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Abstract. In this paper, we present recent stability results with explicit and dimensionally sharp
constants and optimal norms for the Sobolev inequality and for the Gaussian logarithmic Sobolev
inequality obtained by the authors in [22]. The stability for the Gaussian logarithmic Sobolev in-
equality is obtained as a byproduct of the stability for the Sobolev inequality. Here we also give
a new, direct, alternative proof of this result. We also discuss improved versions of interpolation
inequalities based on the carré du champ method.

1. Introduction and main results

Let us assume that d ≥ 3 without further notice. The classical Sobolev inequality on Rd, can be
written as follows:

∥∇f∥2L2(Rd) ≥ Sd ∥f∥2L2∗ (Rd)
∀ f ∈ Ḣ1(Rd) , (S)

where 2∗ = 2 d
d−2 is the Sobolev exponent, Sd = 1

4 d (d − 2) |Sd|2/d is the sharp Sobolev constant,

and |Sd| stands for the volume of the unit sphere Sd ⊂ Rd+1. Here Ḣ1(Rd) denotes the closure of
C∞
c (Rd) with respect to the seminorm |f |Ḣ1(Rd) := ∥∇f∥2

L2(Rd)
. As proved in [1, 37] (see also [35, 36]),

equality in (S) holds if f is one of the Aubin-Talenti functions, that is, one of the functions belonging
to the (d+ 2)-dimensional Aubin-Talenti manifold

M :=
{
ga,b,c : (a, b, c) ∈ (0,+∞)× Rd × R

}
with ga,b,c(x) := c

(
a+ |x− b|2

)− d−2
2 .

In fact, there is equality in (S) if and only if f is in M according to [32, 29, 14].
Applying the inverse of the stereographic projection and integrating on the sphere Sd with respect

to the uniform probability measure dµd, one can rewrite the above inequality as

∥∇u∥2L2(Sd) ≥
1
4 d (d− 2)

(
∥u∥2L2∗ (Sd) − ∥u∥2L2(Sd)

)
∀u ∈ H1(Sd) . (1)

and state, equivalently, that the only functions in H1(Sd) for which there is equality in (1) are the

functions ω 7→ Gb,c(ω) := c (1 + b · ω)−(d−2)/2 where b ∈ B1 := {b ∈ Rd+1 : |b| < 1} and c ∈ R are
constants. One can embed (1) in the following family of Gagliardo-Nirenberg-Sobolev inequalities:

∥∇u∥2L2(Sd) ≥
d

p− 2

(
∥u∥2Lp(Sd) − ∥u∥2L2(Sd)

)
∀u ∈ H1(Sd) , ∀ p ∈ (1, 2) ∪ (2, 2∗] . (GNS)

As proved by Bidaut-Véron–Véron [7] and Beckner [5] for p > 2 (see also [2, 3, 4] if p ≤ 2#), the
constant d/(p−2) is the best possible constant in (GNS) (here 2# := (2 d2+1)/(d−1)2 < 2∗ denotes
the Bakry-Emery exponent). If p < 2∗, the only optimizers in H1(Sd) for (GNS) are the constant
functions. The carré du champ method used in [2, 3, 4] relies on the linear heat equation, which
induces the limitation p ≤ 2#. This limitation is not technical as shown in [25]. The whole range
p ∈ (1, 2)∪ (2, 2∗] was covered using a carré du champ method based on nonlinear diffusion equations
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by Demange and Dolbeault-Esteban-Loss in [20, 24]. The case p = 2 (that can be obtained from
(GNS) by taking the limit p → 2) is the logarithmic Sobolev inequality

∥∇u∥2L2(Sd) ≥
d

2

∫
Sd

|u|2 ln

(
|u|2

∥u∥2L2(Sd)

)
dµ ∀u ∈ H1(Sd) \ {0} , (2)

where the only optimizers are the constant functions. Inequality (2) can also be proved by the carré
du champ method based on the heat equation. A remarkable feature of the carré du champ method
is that additional terms appear in the computations. This has been used in [23] to establish, for all
p ∈ (2, 2∗), the improved interpolation inequalities

∥∇u∥2L2(Sd)−
d

p− 2

(
∥u∥2Lp(Sd) − ∥u∥2L2(Sd)

)
≥ ∥u∥2L2(Sd)Ψd,p

(
∥∇u∥2L2(Sd)

∥u∥2L2(Sd)

)
∀u ∈ H1(Sd)\{0}, (3)

for some convex function Ψd,p such that Ψd,p(0) = Ψ′
d,p(0) = 0 and Ψd,p(s) > 0 if s > 0. Inequality (3)

is obviously stronger than (GNS) and can be used to prove that the equality case in (GNS) is realized
only by constant functions. If we test (3) with uε(ω) = 1 + ε b · ω for a given b ∈ B1, an elementary
computation shows that there is a cancellation of the O(ε2) terms as ε → 0 in the left-hand side
of the inequality and the first non-zero term is of the order of O(ε4). If we denote by Π1 the
L2(Sd) projection on the space generated by the coordinate functions ωi with i = 1, 2,. . . d, we learn
from [10, Theorem 6] that there is an explicit constant κ = κ(p, d) ∈ (0, 1), depending on d and
p ∈ [1, 2) ∪ (2, 2∗) such that, for all u ∈ H1(Sd),

∥∇u∥2L2(Sd) −
d

p− 2

(
∥u∥2Lp(Sd) − ∥u∥2L2(Sd)

)
≥ κ

(
∥∇Π1u∥4L2(Sd)

∥∇u∥
L+(Sd)∥u∥

2
L2(Sd)

+ ∥∇(Id−Π1)u∥2L2(Sd)

)
.

