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Abstract. The aim of this paper is to define a field-road system in 2D where the road
is a merely 1D-rectifiable set. For this purpose we introduce a general setting in order
to define a parabolic problem onto a rectifiable set, which is coupled with another more
classical parabolic problem outside this set, with transmission conditions.
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1. Introduction

The so-called road-field system introduced by Berestycki, Roquejoffre, and Rossi in
[BRR13] aims to study the impact of a road in the propagation of a species or a disease.
In this model, the species usually thrives in a domain Ω ⊂ R2 with moderate diffusion
capacities. This domain is crossed by a road K ⊂ Ω, where a faster diffusion occurs. The
questions addressed by Berestycki et al. include the identification of the road’s effect on
the overall invasion speed of the species, as well as its precise quantification.

In [BRR13], the road K is assumed to be a straight segment and in the linear setting
the system contains reaction-diffusion type equations that are coupled with a transmission
condition as follows:

(1.1)

 ∂tv − a∆v = 0 in Ω\K,
∂tu− b∆Ku = νv|K − µu on K,

a(∂+n v + ∂−n v)|K = µu− νv|K on K,

with additional standard boundary conditions.
A possible interpretation for the system is the following. We have a population, whose

density on Ω is given by v and whose density on K is given by u. The individuals diffuse
on Ω and K, with diffusivity constant a, b > 0 respectively.
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The individuals located in the field by the road (whose density is v|K , that is the trace
of v on K) enter the road with a rate ν.

The individuals on the road leave it (and enter the field) with a rate µ. The road has
two sides, we assume that the individuals have the same probability to leave to one side
or the other. In the system, we denote ∂+n , ∂−n the "upward" and "downward" flux. When
the road is a straight line, this is easily defined.

When the exchanges coefficients satisfy µ = ν = 0 for instance, the problem becomes
“uncoupled", that is, individuals on the field do not see the road anymore and diffuse as if
it were not here (this case is somewhat degenerate).

The aim of this paper is to generalize the previous model to the case where the road K
is allowed to be a general network composed by curves, of even more generally, a compact
connected set K with H1(K) < +∞. In such setting, since the network K can be very
wild, it is not clear whether or not we can understand this system in a classical sense.
However, we can define solutions in a weak sense by use of a certain Sobolev space H1(K)
associated to the rectifiable set K.

One of the main contributions of this paper is indeed a new approach to define a proper
Sobolev space H1(K) associated to a 1D-rectifiable set K, and its associated Dirichlet
energy. This space enjoys certain natural properties such as the compact embedding into
the space L2(K, dH1). Actually, our space H1(K) coincides with the space H1

µ defined
in [BBS97], with µ = H1|K . The approach in [BBS97] is very general and uses powerful
abstract tools such as convex duality. In contrast, thanks to the fact that K is connected
with finite H1 measure, we propose a much simpler approach which appears more efficient
to define the weak formulation for a parabolic problem. The construction of this space is
done in Section 2.

Once the space H1(K) is well defined, we can define a weak solution for the parabolic
system (1.1) and prove the existence of a solution. This is done in Section 5. The method
relies on a suitable spectral decomposition performed in Section 4, which also allows us
to derive the long time behaviour of the weak solution (see Corollary 5.1). We conclude
the paper by comparing in Section 6 this asymptotic behaviour to the one observed in the
absence of a road, which enables us to identify a quantitative criterion measuring the effect
of a road on the spreading of a population in this context.

2. Definition of the Sobolev space H1(K) and basic properties

We denote by H1 the one dimensional Hausdorff measure in R2. In what follows we
denote by L2(K) the usual complete space L2(K, dH1) containing measurable functions
u such that

´
K
u2 dH1 < +∞, and defined H1-a.e. on K. In what follows we describe a

general strategy in order to define a Dirichlet energy associated to the 1-rectifiable set K.

2.1. Definition. Let Ω ⊂ R2 be a smooth open set. We will denote by K(Ω) the class
of all K ⊂ Ω being compact, connected, and satisfying H1(K) < +∞. The following
well-known facts are standard.

