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ABSTRACT. We introduce and study the logarithmic p-Laplacian L∆p , which emerges from the formal
derivative of the fractional p-Laplacian (−∆p)

s at s = 0. This operator is nonlocal, has logarithmic order,
and is the nonlinear version of the newly developed logarithmic Laplacian operator [14]. We present a
variational framework to study the Dirichlet problems involving the L∆p in bounded domains.

This allows us to investigate the connection between the first Dirichlet eigenvalue and eigenfunction of
the fractional p-Laplacian and the logarithmic p-Laplacian. As a consequence, we deduce a Faber-Krahn
inequality for the first Dirichlet eigenvalue of L∆p . We discuss maximum and comparison principles for
L∆p in bounded domains and demonstrate that the validity of these depends on the sign of the first Dirichlet
eigenvalue of L∆p . In addition, we prove that the first Dirichlet eigenfunction of L∆p is bounded. Further-
more, we establish a boundary Hardy-type inequality for the spaces associated with the weak formulation
of the logarithmic p-Laplacian.
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1. INTRODUCTION

In recent decades there has been a growing interest in the understanding of boundary value problems
involving nonlocal integro-differential operators — the most prominent example is given by the frac-
tional Laplace operator. Fueled by this interest, also nonlinear nonlocal interactions have been studied
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extensively [9, 10, 18, 20, 32–34, 41, 42, 46] with a prominent example being given by the fractional
p-Laplace operator. This operator is given by

(−∆p)
su(x) =CN,s,p p.v.

ˆ

RN

|u(x)−u(y)|p−2(u(x)−u(y))
|x− y|N+sp dy,

where p∈ (1,∞), s∈ (0,1), p.v. stands for the Cauchy principal value, and u is suitably regular at x ∈RN

and integrable at infinity with respect to the kernel z 7→ |z|−N−sp. The constant CN,s,p here is chosen in
the particular case p = 2 such that (−∆2)

s has the Fourier symbol | · |2s. With this, (−∆2)
s can easily

be seen as an intermediate operator between the identity operator and the Laplacian −∆ = −∑
N
k=1 ∂kk.

Similarly, for p ̸= 2, the fractional p-Laplace operator can be seen as an intermediate operator between
the identity and the p-Laplacian −∆p given by −∆pu =−div(|∇u|p−2∇u). However, in this general case
an appropriate constant is not clear, see the discussions in [19, 28]. Here, we choose CN,s,p such that the
limits

lim
s→0+

(−∆p)
su(x) = |u(x)|p−2u(x) and lim

s→1−
(−∆p)

su(x) =−∆pu(x)

hold for smooth compactly supported functions, see Section 2.4. The goal of this work is to find a
suitable operator L∆p to improve the understanding at the limit s → 0+. To be precise, we define an
operator L∆p , which we call the logarithmic p-Laplace operator, such that the expansion

(−∆p)
su(x) = |u(x)|p−2u(x)+ sL∆pu(x)+o(s) for s → 0+ (1.1)

holds for a suitable class of functions u.
In the linear case that is p = 2, the study of the expansion (1.1) has been started in [14], where the

authors show that it holds

L∆2u(x) =CN

ˆ

B1(x)

u(x)−u(y)
|x− y|N

dy−CN

ˆ

RN\B1(x)

u(y)
|x− y|N

dy+ρNu(x),

where CN = Γ(N/2)
πN/2 and ρN = 2ln2− γ +ψ(N/2). Here and below, ψ = Γ′/Γ denotes the Digamma

function, Γ is the Gamma function, and γ = −Γ′(1) is the Euler-Mascheroni constant. Moreover, it is
shown in [14] that L∆2 indeed has the Fourier symbol 2 ln | · |.
Recent studies have focused on the behavior of small order limits s → 0+ and their connection to L∆2

within the context of s-dependent nonlinear Dirichlet problems, see [4, 31]. The investigation of frac-
tional problems in this regime is especially relevant to optimization problems where the optimal order
s is small. Such small order limits are particularly important in applications like image processing and
population dynamics, as discussed in references [5, 47, 50]. Having the expansion at zero, there have
been several works on the study of the expansion of eigenvalues, eigenfunctions, and certain solutions of
the problem involving L∆2 including a Pohozaev identity, see [6,12,13,25,30,36,40]. In the spirit of the
Caffarelli–Silvestre extension problem for the fractional Laplacian, a characterization of the logarithmic
Laplacian through a local extension problem is addressed in [11]. This logarithmic Laplacian operator
appears naturally in the expansion at s = 1, see [37], and also arises in the geometric context of the
0-fractional perimeter, see [17].

Inspired by the aforementioned works, we aim to generalize these results to the nonlinear case. In
particular, we give an explicit representation of the operator L∆p in (1.1), which, unlike its linear counter-
part, is both nonlinear and of logarithmic order. This representation is important for addressing problems
involving L∆p where the standard techniques are insufficient due to the nonlinear nature of the operator.
In addition, the combination of nonlinearity and the weak singularity of the kernel in the representation
of L∆p introduces several challenges and we develop new techniques.

1.1. Main results. Our first main result deals with the expansion in (1.1).
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Theorem 1.1. Let 0 < s < 1 and 1 < p < ∞. Suppose u ∈Cα
c (RN) for some α > 0. Then for x ∈ RN

L∆pu(x) :=
d
ds

∣∣∣
s=0

(−∆p)
s u(x)

=CN,p

ˆ

B1(x)

|u(x)−u(y)|p−2(u(x)−u(y))
|x− y|N

dy

+CN,p

ˆ

RN\B1(x)

|u(x)−u(y)|p−2(u(x)−u(y))−|u(x)|p−2u(x)
|x− y|N

dy+ρN |u(x)|p−2u(x)

(1.2)

where

CN,p :=
pΓ
(N

2

)
2π

N
2

and ρN := ρN(p) := 2ln(2)− γ +
p
2

ψ

(
N
2

)
.

Moreover, for any 1 < q ≤ ∞, we have L∆pu ∈ Lq(RN)∩C(RN) and

(−∆p)
s u−|u|p−2u

s
s→0+−−−→ L∆pu in Lq(RN).

In contrast to the linear case, the convolution type integral in RN \B1(x) in the representation (1.2)
of L∆p cannot be solved simply with convolution inequalities, since on the one hand, z 7→ |z|−N is non-
integrable at infinity and on the other hand, due to the appearing nonlinearity in the numerator the term
does not immediately compensate the singular behavior at infinity. Similar to the case p = 2, we also
have a more localized representation to L∆p , see Lemma 3.1(3) and Lemma 6.2 below. Given Ω ⊂ RN

open and u ∈Cα
c (RN), 0 < α < 1, it also holds

L∆pu(x) =CN,p

ˆ

Ω

|u(x)−u(y)|p−2(u(x)−u(y))
|x− y|N

dy+
(

ρN(p)+hΩ(x)
)
|u(x)|p−2u(x)

+CN,p

ˆ

RN\Ω

|u(x)−u(y)|p−2(u(x)−u(y))−|u(x)|p−2u(x)
|x− y|N

dy,

where
hΩ(x) :=CN,p

ˆ

B1(x)\Ω

|x− y|−N dy−CN,p

ˆ

Ω\B1(x)

|x− y|−N dy. (1.3)

Note that the function hΩ (up to the multiplicative constant p
2 ) coincides with the function introduced

in [14, Corollary 1.9], and several bounds and various properties of this function can be found in [14,
Section 4] and [36, 37].

Our next result deals with the expansion at s = 0 of the first eigenvalue of the fractional p-Laplacian.
Recall the fractional Sobolev space for Ω ⊂ RN open and bounded,

W s,p
0 (Ω) = {u ∈W s,p(RN) : u1RN\Ω ≡ 0}

and the first (Dirichlet) eigenvalue of (−∆p)
s in Ω given by

λ
1
s,p(Ω) = inf

u∈W s,p
0 (Ω)

∥u∥Lp(Ω)=1

CN,s,p

2

¨

RN×RN

|u(x)−u(y)|p

|x− y|N+sp dxdy. (1.4)

It is well known that the first eigenvalue λ 1
s,p(Ω) is positive and that there is an associated minimizer ϕs,

which is unique up to sign and can be chosen to be positive in Ω. Similarly, we can and do set up a weak
framework of L∆p . To this end, let

X p
0 (Ω) :=

u ∈ Lp(RN) : u1RN\Ω ≡ 0 and
ˆ

RN

ˆ

B1(x)

|u(x)−u(y)|p

|x− y|N
dydx < ∞

 , (1.5)

which we discuss in more detail in Section 4. Such spaces have been recently investigated in [28] and
the kernel z 7→ 1B1(z)|z|−N can be seen as the kernel of a p-Lévy operator as introduced in [28]. Thus,
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the operator L∆p is a p-Lévy operator perturbed by two lower order terms. In [28], several important
statements for the analysis of solutions such as compact embeddings into Lp(Ω) and a Poincaré inequal-
ity have been shown, which hold in particular for X p

0 (Ω). We recall the statements adjusted to our setting
in Section 4.

The fractional Hardy inequality [22–24] states that for any bounded Lipschitz domain Ω ⊂ RN and
0 < s < 1, p > 0 with sp ̸= 1 there exists a constant C =C(N,s, p,Ω)> 0 such thatˆ

Ω

|u(x)|p

δ
sp
x

dx ≤C
¨

Ω×Ω

|u(x)−u(y)|p

|x− y|N+sp dxdy+
ˆ

Ω

|u(x)|p dx for all u ∈C∞
c (Ω), (1.6)

and this inequality fails to hold in the so called critical case sp = 1. Recently, in [1–3], the authors
addressed the critical case of the Hardy inequality, by inserting a logarithmic weight in the denominator
on the left side of (1.6).

We are interested in an inequality (1.6) for s = 0 and with a logarithmic weight in the numerator of
the left hand side. In our next result, we show the validity of this inequality for any 1 ≤ p < ∞. However,
in Section 5, we prove a much more general result (Theorem 5.1). This inequality plays an important
role in studying the solution space of the logarithmic p-Laplacian.

Theorem 1.2 (Logarithmic boundary Hardy inequality). Let Ω ⊂ RN be an open bounded Lipschitz set
and 1 ≤ p < ∞. Then there is c > 0, depending on Ω, N, and p, such that for every u ∈ Lp(Ω)

ˆ

Ω

|u(x)|p ln+
(

1
δx

)
dx ≤ c


¨

Ω×Ω

|x−y|<1

|u(x)−u(y)|p

|x− y|N
dydx+

ˆ

Ω

|u(x)|p dx

 .

As mentioned above Theorem 1.2 is a direct consequence of Corollary 5.10 below, which even holds
for any p> 0. Moreover, it follows that we can identify X p

0 (Ω) with those Lp(Ω)-functions which satisfy¨

Ω×Ω

|x−y|<1

|u(x)−u(y)|p

|x− y|N
dydx < ∞

extended by zero in RN \Ω. Such a characterization is known1 for W s,p(Ω) and W s,p
0 (Ω) if sp < 1 and

also for the corresponding logarithmic spaces in the case p = 2, see [14].
We note that Theorem 1.2 was obtained for bounded Lipschitz set Ω ⊂ RN and p = 2, see [14,

Proposition A.1]. Indeed, in this case such an inequality was proven with Fourier methods, which
cannot be extended to the case p ̸= 2. Additionally, for Ω = RN \ {0}, the inequality of Theorem 1.2
was proved in [43, Lemma 2.2]. Very recently, in [29, Theorem 3.4], a version of the Hardy inequality
in RN with kernels more general than logarithmic was obtained.

In the case of the fractional p-Laplacian, for an open bounded set Ω ⊂ RN , there is an unique (up to
sign and normalization) first eigenfunction u1 ∈ X p

0 (Ω) of L∆p in Ω (see Sections 4 and 7) corresponding
to the first eigenvalue

λ
1
L,p(Ω) := inf

u∈X p
0 (Ω)

∥u∥Lp(Ω)=1

(
CN,p

2

ˆ

RN

ˆ

B1(x)

|u(x)−u(y)|p

|x− y|N
dydx+ρN(p)

+CN,p

ˆ

RN

ˆ

RN\B1(x)

|u(x)−u(y)|p −|u(x)|p

|x− y|N
dydx

)

= inf
u∈X p

0 (Ω)
∥u∥Lp(Ω)=1

(
CN,p

2

¨

Ω×Ω

|u(x)−u(y)|p

|x− y|N
dxdy+

ˆ

Ω

(hΩ(x)+ρN(p))|u(x)|p dx

)
.

1Note that the spaces W s,p(Ω) and W s,p
0 (Ω) coincide for sp ≤ 1.
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Contrary to the fractional p-Laplacian case, however, λ 1
L,p(Ω) is in general not positive. This follows

from the logarithmic scaling behavior, see Proposition 6.12(ii) below,

λ
1
L,p(rΩ) = λ

1
L,p(Ω)− p ln(r) for r > 0, 1 < p < ∞, and Ω ⊂ RN open. (1.7)

We state our next result which can be seen as the nonlinear version of [14, Theorem 1.5].

Theorem 1.3. Let Ω be an open bounded Lipschitz subset of RN and p ∈ (1,∞). Then

λ
1
L,p(Ω) =

d
ds

∣∣∣∣
s=0

λ
1
s,p(Ω).

Moreover, if we define ϕs as the Lp-normalized unique positive extremal for λ 1
s,p(Ω), then we have, as

s → 0+

ϕs → u1 in Lp(Ω), (1.8)

where u1 is the Lp-normalized unique positive extremal for λ 1
L,p(Ω).

As a consequence of Theorem 1.3, we deduce the Faber-Krahn inequality for the logarithmic p-
Laplacian operator L∆p .

Corollary 1.4 (Faber–Krahn inequality for L∆p). Let Ω ⊂ RN be an open bounded Lipschitz set with
|Ω|= m ∈ (0,∞), p ∈ (1,∞) and let B(m) ⊂ RN be any ball with volume m. Then

λ
1
L,p(B

(m))≤ λ
1
L,p(Ω).

Remark 1.5. It remains an intriguing open question whether the inequality in Corollary 1.4 is strict
when Ω is different from a ball. This problem persists as unsolved, even in the linear case p = 2,
see [14].

Noteworthy in Theorem 1.3 is the positivity of the extremal u1. Since λ 1
L,p(Ω) may be negative for

large Ω due to (1.7), the validity of a maximum principle is not clear and indeed will be false. It is
worth mentioning that maximum principles and, more interestingly in the nonlinear setting, comparison
principles are in general quite delicate, see the discussion in Remark 6.16. To state our main results on
the maximum and the comparison principles, we need to introduce some further notation. For u,v ∈
X p

0 (Ω) let

EL,p(u,v) =
CN,p

2

ˆ

RN

ˆ

B1(x)

|u(x)−u(y)|p−2(u(x)−u(y))(v(x)− v(y))
|x− y|N

dydx

+

ˆ

RN

ρN(p)|u(x)|p−2u(x)v(x)dx

+
CN,p

2

ˆ

RN

ˆ

RN\B1(x)

1
|x− y|N

(
|u(x)−u(y)|p−2(u(x)−u(y))(v(x)− v(y))

−|u(x)|p−2u(x)v(x)−|u(y)|p−2u(y)v(y)

)
dydx.

Definition 1.6. For Ω ⊂ RN open and f ∈ L
p

p−1 (Ω), we say that a measurable function u : RN → R
satisfies weakly

L∆pu ≥ f in Ω, u = 0 in RN \Ω,

if u ∈ X p
0 (Ω) and for all nonnegative ϕ ∈ X p

0 (Ω) it holds

EL,p(u,ϕ)≥
ˆ

Ω

f ϕ dx.

Similarly, we define L∆pu = f or L∆pu ≤ f in Ω.
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We emphasize that we generalize this definition of supersolution in Section 6 below. Now we are
in position to state our results concerning strong maximum and comparison principles involving the
logarithmic p-Laplacian.

Theorem 1.7 (Strong maximum principle). Let Ω⊂RN be an open bounded set. If and only if λ 1
L,p(Ω)>

0 holds, the following is true: For any u ∈ X p
0 (Ω) satisfying weakly L∆pu ≥ 0 in Ω, u = 0 in RN \Ω, it

follows that either u ≡ 0 in Ω or u > 0 in Ω in the sense that

essinfKu > 0 for all compact sets K ⊂ Ω.

Theorem 1.8 (Strong comparison principle). Let Ω ⊂ RN be an open bounded set, c ∈ L∞(Ω) with

c(x)≤ ρN(p)+hΩ(x) for a.e. x ∈ Ω.

Suppose u,v ∈ X p
0 (Ω) are such that either u ∈ L∞(Ω) or v ∈ L∞(Ω) and it holds weakly

L∆pu− c(x)|u|p−2u ≥ L∆pv− c(x)|v|p−2v in Ω, u = 0 = v in RN \Ω.

Then either u ≡ v in RN or u > v in Ω in the sense that

essinfK(u− v)> 0 for all compact sets K ⊂ Ω.

We emphasize that both above Theorems on the strong maximum and strong comparison principles
are special cases for more general types of solutions, which we introduce in Section 6. Let us also
mention, that the validity of a comparison principle is usually linked to the first eigenvalue, though in
the case p ̸= 2 this is not trivial. Here, this can be seen through Lemma 7.7, which states that we have

λ
1
L,p(Ω)> 0 if ρN(p)+hΩ(x)≥ 0.

As a final main result, we show the boundedness of solutions to certain equations, which include
inhomogeneous problems and eigenvalue type-problems involving L∆p .

Theorem 1.9. Let Ω ⊂ RN open and bounded, f ,c ∈ L∞(Ω), and assume u ∈ X p
0 (Ω) satisfies weakly

L∆pu = c(x)|u|p−2u+ f in Ω, u = 0 in RN \Ω.

Then u ∈ L∞(RN).

1.2. Plan of the paper. We begin to collect some preliminaries in Section 2, which include a priori
estimates, the definitions of classical function spaces we need, and simple limiting behaviors of (−∆p)

s

and its constant. In Section 3 we give the Proof of Theorem 1.1 and present pointwise properties of
L∆p . Section 4 deals with the weak formulation of the logarithmic p-Laplace and the properties of the
space X p

0 (Ω). The proof of the logarithmic boundary Hardy inequality is done in Section 5. In Section
6 we formulate a framework for weak supersolutions, which do not vanish outside of Ω and we give the
proofs of Theorem 1.9, Theorem 1.7, and Theorem 1.8 alongside more general statements. Finally, in
Section 7, we give the proof of Theorem 1.3 and Corollary 1.4. We emphasize, moreover, the properties
on λ 1

L,p(Ω) and hΩ listed in Subsection 6.2 and Section 7, which in particular lead to small volume type
maximum principles such as Corollary 7.9.

2. PRELIMINARIES AND KNOWN RESULTS

2.1. Notation. We use the following notation. For U ⊂RN , r > 0, let Br(U) := {x ∈RN : dist(x,U)<
r}, where dist(·,U) denotes the distance of x to U . If U = {x} for some x ∈ RN , we also write Br(x) in
place of Br({x}) to denote the ball of radius r centered at x. Moreover, we put Br := Br(0). Throughout,
we set Uc := RN \U . If U is measurable, |U | denotes the N-dimensional Lebesgue measure of U and
we put

ωN :=
2π

N
2

Γ(N
2 )

for the (N −1)-dimensional volume of ∂B1. Ω denotes throughout this work an open nonempty subset
of RN , which may have further properties as stated. We let δx := δ (x) := dist(x,∂Ω).
For a function u : RN → R, we denote u+ = max{u,0} for the positive part and u− := max{−u,0} for
the negative part of u so that u = u+−u−.
Finally, for p > 1, we set g(a) := gp(a) := |a|p−2a for a ∈ R.
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2.2. Function spaces. We use several different definitions of functions spaces —classical and new. For
the readers convenience we give here a list of the known spaces with their respective short definitions.
We remark that our definitions might vary slightly, since we always consider functions to be defined on
the whole RN .
Let U ⊂ RN be open. For α = k + σ > 0 with k ∈ N0 and σ ∈ (0,1) let Cα(U) denotes the space
of functions u : RN → R, which in U are k-times continuously differentiable and the derivatives up to
order k are σ -Hölder continuous in U . Moreover, we set Ck+1(U) :=Ck,1(U) as the space of functions
u : RN → R, which in U are k-times continuously differentiable and the derivatives up to order k are
Lipschitz continuous in U . Here, for σ ∈ (0,1] and an arbitrary nonempty set K ⊂ RN a function
u : RN → R is called σ -Hölder continuous (resp. Lipschitz continuous if σ = 1) in K, if

sup
x,y∈K

|u(x)−u(y)|
|x− y|σ

< ∞.

