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Abstract. In this paper we prove a strong two-scale approximation result for sphere-
valued maps in L2(Ω; W 1,2

0 (Q0; S2)), where Ω ⊂ R3 is an open domain and Q0 ⊂ Q an
open subset of the unit cube Q = (0, 1)3. The proof relies on a generalization of the seminal
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application to a variational problem in high-contrast micromagnetics.
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1. Introduction

Approximating manifold-valued Sobolev mappings by smooth functions is a classical
question. One of the seminal results in this direction is the theory established by F. Bethuel
and X.M. Zheng in [5]. On the one hand, in the setting of W 1,2(B; S2) (where B denotes
the unit ball in R3 centered in the origin), smooth approximations in the strong W 1,2-
topology are not possible (cf. Theorem 2 in [5] and Section 4 in [25]; see also Theorem 2.3
and Theorem 2.6 in [18]). On the other hand, the authors prove in [5] that each map in
W 1,2(B; S2) can be approximated by almost smooth maps, namely maps which are smooth
in R3 up to a finite number of points.

The first contribution of this paper is to investigate whether this latter density result
carries over to the setting in which the functions under consideration exhibit both a macro-
scopic and a microscopic scale, and the strong W 1,2-topology is replaced by strong two-scale
convergence, cf. Section 2.

To be precise, denoting by Ω a bounded domain in R3 and by Q0 an open subset of the
unit cube Q = (0, 1)3, we consider maps in L2(Ω;W 1,2(Q; R3)) exhibiting a second scale
depencence localized in Q0. Our main result is the following.

Theorem 1.1. Let m̃ ∈ W 1,2(Ω; S2) and w ∈ L2(Ω;W 1,2
0 (Q0; R3)) be such that

m̃(x) + w(x, z) ∈ S2 for a.e. (x, z) ∈ Ω ×Q0.

Then, there exists a sequence of functions (mk)k ⊂ W 1,2(Ω; S2) such that

mk
2s→ m̃(x) + w(x, z)χ0(z) in L2(Ω; S2), (1.1)

εk∇mk
2s→ ∇zw(x, z)χ0(z) in L2(Ω; R3×3). (1.2)

Moreover, there holds
mk ∈ C∞(Ω \ {ak1 , . . . , akl

}; S2),
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i.e., the functions mk are smooth up to a finite number of points, where the points themselves
and the number kl depend on the index k ∈ N.

In comparison with [5, Theorem 4], the constructed approximants converge in a weaker
norm but (1.2) provides a finer characterization of the limiting oscillations. The proof
methodology stems from a combination of the Sard’s lemma application and the projection
analysis highlighted in [5, Theorem 4] with two-scale convergence and unfolding. Relying on
these latter tools, we actually prove a slightly refined version of Theorem 1.1 (cf. Theorem
3.2), which serves as starting point of the high-contrast analysis presented in the second
part of the paper.

The mathematical modeling of high-contrast composites has been attracting increasing
interest over the last couple of years. From a variational point of view, this question
can be phrased as identifying the Γ-limit in the sense of [12] of energy functionals modeling
highly heterogeneous composites, and exhibiting a drastical difference (high contrast) in the
material properties of their constituents. This leads, in particular, to a loss of coercivity of
the respective energy functionals, so that limiting nonlinear theories are not always available
while working with classical weak or strong Sobolev convergence, but often require turning
to two-scale adaptations instead ([9], [15], [14]).

We consider here a high-contrast toy-problem motivated by the theory of micromagnetics
(cf. [19], [8]). In order to describe our results we need to introduce some notation. Let
Ω ⊂ R3 be a bounded domain representing a ferromagnetic body. Let E ⊂ Rd be an open,
connected, and periodic set with Lipschitz boundary. The assumption that E is connected
in this setting means that

E + ei = E for all i = 1, 2, 3,

with (ei)i=1,2,3 the canonical basis of R3. We then define Q1 := Q ∩ E and Q0 := Q \ Q1.
Let further

Zε := {z ∈ Z3 : ε(Q0 + z) ⊂ Ω} (1.3)
encode those lattice points in Z3 such that the sets ε(Q0 + z) are well-separated from the
boundary of Ω. We finally define the two constituents of the composite on the scale ε > 0
as

Ω0
ε :=

⋃
z∈Zε

ε(Q0 + z). (1.4)

and
Ω1

ε := Ω \ Ω0
ε. (1.5)

This construction amounts to cutting out from some homogeneous sample Ω holes consti-
tuted by all those ε(Q0 + z) that are compactly contained in Ω, and then filling them again
with a different material than the one that makes up Ω1

ε.
The micromagnetic behavior of Ω is encoded by the functionals

Gε(u,m) := 1
2

∫
Ω1

ε

|∇m|2 dx+ 1
2

∫
Ω0

ε

ε2|∇m|2 dx+
∫

R3
|hd[m]|2 dx, (1.6)

where m, describing the magnetization of the body, is assumed to satisfy a saturation
constraint and belong to the class of functions

W 1,2(Ω; S2) := {m ∈ W 1,2(Ω; R3) : m(x) ∈ S2 for a.e. x ∈ Ω}.
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The first two terms in (1.6) describe symmetric exchanges and favour constant magnetiza-
tions (with very different strength) in the two portion of the specimen. The third energy
contribution, instead, has a nonlocal character, encodying the effects of the stray field. The
demagnetizing field hd[m] is defined as the image of the linear and continuous operator

hd : L2(R3; R3) → L2(R3; R3), (1.7)
which is uniquely determined (cf. [3], [24]) through the magneto-static Maxwell equations{

− div hd[m] = divmχΩ,

∇ × hd[m] = 0
in R3. (1.8)

In other words, the pair (mχΩ, hd[m]) fulfils

A(mχΩ, hd[m]) :=
(

div div
0 curl

) (
mχΩ
hd[m]

)
= 0 (1.9)

in the distributional sense, i.e., it lies in the kernel of the associated constant rank differ-
ential operator A. The demagnetizing fields satisfies ∥hd[m]∥L2(R3) ≤ ∥m∥L2(Ω) ≤ |Ω| (the
Lebesgue measure of Ω) for all m ∈ W 1,2(Ω; S2), and the magneto-static energy in (1.6) is
equivalently expressed as ∫

R3
|hd[m]|2 dx = −

∫
Ω
hd[m] ·mdx.

We neglect here anisotropy contributions, external fields, as well as antisymmetric ex-
changes, for they would not modify substantially the analysis, acting as lower order pertur-
bations.

A first difficulty in the identification of the high-contrast limit of Gε is due to the presence
of the saturation constraint. As already observed in [23], in the absence of Sobolev coercivity
for the admissible magnetizations, a relaxation of the saturation constraint occurs in the
energy both for the magnetizations and for the admissible stray fields. The non-local nature
of the stray-field energy further deeply affects the properties of the Γ-limit of (Gε)ε in
comparison to former results in high-contrast homogenization. In particular, in the setting
analyzed here, the energy cannot be split into two separate contributions, depending only
from the inclusions, or only from the matrix portion of the composite, respectively. It
rather exhibits, in the limiting stray-field behavior, nontrivial coupling effects. As a result,
the influence of the ε-inclusions cannot be averaged out in the homogenized energy density:
The coupling of the two material components through the non-local energy contribution
thus calls for a tracking of the fast variable in the choice of the underlying convergence.

Definition 1.2 (Convergence in the sense of extensions). Let (εk)k be an infinitesimal
sequence. We say that (fk)k ⊂ W 1,2(Ω; R3) converges to f ∈ W 1,2(Ω; R3) in the sense of
extensions, with respect to the scales (εk)k, if

(i) (fk)k is bounded in L2(Ω; R3) and
(ii) there exists a sequence (f̃k)k ⊂ W 1,2(Ω; R3) such that f̃k = fk in Ω1

k and

f̃k ⇀ f in W 1,2(Ω; R3). (1.10)

Definition 1.3 (High contrast convergence). Let (εk)k be an infinitesimal sequence. Then
(mk)k ⊂ W 1,2(Ω; R3) converges to the tuple (m̃, w) for

m̃ ∈ W 1,2(Ω; R3) and w ∈ L2(Ω;W 1,2
0 (Q0; R3)) (1.11)
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in the high contrast sense if

(i) (mk)k converges to m̃ in the sense of extensions,
(ii) and

mk
2s
⇀ m̃+ w in L2(Ω; R3). (1.12)

We say that (mk)k ⊂ W 1,2(Ω; R3) converges strongly to (m̃, w) in the high-contrast sense
if mk

2s→ m̃+ w in (1.12).

