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Abstract. This work addresses the question of regularity of solutions to evolutionary

(quasi-static and dynamic) perfect plasticity models. Under the assumption that the
elasticity set is a compact convex subset of deviatoric matrices, with C2 boundary and

positive definite second fundamental form, it is proved that the Cauchy stress admits

spatial partial derivatives that are locally square integrable. In the dynamic case, a
similar regularity result is established for the velocity as well. In the latter case, one-

dimensional counterexamples show that, although solutions are Sobolev in the interior of

the domain, singularities may appear at the boundary and the Dirichlet condition may
fail to be attained.
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1. Introduction

Plasticity (πλασσειν) is a typical inelastic behavior giving rise to permanent deformations
inside materials. Beyond the reversible nature of elasticity, plasticity allows to mold, or give
a shape, to a solid body. At the mesoscale, for polycrystalline solids, it turns out that
deformations are highly localized due to slips along preferred directions. Those so-called
plastic slips are due to the presence of defects (called dislocations) in the atomistic structure.
From the macroscopic point of view, these singularities are due to a bad behavior of the
dissipation energy (involving the plastic strain rate) which has a linear growth at infinity,
and thus leads to possibly singular plastic deformations of measure type. One particular
feature of plasticity models is therefore the creation of singularities due to concentration of
deformations.
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The model of small strain perfect plasticity can be described as follows (see, e.g., [26]).
Let Ω ⊂ Rn be a smooth bounded domain representing the reference configuration of an
elasto-plastic body whose boundary ∂Ω is partitioned into the disjoint union of a Dirichlet
part ΓD and a Neumann part ΓN . Let f : Ω × (0, T ) → Rn be an external body force,
g : ΓN×(0, T )→ Rn be an external traction force, and w : ΓD×(0, T )→ Rn be a prescribed
boundary displacement. A kinematically admissible displacement field u : Ω× (0, T ) → Rn
satisfies the Dirichlet boundary condition u = w on ΓD×(0, T ), while a statically admissible
Cauchy stress tensor σ : Ω × (0, T ) → Mn×n

sym satisfies the Neumann boundary condition
σν = g on ΓN × (0, T ). In addition, in a dynamical framework, the following equation of
motion holds:

(1.1) ü− div σ = f in Ω× (0, T ),

where ü, the second partial derivative of u with respect to time, represents the acceleration.
In a quasi-static setting, the motion is assumed to be slow, so that the equation of motion
is replaced by the equilbrium equation −div σ = f in Ω × (0, T ), where the acceleration
is neglected. In small strain plasticity, the linearized strain tensor Eu := (Du + DuT )/2
additively decomposes as

(1.2) Eu = e+ p,

where e and p : Ω × (0, T ) → Mn×n
sym are the elastic ad plastic strains, respectively. Given a

(symmetric and coercive) fourth order Hooke’s tensor C, the Hooke’s law

(1.3) σ = Ce

gives the stress as a linear mapping of the elastic strain. In perfect plasticity, the Cauchy
stress is constrained to stay in a fixed closed and convex set K ⊂ Mn×n

sym . When σ lies in
the interior of K, the material behaves elastically and no additional plastic strain is created
(ṗ = 0). On the other hand, when σ reaches the boundary of K, a plastic flow may develop
in such a way that a non-trivial (permanent) plastic strain p may remain after unloading.
The evolution of p is described by the Prandtl-Reuss law ṗ ∈ NK(σ), where NK(σ) is the
normal cone to K at σ, or equivalently by the Hill’s principle of maximum plastic work

(1.4) σ · ṗ = H(ṗ),

where H(q) := supτ∈K τ · q is the support function of K.
The problem of dynamic perfect plasticity thus consists in finding a quadruplet (u, σ, e, p) :

Ω× (0, T )→ Rn ×Mn×n
sym ×Mn×n

sym ×Mn×n
sym satisfying the system (1.1)–(1.4), supplemented

by suitable initial conditions.
It turns out that the following energy balance holds: for all t ∈ [0, T ],

1

2

∫
Ω

|u̇(t)|2 dx+
1

2

∫
Ω

Ce(t) · e(t) dx+

∫ t

0

∫
Ω

H(ṗ) dx ds

=
1

2

∫
Ω

|u̇(0)|2 dx+
1

2

∫
Ω

Ce(0) · e(0) dx

+

∫ t

0

∫
Ω

f · u̇ dx ds+

∫ t

0

∫
ΓN

g · u̇ dHn−1 ds+

∫ t

0

∫
ΓD

(σν) · ẇ dHn−1 ds.

It states that the variation of total energy (kinetic, elastic and cumulated dissipation ener-
gies) equals the work of external forces. Since H(ṗ) ∼ |ṗ|, standard energy estimates lead
to an L1 bound on ṗ, which is thus expected to be a Radon measure. The natural energy
space for a well-posed theory is therefore

(u(t), e(t), p(t)) ∈ BD(Ω)× L2(Ω;Mn×n
sym )×M(Ω ∪ ΓD;Mn×n

sym ),

where BD(Ω) is the space of functions of bounded variations introduced in [31] for that
purpose and M(Ω ∪ ΓD;Mn×n

sym ) is the space of Mn×n
sym -valued bounded Radon measures

on Ω ∪ ΓD. Existence results have been obtained in [3, 4, 35] for the static problem, in
[32, 2, 35, 14, 19] in the quasi-static setting, and in [5, 9] in the dynamical case. The strategy
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of proof consists in a suitable regularization of the original model by means of visco-elastic
(Kelvin-Voigt), or visco-plastic (Perzyna), or hardening models and/or time discretization.
Existence of solutions is then deduced by establishing uniform compactness estimates in the
regularization parameter and then passing to the limit.