As usual C∞(U) =
⋂

α>0Cα(U). We set, for an arbitrary α ∈ (0,∞],

Cα(U) :=
{

u ∈Cα(U) : all derivatives of u up to order ⌊α⌋

have a continuous extension to U
}
,

Cα
c (U) :=

{
u ∈Cα(U) : suppu is a compact subset of U

}
,

Cα
loc(U) :=

{
u : RN → R : u|K ∈Cα(K) for all nonempty compact subsets K ⊂U

}
.

We use the above notation also for the space of continuous function C(U). Given q> 0 and a measurable
function u : RN → R, we let

∥u∥Lq(U) :=

ˆ
U

|u(x)|q dx

 1
q

and

Lq(U) :=
{

u : RN → R : u1RN\U ≡ 0 and ∥u∥Lq(U) < ∞

}
,

Lq
loc(U) :=

{
u : RN → R : 1Au ∈ Lq(A) for all measurable sets A ⊂U with A ⊂U .

}
We also use analogous definitions for L∞(U) and L∞

loc(U). Moreover, for t ∈ R, we let Lq
t be the space

of functions u ∈ Lq
loc(R

N) such that

∥u∥Lq
t

:=

( ˆ
RN

|u|q

(1+ |x|)N+t(q+1) dx

) 1
q

< ∞. (2.1)

Note that ∥·∥Lq(U) and ∥·∥Lq
t

are norms only if q ≥ 1, but the extension to q ∈ (0,1) is convenient. Given
s ∈ (0,1) and p ∈ [1,∞), we let

W s,p(U) =

u ∈ Lp(U) :
¨

U×U

|u(x)−u(y)|p

|x− y|N+sp dxdy < ∞


to denote the usual fractional Sobolev space, see e.g. [21] for an introduction to such spaces. W s,p(U) is
a Banach space with the norm

∥u∥s,p,U :=
(
∥u∥p

Lp(U)+[u]pW s,p(U)

) 1
p
,

where

[u]pW s,p(U) :=
CN,s,p

2

¨

U×U

|u(x)−u(y)|p

|x− y|N+sp dxdy
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is called the Gagliardo seminorm and CN,s,p denotes the normalization constant for the fractional p-
Laplace, see Section 2.4 below. Moreover, we let

W s,p
0 (U) :=

{
u ∈W s,p(RN) : u1RN\U ≡ 0

}
which is also a Banach space with the norm ∥ · ∥s,p,RN and

W s,p
0 (U) :=C∞

c (U)
∥·∥s,p,U

.

Finally, the main spaces we study in this work are X p
0 (Ω) as defined in (1.5), see Section 4, and the space

V (Ω,RN) in Section 6 for supersolutions.

2.3. Some useful inequalities. We recall some elementary inequalities that are useful in proving our
results.

Lemma 2.1 (Lemmas 2 and 3, [42]). For all a,b ∈ R the following estimates hold:
If p ∈ (1,2], then

|g(a+b)−g(a)| ≤ (3p−1 +2p−1)|b|p−1

and if p ≥ 2, then
|g(a+b)−g(a)| ≤ (p−1)|b|

(
|a|+ |b|

)p−2
.

Lemma 2.2 (Section 2.2, [32]). Let b > 0. Then

g(a+b)≤ max{1,2p−2}(ap−1 +bp−1) for all a ≥ 0.

If, in addition, p ≥ 2, then

g(a+b)−g(a)≥ 22−pbp−1 for all a ∈ R.

Lemma 2.3 (Section 2.1, [35]). Let M > 0 and p > 1. Then there is C1,C2 > 0 such that for all a ∈
[−M,M], b ≥ 0:

g(a)−g(a−b)≤C1 max{b,bp−1}
g(a+b)−g(a)≥C2 min{b,bp−1}

2.4. On the normalization constant of the fractional p-Laplacian. Let N ∈ N, p > 1, and s ∈ (0,1).
Recall the definition of the fractional p-Laplacian (−∆p)

su for u sufficiently regular in the introduction,
where the normalization constant CN,s,p is given by

CN,s,p =



sp22s−2 Γ

(
N+sp

2

)
π

N−1
2 Γ(1− s)Γ

(
p+1

2

) if s >
1
2
,

sp22s−1 Γ

(
N+sp

2

)
π

N
2 Γ(1− s)

if s ≤ 1
2
.

The following is well-known, however, we include its proof for the reader’s convenience and complete-
ness.

Lemma 2.4. Let p > 1. If s ∈ (0, p−1
p ), α ∈ ( sp

p−1 ,1], and u ∈Cα
c (RN). Then (−∆p)

su(x) is well-defined
for any x ∈ RN and it holds

lim
s→0+

(−∆p)
su(x) = g(u(x)) for all x ∈ RN .

Proof. Note that, for r > 0ˆ

Br

g(|y|α)
|y|N+sp dy =

ˆ

Br

|y|−N+(α−s)p−α dy =
ωN

(α − s)p−α
r(α−s)p−α =

ωN

α(p−1)− sp
rα(p−1)−sp < ∞

and ˆ

Bc
r

1
|y|N+sp dy =

ωN

sp
r−sp < ∞.
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Hence, (−∆p)
su is well-defined. Moreover, after fixing x ∈ RN , we have, with R > 0 such that suppu ⊂

BR(x),

(−∆p)
su(x) =CN,s,p

ˆ

BR(x)

g(u(x)−u(y))
|x− y|N+sp dy+CN,s,p

ˆ

Bc
R(x)

g(u(x)−u(y))
|x− y|N+sp dy

=CN,s,p

ˆ

BR(x)

g(u(x)−u(y))
|x− y|N+sp dy+g(u(x))CN,s,p

ˆ

Bc
R(x)

|x− y|−N−sp dy,

where ∣∣∣∣∣
ˆ

BR(x)

g(u(x)−u(y))
|x− y|N+sp dy

∣∣∣∣∣≤ g(∥u∥Cα (RN))
ωN

(α − s)p−α
R(α−s)p−α

and ˆ

Bc
R(x)

|x− y|−N−sp dy =
ˆ

Bc
R

|y|−N−sp dy =
ωN

sp
R−sp.

Thus, by definition of CN,s,p, it follows that

lim
s→0+

(−∆p)
su(x) = g(u(x)) for x ∈ RN .

as claimed. □

Remark 2.5. Let us add some further remarks concerning (−∆p)
s.

(1) Note that (−∆p)
s is also pointwisely well-defined for any s∈ (0,1) if u is sufficiently regular, see

e.g. [28, 32]. To be precise, if u ∈ C2+α
c (RN) for some α > 0, then (−∆p)

su(x) is well-defined
for all x ∈ RN and s ∈ (0,1).

(2) The choice of the constant CN,p,s in our setting is rather artificial as there is no Fourier transform
to justify a normalization constant as in the case p = 2 (see e.g. [21]). With our choice, the
constant agrees with the case p = 2, the limit s → 0+ gives a kind of identity, and it holds, see
for instance the discussions in [19, 28],

lim
s→1−

(−∆p)
su(x) =−∆pu(x) =−div(|∇u(x)|p−2

∇u(x)) for all x ∈ RN .

However, the choices of CN,s,p for s ≥ ε for some ε > 0 is indeed not relevant to our analysis.
In particular, any other choice of CN,s,p, such that ∂sCN,s,p exists at s = 0 can be used and only
changes the zero order part of the logarithmic p-Laplacian.

3. DERIVATION OF THE LOGARITHMIC p-LAPLACIAN AND SOME PROPERTIES

The goal of this section is to prove Theorem 1.1 and, in addition, to give several properties of the
integral representation of the operator. We begin with the introduction and study of the integral operator

L∆pu(x) :=CN,p

ˆ

B1(x)

|u(x)−u(y)|p−2(u(x)−u(y))
|x− y|N

dy

+CN,p

ˆ

RN\B1(x)

|u(x)−u(y)|p−2(u(x)−u(y))−|u(x)|p−2u(x)
|x− y|N

dy+ρN |u(x)|p−2u(x),

for suitable u : RN → R, x ∈ RN , and with the constants CN,p, ρN as in Theorem 1.1.
In the first lemma, we collect some basic properties of L∆p and provide an alternative integral repre-

sentation of L∆p which involves the function hΩ defined in (1.3).

Lemma 3.1. Let 1 < p < ∞ and u ∈ Cα
c (RN) for some α ∈ (0,1). Then L∆pu is well-defined and

continuous. Moreover, the following hold.
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(1) L∆p is translation and rotation invariant in the sense that it holds

L∆pv(x) = L∆pu(Ox+ v),

where v(x) = u(Ox+ v) with v ∈ RN and a rotation O.
(2) L∆p satisfies the following scaling property for r > 0:

L∆pv(x) = L∆pu(rx)+CN,pωN ln(r)u(rx),

where v(x) = u(rx).
(3) If Ω ⊂ RN is an open bounded set and x ∈ Ω, then it holds

L∆pu(x) =CN,p

ˆ

Ω

g(u(x)−u(y))
|x− y|N

dy+CN,p

ˆ

RN\Ω

g(u(x)−u(y))−g(u(x))
|x− y|N

dy

+
(

ρN(p)+hΩ(x)
)

g(u(x)), (3.1)

with hΩ defined as in (1.3), that is,

hΩ(x) =CN,p

ˆ

B1(x)\Ω

|x− y|−N dy−CN,p

ˆ

Ω\B1(x)

|x− y|−N dy.

Proof. Let x ∈ RN and fix R > 0 such that suppu ⊂ BR(x). Moreover, let c > 0 such that

|u(x)−u(y)| ≤ cmin{1, |x− y|α} and |u(x)| ≤ c for all x,y ∈ RN .

Then ∣∣∣∣∣
ˆ

B1(x)

g(u(x)−u(y))
|x− y|N

dy

∣∣∣∣∣≤ cp−1
ωN

1ˆ

0

t−1+α(p−1) dt < ∞

and, since g(u(y)−u(x))−g(u(x)) = 0 for y ∈ BR(x)c,∣∣∣∣∣
ˆ

Bc
1(x)

g(u(x)−u(y))−g(u(x))
|x− y|N

dy

∣∣∣∣∣≤ cp−1
ˆ

BR(x)\B1(x)

1
|x− y|N

dy = cp−1
ωN

Rˆ

1

t−1 dt < ∞.

Hence, L∆p [u] is well-defined in RN . Next, let f1, f2 : RN → R be defined by

f1(x) =
ˆ

B1(x)

g(u(x)−u(y))
|x− y|N

dy and f2(x) =
ˆ

Bc
1(x)

g(u(x)−u(y))−g(u(x))
|x− y|N

dy+ρng(u(x)).

Then the continuity of f2 follows analogously to the proof of f2 being well-defined. To prove the
continuity of f1, we separate the cases p ≥ 2 and p ∈ (1,2).
Case 1: p ≥ 2. Recall that it holds, see Lemma 2.1,∣∣∣g(a+b)−g(a)

∣∣∣≤ (p−1)|b|(|a|+ |b|)p−2 for all a,b ∈ R. (3.2)

Thus, for x,z ∈ RN we have

|g(u(x)−u(x+ y))−g(u(z)−u(z+ y))|
≤ (p−1)|u(x)−u(z)+u(z+ y)−u(x+ y)|(|u(x)−u(z)+u(z+ y)−u(x+ y)|+ |u(z)−u(z+ y)|)p−2

≤ (6c)p−2(p−1)
(
|u(x)−u(x+ y)|+ |u(z+ y)−u(z)|

)1/2(
|u(x)−u(z)|+ |u(z+ y)−u(x+ y)|

)1/2

≤C|y|α/2|x− z|α/2

with C = 2 ·6p−2cp−1(p−1). Thus, for x,z ∈ RN we have∣∣∣ f1(x)− f1(z)
∣∣∣≤ ˆ

B1

|g(u(x)−u(x+ y))−g(u(z)−u(z+ y))|
|y|N

dy
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≤C|x− z|α/2
ˆ

B1

|y|α/2−N dy =
2CωN

α
|x− z|α/2.

Thus also f1 is continuous and this implies the continuity of L∆p .
Case 2: p ∈ (1,2). In this case it holds Lemma 2.1,∣∣∣g(a+b)−g(a)

∣∣∣≤ (3p−1 +2p−1)|b|p−1 for all a,b ∈ R. (3.3)

As in Case 1 we conclude that for x,z ∈ RN we have

|g(u(x)−u(x+ y))−g(u(z)−u(z+ y))|

≤ min{2c|y|(p−1)α ,C̃|x− z|(p−1)α} ≤ (2cC̃)1/2|y|(p−1)α/2|x− z|(p−1)α/2

for some constant C̃ > 0 independent of y. The continuity of L∆p now follows similarly to Case 1.
We continue using the notation f1 = f1(u) and f2 = f2(u). To see (1), let T x = Ox+ v and note that

f1(v)(x) =
ˆ

B1(x)

g(u(T x)−u(Ty))
|x− y|N

dy =
ˆ

B1(x)

g(u(T x)−u(Ty))
|T x−Ty|N

dy =
ˆ

T (B1(x))

g(u(T x)−u(y))
|T x− y|N

dy

=

ˆ

B1(T x))

g(u(T x)−u(y))
|T x− y|N

dy = f1(u)(T x)

and similarly f2(v)(x) = f2(u)(T x).
To see (2), let first r > 1. Then

L∆pv(x) =CN,p

ˆ

B1

g(u(rx)−u(r(x+ y)))
|y|N

dy+CN,p

ˆ

Bc
1

g(u(rx)−u(rx+ ry))−g(u(rx))
|y|N

dy+ρNg(u(rx))

=CN,p

ˆ

Br

g(u(rx)−u(rx+ z)))
|z|N

dz+CN,p

ˆ

Bc
r

g(u(rx)−u(rx+ z))−g(u(rx))
|z|N

dz+ρNg(u(rx))

=CN,p

ˆ

B1

g(u(rx)−u(rx+ z)))
|z|N

dz+CN,p

ˆ

Bc
1

g(u(rx)−u(rx+ z))−g(u(rx))
|z|N

dz

+CN,pg(u(rx))
ˆ

Br\B1

|y|−N dy+ρNg(u(rx))

= L∆pu(rx)+CN,pωN ln(r)g(u(rx)).

For r < 1, we may take ρ = 1/r > 1 and u(x) = v(ρx), which allows us to use already proven (2) with
ρ instead of r and functions u and v interchanged. This shows property (2).

To see the last statement, we let

F1 =
g(u(x)−u(y))

|x− y|N
, F2 =

g(u(x)−u(y))−g(u(x))
|x− y|N

and observe that the integrals in (3) are absolutely convergent. For the first one, it follows from the
fact that |F1| ≤ cmin{1, |x− y|α(p−1)}, and for the second, from |F2| ≤ 2c and F2 = 0 if y ̸∈ supp u.
These integrals are also absolutely convergent when Ω = B1(x), because B1(x) satisfies all assumptions
imposed on Ω. Therefore,

L∆pu(x) =CN,p

ˆ

B1(x)

F1 dy+CN,p

ˆ

Bc
1(x)

F2 dy+ρN(p)g(u(x))

=CN,p

ˆ
Ω

−
ˆ

Ω\B1(x)

+

ˆ

B1(x)\Ω

F1 dy+CN,p

ˆ
Ωc

−
ˆ

Ωc\Bc
1(x)

+

ˆ

Bc
1(x)\Ωc

F2 dy+ρN(p)g(u(x))
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=CN,p

ˆ
Ω

F1 dy+
ˆ

Ωc

F2 dy

+ρN(p)g(u(x))+CN,p

 ˆ

Ω\B1(x)

(F2 −F1)dy+
ˆ

B1(x)\Ω

(F1 −F2)dy


=CN,p

ˆ
Ω

F1 dy+
ˆ

Ωc

F2 dy

+g(u(x))

ρN(p)−CN,p

ˆ

Ω\B1(x)

dy
|x− y|N

+CN,p

ˆ

B1(x)\Ω

dy
|x− y|N

 ,

which proves (3). □

Remark 3.2. In fact, in proof of (3) we have used the fact that u ∈Cα
c (Ω) only to show the convergence

of the integrals. Therefore, the following alternative version of (3) holds: If Ω⊂RN is an open set, x ∈Ω

is such that L∆pu(x) exists and is finite, and the integrals appearing in (3.1) and for hΩ are convergent,
then (3.1) holds. For instance this is also the case if u is suitably Dini-continuous (see Lemma 3.7 below)
and Ω is a strip.

In the following, we aim to extend the class of functions on which L∆p can be applied. For this, we
use the tail spaces by Lq

t with q ∈ (0,∞) and t ∈ R as introduced in (2.1) in Section 2.2. By definition
we have

∥u∥Lq
s
≤ ∥u∥Lq

t
for all u : RN → R, q ∈ (0,∞), and s ≥ t.

Lemma 3.3. Let 0 ≤ t < s, 0 < r ≤ q < ∞. Then there is c > 0 such that

∥u∥Lr
s
≤ c∥u∥Lq

t
for all u : RN → R.

In particular, Lq
t ⊂ Lr

s.

Proof. This follows immediately from Hölder’s inequality noting that since t > s and with r = q
q−r we

have
ˆ

RN

|u|r

(1+ |x|)N+s(r+1) dx ≤

(ˆ
RN

|u|q

(1+ |x|)N+t(q+1) dx

) r
q
(ˆ
RN

1
(1+ |x|)N+(s−t)r

dx

) 1
r

≤ c∥u∥r
Lq

t

for a constant c = c(N,s, t,r,q)> 0. □

We next show the following modification of [14, Lemma 2.1].

Lemma 3.4. Let u ∈ Lq
0 for some 0 < q < ∞ and let v : RN → R such that there is c > 0 with |v(x)| ≤

c(1+ |x|)−N . Then for any x ∈ RN we have

lim
y→x

ˆ

RN

|u(x+ z)−u(y+ x)|qv(z)dz = 0.

Proof. First note that by Lemma 2.2 it holds

|u(x+ z)−u(y+ x)|q ≤ max{1,2q−1}
(
|u(x+ z)|q + |u(y+ z)|q

)
and 1+ |z| ≤ 1+ |z− x|+ |x| ≤ (1+ |x|)(1+ |z− x|). Therefore, by assumption, for any x ∈ RN

ˆ

RN

|u(x+ z)|qv(z)dz ≤ c
ˆ

RN

|u(z)|q

(1+ |z− x|)N dz ≤ c(1+ |x|)N
ˆ

RN

|u(z)|q

(1+ |z|)N dz < ∞.

Thus ˆ

RN

|u(x+ z)−u(y+ x)|qv(z)dz

is finite for any x,y ∈ RN . Moreover, the claim follows immediately, if u ∈ Cc(RN) by the dominated
convergence theorem. Finally, the space Cc(RN) is also dense in Lq

0 and thus the statement holds by
approximation. □

Lemma 3.5. Let 0 < q < p < ∞ and u ∈ Lq
0 ∩Lp

0 . Then u ∈ Lt
0 for any t ∈ [q, p].
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Proof. Noting that there is λ ∈ (0,1) such that t = (1−λ )p+λq, the statement follows in a standard
way by Hölder’s inequality with exponent 1

λ
and its conjugate exponent 1

1−λ
. □

Next, let Ω ⊂ RN be a measurable set and let u : Ω → R be a measurable function, the module of
continuity of u at a point x ∈ Ω is given by

ωu,x,Ω : (0,∞)→ [0,∞), ωu,x,Ω(r) := sup
y∈Br(x)∩Ω

|u(x)−u(y)|.

For q > 0, a function u : Ω →R is called q-Dini-continuous at x ∈ Ω, if
´ 1

0 ωu,x,Ω(r)qr−1 dr < ∞ and the
function is called uniformly q-Dini-continuous in Ω if

1ˆ

0

ωu,Ω(r)q

r
dr < ∞, where ωu,Ω(r) = sup

x∈Ω

ωu,x,Ω(r).

Remark 3.6. If u∈ L∞
loc(RN) is (uniformly) q-Dini continuous for some q> 0, then it is also (uniformly)

r-Dini continuous for any r < q.

Lemma 3.7. Let 1 < p < ∞, Ω ⊂ RN open, and let u ∈ Lp−1
0 . Assume additionally u ∈ L1

0 ∩L∞(RN) for
p > 2.

(1) If u is (p−1)-Dini-continuous at x ∈ Ω, then L∆p [u](x) is well-defined.
(2) If u is uniformly (p−1)-Dini-continuous in Ω, then L∆pu is continuous in Ω.

Here, u is any fixed representative with the property of being (uniformly) (p− 1)-Dini-continuous at
x ∈ Ω (in Ω).

Proof. For (1) first note that
ˆ

B1(x)

|g(u(x)−u(y))|
|x− y|N

dy ≤ ωN

1ˆ

0

ω
p−1
u,x,Ω(r)

r
dr < ∞.

Next, for p ∈ (1,2] we have as in (3.3)∣∣∣g(a+b)−g(a)
∣∣∣≤ (3p−1 +2p−1)|b|p−1 for all a,b ∈ R.