Denoting by Q the unit cube, in order to formulate our Γ-limit result we define the
mapping (see Lemma 2.8)

hz
d : L2(Ω ×Q) → L2(Ω;L2

per(Q)) (1.13)

through the identity hz
d[m] := ∇zrm, where rm ∈ L2(Ω;W 1,2

per(Q)/R) and where for almost
every x ∈ Ω the scalar function rm(x, ·) is the unique solution in W 1,2

per(Q)/R of the cell
problem∫

Q
∇zrm(x, z) · ∇zψ(z) dz = −

∫
Q
m(x, z) · ∇zψ(z) dz ∀ψ ∈ W 1,2

per(Q). (1.14)

In particular, there holds

Az(m,hz
d[m]) :=

(
divz divz

0 curlz

) (
m

hz
d[m]

)
= 0 for a.e. x ∈ Ω (1.15)

in the distributional sense. We now define the functional

G(m̃, w) := F0(w) + F1(m̃) +
∫

R3
Whom(m̃, w) dx (1.16)

with the contributions

F0(w) := 1
2

∫
Ω

∫
Q0

|∇zw|2 dzdx, (1.17)

F1(m̃) :=
∫

Ω
f̃hom(m̃,∇m̃) dx, (1.18)

and the homogenized self-energy density

Whom(m̃, w) = |hd[(m̃+ ⟨w(x, ·)⟩Q0)]|2 dx+
∫

Q0
|hz

d[w(x, z)]|2 dzχΩ. (1.19)

The tangentially homogenized energy density f̃hom, cf. [4], satisfies the cell formula

f̃hom(s, ξ) = inf
φ∈W 1,2

per(Q;TsS2)

1
2

∫
Q1

|ξ + ∇φ(z)|2 dz. (1.20)

It is called "tangentially homogenized" because we consider the infimum over all functions in
W 1,2

per(Q;TsS2) with values in the tangent space TsS2 of the sphere. We prove the following
characterization.

Theorem 1.4. Let G : W 1,2(Ω; R3) × L2(Ω;W 1,2
0 (Q0; R3)) → R ∪ {+∞} be as in (1.16).

Then:

(i) For any (m̃, w) ∈ W 1,2(Ω; S2) × L2(Ω;W 1,2
0 (Q0; R3)) and for any sequence (mε)ε ⊂

W 1,2(Ω; S2) that converges to (m̃, w) in the strong high-contrast sense, there holds
G(m̃, w) ≤ lim inf

ε→0
Gε(mε).
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(ii) For any (m̃, w) ∈ W 1,2(Ω; S2) × L2(Ω;W 1,2
0 (Q0; R3)) there exists a sequence (mε)ε ⊂

W 1,2(Ω; S2) that converges to (m̃, w) in the strong high-contrast sense and that satisfies
lim sup

ε→0
Gε(mε) ≤ G(m̃, w).

We stress that the infimum problem in (1.20) admits a unique minimizer. Define φ ∈
W 1,2

per(Q; R3) as the unique solution to the Poisson equation on the unit cell (where we write
W−1,2

per (Q; R3) for the dual space of W 1,2
per(Q; R3))

−∆φ = χQ1 in W−1,2
per (Q; R3).

One can show, using the Lax-Milgram theorem (cf. [13, Proposition 2.1]) that if (τ1(s), τ2(s))
constitute an orthonormal basis of TsS2, the unique minimizer of (1.20) can be written as

ϕ[s, ξ] := [φ · (ξτ1(s))]τ1(s) + [φ · (ξτ2(s))]τ2(s).
The corresponding minimal energy is given by

f̃hom(s, ξ) = 1
2 |Q1||ξ|2 −

∫
Q1

∇zϕ[s, ξ](z) dz.

We believe that the proof of Theorem 1.4 and especially the construction of the corre-
sponding recovery sequence provide interesting insight into the hurdles involved in nonlocal
high-contrast problems in manifold-valued Sobolev spaces. As already mentioned, the en-
tanglement of the magnetization on Ω0

ε and Ω1
ε prohibits us to reduce the study of the full

energies in Theorem 1.4 to the analysis of the isolated contributions from these two different
subsets. In fact, we can still follows this path for the difference

Fε(u,m) := Gε(u,m) −
∫

R3
W(m) dx,

where
∫

R3 W(m) dx :=
∫

R3 |hd[m]|2 dx, but additional work is required when putting the full
energy back together again. Especially the (approximate) recovery sequence has to account
for the different effects of the local and non-local parts of the energy. This is where we
rely on the result of Theorem 1.1 (to be precise, we will use a slight generalization that we
provide in Theorem 3.2). The main advantage in separating from the energies (Fε)ε the
exchange contributions on Ω1

ε is given by the fact that this allows to trace back its limit
behavior to a Γ-limit in the sense of classical homogenization (see Proposition 4.2). In
our case this is made possible through a special extension operator developed in [17] that
preserves the norm constraint. We recall this result in Section 2.2.

We conclude this introduction with a final comment about the notion of convergence in
Theorem 1.4. The identification of strong two-scale Γ-limits in the high-contrast framework
dates back to [9]. In general, in our setting, we merely know that the functionals (Gε)ε in
(1.6) are equi-coercive with respect to the weak high-contrast convergence (by Lemma 2.7)
and a priori not the strong one. Since W 1,2(Ω; S2) is closed under weak W 1,2-convergence,
we always know that m̃ ∈ S2 almost everywhere. However, the same is in general not true
for the sum m̃+ w. This is paramount to the fact that (mk)k cannot converge strongly to
m̃+ w in L2(Ω; R3).

This is due to possible oscillation phenomena, not occurring within the different cells
of scale ε, but rather between these cells. To illustrate this phenomenon, consider any
arbitrary non-zero smooth function ϕ ∈ C∞(Q; S2) that is equal to a constant vector



6

s ∈ S2 outside a compact set K ⊂ Q0 ⊂ Q. Then tessellate the domain Ω by cubes of size
εQ with alternating copies of ϕ and −ϕ. For ε → 0 the resulting magnetic field will weakly
two-scale converge to the average (cf. [11, Chapter 2.3])

m(x, z) :=
{

0 for z ∈ K,

s else,
which can also be written

m(x, z) = m̃(x) + w(x, z) for m̃(x) := s, w(x, z) :=
{

−s for z ∈ K,

0 else.

In particular, m̃ ∈ S2 in Ω, but it is not true that m = m̃+w ∈ S2 almost everywhere in Ω.
This latter remark suggests that a further relaxation of the energy needs to be undertaken
when identifying the Γ-limit of the functionals Gε in the weak high-contrast sense, in the
spirit of the analysis performed in [23]. However, this question is beyond the analysis in
this paper and will be the subject of a forthcoming contribution.

The paper is organized as follows. In Section 2 we fix some notation, collect the essential
properties of two-scale convergence, describe the precise geometries for which the Γ-limit
result in Theorem 1.4 holds, and recall a special extension operator that preserves the norm
constraint, and which will be used in the proof of Theorem 1.4. In Section 3 we prove the
approximation Theorem 1.1 in a more general way, already paving the way to apply it in
the proof of Theorem 1.4. Section 4 is devoted to the proof of Theorem 1.4.

2. Preliminary results

Throughout this paper we denote by Ω ⊂ R3 an open and bounded set with Lipschitz
boundary, and by Q := (0, 1)3 ⊂ R3 the reference unit cell. For p ∈ (1,∞) we denote by
q := p

p−1 the dual exponent of p. As usual, we set q := ∞ for p = 1. We use classical notation
for Lebesgue and Sobolev spaces. We write W 1,2(Ω)/R to highlight the fact that a specific
map is defined up to a real constant. We will denote with the subscript per functions on the
unit cube Q that have periodic trace on the sides of Q. The space W 1,2

per(Q; R3) coincides
with the closure of C∞

per(Q; R3) in the W 1,2-norm (see for example [11] for classical properties
of periodic Sobolev functions). The characteristic functions of Ω0

ε and Ω1
ε, equal to one on

the respective domain and vanishing outside of them, will be denoted by

χi
ε(x) =

{
1 if x ∈ Ωi

ε,

0 else,
for i ∈ {0, 1}. (2.1)

Note that due to definition (1.5) such characteristic functions are in general not just re-
strictions of periodic functions to Ω. In the case that we work with a fixed infinitesimal
sequence (εk)k, we will refer to the associated characteristic functions by χi

k := χi
εk

. In the
same style we will denote by χ0 and χ1 the characteristic functions of Q0 and Q1.

2.1. Two-scale convergence. We recall here some classical results on two-scale conver-
gence. The reader familiar with this topic might skip most of this subsection and proceed
directly to Lemma 2.7.