The purpose of this work is to investigate the regularity of solutions for the model of
perfect plasticity, both in the quasi-static and in the dynamic settings, for smooth enough
data. Up to now, most of the available results in this direction are limited to the case of a
Von Mises yield criterion for which the elasticity set is explicitly given by

(1.5) K = {σ ∈Mn×n
sym : |σD| ≤ 1}.

Here σD := σ− tr(σ)
n Id denotes the deviatoric part of σ. The first regularity result is the one in

[30], where by means of a duality method it was shown that the stress tensor σ in the static
case belongs to H1

loc(Ω;Mn×n
sym ). An extension to the quasi-static setting was then proved

in [12] using a power law approximation (see also [17]). Variants of this result have been
obtained in [15] for perfect elasto-plastic plates and in [10] for a pressure-dependent Drucker-
Prager plasticity model. In dynamics, the only contributions discussing regularity are [21]
and [27]. The paper [21] is an extension of [15] to dynamic perfect elasto-plastic plates,
whereas [27] is based on a completely different method (a comparison principle similar to
the Kato inequality in the context of the wave equation) which allows to establish regularity
in short time for compactly supported initial data (see also [8]). In both articles H1

loc-
regularity in space is obtained not only for the Cauchy stress σ(t), but also for the velocity
u̇(t). However, contrary to [30, 12, 17] which only hold for the Von Mises yield criterion
(1.5), the result of [27] is valid for any convex set K (possibly depending on the hydrostatic
pressure).

In the present article we prove Sobolev regularity results for the Cauchy stress (and also
for the velocity in the dynamic case) for a wide class of convex elasticity regions of the form

K = {σ ∈Mn×n
sym : σD ∈ K},

where K is a compact and convex subset of Mn×n
D (the space of symmetric n× n deviatoric

matrices) with C2 boundary and positive definite second fundamental form on ∂K, contain-
ing 0 as an interior point. This type of yield criterion, which is invariant in the direction
of hydrostatic matrices, applies to most of metals and alloys for which the influence of the
mean stress on yielding is in general negligible. In such a case, the plastic strain p becomes a
deviatoric measure. Materials obeying this kind of law do not develop permanent volumetric
changes and the displacement field admits only tangential discontinuities.

The case of the Von Mises yield criterion (1.5) appears as a particular case when K is
the closed unit ball of Mn×n

D . Our results also applies to anisotropic generalizations of the
Von Mises criterion, due to Hill, where

K = {σ ∈Mn×n
D : (Bσ) · σ ≤ 1},

and B ∈ L(Mn×n
D ,Mn×n

D ) is a fourth order self-adjoint and coercive tensor (see [26]). Another
example, which is covered by our result, is the Hosford criterion for which

K =

{
σ ∈Mn×n

D :
∑

1≤i<j≤n

|σi − σj |p ≤ 1

}
,

where σ1, . . . , σn are the eigenvalues of σ and p ≥ 2 (see Appendix, Proposition 5.3). For
p =∞ the Hosford criterion reduces to the so-called Tresca criterion which instead does not
fit within our framework. To our knowledge, it remains an open question to know whether
the regularity of σ (and u̇ in the dynamic case) still holds in that case. However, as we
mentioned earlier, at least short time regularity is ensured by the result in [27].

We now explain our proof strategy. For that, we simplify the model assuming the elasticity
tensor C to be the identity, the body force f to be zero, and the problem to be stationary.
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The system (1.1)–(1.4) thus formally simplifies to

(1.6)


v − div σ = 0 in Ω,

Ev = σ + p in Ω,

p ∈ ∂IK(σ) in Ω,

where IK is the indicator function of K (IK = 0 in K and IK = +∞ outside) and ∂IK is the
subdifferential of IK. This system is complemented by suitable boundary conditions that we
do not consider here for simplicity. The idea of proof consists in approximating IK by the
power law function

γα(σ) :=
α

α+ 1
(1 + d(σ)2)

α+1
2α ,

where 0 < α � 1 and d denotes the distance function to K (see [34]). The system (1.6) is
then replaced by the so-called Norton-Hoff model

(1.7)

{
vα − div σα = 0 in Ω,

Evα = σα +Dγα(σα) in Ω.

Elliptic regularity estimates show that solutions (vα, σα) exist and belong to H1(Ω;Rn) ×
H1(Ω;Mn×n

sym ). In order to control the spatial derivatives of vα and σα uniformly with respect
to α, we formally take the partial derivative of the equations in (1.7) with respect to the
xk variable and test the first equation with ψ∂kvα and the second one with ψ∂kσα (here ψ
is a suitable cut-off function which is needed to avoid boundary terms). One is then faced
with the application of the chain rule in Sobolev spaces to differentiate the nonlinear term
Dγα(σα), which would require Dγα to grow linearly with respect to its argument. Since this
is not the case, we introduce a further approximation parameter λ� 1 and the regularized
potential

γα,λ(ξ) :=
α

α+ 1
(1 + (d2(ξ)∧λ2))

α+1
2α +

1

2
(1 + λ2)

1
2α−

1
2 (d2(ξ)− λ2)+.