Thus ˆ

B1(x)c

|g(u(x)−u(y))−g(u(x))|
|x− y|N

dy ≤ (3p−1 +2p−1)

ˆ

B1(x)c

|u(y)|p−1

|x− y|N
dy ≤ c

ˆ

RN

|u(y)|p−1

1+ |y|N
dy < ∞

for some c = c(N, p,x)> 0. For p > 2, we have by (3.2)∣∣∣g(a+b)−g(a)
∣∣∣≤ (p−1)|b|(|a|+ |b|)p−2 for all a,b ∈ R.

Thus ˆ

B1(x)c

|g(u(x)−u(y))−g(u(x))|
|x− y|N

dy ≤ (p−1)
ˆ

B1(x)c

|u(y)|
(
|u(x)|+ |u(y)|

)p−2

|x− y|N
dy

≤ 2p−1(p−1)

( ˆ

B1(x)c

{|u(x)|≤|u(y)|}

|u(y)|p−1

|x− y|N
dy+∥u∥p−2

L∞(RN)

ˆ

B1(x)c

{|u(x)|>|u(y)|}

|u(y)|
|x− y|N

dy

)
< ∞.

From here, (1) follows. Note that the last computation above remains true, if B1(x)c is replaced by
Bε(x)c for any ε > 0.
For (2), let us fix x0 ∈ Ω and 0 < ε < min{1,δ (x0)}. From the proof of (1) it follows that for every x
such that |x− x0|< ε , integralsˆ

B1(x)

|g(u(x)−u(y))|
|x− y|N

dy and
ˆ

Bε (x)c

|g(u(x)−u(y))−g(u(x))|
|x− y|N

dy
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are convergent. This allows us to use Remark 3.2 to obtain

L∆pu(x) =CN,p f1(x)+ f2(x)

with

f1, f2 : RN → R, f1(x) =
ˆ

Bε (x)

g(u(x)−u(y))
|x− y|N

dy and

f2(x) =CN,p

ˆ

RN\Bε (x)

g(u(x)−u(y))−g(u(x))
|x− y|N

dy+
(
ρN(p)+hBε (x)(x)

)
g(u(x)).

Noting that hBε (x)(x) = −p ln(ε), with Lemma 3.4 it follows that f2 is continuous at x0. Furthermore,
for x ∈ Ω with |x− x0|< ε we have

| f1(x)− f1(x0)| ≤

∣∣∣∣∣
ˆ

Bε

g(u(x)−u(x+ z))−g(u(x0)−u(x0 + z))
|z|N

dz

∣∣∣∣∣
≤
ˆ

Bε

|g(u(x)−u(x+ z))|+ |g(u(x0)−u(x0 + z)|
|z|N

dz

≤ 2
ˆ

Bε

ω
p−1
u,Ω (|z|)
|z|N

dz = 2ωN

εˆ

0

ω
p−1
u,Ω (r)

r
dr.

Therefore,

limsup
x→x0

∣∣L∆pu(x)−L∆pu(x0)
∣∣≤CN,p limsup

x→x0

| f1(x)− f1(x0)|+ limsup
x→x0

| f2(x)− f2(x0)|

≤ 2CN,pωN

εˆ

0

ω
p−1
u,Ω (r)

r
dr.

Since ε ∈ (0,δ (x0)) is arbitrary and the latter right-hand side converges to 0 for ε → 0, the claim of (2)
follows. □

Remark 3.8. If u is a function as in Lemma 3.7(1) or (2), then also the statements of Lemma 3.1(1)–(3)
hold. This follows immediately from the respective proofs.

We close this section by showing that L∆pu = L∆pu for u ∈Cα
c (RN).

Proof of Theorem 1.1. Let u ∈Cα
c (RN). As we consider the limit s → 0+ we may assume

0 < s <

min
{

1
p ,

α

p

}
if p ≥ 2,

min
{

p−1
p , α(p−1)

p

}
if 1 < p < 2.

Note that with this, we have s < 1
2 and s < α(p−1)

p . In particular, we are in the setting of Lemma 2.4.
Next, choose r > 4 such that suppu ⊂ B r

4
(0). Then for x ∈ RN , we have

(−∆p)
s u =CN,s,p

ˆ

Br(x)

g(u(x)−u(y))
|x− y|N+sp dy+CN,s,p

ˆ

Bc
r(x)

g(u(x)−u(y))
|x− y|N+sp dy

= Ar(s, p,x)+Dr(s, p,x),

where

Ar(s, p,x) :=CN,s,p

ˆ

Br(x)

g(u(x)−u(y))
|x− y|N+sp dy−CN,s,p

ˆ

Bc
r(x)

|u(x)−u(y)|p−2u(y)
|x− y|N+sp dy
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and

Dr(s, p,x) :=CN,s,p

ˆ

Bc
r(x)

|u(x)−u(y)|p−2u(x)
|x− y|N+sp dy.

If x ∈ B r
2
, y ∈ Bc

r(x), then |y| ≥ |x− y|− |x|> r
2 , so that y /∈ suppu. It thus follows that

Dr(s, p,x) =

{
Dr(s, p)g(u(x)), if x ∈ B r

2
;

0, if x ∈ Bc
r
2
,

where

Dr(s, p) :=CN,s,p

ˆ

Bc
r(x)

dy
|x− y|N+sp =CN,s,p

ωN

sp
r−sp. (3.4)

Now, we estimate Ar(s, p,x) in the following.

Case 1: If |x| ≥ r/2 then u(x) = 0 and |x− y| ≥ |x|
2 > 1 provided y ∈ supp u. Then, we obtain

|Ar(s, p,x)| ≤CN,s,p

ˆ

RN

|u(y)|p−1

|x− y|N+sp dy ≤ 2N CN,s,p∥u∥p−1
Lp−1(RN)

|x|−N . (3.5)

Hence, for any 1 < q < ∞, from (3.5) we obtainˆ

Bc
r
2

|Ar(s, p,x)|q dx ≤
22qN−N Cq

N,s,p ωN

N −qN
∥u∥q(p−1)

Lp−1(RN)
rN−qN , (3.6)

and
∥Ar(s, p, ·)∥L∞(Bc

r
2
) ≤ 4N CN,s,p∥u∥p−1

Lp−1(RN)
r−N .

Recall the definition of the constant CN,s,p

CN,s,p =
sp22s−1 Γ

(
N+sp

2

)
π

N
2 Γ(1− s)

=: sdN,p(s).

Then, it follows

dN,p(0) =
pΓ
(N

2

)
2π

N
2

=CN,p and d′
N,p(0) =CN,p ρN .

It follows from (3.6), for any q ∈ (1,∞) we have

∥Ar(s, p, ·)∥Lq(Bc
r
2
) ≤ smp,q r

N
q −N , (3.7)

where mp,q is a positive constant depending only on u.
Case 2: If |x|< r/2 then |x−y|< r provided y ∈ supp u and thus the second integral in the definition of
Ar(s, p,x) is zero. Since u ∈Cα

c (RN) and by dominated convergence theorem, we then obtain

lim
s→0+

Ar(s, p,x)
s

= lim
s→0+

dN,p(s)
ˆ

Br(x)

g(u(x)−u(y))
|x− y|N+sp dy

= Ãr(p,x) :=CN,p

ˆ

Br(x)

g(u(x)−u(y))
|x− y|N

dy
(3.8)

and the above convergence is uniform when |x|< r/2. Now, from (3.4) we obtain

lim
s→0+

Dr(s, p) =
CN,pωN

p
= 1 and D′

r(0, p) = ρN − p lnr =: kr(p).

Thus using the fact u ∈Cα
c (RN), we obtain for 1 < q < ∞

lim
s→0+

∣∣∣∣∣∣∣∣Dr(s, p)g(u)−g(u)
s

− kr(p)g(u)
∣∣∣∣∣∣∣∣

Lq(RN)

= 0. (3.9)
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Note that,

lnr =
1

ωN

ˆ

Br(x)\B1(x)

dy
|x− y|N

.

Therefore, using this and from the above definitions of Ãr(p, ·) and kr(p) we obtain, for x ∈ RN

Ãr(p,x)+ kr(p)g(u(x))

=CN,p

 ˆ
Br(x)

g(u(x)−u(y))
|x− y|N

dy−g(u(x))
ˆ

Br(x)\B1(x)

dy
|x− y|N

+ρNg(u(x))

= L∆pu(x)−F(x), where F(x) :=CN,p

ˆ

Bc
r(x)

g(u(x)−u(y))−g(u(x))
|x− y|N

dy.

(3.10)

Now for x ∈ Br/2(0), we have F(x) = 0, as u(y) = 0, and on the other hand, for |x| ≥ r
2 we then proceed

as in Case 1 for F to obtain

∥F∥Lq(Bc
r
2
) ≤ Mp,qr

N
q −N for all q ∈ (1,∞).

Finally, combining (3.7), (3.8), (3.9), and (3.10), we obtain

limsup
s→0+

∥∥∥∥(−∆p)
s u−g(u)
s

−L∆pu
∥∥∥∥

Lq(RN)

≤ (mp,q +Mp,q)r
N
q −N

for all r > 0, 1 < q < ∞, where L∆pu is well-defined, bounded, and continuous by Lemma 3.1. Conse-
quently this yields

lim
s→0+

∥∥∥∥(−∆p)
s u−g(u)
s

−L∆pu
∥∥∥∥

Lq(RN)

= 0.

In particular, it follows L∆pu = L∆pu in Lq(RN) for any q ∈ (1,∞). Note that following the above proof
for the case q = ∞, since (−∆p)

su,g(u),L∆pu ∈C(RN) (for s small enough), we also have

L∆pu(x) = lim
s→0+

(−∆p)
su(x)−g(u(x))

s
= L∆pu(x) for every x ∈ RN

and the claim follows. □

Remark 3.9. (1) Due to Theorem 1.1 we may replace L∆p with L∆p in Lemmas 3.1 and 3.7.
(2) Note that the proof of Theorem 1.1 actually gives the local uniform convergence of the difference

quotient. That is, for every compact K ⊂ RN , u ∈Cα
c (RN) for some α > 0 we have

sup
x∈K

∣∣∣∣∣(−∆p)
su(x)−g(u(x))

s
−L∆pu(x)

∣∣∣∣∣→ 0 for s → 0+.

4. A VARIATIONAL FRAMEWORK

In this section, we give the detail of a weak formulation of problems involving the logarithmic p-
Laplacian. For this, we introduce here a suitable functional space and summarize known properties of
it. Let

k : RN \{0}→ R defined by k(z) =CN,p1B1(z)|z|−N

and
j : RN → R defined by j(z) =CN,p1RN\B1

(z)|z|−N .

Then, we can write the integral representation of L∆p given by (1.2) with the above kernel functions as
follows

L∆pu(x) =
ˆ

RN

g(u(x)−u(y))k(x− y)dy+
ˆ

RN

(g(u(x)−u(y))−g(u(x))) j(x− y)dy+ρN(p)g(u)(x).

(4.1)
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Let Ω ⊂ RN be an open set and p ∈ [1,∞). Recall, the space X p
0 (Ω) defined by

X p
0 (Ω) := {u ∈ Lp(Ω) : 1RN\Ωu ≡ 0 and , [u]X p

0 (Ω) < ∞}
endowed with the norm

∥u∥X p
0 (Ω) =

(
∥u∥p

Lp(Ω)+[u]pX p
0 (Ω)

)1/p
,

where
[u]pX p

0 (Ω)
=

¨

RN×RN

|u(x)−u(y)|pk(x− y)dxdy.

The space X p
0 (Ω) is a reflexive Banach space with respect to the norm ∥ · ∥X p

0 (Ω) for 1 < p < ∞, see [28,
Section 3]. If Ω is an open set with finite measure or it is bounded in one direction, then [·]X p

0 (Ω) gives
an equivalent norm for X p

0 (Ω), which follows from the following fractional Poincaré type result.

Proposition 4.1 (see Theorem 7.2 and 7.4, [28]). Let p ∈ [1,∞) and Ω ⊂ RN be an open set such that
one of the following is true:

(1) |Ω|< ∞;
(2) Ω is bounded in one direction, that is, there is an affine function T : RN →RN , T v = Ov+c with

a rotation O and c ∈ RN such that T (Ω)⊂ (−a,a)×RN−1 for some a > 0.
Then there exists a constant C =C(N, p,Ω)> 0 such thatˆ

Ω

|u(x)|p dx ≤C
¨

RN×RN

|u(x)−u(y)|pk(x− y)dxdy, for all u ∈ X p
0 (Ω).

In order to study some variational problems related to L∆p in some open sets Ω ⊂ RN , the following
compactness statement will play a pivotal role.

Proposition 4.2 (Corollary 6.3, [28]). Let p ∈ (1,∞) and Ω ⊂ RN open with |Ω|< ∞. Then the embed-
ding X p

0 (Ω) ↪→ Lp(Ω) is compact.

As shown in [27, Theorem 3.66], it holds that C∞
c (RN) is dense in X p

0 (RN). And, by [27, Theorem
3.76], if Ω is a bounded subset with continuous boundary, then C∞

c (Ω) is dense in X p
0 (Ω). Similar

to [26, Theorem 3.6] we have the following if ∂Ω is of Lipschitz class.

Proposition 4.3. Let Ω be a bounded Lipschitz domain in RN . Then the space C∞
c (Ω) is a dense subset

of the space X p
0 (Ω). Moreover, if u ∈ X p

0 (Ω) is a non-negative function then
i) There exists a non-decreasing sequence {un} ⊂ X p

0 (Ω)∩L∞(Ω) of functions in X p
0 (Ω) such that

un ≥ 0 for all n and [un −u]X p
0 (Ω) → 0 as n → ∞.

ii) There exists a sequence {un}⊂C∞
c (Ω) such that un ≥ 0 for all n and un → u in X p

0 (Ω) as n → ∞.

Proof. The proof is analogous to the proof of [26, Theorem 3.6] □

To set up the weak formulation, we first observe the following.

Lemma 4.4. Let 1 < p < ∞ and u,v ∈C∞
c (RN). Then

EL,p(u,v) =
ˆ

RN

L∆pu(x)v(x)dx

where
EL,p(u,v) := Ep(u,v)+Fp(u,v)+ρN(p)

ˆ

RN

g(u(x))v(x)dx (4.2)

with

Ep(u,v) :=
1
2

¨

RN×RN

g(u(x)−u(y))(v(x)− v(y))k(x− y)dxdy

Fp(u,v) :=
1
2

¨

RN×RN

(
g(u(x)−u(y))(v(x)− v(y))−g(u(x))v(x)−g(u(y))v(y)

)
j(x− y)dxdy.
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Proof. This follows immediately from the notation in (4.1). □

It follows by the density statement, Proposition 4.3, that we also have

EL,p(u,v) =
ˆ

Ω

L∆pu(x)v(x)dx for all u ∈C∞
c (RN), v ∈ X p

0 (Ω). (4.3)

Indeed, this is clear with Proposition 4.3 and the density of C∞
c (RN) in Lp(RN) for the first and last

summand in (4.2). For the middle summand note that it holds for any v ∈ Lp(Ω), u ∈C∞
c (Ω)

|Fp(u,v)| ≤
¨

RN×RN

∣∣∣∣∣∣g(u(x)−u(y))−g(u(x))
∣∣∣|v(x)|j(x− y)dxdy

=

ˆ

RN

|v(x)|
ˆ

RN

|g(u(x)−u(y))−g(u(x))|
|x− y|N

dydx,

where the inner integral is continuous and bounded as shown in Lemma 3.1. Since Ω is bounded, the
approximation argument for (4.3) follow using the Dominated Convergence Theorem for the middle
term.

Similarly to the alternative representation of L∆p given in Lemma 3.1(3), we can also rewrite EL,p in
the following way.

Proposition 4.5. Let 1 < p < ∞ and let Ω be a bounded open subset of RN and u,v ∈ X p
0 (Ω). Then we

have

EL,p(u,v) =
CN,p

2

¨

Ω×Ω

g(u(x)−u(y))(v(x)− v(y))
|x− y|N

dxdy+
ˆ

Ω

(hΩ(x)+ρN(p))g(u(x))v(x)dx.

In particular, we have

EL,p(u,u) =
CN,p

2

¨

Ω×Ω

|u(x)−u(y)|p

|x− y|N
dxdy+

ˆ

Ω

(hΩ(x)+ρN(p)) |u(x)|p dx,

where hΩ(x) is defined in (1.3).

Proof. Since u,v ∈ X p
0 (Ω), we have

Ep(u,v) =
CN,p

2

¨

x,y∈Ω

|x−y|<1

g(u(x)−u(y))(v(x)− v(y))
|x− y|N

dxdy+CN,p

ˆ

Ω

g(u(x))v(x)

 ˆ

B1(x)\Ω

dy
|x− y|N

dx

and

Fp(u,v) =
CN,p

2

¨

x,y∈Ω

|x−y|>1

g(u(x)−u(y))(v(x)− v(y))−g(u(x))v(x)−g(u(y))v(y)
|x− y|N

dxdy.

Now, we can split the above integral by using the fact the domain Ω is bounded and thus we get

Fp(u,v) =
CN,p

2

¨

x,y∈Ω

|x−y|>1

g(u(x)−u(y))(v(x)− v(y))
|x− y|N

dxdy−CN,p

ˆ

Ω

g(u(x))v(x)

 ˆ

Ω\B1(x)

dy
|x− y|N

dx.

Therefore, by definition of EL,p we get the desired result. □

Remark 4.6. Similar to Proposition 4.5, one can show the following alternative for p = 1. However, we
do not assign the corresponding operator in this case. Let

EL,1(u,u) := E1(u,u)+F1(u,u)+ρN,1

ˆ

RN

|u(x)|dx
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with

E1(u,u) :=
1
2

¨

RN×RN

|u(x)−u(y)|k(x− y)dxdy

F1(u,u) :=
1
2

¨

RN×RN

(
|u(x)−u(y)|− |u(x)|− |u(y)|

)
j(x− y)dxdy.

Then, for u ∈ X1
0 (Ω) with Ω ⊂ RN being a bounded open subset, we have

EL,1(u,u) =
CN,1

2

¨

Ω×Ω

|u(x)−u(y)|
|x− y|N

dxdy+
ˆ

Ω

(hΩ(x)+ρN,1) |u(x)|dx.

Lemma 4.7. For any u ∈ X p
0 (Ω), it holds

EL,p(u,u)≥ EL,p(|u|, |u|)
and the inequality is strict, if u changes sign.

Proof. Note that, we have by Proposition 4.5

EL,p(u,u) =
CN,p

2

¨

Ω×Ω

|u(x)−u(y)|p

|x− y|N
dxdy+

ˆ

Ω

(hΩ(x)+ρN(p)) |u(x)|p dx

≥
CN,p

2

¨

Ω×Ω

∣∣∣|u(x)|− |u(y)|
∣∣∣p

|x− y|N
dxdy+

ˆ

Ω

(hΩ(x)+ρN(p)) |u(x)|p dx

= EL,p(|u|, |u|).
If u changes sign, we have indeed

¨

Ω×Ω

|u(x)−u(y)|p

|x− y|N
dxdy >

¨

Ω×Ω

∣∣∣|u(x)|− |u(y)|
∣∣∣p

|x− y|N
dxdy

and this gives the additional claim. □

5. A LOGARITHMIC BOUNDARY HARDY INEQUALITY

In this section, we prove Theorem 1.2. This proof is split into two parts. In the first one, we prove
a logarithmic boundary Hardy inequality under some assumptions on the Whitney decomposition of
the set. In Subsection 5.3, we give a simple sufficient condition for these assumptions to hold. As an
illustration, we also prove these assumptions for the half-space, which allows us to obtain explicit —but
possibly not optimal— constants in the logarithmic boundary Hardy inequality in this case. The last
subsection is devoted to applications.

5.1. Whitney decomposition and logarithmic boundary Hardy inequality. We call a cube Q ⊂ RN

dyadic if its side length is equal to 2m for some integer m and all coordinates of its vertices are equal to
an integer times 2m. We denote by Dm the collection of all dyadic cubes in RN with side length 2m and
put D =

⋃
m∈ZDm.

Let W (Ω) be a Whitney decomposition of an open set Ω ⊂ RN into cubes like in [51]. In particular,
W (Ω)⊂ D , and for each Q ∈ W (Ω),

diam(Q)≤ dist(Q,∂Ω)≤ 4diam(Q).

For m ∈ Z, let Wm(Ω) = {Q ∈ W (Ω) : ℓ(Q) = 2m}, where ℓ(Q) is the side length of the cube Q.

Theorem 5.1. Let Ω ⊂ RN , Ω ̸= RN be an open set. We assume that there exist constants C1, C2, C3
and an integer j0 ≤ 0 such that for each Whitney cube Q ∈ Wk(Ω) with k < j0 and for each j such that
k < j ≤ j0, there exists a Whitney cube E(Q, j) with the following properties:

(i) C12 j ≤ ℓ(E(Q, j))≤C22 j,
(ii) it holds |x− y|<C32 j for all x ∈ Q and y ∈ E(Q, j).
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Additionally we assume that the following holds:
(iii) there exist constants λ < N and C4 such that for each cube Q0 ∈ Wn(Ω), n ∈ Z,

#{(Q, j) : Q ∈ Wm(Ω) and E(Q, j) = Q0} ≤C42λ (n−m) for all m ∈ Z.