Proposition 2.1. [Dav05, Proposition 30.1 p.186] Let K ∈ K(Ω). Then
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• K is a 1-rectifiable set.
• K is arcwise connected: for every x, y ∈ K there exists an injective Lipschitz curve
γ : [0, 1] → K such that γ(0) = x, γ(1) = y, and H1(γ([0, 1])) = distK(x, y), where
distK(x, y) is the geodesic distance in K, defined by

distK(x, y) := inf

{ˆ 1

0

|γ′(t)|dt
∣∣ γ ∈ Lip([0, 1], K), γ(0) = x, γ(1) = y

}
.(2.1)

In particular, for K ∈ K(Ω) we know the existence of an approximative tangent line at
H1-a.e. point x ∈ K, and for any such point x we can choose a unit tangent vector τK(x)
in direction of that line.

For every smooth function u ∈ C∞(R2) we introduce

N(u) =

(ˆ
K

u2(y) dH1(y) +

ˆ
K

|∇u · τK(y)|2 dH1(y)

) 1
2

.

Notice that N(u) involves only the trace on K of the smooth function u defined on the
whole R2. Then we consider the space D(K) as being the restriction on K of C∞(R2)
functions, and we endow this space with the norm N . In particular, D(K) is a subspace
of L2(K). Finally, we define H1(K) as follows.

Definition 2.1 (Space H1(K) and ∇Ku). For K ∈ K(Ω), we define H1(K) as the com-
pletion of D(K) for the norm N . In particular, H1(K) is a closed subspace of L2(K) for
which D(K) is a dense subset.

We define similarly the space H1
0,∂Ω(K) as the subspace of H1(K) of functions that vanish

on ∂Ω ∩K, that is, the completion of {u ∈ D(K) : u = 0 on ∂Ω ∩K}. If K ∩ ∂Ω = ∅,
then H1

0,∂Ω(K) = H1(K).
For any u ∈ H1(K) we define ∇Ku ∈ L2(K;R2) as the L2 limit of the projection (a.e.)

of ∇un on K, that is, (∇un · τK)τK, for un → u in the norm N . In particular ∇Ku does
not depend on the choice of the sequence un ∈ D(K) such that un → u in H1(K), in the
equivalent class of Cauchy sequences for the norm N , which justifies the definition.

The construction of H1(K) is rather standard. A way to define it rigorously is for
instance by considering all Cauchy sequences for N in D(K), on which one defines the
following equivalence relation: two Cauchy sequences un and vn are equivalent if and only
if N(un − vn) → 0. Then H1(K) is the quotient of all Cauchy sequences by this relation.
It is easy to see that this space is a complete space for which D(K) is a dense subset.

In particular, we can consider u ∈ H1(K) as being a function u ∈ L2(K) for which
there exists a sequence un ∈ C∞(R2) such that un|K → u in L2 and (∇un · τK)τK has a
limit in L2(K;R2). For u ∈ H1(K) we will denote by ∇Ku the limit of (∇un · τK)τK . By
construction, the limit of (∇un · τK)τK does not depend on the choice of the sequence un,
chosen in the equivalent class of Cauchy sequences, and ∇Ku is therefore well defined.

Next, our Dirichlet energy, defined on H1(K), is given byˆ
K

|∇Ku|2 dH1.
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Of course if u ∈ C∞(R2), ∇Ku = (∇u·τK)τK H1-a.e., thus the Dirichlet energy coincides
with the natural one in that case.

It is also easy to see that our definition coincides with the one of [BBS97] for the par-
ticular case µ = H1|K .

2.2. Compact embedding of H1(K) in L2(K). Now we would like to establish an
analogue of Sobolev embedding and Rellich theorem within our context.

Proposition 2.2. If K ∈ K(Ω), then for all u ∈ H1(K),

|u(x)− u(y)| ≤ distK(x, y)
1
2∥∇Ku∥L2(K) for H1 − a.e. x, y ∈ K,(2.2)

where distK(x, y) is the geodesic distance on K.