We can now apply the previous program to the solution (vα,λ, σα,λ) of the system{
vα,λ − div σα,λ = 0 in Ω,

Evα,λ = σα,λ +Dγα,λ(σα,λ) in Ω.

Several integration by parts lead to the main estimate (3.39), where the obstruction to
conclude the argument is the presence of a term of the form∫

Ω

|Evα,λ||∇(σα,λ)D|ψ dx

on the right-hand side. In fact, Evα,λ is only uniformly bounded in L1(Ω;Mn×n
sym ). We show

(see (3.40)) that the integral above can be absorbed by the coercive term∫
Ω

ψ∂kDγα,λ(σα,λ) · ∂kσα,λ dx

appearing in the left-hand side of (3.39). It is at this stage that the regularity of ∂K and the
sign condition on its second fundamental form are used, providing a uniform bound (with
respect to the parameters α and λ) of ‖∇vα,λ‖L2

loc(Ω) and ‖∇σα,λ‖L2
loc(Ω). Passing to the

limit as α→ 0 and λ→ +∞ finally yields the desired H1
loc estimate of v and σ.

This general strategy is adapted to the dynamic case leading to Sobolev regular solutions
to the system (1.1)–(1.4). In particular, the flow rule (1.4), which is usually formulated in a
measure theoretical sense due to the lack of regularity of the solutions in the energy space
(see [25, 19]), can now be expressed in a pointwise almost every sense. In the quasi-static
case this method gives H1

loc regularity for the stress only (no regularity is obtained for the
velocity). Using a capacitary argument and the H1-quasi-continuous representative of the
stress, this result allows one to give a pointwise form to the flow rule, as previously observed
in [20].
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The manuscript is organised as follows. Section 2 is devoted to notation as well as math-
ematical preliminary results used throughout the paper (in particular, functional spaces
and basic properties of the distance function to a convex set). In Section 3 we introduce
the dynamic perfect plasticity model as well as its Norton-Hoff approximation. We state
and prove our first main regularity result, Theorem 3.3, and derive a well-posedness re-
sult, Theorem 3.4, of strong solutions. Section 4 concerns the quasi-static perfect plasticity
model. Our second main regularity result is stated in Theorem 4.3, from which we deduce
an existence result for quasi-static evolutions with a locally Sobolev regular Cauchy stress,
Theorem 4.4. In Section 5 we present two one-dimensional examples of dynamic solutions
(in the stationary and non-stationary cases) that are smooth in the interior of the domain,
but develop discontinuities at the boundary. Finally, in the Appendix we collect some sup-
plemental material. In particular, we prove a general well-posedness result that avoids the
usual time discretization method and uses instead an ODE argument based on the Cauchy-
Lipschitz Theorem. Moreover, we show that the Hosford criterion for p ≥ 2 satisfies all the
assumptions of our regularity results.

2. Preliminaries

2.1. Notation.

2.1.1. Linear algebra. If a and b ∈ Rn, we write a · b :=
∑n
i=1 aibi for the Euclidean scalar

product, and we denote by |a| :=
√
a · a the corresponding norm.

We denote by Mn×n the set of n×n matrices and by Mn×n
sym the space of symmetric n×n

matrices. The set of all (deviatoric) trace free symmetric matrices will be denoted by Mn×n
D .

The space Mn×n is endowed with the Frobenius scalar product A ·B := tr(ATB) and with

the corresponding Frobenius norm |A| :=
√
A ·A. If a ∈ Rn and b ∈ Rn, we denote by

a� b := (abT + bTa)/2 ∈Mn×n
sym their symmetric tensor product.

If A ∈Mn×n
sym , there exists an orthogonal decomposition of A with respect to the Frobenius

scalar product as follows

A = AD +
1

n
(trA)Id,

where AD ∈Mn×n
D stands for the deviatoric part of A.

2.1.2. Measures. The Lebesgue measure in Rn is denoted by Ln and the (n−1)-dimensional
Hausdorff measure by Hn−1. If X ⊂ Rn is a locally compact Borel set and Y is an Euclidean
space, we denote byM(X;Y ) the space of Y -valued bounded Radon measures in X endowed
with the norm ‖µ‖ := |µ|(X), where |µ| is the variation of the measure µ. If Y = R we simply
write M(X) instead of M(X;R). If µ = fLn for some (locally integrable) function f , we
will often identify the measure µ to its density f .

By the Riesz representation theorem, M(X;Y ) can be identified with the dual space of
C0(X;Y ), the space of continuous functions ϕ : X → Y such that {|ϕ| ≥ ε} is compact for
every ε > 0. The (vague) weak* topology of M(X;Y ) is defined using this duality.

Let µ ∈M(X;Y ) and h : Y → [0,+∞] be a convex, positively one-homogeneous function.
Using the theory of convex functions of measures developed in [16, 22], we introduce the
nonnegative Borel measure h(µ), defined by

h(µ) = h

(
µ

|µ|

)
|µ| ,

where µ
|µ| stands for the Radon-Nikodým derivative of µ with respect to |µ|.