Let 0 < p < ∞. Then there is c = c(C1,C2,C3,C4, j0,λ , p)> 0 such that for every u ∈ Lp(Ω)

ˆ

Ω

|u(x)|p ln+
(

1
δx

)
dx ≤ c


¨

Ω×Ω

|x−y|<1

|u(x)−u(y)|p

|x− y|N
dydx+

ˆ

Ω

|u(x)|p dx

 . (5.1)

As we aim at giving an explicit estimate on the constants, we use the following notation

a∨b := max{a,b} for a,b ∈ R.

We note here that the proof is partially based on ideas from [2].

Proof. By decreasing j0 if needed, we may and do assume that C32 j0 < 1. Let m < j0 and let Qm ∈
Wm(Ω). Thenˆ

Qm

|u(x)|p dx =
1

|E(Qm, j)|

ˆ

E(Qm, j)

ˆ

Qm

|u(x)−u(y)+u(y)|p dxdy

≤ 2p−1 ∨1
|E(Qm, j)|

ˆ

E(Qm, j)

ˆ

Qm

|u(x)−u(y)|p dxdy+
(2p−1 ∨1)|Qm|
|E(Qm, j)|

ˆ

E(Qm, j)

|u(y)|p dy

≤
CN

3 (2
p−1 ∨1)
CN

1

ˆ

E(Qm, j)

ˆ

Qm

1|x−y|<C32 j
|u(x)−u(y)|p

|x− y|N
dxdy+

(2p−1 ∨1)2mN

CN
1 2 jN

ˆ

E(Qm, j)

|u(y)|p dy.

Summing over all j such that m < j ≤ j0 we obtain

( j0 −m)

ˆ

Qm

|u(x)|p dx ≤
CN

3 (2
p−1 ∨1)
CN

1

ˆ

Qm

ˆ

Ω∩B1(x)

|u(x)−u(y)|p

|x− y|N
dydx

+
2p−1 ∨1

CN
1

j0

∑
j=m+1

2(m− j)N
ˆ

E(Qm, j)

|u(y)|p dy.

We sum over all Qm and all m < j0, obtaining

∑
m< j0

∑
Qm

( j0 −m)

ˆ

Qm

|u(x)|p dx ≤
CN

3 (2
p−1 ∨1)
CN

1

ˆ

Ω

ˆ

Ω∩B1(x)

|u(x)−u(y)|p

|x− y|N
dydx

+
2p−1 ∨1

CN
1

∑
m< j0

∑
Qm

j0

∑
j=m+1

2(m− j)N
ˆ

E(Qm, j)

|u(y)|p dy

=: I +S.

Next, we rearrange the last sum S. To this end, we make the following observations.
First, if m < j0 and j ≤ j0, then by our first assumption

j+ log2C1 ≤ log2 ℓ(E(Qm, j)≤ j+ log2C2 ≤ j0 + log2C2,

that is, E(Qm, j) ∈ Wk(Ω) with k ≤ j0 + log2C2.
Next, a fixed cube R ∈ Wk(Ω) with k ≤ j0 + log2C2 is equal to E(Q, j) for some Q ∈ Wm(Ω) and

some j for at most C42λ (k−m) pairs (Q, j).
Finally, in the sum we take m < j, therefore if R ∈ Wk(Ω) and R = E(Q, j) with Q ∈ Wm(Ω), then

m < j ≤ k− log2C1.
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With these observations, we have

S ≤ 2p−1 ∨1
CN

1
∑

k≤ j0+log2 C2

∑
R∈Wk(Ω)

(
∑

m<k−log2 C1

C42(k−m)λ 2(m−k+log2 C2)N

)ˆ
R

|u(y)|p dy

≤
(2p−1 ∨1)C4CN

2

(1−2λ−N)CN−λ

1
∑

k≤ j0+log2 C2

∑
R∈Wk(Ω)

ˆ

R

|u(y)|p dy ≤
(2p−1 ∨1)C4CN

2

(1−2λ−N)CN−λ

1

ˆ

Ω∩{δy≤5C22 j0
√

N }

|u(y)|p dy

and we obtain

∑
m< j0

∑
Qm

( j0 −m)

ˆ

Qm

|u(x)|p dx ≤
CN

3 (2
p−1 ∨1)
CN

1

ˆ

Ω

ˆ

Ω∩B1(x)

|u(x)−u(y)|p

|x− y|N
dydx

+
(2p−1 ∨1)C4CN

2

(1−2λ−N)CN−λ

1

ˆ

Ω∩{δy≤5C22 j0
√

N }

|u(y)|p dy.

By the properties of Whitney cubes, if x ∈ Qm, then

δx ≥ 5diam(Qm),

therefore

ln
1
δx

≤ ln
1

5diam(Qm)
=− ln5−m ln2 ≤−m ln2.

Hence,ˆ

Ω

|u(x)|p ln+(
1
δx
)dx = ∑

m<0
∑

Q∈Wm(Ω)

ˆ

Q

|u(x)|p ln+(
1
δx
)dx ≤ ln2 ∑

m<0
∑

Q∈Wm(Ω)

(−m)

ˆ

Q∩{δx<1}

|u(x)|p dx

≤ ln2 ∑
m< j0

∑
Q∈Wm(Ω)

( j0 −m)

ˆ

Q

|u(x)|p dx+ ln2 ∑
m<0

∑
Q∈Wm(Ω)

(− j0)
ˆ

Q∩{δx<1}

|u(x)|p dx

≤
CN

3 (2
p−1 ∨1) ln2

CN
1

ˆ

Ω

ˆ

Ω∩B1(x)

|u(x)−u(y)|p

|x− y|N
dydx

+

(
(2p−1 ∨1)C4CN

2

(1−2λ−N)CN−λ

1

− j0

)
ln2

ˆ

Ω∩{δy≤5C22 j0
√

N ∨1}

|u(y)|p dy.

The claim follows. □

Remark 5.2. We note that in the proof of Theorem 5.1 if one wants to track the constant explicitly, one
should replace j0 above by

min{ j0,⌈− log2C3 −1⌉},
because of our initial assumption that C32 j0 < 1. Furthermore, perhaps after further decrease of j0, we
may assume that 5C22 j0

√
N < 1, which lets us to reduce the integration domain in

´
Ω
|u(x)|p dx on the

right side of (5.1) to a set {x ∈ Ω : δx < 1}.

5.2. Example: The half-space.

Proposition 5.3. A half-space Ω = RN
+ = {(x1, . . . ,xN) : xN > 0}, N ≥ 1, satisfies assumptions (i), (ii)

and (iii) of Theorem 5.1 with constants C1 =C2 =C4 = 1, C3 =
√

17N −1 , j0 = 0 and λ = N −1.

Proof. First we construct a possible Whitney decomposition of Ω. Let d ∈ Z be such that 2d ≤
√

N <
2d+1. As Wm(Ω) we take the collection of all dyadic cubes with side length 2m contained in a strip
{(x1, . . . ,xN) : 2m+d+1 ≤ xN ≤ 2m+d+2}. It is easy to check that the whole collection

⋃
m∈ZWm(Ω) is

a Whitney decomposition of Ω.
We take j0 := 0. Let k< j ≤ j0 and let Q∈Wk(Ω). Then Q=×N

i=1[2
kti,2k(ti+1)] for some t1, . . . , tN ∈

Z with 2k+d+1 ≤ 2ktN < 2k(tN + 1) ≤ 2k+d+2. As E(Q, j) we take the cube ×N
i=1[2

jτi,2 j(τi + 1)] from
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2−3

2−2

2−1

1

x2

x1

Q R
S T

E(Q,−3)

E(S,−3)

E(Q,−2)

E(S,−2)

E(Q,−1)

FIGURE 1. Some Whitney cubes Q, R, S, T ∈ W−4(R2
+), see proof of Proposition 5.3.

Here d = 0, so these cubes lie in a strip 2−3 ≤ x2 ≤ 2−2. We have E(Q, j) = E(R, j)
and E(S, j) = E(T, j) for j ∈ {−3,−2,−1,0} (depicted only for j = −3, j = −2 and
partially j =−1).

W j(Ω) such that the (N−1) dimensional cube ×N−1
i=1 [2 jτi,2 j(τi+1)] contains ×N−1

i=1 [2kti,2k(τ j +1)] and
that τN = tN , see Figure 1.

Since E(Q, j) ∈ W j(Ω), condition (i) holds with C1 =C2 = 1.
To verify condition (ii), take x ∈ Q and y ∈ E(Q, j). Then by the choice of E(Q, j), both points

(x1, . . . ,xN−1) and (y1, . . . ,yN−1) lie in the same (N −1)-dimensional cube of side length 2 j. Therefore,

∥(x1, . . . ,xN−1)− (y1, . . . ,yN−1)∥ ≤ 2 j√N −1 .

Furthermore, xN ,yN ∈ (0,2 j+d+2], hence |xN − yN | ≤ 2 j+d+2. This gives us a bound

∥x− y∥ ≤ 2 j
√

N −1+22d+4 ≤ 2 j√17N −1 ,

hence (ii) follows with C3 =
√

17N −1 or, in fact, even with C3 =
√

N −1+22d+4 .
Finally, to verify (iii), let Q0 ∈ Wn(Ω) and let Q ∈ Wm(Ω) be such that E(Q, j) = Q0. By our con-

struction of E(Q, j), this is only possible for j = n and m < n. Therefore for m ≥ n the collection in
(iii) is empty, hence there is nothing to prove, and consequently, we may assume that m < n. We note
that the last coordinate of the vertices of E(Q, j) is uniquely determined by Q, and vice versa, by the
choice τN = tN . Therefore the number of cubes in (iii) is the number of dyadic (N − 1)-dimensional
cubes of side length 2m contained in a fixed dyadic (N − 1)-dimensional cubes of side length 2 j = 2n.
This number equals 2(N−1)(n−m), hence (iii) holds with C4 = 1 and λ = N −1. □

Corollary 5.4. Let 0 < p < ∞. Then for every u ∈ Lp(RN
+)ˆ

RN
+

|u(x)|p ln+
(

1
xN

)
dx ≤ c1(p,N)

¨

RN
+×RN

+
|x−y|<1

|u(x)−u(y)|p

|x− y|N
dydx+ c2(p,N)

ˆ

{xN<1}

|u(x)|p dx

with2

c1(p,N) = (17N −1)N/2(2p−1 ∨1) ln2,

c2(p,N) =

(
(2p ∨2)+1+ ⌊ log2(17N −1)

2
⌋
)

ln2.

2Here, ⌊x⌋ denotes as usual the largest integer n such that n ≤ x.
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In the one or two-dimensional case, we may take

c1(p,1)= 4(2p−1∨1) ln2 , c1(p,2)= 17(2p−1∨1) ln2 and c2(p,1)= c2(p,2)= ((2p ∨2)+3) ln2;

in particular, c1(2,1)< 6, c1(2,2)< 24 and c2(2,1) = c2(2,2)< 5.

Proof. The first part follows from Theorem 5.1 and Proposition 5.3 together with Remark 5.2; for the
integration domain {xN < 1}, this is because of Remark 5.2 together with inequality 5C22 j0 ≤ 5/8 <
1. For the constants for N ∈ {1,2} we use the fact that in Proposition 5.3 we may in fact take C3 =√

N −1+22d+4 , where d = 0 for N ≤ 2, thus giving C3 = 4 or C3 =
√

17 for N = 1 or 2, respectively,
and (modified) j0 =−3 for N ≤ 2. □

5.3. Sufficient conditions for logarithmic boundary Hardy inequality. As we will show in this sub-
section, in Corollary 5.10 below, for inequality (5.1) to hold it is enough for the open set Ω to be locally
plump in the sense of the following definition.

Definition 5.5. A set A ⊂ RN is locally κ-plump with κ ∈ (0,1) if, for each 0 < r < 1 and each x ∈ Ā,
there is z ∈ B̄r(x) such that Bκr(z) ⊂ A. We also say that A is locally plump, if there is some κ ∈ (0,1)
such that A is locally κ-plump.

In the usual definition of plumpness, the same is asserted for 0 < r < diam(A) instead of 0 < r < 1 in
our definition. This makes a difference for unbounded sets only. For example, an infinite strip is locally
plump, but not plump.

The following lemma is the main tool in this subsection.

Lemma 5.6. Assume that an open set Ω ⊂RN , Ω ̸=RN is locally κ-plump. Let n ∈ Z and R > 0 satisfy
0 < 2n ≤ R < 4. Then for every ω ∈ ∂Ω,

#{Q ∈ Wn(Ω) : Q ⊂ BR(ω)} ≤C
(

R
2n

)λ

,

with constants λ < N and C depending only on N and κ .

We note that if Ω is plump, then ∂Ω is porous and hence the (upper) Assouad dimension of ∂Ω is
strictly smaller than N, see [44, Theorem 5.2]. The latter in turn implies condition (T1) on [24, page 685].
This allows one to use [24, Lemma 10], which is very similar to our Lemma 5.6. However, going that
route would require checking what changes when one replaces plumpness by local plumpness, which
we assume, and also checking if different versions of definitions are compatible. Therefore, we prefer
to keep this subsection self-contained and prove Lemma 5.6 directly. To this end we need the following
two simple lemmas. The proof of the first one resembles a part of the proof of [44, Theorem 5.2].

Lemma 5.7. Assume that an open set Ω ⊂ RN , Ω ̸= RN is locally κ-plump. Then there exists a natural
number K = K(N,κ) with the following property: for any cube Q ∈ Dm with m ≤ 1, there exists a cube
R ∈ Dm−K , R ⊂ Q which does not contain any Whitney cube.

Proof. We will show that K such that 2K > 2(5
√

N /κ +2) satisfies the property in the Lemma. To this
end, let us fix an arbitrary integer m ≤ 1 and an arbitrary cube Q ∈ Dm. Let z0 ∈ Q be the centre of the
cube Q and let S ∈ Dm−K be a cube containing z0. If S∩Ω = /0, then we may take R = S and we are
done. In the other case, choose a point x ∈ S∩Ω, take r = 2m−1 − 2m−K+1 and consider a ball B(x,r).
Since 0 < r < 1, by local plumpness it follows that there exists a point y ∈ Br(x) such that Bκr(y)⊂ Ω.
Let T be a Whitney cube containing y.

First, we claim that ℓ(T )> 2m−K . Indeed, since T contains a point y with δy ≥ κr, it holds

κr ≤ δy ≤ dist(T,∂Ω)+diam(T )≤ 5diam(T ),

therefore diam(T )≥ κr/5, and ℓ(T )≥ κr
5
√

N
> 2m−K by our choice of r and K.

Furthermore, we note that Br(x)⊂ intQ, because x and z0 lie both in a cube S with ℓ(S) = 2m−K and
r+ ℓ(S) = 2m−1 −2m−K < ℓ(Q)/2. Therefore y ∈ intQ and hence all dyadic cubes of side length 2m−K

containing y lie inside Q (usually there is just one such cube, unless y lies on their boundary). As R we
take one of these cubes that is contained in T and the lemma follows. □
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Lemma 5.8. Assume that an open set Ω ⊂ RN , Ω ̸= RN is locally κ-plump. There exists a constant
0 < λ < N depending only on N and κ , with the following property: for all cubes Q ∈ Dm with m ≤ 1
and all s ∈ {0,1, . . .},

#{S ∈ Wm−Ks(Ω) : S ⊂ Q} ≤ 2Ksλ ,

where K is as in Lemma 5.7.

Proof. Let λ be such that (2KN −1)1/K = 2λ ; clearly, 0 < λ < N. Let us fix s ≥ 0 and put

Fm−K j = {S ∈ Dm−K j : R ⊂ S ⊂ Q for some R ∈ Wm−Ks(Ω).}.
We will prove the following bound

#Fm−K j ≤ 2K jλ , j = 0,1, . . . ,s; (5.2)

using induction by j. For j = 0 inequality (5.2) holds trivially, as Fm may contain at most one cube,
namely Q. Assume that #Fm−K j ≤ 2K jλ for some j ≥ 0 and j < s. Let S ∈ Fm−K j. We decompose S
into a union of 2KN dyadic cubes from Dm−K( j+1). By Lemma 5.7, at least one of those cubes contains
no Whitney cubes with side length 2m−Ks. Therefore Fm−K( j+1) has at most 2KN −1 = 2λK times more
elements than Fm−K j, which ends the proof of the induction step.

The Lemma follows from (5.2) with j = s. □

Proof of Lemma 5.6. Let K be as in Lemma 5.7 and λ as in Lemma 5.8. Let ω ∈ ∂Ω. Let n ∈ Z and
R > 0 satisfy 0 < 2n ≤ R < 4. We choose s ∈ {0,1, . . .} such that

2n+sK ≤ R < 2n+sK+K

and put m = n+ sK. We define

F = {Q ∈ Dm : Q∩BR(ω) ̸= /0},
i.e., F is the minimal collection of dyadic cubes from Dm that covers BR(ω). Since 2R

2m < 2K+1, it
follows that #F ≤ (2K+1 +1)N .

To each cube from the collection F we apply Lemma 5.8 (here we use the assumption R < 4, which
implies m ≤ 1). We conclude that each such a cube contains at most 2sKλ Whitney cubes from Wm−sK =
Wn. Therefore

#{Q ∈ Wm(Ω) : Q ⊂ BR(ω)} ≤ #F ·2sKλ ≤ (2K+1 +1)N
(

R
2n

)λ

. □

Proposition 5.9. If an open set Ω ⊂RN is locally κ-plump, then it satisfies the assumptions (i), (ii), and
(iii) of Theorem 5.1.

Proof. We take an integer j0 ≤ 0 such that (17
√

N + 1)2 j0 < 4. Let Q ∈ Wk(Ω) with k < j0 and let j
be such that k < j ≤ j0. By our assumption on j0, we have 2 j

√
N ≤ 2 j0

√
N < 1. Therefore by local

plumpness condition with r = 2 j
√

N and x0 ∈ Q such that dist(x0,∂Ω) = dist(Q,∂Ω), there exists a ball
Bκr(z)⊂ Ω with z ∈ B̄r(x0). As E(Q, j) we select any Whitney cube Q̃ containing z (usually such a cube
is unique, unless z lies at the boundary of Whitney cubes). Observe that

κr ≤ dist(z,∂Ω)≤ 5diam(Q̃),

and
diam(Q̃)≤ dist(z,∂Ω)≤ r+dist(x0,∂Ω)≤ r+4

√
N 2k ≤ 3r,

therefore κr
5 ≤ diam(Q̃)≤ 3r. Hence (i) holds with C1 =

κ

5 and C2 = 3.
By triangle inequality, we observe that for all x ∈ Q and y ∈ E(Q, j) it holds

|x− y| ≤ diam(Q)+ |x0 − z|+diam(Q̃)< r+ r+3r = 5r.

Therefore (ii) holds with C3 = 5
√

N .
Finally, to verify (iii), let us fix a cube Q0 ∈ Wn(Ω) and let m ∈ Z. If Q0 = E(Q, j) for some Q ∈

Wm(Ω) and some j > m, then
2n = ℓ(Q0)≥C12 j ≥C12m+1,

hence m≤ n−1−log2C1. In other words, if m> n−1−log2C1, then the set {(Q, j) : Q∈Wm(Ω) and E(Q, j)=
Q0} is empty. Therefore we may assume that m ≤ n−1− log2C1.
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Let us consider some j > m and suppose that E(Q, j) = Q0 for some Q ∈ Wm(Ω). Let ω ∈ ∂Ω be
such that dist(ω,Q0) = dist(Q0,∂Ω). Then for all x ∈ Q, by triangle inequality

|ω − x| ≤ dist(ω,Q0)+C32 j ≤ 4diam(Q0)+C32 j ≤ (4C2
√

N +C3)2 j,

which means that Q ⊂ BR(ω) with R = (4C2
√

N +C3 +1)2 j. Therefore, by Lemma 5.6 (note that our
assumption on j0 implies that R < 4), the number of such cubes Q cannot exceed

CA(14
√

N )N+λ

(
R
2m

)λ

=CA(14
√

N )N+λ (4C2
√

N +C3 +1)λ 2( j−m)λ .

On the other hand,
2n = ℓ(Q0) = ℓ(E(Q, j))≥C12 j,

so m < j ≤ n− log2C1. Hence, the number of pairs (Q, j) in question cannot exceed

∑
j∈Z:m< j≤n−log2 C1

CA(14
√

N )N+λ (4C2
√

N +C3 +1)λ 2( j−m)λ

≤CA(14
√

N )N+λ (4C2
√

N +C3 +1)λ
C−λ

1

1−2−λ
2(n−m)λ .