Proof. Assume first that u ∈ C∞(R2) and let x, y ∈ K be given. By Proposition 2.1
we know that there exists a geodesic Lipschitz curve γ : [0, L] → K with L = distK(x, y),
which is injective, parametrized with constant speed so that |γ′(t)| = 1, such that γ(0) = x,
γ(L) = y and ˆ L

0

|γ′(s)| ds = distK(x, y).

The function u ◦ γ : [0, L] → R is Lipschitz continuous, thus in particular absolutely
continuous and therefore

u(x)− u(y) =

ˆ L

0

⟨∇u ◦ γ(t), γ′(t)⟩ dt,

from which we easily deduce that

|u(x)− u(y)| ≤
(ˆ L

0

|γ′(t)|2 dt
) 1

2
(ˆ L

0

⟨∇u ◦ γ(t), γ′(t)⟩2 dt
) 1

2

≤ distK(x, y)
1
2∥∇Ku∥L2(K),

which proves (2.2) in the case of a smooth u ∈ D(K). Now if u ∈ H1(K) we know by
definition that there exists a sequence of functions un ∈ D such that un → u in L2(K)
and ∇τun → ∇Ku in L2(K). Up to extracting a subsequence we can assume that un → u
H1-a.e. on K. Applying (2.2) to un and then passing to the limit we then conclude that
(2.2) also holds for u. □

From Proposition 2.2 we get the following immediate corollary.

Corollary 2.1. If K ∈ K(Ω), then every function u ∈ H1(K) admits an L2-representative
which is continuous.

We will also need the following L∞ estimate.

Corollary 2.2. If K ∈ K(Ω), then every function u ∈ H1(K) is bounded. Moreover,

∥u∥L∞(K) ≤
1

H1(K)
1
2

∥u∥2 + (H1(K))
1
2∥∇Ku∥2.
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Proof. For u ∈ H1(K) we know from Proposition 2.2 that for H1-a.e. x, y ∈ K,

|u(x)− u(y)| ≤ ∥∇Ku∥2 distK(x, y)
1
2 .

In particular,
u(x)− u(y) ≤ ∥∇Ku∥2(H1(K))

1
2 ,

thus integrating with respect to y ∈ K and dividing by H1(K) we get

u(x)− 1

H1(K)

ˆ
K

u(y) dH1(y) ≤ ∥∇Ku∥2(H1(K))
1
2 .

Finally using Hölder inequality,

u(x) ≤ ∥∇Ku∥2(H1(K))
1
2 +

1

H1(K)
1
2

∥u∥2.

Reasoning the same way with −u we get

|u(x)| ≤ ∥∇Ku∥2(H1(K))
1
2 +

1

H1(K)
1
2

∥u∥2,

which proves the Corollary. □

We can also prove the following compact embedding result.

Corollary 2.3. Let K ∈ K(Ω). The embedding H1(K) ↪→ L2(K) is compact. More
precisely, from every bounded sequence (un)n∈N in H1(K) we can extract a uniformly con-
verging sequence, and in particular a converging sequence in L2(K).

Proof. Let (un) be a bounded sequence in H1(K). Then for each n we consider the specific
L2 representative of un for which Proposition 2.2 yields the estimate

|un(x)− un(y)| ≤ C distK(x, y)
1
2 ,

where the constant C is uniform in n. In particular the sequence (un) is equicontinuous
on the compact set K ⊂ R2. Moreover applying Corollary 2.2 we know that (un) is also
equibounded. Thank to Arzelà-Ascoli theorem, we deduce the existence of a subsequence
(unk

) that converges uniformly on K. This achieves the proof of the Corollary. □

3. Trace of Sobolev functions on a rectifiable set

The object of this section is to summarize some basic facts concerning the precise repre-
sentative of a Sobolev function. Consider an open set Ω ⊂ R2. For f ∈ L1

loc(Ω), the value
of the precise representative of f at x ∈ Ω is defined by

f ∗(x) :=

lim
r→0

 
B(x,r)

f(y) dy if the limit exists,

0 otherwise.
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The function f ∗ depends only on the equivalence class of f , and coincides with f a.e. in
Ω. In turn, we say that f has an approximate limit at x if there exists t ∈ R such that

(3.1) lim
r→0

 
B(x,r)

|f(y)− t| dy = 0 .

