2
g�h + R

)
−

⟨dw ⊗ τ(u), du⟩g�h
2(w + ε2)3/2

+
3

4

〈
dw ⊗ ⟨∇w,∇u⟩g , du

〉
g�h

(w + ε2)5/2

− 1

2(w + ε2)3/2

(
(hαβ ◦ u)∇2w(∇uα,∇uβ) + 1

2
|∇w|2g

)
= −λ

〈
∇̃
(
exp−1

u fδ
)
, du
〉
g�h(7.4)

where R is defined as in (7.3).
On the other hand, for any X ∈ TΣ, by the chain rule we have

∇̃X

(
exp−1

u fδ
)
=h∇u∗X

(
exp−1

· fδ
)
+Dfδ∗X exp−1

u ·.
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Here notice that for each x ∈ Σ, D stands for the standard directional derivative of the vector
space Tu(x)N . Hence, for the term on the right hand side of (7.4), we can write

−
〈
∇̃
(
exp−1

u fδ
)
, du
〉
g�h = −

2∑
i=1

(〈h∇u∗ei

(
exp−1

· fδ
)
, u∗ei

〉
h
+
〈
Dfδ∗ei exp

−1
u ·, u∗ei

〉
h

)
= ∇2

(
d2h(·, fδ)

2

)
(du, du)−

2∑
i=1

〈
Dfδ∗ei exp

−1
u ·, u∗ei

〉
h

≥ w −
2∑
i=1

〈
Dfδ∗ei exp

−1
u ·, u∗ei

〉
h
,

which follows from the Hessian comparison theorem for the squared distance function for κ ≤ 0
(see e.g. (10.47) in [63, p. 266]). Moreover, the first equality is obtained as in [9, (7)].

Now, to further estimate the second term in the right hand side, consider the geodesic on N
given by γi(t) := expfδ(x)(tfδ∗xei). Then it is well-known (see, for instance, [41, p. 540]) that

d

dt

∣∣∣∣
t=0

exp−1
u(x)

(
γi(t)

)
= J ′(0) ∈ Tu(x)N ,

where J(s) is the Jacobi field along the geodesic σ(s) = expu(x)(s exp
−1
u(x) fδ(x)) determined by

J(0) = 0 and J(1) = γ′i(0) = fδ∗xei ∈ Tf(x)N (see Figure 3). Then one can reproduce almost
verbatim the proof of Jacobi field comparison in [43, Theorem 11.2], but for a non-unit speed
geodesic, as in our case |σ′|h = dh(u(x), fδ(x)), and a non-necessarily normal Jacobi field, to
deduce that t|J ′(0)| ≤ |J(t)|. In particular, for t = 1, we reach

|J ′(0)| ≤ |J(1)| =
∣∣fδ∗xei∣∣h.

Figure 3. Setting to apply Jacobi field comparison.

Taking all the above considerations into account and using Young’s inequality, we get

−
〈
∇̃
(
exp−1

u fδ
)
, du
〉
g�h ≥ w − |dfδ| · |du| ≥

1

2

(
w − |dfδ|2

)
.

Substituting into (7.4) and rearranging terms, we can write

3

4

〈
dw ⊗ ⟨∇w,∇u⟩g , du

〉
g�h

(w + ε2)5/2
−

⟨dw ⊗ τ(u), du⟩g�h
2(w + ε2)3/2

−
|∇w|2g

4(w + ε2)3/2
≥ λ

2

(
w − |dfδ|2

)
+

1

2
Lw +

(
1√

w + ε2
+ σ

)(∣∣∇g�hdu
∣∣2
g�h − R

)
.
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Further rearrangement of the terms and multiplication by 2 leads to the inequality in the state-
ment. �

Let us remark that, as Σ is a compact surface, there is always a constant CΣ so that RicΣ ≥
−CΣg, which hence does not introduce any further restriction in our current setting. We keep the
subindex to identify this constant. We conclude that w is a subsolution of an elliptic equation.
More precisely,

Corollary 7.2. Assume that the upper bound κ for the sectional curvatures of N within Bh(p,R)

is non-positive. Then w = |du|2, for u the unique solution of (Sfδε,σ), satisfies the inequality

Lw + λw − 2

(
1√

w + ε2
+ σ

)
CΣw ≤ 3

2

|∇w|2g
(w + ε2)3/2

+ λ|dfδ|2.