The proof relies on (3) and on a decomposition in spherical harmonics directly inspired by [28].
Let us also notice that Inequality (3) can take various forms. For instance, if p ∈ (2, 2#) and
1/θ = 1 + (d−1

d+2)
2 (p− 1) (2# − p)/(p− 2), we read from [21, Ineq. (2.4)] that (3) takes the form

∥∇u∥2L2(Sd) ≥
d θ

p− 2

(
∥u∥2/θ

Lp(Sd) ∥u∥
2−2/θ

L2(Sd) − ∥u∥2L2(Sd)

)
∀u ∈ H1(Sd) ,

which is a strict improvement compared to (GNS) as can be recovered using Hölder inequalities. The
case p = 2 is also covered, except that in the l.h.s. of (3), the deficit of (GNS) has to be replaced
by the deficit of (2). Without entering into details, let us quote some related results. By a direct
variational approach, an improved inequality like (3) is proved in [28, Theorem 2], in the subcritical
range, for some Ψd,p(s) ∼ s2. Using nonlinear flows and appropriate orthogonality constraints,
improved inequalities with Ψd,p(s) ∼ s are known from [25]. Both results are unified in [10]. Let us

finally mention that improved inequalities are proved in [8] with explicit constants, not on Sd but
on Rd, for the Gagliardo-Nirenberg-Sobolev inequalities using entropy methods and regularization
effects for fast diffusion flows, but with some restrictions on the decay of the functions at infinity.

The Gaussian measure can be seen as an infinite dimensional limit d → +∞ of the uniform
probability measure on the sphere of radius

√
d tested against functions depending only on a finite

number N of coordinates: see for instance [34, 11]. Since limd→+∞ 2∗ = 2, it also turns out that (S)
has to be replaced by a Gaussian interpolation inequality as follows. On RN , with N ≥ 1, let us

consider the Gaussian measure dγ(x) = e−π |x|2 dx. With L2(γ) := L2(RN , dγ), if H1(γ) denotes the
space of all u ∈ L2(γ) with distributional gradient in L2(γ), the logarithmic Sobolev inequality is:∫

RN

|∇u|2 dγ ≥ π

∫
RN

u2 ln

(
|u|2

∥u∥2
L2(γ)

)
dγ ∀u ∈ H1(γ) \ {0} . (LSI)
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According to the result of Carlen [15, Theorem 5], equality holds in (LSI) if and only if for some
a ∈ RN and c ∈ R,

u(x) = c ea·x . (4)

Improved forms of the inequality are also known for instance from [27, 26], under some restrictions.

Now let us turn our attention to stability issues for (S), (GNS) and (LSI).

• Stability for the Sobolev inequality. In [9] Brezis and Lieb asked the following question:

(Q) Do there exist constants κ, α > 0 such that the Sobolev deficit δ controls some distance d
from the Aubin-Talenti manifold M according to

δ(f) := ∥∇f∥2L2(Rd) − Sd ∥f∥2L2∗ (Rd)
≥ κd(f,M)α ?

The ‘best possible answer’ to this question would involve finding the strongest possible topology to
define the distance d and the best possible constant κ and exponent α. The first answer to Brezis
and Lieb’s question was given by Bianchi and Egnell in [6]: there is a constant Cd

BE > 0 such that

δ(f) ≥ Cd
BE inf

g∈M
∥∇f −∇g∥2L2(Rd) ∀ f ∈ Ḣ1(Rd) . (5)

Similar results for other inequalities have been proved using the strategy of Bianchi and Egnell: see,
for example, [18]. The main drawback of this strategy is that no explicit estimate of Cd

BE is known
nor its dependence on d. Recently, in [22], we proved the following result.

Theorem 1 ([22, Theorem 1.1]). Let d ≥ 3. There is an explicit constant β > 0 such that

∥∇f∥2L2(Rd) − Sd ∥f∥2L2∗ (Rd)
≥ β

d
inf
g∈M

∥∇f −∇g∥2L2(Rd) ∀ f ∈ Ḣ1(Rd) . (6)

This result is dimensionally sharp. Indeed, Theorem 1 can be rewritten as Cd
BE ≥ β/d. On the other

hand, it was proved implicitly in [6] (see also [18]) that Cd
BE ≤ 4/(4 + d). This inequality is in fact

strict: Cd
BE < 4/(4 + d), according to [30], and we learn from [31] that equality in (5), written with

the optimal value of Cd
BE, is achieved. Hence, Theorem 1 captures the dimensional behavior of Cd

BE.
For completeness, let us quote the extension of Theorem 1 in [17] to fractional Sobolev inequalities.
Using the inverse stereographic projection, the stability result of Theorem 1 can be rewritten on Sd as

∥∇u∥2L2(Sd)−
1
4 d (d−2)

(
∥u∥2L2∗ (Sd) − ∥u∥2L2(Sd)

)
≥ β

d
inf

(b,c)∈B1×R
∥∇u−∇Gb,c∥2L2(Sd) ∀u ∈ H1(Sd) .

• Stability for the Gaussian logarithmic Sobolev inequality. The interpretation of the Gauss-
ian measure as the limit of uniform probabililty measures on d-dimensional spheres as d → +∞
and the explicit dimensional dependence of the stability constant of Theorem 1 provides us with a
stability result for (LSI).

Theorem 2 ([22, Corollary 1.2]). With β > 0 as in Theorem 1, for all N ∈ N, we have∫
RN

|∇u|2 dγ − π

∫
RN

u2 ln

(
|u|2

∥u∥2
L2(γ)

)
dγ ≥ β π

2
inf

b∈RN, c∈R

∫
RN

(
u− c eb·x

)2
dγ ∀u ∈ H1(γ) . (7)

In [22] this result was obtained as a corollary of Theorem 1. In this paper we give a new, direct proof
which highlights the strategy of [22] in a slightly simpler setting.