So also (iii) holds with C4 =CA(14
√

N )N+λ (4C2
√

N +C3 +1)λ C−λ

1
1−2−λ

. □

Theorem 1.2 follows immediately as a special case from the following.

Corollary 5.10. Let Ω ⊂RN , Ω ̸=RN be an open, locally plump set. In particular, Ω may be a Lipschitz
set (bounded or not). Let 0 < p < ∞. Then there is c > 0 such that for every u ∈ Lp(Ω) inequality (5.1)
holds.

Proof. The corollary follows by combining Theorem 5.1 and Proposition 5.9, noting that Lipschitz sets
are also locally plump. □

5.4. Applications.

Corollary 5.11. Let Ω be an open bounded Lipschitz subset of RN . Then there exists a positive constant
C =C(p,Ω) such that for all u ∈C∞

c (Ω) we haveˆ

Ω

|u(x)|pkΩ(x)dx ≤C
¨

x,y∈Ω

|x−y|<1

|u(x)−u(y)|p

|x− y|N
dxdy+C

ˆ

Ω

|u(x)|p dx,

where kΩ(x) =
´
RN\Ω

k(x− y)dy is the killing measure associated to the kernel k.

Proof. It follows from Corollary 5.10 and the following estimate of the killing measure kΩ for bounded
Lipschitz set Ω:

kΩ(x)≤C+C ln+
(

1
δ (x)

)
, for a constant C > 0 and x ∈ Ω.

□

Corollary 5.12. Let Ω ⊂ RN be a nonempty, open, locally plump set. Let u ∈ Lp(Ω) be a function
satisfying ¨

Ω×Ω

|x−y|<1

|u(x)−u(y)|p

|x− y|N
dxdy < ∞.

Then the trivial extension ũ : RN → R of u belongs to X p
0 (Ω) and there is C > 0 such that

∥u∥X p
0 (Ω) ≤C

∥u∥Lp(Ω)+

¨

Ω×Ω

|x−y|<1

|u(x)−u(y)|p

|x− y|N
dxdy

 .
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Proof. By symmetry it holds

[u]X p
0 (Ω) =CN,p

¨

Ω×Ω

|x−y|<1

|u(x)−u(y)|p

|x− y|N
dxdy+2CN,p

ˆ

Ω

|u(x)|p
ˆ

RN\Ω

1B1(x)(y)|x− y|−N dydx.

As calculated in [14, equation (3.6)], it holdsˆ

RN\Ω

1B1(x)(y)|x− y|−N dy ≤ 2ln(δ−1
x ) for x ∈ Ω with δx < 1 (5.3)

In particular, there is C > 0 such that
ˆ

Ω

|u(x)|p
ˆ

RN\Ω

1B1(x)(y)|x− y|−N dydx ≤C

∥u∥p
Lp(Ω)+

ˆ

Ω

|u(x)|p ln+
(

1
δx

)
dx

 .

The claim follows from here using Corollary 5.10. □

Remark 5.13. Let us mention that if Ω is a bounded open Lipschitz set, then in particular Ω satisfies the
assumptions of Corollaries 5.10 and 5.12. Moreover, inequality (5.3) also holds reversed with a suitable
constant, that is,

´
RN\Ω

1B1(x)(y)|x− y|−N dy is comparable to ln(δ−1
x ) for x ∈ B1(∂Ω)∩Ω.

The next result connects the density result by Proposition 4.3 with a density of a seemingly different
norm in connection with Theorem 5.1.

Corollary 5.14. Let Ω ⊂ RN be an open bounded Lipschitz set. Then X p
0 (Ω) coincides with the closure

of C∞
c (Ω) with respect to the norm

∥u∥X p(Ω) =


ˆ

Ω

|u(x)|p dx+
¨

Ω×Ω

|x−y|<1

|u(x)−u(y)|p

|x− y|N
dxdy


1
p

.

Proof. By the fact that
´
RN\Ω

1B1(x)(y)|x− y|−N dy and ln(δ−1
x ) for x ∈ B1(∂Ω)∩Ω are comparable in

B1(∂Ω)∩Ω, see Remark 5.13 or [14, equations (3.6) and (3.7)], it follows that ∥ · ∥X p(Ω) and ∥ · ∥X p
0 (Ω)

are equivalent due to Corollary 5.10 with a similar calculation as in the proof of Corollary 5.12. This
finishes the proof. □

Remark 5.15. Corollaries 5.12 and 5.14 should be seen as an analog to the fact that W s,p
0 (Ω), W s,p(Ω),

and W s,p
0 (Ω) coincide for sp < 1. For the definition of these function spaces, see Section 2.2.

6. THE DIRICHLET PROBLEM

Throughout this section, we assume Ω ⊂ RN is an open bounded set and 1 < p < ∞. Recall

V (Ω,RN) =

u ∈ Lp
0 ∩Lmin{1,p−1}

0 :
ˆ

Ω

ˆ

RN

|u(x)−u(y)|pk(x− y)dxdy < ∞

 .

The space V (Ω,RN) is used to define supersolutions in the weak setting and uses that supersolutions
must satisfy a certain minimal regularity across the boundary of Ω, so that X p

0 (Ω) can be used as a test-
function space. For the definition of the tail spaces Lp

0 , Lp−1
0 , and L1

0 see (2.1). We begin by showing
that EL,p is well-defined on V (Ω,RN)×X p

0 (Ω).

Lemma 6.1. Let u ∈V (Ω,RN) and v ∈ X p
0 (Ω). Then EL,p(u,v) is well-defined and finite.

Proof. Note that u ∈ Lp
loc(R

N) by assumption and u ∈ Lt
0 for any t ∈ [1, p], see Lemma 3.5. Thus, it

holds ˆ

RN

|g(u(x))v(x)|dx =
ˆ

Ω

|g(u(x))v(x)|dx ≤ ∥u∥p−1
Lp(Ω)∥v∥Lp(Ω),
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which bounds the last term in EL,p(u,v). For Fp(u,v) note that¨

RN×RN

∣∣∣g(u(x)−u(y))(v(x)− v(y))−g(u(x))v(x)−g(u(y))v(y))
∣∣∣j(x− y)dxdy

≤
¨

Ω×Ω

∣∣∣g(u(x)−u(y))(v(x)− v(y))
∣∣∣j(x− y)dxdy+2CN,p|Ω|∥u∥p−1

Lp(Ω)∥v∥Lp(Ω)

+2
ˆ

Ω

ˆ

RN\Ω

∣∣∣g(u(x)−u(y))−g(u(x))
∣∣∣|v(x)|j(x− y)dydx.

Here, the first term can be bounded by¨

Ω×Ω

∣∣∣g(u(x)−u(y))(v(x)− v(y))
∣∣∣j(x− y)dxdy

≤

 ¨
Ω×Ω

|u(x)−u(y)|pj(x− y)dxdy


p−1

p
 ¨

Ω×Ω

|v(x)− v(y)|pj(x− y)dxdy

 1
p

,

where the right-hand side is finite since¨

Ω×Ω

|w(x)−w(y)|pj(x− y)dxdy ≤ 2pCN,p|Ω|∥w∥p
Lp(Ω)

for w = u or w = v. For the last term in Fp(u,v) we have to separately consider p ∈ (1,2] and p > 2.
Case 1: p ∈ (1,2]. By Lemma 2.1 we have, for a constant c = c(p)> 0,

|g(a−b)−g(a)| ≤ c|b|p−1 for all a,b ∈ R.

Thus,ˆ

Ω

ˆ

RN\Ω

∣∣∣g(u(x)−u(y))−g(u(x))
∣∣∣|v(x)|j(x− y)dydx ≤ cp

ˆ

Ω

|v(x)|
ˆ

RN\Ω

|u(y)|p−1j(x− y)dydx

≤ c̃∥v∥Lp(Ω)∥u∥p−1
Lp−1

0
,

for a constant c̃ = c̃(p, |Ω|,N)> 0.
Case 2: p > 2. By Lemmas 2.1 and 2.2 we have, for a constant c = c(p)> 0

|g(a−b)−g(a)| ≤ c|b|(|b|p−2 + |a|p−2) for all a,b ∈ R.

Thus, in a similar way,ˆ

Ω

ˆ

RN\Ω

∣∣∣g(u(x)−u(y))−g(u(x))
∣∣∣|v(x)|j(x− y)dydx

≤ c
ˆ

Ω

ˆ

RN\Ω

|u(y)|p−1|v(x)|j(x− y)dydx+ c
ˆ

Ω

ˆ

RN\Ω

|u(x)|p−2|v(x)||u(y)|j(x− y)dydx

≤ c̃∥v∥Lp(Ω)∥u∥p−1
Lp−1

0
+ c̃∥u∥p−2

Lp−1(Ω)
∥v∥Lp(Ω)∥u∥L1

0

for some constant c̃ = c̃(p, |Ω|,N)> 0. It remains to bound Ep(u,v). Using again that v = 0 on RN \Ω,
we have¨

RN×RN

|x−y|≤1

|u(x)−u(y)|p−1|v(x)− v(y)|
|x− y|N

dxdy ≤ 2
ˆ

Ω

ˆ

B1(x)

|u(x)−u(y)|p−1|v(x)− v(y)|
|x− y|N

dxdy
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≤ 2

(ˆ
Ω

ˆ

B1(x)

|u(x)−u(y)|p

|x− y|N
dxdy

)p−1

Ep(v,v)
1
p < ∞

and thus EL,p(u,v) is well-defined and finite. □

Next, we show an alternative representation of EL,p as in Proposition 4.5, where one function is
allowed to be in V (Ω,RN).

Proposition 6.2. Let 1 < p < ∞ and let Ω be a bounded open subset of RN and u ∈ V (Ω,RN) and
v ∈ X p

0 (Ω). Then we have

EL,p(u,v) =
CN,p

2

¨

Ω×Ω

g(u(x)−u(y))(v(x)− v(y))
|x− y|N

dxdy+
ˆ

Ω

(
ρN(p)+hΩ(x)

)
g(u(x))v(x)dx

+CN,p

ˆ

Ω

v(x)
ˆ

RN\Ω

g(u(x)−u(y))−g(u(x))
|x− y|N

dydx.

Proof. Since v ∈ X p
0 (Ω), we have

Ep(u,v) =
CN,p

2

¨

x,y∈Ω

|x−y|<1

g(u(x)−u(y))(v(x)− v(y))
|x− y|N

dxdy+CN,p

ˆ

Ω

v(x)

 ˆ

B1(x)\Ω

g(u(x)−u(y))
|x− y|N

dy

dx

and

Fp(u,v) =
CN,p

2

¨

x,y∈Ω

|x−y|>1

g(u(x)−u(y))(v(x)− v(y))−g(u(x))v(x)−g(u(y))v(y)
|x− y|N

dxdy

+CN,p

ˆ

Ω

v(x)

 ˆ

(RN\B1(x))\Ω

g(u(x)−u(y))−g(u(x))
|x− y|N

dy

dx.

Now, we can split in the above the first integral by using the fact the domain Ω is bounded and thus we
get

Fp(u,v) =
CN,p

2

¨

x,y∈Ω

|x−y|>1

g(u(x)−u(y))(v(x)− v(y))
|x− y|N

dxdy−CN,p

ˆ

Ω

g(u(x))v(x)

 ˆ

Ω\B1(x)

dy
|x− y|N

dx

+CN,p

ˆ

Ω

v(x)

 ˆ

RN\(B1(x)∪Ω)

g(u(x)−u(y))−g(u(x))
|x− y|N

dy

dx.

Therefore, by definition of EL,p, we get the desired result. □

Remark 6.3. Let u ∈V (Ω,RN), where Ω is a bounded open set. Then by Remark 5.13 and Proposition
4.1 we immediately have that u1Ω belongs to X p

0 (Ω).

Definition 6.4. Given f ∈ L
p

p−1 (Ω) a function u ∈V (Ω,RN) is called a supersolution of L∆pu = f in Ω,
if

EL,p(u,v)≥
ˆ

Ω

f vdx for all nonnegative v ∈ X p
0 (Ω),

where EL,p is given in (4.2). We call u a subsolution of L∆pu = f if −u is a supersolution of this equation.
A super- and subsolution is called a solution. We also say u satisfies weakly L∆pu ≥ f in Ω if u is a
supersolution (resp. ≤ and = for subsolutions and solutions).
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Lemma 6.5. Let Ω ⊂ RN be a bounded open set. Let f ∈ L
p

p−1 (Ω) and let u ∈V (Ω,RN) satisfy weakly
L∆pu ≥ f in Ω. Then the function v = 1Ωu belongs to X p

0 (Ω) and satisfies weakly3

L∆pv ≥ f −CN,p

ˆ

RN\Ω

g(v(x)−u(y))−g(v(x))
|x− y|N

dy in Ω.

Proof. By Remark 6.3 it follows that v ∈ X p
0 (Ω). Moreover, with Proposition 6.2 we have for any

nonnegative ϕ ∈ X p
0 (Ω):ˆ

Ω

f (x)ϕ(x)dx ≤ EL,p(u,ϕ)

=
CN,p

2

¨

Ω×Ω

g(v(x)− v(y))(ϕ(x)−ϕ(y))
|x− y|N

dxdy+
ˆ

Ω

(
ρN(p)+hΩ(x)

)
g(v(x))ϕ(x)dx

+CN,p

ˆ

Ω

ϕ(x)
ˆ

RN\Ω

g(v(x)−u(y))−g(v(x))
|x− y|N

dydx

= EL,p(v,ϕ)+CN,p

ˆ

Ω

ϕ(x)
ˆ

RN\Ω

g(v(x)−u(y))−g(v(x))
|x− y|N

dydx.

The claim follows from here. □

Lemma 6.6 (Scaling behavior of solutions). Let f ∈ L
p

p−1 (Ω) and let u ∈V (Ω,RN) be a supersolution
of L∆pu = f in Ω. Then the function ur : RN → R, ur(x) = u(x/r) for r > 0 belongs to V (rΩ,RN) and is
a supersolution of L∆pur = fr − p ln(r)g(v) in rΩ, where fr(x) = f (x/r).

Proof. Let r > 0. By substitution we haveˆ

rΩ

ˆ

B1(y)

|u(x/r)−u(y/r)|p

|x− y|N
dxdy =

ˆ

Ω

ˆ

B1(rỹ)

|u(x/r)−u(ỹ)|p

|x− rỹ|N
rN dxdỹ

=

ˆ

Ω

ˆ

rB1/r(y)

|u(x/r)−u(ỹ)|p

|x− rỹ|N
rN dxdỹ

= rN
ˆ

Ω

ˆ

B1/r(ỹ)

|u(x̃)−u(ỹ)|p

|x̃− ỹ|N
dxdỹ

If r ≥ 1, then ˆ

rΩ

ˆ

B1(y)

|u(x/r)−u(y/r)|p

|x− y|N
dxdy ≤ rN

ˆ

Ω

ˆ

B1(y)

|u(x)−u(y)|p

|x− y|N
dxdy < ∞,

and if r < 1, note thatˆ

Ω

ˆ

B1/r(y)\B1(y)

|u(x)−u(y)|p

|x− y|N
dxdy ≤

ˆ

Ω

ˆ

B1/r(y)\B1(y)

|u(x)−u(y)|p dxdy < ∞,

since u ∈ Lp
loc(R

N). This shows ur ∈V (rΩ,RN). Next, note that differently to the linear case, we cannot
argue with Lemma 4.3, Proposition 4.4, and Lemma 3.1(2) due to the nonlinearity. Let ϕ ∈ X(rΩ)
be a nonnegative function and note that ψ : RN → R, ψ(x) = rNϕ(rx) belongs to X(Ω) with a similar
argument as above and it is also nonnegative. Thenˆ

rΩ

fr(x)ϕ(x)dx =
ˆ

Ω

f (x)ψ(x)dx (6.1)

3We emphasize that the right-hand side does in general not belong to L
p

p−1 (Ω), but it belongs to the dual of X p
0 (Ω) and the

inequality is to be understood with the usual generalization of weak solutions for the right-hand side.
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and similarly ˆ

RN

g(ur(x))ϕ(x)dx =
ˆ

RN

g(u(x))ψ(x)dx. (6.2)

Moreover,

Ep(ur,ϕ) =
1
2

¨

RN×RN

(g(u(x))−g(u(y)))(ψ(x)−ψ(y))rNk(r(x− y))dxdy

and

Fp(ur,ϕ) =
1
2

¨

RN×RN

(
g(u(x)−u(y))(ψ(x)−ψ(y))−g(u(x))ψ(x)−g(u(y))ψ(y)

)
rNj(r(x− y))dxdy.

Since
rNk(rz)

CN,p
= 1B 1

r
(z)|z|−N and

rNj(rz)
CN,p

= 1Bc
1
r
(z)|z|−N

we may proceed as follows. If r ∈ (0,1), then

rNk(rz) = k(z)+CN,p1[B 1
r
\B1](z)|z|

−N and rNj(rz) = j(z)−CN,p1[B 1
r
\B1](z)|z|

−N

and, using the symmetry of j,

Ep(ur,ϕ)+Fp(ur,ϕ) = Ep(u,ψ)+Fp(u,ψ)+CN,p

ˆ

RN

g(u(x))ψ(x)
ˆ

B 1
r
(x)\B1(x)

|x− y|−N dydx

= Ep(u,ψ)+Fp(u,ψ)−CN,pωN ln(r)
ˆ

RN

g(u(x))ψ(x)dx,

Thus, with (6.1), (6.2), and using that CN,pωN = p,

EL∆p
(ur,ϕ) = EL∆p

(u,ψ)−CN,pωN

ˆ

RN

ln(r)g(u(x))ψ(x)dx

≥
ˆ

RN

f (x)ψ(x)− p ln(r)g(u(x))ψ(x)dx

=

ˆ

RN

(
fr(x)− p ln(r)g(ur(x))

)
ϕ(x)dx

as claimed. The case r > 1 follows similarly. □

6.1. On L∞ bounds.

Theorem 6.7. Let A,B > 0 and assume u ∈V (Ω,RN) satisfies

EL,p(u,v)≤
ˆ

Ω

(A+B|u|p−1)vdx for all v ∈ X p
0 (Ω).

If u+ ∈ L∞(B1(Ω)\Ω), then u+ ∈ L∞(Ω). More precisely, there is C =C(N, p,Ω,B)> 0 such that

If p ∈ (1,2], we have

∥u+∥L∞(Ω) ≤C
(

A
1

p−1 +∥u∥L∞(B1(Ω)\Ω)+∥u∥Lp(Ω)+∥u∥Lp−1
0

)
;

If p > 2, we have

∥u+∥L∞(Ω) ≤C
(

1+A+∥u+∥L∞(B1(Ω)\Ω)+∥u∥Lp(Ω)+∥u∥L1
0
+∥u∥Lp−1

0

)
.
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Remark 6.8. By definition, it follows that the assumption in Theorem 6.7 implies that u satisfies weakly

L∆pu ≤ A+B|u|p−1 in Ω.

In particular, Theorem 6.7 holds for any function u ∈V (Ω,RN) which satisfies weakly

L∆pu ≤ A+Bg(u) in Ω, u ≤ 0 in RN \Ω

for some constants A,B > 0.

Proof of Theorem 6.7. We begin by estimating Fp(u,v), where v ∈ X p
0 (Ω) is a nonnegative function.

By symmetry it holds

Fp(u,v) =
1
2

¨

Ω×Ω

(
g(u(x)−u(y))(v(x)− v(y))−g(u(x))v(x)−g(u(y))v(y)

)
j(x− y)dxdy

+

ˆ

Ω

ˆ

RN\Ω

(
g(u(x)−u(y))(v(x)− v(y))−g(u(y))v(y)

)
j(x− y)dxdy

=

ˆ

RN

ˆ

Ω

(
g(u(x)−u(y))−g(u(x))

)
v(x)j(x− y)dxdy. (6.3)

Consider next w = ϕu, where ϕ ∈ C∞
c (RN) is such that ϕ = 1 in B1/2(Ω) and ϕ = 0 on RN \B1(Ω).

Then, for v ∈ X p
0 (Ω), v ≥ 0 we have, using the fact that suppk ⊂ B1(0),

Ep(u,v) = Ep(w+(1−ϕ)u,v)

=
1
2

ˆ

B1(Ω)

ˆ

B1(Ω)

g(w(x)−w(y))(v(x)− v(y))k(x− y)dxdy

+

ˆ

RN\B1(Ω)

ˆ

Ω

g(w(x)−w(y)− (1−ϕ(y))u(y))v(x)k(x− y)dxdy

=
1
2

ˆ

B1(Ω)

ˆ

B1(Ω)

g(w(x)−w(y))(v(x)− v(y))k(x− y)dxdy = Ep(w,v).