Proof. Notice that, as ∇g�hdu is a symmetric TN -valued 2-tensor, for any orthonormal basis
{e1, e2} of Σ, we have

∣∣∇g�hdu
∣∣2
g�h =

2∑
i,j=1

∣∣∇g�hdu(ei, ej)
∣∣2
h
≥ 1

2

2∑
i=1

∣∣∣∇g�hdu(ei, ei)
∣∣∣2
h
=

1

2
|τ(u)|2h.

On the other hand, by means of Cauchy-Schwarz and Young’s inequality, we can estimate

⟨dw ⊗ τ(u), du⟩g�h
(w + ε2)3/2

≤
|dw ⊗ τ(u)|g�h

√
w

(w + ε2)3/2
≤ |τ(u)|h

(w + ε2)1/4
· |dw|g

√
w

(w + ε2)5/4

≤
|τ(u)|2h

2(w + ε2)1/2
+

|∇w|2g w
2(w + ε2)5/2

≤

∣∣∇g�hdu
∣∣2
g�h

(w + ε2)1/2
+

|∇w|2g
2(w + ε2)3/2

Similarly, for the first term on the right hand side of the inequality in Lemma 7.1, we get〈
dw ⊗ ⟨∇w,∇u⟩g , du

〉
g�h

(w + ε2)5/2
≤

|∇w|2g w
(w + ε2)5/2

≤
|∇w|2g

(w + ε2)3/2
. (7.5)

Accordingly, we reach

Lw + λw + 2

(
1√

w + ε2
+ σ

)(∣∣∇g�hdu
∣∣2
g�h − R

)
≤3

2

|∇w|2g
(w + ε2)3/2

+ λ|dfδ|2 +

∣∣∇g�hdu
∣∣2
g�h

(w + ε2)1/2
.

Finally, discarding the non-negative term
(

1√
w+ε2

+ 2σ
)∣∣∇g�hdu

∣∣2
g�h which results on the left

hand side, and using the curvature assumptions, we deduce the inequality in the statement. �

7.2. Baby case: Lipschitz regularity in the convex case. At this stage, let us point out
that the above estimates can be applied directly to provide a uniform bound on the Lipschitz
constants of the approximating solutions in the convex case. With this goal, let us denote by
r
∂
:= dg(·, ∂Σ) the Riemannian distance to the boundary of our domain surface. As ∂Σ is

smooth, the function r
∂
is known to be smooth in the interior of Σ out of the cut locus of ∂Σ

(see [57, Proposition 3.10]). In addition, ∇r
∂
|∂Σ = −ν, where ν is the unit outward normal to

∂Σ, and hence for any X ∈ T∂Σ we have

∇2r
∂
(X,X) = ⟨∇X∇r∂ , X⟩g = −⟨∇Xν,X⟩g = −k

∂
|X|2g, (7.6)

being k
∂
the geodesic curvature of the boundary curve ∂Σ. Consequently, for a convex boundary,

the distance function r
∂
is concave.
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Proposition 7.3. Let N be a complete n-manifold with a non-positive upper bound κ for the
sectional curvatures within Bh(p,R). Assume that f is a Lipschitz function with f(Σ) ⊂ Bh(p,R)

for some R < Rκ. Then the unique solution u of (Sfδε,σ) is Lipschitz with constant only depending
on the Lipschitz constant of f , under the extra assumption that the boundary curve ∂Σ is convex.

Proof. A routine computation in local coordinates gives

∂kw = 2gijhαβ|u
(
∂2iku

α − ∂ℓu
α Γℓik +

hΓαδγ
∣∣
u
∂iu

γ ∂ku
δ
)
∂ju

β,

where the shortcut F |u means composition with the map u.
Now choose a chart {x1, x2} so that x2 = r

∂
, and thus for the normal derivative we have ∇ν =

−∂2. By normalization of the first vector, we can assume that {∂1, ∂2} is a local orthonormal
frame. Then, taking k = 2 in the above formula and using the Neumann boundary condition to
remove the last term, we reach

∂w

∂ν
= −∂2w = −2gijhαβ|u∇2

i2u
α∂ju

β = −2hαβ|u∇2
12u

α∂1u
β.

On the other hand, notice that

∇2
12u

α = ⟨∇∂1∇uα, ∂2⟩ = ∂1 ⟨∇uα, ∂2⟩ − ⟨∇uα,∇∂1∂2⟩ .