In the next sections, we briefly describe the strategies of [23] and [22] to prove the improvements
in the case of subcritical inequalities (Section 2) and the stability results of Theorem 1 (Section 3)
and Theorem 2 (Section 4). The new proof of Theorem 2 is given in Section 5.
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2. Improved interpolation inequalities

In this section we describe the method used in [23] to prove (3) and similar improvements of the
(GNS) inequalities in the subcritical case p ∈ (2, 2∗). Inequalities (GNS) and their limiting case
corresponding to p = 2 can be written as:

i ≥ d e where i := ∥∇u∥2L2(Sd) and e :=


1

p−2

(
∥u∥2Lp(Sd) − ∥u∥2L2(Sd)

)
if p ̸= 2 ,

1
2

∫
Sd |u|

2 ln
(

|u|2
∥u∥2

L2(Sd)

)
dµ if p = 2 ,

for any u ∈ H1(Sd) and by homogeneity we can assume that ∥u∥L2(Sd) = 1. Let Ip := [0,+∞) if

p ≥ 2 and Ip := [0, 1/(2− p)) if p ∈ (1, 2).

Theorem 3 ([23, Theorem 1.1]). Let d ≥ 3 and p ∈ (2, 2∗). With the above notation and conventions,
there is an explicit function φ, such that φ(0) = 0, φ′(0) = 1, and φ′′ > 0 on Ip, for which

i ≥ dφ(e) . (8)

Similar results can be proved in dimension d = 1 and d = 2: see [20, 23, 21, 10]. Since

i− d e ≥ d
(
φ(e)− e

)
≥ 0 ,

it is clear that the equality case in (3) holds if and only if e = 0, that is, if u is a constant. Moreover
φ(e)−e measures a distance to the constants, for instance in L1(Sd) norm using a generalized Ciszár-
Kullback-Pinsker inequality, and φ(e) − e ∼ φ′′(0) e2/2 as e → 0. To prove (3) in the stronger

homogeneous Sobolev norm Ḣ1(Rd), it is enough to define the convex function

Ψd,p(s) := s− dφ−1
(s
d

)
.

It is elementary to verify that Ψd,p(0) = Ψ′
d,p(0) = 0 and that Ψd,p(s) > 0 if s ̸= 0.

Let us give a sketch of the proof of Theorem 3 based on the method of [23]. As a first step,
using Schwarz foliated symmetrization (see for instance [23, Section 2] for references) and cylindrical
coordinates on Sd ⊂ Rd+1, we can reduce the problem to functions depending only on one coordinate
z ∈ [−1, 1] corresponding to the South Pole – North Pole axis. In other words, we consider a function
u(ω) = f(z) where ω = (ω1, ω2, . . . , ωd+1) and z = ωd+1, so that

∥∇u∥2L2(Sd) =

∫ 1

−1
|f ′|2

(
1− z2

)
dσd and ∥u∥q

Lq(Sd) =

∫ 1

−1
|f |q dσd ,

where ′ denotes the z- derivative, the Laplace-Beltrami operator is reduced to the ultraspherical
operator: ∆u = L f :=

(
1− z2

)
f ′′ − d z f ′, and the uniform probability measures becomes

dσd(z) :=
Γ(d+1

2 )
√
π Γ(d2)

(
1− z2

) d
2
−1

dz .

The key idea is to prove that i− dφ(e) is monotone non-increasing under the action of

∂ρ

∂t
= L ρm, (9)

where m = 1 corresponds to the heat flow, m > 1 to the porous medium flow and m < 1 to the fast
diffusion flow. Here we choose ρ = |f |p so that ∥u∥Lp(Rd) is conserved under the action of (9). It is

convenient to introduce the exponent β such that

m = 1 + 2
p

(
1
β − 1

)
and consider the function w = fβ, such that wβ p = ρ, which solves

∂w

∂t
= w2−2β

(
Lw + κ

|w′|2

w

)
with κ := β (p− 2) + 1 . (10)
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The carré du champ method shows that d
dt (i− d e) ≤ 0 if the function

γ(β) := −
(
d−1
d+2 (κ+ β − 1)

)2
+ κ (β − 1) + d

d+2 (κ+ β − 1)

takes nonnegative values, which amounts to m−(d, p) ≤ m ≤ m+(d, p) where

m±(d, p) :=
1

(d+ 2) p

(
d p+ 2±

√
d (d− 2) (p− 1) (2∗ − p)

)
.

Using limt→+∞ (i− d e) = 0, we conclude that i − d e ≥ 0 for any t ≥ 0 and, as a special case, for
t = 0: this proves (GNS) for an arbitrary initial datum. If m−(d, p) < m < m+(d, p), we find that
γ(β) > 0, which leaves some space for improvement. A more detailed and quite lengthy computation
along the flow (10) yields

d

dt

(
i− dφ(e)

)
≤ γ

β2

i− dφ(e)(
1− (p− 2) e

)δ de

dt
,

where δ = 1 if 1 ≤ p ≤ 2 and δ := 2−(4−p)β
2β (p−2) if p > 2, if φ solves

dφ

ds
= 1 +

γ

β2

φ(s)

(1 − (p− 2) s)δ
, φ(0) = 0 .

This proves (8) for any t ≥ 0 as a consequence of the monotonicity of i − dφ(e) and the fact that
limt→+∞

(
i− dφ(e)

)
= 0. See [10, Appendix B.4] for detailed justifications. □

3. Stability for the Sobolev inequality. Proof of Theorem 1

In this section we explain the general ideas of the proof of Theorem 1 in [22].