Originally introduced in [22] and further developed in [2], two-scale convergence is a
notion of convergence that is able to capture fine-scale periodic oscillations and preserve



7

the information about the oscillations in an additionally emerging micro-scale variable. It
naturally allows to pass to the limit in special integral expressions involving products of
rapidly oscillating functions.
Definition 2.1 (Weak two-scale convergence ([22, 2, 21])). Let p ∈ (1,∞). We say that a
bounded sequence of functions (uε)ε ⊂ Lp(Ω; Rn) weakly two-scale converges in Lp(Ω; Rn)
to some limit u ∈ Lp(Ω ×Q; Rn) if∫

Ω
uε(x) · ψ

(
x,

x

εn

)
dx →

∫
Ω

∫
Q
u(x, z) · ψ(x, z) dzdx ∀ψ ∈ Lq(Ω;Cper(Q; Rn)). (2.2)

We write uε
2s
⇀ u.

The reason why Lq(Ω;Cper(Q; Rn)) qualifies as the space of test functions in (2.2) is
twofold. On the one hand, all functions ψ in this space are of Carathéodory type and thus
ψ(x, x/ε) is again a well-defined measurable function in L2(Ω; Rn); on the other hand, these
functions are dense in Lq(Ω×Q; Rn) and strongly two-scale converge in the following sense.
Definition 2.2 (Strong two-scale convergence). Let p ∈ (1,∞) and (uε)ε ⊂ Lp(Ω; Rn) be
bounded. Then (uε)ε strongly two-scale converges in Lp(Ω; Rn) to some u ∈ Lp(Ω ×Q; Rn),
and we write uε

2s→ u, if it converges weakly two-scale to u and additionally there holds
∥uε∥Lp(Ω;Rn) → ∥u∥Lp(Ω×Q;Rn). (2.3)

A connection between two-scale convergence and Lp-convergence is provided by the so-
called unfolding operator.
Definition 2.3 (Unfolding operator ([10, 27, 28])). For p ∈ [1,∞] and ε > 0 the unfolding
operator

Sε : Lp(Ω; Rn) → Lp(R3 ×Q; Rn) (2.4)
is defined as

Sε(u)(x, z) := û

(
ε

⌊
x

ε

⌋
+ εz

)
, (2.5)

where û denotes the extension of u to R3 \ Ω by 0.

It follows immediately from the definition of the unfolding operator that Sε(u + v) =
Sε(u) + Sε(v) and Sε(u · w) = Sε(u) · Sε(w). A direct computation shows that Sε is a
(non-surjective) linear isometry Lp(Ω; Rn) → Lp(Rn × Q; Rn) for any p ∈ [1,∞] (cf. [28,
Lemma 1.1]). In particular, for p ∈ [1,∞) there holds∫

Ω
|u(x)|p dx =

∫
Ω

∫
Q

|Sε(u)(x, z)|p dzdx. (2.6)

Note that for any function ψ ∈ Lq(Ω;Cper(Q; Rn)) and for ψε(x) := ψ(x, x/ε) we have by
the periodicity in the second variable that

Sε (ψε) (x, z) = ψ

(
ε

⌊
x

ε

⌋
+ εz,

⌊
x

ε

⌋
+ z

)
= ψ

(
ε

⌊
x

ε

⌋
+ εz, z

)
. (2.7)

Furthermore, the unfolding operator enjoys the nice property
Sε(ε∇u) = ∇zSε(u) ∀u ∈ W 1,p(Ω; Rn). (2.8)

The crucial insight connecting two-scale convergence with the unfolding operator is provided
by the following result (cf. [28, Proposition 2.5, Proposition 2.7]).
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Proposition 2.4. Let p ∈ (1,∞). A bounded sequence (uε)ε ⊂ Lp(Ω; Rn) weakly two-scale
converges in Lp(Ω; Rn) to u ∈ Lp(Ω ×Q; Rn) iff

Sε(uε) ⇀ u in Lp(R3 ×Q; Rn). (2.9)

Analogously, (uε)ε strongly two-scale converges in Lp(Ω; Rn) to u iff

Sε(uε) → u in Lp(R3 ×Q; Rn). (2.10)

Proposition 2.4 can be taken as a motivation to extend two-scale convergence to the limit
cases p ∈ {1,∞}.

Definition 2.5. Let p ∈ {1,∞}. A bounded sequence (uε)ε ⊂ Lp(Ω; Rn) converges weakly
(weakly star for p = ∞), respectively strongly, in Lp(Ω; Rn) to some limit u ∈ Lp(Ω×Q; Rn)
if (Sε(uε)ε)ε converges weakly (weakly star), respectively strongly, to u in Lp(R3 ×Q; Rn).

From Proposition 2.4 and Definition 2.5 together with (2.6) and (2.7) one immediately
gets that every purely oscillating function converges strongly two-scale. To be precise, for
p ∈ [1,∞] and every u ∈ Lp

per(Q; Rn) there holds u(x/ε) 2s→ u(z) in Lp(Ω; Rn). With similar
arguments one can see that for i ∈ {0, 1} also the characteristic functions χi

ε = χΩi
ε

defined
in (2.1) fulfil

χi
ε(x) 2s→ χi(z) = χQi(z) in Lp(Ω; R) (2.11)

for all p ∈ [1,∞).
Eventually, Proposition 2.4 also implies that for two sequences (uε)ε ⊂ Lp(Ω; Rn), (vε)ε ⊂

Lq(Ω; Rn) with uε
2s
⇀ u and vε

2s→ v there holds uε · vε
2s
⇀ u · v in L1(Ω; Rn).

We collect some further properties of two-scale convergence. The next lemma explains
why two-scale convergence is often considered as an intermediate convergence between the
strong and weak one in Lp(Ω ×Q; Rn) (cf. [28, Theorem 1.3]).

Lemma 2.6. Let p ∈ [1,∞), let (uε)ε ⊂ Lp(Ω ×Q; Rn) be bounded and u ∈ Lp(Ω; Rn).

(i) If u is independent of the second variable and uε → u strongly in Lp(Ω; Rn), then also
uε

2s→ u in Lp(Ω; Rn).
(ii) If uε

2s
⇀ u in Lp(Ω; Rn), then

uε ⇀ ũ(x) :=
∫

Q
u(x, y) dx weakly in Lp(Ω; Rn)

and
∥ũ∥Lp(Ω;Rn) ≤ ∥u∥Lp(Ω×Q;Rn) ≤ lim inf

ε
∥uε∥Lp(Ω;Rn). (2.12)

Next, we present an augmented two-scale compactness result, which is by now well-known
in the context of high-contrast homogenization, cf. [9, 15, 14]. Note that, up to the weak
convergence of the extensions, a similar lemma was already derived in [2, Lemma 4.7]. For
convenience of the reader, we have included a proof of Lemma 2.7 in Appendix A.
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Lemma 2.7. Let (εk)k be an infinitesimal sequence and let (mk)k ⊂ W 1,2(Ω; R3) be such
that (mk)k is bounded in L2(Ω; R3). Let (m̃k)k ⊂ W 1,2(Ω; R3) denote a sequence of exten-
sions fulfilling

m̃k = mk a. e. in Ω1
ε,

∥m̃k∥L2(Ω;R3) ≤ C1∥mk∥L2(Ω1
ε;R3),

∥Dm̃k∥L2(Ω;R3×3) ≤ C1∥Dmk∥L2(Ω1
ε;R3×3)

for some constant C1 > 0 independent of ε. Moreover, assume that there exists another
constant C2 > 0 such that

∥εkχ
0
k∇mk∥L2(Ω;R3×3) + ∥χ1

k∇mk∥L2(Ω;R3×3) ≤ C2. (2.13)

Then, there exist

m ∈ L2(Ω;W 1,2
per (R3; R3)), m̃ ∈ W 1,2(Ω; R3), w ∈ L2(Ω;W 1,2

0 (Q0; R3)) (2.14)

such that, up to subsequences,

m(x, z) = m̃(x) + w(x, z) for a.e. (x, z) ∈ Ω ×Q, (2.15)

mk
2s
⇀m, εk∇mk

2s
⇀ ∇zw weakly two-scale in L2(Ω; R3×3), (2.16)

m̃k ⇀ m̃ weakly in W 1,2(Ω; R3). (2.17)

Finally, we recall a two-scale result for the demagnetizing field defined in (1.7) and (1.8)
(cf. [3, Proposition4.3], [24, Proposition 11]).