Moreover, by the Neumann boundary condition, ⟨∇uα, ∂2⟩ vanishes on the boundary, and thus
its gradient points in the normal direction. In addition, ∇uβ = ∂1u

β ∂1 ∈ T∂Σ. Accordingly,
we can write

∂w

∂ν
= −∂2w = −2hαβ|u

〈
∇⟨∇uα, ∂2⟩ ,∇uβ

〉
+ 2hαβ|u∂1uα∂1uβ ⟨∂1,∇∂1∂2⟩

= 0− w ⟨∂1,∇∂1ν⟩ = −k
∂
w ≤ 0, (7.7)

which follows by applying the convexity hypothesis.
The latter estimate, by means of Hopf’s maximum principle, ensures that the maximum of w

cannot be attained at the boundary ∂Σ. Let us then evaluate the inequality from Corollary 7.2
at a maximum interior point x, taking into account that ∇w = 0 and Lw ≥ 0. Then discarding
also the squared norm on the left hand side, we reach

(λ− 2σCΣ)w ≤ 2
1√

w + ε2
CΣw + λ|dfδ|2 ≤ 2CΣ

√
w + λ|dfδ|2.

Without loss of generality, we can take σ small enough so that σCΣ < λ/4 and assume that
w > 1 (otherwise we are done). This leads to

λ

2

√
w ≤ 2CΣ +

λ√
w
|dfδ|2 ≤ 2CΣ + λC Lip(f)2,

which implies the stated Lipschitz regularity of u in Σ. �

7.3. Modification of the argument for a weighted energy density. To achieve our main
result removing the extra condition about convexity of the boundary, one needs to work harder.
The key idea comes from [44, Lemma 2.4] and amounts to multiply w by a suitable test function
so that for the product the nonnegativity in (7.7) still holds and we can argue at a maximum
interior point with an appropriate version of Corollary 7.2, which we deduce in the following
lines.
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Lemma 7.4. Set w̃ := ϕw for some positive function ϕ ∈ C2(Σ). Then, under the same
assumptions and notation as in Lemma 7.1 and at a maximum interior point of Σ, it holds

λw̃ − 2

(
1√

w + ε2
+ σ

)
CΣw̃ ≤ λϕ|dfδ|2 + σw

(
2
|∇ϕ|2g
ϕ

−∆ϕ

)
+

1

2

√
w

(
11

|∇ϕ|2g
ϕ

+ 5|∇2ϕ|g
)
.

Proof. Taking into account that the Hessian of a product reads as

∇2
ijw̃ = ϕ∇2

ijw + ∂iw ∂jϕ+ ∂jw ∂iϕ+ w∇2
ijϕ,

we can write

Lw̃ =ϕLw −
(

1√
w + ε2

+ σ

)(
w∆ϕ+ 2 ⟨∇w,∇ϕ⟩g

)
+

w

(w + ε2)3/2
(hαβ ◦ u)∇2ϕ(∇uα,∇uβ)

+
2

(w + ε2)3/2
(hαβ ◦ u) ⟨∇w,∇uα⟩g

〈
∇ϕ,∇uβ

〉
g

(7.8)

≤ ϕLw −
(

1√
w + ε2

+ σ

)(
w∆ϕ+ 2 ⟨∇w,∇ϕ⟩g

)
+

|∇2ϕ|gw
(w + ε2)3/2

+ 2
|∇w|g|∇ϕ|gw
(w + ε2)3/2

,

which follows by applying Cauchy-Schwarz arguing with normal coordinates both in the domain
and target, around a point x ∈ Σ and u(x) ∈ N , respectively.

Now multiply by ϕ the inequality in Corollary 7.2 and substitute the above estimate to reach

Lw̃ + λw̃ − 2

(
1√

w + ε2
+ σ

)
CΣw̃ ≤

3ϕ|∇w|2g
2(w + ε2)3/2

+ λϕ|dfδ|2 − w

(
1√

w + ε2
+ σ

)
∆ϕ

+ 2

(
1√

w + ε2
+ σ

)
|∇w|g|∇ϕ|g + |∇2ϕ|g

√
w + 2

|∇w|g|∇ϕ|g√
w + ε2

.

Now if we compute the previous inequality at a maximum interior point x ∈ Σ, notice that

0 = ∇w̃ = (∇ϕ)w + ϕ∇w, and hence ∇w = −∇ϕ
ϕ
w. (7.9)

By substitution of the latter, we get

Lw̃ + λw̃ − 2

(
1√

w + ε2
+ σ

)
CΣw̃ ≤

3|∇ϕ|2g
2ϕ

√
w + λϕ|dfδ|2 − σw∆ϕ+

√
2w |∇2ϕ|

+ 2

(
1√

w + ε2
+ σ

) |∇ϕ|2g
ϕ

w + |∇2ϕ|g
√
w + 2

|∇ϕ|2g
ϕ

√
w,

where we have also used that (∆ϕ)2 ≤ 2|∇2ϕ|2. Rearranging the right hand side and taking into
account that Lw̃ ≥ 0 at a maximum interior point, we deduce the estimate in the statement. �

7.4. Lipschitz regularity of the approximated minimizers.

Proposition 7.5. Let u be the minimizer of Eσ,ε when κ ≤ 0. Then there exist constants C > 0

and C̃Σ, depending only on the domain surface Σ, such that the following uniform bound

|du| ≤ CLip(f)2 + C̃Σ

holds.