3.1. On the stability proof by Bianchi and Egnell. The strategy of Bianchi-Egnell to prove (5)
is based on two main steps:

(1) A local stability estimate in a neighborhood of M, obtained by a local spectral analysis.
(2) A reduction of the global estimate to the local estimate by the concentration-compactness

method based on Lions’ analysis (see [33]).

Theorem 1 is a significant improvement of Bianchi-Egnell’s result, as it contains a dimensionally sharp
lower estimate for the best stability constant. Our strategy is to make the second step constructive
and the first one explicit, with much more detailed estimates.

3.2. Strategy of the proof of Theorem 1. The proof is divided into several steps:

(1) Local analysis: prove the inequality for nonnegative functions close to M with an explicit
remainder term. The analysis is quite involved: it relies on “cuttings” at various heights, the
use of uniform bounds on spherical harmonics and some delicate concavity properties.

(2) Local to global extension: prove the inequality for nonnegative functions far from M using
the competing symmetries method of [16] and a continuous Steiner symmetrization.

(3) Deduce the inequality for sign-changing functions from the inequality for nonnegative func-
tions by a concavity argument.

• In the first step, in order to obtain uniform estimates as d → +∞, we need to expand

(1 + r)2
∗ − 1− 2∗r

with an accurate remainder term, for all r ≥ − 1. To do that, we “cut r into pieces” by defining

r1 := min{r, γ} , r2 := min
{
(r − γ)+,M − γ

}
and r3 := (r −M)+ ,

where γ and M are suitable parameters satisfying 0 < γ < M. Furthermore, define

θ := 2∗ − 2 = 4
d−2 .
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Notice that θ ∈ (0, 1] if d ≥ 6 and limd→+∞ θ(d) = 0.

Lemma 4 ([22, Proposition 2.9]). Given d ≥ 6, r ∈ [−1,∞), and M ∈ [
√
e,+∞), we have

(1 + r)2
∗ − 1− 2∗r ≤ 1

2 2
∗ (2∗ − 1) (r1 + r2)

2 + 2 (r1 + r2) r3 +
(
1 + CM θM

−1
lnM

)
r2

∗
3

+
(
3
2 γ θ r

2
1 + CM,M θ r22

)
1{r≤M} + CM,M θM2

1{r>M} ,

where all the constants in the above inequality are explicit.

One can then prove that there exist computable constants ϵ1, ϵ2, k0, and ϵ0 ∈ (0, 1/θ), such that

∥∇r∥2L2(Sd) +A ∥r∥2L2(Sd) −A ∥1 + r∥2L2∗ (Sd) ≥
4 ϵ0
d− 2

(
∥∇r∥2L2(Sd) +A ∥r∥2L2(Sd)

)
+

3∑
k=1

Ik ,

with A := 1
4 d (d− 2) and

I1 := (1− θ ϵ0)
∫
Sd
(
|∇r1|2 +A r21

)
dµd −A(2∗ − 1 + ϵ1 θ)

∫
Sd r

2
1 dµd +A k0 θ

∫
Sd (r

2
2 + r23) dµd ,

I2 := (1− θ ϵ0)
∫
Sd
(
|∇r2|2 +A r22

)
dµd −A

(
2∗ − 1 + (k0 + Cϵ1,ϵ2) θ

) ∫
Sd r

2
2 dµd ,

I3 := (1− θ ϵ0)
∫
Sd
(
|∇r3|2 +A r23

)
dµd − 2

2∗ A(1 + ϵ2 θ)
∫
Sd r

2∗
3 dµd −A k0 θ

∫
Sd r

2
3 dµd .

Next, one can use spectral gap estimates to prove I1 ≥ 0 and the Sobolev inequality to prove I3 ≥ 0,
noting that the extra coefficient 2/2∗ < 1 gives enough room to accommodate all error terms. Finally,
using that µ

(
{r2 > 0}

)
is small, an improved spectral gap inequality allows us to show I2 ≥ 0.

If d = 3, 4, or 5, we can rely on a simpler Taylor expansion that can be found in [22, Proposi-
tion 2.7]. As a consequence, the following result has been proved.

Theorem 5 ([22, Theorem 2.1]). There are explicit constants ϵ0 ∈ (0, 1/3) and δ ∈ (0, 1/2) such
that for all d ≥ 3 and for all nonnegative u = 1 + r ∈ H1(Sd) with

∥r∥2L2∗ (Sd) ≤
δ

1− δ
,

∫
Sd

r dµd = 0 and

∫
Sd

ω r dµd = 0 ,

one has

∥∇u∥2L2(Sd) +A ∥u∥2L2(Sd) −A ∥u∥2L2∗ (Sd) ≥
4 ϵ0
d− 2

(
∥∇r∥2L2(Sd) +A ∥r∥2L2(Sd)

)
.

Let us define the stability quotient

E(f) :=
∥∇f∥2

L2(Rd)
− Sd ∥f∥2L2∗ (Rd)

infg∈M ∥∇f −∇g∥2
L2(Rd)

and consider the infimum

I (δ) := inf
{
E(f) : 0 ≤ f ∈ Ḣ1(Rd) \M , inf

g∈M
∥∇f −∇g∥2L2(Rd) ≤ δ ∥∇f∥2L2(Rd)

}
.