Lemma 2.8. Let (mk)k ⊂ W 1,2(Ω; R3) weakly two-scale converge in L2(Ω; R3) to a limit
function m ∈ L2(Ω×Q; R3). Then, up to a subsequence, the sequence (hd[mk])k of associated
demagnetizing fields weakly two-scale converges to

hd[⟨m⟩Q](x) + hz
d[m](x, z)χΩ(x),

where
hz

d : L2(Ω ×Q) → L2(Ω;L2
per(Q)) (2.18)

is defined as hz
d[m] := ∇zrm, where rm ∈ L2(Ω;W 1,2

per (Q)/R) is such that for almost every
x ∈ Ω the scalar function rm(x, ·) is the unique solution in W 1,2

per (Q)/R to the cell problem∫
Q

∇zrm(x, z) · ∇zψ(z) dz = −
∫

Q
m(x, z) · ∇zψ(z) dz ∀ψ ∈ W 1,2

per (Q). (2.19)

We note that the above result exemplifies the abstract result in [16] about two-scale
convergence under differential constraints. Recalling (1.9), it follows from [16, Theorem 1.2]
that the limit of (hd[mk])k has to fulfil

Az(m,hz
d[m]) :=

(
divz divz

0 curlz

) (
m

hz
d[m]

)
= 0 for a.e. x ∈ Ω ,

which is exactly an equivalent formulation of (1.15).
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2.2. Extension operators. Extension operators providing separate bounds on the L2-
norm of the maps and of their gradients are a fundamental tool in the study of homoge-
nization problems on perforated domains. The seminal result in this direction can be found
in [1, Theorem 2.1] and reads as follows.

Proposition 2.9. Let 1 ≤ p < ∞ and let Ω1
ε be as in (1.5). Then, there exist a linear and

continuous extension operator

Tε : W 1,p(Ω1
ε; R3) → W 1,p(Ω; R3)

and a constant C > 0 independent of ε and Ω, such that

Tεf = f a. e. in Ω1
ε,

∥Tεf∥Lp(Ω;R3) ≤ C∥f∥Lp(Ω1
ε;R3),

∥D(Tεf)∥Lp(Ω;R3×3) ≤ C∥Df∥Lp(Ω1
ε;R3×3)

for every f ∈ W 1,p(Ω1
ε; R3).

In our problem we will need a variants of the above result in order to take care of
extensions of the magnetizations. The main hurdle concerns the necessity of extending the
maps while at the same time preserving the saturation constraint. This is guaranteed by [17,
Theorem 3.1], whose simplified statement in our setting is stated in the next proposition.

Proposition 2.10. Let Ω1
ε be as in (1.5). There exists an extension operator

Tε : W 1,2(Ω1
ε; S2) → W 1,2(Ω; S2)

and a constant C > 0, independent of ε, such that for ε sufficiently small

Tεf = f a. e. in Ω1
ε,

∥Tεf∥L2(Ω;S2) ≤ C∥f∥L2(Ω1
ε;S2),

∥D(Tεf)∥L2(Ω;R3×3) ≤ C∥Df∥L2(Ω1
ε;R3×3),

for every f ∈ W 1,2(Ω1
ε; S2).

3. Proof of Theorem 1.1

We preliminary recall an approximation result proving that every function in the space
L2(Ω;W 1,2

0 (Q0; R3)) can be attained as a strong two-scale limit of smooth functions in
C∞

c (Ω; R3). The idea of the construction goes back to [14, Lemma 6.1], as well as [9,
Lemma 22 and Proposition 17]. To make the presentation as self-contained as possible we
also provide a short proof.

Lemma 3.1. For any infinitesimal sequence (εk)k and any w ∈ L2(Ω;W 1,2
0 (Q0; S2)) there

exists a sequence (ŵk)k ⊂ C∞
c (Ω; R3) such that ŵkχ

1
k = 0 for every k, with

ŵk
2s→ w(x, z) in L2(Ω; R3), (3.1)

and
εk∇ŵk

2s→ ∇zw(x, z) in L2(Ω; R3). (3.2)
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Proof. Let w ∈ L2(Ω;W 1,2
0 (Q0; S2)). We approximate w by functions (wj)j ⊂ C∞

c (Ω ×
Q0; R3). Then, we define

wj
k(x, z) :=

{ 1
ε3

k

∫
εk(t+Q)wj(x̄, z) dx̄ if x ∈ εk(t+Q) for some t ∈ Ẑk,

0 else
(3.3)

by averaging on cubes whose side lengths are associated to the sequence (εk)k. In the
expression above, Ẑk := {t ∈ Z3 : εk(t+Q) ⊂ Ω}.

Note that since wj has compact support in Q in the z-variable for all j ∈ N, the functions

vj
k(x) := wj

k

(
x,

x

εk

)
(3.4)

are again elements of C∞
c (Ω) for all j, k ∈ N. Furthermore, for any fixed j ∈ N the sequence

(vj
k)k strongly two-scale converges to wj for k → ∞; and at the same time (εk∇vj

k)k strongly
two-scale converges to ∇zwj . This follows from the smoothness of the functions and the
mean value theorem (compare [14, Lemma 6.1]). Eventually, by construction, vj

kχ
1
k = 0 for

every k ∈ N.
In particular, owing to Proposition 2.4, we find

lim
j→+∞

lim
k→+∞

(
∥Sk(vj

k) − w∥L2(R3×Ω;R3) + ∥∇zSk(vj
k) − ∇zw∥L2(R3×Ω;R3×3)

)
= 0.

By Attouch’s diagonalization lemma [26, Lemma 1.15 and Corollary 1.16] we find a subse-
quence (j(k))k such that

lim
k→+∞

(
∥Sk(vj(k)

k ) − w∥L2(R3×Ω;R3) + ∥∇zSk(vj(k)
k ) − ∇zw∥L2(R3×Ω;R3×3)

)
= 0.

The thesis follows then by Proposition 2.4, setting ŵk := v
j(k)
k for all k ∈ N. □

Let now m̃ ∈ W 1,2(Ω; S2) and w ∈ L2(Ω;W 1,2
0 (Q0; R3)) be such that

m̃(x) + w(x, z) ∈ S2 for a.e. (x, z) ∈ Ω ×Q0.

Then, we might approximate m̃ by functions
(m̃′

k)k ⊂ C∞(Ω; R3) such that m̃′
k → m̃ strongly in W 1,2(Ω; R3), (3.5)

and we apply Lemma 3.1 to find a sequence (ŵk)k ⊂ C∞
c (Ω; R3) that fulfils (3.1) and (3.2).

In particular,
vk(x) := m̃′

k(x) + ŵk(x) ∈ C∞(Ω; R3) ∩W 1,2(Ω; R3) (3.6)
and

vk
2s→ m̃+ wχ0 strongly two-scale in L2(Ω; R3)

εk∇vk
2s→ (∇zw)χ0 strongly two-scale in L2(Ω; R3).

In order to construct a recovery sequence, it would be natural to project back the functions
in (3.6) onto S2 by means of the map

π : R3 \ {0} → S2, π(x) = x

∥x∥
, (3.7)

which coincides with the nearest point projection on every tubular neighbourhood of S2.
Unfortunately, in general, it is not guaranteed that the pointwise projections of the maps in
(3.6) are well defined. In particular, in principle, sets of positive measure could be mapped
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by vk onto the origin, so that the composition π ◦ vk could have singularities on a set of
positive measure. To circumvent this possible pitfall, we adapt the strategy in [5, Theorem
4]. We prove now a slight generalization of Theorem 1.1, adding arbitrary perturbations
εψ, for ψ ∈ C∞

c (Ω;C∞
per(Q; R3)), to the approximating sequence. This additional degree of

freedom will be exploited in the proof of Theorem 1.4 in Section 4. Moreover, Theorem 1.1
follows from Theorem 3.2 simply be setting ψ ≡ 0.

Theorem 3.2. Let m̃ ∈ W 1,2(Ω; S2) and w ∈ L2(Ω;W 1,2
0 (Q0; R3)) be such that

m̃(x) + w(x, z) ∈ S2 for a.e. (x, z) ∈ Ω ×Q0.

Then, for every ψ ∈ C∞
c (Ω;C∞

per(Q; R3)) there exists a sequence of functions (mk)k ⊂
W 1,2(Ω; S2) such that

mk
2s→ m̃(x) + w(x, z)χ0(z) in L2(Ω; S2), (3.8)

εk∇mk
2s→ ∇zw(x, z)χ0(z) in L2(Ω; R3×3), (3.9)

∇mkχ
1
k

2s→ ∇m̃(x) + ∇zψ(x, z) · ∇π(m̃(x))χ1(z) in L2(Ω; R3×3). (3.10)

Moreover, there holds
mk ∈ C∞(Ω \ {ak1 , . . . , akl

}; S2),
i.e., the functions mk are smooth up to a finite number of points, where the points themselves
and the number kl depend on the index k ∈ N .