Proof. By the already mentioned regularity properties of the distance to the boundary r
∂
, we

can find a constant ℓ > 0 so that r
∂
is C∞ on the set {x ∈ Σ : r

∂
(x) ≤ ℓ}. Then consider a

function η which coincides with r
∂
if r

∂
≤ ℓ/2, and vanishes for r

∂
≥ ℓ.
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Let us take in particular w̃ := ec ηw with c := 2max∂Σ |k
∂
|. With the same conventions as in

the proof of Proposition 7.3 and using (7.7), on boundary points we have

∂w̃

∂ν
= ec ηw

(
− k

∂
− c
)
≤ w̃(|k∂ | − c) ≤ 0, (7.10)

being the latter true by the choice of c. Consequently, arguing as in the proof of Proposition
7.3, Hopf’s maximum principle ensures that the maximum of w̃ occurs at the interior of Σ. By
composing r

∂
with any cut-off function inW 2,∞, we have the following growth for the derivatives

of our concrete test function ϕ = ec η:

|∇ϕ|2

ϕ
+

1

2
|∇2ϕ| ≤ 3

2
c2ϕ|∇η|2 + c

2
ϕ|∇2η| ≤ Cϕ

(
3

2
c2 +

c2

4

)
≤ C̃Σϕ, (7.11)

where C comes from the bounds of the first and second derivatives of the cut-off function and
we have also used (7.6). The notation indicates that the constant only depends on Σ, but is
uniform in σ and ε, and its concrete meaning may change from line to line.

We are now in position to apply Lemma 7.4 to reach

(λ− 2σCΣ)w̃ ≤ 2CΣϕ
√
w + λϕ|dfδ|2 + (σw +

√
w)C̃Σϕ,

and rearranging terms leads to(
λ− 2σCΣ − σC̃Σ

)√
w ≤ 2CΣ +

λ√
w

|dfδ|2 + C̃Σ ,

Finally, taking σ small enough so that σ(2CΣ −σC̃Σ) <
λ
2 and arguing as at the end of the proof

of Proposition 7.3, we deduce the estimate and hence the regularity claim in the statement. In
fact, notice that we have a bound for max w̃, but the conclusion follows because |du|2 ≤ w̃. �

7.5. Convergence and Lipschitz regularity of the original problem.

Proposition 7.6. Let σ ≥ 0 and u be the minimizer of Eσ when κ ≤ 0. Then u ∈ C0,1(Σ;N ).

Proof. Let {εk}k, {δk}k be such that εk, δk → 0, and let uk be a weak solution of (Sfδkεk,σ). We
can keep σ > 0 fixed, because for the case when σ = 0, we simply take σk → 0 and repeat all
the computations. By Propositions 6.6 and 7.5, we have that the functions uk are uniformly
bounded in C0,1(Σ;N ).

Therefore, one can find a subsequence (which will not be relabeled for brevity) such that
uk → u strongly in L∞(Σ;N ) to some u ∈ C0,1(Σ;N ). Moreover, working again in isother-
mal coordinates for the domain and in extrinsic by isometric embedding in RN , we have that

∇uk
∗
⇀∇u in L∞(Ωℓ) for all ℓ.

Remember from (6.1), that it holds

aεk =

(
ϱ(

|∇uk|2 + ε2kϱ
2
)1/2 + σ

)
∇uk =: ϱBk + σ∇uk.

Since ∥Bk||∞ ≤ 1,

Bk
∗
⇀ ℓB in L∞(Ωℓ) and ∥ℓB∥∞ ≤ 1,

for a subsequence, not relabeled. Thus

aεk
∗
⇀ ℓZ = ϱ ℓB + σ∇u in L∞(Ωℓ).