2.1.3. Functional spaces. We use standard notation for Lebesgue spaces (Lp) and Sobolev
spaces (W s,p and Hs = W s,2).

Let Ω ⊂ Rn be an open set. The space of functions of bounded deformation is defined by

BD(Ω) = {u ∈ L1(Ω;Rn) : Eu ∈M(Ω;Mn×n
sym )} ,
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where Eu := (Du+DuT )/2 stands for the distributional symmetric gradient of u. We recall
(see [6, 35]) that, if Ω has a Lipschitz boundary, every function u ∈ BD(Ω) admits a trace,
still denoted by u, which belongs to L1(∂Ω;Rn), and such that the integration by parts
formula holds: for all ϕ ∈ C1(Ω;Mn×n

sym ),∫
∂Ω

u · (ϕν) dHn−1 =

∫
Ω

divϕ · u dx+

∫
Ω

ϕ · dEu,

where ν is the outer unit normal to ∂Ω.
Let us define

Hdiv(Ω;Mn×n
sym ) = {σ ∈ L2(Ω;Mn×n

sym ) : divσ ∈ L2(Ω;Rn)} .
If Ω has Lipschitz boundary, for any σ ∈ Hdiv(Ω;Mn×n

sym ) we can define the normal trace σν

as an element of H−
1
2 (∂Ω;Rn) (cf., e.g., [35, Theorem 1.2, Chapter 1]) by setting

〈σν, ψ〉
H−

1
2 (∂Ω;Rn),H

1
2 (∂Ω;Rn)

:=

∫
Ω

ψ · divσ dx+

∫
Ω

σ · Eψ dx

for every ψ ∈ H1(Ω;Rn).

2.2. Banach space-valued functions. Let X be a Banach space and let 1 ≤ p ≤ ∞.
If X is a reflexive (respectively, the dual of a separable) space, we define Lp(0, T ;X) as
the space of all strongly (respectively, weakly*) measurable functions f : (0, T ) → X such
that t 7→ ‖f(t)‖X belongs to Lp(0, T ). According to the Riesz representation Theorem, if
1 ≤ p < ∞ and X is reflexive, the dual space of Lp(0, T ;X) is isometrically isomorphic to
Lq(0, T ;X ′) with 1

p + 1
q = 1. If X is the dual of a separable Banach space Y and 1 ≤ p <∞,

the dual space of Lp(0, T ;Y ) is isometrically isomorphic to Lq(0, T ;X) with 1
p + 1

q = 1. In

particular, Lq(0, T ;X) can be naturally endowed with a weak* topology. This result will be
in particular applied to X = BD(Ω), which can be identified with the dual of a separable
space (see [36, Proposition 2.5] and also [1, Remark 3.12] in the BV case). We refer to [18,
Section 2.3] for a general theory of Lebesgue spaces on Banach spaces.

We further denote by AC([0, T ];X) the space of absolutely continuous functions f :
[0, T ] → X. Let X be a reflexive (respectively, the dual of a separable) space. By [13,
Appendix] (respectively, [14, Theorem 7.1]), if f ∈ AC([0, T ];X), then the time derivative

ḟ exists L1-a.e. in (0, T ) with respect to the strong (respectively, weak*) convergence in X

and ḟ ∈ L1(0, T ;X). We further define the Sobolev space

W 1,p(0, T ;X) =
{
f ∈ AC([0, T ];X) : ḟ ∈ Lp(0, T ;X)

}
.

We will use the notation H1(0, T ;X) to denote W 1,2(0, T ;X).

2.3. Spaces of admissible fields and duality between stress and plastic strain. Let
Ω ⊂ Rn be a connected bounded open set. We consider an open subset ΓD ⊂ ∂Ω with
respect to the relative topology of ∂Ω which stands for the Dirichlet part of ∂Ω. We also
define ΓN = ∂Ω \ ΓD which corresponds to the Neumann part of the boundary.

Given a prescribed boundary displacement w ∈ H1(Ω;Rn), we will consider the following
space of kinematically admissible fields. In the dynamic case we set

Adyn
w :=

{
(v, η, q) ∈ [BD(Ω) ∩ L2(Ω;Rn)]× L2(Ω;Mn×n

sym )×M(Ω ∪ ΓD;Mn×n
D ) :

Ev = η + q in Ω, q = (w − v)� νHn−1 on ΓD

}
,

where ν is the outer unit normal to ∂Ω. In the quasistatic case the absence of the kinetic
energy prevents an L2 control on the displacement (or velocity), so that the previous space
is replaced by

Aqst
w :=

{
(v, η, q) ∈ BD(Ω)× L2(Ω;Mn×n

sym )×M(Ω ∪ ΓD;Mn×n
D ) :

Ev = η + q in Ω, q = (w − v)� νHn−1 on ΓD

}
.



SPATIAL REGULARITY FOR GENERAL YIELD CRITERIA IN PERFECT PLASTICITY 7

Given a surface traction g ∈ L∞(ΓN ;Rn), the space of statically admissible stresses in
the dynamical case is defined by

Sdyn
g := {τ ∈ Hdiv(Ω;Mn×n

sym ) : τD ∈ L∞(Ω;Mn×n
D ), τν = g on ΓN},

while in the quasistatic case

Sqst
g := {τ ∈ L2(Ω;Mn×n

sym ) : div τ ∈ Ln(Ω;Rn), τD ∈ L∞(Ω;Mn×n
D ), τν = g on ΓN}.