The set Sf of points where this property fails is called the approximate discontinuity set.
For a merely L1

loc function, the set Sf is an L2-negligible Borel set. On the other hand,
by standard results on functions with bounded variation (see for instance [AFP00, Section
3.7]), we have H1(Sf ) = 0 whenever f ∈ W 1,1

loc (Ω). In the sequel, any function f in W 1,1(Ω)
(or in particular in H1(Ω)) will be implicitely identified with its precise representative
without mentioning it explicitly. Since H1(Sf ) = 0, the pointwise values of f are well
defined on K for K ∈ K(Ω) and the integralˆ

K

f(x) dH1(x)

makes sense for any f ∈ W 1,1(Ω).
We also recall the following elementary property: if f1 ≤ f2 a.e. in Ω, then f ∗

1 (x) ≤ f ∗
2 (x)

for every x ∈ U \ (Sf1 ∪ Sf2). As a consequence, for any f ∈ W 1,1
loc (Ω) ∩ L∞(Ω) and any

K ∈ K(Ω),

(3.2)
ˆ
K

|f | dH1 ≤ ∥f∥L∞(Ω)H1(K) .

In the sequel we would need a more accurate estimate with a Sobolev norm on the right
hand side. This is the purpose of the following Lemma.

Lemma 3.1. Let Ω ⊂ R2 be a Lipschitz domain and assume that K ∈ K(Ω) is Ahlfors-
regular, in the sense that it satisfies

(3.3) ΛK := sup

{
H1(K ∩B(x, r))

r
: r > 0 , x ∈ K

}
< +∞.

Then for any (v1, v2) ∈ H1(Ω)×H1(Ω), the integral
´
K
v1v2 dH1 is well-defined. Moreover,

the mapping

(v1, v2) ∈ H1(Ω)×H1(Ω) →
ˆ
K

v1v2 dH1

is bilinear, symmetric, nonnegative and continuous, and there exists a constant C > 0,
depending only on Ω, such that

(3.4)
ˆ
K

|v1v2| dH1 ≤ CΛK∥v1∥H1(Ω)∥v2∥H1(Ω) for any (v1, v2) ∈ H1(Ω)×H1(Ω) .

Remark 3.1. The assumption that Ω is a Lipschitz domain ensures the existence of a
linear and continuous extension operator from H1(Ω) to H1(R2). The same result holds
under less restrictive hypotheses, for instance if we have a uniform interior cone condition
(see for instance [Che75]).
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Proof. The proof can be found in [BLM18, Lemma 2.2], which itself relies on a standard
estimate that one can find, for instance, in the book [Zie89]. For the reader’s convenience,
we write again the details.

Define the Radon measure µ on R2 by

µ = H1 K .

Notice that µ satisfies

(3.5) ∀x ∈ R2, ∀r > 0 µ(B(x, r)) ≤ 2rΛK .

Indeed, let x ∈ R2 and r > 0 such that K ∩B(x, r) ̸= ∅. For any z ∈ K ∩B(x, r), observe
that (K ∩B(x, r)) ⊂ (K ∩B(z, 2r)), so that by definition (3.3),

H1(K ∩B(x, r)) ≤ H1(K ∩B(z, 2r)) ≤ 2rΛK .

This proves (3.5).
Now, by the proof of [Zie89, Theorem 5.12.4], there exists a universal constant C > 0

such that

(3.6)
ˆ

|w| dµ ≤ CΛK∥w∥BV (R2) for any w ∈ BV (R2) ,

where BV (R2) is the space of functions with bounded variation in R2. Here we have
also used that K is lower Alhfors regular with constant 1 thanks to the connectedness
assumption in order to deduce that the constant C coming from the covering Lemma
[Zie89, Lemma 5.9.4], is universal.