Proof. For m̃ ∈ W 1,2(Ω; S2) and w ∈ L2(Ω;W 1,2
0 (Q0; R3)) as in the thesis, we choose

approximating sequences (m̃′
k)k ⊂ C∞(Ω; R3) and (ŵk)k ⊂ C∞

c (Ω; R3) with the properties
in (3.5) and in Lemma 3.1. For ψ ∈ C∞

c (Ω;C∞
per(Q; R3)) we define (modifying (3.6))

vk(x) := m̃′
k(x) + εkψ(x, x/εk) + ŵk(x) ∈ C∞(Ω; R3) ∩W 1,2(Ω; R3). (3.11)

There holds

vk
2s→ m̃+ wχ0 strongly two-scale in L2(Ω; R3) (3.12)

εk∇vk
2s→ (∇zw)χ0 strongly two-scale in L2(Ω; R3). (3.13)

Note that we can always assume that Sk(vk) converges a.e. to m̃ + wχ0 in R3 × Q by
extracting a proper subsequence.

We follow now the strategy outlined in [5, Theorem 4]. For δ ∈ (0, 1), let S2
1−δ and B1−δ

be the sphere and ball centered in the origin and with radius 1 − δ.
First, observe that by Sard’s theorem and [20, Theorem 5.22] the preimages Fk,δ :=

v−1
k (S2

1−δ) in Ω are submanifolds of co-dimension one in Ω for almost every 0 < δ < 1/2.
They are also the topological boundary in Ω of the sets Vk,δ := v−1

k (B1−δ) for B1−δ = {y ∈
R3 : y ≤ 1− δ}. In what follows, we denote by D the set of δ ∈ (0, 1/2) such that the above
properties hold for all k ∈ N and we fix δ ∈ D.

In view of [5, Theorem 4] (see also [6, Lemma 2.3] and [17]), for every k ∈ N there exists
ak ∈ B1/4 such that, defining the shifted projections

πδ(x) := π(x)(1 − δ) = x

∥x∥
(1 − δ), πδ

ak
(x) := πδ(x− ak) (3.14)
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and

π̂δ
ak

:= (πδ
ak

|S2
1−δ

)−1 ◦ πδ
ak
, (3.15)

we have

π̂δ
ak

◦ vk ∈ W 1,2(Vk,δ; S2
1−δ) (3.16)

with

∥∇(π̂δ
ak

◦ vk)∥L2(Vk,δ;S2) ≤ C∥∇vk∥L2(Vk,δ;R3). (3.17)

The important detail in the above construction lies in the fact that, again by Sard’s theorem,
for almost every a ∈ B1/4 the preimages v−1

k (a) are points in Vk,δ ⊂ Ω (of co-dimension
3). Estimate (3.17) only holds true because the exponent p = 2 is smaller than the space
dimension of the ambient Euclidean space R3 of S2. Now, we set

mk :=
{
π ◦ π̂δ

ak
◦ vk for x ∈ Vk,δ

π ◦ vk for x ∈ Ω \ Vk,δ.
(3.18)

Note that by (3.15) there holds (mk)k ⊂ W 1,2(Ω; S2). We apply now the unfolding operator
to prove the strong two-scale convergences in (3.8) and (3.9). To this end, define

Wk,δ := {(x, z) ∈ R3 ×Q : εk⌊x/εk⌋ + εkz ∈ Vk,δ} (3.19)

Recall that away from zero – in particular, outside of B1−δ – the nearest point projection
π is a smooth function. Thus, outside Wk,δ, arguing by unfolding, we find

∫
(R3×Q)\Wk,δ

|Sk(mk) − [m̃+ wχ0]|2 dzdx

=
∫

(R3×Q)\Wk,δ

|Sk(π(vk)) − [m̃+ wχ0]|2 dzdx

=
∫

(R3×Q)\Wk,δ

|π(Sk(vk)) − π(m̃+ wχ0(z))|2 dzdx

≤ ∥∇π∥2
L∞(B1\B1−δ)

∫
R3

∫
Q

|Sk(vk) − [m̃+ wχ0(z)]|2 dzdx,

(3.20)

where the right-hand side converges to zero owing to (3.12). We used in the second equality
that the unfolding operator commutes with the projection π, since it has no influence on
the values of a map.

The same arguments apply to the sequence (εk∇mk)k, upon noticing that

∇zw(x, z) = ∇z(π ◦ (m̃(x) + w(x, z))) = ∇zw(x, z) · ∇π(m̃(x) + w(x, z))
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for almost every (x, z) ∈ Ω × Q0, because m̃ + w ∈ S2 for almost every (x, z) ∈ Ω × Q0.
Indeed, we find∫

(R3×Q)\Wk,δ

|Sk(εk∇mk) − ∇z(wχ0)|2 dzdx

=
∫

(R3×Q)\Wk,δ

|Sk(εk∇(π(vk))) − ∇z(wχ0) · ∇π(m̃+ wχ0)|2 dzdx

=
∫

(R3×Q)\Wk,δ

|Sk(εk∇vk∇π(vk))) − ∇z(wχ0) · ∇π(m̃+ wχ0)|2 dzdx

=
∫

(R3×Q)\Wk,δ

|Sk(εk∇vk) · Sk(∇π(vk))) − ∇z(wχ0) · ∇π(m̃+ wχ0)|2 dzdx

≤ ∥∇π∥2
L∞(B1\B1−δ)

∫
(R3×Q)\Wk,δ

|Sk(εk∇vk) − ∇zwχ
0|2 dzdx

+
∫

(R3×Q)\Wk,δ

|∇zwχ
0 · (Sk(∇π(vk)) − ∇π(m̃+ wχ0))|2 dzdx.

(3.21)

The first integral on the right-hand side of (3.21) vanishes due to (3.13) and the second one
by virtue of Severini-Egorov Theorem. In fact, according to the latter result, using that
Sk(vk) converges almost everywhere to m̃+wχ0 and that |Sk(vk) − (m̃+wχ0)| ≤ 2 almost
everywhere in R3 ×Q , for every µ > 0 we have the estimate∫

(R3×Q)\Wk,δ

|∇zwχ
0 · (Sk(∇π(vk)) − ∇π(m̃+ wχ0))|2 dzdx

≤ ∥∇zw∥2
L2((R3×Q)

(
∥∇2π∥L∞(B1\B1−δ)µ+ 2|Eµ|∥∇2π∥L∞(B1\B1−δ)

)
for k ∈ N sufficiently large and for some open subset Eµ ⊂ (R3 × Q) \ Wk,δ such that
|Eµ| < µ. Letting µ → 0 and k → ∞ we validate the claim of the theorem outside of Wk,δ.

It remains to prove that the contributions from Sk(π ◦ π̂δ
ak

◦ vk) and ∇zSk(π ◦ π̂δ
ak

◦ vk)
on the set Wk,δ become infinitesimally small in the limit. We set

Ak,δ := {(x, z) ∈ R3 ×Q : |Sk(vk)(x, z) − [m̃(x) + w(x, z)χ0(z)]| ≥ δ}. (3.22)

From the strong L2-convergence of (Sk(vk))k in (3.12) it follows that the Lebesgue measure
of Ak,δ converges to zero for k → ∞. Additionally, since Sk(vk) ∈ B1−δ almost everywhere
on Wk,δ and m̃+ w ∈ S2 almost everywhere on Ω ×Q, it follows that Wk,δ ⊂ Ak,δ. Then,
from the property that Sk(π ◦ π̂δ

ak
◦ vk) takes values in S2, we infer that∫

Wk,δ

|Sk(π ◦ π̂δ
ak

◦ vk)(x, z) − [m̃(x) + w(x, z)χ0(z)|2 dzdx ≤ 4|Ak,δ|, (3.23)

which vanishes in the limit k → ∞. Turning to the gradients ∇zSk(π ◦ π̂δ
ak

◦ vk), we first
infer from (3.13) the equiintegrability of the sequence (Sk(εk∇vk))k. From the smoothness
of π on S2

1−δ, and by the fact that the unfolding operator is an isometry, inequality (3.17)
translates into ∫

Wk,δ

|Sk(∇(π ◦ π̂δ
ak

◦ vk))|2 dzdx =
∫

Vk,δ

|∇(π ◦ π̂δ
ak

◦ vk)|2 dx

≤ ∥∇π∥L∞(S2
1−δ

)

∫
Vk,δ

|∇(π̂δ
ak

◦ vk)|2 dx ≤ C

∫
Vk,δ

|∇vk|2 dx.
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Thus, by (2.8),∫
Wk,δ

|∇zSk(π ◦ π̂δ
ak

◦ vk)|2 dzdx =
∫

Wk,δ

|Sk(εk∇(π ◦ π̂δ
ak

◦ vk))|2 dzdx ≤ C

∫
Vk,δ

|ε∇vk|2 dx

= C

∫
Wk,δ

|Sk(ε∇vk)|2 dzdx → 0, (3.24)

owing to (3.13), and the fact that

|Wk,δ| ≤ |Ak,δ| → 0 (3.25)

as k → +∞. In particular, by (3.24) and (3.25), we also infer that

∥∇zSk(mk) − ∇zwχ
0∥L2(Wk,δ;R3×3) → 0 (3.26)

as k → +∞. By (3.20), (3.21), (3.23), and (3.26) we obtain (3.8) and (3.9).
It remains to identify the two-scale limit of (∇mkχ

1
k)k and to prove (3.10). Again, we

split the integral over ∇mkχ
1
k into the part on Vk,δ and the one on the complement in

Ω. For the first contribution, since ŵkχ
1
k = 0 for every k, cf. Lemma 3.1, we infer that

vk(x) = m̃′
k(x) + εkψ

(
x, x

εk

)
for almost every x ∈ Ω1

k. Thus, we find the estimate

∥∇mkχ
1
k∥L2(Vk,δ;R3) ≤ C∥∇π∥L∞(B1\B1−δ)∥∇Vk,δχ

1
k∥L2(Vk,δ;R3)

≤ C∥∇π∥L∞(B1\B1−δ)
(
∥∇m̃′

k∥L2(Vk,δ;R3×3) + εk∥∇xψ∥L2(Vk,δ;R3×3) + ∥∇zψ∥L2(Vk,δ;R3×3)
)
.