Note that, if Ω is a C2 domain, then, for any τ ∈ Sqst
g (resp. Sdyn

g ), the tangential part
of the normal stress (σν)τ := σν − 〈σν, ν〉ν ∈ L∞(∂Ω;Rn) (see [25, Lemma 2.4] or [19,
Section 1.2]).

The duality pairing between stresses and plastic strains is a priori not well defined, since
the former are only squared Lebesgue integrable, while the latter are (possibly singular)
measures. Using an integration by parts formula as in [25, 19], it is possible to give a
meaning to this duality pairing in terms of a distribution, and even of a measure.

Definition 2.1. Let w ∈ H1(Ω;Rn) and g ∈ L∞(ΓN ;Rn). For all (u, e, p) ∈ Adyn
w (resp.

Aqst
w ) and all σ ∈ Sdyn

g (resp. Sqst
g ), we define the distribution [σD · p] on Rn as

(2.1) 〈[σD · p], ϕ〉 =

∫
Ω

ϕ(w − u) · div σ dx+

∫
Ω

σ · [(w − u)�∇ϕ] dx

+

∫
Ω

σ · (Ew − e)ϕdx+

∫
ΓN

ϕg · (u− w) dHn−1

for every ϕ ∈ C∞c (Rn).

According to [19, Theorems 6.3 & 6.5], [σD · p] extends to a bounded Radon measure in
Rn with1

|[σD · p]| ≤ ‖σD‖L∞(Ω)|p| in M(Rn)

and

(2.2) 〈σD, p〉 := [σD ·p](Rn) =

∫
Ω

(w−u)·div σ dx+

∫
Ω

σ·(Ew−e) dx+

∫
ΓN

g·(u−w) dHn−1.

2.4. Some results concerning the distance function from a convex set. Let K ⊆ RN
be a closed convex set such that

(2.3) B(0, rK) ⊂ K ⊂ B(0, RK)

for some rK , RK > 0. Let dK : RN → [0,+∞) and ΠK : RN → K be the distance function
to K and the projection onto K, respectively.

Theorem 2.2. Let K ⊆ RN be a closed convex set satisfying (2.3). The following properties
hold true.

(a) The function d2
K is differentiable on RN and for every x ∈ RN

∇d2
K(x) = 2(x−ΠK(x)).

(b) For every x ∈ Rn

(x−ΠK(x)) · x ≥ d2
K(x) and (x−ΠK(x)) · x ≥ rKdK(x).

(c) If ∂K is of class C2 and its second fundamental form is positive definite at every
point of ∂K, then ΠK is of class C1 in RN \K and there exists CK > 0 such that

DΠK(x)v · v ≤ 1

1 + CKdK(x)
|v|2

for every x ∈ RN \K and v ∈ RN .

1The proof of [19] actually requires that div σ ∈ Ln(Ω;Rn). In the dynamic case, the same conclusion
holds if we only suppose div σ ∈ L2(Ω;Rn) and u ∈ L2(Ω;Rn).
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Proof. Point (a) is standard (see, e.g., [28, pp. 286]). Concerning point (b), we have

(x−ΠK(x)) · x = |x−ΠK(x)|2 + (x−ΠK(x)) ·ΠK(x) ≥ |x−ΠK(x)|2 = d2
K(x)

since in view of the projection property, as 0 ∈ K,

−(x−ΠK(x)) ·ΠK(x) = (x−ΠK(x)) · (0−ΠK(x)) ≤ 0.

Concerning the second inequality, we may assume x 6∈ K. Then by (2.3)

rK
x−ΠK(x)

|x−ΠK(x)|
∈ K,

and thus the properties of the projection imply that

0 ≤ (x−ΠK(x)) ·
(
x− rK

x−ΠK(x)

|x−ΠK(x)|

)
= (x−ΠK(x)) · x− rKdK(x),

so that the second inequality follows.
Let us come to point (c). If the boundary of K is of class C2, it turns out that the

projection ΠK is of class C1 in RN \K with

DΠK(x) =
(
I + dK(x)A(ΠK(x))

)−1(
Id− νK(ΠK(x))⊗ νK(ΠK(x))

)
for every x ∈ RN \K, where νK is the outer unit normal to ∂K and A = DνK is the second
fundamental form of ∂K (see, e.g., [23]). If A is positive definite, we get

(2.4) A(x)v · v ≥ CK |v|2 for every x ∈ ∂K and v ∈ Tx(∂K),

where Tx(∂K) is the tangent space to ∂K at x. Now let us fix x ∈ RN \K and for simplicity
of notation let us set

S := dK(x)A(ΠK(x)) and Q := Id− νK(ΠK(x))⊗ νK(ΠK(x)).

Note that Q is the orthogonal projection onto the tangent space to ∂K at ΠK(x). For every
v ∈ RN we deduce that

(2.5) DΠK(x)v · v = (Id + S)−1Qv · v ≤ |(Id + S)−1Qv| |v|.
Setting ζ := (Id + S)−1Qv and using (2.4), we have

|Qv| = |(Id + S)ζ| ≥ (1 + CKdK(x))|ζ|.
This can be rewritten as

|(Id + S)−1Qv| ≤ 1

1 + CKdK(x)
|Qv|,

which, together with (2.5), implies the inequality of point (c). �

By composition, we easily infer that the following result holds true.