Let v1, v2 be in H1(Ω). Since Ω is a Lipschitz domain, there exists a linear continuous
extension operator E : H1(Ω) → H1(R2). Now define w := E(v1)E(v2). The function w is
in W 1,1(R2) so by the continuous injection W 1,1(R2) ↪→ BV (R2), there exists a constant
C > 0 (depending only on Ω) such that

∥w∥BV (R2) ≤ C∥w∥W 1,1(R2)

≤ C∥Ev1∥H1(R2)∥Ev2∥H1(R2)

≤ C∥v1∥H1(Ω)∥v2∥H1(Ω) .

Since the integral
´
|w| dµ is equal to

´
K
|w| dH1 and w coincides with v1v2 in Ω, combining

the previous inequality with (3.6) yields (3.4). □

4. Spectral analysis associated to the system

In this section we show that problem (1.1) has a unique global solution via variational
methods. Here we follow the standard strategy of recasting the system as an abstract
semilinear parabolic problem by Faedo and Galerkin (see [Eva10, Section 7.1.2]).
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Let Ω ⊂ R2 be a bounded Lipschitz domain and K ∈ K(Ω). We start by recalling the
system that we would like to solve:

(4.1)



∂tv − a∆v = 0 in Ω \K
∂tu− b∆Ku = νv − µu on K
a(∂n+ + ∂n−)v = µu− νv on K
v = 0 on ∂Ω
u = 0 on K ∩ ∂Ω
∂nu = 0 on ∂K \ ∂Ω
(v, u)|t=0 = (v0, u0)

This model can be understood if K is a smooth curve in Ω and v and u are smooth func-
tions. In this case, the set ∂K \ ∂Ω is the set of endpoints of K inside of Ω. The Neumann
condition on this set corresponds to a local mass conservation: the individuals only leave
the domain through the boundary of Ω.

We shall introduce a weak formulation of (4.1) in order to make sense of the problem
under fewer regularity assumptions. We take φ : Ω → R and ψ : K → R smooth test
functions with φ = 0 on ∂Ω and ψ = 0 on K ∩ ∂Ω, we multiply the equation in v by νφ
and the equation in u by µψ and we integrate by parts leading us to the identities

ν

ˆ
Ω

∂tvφ+ aν

ˆ
Ω

∇v · ∇φ− aν

ˆ
K

∂n+vφ− aν

ˆ
K

∂n−vφ = 0

and

µ

ˆ
K

∂tuψ + bµ

ˆ
K

∇Ku · ∇Kψ = µ

ˆ
K

(νv − µu)ψ.

Adding the two equations together and substituting the transmission condition, we con-
clude that a smooth solution would solve

ν

ˆ
Ω

∂tvφ+ µ

ˆ
K

∂tuψ + aν

ˆ
Ω

∇v · ∇φ+ bµ

ˆ
K

∇Ku · ∇Kψ +

ˆ
K

(νv − µu)(νφ− µψ) = 0

for any t ∈ (0, T ].

4.1. Variational setting. Inspired by the previous identity, we introduce some functional
spaces in which to set our problem. We consider functional spaces

H = H1
0 (Ω)×H1

0,∂Ω(K) and L = L2(Ω)× L2(K)

endowed with their natural scalar products and the induced topologies. More explicitly,
for any (v, u), (φ, ψ) ∈ L, we let

⟨(v, u), (φ, ψ)⟩L = ν

ˆ
Ω

(vφ) dx+ µ

ˆ
K

(uψ) dH1
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and for any (v, u), (φ, ψ) ∈ H,

⟨(v, u), (φ, ψ)⟩H = ν

ˆ
Ω

(∇v · ∇φ+ vφ) dx+ µ

ˆ
K

(∇Ku · ∇Kψ + uψ) dH1.

It follows from Section 2 that when K ∈ K(Ω), H and L are Hilbert spaces. Moreover the
embedding H ↪→ L is compact.