From (6.1), we deduce that div(aεk) is uniformly bounded in L2(Ωℓ). Applying [23, §5, Lemma
4], we deduce that

⟨∇uk, aεk⟩⇀ ⟨∇u, ϱ ℓB⟩+ σ|∇u|2 in L2(Ωℓ).
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Furthermore, from the definition of Bk we note that ⟨∇uk, Bk⟩ ≥ |∇uk| − εk and by the lower
semicontinuity of the modulus with respect to weak convergence, we have that

ϱ|∇u|+ σ|∇u|2 ≤ lim inf
k→∞

⟨∇uk, aεk⟩ ≤ ϱ⟨ ℓB,∇u⟩+ σ|∇u|2,

which implies that ⟨ℓB,∇u⟩ = |∇u|.
Moreover, by the strong convergence to u we obtain that ℓZ(x) ∈ Tu(x)N , for a.e. x ∈ Ωℓ,

which in turn leads to ℓB(x) ∈ Tu(x)N , for a.e. x ∈ Ωℓ.

We let now B :=
∑

ℓ χℓ · (ℓB ◦ φℓ) and define the 1-form Z as

Z(∂i) := Bi.

Then, we deduce that Z satisfies (3.3).
On the other hand, by strong convergence and boundedness of div(Zεk), we can take limits

in the weak formulation on (Sfε,σ) and we obtain that u and Z satisfy the system of equations
in (3.2).

Finally, as in [27, Theorem 2] we note that, for ϕ ∈ C1(Σ),�
Σ
divg

(
ϕ(Bα + σ∇uα)

)
dµg =

�
∂Σ
ϕ ⟨Bα + σ∇uα, ν⟩ dµg̃,

where g̃ is the induced Riemannian metric on ∂Σ, and�
Σ
divg(ϕ(a

α
εk
)) dµg = 0.

Consequently, we have that∣∣∣∣�
∂Σ
ϕ ⟨Bα + σ∇uα, ν⟩ dµg̃

∣∣∣∣ = ∣∣∣∣�
Σ
(h− hk) dµg

∣∣∣∣
with h = div(ϕ(Bα + σ∇uα)) and hk = div(ϕ(aαεk)). Then, since hk → h in L2(Σ), we conclude
that the boundary condition in (3.2) holds.

�

Remark 7.7. Notice that with the same proof, but keeping ϵ > 0 fixed and letting δ, σ → 0,
we also obtain Lipschitz regularity for minimizers of E0,ε. Additionally, the local statement in
Corollary 1.2 follows by redoing similar computations, but choosing ϕ in Lemma 7.4 as a suitable
cut-off function within a fixed ball.

7.6. Lipschitz regularity for the steady Mosolov problem. In this part the goal is to
prove claim (b) in Theorem 1.4. As before, the trick is to multiply w by a suitable test function,
which now has to depend on the target manifold in order to compensate the quadratic terms in w
arising from the positive upper curvature bound. Hereafter we will use the following notations:

Φ =
ϕ

ψ ◦ ρ
, with ρ = rh ◦ u := dh(p, u(·)), and w̃ = Φw,

where ϕ = ecη is the test function coming from the proof of Proposition 7.5 and ψ will be
specified later on. Let us first compute the terms appearing in (7.8) with this new test function.
Unless otherwise stated, all Laplacians, gradients and inner products are computed with respect
to g, and ψ is always evaluated in ρ. Hereafter, CΣ does not have a specific meaning as before,
it just indicates any constant which only depends on the domain surface.

Lemma 7.8. With the previous notation, let κ > 0 be an upper bound for the absolute value of

the sectional curvatures of Bh(p,R) ⊂ N . Set w = |du|2 for u any solution of (Sfδε,σ). Then w̃
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attains its maximum at an interior point of Σ. Moreover, at this point, the elliptic operator L
defined as in (7.2) for w > 1 satisfies

ψLw̃ ≤ϕLw + w̃

(
1√

w + ε2
+ σ

)(
ψ′coκ(ρ)w + ψ′′|∇ρ|2

)
− 2ψ′λRw̃ + σϕ

∣∣∇g�hdu
∣∣2

+ CΣ

(
w3/2

ψ2

(
1− ψ′ + (ψ′)2 + |ψ′′|

)
− ψ′co−κ(ρ)

√
w +

1

4σ

(ψ′)2

ψ

)
,

provided that 0 < ψ ≤ 1 is a non-increasing function.

Proof. After applying the chain rule several times and some algebraic manipulation, we get

∆Φ =
∆ϕ

ψ
− Φ

ψ

(
ψ′∆ρ+ ψ′′|∇ρ|2

)
− 2

ψ′

ψ
⟨∇ρ,∇Φ⟩ .