From (3.5) and the fact that |Vk,δ| → 0 we hence obtain that

∥∇mkχ
1
k∥L2(Vk,δ;R3) → 0

as k → +∞.
Let us now set m̂k(x) := mkχ

1
k(x). Then,

m̂k(x) = π(m̃′
k(x) + εkψ(x, x/εk)) for a. e. x ∈ Ω \ Vk,δ. (3.27)

Consequently, on Ω \ Vk,δ there holds

∇m̂k(x) = (∇m̃′
k(x) + εk∇xψ(x, x/εk) + ∇zψ(x, x/εk)) · ∇π(m̂k(x))χ1

k(x).

Recall now that the right-hand side in (3.10) can be rewritten as

∇m̃(x) + ∇zψ(x, z) · ∇π(m̃(x))χ1(z) = (∇m̃(x) + ∇zψ(x, z)) · ∇π(m̃(x))χ1(z),

since m̃ ∈ S2 for a.e. x ∈ Ω. Employing once more the smoothness of π outside of B1−δ,
the claim follows then from

∇m̃′
k(x) + εk∇xψ(x, x/εk) + ∇zψ(x, x/εk) 2s→ ∇m̃(x) + ∇zψ(x, z) in L2(Ω; R3×3),

which results from the strong convergence of the approximations (m̃′
k)k towards m̃ in

W 1,2(Ω; R3) and the smoothness of ψ ∈ C∞
c (Ω;C∞

per(Q; R3)).
The statement that the elements mk of the approximating sequence are smooth up to a

finite number of points, whose position and number depends on the index k ∈ N is a direct
consequence of the construction in (3.15)-(3.16) (see [5, Theorem 4]). □
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Remark 3.3. The proof of Theorem 3.2 can be split into the following two steps: (i) first,
using Lemma 3.1, we construct a sequence approximating m̃ + w strongly two-scale (and
similarly for the gradient), where, however, we forget about the S2-constraint; (ii) we then
use suitable projections in the target space to restore the constraint. In theory, one could
also try to first find approximations, smooth up to finitely many points, of m̃ + w (and
its gradient) in Lp(Ω × Q; S2) with the help of the ideas in [5, Theorem 4], and then to
build strong two-scale approximations in the lines of Lemma 3.1. In fact, applying the
approximation scheme from [5, Theorem 4] to a target function in L2(Ω ×Q; S2) is possible
in theory, but there is a catch with following Lemma 3.1 and it is two-fold: First, through
the averaging in (3.3) we fall again out of S2 in the target space; and second, introducing
the fast oscillations in (3.4) might lead to ill-defined functions. The reason for the latter
point is the following: In applying [5, Theorem 4] to a function in L2(Ω × Q; S2) with
smooth approximations in C∞(Ω ×Q; S2), we need to choose a sequence of shifts (ak)k for
the projections such that the analog of (3.16) is fulfilled. The preimages of the singularities
of the shifted projections would have co-dimension 3 in Ω ×Q, and nothing tells us a priori
that they lie completely in Ω, i.e., that, when projected onto Q, they have co-dimension
3 in Q (in particular, if this fails, they are not of Carathéodeory type). But if we mimic
(3.4) for such functions, we cannot assure that the resulting maps are well-defined. Hence,
the path chosen for Theorem 3.2 appears to the authors to be the only feasible option to
construct the sought strong two-scale approximations.

4. Proof of theorem 1.4

4.1. Splitting and analysis of the energy on the matrix component. We define for
m ∈ W 1,2(Ω; S2) the energies

Fε(u,m) := Gε(u,m) −
∫

R3
W(m) dx, (4.1)

as well as

F0
ε (m) := 1

2

∫
Ω0

ε

ε2|∇m|2 dx, (4.2)

F1
ε (m) := 1

2

∫
Ω1

ε

|∇m|2 dx. (4.3)

The next proposition will allow to separately study the Γ-limits of (F0
ε )ε and (F1

ε )ε.

Lemma 4.1 (Splitting). For (εk)k an infinitesimal sequence let (mk)k ⊂ W 1,2(Ω; S2) con-
verge to some (m̃, w) ∈ W 1,2(Ω; R3) × L2(Ω;W 1,2

0 (Q0; R3)) in the high-contrast sense of
Definition 1.3. Let further (m̃k)k be the extensions in W 1,2(Ω; S2) provided by Proposi-
tion 2.10. We set wk := mk − m̃k. Then

lim inf
k→+∞

F0
ε (wk) + lim inf

k→+∞
F1

ε (m̃k) ≤ lim inf
k→+∞

Fε(mk), (4.4)

lim sup
k→+∞

Fε(mk) ≤ lim sup
k→+∞

F0
ε (wk) + lim sup

k→+∞
F1

ε (m̃k). (4.5)

Proof. A direct computation shows that

Fε(mk) = F0
ε (mk) + F1

ε (mk) = F0
ε (wk) + F1

ε (m̃k) + Rk
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with the residual term

Rk = F0
ε (mk) − F0

ε (wk) = 1
2

∫
Ω0

ε

ε2 (
|∇mk|2 − |∇wk|2

)
dx.

Hence, to conclude the proof we only need to show that Rk → 0 for k → ∞. Then (4.4)
and (4.5) will follow by super- and subadditivity of lim sup and lim inf. We compute with
Hölder’s inequality that

|Rk| ≤
∫

Ω0
ε

ε2|∇mk : ∇m̃k| dx+ 1
2

∫
Ω0

ε

ε2|∇m̃k|2 dx

≤
(
ε∥ε∇mk∥L2(Ω;R3×3) + 1

2ε
2
)

∥∇m̃k∥L2(Ω;R3×3).

This finishes the proof, because ∥ε∇mk∥L2 and ∥∇m̃k∥L2 are uniformly bounded following
the assumption that (mk)k converges in the high-contrast sense to (m̃, w), and by the
bounds of the extension operator from Proposition 2.10. □

By using the special extension operator in Proposition 2.10 that preserves the saturation
constraint of the magnetizations, we narrowed down the analysis of the energies (F1

ε )ε on
the matrix part to the case where again the magnetizations lie in W 1,2(Ω; S2). Actually,
we can obtain the limit behaviour as a special version of a more general homogenization
result. Define the functional

Iε(m) := 1
2

∫
Ω
aε(x)|∇m|2 dx (4.6)

form ∈ W 1,2(Ω; S2), where we set aε(x) := a(x/ε) := χ(εkE)∩Ω(x). The asymptotic behavior
of the functionals Iε is characterized by the following Γ-convergence result. Here it will
be sufficient to use in the construction of approximate recovery sequences the classical
projection π onto S2 as defined in (3.7).

Proposition 4.2. The family (Iε)ε defined in (4.6) Γ-converges with respect to the weak
W 1,2-topology in W 1,2(Ω; S2) to the limit energy functional

I(u,m) :=
∫

Ω
fhom(m,∇m) dx, (4.7)

where the homogenized energy density fhom satisfies the cell formula

fhom(s, ξ) = inf
φ∈W 1,2

per (Q;TsS2)

1
2

∫
Q1

|ξ + ∇φ(z)|2 dz. (4.8)

The proof of Proposition 4.2 essentially follows from the analysis in [3]. For convenience
of the reader, we have included a proof in Appendix B. The following result concerning
recovery sequences for the limit energy I are direct consequences of the proof of Proposi-
tion 4.2. We will use it in combination with (3.10) in Theorem 3.2.