For a given f satisfying infg∈M ∥∇f −∇g∥2
L2(Rd)

≤ δ ∥∇f∥2
L2(Rd)

, up to a conformal transformation,

we can assume that infg∈M ∥∇f −∇g∥2
L2(Rd)

is realized by the Aubin-Talenti function g = g∗ with

g∗(x) := |Sd|−
d−2
2 d

(
2

1 + |x|2

) d−2
2

∀x ∈ Rd , (11)

use the inverse stereographic projection to transform f and g respectively into u = 1+ r and 1, and
notice that

A ∥r∥2L2∗ (Sd) ≤ ∥∇r∥2L2(Sd) +A ∥r∥2L2(Sd) = inf
g∈M

∥∇f −∇g∥2L2(Rd) ,

∥∇f∥2L2(Rd) = ∥∇u∥2L2(Sd) +A ∥u∥2L2(Sd) = ∥∇r∥2L2(Sd) +A ∥r∥2L2(Sd) +A ,
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where the first line follows from (1). We deduce from the condition infg∈M ∥∇f − ∇g∥2
L2(Rd)

≤
δ ∥∇f∥2

L2(Rd)
that

A ∥r∥2L2∗ (Sd) ≤ ∥∇r∥2L2(Sd) +A ∥r∥2L2(Sd) ≤
δA

1− δ
and apply Theorem 5 to obtain

E(f) =
∥∇u∥2L2(Sd) +A ∥u∥2L2(Sd) −A ∥u∥2L2∗ (Sd)

∥∇r∥2L2(Sd) +A ∥r∥2L2(Sd)
≥ 4 ϵ0

d− 2
.

This completes the local analysis where, by homogeneity, the scale is fixed in terms of ∥∇f∥2
L2(Rd)

.

With the notation of Theorem 5,

I (δ) ≥ 4 ϵ0
d− 2

.

• In Step 2, we deal with nonnegative functions f that are not close to the manifold M, i.e., such that

inf
g∈M

∥∇f −∇g∥2L2(Rd) > δ ∥∇f∥2L2(Rd) . (12)

The first ingredient is the method of competing symmetries [16] of Carlen and Loss. Consider any

nonnegative function f ∈ Ḣ1(Rd) and let

(Uf)(x) :=

(
2

|x− ed|2

) d−2
2

f

(
x1

|x− ed|2
, . . . ,

xd−1

|x− ed|2
,
|x|2 − 1

|x− ed|2

)
where ed = (0, . . . , 0, 1) ∈ Rd ,

and notice that E(Uf) = E(f). We also consider the symmetric decreasing rearrangement Rf = f∗,
with the properties that f and f∗ are equimeasurable, and that ∥∇f∗∥L2(Rd) ≤ ∥∇f∥L2(Rd).

Theorem 6 ([16, Theorem 3.3]). Let f ∈ L2∗(Rd) be a non-negative function with ∥f∥L2∗ (Rd) = 1.

The sequence fn = (RU)nf is such that limn→+∞ ∥fn − g∗∥L2∗ (Rd) = 0. If f ∈ Ḣ1(Rd), then

(∥∇fn∥L2(Rd))n∈N is a non-increasing sequence.

Whether fn satisfies (12) for all n ∈ N or not, we face an alternative.

Lemma 7 ([22, Lemma 3.5]). Let f be as in Theorem 6 and such that (12) holds and let fn =
(RU)nf . Then either infg∈M ∥∇fn − ∇g∥2

L2(Rd)
≥ δ ∥∇fn∥2L2(Rd)

for all n, or there exists n0 ∈ N
such that

inf
g∈M

∥∇fn0 −∇g∥2L2(Rd) > δ ∥∇fn0∥2L2(Rd) and inf
g∈M

∥∇fn0+1 −∇g∥2L2(Rd) < δ ∥∇fn0+1∥2L2(Rd) .

In the first case, we have

lim
n→+∞

∥∇fn∥22 ≤
1

δ
lim

n→+∞
inf
g∈M

∥∇fn −∇g∥22 =
1

δ

(
lim

n→+∞
∥∇fn∥22 − Sd ∥f∥22∗

)
where the last equality arises as a consequence of the properties of (fn)n∈N (see [22, Lemma 3.4]).
Combined with the simple estimate

E(f) = ∥∇f∥22 − Sd ∥f∥22∗
infg∈M ∥∇f −∇g∥22

≥ ∥∇f∥22 − Sd ∥f∥22∗
∥∇f∥22

≥ ∥∇fn∥22 − Sd ∥f∥22∗
∥∇fn∥22

,

we can take the limit as n → +∞ and obtain E(f) ≥ δ. In the second case, we adapt a strategy
due to Christ in [19], by building a continuous rearrangement flow (fτ )n0≤τ<n0+1 with fn0 = Ufn
such that

∥fτ∥L2∗ (Rd) = ∥f∥L2∗ (Rd) , τ 7→ ∥∇fτ∥L2(Rd) is nonincreasing, and lim
τ→n0+1

fτ = fn0+1 .
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Choosing the smallest τ0 ∈ (n0, n0 + 1) such that infg∈M ∥∇(fτ0 − g)∥2
L2(Rd)

= δ ∥∇fτ0∥2L2(Rd)
and

using ∥f∥L2∗ (Rd) = ∥fn0∥L2∗ (Rd) = ∥fτ0∥L2∗ (Rd), this gives:

E(f) ≥ 1− Sd

∥f∥2
L2∗ (Rd)

∥∇f∥2
L2(Rd)

≥ 1− Sd

∥fn0∥2L2∗ (Rd)

∥∇fn0∥2L2(Rd)

≥ 1− Sd

∥fτ0∥2L2∗ (Rd)

∥∇fτ0∥2L2(Rd)

= δ E(fτ0) ≥ δI (δ) .

To build the flow, we refer to [12, 13] and to [22] for further references. The existence of τ0 requires
a discussion that can be found in [22, Section 3.1.2].

Finally, it is simple to prove that for all δ ∈ (0, 1), I (δ) ≤ 1. Therefore, in all cases, E(f) ≥ δI (δ) .