Corollary 2.3. Let K ⊆ RN be a closed convex set satisfying (2.3), Φ : R → R be an
increasing function, and let us set Ψ(x) := Φ(d2

K(x)). The following properties hold true.

(a) If Φ is of class C1, then for every x ∈ RN

∇Ψ(x) = 2Φ′(d2
K(x))(x−ΠK(x))

and

∇Ψ(x) · x ≥ 2Φ′(d2
K(x))d2

K(x) and ∇Ψ(x) · x ≥ 2Φ′(d2
K(x))rKdK(x).

(b) If ∂K is of class C2 and Φ is of class C2, then for every x ∈ RN \K and v ∈ RN

D2Ψ(x)v · v = 4Φ′′(d2
K(x))[(x−ΠK(x)) · v]2 + 2Φ′(d2

K(x))(v −DΠK(x)v) · v.
If in addition the second fundamental form of ∂K is positive definite at every point
of ∂K, then there exists CK > 0 such that for every x ∈ RN \K and v ∈ RN

D2Ψ(x)v · v ≥ 4Φ′′(d2
K(x))[(x−ΠK(x)) · v]2 + 2Φ′(d2

K(x))
CKdK(x)

1 + CKdK(x)
|v|2.



SPATIAL REGULARITY FOR GENERAL YIELD CRITERIA IN PERFECT PLASTICITY 9

3. The dynamical model

3.1. Setting of the problem. In the following we describe the setting of the model of
perfect elasto-plasticity.

(H1) Elasticity tensor. Let C be the elasticity tensor, considered as a symmetric positive
definite linear operator C : Mn×n

sym → Mn×n
sym , and let A : Mn×n

sym → Mn×n
sym be its inverse

A := C−1. It follows that there exist two positive constants αA and βA, with αA ≤ βA,
such that

(3.1) αA|ξ|2 ≤
1

2
(Aξ) · ξ ≤ βA|ξ|2 for every ξ ∈Mn×n

sym .

(H2) Reference configuration. Let Ω ⊂ Rn be a bounded open set with Lipschitz bound-
ary. We will consider a decomposition of the boundary in the form

∂Ω := ΓD ∪ ΓN ∪ Γ,

where ΓD and ΓN are relatively open with relative boundary given by Γ. We assume that
there exists an open set V containing Γ such that V ∩∂Ω is an (n−1)-dimensional submanifold
of Rn of class C2, and that Γ itself is an (n− 2)-dimensional C2 submanifold of Rn.

(H3) Yield region. Let K be a closed convex set in Mn×n
sym of the form

(3.2) K := K + R Id,

whereK is a closed convex subset of Mn×n
D . We assume that there exist two positive constants

rK and RK , with rK ≤ RK , such that

(3.3) B(0, rK) ⊂ K ⊂ B(0, RK).

We denote by H : Mn×n
D → [0,+∞) the support function of K ⊂Mn×n

D defined by

H(q) := sup
τ∈K

τ · q,

which is a convex and positively one-homogeneous function satisfying by (3.3)

rK |q| ≤ H(q) ≤ RK |q| for all q ∈Mn×n
D .

(H4) Prescribed displacements. We will consider a time-dependent boundary displace-
ment t 7→ w(t) which is the trace on ΓD of a function w(t) with

(3.4) w ∈ H2(0, T ;H1(Ω;Rn)) ∩H3(0, T ;L2(Ω;Rn)).

(H5) External loads. We consider time-dependent external loads made of body forces
t 7→ f(t) and traction forces t 7→ g(t) applied on ΓN with

f ∈W 1,∞(0, T ;L2(Ω;Rn)) and g ∈W 1,∞(0, T ;L∞(ΓN ;Rn))

For every v ∈ H1
ΓD

(Ω;Rn) (the subspace of H1(Ω;Rn) made of all function v ∈ H1(Ω;Rn)
such that v = 0 on ΓD in the sense of traces), we define

〈L(t), v〉 :=

∫
Ω

f(t) · v dx+

∫
ΓN

g(t) · v dHn−1.

We assume that the loads can be represented by a potential

(3.5) ρ ∈ H2(0, T ;L2(Ω;Mn×n
sym ))

with

(3.6) ρD ∈W 2,∞(0, T ;L∞(Ω;Mn×n
D )),

in the following sense:

(3.7) 〈L(t), v〉 =

∫
Ω

ρ(t) · Ev dx for every v ∈ H1
ΓD (Ω;Rn),
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i.e., ρ ∈W 1,∞(0, T ;Hdiv(Ω;Mn×n
sym )) and satisfies{
−divρ(t) = f(t) in L2(Ω;Rn),

ρ(t)ν = g(t) in L∞(ΓN ;Rn).

We further assume that it satisfies the uniform safe load condition: for all t ∈ [0, T ]

(3.8) rK − ‖ρD(t)‖L∞(Ω) ≥ c > 0,

where rK is the constant appearing in (3.3).

(H6) Initial conditions. Let σ0 be an initial stress such that

(3.9) σ0 ∈ Hdiv(Ω;Mn×n
sym ), σ0(x) ∈ K for a.e. x ∈ Ω,

and

(3.10)

{
−div σ0 = f(0) in Ω,

σ0ν = g(0) on ΓN .