On the other hand, let us check that (7.10) still holds in the current setting. In fact, choosing
again x2 = r

∂
so that ∇ν = −∂2, we obtain

∂w̃

∂ν
=

∂

∂ν

(
ecηw

ψ ◦ ρ

)
= ϕw

(
− k

∂
− c+

ψ′

ψ2
∂2ρ
)
≤ w̃

|ψ′|
ψ

∂rh
∂yα

∂2u
α = 0,

where we have applied the Neumann boundary condition and the same choice of c from Propo-
sition 7.5. Once more by virtue of Hopf’s maximum principle, we can argue from now on at a
maximum interior point for w̃, at which as in (7.9) we have

∇w = −w∇(log Φ). (7.12)

Next, using that

∇Φ =
∇ϕ
ψ

− Φ

ψ
ψ′∇ρ, (7.13)

leads to

2 ⟨∇w,∇Φ⟩ = −2w
〈∇ϕ
ψ
,∇(log Φ)

〉
+ 2w

ψ′

ψ
⟨∇ρ,∇Φ⟩ .

Summing up, we have

−ψ
(
∆Φ+

2

w
⟨∇w,∇Φ⟩

)
= 2

|∇ϕ|2

ϕ
−∆ϕ+Φ

(
ψ′∆ρ+ ψ′′|∇ρ|2

)
− 2

ψ′

ψ
⟨∇ϕ,∇ρ⟩ .

Doing similar computations for the remaining terms in (7.8), we end up with

Lw̃ = ΦLw +
w

ψ

(
1√

w + ε2
+ σ

)(
2
|∇ϕ|2

ϕ
−∆ϕ+Φ

(
ψ′∆ρ+ ψ′′|∇ρ|2

)
− 2

ψ′

ψ
⟨∇ϕ,∇ρ⟩

)
+

w/ψ

(w + ε2)
3
2

((
∇2ϕ− Φψ′∇2ρ)(∇uα,∇uα)− Φψ′′ ⟨∇ρ,∇uα⟩2 − 2

〈
∇ϕ,∇uα

〉〈
∇uα, ∇Φ

Φ

〉)
,

where we have taken normal coordinates around u(x) ∈ N , being x the maximum interior point
of w, and we understand sum over repeated indices.

By choosing ψ to be a positive non-increasing function, using (7.11) and taking into account
that |∇ρ| ≤

√
w, we can estimate

Lw̃ ≤ΦLw +
w

ψ

(
1√

w + ε2
+ σ

)(
CΣϕ+Φ

(
ψ′∆ρ+ ψ′′|∇ρ|2

)
− 2

ψ′

ψ
|∇ϕ|

√
w

)
− w/ψ

(w + ε2)
3
2

Φψ′∇2ρ(∇uα,∇uα) + 1/ψ

(w + ε2)
1
2

(
CΣϕw +Φ|ψ′′|w2 + 2ψ

|∇ϕ|
ϕ

|∇Φ|w
)
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On the other hand, by the composition rule and the Hessian comparison theorem as in [56,
Lemma 2.9] for sectional curvatures bounded above by κ, we get

ψ′∆ρ = ψ′∆(rh ◦ u) = ψ′
(
∇2rh(∇uα,∇uα) +

〈h∇rh|u, τ(u)〉h) ≤ ψ′coκ(ρ)w − ψ′|τ(u)|h.

In turn, our equation (7.1) allows us to get a bound for the last term above as follows(
1√

w + ε2
+ σ

)
w̃ |τ(u)|h ≤ w̃

(
1

2(w + ε2)
3
2

|∇w|
√
w + λ

∣∣ exp−1
u f |h

)
≤ Φ

2
|∇w|+ 2Rλw̃.

It remains to estimate the term with ∇2ρ, for which we use that the sectional curvatures of
N are bounded below within the geodesic ball Bh(p,R) ⊃ u(Σ), say by −κ. Then the remaining
bound of the Hessian comparison theorem leads to

|ψ′|
ψ

Φ∇2ρ(∇uα,∇uα) ≤ |ψ′|
ψ

Φ
(
co−κ(ρ)w +

∣∣∇g�hdu
∣∣)

≤ |ψ′|
ψ

co−κ(ρ)w̃ + σΦ
∣∣∇g�hdu

∣∣2 + 1

4σ
Φ

(
ψ′

ψ

)2

,

which follows by Young’s inequality.
The last ingredient to bound Lw̃ at an interior maximum is that

|∇w| = w

Φ
|∇Φ| ≤ w

(
|∇ϕ|
ψΦ

+
|ψ′|
ψ

|∇ρ|
)

≤ w
|∇ϕ|
ϕ

− ψ′

ψ
w3/2, (7.14)

where we have applied (7.12) and (7.13).
Gathering all the above inequalities, taking into account that ϕ is by construction a bounded

function on Σ, and that we can assume w > 1 without loss of generality (as otherwise w
is bounded and we are done), after a lengthy but straightforward manipulation we reach the
claimed inequality.