• The third step is to remove the positivity assumption of Theorem 1 as in [22, Section 3.2]. Take

f = f+ − f− with ∥f∥L2∗ (Rd) = 1 and define m := ∥f−∥2
∗

L2∗ (Rd). Without loss of generality one may

assume that 1−m = ∥f+∥2
∗

L2∗ (Rd) > 1/2. The positive concave function

hd(m) := m
d−2
d + (1−m)

d−2
d − 1

satisfies

2hd(1/2)m ≤ hd(m) , hd(1/2) = 22/d − 1 .

With δ(f) = ∥∇f∥2L2(Rd) − Sd ∥f∥2L2∗ (Rd), one finds g+ ∈ M such that

δ(f) ≥ Cd,pos
BE ∥∇f+ −∇g+∥2L2(Rd) +

2hd(1/2)

hd(1/2) + 1
∥∇f−∥2L2(Rd) ,

and therefore

Cd
BE ≥ 1

2 min

{
max

0<δ<1/2
δI (δ),

2hd(1/2)

hd(1/2) + 1

}
.

• Combining all estimates of the three previous steps completes the proof of Theorem 1. □

4. Stabitity for the Gaussian logarithmic Sobolev inequality. Proof of Theorem 2

In this section we describe the main steps in the proof of the stability estimate for the Gaussian
logarithmic Sobolev inequality (2) by considering the large dimensional limit of (6), as it appears in
[22, Section 4]. With u = f/a, c, where g⋆ is given by (11), Inequality (6) can be rewritten as∫

Rd

|∇u|2 g2⋆ dx+ d (d− 2)

∫
Rd

|u|2 g2∗⋆ dx− d (d− 2) ∥g⋆∥2
∗−2

L2∗ (Rd)

(∫
Rd

|u|2∗ g2∗⋆ dx

)2/2∗

≥ β

d

(∫
Rd

|∇u|2 g2⋆ dx+ d (d− 2)

∫
Rd

|u− gd/g⋆|2 g2
∗

⋆ dx

)
,

where gd ∈ M realizes infg∈M ∥∇f − ∇g∥2
L2(Rd)

. For some parameters ad, bd and cd, we can write

that gd(x) = cd (ad + |x− bd|2)1−d/2. We rescale the function u according to

u(x) = v (rd x) ∀x ∈ Rd , rd =
√

d
2π

and consider the function wd
v such that wd

v (rd x) = gd(x)/g⋆(x). Hence∫
Rd

|∇v|2
(
1 + 1

r2d
|x|2
)2

dµd ≥ 2π (d− 2)

((∫
Rd

|v|2∗ dµd

)2/2∗

−
∫
Rd

|v|2 dµd

)

+
β

d

(∫
Rd

|∇v|2 dµd + 2π(d− 2)

∫
Rd

|v − wd
v |2 dµd

)
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where dµd = Z−1
d g2

∗
⋆ dx is the probability measure given by

dµd(x) :=
1

Zd

(
1 + 1

r2d
|x|2
)−d

dx with Zd =
21−d√π

Γ
(
d+1
2

) (d

2

) d
2

.

Our goal is to take the limit d → +∞ when one considers functions v(x) depending only on y ∈ RN ,
with x = (y, z) ∈ RN × Rd−N ≈ Rd, for some fixed integer N . With |x|2 = |y|2 + |z|2, notice that

1 + 1
r2d

|x|2 = 1 + 1
r2d

(
|y|2 + |z|2

)
=
(
1 + 1

r2d
|y|2
)(

1 + |z|2
r2d+|y|2

)
and, as a consequence,

limd→+∞

(
1 + 1

r2d
|y|2
)−N+d

2
= e−π |y|2 ,

limd→+∞
∫
Rd |v(y)|2 dµd =

∫
RN |v|2 dγ ,

limd→+∞
∫
Rd |∇v|2

(
1 + 1

r2d
|x|2
)2

dµd = 4
∫
RN |∇v|2 dγ ,

where dγ(y) := e−π |y|2 dy is the standard Gaussian probability measure. However, the function wd
v

depends on d and the main difficulty is to obtain enough estimates on the parameters ad, bd and cd
to pass to the limit after integrating in all integrals with respect to z, which completes the proof
of (7). See [22, Section 4] for further details. □

5. Stability of the logarithmic Sobolev inequality: a new proof of Theorem 2

Instead of proving Theorem 2 as a consequence of Theorem 1, one can give a direct proof of (7).
Just like in Section 3, we prove the quantitative version of the sharp logarithmic Sobolev inequality
(Theorem 2) in two steps, one close to and one far from the set of optimizers.

Let us start with a consequence of Theorem 5.

Theorem 8. There are explicit constants η > 0 and δ ∈ (0, 1/2) such that for all N ∈ N and for all
for all nonnegative u = 1 + r ∈ H1(Sd) satisfying∫

RN

r2 dγ ≤ δ

1− δ
(13)

and ∫
RN

r dγ = 0 =

∫
RN

xj r dγ , j = 1, 2, . . . , N , (14)

one has ∫
RN

|∇u|2 dγ − π

∫
RN

|u|2 ln

(
|u|2

∥u∥2
L2(γ)

)
dγ ≥ η

∫
RN

r2 dγ .

The constant δ coincides with the corresponding constant in Theorem 5 and η = 2π ϵ0.