In the dynamical case, we also consider an initial velocity v0 ∈ H1(Ω;Rn) satisfying v0 =
ẇ(0) on ΓD. Note that this last condition is irrelevant in the quasistatic case.

3.2. Norton-Hoff in dynamical perfect plasticity. Let K = K + R Id be the yield
region defined in (3.2). For ξ ∈Mn×n

sym we define

d(ξ) := dK(ξ) = dK(ξD),

where ξ = ξD + tr(ξ)
n Id is the orthogonal decomposition of ξ with ξD ∈ Mn×n

D . We have
clearly

|ξD| −RK ≤ d(ξ) ≤ |ξD|.
Given α ∈ (0, 1] and λ > 0, we consider the C1 function on γα,λ : Mn×n

sym → R given by

γα,λ(ξ) :=
α

α+ 1
(1 + (d2(ξ)∧λ2))

α+1
2α +

1

2
(1 + λ2)

1
2α−

1
2 (d2(ξ)− λ2)+.

Note that γα,λ is a convex function, since it is an increasing and convex function of d2(ξ).
We collect some useful inequalities involving the derivatives of γα,λ that will be employed
in several estimates and are consequences of Theorem 2.2 and Corollary 2.3.

(a) The function γα,λ is continuously differentiable in Mn×n
sym with gradient given by

(3.11) Dγα,λ(ξ) = (1 + (d2(ξ)∧λ2))
1
2α−

1
2 (ξ −ΠK(ξ)).

Since K is invariant in the direction of hydrostatic matrices (R Id), it follows that
Dγα,λ(ξ) ∈Mn×n

D . Moreover, for every ξ ∈Mn×n
sym we have the inequalities

(3.12) Dγα,λ(ξ) · ξ ≥ (1 + d2(ξ) ∧ λ2)
1
2α−

1
2 d2(ξ)

and

(3.13) Dγα,λ(ξ) · ξ ≥ rK(1 + d2(ξ) ∧ λ2)
1
2α−

1
2 d(ξ) = rK |Dγα,λ(ξ)|.

(b) Let us assume in addition that ∂K is of class C2 and that its second fundamental
form is positive definite at every point. In view of the cylindrical geometry of K, we
have that for all ξ ∈Mn×n

sym

ΠK(ξ) = ΠK(ξD) +
tr(ξ)

n
Id.

In particular, if η ∈Mn×n
sym and ξ ∈Mn×n

sym \K

DΠK(ξ)η = DΠK(ξD)ηD +
tr(η)

n
Id,

so that

(3.14) DΠK(ξ)η · η ≤ 1

1 + CKd(ξ)
|ηD|2 +

1

n
(tr(η))2.
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(c) Let σ ∈ H1
loc(Ω;Mn×n

sym ). Since by (3.11) the function Dγα,λ is Lipschitz continuous

and piecewise C1, it follows from the generalized chain rule formula in Sobolev
spaces [29, Proposition 1.2] that Dγα,λ(σ) ∈ H1

loc(Ω;Mn×n
sym ). Moreover, by point (b)

in Corollary 2.3 we conclude that for every k = 1, . . . , n

(3.15) ∂k
(
Dγα,λ(σ)

)
· ∂kσ ≥ (1 + d2(σ) ∧ λ2)

1
2α−

1
2
CKd(σ)|∂kσD|2

1 + CKd(σ)
a.e. in Ω.

In the following dynamic evolution problems, we set the mass density of the material
to be identically equal to 1. In the next theorem we consider a so-called “Norton-Hoff”
approximation model and we prove its well-posedness and some regularity results.

Theorem 3.1 (Norton-Hoff approximation). Assume hypotheses (H1)–(H6). Then for
every α ∈ (0, 1] and λ > 0, there exists a unique pair (σα,λ, vα,λ) with

(3.16) σα,λ ∈W 1,∞(0, T ;L2(Ω;Mn×n
sym )) ∩ L∞(0, T ;Hdiv(Ω;Mn×n

sym )),

and

(3.17) vα,λ ∈W 1,∞(0, T ;L2(Ω;Rn)) ∩ L∞(0, T ;H1(Ω;Rn)),

that solves the system

(3.18)



Aσ̇α,λ +Dγα,λ(σα,λ) = Evα,λ in Ω× (0, T ),

v̇α,λ − div σα,λ = f in Ω× (0, T ),

vα,λ = ẇ on ΓD × (0, T ),

σα,λν = g on ΓN × (0, T ),

(σα,λ(0), vα,λ(0)) = (σ0, v0) in Ω.

Moreover the following estimates hold:

(3.19) ‖σα,λ‖W 1,∞(0,T ;L2(Ω)) ≤ C, ‖vα,λ‖W 1,∞(0,T ;L2(Ω)) ≤ C,

(3.20) ‖vα,λ‖L∞(0,T ;BD(Ω)) ≤ C,

(3.21) sup
t∈[0,T ]

∫
Ω

(
1 + d2(σα,λ(t)) ∧ λ2)

) 1
2α−

1
2 d`(σα,λ(t)) dx ≤ C for ` = 1, 2,

(3.22) sup
t∈[0,T ]

∫
Ω

γα,λ(σα,λ(t)) dx ≤ C,

and

(3.23) sup
t∈[0,T ]

∫
Ω

(
1 + d2(σα,λ(t)) ∧ λ2)

) 1
2α+ 1

2 dx ≤ C
(

1 +
1

α

)
,

where C > 0 is a constant independent of α and λ.