From here, we split k into

kδ (z) = 1Bδ
(z)|z|−N and qδ (z) = 1B1\Bδ

(z)|z|−N ,

where δ ∈ (0,1) is such that
∥qδ∥L1(RN) ≥ B+ |ρN(p)|+1.

We write Ep(w,v) = Eδ (w,v)+Gδ (w,v) where

Eδ (w,v) =
1
2

¨

RN×RN

g(w(x)−w(y))(v(x)− v(y))kδ (x− y)dxdy and

Gδ (w,v) =
1
2

¨

RN×RN

g(w(x)−w(y))(v(x)− v(y))qδ (x− y)dxdy

=

ˆ

RN

ˆ

Ω

g(w(x)−w(y))v(x)qδ (x− y)dxdy

Then ˆ

Ω

(A+B|u|p−1)vdx =
ˆ

Ω

(A+B|w|p−1)vdx ≥ EL,p(w+(1−ϕ)u,v)

= Eδ (w,v)+Gδ (w,v)+Fp(u,v)+ρN(p)
ˆ

Ω

g(w(x))v(x)dx.
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So after rearranging and using (6.3) we have

Eδ (w,v)≤
ˆ

Ω

(A+(B+ |ρN(p)|)|u|p−1)vdx−Gδ (w,v)−Fp(u,v)

=

ˆ

Ω

(
A+(B+ |ρN(p)|)|w(x)|p−1 −∥qδ∥L1(RN)g(w(x))

)
v(x)dx

−
ˆ

RN

ˆ

Ω

(
g(w(x)−w(y))−g(w(x)))v(x)qδ (x− y)dxdy

−
ˆ

RN

ˆ

Ω

(
g(w(x)−u(y))−g(w(x))

)
v(x)j(x− y)dxdy, (6.4)

noting that u(x) = w(x) for x ∈ Ω. Next, we choose as a testfunction v = vt = (w− t)+, where

t ≥ ∥u+∥L∞(B1(Ω)\Ω)

is to be chosen. Note that v ∈ X p
0 (Ω) by Remark 6.3 using that v1Ω = v for any such t. Notice that w ≥ t

in suppvt and we have

Eδ (w,vt) = Eδ (vt ,vt)

+
1
2

¨

RN×RN

(
g(w(x)−w(y))−g(vt(x)− vt(y))

)
(vt(x)− vt(y))kδ (x− y)dxdy. (6.5)

Note that with

Q(x,y) = (p−1)

1ˆ

0

∣∣∣vt(x)− vt(y)+ τ

(
w(x)−w(y)− vt(x)+ vt(y)

)∣∣∣p−2
dτ

we have

(g(w(x)−w(y))−g(vt(x)− vt(y)))(vt(x)− vt(y))

= Q(x,y)
(

w(x)−w(y)− vt(x)+ vt(y)
)
(vt(x)− vt(y))

=−Q(x,y)((w(x)− t)−− (w(y)− t)−)(vt(x)− vt(y))

=−Q(x,y)
(
− (w(x)− t)−(x)vt(y)− (w(y)− t)−vt(x)

)
≥ 0.

Thus, by the Poincaré inequality, Proposition 4.1, we have for some C > 0 (depending also on δ ) com-
bined with (6.5) and (6.4)

0 ≤C∥vt∥p
Lp(Ω) ≤ Eδ (vt ,vt)≤ Eδ (w,vt)

≤
ˆ

Ω

(
A−wp−1(x)

)
vt(x)dx−

ˆ

RN

ˆ

Ω

(
g(w(x)−w(y))−wp−1(x)

)
vt(x)qδ (x− y)dxdy

(6.6)

−
ˆ

RN

ˆ

Ω

(
g(w(x)−u(y))−g(w(x))

)
vt(x)j(x− y)dxdy.

We discuss now separately the cases p ∈ (1,2] and p > 2.
Case 1: p ∈ (1,2]. By Lemma 2.1 there is c = c(p)> 0 such that

g(a−b)−g(a)≥−c|b|p−1 for all a,b ∈ R.

With this, we have from (6.6)

C∥vt∥p
Lp(Ω) ≤

ˆ

Ω

(
A−wp−1(x)

)
vt(x)dx
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+ c
ˆ

Ω

vt(x)

( ˆ
RN

|w(y)|p−1qδ (x− y)dy+ |u(y)|p−1j(x− y)dy

)
dx

≤
ˆ

Ω

(
A−wp−1(x)

)
vt(x)dx

+ c
ˆ

Ω

vt(x)

(
∥w∥p−1

Lp(RN)
∥qδ∥Lp(RN)+ c̃∥u∥p−1

Lp−1
0

)
dx

for a constant c̃ > 0 independent of u. Now, choose t ≥ ∥u+∥L∞(B1(Ω)\Ω) such that also

A+ c∥w∥p−1
Lp(RN)

∥qδ∥Lp(RN)+ cc̃∥u∥p−1
Lp−1

0
≤ t p−1.

Then it follows ∥vt∥Lp(Ω) = 0. Thus, choosing t such that

t p−1 = A+ c∥w∥p−1
Lp(RN)

∥qδ∥Lp(RN)+ cc̃∥u∥p−1
Lp−1

0
+∥u+∥p−1

L∞(B1(Ω)\Ω)

we have for a.e. x ∈ Ω,

u(x)≤ t ≤C
(

A
1

p−1 +∥u+∥L∞(B1(Ω)\Ω)+∥u∥Lp(Ω)+∥u∥Lp−1
0

)
,

where C =C(N, p,Ω,B)> 0, as claimed.
Case 2: p > 2. We use the second inequality in Lemma 2.1, which gives

g(a−b)−g(a)≥−(p−1)
(
|b|p−1 + |b||a|p−2

)
for all a,b ∈ R.

With this, we have from (6.6)

C∥vt∥p
Lp(Ω) ≤

ˆ

Ω

(
A−wp−1(x)

)
vt(x)dx

+(p−1)
ˆ

Ω

vt(x)

( ˆ
RN

|w(y)|p−1qδ (x− y)dy+ |u(y)|p−1j(x− y)dy

)
dx

+(p−1)
ˆ

Ω

vt(x)w(x)p−2

( ˆ
RN

|w(y)|qδ (x− y)dy+ |u(y)|j(x− y)dy

)
dx

≤
ˆ

Ω

(
A−wp−1(x)

)
vt(x)dx

+(p−1)
ˆ

Ω

vt(x)

(
∥w∥p−1

Lp(RN)
∥qδ∥Lp(RN)+ c̃∥u∥p−1

Lp−1
0

)
dx

+(p−1)
ˆ

Ω

vt(x)w(x)p−2

(
∥w∥Lp(RN)∥qδ∥Lp′ (RN)+ c̃∥u∥L1

0

)
dx

=

ˆ

Ω

(
A+(p−1)

(
∥w∥p−1

Lp(RN)
∥qδ∥Lp(RN)+ c̃∥u∥p−1

Lp−1
0

))
vt(x)dx

−
ˆ

Ω

vt(x)w(x)p−2

(
w(x)− (p−1)

(
∥w∥Lp(RN)∥qδ∥Lp′ (RN)+ c̃∥u∥L1

0

))
dx

for a constant c̃ > 0 independent of u. From here, choosing

t ≥C
(

1+A+∥u+∥L∞(B1(Ω)\Ω)+∥u∥Lp(Ω)+∥u∥L1
0
+∥u∥Lp−1

0

)
for a constant C =C(N, p,Ω,B)> 0 entails the claim. □
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Proof of Theorem 1.9. The statement follows immediately from Theorem 6.7 by an application on −u
and u. □

Lemma 6.9 (Perturbation of supersolutions). Let Ω ⊂U ⊂RN be open and bounded sets, f ∈ L
p

p−1 (Ω),
and let u ∈ V (Ω,RN)∩ L∞(RN) be a supersolution of L∆pu = f in Ω such that suppu ⊂ U. Let ψ ∈
C∞

c (Ω). Then there is C > 0 such that u+ψ ∈V (Ω,RN) satisfies weakly

L∆p(u+ψ)≥ f −C max{∥ψ∥p−1
L∞(Ω),∥ψ∥L∞(Ω)} in Ω.

Proof. Clearly, u+ψ ∈V (Ω,RN) and also L∆pψ ∈ L∞(Ω) by Lemma 3.7. Let v ∈ X p
0 (Ω), v ≥ 0. Then,

by Proposition 6.2,

EL,p(u+ψ,v)−
ˆ

Ω

f vdx

≥ EL,p(u+ψ,v)−EL,p(u,v)

=
CN,p

2

¨

Ω×Ω

(
g(u(x)−u(y)+ψ(x)−ψ(y))−g(u(x)−u(y))

)
(v(x)− v(y))

|x− y|N
dxdy

+

ˆ

Ω

(ρN(p)+hΩ(x))
(

g(u(x)+ψ(x))−g(u(x))
)

v(x)dx

+CN,p

ˆ

Ω

v(x)
ˆ

RN\Ω

g(u(x)+ψ(x)−u(y))−g(u(x)+ψ(x))−g(u(x)−u(y))+g(u(x))
|x− y|N

dydx.

(6.7)

In the following let
P := max{∥ψ∥L∞(Ω),∥ψ∥p−1

L∞(Ω)}.

For the first integral in (6.7) let Q(a,b) for a,b ∈ R be defined by

g(a)−g(b) = Q(a,b)(a−b), that is, Q(a,b) = (p−1)

1ˆ

0

|b+ t(a−b)|p−2 dt.

Then, with a= a(x,y)= u(x)−u(y)+ψ(x)−ψ(y) and b= b(x,y)= u(x)−u(y) we have Q(a(x,y),b(x,y))=
Q(a(y,x),b(y,x)) and thus

¨

Ω×Ω

(
g(u(x)−u(y)+ψ(x)−ψ(y))−g(u(x)−u(y))

)
(v(x)− v(y))

|x− y|N
dxdy

=

¨

Ω×Ω

Q(a,b)(ψ(x)−ψ(y))(v(x)− v(y))
|x− y|N

dxdy

= 2
ˆ

Ω

v(x)
ˆ

Ω

Q(a,b)(ψ(x)−ψ(y))
|x− y|N

dydx

= 2
ˆ

Ω

v(x)
ˆ

Ω

g(u(x)−u(y)+ψ(x)−ψ(y))−g(u(x)−u(y))
|x− y|N

dydx

Then, by Lemma 2.3, using the boundedness of u, there is c = cp > 0 such that

g(u(x)+ψ(x))−g(u(x))≥−cP for all x ∈ Ω,

and, for x,y ∈ Ω,

g(u(x)−u(y)+ψ(x)−ψ(y))−g(u(x)−u(y))≥−cmax{|ψ(x)−ψ(y)|, |ψ(x)−ψ(y)|p−1}
≥ −cc̃Pmax{|x− y|, |x− y|p−1},
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for some constant c̃ depending on ψ . With this, and the previous estimate we have

CN,p

2

¨

Ω×Ω

(
g(u(x)−u(y)+ψ(x)−ψ(y))−g(u(x)−u(y))

)
(v(x)− v(y))

|x− y|N
dxdy

≥−CN,pcc̃P
ˆ

Ω

v(x)
ˆ

Ω

max{|x− y|1−N , |x− y|p−1−N}dydx ≥−C1P
ˆ

Ω

v(x)dx.

Moreover, hΩ is bounded in suppψ , since ψ is compactly supported in Ω, and thus alsoˆ

Ω

(ρN(p)+hΩ(x))
(

g(u(x)+ψ(x))−g(u(x))
)

v(x)dx

≥−c sup
x∈suppψ

|ρN(p)+hΩ(x)|P
ˆ

Ω

v(x)dx =−C2P
ˆ

Ω

v(x)dx,

which bounds the second integral in (6.7). To bound the last integral in (6.7), first note thatˆ

Ω

v(x)
ˆ

RN\Ω

g(u(x)+ψ(x)−u(y))−g(u(x)+ψ(x))−g(u(x)−u(y))+g(u(x))
|x− y|N

dydx

=

ˆ

suppψ

v(x)
ˆ

U\Ω

g(u(x)+ψ(x)−u(y))−g(u(x)+ψ(x))−g(u(x)−u(y))+g(u(x))
|x− y|N

dydx

≥−c′
ˆ

Ω

v(x)
ˆ

U\Ω

∣∣∣g(u(x)+ψ(x)−u(y))−g(u(x)+ψ(x))−g(u(x)−u(y))+g(u(x))
∣∣∣dydx

for a constant c′ depending on N and ψ . Again, with Lemma 2.3 we have∣∣∣g(u(x)+ψ(x)−u(y))−g(u(x)+ψ(x))−g(u(x)−u(y))+g(u(x))
∣∣∣≥−2cP

and thus

CN,p

ˆ

Ω

v(x)
ˆ

RN\Ω

g(u(x)+ψ(x)−u(y))−g(u(x)+ψ(x))−g(u(x)−u(y))+g(u(x))
|x− y|N

dydx

≥−C3P
ˆ

Ω

v(x)dx

for some constant C3 > 0. The claim thus follows with C =C1 +C2 +C3. □

6.2. Maximum and comparison principles.

Lemma 6.10. Let Ω ⊂ RN be an open bounded set and let c ∈ L∞(Ω). Let u ∈V (Ω,RN) be a superso-
lution of L∆pu = c(x)g(u) in Ω with u ≥ 0 in RN \Ω. Then u− ∈ X p

0 (Ω) and

EL,p(u−,u−)≤ ∥c+∥L∞(Ω)

ˆ

Ω

|u−(x)|p dx.

Proof. It is easy to check that u− ∈ V (Ω,RN). Thus, u− ∈ X p
0 (Ω), see Remark 6.3. Testing with u−

implies

−∥c+∥L∞(Ω)

ˆ

Ω

|u−(x)|p dx ≤
ˆ

Ω

c(x)g(u(x))u−(x)dx ≤ EL,p(u,u−)

= Ep(u,u−)+Fp(u,u−)−ρN(p)
ˆ

RN

|u−(x)|p dx.
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Writing for a,b ∈ R

g(a−b)+g(b) = g(a−b)−g(−b) = (p−1)

1ˆ

0

|b+ ta|dta =: Q(a,b)a

we find with a = a(x,y) := u+(x)−u+(y) and b = b(x,y) := u−(x)−u−(y)

Fp(u,u−) =−Fp(u−,u−)

+
1
2

¨

RN×RN

(
g(u(x)−u(y))+g(u−(x)−u−(y))

)
(u−(x)−u−(y))j(x− y)dxdy

=−Fp(u−,u−)

+
1
2

¨

RN×RN

Q(a(x,y),b(x,y))(u+(x)−u+(y))(u−(x)−u−(y))j(x− y)dxdy

and

Ep(u,u−) =−Ep(u−,u−)

+
1
2

¨

RN×RN

(
g(u(x)−u(y))+g(u−(x)−u−(y))

)
(u−(x)−u−(y))k(x− y)dxdy

=−Ep(u−,u−)

+
1
2

¨

RN×RN

Q(a(x,y),b(x,y))(u+(x)−u+(y))(u−(x)−u−(y))k(x− y)dxdy.

Since Q ≥ 0 and

(u+(x)−u+(y))(u−(x)−u−(y)) =−u+(x)u−(y)−u+(y)u−(x)≤ 0

it follows
−∥c+∥L∞(Ω)

ˆ

Ω

|u−(x)|p dx ≤ EL,p(u,u−)≤−EL,p(u−,u−)

as claimed. □

Lemma 6.11. Let Ω ⊂ RN be an open bounded set and c ∈ L∞(Ω). If

λ
1
L,p(Ω) := inf

{
EL,p(u,u) : u ∈ X p

0 (Ω) and ∥u∥Lp(Ω) = 1
}
> ∥c+∥L∞(Ω),

then L∆p − c(x) satisfies the maximum principle in Ω. Here, we say L∆p − c(x) satisfies the maximum
principle in Ω, if for all supersolutions v ∈V (Ω,RN) of L∆pv = c(x)g(v) in Ω and with v ≥ 0 in RN \Ω

it follows that v ≥ 0 (a.e.) in RN .

Proof. Let v ∈V (Ω,RN) be a supersolution of L∆pv = 0 in Ω with v ≥ 0 in RN \Ω. Then Lemma 6.10
implies

λ
1
L,p(Ω)∥v−∥p

Lp(Ω) ≤ EL,p(v−,v−)≤ ∥c+∥L∞(Ω)∥v−∥p
Lp(Ω).

Thus v− = 0 a.e. in Ω and the claim follows. □

λ 1
L,p(Ω) is called the first eigenvalue, which we investigate in detail in the next section. For our

investigation of the maximum principle, however, we need the following properties of λ 1
L,p(Ω).

Proposition 6.12. Let Ω ⊂ RN be an open bounded set and p > 1. Then the following properties hold
for the first eigenvalue λ 1

L,p(Ω).

(1) There is a nonnegative Lp-normalized function u ∈ X p
0 (Ω) such that λ 1

L,p(Ω) = EL,p(u,u). More-
over, u satisfies in weak sense

L∆pu = λ
1
L,p(Ω)g(u) in Ω, u = 0 in RN \Ω.

(2) λ 1
L,p(U)≥ λ 1

L,p(Ω) for U ⊂ Ω.
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(3) λ 1
L,p(rΩ) = λ 1

L,p(Ω)− p ln(r) for r > 0.

Proof. Let {un} ⊂ X p
0 (Ω) be a minimizing sequence for λ 1

L,p(Ω) such that

∥un∥Lp(Ω) = 1 for all n, and EL,p(un,un)→ λ
1
L,p(Ω) as n → ∞.

Note that,

Fp(un,un) :=
CN,p

2

¨

|x−y|>1

|un(x)−un(y)|p −|un(x)|p −|un(y)|p

|x− y|N
dxdy

=
CN,p

2

¨

x,y∈Ω

|x−y|>1

|un(x)−un(y)|p −|un(x)|p −|un(y)|p

|x− y|N
dxdy,

Since, ∥un∥Lp(Ω) = 1 then from above it follows that

|Fp(un,un)| ≤ (2p−1 +1)CN,p

ˆ

Ω

|un(x)|p
ˆ

BR(x)\B1(x)

|x− y|−N dydx = (2p−1 +1)CN,pωN ln(R),

where R > diam(Ω). This implies

C := sup
n
|Fp(un,un)|< ∞.

Thus, for any n we have

|Ep(un,un)| ≤ |EL,p(un,un)|+C+ρN(p)< ∞.

Therefore, we conclude that {un} is a bounded sequence in X p
0 (Ω). Hence, by the reflexivity property of

X p
0 (Ω), we get up to a subsequence un ⇀ u in X p

0 (Ω) as n → ∞ and the compact embedding X p
0 (Ω) ↪→

Lp(Ω), we get un → u in Lp(Ω) as n → ∞. This gives that ∥u∥Lp(Ω) = 1. By the generalized dominated
convergence theorem, we have

lim
n→∞

Fp(un,un) = Fp(u,u),

and by the weak lower semincontinuity of the norm, we obtain

[un]
p
X p

0 (Ω)
= Ep(u,u)≤ liminf

n→∞
Ep(un,un).

Thus, we have
λ

1
L,p(Ω)≤ EL,p(u,u)≤ liminf

n→∞
EL,p(un,un) = λ

1
L,p(Ω).

Hence, λ 1
L,p(Ω) is achieved by a function u ∈ X p

0 (Ω) with ∥u∥Lp(Ω) = 1. Note that by Lemma 4.7 we
have

λ
1
L,p(Ω) = EL,p(u,u)≥ EL,p(|u|, |u|)≥ λ

1
L,p(Ω)

implying u ≥ 0 in Ω, since otherwise the above inequality would be strict. Next, we show that the
minimizer u satisfies weakly the claimed associated equation. For this, consider the following function

ϕ(x, t) = u(x)+ tv(x), v ∈ X p
0 (Ω), t > 0.

Clearly, ϕ(·, t) ∈ X p
0 (Ω). Since u is the minimizer for λ 1

L,p, we then have

d
dt


EL,p(ϕ(·, t),ϕ(·, t))ˆ

Ω

|ϕ(x, t)|p dx

= 0, at t = 0.

This gives that

Ep(u,v)+Fp(u,v)+ρN(p)
ˆ

RN

g(u)(x)v(x)dx = λ
1
L,p

ˆ

Ω

|u|p−2uvdx.
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and the (1) follows. The second property follows immediately from the definition of the first eigen-
value. For the third statement, let u ∈ X p

0 (Ω) be given by (1) and let vr : RN → R be given by vr(x) =
r−N/pu(x/r). Then vr is nonnegative, Lp-normalized and, by Lemma 6.6, we have vr ∈ X p

0 (rΩ) and, in
weak sense, for x ∈ rΩ

L∆pvr(x) = r−
N
p (p−1)

(
λ

1
L,p(Ω)− p ln(r)

)
(u(x/r))p−1

=
(

λ
1
L,p(Ω)− p ln(r)

)
(vr(x))p−1.