We complete the variational setting by introducing the Hilbert triplet (H∗, L = L∗, H),
where L∗ and H∗ are the dual spaces of L and H, respectively, and we have identified L∗

with L itself.
We introduce the bilinear form B : H ×H → R defined for any (v, u), (φ, ψ) ∈ H as

B((v, u), (φ, ψ)) = aν

ˆ
Ω

∇v ·∇φ dx+bµ
ˆ
K

∇Ku ·∇Kψ dH1+

ˆ
K

(νv−µu)(νφ−µψ) dH1.

We have the following result, whose proof follows from Lemma 3.1.

Lemma 4.1. Let K ∈ K(Ω) an Ahlfors-regular set with upper constant ΛK. Then the
bilinear form B is symmetric, continuous and coercive, that is

• for every (v, u), (φ, ψ) ∈ H, B((v, u), (φ, ψ)) = B((φ, ψ), (v, u));
• there exists C > 0 such that

|B((v, u), (φ, ψ))| ≤ C∥(v, u)∥H∥(φ, ψ)∥H ∀(v, u), (φ, ψ) ∈ H;

• there exists c > 0 such that

B((v, u), (v, u)) ≥ c∥(v, u)∥2H .

Here, c and α can be bounded below by constants that depend only on the Poincaré constant
of Ω and on the Ahlfors regularity constant ΛK.

Proof. The symmetry of B is self evident, and the continuity follows from Lemma 3.1.
Concerning the coercivity, let CP > 0 and CT > 0 be, respectively, the Poincaré constant
of Ω and the trace constant on K, so that

ˆ
Ω

|v|2dx ≤ CP

ˆ
Ω

|∇v|2dx,
ˆ
K

|v|2dH1 ≤ CT

ˆ
Ω

|∇v|2dx ∀v ∈ H1
0 (Ω).

From Lemma 3.1 we know that this holds true with CT = CΛK where C > 0 is universal.
We exploit the elementary inequality

(4.2) (α− β)2 + εα2 ≥ ε

1 + ε
β2 ∀α, β ∈ R, ε ≥ 0
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and find

B((v, u), (v, u)) = aν

ˆ
Ω

|∇v|2 + bµ

ˆ
K

|∇Ku|2 +
ˆ
K

|νv − µu|2

≥ aν

ˆ
Ω

|∇v|2 + bµ

ˆ
K

|∇Ku|2 − εν2
ˆ
K

|v|2 + ε

1 + ε
µ2

ˆ
K

|u|2

≥ aν

3

ˆ
Ω

|∇v|2 + aν

3CP

ˆ
Ω

|v|2 +
(
aν

3CT

− εν2
)ˆ

K

|v|2

+ bµ

ˆ
K

|∇Ku|2 +
ε

1 + ε
µ2

ˆ
K

|u|2.

We now choose ε = a
3CT ν

and find

B((v, u), (v, u)) ≥ min

(
a

3
,
a

3CP

, b,
aµ

a+ 3CTν

)(
ν

ˆ
Ω

|∇v|2 + |v|2 + µ

ˆ
K

|∇Ku|2 + |u|2
)

for all (v, u) ∈ H. This proves the coercivity of B. □

We are now in a position to apply Fredholm’s alternative to bilinear forms. Here δhk
stands for Kronecker’s delta symbol (that is δhh = 1 and δhk = 0 if h ̸= k).

Lemma 4.2. Let K ∈ K(Ω) an Ahlfors-regular set. Then the bilinear form B admits a
spectral resolution: there exist sequences {λk}k∈N⋆ ⊂ [0,+∞) and {(vk, uk)}k∈N⋆ ⊂ H such
that

(1) the sequence of eigenvalue {λk}k∈N⋆ (counted with multiplicity) is increasing and
unbounded, λk → +∞. In particular, each eigenvalue has finite multiplicity and
λ1 > 0;

(2) {(vk, uk)}k∈N⋆ ⊂ L is a orthonormal basis of L, and ⟨(vk, uk), (vh, uh)⟩L = δkh;
(3) {(vk, uk)}k∈N⋆ ⊂ H is a basis of H, and

B((vk, uk), (vh, uh)) = λkδkh.