Proof. Notice that x ∈ L2(γ), so the orthogonality constraints raise no integration issues. We denote

Σd := {x ∈ Rd+1 : |x| = ρd} with ρd :=
√

d/(2π). The factor of 1/(2π) in the definition of ρd is
necessary to get the π in the exponent of the Gaussian density. We integrate on Σd with respect to
the uniform probability measure dµd. By rescaling our result in Theorem 5 we find that∫

Σd

|∇R|2 dµd − π
d− 2

2

((∫
Σd

(1 +R)
2 d
d−2 dµd

) d−2
d

−
∫
Σd

(1 +R)2 dµd

)

≥ 2π ϵ0

∫
Σd

(
1

π

2

d− 2
|∇R|2 +R2

)
dµd . (15)
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This inequality is valid for all R ∈ H1(Σd) such that(∫
Σd

R
2 d
d−2 dµd

) d−2
d

≤ δ

1− δ
(16)

and ∫
Σd

Rdµd = 0 =

∫
Σd

xj Rdµd , j = 1, . . . , d+ 1 . (17)

Given a function r ∈ H1(γ) and d > N , we apply this inequality to the function

Rd(x) := r(x1, . . . , xN )−
∫
Σd

r dµd − 2π
d+ 1

d

N∑
n=1

xn

∫
Σd

yn r(y1, . . . , yN ) dµd(y)

for x ∈ Σd. This function satisfies the orthogonality conditions (17). Note here that the functions√
2π
√
(d+ 1)/d xj are L2-normalized on Σd.

We now use the well-known fact that, as d → +∞, the marginal of dµd corresponding to the
first N coordinates converges to dγ. Thus,

lim
d→+∞

∫
Σd

|∇r|2 dµd =

∫
RN

|∇r|2 dγ , lim
d→+∞

∫
Σd

r2 dµd =

∫
RN

r2 dγ ,

lim
d→+∞

∫
Σd

r dµd =

∫
RN

r dγ = 0 , lim
d→+∞

∫
Σd

yn r(y1, . . . , yN ) dµd(y) =

∫
RN

yn r dγ = 0 .

From this we conclude easily that

lim
d→+∞

∫
Σd

|∇Rd|2 dµd =

∫
RN

|∇r|2 dγ , lim
d→+∞

∫
Σd

R2
d dµd =

∫
RN

r2 dγ .

With some modest amount of effort one also finds that

lim
d→+∞

∫
Σd

R
2 d
d−2

d dµd =

∫
RN

r2 dγ .

Assuming that the inequality in (13) is strict, the same is true for the left side when d is sufficiently
large, and consequently the smallness condition (16) holds when d is sufficiently large. Thus, in-
equality (15) is valid for all sufficiently large d. The equality case in (13) can be obtained at the very
end by a simple approximation argument.

Now, we drop the gradient term in the right side and letting d → +∞ we infer that∫
RN

|∇r|2 dγ − π lim sup
d→+∞

d− 2

2

((∫
Σd

(1 +Rd)
2 d
d−2 dµd

) d−2
d

−
∫
Σd

(1 +Rd)
2 dµd

)
≥ 2π ϵ0

∫
RN

r2 dγ .

Finally, we verify that

lim sup
d→+∞

d− 2

2

((∫
Σd

(1 +Rd)
2 d
d−2 dµd

) d−2
d

−
∫
Σd

(1 +Rd)
2 dµd

)
=

∫
RN

(1 + r)2 ln

(
(1 + r)2

∥1 + r∥2
L2(γ)

)
dγ .

In fact, if the orthogonality conditions were not present and the marginals would already be equal
to their limit, this would follow from the fact that

lim
p→1+

1

p− 1

((∫
RN

hp dγ

)1/p

−
∫
RN

h dγ

)
=

∫
RN

h ln

(
h∫

RN h dγ

)
dγ ,

valid on any measure space for any nonnegative function h that satisfies h ∈ L1 ∩ Lp0(γ) for some
p0 > 1. Proving the latter fact is simple, as well as including the effect of the orthogonality condi-
tions and the convergence of the marginals, so we shall omit it. These remarks complete the proof
Theorem 8. □
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We emphasize that in the previous proof we did not use Theorem 1, but rather Theorem 5. In this
way we avoid having to control the distance to the set of optimizers in the high-dimensional limit,
which seems harder than verifying the orthogonality conditions.

Proof of Theorem 2. As in the proof of Theorem 1, we first prove the result for nonnegative functions
and then extend it to sign changing solutions. Let us denote by κpos the stability constant in the
stability inequality restricted to nonnegative functions.

Step 1. Let η and δ be as in Theorem 8. For 0 ≤ u ∈ H1(γ) we distinguish two cases.
• The first case is where

inf
a∈RN, c∈R

∫
RN

(u− c ea·x)2 dγ ≤ δ

∫
RN

u2 dγ .

The infimum on the left-hand side is attained at some a ∈ RN and c ∈ R, as can be checked by

optimizing
∫
RN

∣∣v − c e|a|
2/(2π)−π |x−a/π|2/2∣∣2 dx where v(x) := u(x) e−π |x|2/2. Let

ũ(y) := e− y·a− |a|2
2π u

(
y + a

π

)
.

Then, by a simple computation involving an integration by parts and a change of variables,∫
RN

|∇ũ|2 dγ − π

∫
RN

ũ2 ln

(
ũ2

∥ũ∥2
L2(γ)

)
dγ =

∫
RN

|∇u|2 dγ − π

∫
RN

u2 ln

(
u2

∥u∥2
L2(γ)

)
dγ .

Therefore, the deficit of ũ coincides with that of u, while the infimum for ũ among all functions of
the form (4) is attained at the constant c exp

(
|a|2/(2π)

)
. Finally, by multiplying ũ with a constant,

we may assume that this constant is equal to one. To summarize, we may assume without loss of
generality that the infimum in the theorem is attained at a = 0 and c = 1.