The claim follows. □

Theorem 6.13 (Strong maximum principle). Let Ω ⊂ RN be an open set and let c ∈ L∞(Ω). Let u ∈
V (Ω,RN)∩L∞(RN) be a nonnegative supersolution of L∆pu = c(x)g(u) in Ω, such that that suppu is
compact in RN . Then either u = 0 in Ω or u > 0 in Ω in the sense that

essinfKu > 0 for all compact sets K ⊂ Ω.

Proof. Assume u ̸≡ 0 in Ω. Then there is compact set K ⊂ Ω with |K|> 0 and such that

essinfKu = δ > 0.

Let x0 ∈ Ω \K, r > 0 such that B := Br(x0) ⊂ Ω \K. Let f ∈ C∞
c (RN) be a nonnegative function with

supp f ⊂B, 0≤ f ≤ 1, and f ≡ 1 in Br/2(x0). In the following, we may suppose that λ 1
L,p(B)> ∥c+∥L∞(Ω)

by making r smaller, if necessary, and applying Proposition 6.12. Then, by Lemma 6.11, L∆p − c(x)
satisfies the maximum principle in B. Consider next the function

wa := ua −δ1K with ua := u− 1
a

f

for a > 0. Then wa ∈V (B,RN), wa ≥ 0 in RN \B by construction, and we claim that there is a > 0 such
that wa is a supersolution of L∆pw = 0 in B. Indeed, let ϕ ∈ X p

0 (B), ϕ ≥ 0. Then, by Proposition 6.2,

EL,p(wa,ϕ) =
CN,p

2

¨

B×B

g(wa(x)−wa(y))(ϕ(x)−ϕ(y))
|x− y|N

dxdy+
ˆ

B

(
ρN(p)+hΩ(x)

)
g(wa(x))ϕ(x)dx

+CN,p

ˆ

B

ϕ(x)
ˆ

RN\B

g(wa(x)−wa(y))−g(wa(x))
|x− y|N

dydx

=
CN,p

2

¨

B×B

g(ua(x)−ua(y))(ϕ(x)−ϕ(y))
|x− y|N

dxdy+
ˆ

B

(
ρN(p)+hΩ(x)

)
g(ua(x))ϕ(x)dx

+CN,p

ˆ

B

ϕ(x)
ˆ

RN\B

g(ua(x)−ua(y)+δ1K(y))−g(ua(x))
|x− y|N

dydx.

Let’s consider first the case p ≥ 2. Then by Lemma 2.2.

g(ua(x)−ua(y)+δ1K(y))−g(ua(x)−ua(y))≥ cδ
p−11K(y) for all x ∈ B, y ∈ RN \B

where c = 22−p. Thus, with Lemma 6.9, we have for some C > 0:

EL,p(wa,ϕ) = EL,p(ua,ϕ)+

ˆ

B

ϕ(x)
ˆ

K

cδ p−1CN,p

|x− y|N
dydx

≥
ˆ

Ω

ϕ(x)
(ˆ

K

cδ p−1CN,p

|x− y|N
dy− C

min{a,ap−1}

)
dx

Since |K|> 0, we may thus choose a > 0 large enough such that

inf
x∈Ω

ˆ

K

cδ p−1CN,p

|x− y|N
dy− C

min{a,ap−1}
≥ ∥c+∥L∞(Ω)∥u+ f∥p−1

L∞(Ω).
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It thus follows that in weak sense

L∆pwa ≥ c(x)g(wa) in B, wa ≥ 0 in RN \B.

By Lemma 6.11 it follows that wa ≥ 0 a.e. in B and thus, in particular, u ≥ 1
a a.e. in Br/2(x0). The claim

follows.
For the case p ∈ (1,2), we use Lemma 2.3 with M = 2(∥u∥L∞(RN)+ ∥ f∥L∞(RN)). Then, for some c =
c(M, p)> 0

g(ua(x)−ua(y)+δ1K(y))−g(ua(x)−ua(y))≥ cδ1K(y) for all x ∈ B, y ∈ RN \B

Similar to the case p ≥ 2, we find

EL,p(wa,ϕ)≥
ˆ

Ω

ϕ(x)
(ˆ

K

cδCN,p

|x− y|N
dy− C

ap−1

)
dx.

Choosing a > 0 large such that

inf
x∈Ω

ˆ

K

cδCN,p

|x− y|N
dy− C

ap−1 ≥ 0.

The claim follows analogously. □

Lemma 6.14 (Weak comparison principle). Let Ω⊂U ⊂RN be an open bounded sets and let c∈ L∞(Ω).
Suppose

c(x)≤ ρN(p)+hU(x) for a.e. x ∈ Ω.

Let u,v ∈V (Ω,RN) be such that in weak sense

L∆pu− c(x)g(u)≥ L∆pv− c(x)g(v) in Ω with u ≥ v in RN \Ω

and u,v = 0 on RN \U. Then u ≥ v a.e. in RN .

Proof. First note that ϕ = (u− v)− belongs to X p
0 (Ω)⊂ X p

0 (U). Moreover, we have with Lemma 6.2

0 ≤ EL,p(u,ϕ)−EL,p(v,ϕ)−
ˆ

Ω

c(x)
(

g(u(x))−g(v(x))
)

ϕ(x)dx

=
CN,p

2

¨

U×U

(
g(u(x)−u(y))−g(v(x)− v(y))

)
(ϕ(x)−ϕ(y))

|x− y|N
dxdy

+

ˆ

Ω

(
ρN(p)+hU(x)− c(x)

)(
g(u(x))−g(v(x))

)
ϕ(x)dx

In the following, note that for a,b ∈ R we have

g(a)−g(b) = Q(a,b)(a−b) with Q(a,b) := (p−1)

1ˆ

0

|b+ t(a−b)|p−2 dt ≥ 0.

Note that Q(a,b) = Q(b,a), by the substitution t = 1− τ , and we have Q(−a,−b) = Q(a,b) as also
Q(a,−b) = Q(−a,b). With this notation and putting w := u− v we have

0 ≤ EL,p(u,ϕ)−EL,p(v,ϕ)−
ˆ

Ω

c(x)
(

g(u(x))−g(v(x))
)

ϕ(x)dx

=
CN,p

2

¨

U×U

Q(u(x)−u(y),v(x)− v(y))(w(x)−w(y))(ϕ(x)−ϕ(y))
|x− y|N

dxdy

+

ˆ

Ω

(
ρN(p)+hU(x)− c(x)

)
Q(u(x),v(x))w(x)ϕ(x)dx ≤ 0,
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where we used w(x)ϕ(x) =−ϕ2(x)≤ 0 and

(w(x)−w(y))(ϕ(x)−ϕ(y)) =−(ϕ(x)−ϕ(y))2 −w+(x)ϕ(y)−w+(y)ϕ(x)≤ 0.

□

Proposition 6.15 (Strong comparison principle). Let Ω ⊂ U ⊂ RN be an open bounded sets and let
c ∈ L∞(Ω). Suppose

c(x)≤ ρN(p)+hU(x) for a.e. x ∈ Ω.
Let u,v ∈V (Ω,RN) be such that

L∆pu− c(x)g(u)≥ L∆pv− c(x)g(v) in Ω with u ≥ v in RN \Ω

and u,v = 0 on RN \U. Suppose further that either u ∈ L∞(Ω) or v ∈ L∞(Ω). Then either u ≡ v in Ω or
u > v in Ω in the sense that

essinfK(u− v)> 0 for all compact sets K ⊂ Ω.

Proof. Without loss, we may assume u ∈ L∞(Ω). Assume further u ̸≡ v in Ω. Let K ⊂ Ω be a compact
set with positive measure and such that

essinfK(u− v) = δ > 0.

Proceeding as in the proof of Theorem 6.13, we fix some ball B ⊂ Ω \K and a nonnegative function
f ∈C∞

c (B) and replace u with the function wa = u− 1
a f +δ1K . Then we can find a > 0 such that

L∆pwa ≥ c(x)wa in B.

Then wa ≥ v in RN \B and wa and v are respectively super- and subsolution of L∆pw = c(x)w in B. By
Lemma 6.14 the claim follows. □

Proof of Theorem 1.8. This follows immediately from Proposition 6.15. □

Remark 6.16. As the comparison principle for nonlinear problems involving the p-Laplace or the frac-
tional p-Laplace are quite interesting and more involved than in the linear case (see e.g. [15, 34, 35, 48,
49]), let us state some remarks concerning the weak and strong comparison principle stated in Lemma
6.14 and Proposition 6.15.

(1) Both statements are in particular of interest for U = Ω. Note that hU is not necessarily positive
and might be negative for some x ∈ Ω if U is large.

(2) It is tempting to only assume u ≥ v in RN \Ω instead of assuming u = v = 0 in RN \U . In view
of Lemma 6.5, however, this is quite delicate as the the values in the exterior have an influence
on the interior. In the particular case, where u ≥ 0 ≥ v in RN \U , however, it holds

−
ˆ

RN\U

g(u(x)−u(y))−g(u(x))
|x− y|N

dy ≥ 0 ≥−
ˆ

RN\U

g(v(x)− v(y))−g(v(x))
|x− y|N

dy

for any x ∈ Ω, using the monotonicity of g. Thus, Lemma 6.14 easily also holds if one assumes
u ≥ 0 ≥ v in RN \U in place of u = v = 0 in RN \U . An analogous assumption can be used in
Proposition 6.15.

7. THE DIRICHLET EIGENVALUE PROBLEM

Consider the following nonlinear Dirichlet eigenvalue problem on a bounded open set Ω in RN :{
L∆pu = λ |u|p−2u in Ω,

u = 0 in RN \Ω.
(7.1)

By Corollary 1.9, we already know that any solution of (7.1) is bounded. Moreover, we have collected
some simple preliminary properties of λ 1

L,p(Ω) as defined in Lemma 6.11. We emphasize that the validity
of maximum principles is strongly entwined with the positivity of λ 1

L,p(Ω) as discussed in the previous
section. Here, we will now investigate in detail properties of the first eigenvalue and the corresponding
first eigenfunction and their relation to the respective parts for s > 0. We start with the following.
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Theorem 7.1. Let Ω be a bounded open set in RN and 1 < p < ∞. Consider the following minimization
problem

λ
1
L,p := λ

1
L,p(Ω) = inf

{
EL,p(u,u) : u ∈ X p

0 (Ω) and ∥u∥Lp(Ω) = 1
}
. (7.2)

Then the following hold:
i) The quantity λ 1

L,p is the eigenvalue and the extremal function u of (7.2) is the eigenfunction of
(7.1) corresponding to λ 1

L,p.

ii) The eigenfunction u corresponding to λ 1
L,p is strictly positive in Ω. Moreover, λ 1

L,p is simple in
the sense that if u, v ∈ X p

0 (Ω) are the two eigenfunctions corresponding to λ 1
L,p then u = cv for

some c ∈ R.

Proof. The first part follows immediately from Lemma 6.12(i). For (ii), let u ∈ X p
0 (Ω) be any Lp-

normalized minimizer for λ 1
L,p. Then, similarly to the proof of Lemma 6.12(i), u satisfies

λ
1
L,p = EL,p(|u|, |u|) = EL,p(u,u) and, in weak sense,

L∆pu = λ
1
L,pg(u) in Ω, u = 0 in RN \Ω.

Thus, u can be assumed to be nonnegative (see also Lemma 4.7). But then u > 0 in Ω by Theorem 6.13,
using that u ∈ L∞(Ω) by Corollary 1.9 (for the case p ∈ (1,2)). Hence we have:

Any eigenfunction corresponding to λ
1
L,p is either positive or negative in Ω. (7.3)

Suppose next, u, v ∈ X p
0 (Ω) are the eigenfunctions of (7.1) corresponding to the eigenvalue λ 1

L,p then we
may assume u, v > 0 in Ω by (7.3). For each n ∈ N, define ϕn =

up

vp−1
n

, where vn = v+1/n and ϕ = up

vp−1 .

By Corollary 1.9, we have the eigenfunction u ∈ L∞(Ω) then it is easy to see that ϕn ∈ X p
0 (Ω) for all n.

Then by discrete Picone’s inequality (See [7, Propposition 4.2]), we have

0 ≤ |u(x)−u(y)|p −g(vn(x)− vn(y))(ϕn(x)−ϕn(y)) =: L(u,vn)(x,y),

and consequently this yields

0 ≤
CN,p

2

¨

Ω×Ω

L(u,vn)(x,y)
|x− y|N

dxdy

=
CN,p

2

¨

Ω×Ω

|u(x)−u(y)|p

|x− y|N
dxdy−

CN,p

2

¨

Ω×Ω

g(v(x)− v(y))
|x− y|N

(ϕn(x)−ϕn(y))dxdy

= EL,p(u,u)−
ˆ

Ω

(hΩ(x)+ρN(p)) |u(x)|pdx−EL,p(v,ϕn)+

ˆ

Ω

(hΩ(x)+ρN(p))g(v(x))ϕn(x)dx

= λ
1
L,p

ˆ

Ω

|u(x)|pdx−λ
1
L,p

ˆ

Ω

g(v(x))ϕn(x)dx+
ˆ

Ω

(hΩ(x)+ρN(p)) [g(v(x))ϕn(x)−|u(x)|p]dx,

where in the above we used Proposition 4.5 and definitions of u,v. Then, by Fatou’s lemma and the
dominated convergence theorem we obtain¨

Ω×Ω

L(u,v)(x,y)
|x− y|N

dxdy = 0.

Therefore, we have L(u,v)(x,y) = 0 a.e. in Ω×Ω. Hence, again by discrete Picone’s inequality we get
u = cv for some c > 0. □

In order to state the next result, let us first recall the structure of the Dirichlet eigenvalue problem for
the fractional p-Laplace operator. Let Ω be an open set in RN and 0 < s < 1, p ∈ (1,∞) and recall the
definition of fractional Sobolev space W s,p

0 (Ω) in Section 2.2 with zero nonlocal exterior data. Note that
by definition W s,p

0 (Ω) is a closed subspace of W s,p(RN) and, if Ω ⊂ RN is a bounded set with Lipschitz
boundary, then C∞

c (Ω) is a dense subset of W s,p
0 (Ω). A non-zero function u ∈ W s,p

0 (Ω) is called a weak
solution of the nonlocal Dirichlet problem

(−∆p)
su = λ |u|p−2u in Ω, u = 0 in RN \Ω (7.4)
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if for all v ∈ W s,p
0 (Ω) we have

E (u,v) = λ ⟨g(u),v⟩ := λ

ˆ

Ω

|u|p−2u(x)v(x)dx,

where

E (u,v) := ⟨(−∆p)
su,v⟩=

CN,s,p

2

¨

RN×RN

g(u(x)−u(y))(v(x)− v(y))
|x− y|N+sp dxdy,

and ⟨·, ·⟩ denotes the duality action. Any such function u is called the eigenfunction corresponding to
the eigenvalue λ of (7.4). The first eigenvalue λ 1

s,p(Ω) of (7.4) can be characterized as (1.4).
Next, we need the following Γ-convergence type result which is useful in the proof of Theorem 1.3.

Lemma 7.2. Let Ω be a bounded open set in RN , 1 < p < ∞. Suppose {usn} is a sequence in W sn, p
0 (Ω)

which is bounded in X p
0 (Ω). Then there exists u ∈ X p

0 (Ω) such that

lim
n→∞

1
sn

E (usn ,v)−
ˆ

Ω

g(usn)vdx

= EL,p(u,v) for all v ∈C∞
c (Ω).

Remark 7.3. Note that, similar to (1.1), the above lemma can be viewed as the asymptotic expansion
of the Gagliardo seminorm at s = 0. For other results about the asymptotic expansion of the Gagliardo
seminorm for p = 2 in the sense of Γ-convergence as s → 0+ and s → 1−, see [16, 39], and for the
pointwise convergence of the Gagliardo seminorm as s → 0+, see [45] .

Proof of Lemma 7.2. Since {usn} is bounded in X p
0 (Ω), by reflexivity of X p

0 (Ω) there is u ∈ X p
0 (Ω) such

that usn ⇀ u in X p
0 (Ω) for n → ∞ after passing to a subsequence. Moreover, by compact embedding and

passing to another subsequence, we have usn → u in Lp(Ω) and also usn(x)→ u(x) a.e. in RN . Now by
definition, we have

1
sn

E (usn , v)−
ˆ

Ω

g(usn)vdx

=
CN,sn,p

2sn

¨

RN×RN

g(usn(x)−usn(y))(v(x)− v(y))
|x− y|N+sn p dxdy− 1

sn

ˆ

Ω

g(usn)vdx

= I1,n + I2,n + I3,n
(7.5)

where with

En(x,y) :=
CN,sn,p

2sn

g(usn(x)−usn(y))(v(x)− v(y))
|x− y|N+sn p and

Fn(x,y) :=
CN,sn,p

2sn

g(usn(x)−usn(y))(v(x)− v(y))−g(usn(x))v(x)−g(usn(y))v(y)
|x− y|N+sn p

for x,y ∈ RN , x ̸= y, we let

I1,n :=
¨

|x−y|<1

En(x,y)dxdy

I2,n :=
¨

|x−y|≥1

Fn(x,y)dxdy

I3,n :=
CN,sn,p

sn

¨

|x−y≥1

g(usn(x))v(x)
|x− y|N+sn p dxdy− 1

sn

ˆ

Ω

g(usn)vdx.

Note that by the pointwise a.e. convergence of usn to u we have, for a.e. (x,y) ∈ RN ×RN

lim
n→∞

En(x,y) = E(x,y) :=
CN,p

2
g(u(x)−u(y))(v(x)− v(y))

|x− y|N
and

lim
n→∞

Fn(x,y) = F(x,y) :=
CN,p

2
g(u(x)−u(y))(v(x)− v(y))−g(u(x))v(x)−g(u(y))v(y)

|x− y|N

(7.6)
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Convergence of I1,n : We prove that

lim
n→∞

¨

|x−y|<1

En(x,y)dxdy =
¨

|x−y|<1

E(x,y)dxdy. (7.7)

Let R > 0 such that B1(Ω)⊂ BR(0) and note that¨

|x−y|<1

En(x,y)dxdy =
¨

BR(0)×BR(0)
|x−y|<1

En(x,y)dxdy.

Indeed, this holds since for points in x,y ∈ RN \BR(0) we have usn(x) = usn(y) = v(x) = v(y) = 0 and if
x ∈ BR(0), y ∈ RN \BR(0) (or vice versa), we can consider two cases: If x ∈ Ω, then |x− y| > 1 since
y /∈ B1(Ω), and if x ∈ BR(0)\Ω, then, again, usn(x) = usn(y) = v(x) = v(y) = 0. This implies that only
the integral in BR(0)×BR(0) remains. Next, let α ∈ R such that

N(p−1)
p

−1 < α <
N(p−1)

p
,

then we can fix s1 ∈ (0,1) such that

N +α p+ p−N p− s1 p2 > 0.

Since sn → 0 as n → ∞, we may assume sn < s1 for all n ∈N. Let x, y ∈ BR(0) with |x−y|< 1, then we
have with Young’s inequality

|En(x,y)| ≤C(N, p)|usn(x)−usn(y)|p−1 |v(x)− v(y)|
|x− y|N+s1 p

≤C(N, p)

(
|usn(x)|p + |usn(y)|p

|x− y|α
p

p−1
+

|v(x)− v(y)|p

|x− y|N p+s1 p2−α p

)
. (7.8)

where we used the fact s 7→CN,s,p is bounded in [0,1]. Since v ∈C∞
c (Ω), there is C > 0 such that

|v(x)− v(y)|p

|x− y|N p+s1 p2−α p
≤C|x− y|α p+p−N p−s1 p2

and thus this function belongs to L1(BR(0)×BR(0)) since

¨

BR(0)×BR(0)

|x− y|p−N p−s1 p2
dxdy ≤ |BR(0)|ωN

2Rˆ

0

tN+α p+p−N p−s1 p2−1 dt < ∞

by the choices of s1 and α . Now for the first term in (7.8), by Young’s convolution inequality we have¨

BR(0)×BR(0)
|x−y|<1

|usn(x)|p + |usn(y)|p

|x− y|α
p

p−1
dxdy ≤ 2

ˆ

BR(0)

|usn |p ∗ | · |
−α

p
p−1 dx ≤ 2∥usn∥Lp(Ω)∥| · |−α

p
p−1 ∥L1(B2R(0)).

Thus, by continuity of the convolution, using α
p

p−1 < N, and since usn → u in Lp(Ω), it follows that

|usn(x)|p + |usn(y)|p

|x− y|α
p

p−1
→ |u(x)|p + |u(y)|p

|x− y|α
p

p−1
in L1(BR(0)×BR(0)) for n → ∞.