Proof. It is rather standard that B will induce a linear operator on L which has compact
resolvent. Let us write some details for the convenience of the reader.

From Lemma 4.1 we know that B is continuous and coercive on the Hilbert space H.
By Lax-Milgram Theorem (see for instance [Bré83, Corollaire V.8 p.84]) we deduce that
for each (f, g) ∈ L ⊂ H∗, there exists a unique solution (v, u) ∈ H to the problem

B((v, u), (φ, ψ)) = ⟨(f, g), (φ, ψ)⟩L ∀ (φ, ψ) ∈ H.(4.3)

Let T : L → H be the linear operator defined by T (f, g) = (v, u), where (v, u) is the
solution to (4.3). Then T is a linear operator from L→ L which is self-adjoint and compact.
Moreover by coercivity (see Lemma 4.1) we conclude that ⟨T (f, g), (f, g)⟩L ≥ c∥(v, u)∥2H for
all (f, g) ∈ L. In virtue of [Bré83, Theorem VI.11] we deduce that T admits an orthonormal
basis of eigenfunctions {(vk, uk)}k∈N ⊂ L associated to a discrete sequence of eigenvalues
µk > 0, which induces the conclusion of the Lemma by taking µk =

1
λk

. □
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4.2. Lower bound on the principal eigenvalue λ1. From the above Lemma we already
know that the principal eigenvalue is positive but in the following proposition we give a
more precise lower bound.

Proposition 4.1. Let K ∈ K(Ω) be an Ahlfors-regular set with constant ΛK and let us
denote by CP the Poincaré constant in Ω. Then there exists an explicit constant c0 > 0
depending only on CP ,ΛK, a, µ, ν such that

λ1 ≥ c0,

where λ1 is the first eigenvalue defined in Lemma 4.2.

Proof. We denote by CT = CΛK the same constant as in the proof of Lemma 4.1. First
we have for α ∈ [0, 1] and ε > 0, using once again the elementary inequality (4.2),

B((v, u), (v, u)) = aν

ˆ
Ω

|∇v|2 + bµ

ˆ
K

|∇Ku|2 +
ˆ
K

|νv − µu|2

≥ aν

CP

α

ˆ
Ω

|v|2 +
(
aν

CT

(1− α)− εν2
) ˆ

K

|v|2 + ε

1 + ε
µ2

ˆ
K

|u|2.

Choosing ε = (1− α)a/(CTν), we obtain

B((v, u), (v, u)) ≥ aν

CP

α

ˆ
Ω

|v|2 + (1− α)a

(1− α)a+ CTν
µ2

ˆ
K

|u|2.

And finally, by choosing

α =
a+ CTν + CPµ

2a
−

√(
a+ CTν + CPµ

2a

)2

− CPµ

a
∈ [0, 1]

we find that

(4.4) B((v, u), (v, u)) ≥ a

CP

α

(
ν

ˆ
Ω

|v|2 + µ

ˆ
K

|u|2
)
.

It follows that

λ1 = inf
(v,u)∈H

B((v, u), (v, u))

∥(v, u)∥2L
≥ a

CP

α > 0,

which proves the Proposition. □

Remark 4.1. At this stage it is not clear whether the first eigenvalue λ1 is simple. It can
be shown that the eigenfunctions associated to λ1 do not change sign, but it is unknown if
they are multiples of strictly positive functions in Ω×K.

5. Existence for the Parabolic problem

We are now in a position to introduce the definition of a weak solution for (1.1).
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Definition 5.1. We consider the Hilbert space X([0, T ]; (H;H∗)) defined as the space of
functions (v, u) such that

(v, u) ∈ L2([0, T ];H),
d

dt
(v, u) ∈ L2([0, T ];H∗)

with its natural norm

∥(v, u)∥2X =

ˆ
[0,T ]

∥(v, u)(t)∥2H dt+
ˆ
[0,T ]

∥∥∥∥ ddt(v, u)(t)
∥∥∥∥2

H∗
dt.