�

Lemma 7.9. With the previous notation, let κ > 0 be an upper bound for the absolute value
of the sectional curvatures of Bh(p,R) ⊂ N with R < R∗

κ. Set w = |du|2 for u any solution of

(Sfδε,σ). For the elliptic operator L defined as in (7.2) one has

Lw + 2σ
∣∣∇g�hdu

∣∣2
g�h ≤

(
1√

w + ε2
+ σ

)
(κw + CΣ)w + 2λπ|dfδ|

√
w

+
|∇w|2g

2(w + ε2)
3
2

+ 2λR
|∇w|g√
w + ε2

.

Proof. From the proof of Lemma 7.1, as we have only used the curvature assumption to estimate
the term with λ, we have the equality

Lw + 2

(
1√

w + ε2
+ σ

)(∣∣∇g�hdu
∣∣2
g�h − R

)
− 2λ

〈
∇̃
(
exp−1

u fδ
)
, du
〉
g�h

=
3

2

〈
dw ⊗ ⟨∇w,∇u⟩g , du

〉
g�h

(w + ε2)5/2
−

⟨dw ⊗ τ(u), du⟩g�h
(w + ε2)3/2

−
|∇w|2g

2(w + ε2)3/2
,

A slight variation of the argument from the proof of Lemma 7.1 which uses Jacobi field
comparison, so that it works for positive curvature bounds (after reparametrization to get a unit
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speed geodesic and some slight modification for non necessarily normal fields) and by means of
Hessian comparison for the squared distance function (see [39, Theorem 6.6.1]), we get

−
〈
∇̃
(
exp−1

u fδ
)
, du
〉
g�h ≥ dh(u, f) coκ(dh(u, f))w − 2

dh(u, f)

sκ(dh(u, f))
|dfδ|

√
w ≥ −π|dfδ|

√
w,

where to discard the first term we have applied that dh(u, f) < 2R < π
2
√
π
by the definition of

R∗
κ in (6.2).
Combining the latter with (7.5), we can write

Lw + 2

(
1√

w + ε2
+ σ

)∣∣∇g�hdu
∣∣2
g�h ≤ 2

(
1√

w + ε2
+ σ

)
R + 2λπ|dfδ|

√
w

−
⟨dw ⊗ τ(u), du⟩g�h

(w + ε2)3/2
+

|∇w|2g
2(w + ε2)3/2

. (7.15)

For the curvature term given by (7.3), we have

R ≤ κ
∑
i,j

∣∣u∗ei ∧ u∗ej∣∣2h + CΣw ≤ κ
∑
i,j

(
|u∗ei|2h|u∗ej |2h − ⟨u∗ei, u∗ej⟩2h

)
+ CΣw ≤ κ

2
w2 + CΣw,

which follows thanks to the standard estimates∑
i,j

⟨u∗ei, u∗ej⟩2h ≥
∑
i

|u∗ei|4h ≥ 1

2

(∑
i

|u∗ei|2h
)2

=
1

2
w2.

In turn, by applying Kato’s inequality, which yields |∇w|g ≤ 2
√
w
∣∣∇g�hdu

∣∣
g�h, to the last

term in (7.15), we obtain

Lw + 2σ
∣∣∇g�hdu

∣∣2
g�h ≤

(
1√

w + ε2
+ σ

)
(w2 + 2CΣw) + λπ|dfδ|

√
w +

|∇w|g |τ(u)|h
w + ε2

.

Finally, our equation (7.1) leads to

|τ(u)|h ≤
(

1√
w + ε2

+ σ

)−1( |∇w|g
√
w

2(w + ε2)3/2
+ λ dh(u, f)

)
≤ |∇w|g

2(w + ε2)1/2
+ 2λR

√
w + ε2,

which leads to the inequality in the statement. �

By combining the estimates in the previous two lemmas, after some extra work and an ap-
propriate choice of the test function ψ, we can prove a Lipschitz regularity result for constants
uniform in ε, but depending on σ.

Proposition 7.10. Let u be a minimizer of Eσ,ε when κ > 0 is an upper bound for the absolute
value of the sectional curvatures in Bh(p,R) ⊂ N for R < R∗

κ. Then there exist constants C > 0,
depending on the domain surface Σ, κ, λ and/or R (but are independent of ε, σ), such that the
following bound

σ2|du| ≤ C
(
Lip(f) + 1

)
holds.