Thus using (7.6), (7.8), and applying the generalized dominated convergence theorem, we conclude
(7.7).
Convergence of I2,n : Since usn = 0 = v in RN \Ω, then we have

I2,n :=
¨

|x−y|≥1

Fn(x,y)dxdy =
¨

Ω×Ω

|x−y|≥1

Fn(x,y)dxdy.
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We claim that

lim
n→∞

¨

Ω×Ω

|x−y|≥1

Fn(x,y)dxdy =
¨

Ω×Ω

|x−y|≥1

F(x,y)dxdy =
¨

RN×RN

|x−y|≥1

F(x,y)dxdy. (7.9)

Let x,y ∈ Ω with |x− y| ≥ 1, then we have with Young’s inequality

|Fn(x,y)| ≤C(N, p)
|g(usn(x)−usn(y))(v(x)− v(y))−g(usn(x))v(x)−g(usn(y))v(y)|

|x− y|N+sn p

≤C(N, p)
(
|usn(x)−usn(y)|p−1|v(x)− v(y)|+ |usn(x)|p−1|v(x)|+ |usn(y)|p−1|v(y)|

)
≤C(N, p)

(
|usn(x)|p + |usn(y)|p

)(
|v(x)|p + |v(y)|p

)
using that usn → u in Lp(Ω), the claim follows from the generalized dominated convergence theorem
with (7.6).
Convergence of I3,n : Note that

I3,n :=
CN,sn,p

sn

¨

|x−y≥1

g(usn(x))v(x)
|x− y|N+sn p dxdy− 1

sn

ˆ

Ω

g(usn(x))v(x)dx

=

(
CN,sn,p ωN

s2
n p

− 1
sn

)ˆ
Ω

g(usn(x))v(x)dx.

Recall, CN,sn,p = sn dN,p(sn) and since

dN,p(sn)
s→0+−−−→CN,p =

pΓ
(N

2

)
2πN/2 =

p
ωN

.

Using this we have
1
sn

(
CN,sn,pωN

sn p
−1
)
→ ρN(p) as sn → 0.

Again, applying the generalized dominated convergence theorem, we obtainˆ

Ω

g(usn)vdx →
ˆ

Ω

g(u)vdx as n → ∞.

This implies that

lim
n→∞

I3,n = ρN(p)
ˆ

Ω

g(u)vdx. (7.10)

Therefore, letting n → ∞ in (7.5) and using (7.7), (7.9), (7.10), we conclude that

lim
n→∞

1
sn

E (usn ,v)−
ˆ

Ω

g(usn)vdx

= EL,p(u,v).

Since the above can be done for any subsequence of {usn}, this completes the proof of the lemma. □

Lemma 7.4. Let Ω be a bounded Lipschitz subset of RN and p ∈ (1,∞). Then

lim
s→0+

λ
1
s,p(Ω) = 1.

Proof. Since Ω has a Lipschitz boundary, we have from (1.4)

λ
1
s,p(Ω) = inf

[ϕ]pW s,p(RN)
: ϕ ∈C∞

c (Ω),

ˆ

Ω

|ϕ(x)|p dx = 1

 .

This implies
limsup

s→0+
λ

1
s,p(Ω)≤ limsup

s→0+
[ϕ]pW s,p(RN)

= limsup
s→0+

⟨(−∆p)
s
ϕ,ϕ⟩= 1, (7.11)
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where we used the fact (−∆p)
sϕ → g(ϕ) for ϕ ∈C∞

c (Ω) as s → 0+. To bound the limit from below, let
ϕs ∈ W s,p

0 (Ω) be the Lp-normalized eigenfunction corresponding to λ 1
s,p(Ω). Then

λ
1
s,p(Ω) =

CN,s,p

2

¨

RN×RN

|ϕs(x)−ϕs(y)|p

|x− y|N+sp dxdy ≥CN,s,p

ˆ

Ω

|ϕs(x)|p
ˆ

RN\Ω

dy
|x− y|N+sp dx. (7.12)

Now for x ∈ Ω, let BR(x) be an open ball such that |Ω| = |BR(x)| that is R =
(

|Ω|
|B1|

)1/N
, then following

as in [21, Lemma 6.1], we obtainˆ

RN\Ω

dy
|x− y|N+sp ≥

ˆ

RN\BR(x)

dy
|x− y|N+sp =

ωN

sp
R−sp. (7.13)

Plugging the estimate (7.13) into (7.12), we have

λ
1
s,p(Ω)≥

CN,s,p ωN

spRsp =
CN,s,p 2π

N
2

spRsp Γ(N
2 )

. (7.14)

Thus, taking limit as s → 0+ in (7.14) and by definition of the constant CN,s,p we get

liminf
s→0+

λ
1
s,p(Ω)≥ lim

s→0

CN,s,p 2π
N
2

spRsp Γ(N
2 )

= 1. (7.15)

Combining (7.11) and (7.15) to get the desired result. □

Proof of Theorem 1.3. We divide our proof into four steps.

Step 1: By Lemma 7.4 we obtain
lim

s→0+
λ

1
s,p(Ω) = 1.

Next, for v ∈C∞
c (Ω) with ∥v∥Lp(Ω) = 1, using the second part of Theorem 1.1, we obtain

limsup
s→0+

λ 1
s,p(Ω)−1

s
≤ limsup

s→0+

[v]pW s,p(RN)
−∥v∥p

Lp(Ω)

s
= lim

s→0+

〈
(−∆p)

sv−g(v)
s

,v
〉
=
〈
L∆pv,v

〉
.

This entails

limsup
s→0+

λ 1
s,p(Ω)−1

s
≤ inf

v∈C∞
c (Ω)

∥v∥Lp(Ω)=1

〈
L∆pv,v

〉
.

By using (4.3) and the density property of C∞
c (Ω), Proposition 4.3, together with (7.2), we obtain

limsup
s→0+

λ 1
s,p(Ω)−1

s
≤ λ

1
L,p(Ω). (7.16)

Step 2: We claim that the sequence {ϕs} of functions with ∥ϕs∥Lp(Ω) = 1 is bounded uniformly in
X p

0 (Ω). For this by (7.16), we have as s → 0+

λ
1
L,p(Ω)+o(1)≥

λ 1
s,p(Ω)−1

s
=

[ϕs]
p
W s,p(RN)

−1

s

=
CN,s,p

2s

¨

x,y∈RN

|x−y|≤1

|ϕs(x)−ϕs(y)|p

|x− y|N+sp dxdy+
CN,s,p

2s

¨

x,y∈RN

|x−y|>1

|ϕs(x)−ϕs(y)|p

|x− y|N+sp dxdy− 1
s
. (7.17)

Note that, ˆ

Ω

|ϕs(z)|p
ˆ

RN\B1(w)

dw
|z−w|N+sp dz =

ωN

sp
∥ϕs∥p

Lp(Ω) =
ωN

sp
.
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Thus, from (7.17) we obtain, for s → 0+

λ
1
L,p(Ω)+o(1)≥

CN,s,p

2s

¨

x,y∈RN

|x−y|≤1

|ϕs(x)−ϕs(y)|p

|x− y|N+sp dxdy

+
CN,s,p

2s

¨

x,y∈RN

|x−y|>1

|ϕs(x)−ϕs(y)|p − (|ϕs(x)|p + |ϕs(y)|p)
|x− y|N+sp dxdy+ fN,p(s),

(7.18)

where
fN,p(s) =

CN,s,pωN

s2 p
− 1

s
.

Note that since also suppϕs = Ω, we have, as s → 0+,¨

x,y∈RN

|x−y|>1

|ϕs(x)−ϕs(y)|p − (|ϕs(x)|p + |ϕs(y)|p)
|x− y|N+sp dxdy

=
2

CN,p
Fp(ϕs,ϕs)+

¨

x,y∈RN

|x−y|>1

|ϕs(x)−ϕs(y)|p − (|ϕs(x)|p + |ϕs(y)|p)
|x− y|N

(
1

|x− y|sp −1
)

dxdy

=
2

CN,p
Fp(ϕs,ϕs)+

¨

x,y∈Ω

|x−y|>1

|ϕs(x)−ϕs(y)|p − (|ϕs(x)|p + |ϕs(y)|p)
|x− y|N

(
1

|x− y|sp −1
)

dxdy

=
2

CN,p
Fp(ϕs,ϕs)+

¨

x,y∈Ω

|x−y|>1

|ϕs(x)−ϕs(y)|p − (|ϕs(x)|p + |ϕs(y)|p)
|x− y|N

(
− sp ln(|x− y|)+o(s)

)
dxdy.

Note here, that with m(t) = c+ p ln |t| for some c > 0 we have for s → 0+, for a constant Cp depending
only on p,¨

x,y∈Ω

|x−y|>1

|ϕs(x)−ϕs(y)|p − (|ϕs(x)|p + |ϕs(y)|p)
|x− y|N

(
− sp ln(|x− y|)+o(s)

)
dxdy

≤ sCp

ˆ

Ω

ˆ

Ω\B1(x)

|ϕs(x)|p + |ϕs(y)|p

|x− y|N
m(|x− y|)dxdy ≤ s2Cp

ˆ

Ω

|ϕs(x)|p
ˆ

BR(x)\B1(x)

m(|x− y|)
|x− y|N

dydx,

where R = diam(Ω)+1. Since

ˆ

BR(x)\B1(x)

m(|x− y|)
|x− y|N

dy = ωN

Rˆ

1

m(r)
r

dr = c ln(R)+

Rˆ

1

ln(r)
r

dr = c ln(R)+
ln2(R)

2
< ∞.

Thus we have, for s → 0+, from (7.18), since CN,s,p → 0 for s → 0

λ
1
L,p(Ω)+o(1)≥

CN,s,p

2s

¨

x,y∈RN

|x−y|≤1

|ϕs(x)−ϕs(y)|p

|x− y|N+sp dxdy+
CN,s,p

sCN,p
Fp(ϕs,ϕs)+ fN,p(s)

≥
CN,s,p

sCN,p

(
Ep(ϕs,ϕs)+Fp(ϕs,ϕs)

)
+ fN,p(s).

(7.19)

Note here, that with a similar calculation as above, we have

Fp(ϕs,ϕs)≤CN,p

ˆ

Ω

|ϕs(x)|p
ˆ

BR(x)\B1(x)

|x− y|−N dydx =CN,pωN ln(R),
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as ϕs is Lp-normalized. Recalling, CN,s,p = sdN,p(s) and since

dN,p(s)
s→0+−−−→CN,p =

pΓ
(N

2

)
2πN/2 =

p
ωN

.

Using this we have

fN,p(s) =
1
s

(
CN,s,pωN

sp
−1
)
→ ρN(p) as s → 0+.

Therefore, from the estimate (7.19) and above, we obtain

Ep(ϕs,ϕs)≤
sCN,p

CN,s,p

[
λ

1
L,p +o(1)− fN,p(s)

]
−Fp(ϕs,ϕs)

Hence, for s → 0+ we have

|Ep(ϕs,ϕs)| ≤ (1+o(1))|λ 1
L,p +o(1)−ρN(p)|+CN,pωN ln(R),

from this it follows that {ϕs} is bounded in X p
0 (Ω), thanks to the fractional Poincaré inequality.

Step 3: Let u1 be the first positive Lp-normalized eigenfunction of L∆p in Ω given by Theorem 7.1. To
show (1.8), we use the method of contradiction. Suppose (1.8) is not true that is there exists ε > 0 and a
sequence {sn} of real numbers such that sn → 0 and for any n we have

∥ϕsn −u1∥Lp(Ω) ≥ ε. (7.20)

By Step 2, we have the sequence {ϕsn} is bounded in X p
0 (Ω). Thus up to a subsequence, we obtain

ϕsn ⇀ u0 in X p
0 (Ω), ϕsn → u0 in Lp(Ω), and

λ 1
sn
−1

sn
→ λ

∗ ∈
[
−∞,λ 1

L,p
]

as n → ∞. (7.21)

We claim that u0 is an eigenfunction of L∆p corresponding to the eigenvalue λ ∗. Let v ∈C∞
c (Ω). Since

{ϕsn} is uniformly bounded and by (7.21) together with the dominated convergence theorem, we obtainˆ

Ω

g(ϕsn)vdx →
ˆ

Ω

g(u0)vdx as n → ∞. (7.22)

Therefore, by (7.21), (7.22), and Lemma 7.2 we have for v ∈C∞
c (Ω)

λ
∗
ˆ

Ω

g(u0)vdx = lim
n→∞

λ 1
sn
−1

sn
⟨g(ϕsn),v⟩= lim

n→∞

E (ϕsn ,v)−⟨g(ϕsn),v⟩
sn

= EL,p(u0,v). (7.23)

Since, we may choose v ∈ C∞
c (Ω) such that

´
Ω

g(u0)vdx > 0. Thus from (7.23) and by density, we
conclude that λ ∗ >−∞ and

EL,p(u0,v) = λ
∗
ˆ

Ω

g(u0)vdx for all v ∈ X p
0 (Ω).

Therefore, we get (λ ∗, u0) is an eigenpair for L∆p . Again, by (7.21) we have λ ∗ ≤ λ 1
L,p and thus by

definition of λ 1
L,p, we have λ 1

L,p = λ ∗. Further, ∥u0∥Lp(Ω) = 1 and u0 ≥ 0, hence u0 = u1 is the unique
positive eigenfunction of L∆p in Ω. This gives a contradiction to (7.20) and therefore, we proved (1.8).

Step 4: It remains to prove the reverse inequality of (7.16). For this, let λ∗ := liminfs→0+
λ 1

s,p(Ω)−1
s , and

consider a sequence {sn} ⊂ (0,1) with sn → 0 such that

λ 1
sn, p(Ω)−1

sn
→ λ∗, as n → ∞.

Then by Step 3, we have ϕsn → u1 and by the similar argument as in Step 3, we obtain

λ∗ >−∞ and EL,p(u1,v) = λ∗

ˆ

Ω

g(u1)vdx for all v ∈ X p
0 (Ω).

This gives that λ∗ = λ 1
L,p and thus combining with (7.16) gives the desired result. This completes the

proof of the theorem. □
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Proof of Corollary 1.4. By the Faber-Krahn inequality for the fractional p-Laplacian (see for example
[8, Theorem 3.5]), we have

λ
1
s,p(B

(m))≤ λ
1
s,p(Ω) for all s ∈ (0,1).

Therefore using this and by Theorem 1.3, we obtain

λ
1
L,p(B

(m)) = lim
s→0+

λ 1
s,p(B

(m))−1
s

≤ lim
s→0+

λ 1
s,p(Ω)−1

s
= λ

1
L,p(Ω)

and this gives the desired result. □

Theorem 7.5. Let Ω ⊂ RN be an open bounded set. L∆p satisfies the maximum principle in Ω if and
only if λ 1

L,p(Ω)> 0.

Proof. Let ϕ1 ∈ X p
0 (Ω) be the uniquely determined Lp-normalized first eigenfunction of L∆p in Ω, which

is nonnegative in RN . If λ 1
L,p(Ω) ≤ 0, then u = −ϕ1 satisfies u = 0 in RN \Ω, u ⪇ 0 in Ω and L∆pu =

λ 1
L,p(Ω)u ≥ 0 in Ω. Thus the maximum principle does not hold.

If otherwise λ 1
L,p(Ω)> 0, then the maximum principle holds by Lemma 6.11 (with c ≡ 0). □

Proof of Theorem 1.7. This follows immediately from Theorem 7.5 and its proof combined with Theo-
rem 6.13. □

In the following result, we collect some useful properties of hΩ defined in (1.3) (see also Lemma
3.1(3)). The results are very slight adjustments from the case p = 2 proven in [38] as hΩ varies in
p only through the constant in front. The proofs have been made to us available through personal
communication and we include them for the readers convenience.

Lemma 7.6. Let Ω ⊂ RN open and bounded and let x ∈ Ω. Then the following are true for hΩ.
(1) For any ε ∈ (0,δ (x)] with δ (x) = dist(x,RN \Ω) we have

hΩ(x) = p ln(ε−1)−CN,p

ˆ

Ω\Bε (x)

|x− y|−N dy.

(2) It holds

hΩ(x)≥
p
N

ln
(
|B1|
|Ω|

)
,

in particular, hΩ → ∞ for |Ω| → 0.
(3) For r > 0 it holds

hrΩ(rx) = hΩ(x)− p ln(r).

Proof. Denote by ωN the (N − 1)-dimensional volume of ∂B1. Then CN,pωN = p. Moreover, for ε ∈
(0,δ (x)] we have

hΩ(x) =CN,p

( ˆ

[B1(x)\Bε (x)]\Ω

|x− y|−N dy−
ˆ

Ω\Bε (x)

|x− y|−N dy+
ˆ

[B1(x)\Bε (x)]∩Ω

|x− y|−N dy

)

= p

1ˆ

ε

t−1 dt −
ˆ

Ω\Bε (x)

|x− y|−N dy = p ln(ε−1)−
ˆ

Ω\Bε (x)

|x− y|−N dy.

Thus 1. follows. Next, let r > 0 such that |Ω|= |Br|, that is,

r =
( |Ω|
|B1|

) 1
N
.

Notice that r ≥ δ (x) =: ε and thus Bε(x)⊂Br(x)∩Ω. Since moreover |Ω\Br(x)|= |Br(x)\Ω| it follows
that ˆ

Ω\Bε (x)

|x− y|−N dy =
ˆ

Br(x)\Bε (x)

|x− y|−N dy−
ˆ

[Br(x)\Ω]\Bε (x)

|x− y|−N dy+
ˆ

[Ω\Br(x)]\Bε (x)

|x− y|−N dy
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=

ˆ

Br(x)\Bε (x)

|x− y|−N dy−
ˆ

Br(x)\Ω

|x− y|−N dy+
ˆ

Ω\Br(x)

|x− y|−N dy

≤ ωN

rˆ

ε

t−1 dt + r−N
(
−|Br(x)\Ω|+ |Ω\Br(x)|

)
= ωN

(
ln(r)+ ln(ε−1)

)
.

With 1. it follows that

hΩ(x)≥ p ln(ε−1)− p
(

ln(r)+ ln(ε−1)
)
= p ln(r−1)

and 2. follows by the explicit representation of r. Finally, 3. follows by a simple direct computation. □

In the next lemma, we estimate λ 1
L,p(Ω) using the properties of hΩ. In particular, these imply the

positivity of λ 1
L,p(Ω) if |Ω| is small enough.

Lemma 7.7. For Ω ⊂ RN open and bounded, it holds

p
N

ln
(
|B1|
|Ω|

)
+ρN(p)≤ λ

1
L,p(Ω)≤ 1

|Ω|

ˆ

Ω

hΩ(x)dx+ρN(p).

Moreover, if hΩ +ρN(p)⪈ 0 in Ω, then λ 1
L,p(Ω)> 0.

Proof. For the first statement, note that from Proposition 4.5 we have with u = 1
|Ω|1/p 1Ω ∈ X p

0 (Ω) that
∥u∥Lp(Ω) = 1 and thus

λ
1
L,p(Ω)≤ EL,p(u,u) =

1
|Ω|

ˆ

Ω

hΩ(x)dx+ρN(p).

While with u1 being the Lp-normalized extremal for λ 1
L,p(Ω), which is positive in Ω,

λ
1
L,p(Ω)≥

ˆ

Ω

(
hΩ(x)+ρN(p)

)
u1(x)p dx =

ˆ

Ω

hΩ(x)u1(x)p dx+ρN(p)

≥ p
N

ln
(
|B1|
|Ω|

)
+ρN(p)

by Lemma 7.6(3). The second statement follows immediately from the Definition of λ 1
L,p(Ω) with

Proposition 4.5 and the strict positivity of the first eigenfunction by Theorem 7.1. □

Remark 7.8. Let us mention that Theorem 7.5 for solutions in X p
0 (Ω) can be reformulated using Theo-

rem 6.13 and Corollary 1.9. Indeed, it holds:
Let Ω ⊂ RN be an open set, f ,c ∈ L∞(Ω). If f ⪈ 0 and λ

p
L,1(Ω) > ∥c+∥L∞(Ω), then any supersolution

u ∈ X p
0 (Ω) of L∆pu = c(x)g(u)+ f in Ω, u = 0 on RN \Ω is positive.

Corollary 7.9 (Small volume maximum principle). Let k > 0. Then there is δ > 0 with the following
property. For any open bounded set Ω ⊂ RN and c ∈ L∞(Ω) with ∥c+∥L∞(Ω) ≤ k the following holds: If
u ∈ X p

0 (Ω)∩L∞(Ω) satisfies weakly

L∆pu ≥ c(x)g(u) in Ω, u = 0 in RN \Ω

then either u ≡ 0 in Ω or u > 0 in Ω in the sense that

essinfKu > 0 for all compact sets K ⊂ Ω.

Proof. This follows immediately from Lemma 6.11 and Theorem 6.13 (see also Remark 7.8) and Lemma
7.6, noting that we have λ

p
L,1(Ω)> ∥c+∥L∞(Ω), if

p
N

ln
(
|B1|
|Ω|

)
+ρN(p)≥ k ≥ ∥c+∥L∞(Ω).

□
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