Let us set r := u−1. Then the minimality implies that r satisfies the orthogonality conditions (14).
Moreover, we have ∫

RN

r2 dγ ≤ δ

∫
RN

u2 dγ = δ

(
1 +

∫
RN

r2 dγ

)
,

so the smallness condition (13) is satisfied and we can apply Theorem 8. This yields the inequality
in the theorem with a stability constant η.

• Next, we consider the case where

inf
a∈RN, c∈R

∫
RN

(u− c ex·a)2 dγ > δ

∫
RN

u2 dγ .

We argue similarly as we did in Section 3 concerning the Sobolev inequality, but there are some
differences in this case.

For f ∈ L2(γ) we denote by Uf its Gaussian rearrangement, that is, the function on RN whose
superlevel sets have the form {x ∈ RN : x1 < µ} for some µ ∈ R and have the same γ-measure as
the corresponding superlevel sets of f . Moreover, we denote

V f := e
π
2
|x|2 R

(
e−

π
2
|x|2 f

)
,

where R is, as before, the Euclidean rearrangement. Then, as shown in [16, Theorem 4.1], for any
0 ≤ f ∈ L2(γ) one has

fn := (V U)nf → ∥f∥L2(γ) in L2(γ) .

Moreover, ∥fn∥L2(γ) = ∥f∥L2(γ) and

n 7→
∫
RN

|∇fn|2 dγ − π

∫
RN

f2
n ln

(
f2
n

∥fn∥2L2(γ)

)
dγ

is nonincreasing. This is the analogue of Theorem 6 in the present case.
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We apply this procedure to our function u, which we assume here to be nonnegative, and obtain
a sequence of functions un with constant L2(γ)-norm. Moreover, since

inf
a, c

∥un − c ea·x∥L2(γ) ≤
∥∥un − ∥u∥L2(γ)

∥∥
L2(γ)

→ 0 as n → +∞ ,

there is an n0 ∈ N such that

inf
a, c

∥un0 − c ea·x∥2L2(γ) ≥ δ ∥u∥2L2(γ) > inf
a, c

∥un0+1 − c ea·x∥2L2(γ) .

This replaces Lemma 7. We have∫
RN |∇u|2 dγ − π

∫
RN u2 ln

(
u2

∥u∥2
L2(γ)

)
dγ

infa, c ∥u− c ea·x∥2
L2(γ)

≥

∫
RN |∇u|2 dγ − π

∫
RN u2 ln

(
u2

∥u∥2
L2(γ)

)
dγ

∥u∥2
L2(γ)

≥

∫
RN |∇un0 |2 dγ − π

∫
RN u2n0

ln

(
u2
n0

∥un0∥
2
L2(γ)

)
dγ

∥u∥2
L2(γ)

.

We now use a continuous rearrangement flow to connect un0 to un0+1. More precisely, we a consider

a family of functions (uτ )n0≤τ≤n0+1, where un0 := Uun0 and un0+1 := un0+1. We define uτ as e
π
2
|x|2

times the continuous (Euclidean) rearrangement of e−
π
2
|x|2 Uun0 at parameter τ . In the same way

as in [22, Lemma 36], one sees that

τ 7→ inf
a, c

∥uτ − c ea·x∥2L2(γ)

is continuous, and therefore there is a τ0 ∈ [n0, n0 + 1) such that

inf
a, c

∥uτ0 − c ea·x∥2L2(γ) = δ ∥u∥2L2(γ) .

It follows that∫
RN |∇un0 |2 dγ − π

∫
RN u2n0

ln

(
u2
n0

∥un0∥
2
L2(γ)

)
dγ

∥u∥2
L2(γ)

≥

∫
RN |∇uτ0 |2 dγ − π

∫
RN u2τ0 ln

(
u2τ0

∥uτ0∥
2
L2(γ)

)
dγ

∥u∥2
L2(γ)

= δ

∫
RN |∇uτ0 |2 dγ − π

∫
RN u2n0

ln

(
u2τ0

∥uτ0∥
2
L2(γ)

)
dγ

infa, c ∥uτ0 − c ea·x∥2
L2(γ)

.

We can apply the result in the first case to the function uτ0 and infer that the right side is larger or
equal than κpos := δ η. This concludes the proof in the case of nonnegative functions.

Step 2. We now prove the theorem in the general case, that is, for sign-changing functions.
We shall use the notation

D(v) :=

∫
RN

|∇v|2 dγ − π

∫
RN

v2 ln

(
v2

∥v∥2
L2(γ)

)
dγ for v ∈ H1(γ) .

Let u = u+ − u− ∈ H1(γ). By homogeneity we can assume ∥u∥L2(γ) = 1. Replacing u by −u if
necessary, we can also assume that

m := ∥u−∥2L2(γ) ∈ [0, 12 ] .
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Then
D(u) = D(u+) +D(u−) + π h(m)

with
h(p) := −

(
p ln p+ (1− p) ln(1− p)

)
.

Since the function p 7→ h(p) is monotone increasing and concave on [0, 1/2], it holds that

h(p) ≥ (2 ln 2) p ∀ p ∈ [0, 12 ] .

Thus, with κpos denoting the constant from Step 1,

D(u) ≥ D(u+) + (2π ln 2)m ≥ κpos inf
a, c

∥u+ − c ea·x∥2L2(γ) + (2π ln 2) ∥u−∥2L2(γ)

≥ 1

2
min

{
κpos, 2π ln 2

}
inf
a, c

∥u− c ea·x∥2L2(γ) .

This proves the inequality in the general case, with κ = 1
2 min

{
κpos, 2π ln 2

}
. It is straightforward

to verify that κ = β π/2, β being the constant in the statement of Theorem 1. This ends our second
proof of Theorem 2 □
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volume 1123 of Lecture Notes in Math., pages 177–206. Springer, Berlin, 1985.
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