Proof. Setting again w̃ = Φw and with the notation at the beginning of this subsection, Lemma
7.8 ensures that w̃ attains its maximum at an interior point x. We perform all the computations
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at x hereafter. Let us multiply by Φ the inequality from Lemma 7.9, which joint with the one
in Lemma 7.8 and further estimates using (7.14), allow us to write

0 ≤ Lw̃ +Φσ
∣∣∇g�hdu

∣∣2
g�h ≤Φ

ψ

(
1√

w + ε2
+ σ

)(
(ψ′coκ(ρ) + κψ)w2 + (CΣψ + ψ′′|∇ρ|2)w

)
+ 2λΦπ|dfδ|

√
w − 4

ψ′

ψ
λRw̃ − ψ′

ψ
co−κ(ρ)CΣ

√
w + 2λRCΣΦ

√
w

+
CΣ

ψ2
w3/2

(
1− ψ′ + (ψ′)2 + |ψ′′|

)
+

1

4σ
CΣ

(ψ′)2

ψ2
.

As, by assumption, ρ(x) < π
4
√
κ
, set ψ = c2κ. Taking into account that ψ′

ψ = −2κ taκ and

ψ′′ ≤ 0, we can estimate

σΦc2κ(ρ)w
2 ≤ C

λ,Σ
|dfδ|

√
w + C(w3/2 + σ−1)

where C is a constant that may depend on Σ, λ, κ and/or R, but is independent of ε, σ and has
a meaning that may change from line to line. Notice that we have used that

|ψ′|
ψ

co−κ(ρ) ≤ 2 sin(
√
κρ)

(
1 +

1√
κρ

)
≤ C.

Accordingly, we conclude

σ|du| ≤ C
λ,Σ

|dfδ|+ C(1 + σ−1),

which leads to the Lipschitz regularity claimed. �

The same proof as that of Proposition 7.6, together with lower semicontinuity of Eσ yields
the following regularity result without further restrictions on the curvature of the manifold N :

Proposition 7.11. For any σ > 0 there exists a minimizer u of Eσ, such that u ∈ C0,1(Σ;N ).

8. Regularity for signal denoising

In this section, we will prove Lipschitz regularity of minimizers of Eε,σ, for ε, σ ≥ 0 and
f ∈ Lip(Γ). We will only detail the proofs for the case of Γ = [0, 1], the situation of Γ = S1
being simpler because of the absence of boundary conditions. In this setting, the system of Euler-
Lagrange equations reads as (again we identify manifold-valued functions with the embedded
representation given by Nash theorem).{

(Zα
ε,σ(ux))x + (Au(ux,Zε,σ(ux)))α = −λ(exp−1

u f)α in (0, 1),

uαx = 0 at {0, 1}
, (Sfε,σ)

with Zα
ε,σ(ux) =

(
1√

ε2+|ux|2
+ σ

)
uαx .

In this case, we first show that weak solutions have better a-priori regularity that in the case
of the domain being a surface Σ.

Lemma 8.1. Let u be a bounded weak solution to (Sfε,σ). Then ux ∈ C0,1([0, 1]).

Proof. First of all, we observe that since u ∈ H1(0, 1), direct from the system, one obtains
Zε,σ(ux) ∈W 1,1(0, 1).

We consider now the transformation Φ : RN → RN given by

Φ(ξ) =
( 1√

ε2 + |ξ|2
+ σ

)
ξ.
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Since its Jacobian is strictly positive on (0, 1), we can apply the inverse function theorem, and
obtain that Φ−1 is well-defined and belongs to C1(RN ). Therefore, as ux = Φ−1(Zε,σ(ux)) we
obtain that ux ∈ W 1,1(0, 1). Hence, by Sobolev embedding, ux is bounded. Then, once again
from the system, we get that Zε,σ(ux) is a Lipschitz function, which implies that ux is also
Lipschitz. �

We are now in position to prove Theorem 1.4. We only sketch its proof since all the arguments
have been already shown in a more complicated framework.

Once the regularity of the solutions of the approximating problems has been obtained, a mol-
lification of the data f as in Proposition 6.6 yields smoothness of the approximating minimizers.
Then, the same Bernstein technique as in Proposition 7.3, shows that indeed the Lipschitz con-
stants of the approximations are uniformly bounded. Therefore, a passage to the limit as in
Proposition 7.6, together with lower semicontinuity of Eσ, proves the result. �

Remark 8.2. Once Lipschitz regularity of a minimizer has been obtained, one can get a local
estimate as in [26] or [28] (see also [34]); i.e,

|ux| ≤ C|fx| for some C > 0, a.e. in (0, 1).
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