Corollary 4.3. Let m̃ ∈ W 1,2(Ω; S2) and δ > 0.

(i) There exist ψδ
m ∈ C∞

c (Ω;C∞
per(Q; R3)) such that for

m̃δ
ε(x) := π

(
m̃(x) + εψδ

m

(
x,
x

ε

))
there holds

lim sup
k→∞

Iε(m̃δ
ε) ≤ I(m̃) + δ. (4.9)
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Moreover,
m̃δ

ε(x) ⇀ m̃(x) in W 1,2(Ω; S2). (4.10)
(ii) More generally, inequality (4.9) is valid for every sequence (m̃ε)ε ⊂ W 1,2(Ω; S2) ful-

filling

∇m̃ε(x) 2s→ ∇m̃(x) + ∇zψ
δ
m(x, z)∇π(m̃(x)) in L2(Ω; R3×3). (4.11)

4.2. Lower bound. The liminf inequality in Theorem 1.4 is now a straight-forward result
of the definition of high-contrast convergence in Definition 1.3 and the two-scale behaviour
of the demagnetizing fields in Lemma 2.8.

Proposition 4.4. Let (εk)k be an infinitesimal sequence. For any (m̃, w) ∈ W 1,2(Ω; R3) ×
L2(Ω;W 1,2

0 (Q0; R3)) and for any sequence (mk)k ⊂ W 1,2(Ω; S2) that converges to (m̃, w) in
the strong high-contrast sense, there holds

G(m̃, w) ≤ lim inf
k→∞

Gε(mk).

Proof. We may assume that lim infk→∞ Gk(mk) is finite, for otherwise, there is nothing
to show. By Definition 1.3 we know that there exists a sequence (m̃k)k ⊂ W 1,2(Ω; S2)
such that m̃k = mk almost everywhere on Ω1

k, and with m̃k ⇀ m̃ weakly in W 1,2(Ω; S2).
Furthermore, mk

2s→ m̃+w in L2(Ω; R3). Employing the compactness Lemma 2.7, and from
the uniqueness of the two-scale limit, we even know that there exists a subsequence – which
we do not relabel – such that

εk∇mk(x) 2s
⇀ ∇zw(x, z) in L2(Ω; R3×3). (4.12)

Setting wk := mk − m̃k, by Proposition 4.1 we infer that

lim inf
k→+∞

Fε(mk) ≥ lim inf
k→+∞

F0
k (, wk) + lim inf

k→+∞
F1

k (m̃k).

By classical properties of two-scale convergence (see Lemma 2.6 (ii)) we find immediately
that

lim inf
k→∞

F0
k (wk) = lim inf

k→∞

1
2

∫
Ω0

k

ε2
k|∇m|2 dx ≥ 1

2

∫
Ω

∫
Q0

|∇zw(x, z)|2 dzdx = F0(w). (4.13)

To establish a lower bound for the matrix-related part of the energy, we apply instead
Proposition 4.2 with a slight modification due to the fact that χ1

k is not periodic on Ω. We
first conclude with Proposition 4.2 that

lim inf
k→∞

1
2

∫
(εkE)∩Ω

|∇m̃k|2 dx ≥ F1(m̃). (4.14)

Then, since (εkE) ∩ Ω ⊂ Ω1
k, there holds

lim inf
k→∞

F1
ε (m̃k) = lim inf

k→∞

1
2

∫
Ω1

k

|∇m̃k|2 dx ≥ F1(m̃). (4.15)

To summarize, there holds

lim inf
k→∞

Fk(mk) ≥ F0(w) + F1(m̃), (4.16)
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where Fk is defined in (4.1) as the difference between Gk and the magnetostatic self-energy.
In view of the superadditivity of the limes inferior, it remains to prove that

lim inf
k→∞

∫
R3

|hd[mk]|2 dx ≥
∫

R3
|hd[(m̃+ ⟨w(x, ·)⟩Q0)]|2 dx+

∫
Ω

∫
Q0

|hz
d[w(x, z)]|2 dzdx.

This latter inequality is a consequence of the weak two-scale behaviour of the demagnetizing
fields and of a well-known orthogonality result in two-scale convergence. From Lemma 2.8,
by the weak two-scale convergence of (mk)k to m̃+w, then the corresponding demagnetizing
fields (hd[mk])k weakly two-scale converge, up to a subsequence, in L2(R3; R3) to

hd(x, z) := hd[(m̃(x) + ⟨w(x, ·)⟩Q0)](x) + hz
d[w](x, z)χΩ(x).

Note that we used that hz
d[m] = hz

d[w] in our case. Thus, again by lower semi-continuity
(see Lemma 2.6 (ii)) we have

lim inf
k→∞

∫
R3

|hd[mk]|2 dx ≥
∫

R3

∫
Q

|hd[(m̃(x) + ⟨w(x, ·)⟩Q0)] + hz
d[w]χΩ(x)|2 dzdx. (4.17)

We recall that the function hz
d[w] is given through the identity hz

d[m] = ∇zrm with a
uniquely defined scalar potential rw ∈ L2(Ω;W 1,2

per(Q; R)/R). In particular, r(x, ·) is periodic
with respect to the z-variable, entailing that the z-gradient has vanishing mean value. Thus,
we can orthogonally decompose the right-hand side above as∫

R3

∫
Q

|hd[(m̃(x) + ⟨w(x, ·)⟩Q0)] + ∇zrw|2 dzdx

=
∫

R3
|hd[(m̃(x) + ⟨w(x, ·)⟩Q0)]|2dx+

∫
R3

∫
Q0

|hz
d[w]|2χΩ(x) dzdx. (4.18)

The claimed lower bound follows then by combining (4.16)–(4.18). □

4.3. Upper bound. The main task in showing the limsup inequality in Theorem 1.4 is
the construction of a suitable approximate recovery sequence that allows to pass to the
limit in all the different energy contributions. It is here that Theorem 1.1 (to be precise, its
augmented version in Theorem 3.2) becomes essential. For a given pair (m̃, w), we construct
the recovery sequence by perturbing the base magnetization m̃ by damped oscillations to
account for the energy on the matrix component; we then add the field w on the inclusions
to match the high-contrast scaling of the functional there. Eventually, we pass to the limit
with the help of all strong two-scale convergence properties in (3.8)-(3.10) of Theorem 3.2.

Proposition 4.5. For any (m̃, w) ∈ W 1,2(Ω; R3) × L2(Ω;W 1,2
0 (Q0; R3)) there exists a se-

quence (mε)ε ⊂ W 1,2(Ω; S2) that converges to (m̃, w) in the strong high-contrast sense and
that satisfies

lim sup
ε→0

Gε(mε) ≤ G(m̃, w).

Proof. Fix δ > 0. Corollary 4.3 entails that there exist ψδ
m ∈ C∞

c (Ω;C∞
per(Q; R3)) such that

lim sup
k→∞

Fk

(
π

(
m̃(x) + εψδ

m

(
x,
x

ε

)))
≤ F1(m̃) + δ.

Let now further (mk)k be the sequence of maps provided by Theorem 3.2, with the special
choice ψ = ψδ

m. We first check the strong high contrast convergence of the sequence (see
Definition 1.3). First, from (3.8) in Theorem 3.2 we infer that

mk
2s→ m̃+ w strongly two-scale in L2(Ω; R3).
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We now prove that
mk → m̃ in the sense of extensions.

Indeed, take an arbitrary subsequence of (mk)k, say (mk(j))j , and extend the restric-
tions mk(j)χ

1
k(j) to Ω0

k with the estension operator provided by Proposition 2.10. De-
note by m̃k(j) these extensions. From the boundedness of (mk)k and the boundedness
of the extension operator, we extract a further subsequence (not relabeled) that converges
weakly in W 1,2(Ω; R3) and strongly in L2(Ω; R3) to a limit function m̃′ ∈ W 1,2(Ω; S2). At
the same time, because strong L2-convergence implies weak two-scale convergence (com-
pare Lemma 2.6 (ii)), we find that mk(j)χ

1
k(j) = m̃k(j)χ

1
k(j) weakly two-scale converges to

χ1(z)m̃′(x) = χ1(z)m̃(x) in L2(Ω; R3). This yields that m̃′ = m̃. Since this result is in-
dependent of the subsequence that we chose in the beginning, we conclude that (mk)k

converges to m̃ in the sense of extensions.
Coming back to the lim sup-inequality, we define

m̃k := Tk

(
mk|Ω1

k

)
and wk := mk − m̃k,

where Tk : W 1,p(Ω1
k; S2) → W 1,p(Ω; S2) is the extension operator from Proposition 2.10.