Let us mention that by the Aubin-Lions Lemma (see [LM72]), X ⊂ C0([0, T ];L).

Theorem 5.1. The system (4.1) admits a weak solution (v, u) ∈ X([0, T ]; (H,H∗)) in the
following sense: (v, u)(0) = (v0, u0) and for every (φ, ψ) ∈ H and a.e. t ∈ (0, T ] we have

(5.1) ⟨ d
dt
(v, u), (φ, ψ)⟩(H∗,H) +B((v, u), (φ, ψ)) = 0,

where ⟨ d
dt
(v, u), (φ, ψ)⟩(H∗,H) is the duality between H∗ and H. Moreover, any weak solution

is unique.

Proof. We formally write

(v, u) =
+∞∑
n=1

cn(t)(vn, un)

where cn : [0, T ] → R are continuous functions such that cn ∈ C1((0, T ];R). Projecting
(5.1) onto the eigenfunctions we find

⟨
+∞∑
m=1

c′m(t)(vm, um), (vn, un)⟩(H∗,H) +B(
+∞∑
m=1

cm(t)(vm, um), (vn, un)) = c′n(t) + λncn(t) = 0

and projecting the initial condition we get cn(0) = ⟨(vn, un), (v0, u0)⟩L. We therefore con-
clude that the couple

(v, u) =
+∞∑
n=1

⟨(vn, un), (v0, u0)⟩Le−λnt(vn, un),

is a weak solution, and this choice is unique. □

As a useful consequence we have the following.

Corollary 5.1. Under the assumptions of Theorem 5.1, assume moreover that (v0, u0) is
not orthogonal to the eigenspace of λ1. Then there exists (ϕ, ψ) ∈ H such that

∥(v, u)− e−λ1t(ϕ, ψ)∥H = o(e−λ1t) as t→ +∞.
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6. Interpretation and perspectives

In order to interpret the previous Corollary, it seems meaningful from a modelisation
perspective to compare this long-time asymptotic expansion to what would happen in the
absence of a road. In that instance, one has that the solution of the problem

∂tv − a∆v = 0 in Ω,

v = 0 on ∂Ω,
v|t=0 = v0 in Ω,

satisfies
∥v − e−γ1tϕ∥H1

0 (Ω) = o(e−γ1t) as t→ +∞,

for some function ϕ ∈ H1
0 (Ω), where γ1 > 0 is the first eigenvalue of{

−a∆vk = γkvk in Ω,

vk = 0 on ∂Ω.

As a result, to each K ∈ K(Ω), one can associate the ratio λ1/γ1 which provides a criterion
to determine if the presence of the road K affects the effective diffusivity in the field Ω,
and quantify this influence. Namely, if λ1/γ1 > 1, the road K improves the diffusion of
the population, and this effect becomes more pronounced as this ratio increases. On the
opposite, for λ1/γ1 < 1, the road tends to slow down the spread of the species, and has no
effect if λ1 is equal to γ1.

This efficiency criterion that one can associate to any admissible road K belonging to
the class K(Ω) suggests several applications of the generalized framework for road-field
systems introduced in this paper. The most natural one is possibly the maximization of
λ1/γ1, among certain classes of roads subject to given constraints, such as:

• a uniform length constraint H1(K) ≤ C;
• topological constraints, for instance restricting the admissible class to finite unions

of curves or segment;
• constraints involving endpoints of K, such as the requirement that they contain

some given points in the field Ω, or that some of them belonging to the boundary
of Ω.

Thanks to the connectedness constraint satisfied by all elements of K(Ω), taking previous
constraints into account could allow one to apply the direct method of calculus of variations
and obtain compactness on any minimizing sequence in the set of compact and connected
1D-rectifiable subsets of Ω, endowed with the Hausdorff distance.
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