Note that (wk)k ⊂ W 1,2
0 (Ω0

k; R3). Then, it follows from the splitting in Proposition 4.1 that
lim sup

k→∞
Gk(mk) ≤ lim sup

k→+∞
F0

k (wk) + lim sup
k→+∞

F1
k (m̃k) + lim sup

k→+∞
W(mk).

From (3.9) of Theorem 3.2 we obtain

lim sup
k→+∞

F0
k (wk) = 1

2

∫
Ω

∫
Q0

|∇zw(x, z)|2 dzdx.

For the magnetostatic self-energy W we use again the fact that by Lemma 2.8 the sequence
(hd[mk])k converges weakly two-scale in L2(R3; R3) to

hd(x, z) := hd[(m̃(x) + ⟨w(x, ·)⟩Q0)] + hz
d[w]χΩ(x).

By Theorem 3.2, equation (3.8), we thus obtain

lim
k→+∞

∫
R3

W(mk) = lim
k→+∞

−
∫

Ω
hd[mk] ·mk dx

= −
∫

Ω

∫
Q
hd(x, z) · (m̃(x) + w(x, z)χ0(z)) dzdx

and a direct computation shows that

−
∫

Ω

∫
Q
hd(x, z) · (m̃(x) + w(x, z)χ0(z)) dzdx

=
∫

R3
|hd[(m̃+ ⟨w(x, ·)⟩Q0)]|2 dx+

∫
R3

∫
Q0

|hz
d[w]|2χΩ(x) dzdx.

Hence, by [7, Section 1.2] it remains only to prove that
lim sup

k→∞
F1

k (ũk, m̃k) ≤ F1(ũ, m̃) + δ. (4.19)

As already observed in the proof of the lower bound, we have to be careful in applying
Proposition 4.2 because the characteristic function χ1

k is not periodic. However, for

Rk := 1
2

∫
Ω1

k

|∇m̃|2 dx−
∫

(εkE)∩Ω
|∇m̃|2 dx =

∫
Ω1

k
\(εkE)∩Ω

|∇m̃|2 dx
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we see from the 2-equiintegrability of (∇m̃k)k (with (3.10)), as well as from the fact that
|Ω1

k \ (εkE) ∩ Ω| → 0 as k → +∞, that |Rk| → 0 as k → +∞. Finally, from (3.10) and
Corollary 4.3 (ii), we infer that

lim sup
k→∞

F1
k (m̃k) = lim sup

k→∞

∫
(εkE)∩Ω

|∇m̃|2 dx ≤ F1(ũ, m̃) + δ.

This yields (4.19) and concludes the proof of Theorem 1.4. □

Appendix A. High-contrast compactness

We provide here a proof of Lemma 2.7.

Proof of Lemma 2.7. We will deliberately switch to subsequences below without relabeling
the sequence itself. The assumptions together with inequality (2.13) entail that (mk)k

and (εk∇mk)k are bounded in L2(Ω; R3). Thus, usual two-scale compactness properties
(cf. [2, Proposition 1.14]) yield the existence of m ∈ L2(Ω;W 1,2

per(Q; R3)) such that, up to
subsequences,

mk
2s
⇀m, εk∇mk

2s
⇀ ∇zm weakly two-scale in L2(Ω; R3). (A.1)

Additionally, there exists m1 ∈ L2(Ω; R3) such that, up to a subsequence,
χ1

kmk ⇀m1 weakly in L2(Ω; R3). (A.2)
Now, from (2.11) and Proposition 2.4 we infer that on the one hand

εkχ
1
k∇mk

2s
⇀ χ1∇zm weakly two-scale in L2(Ω; R3×3).

On the other hand, since (χ1
k∇mk)k is bounded in L2(Ω; R) by (2.13), we also have

εkχ
1
k∇mk → 0 strongly in L2(Ω; Rn).

Consequently, we find that ∇zm(x, z) = 0 on Ω×Q1, and in particular thatm is independent
of the micro-variable z in Q1, i.e., that with Lemma 2.6(ii) yields

χ1(z)m(x, z) = 1
|Q1|

χ1(z)m1(x) for a.e. x ∈ Ω. (A.3)

Next, we will show that, up to a subsequence, there holds

m̃k ⇀
m1
|Q1|

weakly in W 1,2(Ω; R3). (A.4)

This implies that m1 is actually an element of W 1,2(Ω; R3). By virtue of estimate (2.13)
and the properties of the extensions, we conclude that there exists m̃ ∈ W 1,2(Ω; R3) and a
subsequence of (m̃k)k that converges weakly in W 1,2(Ω; R3) and even strongly in L2(Ω; R3)
to the limit m̃. Because strong L2-convergence implies weak two-scale convergence as stated
in Lemma 2.6 (ii), it follows readily that

χ1
kmk = χ1

km̃k
2s
⇀ χ1m̃ weakly two-scale in L2(Ω; R3),

and then by (A.1), (A.3), and the uniqueness of the two-scale limit we find

m̃ = m1
|Q1|

.

Defining
w(x, z) := m(x, z) − m̃(x), (A.5)



22

we have that w ∈ L2(Ω;W 1,2
0 (Q0; R3)) and we obtain (2.15). Properties (2.14), (2.16), and

(2.17) follow by construction. This concludes the proof. □

Appendix B. Γ-limit of the matrix related energy

We present a concise proof of the Γ-limit claimed in Proposition 4.2. To that end we fix
m ∈ W 1,2(Ω; S2).
Step 1: Lower bound. Let (mε)ε be a sequence converging in W 1,2(Ω; S2) weakly to m. We
first show that

I(m) ≤ lim inf
ε→0

Iε(mε). (B.1)

Since the sequence (mε)ε is uniformly bounded in W 1,2(Ω; S2), we know by virtue of
classical two-scale compactness properties (cf. [2, Proposition 1.14]) that there exists
m1 ∈ L2(Ω;W 1,p

per(Q; Rn)/R) such that, up to a subsequence, (∇mε)ε weakly two-scale
converges to ∇m(x) + ∇zm1(x, z). Moreover, by [3, Proposition 3.2] there holds

m1(x, z) ∈ Tm(x)S
2 for a.e. (x, z) ∈ Ω ×Q.

Using additionally that

Sε(aε)(x, z) = Sε(χ(εkE)∩Ω)(x, z) = χ1(z)

we conclude from Lemma 2.6 (ii) immediately that

lim inf
ε→0

1
2

∫
Ω
aε|∇mε|2 dx = lim inf

ε→0

1
2

∫
Ω

∫
Q1

|Sε(∇mε)|2 dzdx

≥ 1
2

∫
Ω

∫
Q1

|∇m(x) + ∇zm1(x, z)|2 dzdx

≥
∫

Ω

[
inf

φ∈W 1,2
per(Q;Tm(x)S2)

1
2

∫
Q1

|∇m+ ∇φ(z)|2 dz
]
dx.

Step 2: Upper bound. For ψm ∈ W 1,2(Ω;C∞
per(Q; R3)), we define the perturbation

mε(x) := π
(
m(x) + εψm

(
x,
x

ε

))
, (B.2)

where π is the customary projection onto S2 (compare (3.7)). The functions mε are in
particular well-defined for ε sufficiently small. There holds

mε → m strongly in L2(Ω; R3). (B.3)

Furthermore, owing to the argument in [13, Theorem 2.3, line (60)] there also holds

∇mε
2s→ ∇m+ ∇zψm∇π(m) strongly in L2(Ω; R3×3). (B.4)

We claim now that for every δ > 0 we can chose ψm = ψδ
m such that the corresponding

sequence (mδ
ε)ε defined in (B.2) fulfils

lim sup
ε→0

Iε(uδ
ε,m

δ
ε) ≤ I(u,m) + δ. (B.5)
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By classical Γ-convergence arguments (cf. [7, Section 1.2]), this would then establish the
Γ− lim sup inequality. We first observe that using the strong two-scale convergence in (B.4)
we have, similarly to step 1,

lim
ε→0

1
2

∫
Ω
aε|∇mε|2 dx = 1

2

∫
Ω
aε|∇m+ ∇zψm∇π(m)|2 dx. (B.6)

Now, because C∞
per(Q; R3) is dense in W 1,2

per(Q; R3) and the right-hand side of (B.6) is con-
tinuous with respect to the W 1,2(Q; R3)-topology, we conclude that there exists ψδ

m ∈
W 1,2(Ω;C∞

per(Q; R3)) such that

lim
ε→0

1
2

∫
Ω
aε|∇mε|2 dx ≤

∫
Ω

[
inf

φ∈W 1,2
per(Q;Tm(x)S2)

1
2

∫
Q1

|∇m+ ∇φ(z)|2 dz
]
dx+ δ,

where we used additionally that ∇φ∇π(m) = ∇φ for all φ ∈ W 1,2
per(Q;TmS2). This con-

cludes the proof.
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