Proof. We divide the proof into three steps.

Step 1: Existence and uniqueness of a solution. According to [33, Proposition 1],
there exists a unique pair (σα,λ, vα,λ) with the regularity (3.16) and (3.17) solving the
system (3.18). Note that, in the statement of that result, the solution is only H1 regular in
time. However, a careful inspection of the proof shows that the time regularity is actually
W 1,∞ (see, e.g., [33, page 402, line below (3.27)]).

From now on, in order to not overburden notation, we omit the super/subscripts (α, λ)
and simply write σ ≡ σα,λ, v ≡ vα,λ, γ ≡ γα,λ. Unless otherwise stated, the letter C denotes
a positive constant independent of the parameters (α, λ). We also denote by Qt := Ω× (0, t)
the space-time cylinder.
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Step 2: L2-bounds for (σ, v) and (σ̇, v̇). In order to prove (3.19), we proceed as follows.
We (continuously) extend (σ, v), w, f , g, and ρ for negative times by setting

(σ(t), v(t)) = (σ0, v0), w(t) = w(0) + tẇ(0), f(t) = f(0), g(t) = g(0), ρ(t) = ρ(0)

for all t < 0. For a given function ζ defined on (−∞, T ) with values in a vector space, we
define the difference quotient

∂ht ζ(τ) :=
ζ(τ)− ζ(τ − h)

h
for τ < T and h > 0.

By taking the increments of system (3.18) we can write for a.e. t ∈ [0, T ]

(3.24)


A∂ht σ̇(t) + ∂ht Dγ(σ(t)) = E∂ht v(t) + 1

h1(0,h)(t)Ev0 in Ω,

∂ht v̇(t)− div ∂ht σ(t) = ∂ht f(t) in Ω,

∂ht v(t) = ∂ht ẇ(t) on ΓD,

∂ht σ(t)ν = ∂ht g(t) on ΓN .

If we test the second equation with ∂ht v(t) − ∂ht ẇ(t) ∈ H1
ΓD

(Ω;Rn), integrate by parts and
use (3.7), we get∫

Ω

∂ht v̇(t) ·
(
∂ht v(t)− ∂ht ẇ(t)

)
dx+

∫
Ω

∂ht σ(t) ·
(
E∂ht v(t)− E∂ht ẇ(t)

)
dx

= 〈∂ht L(t), ∂ht v(t)− ∂ht ẇ(t)〉 =

∫
Ω

∂ht ρ(t) ·
(
E∂ht v(t)− E∂ht ẇ(t)

)
dx.

Integrating in time on [0, t] and using that ∂ht v(0) = 0, we deduce

1

2

∫
Ω

|∂ht v(t)|2 dx =

∫∫
Qt

(
∂ht v̇ · ∂ht ẇ −

(
∂ht σ − ∂ht ρ

)
·
(
E∂ht v − E∂ht ẇ

))
dx ds

=

∫
Ω

∂ht v(t) · ∂ht ẇ(t) dx

−
∫∫

Qt

(
∂ht v · ∂ht ẅ +

(
∂ht σ − ∂ht ρ

)
·
(
E∂ht v − E∂ht ẇ

))
dx ds.(3.25)

Testing the first equation in (3.24) with ∂ht σ(t) we get∫
Ω

A∂ht σ̇(t) · ∂ht σ(t) dx+

∫
Ω

∂ht Dγ(σ(t)) · ∂ht σ(t) dx

=

∫
Ω

∂ht σ(t) · E∂ht v(t) dx+

∫
Ω

1

h
1(0,h)(t)Ev0 · ∂ht σ(t) dx,

from which we deduce, since γ is a convex function,∫
Ω

A∂ht σ̇(t) · ∂ht σ(t) dx ≤
∫

Ω

∂ht σ(t) · E∂ht v(t) dx+

∫
Ω

1

h
1(0,h)(t)Ev0 · ∂ht σ(t) dx.

Integrating in time on [0, t] and using that ∂ht σ(0) = 0, we get

(3.26)
1

2

∫
Ω

A∂ht σ(t) ·∂ht σ(t) dx ≤
∫∫

Qt

∂ht σ ·E∂ht v dx ds+
1

h

∫∫
Qt

1(0,h)(s)Ev0 ·∂ht σ dx ds.

By adding up (3.25) and (3.26) we get

1

2

∫
Ω

|∂ht v(t)|2 dx+
1

2

∫
Ω

A∂ht σ(t) · ∂ht σ(t) dx

≤
∫

Ω

∂ht v(t) · ∂ht ẇ(t) dx+

∫∫
Qt

∂ht σ · E∂ht ẇ dx ds−
∫∫

Qt

∂ht v · ∂ht ẅ dx ds

+

∫∫
Qt

∂ht ρ ·
(
E∂ht v − E∂ht ẇ

)
dx ds+

1

h

∫∫
Qt

1(0,h)(s)Ev0 · ∂ht σ dx ds.
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Concerning the last term, we have∣∣∣∣ 1h
∫∫

Qt

1(0,h)(s)Ev0 · ∂ht σ dx ds
∣∣∣∣ ≤ 1

h

∫ h

0

‖Ev0‖L2(Ω)‖∂ht σ(s)‖L2(Ω) ds

≤ ‖Ev0‖L2(Ω) sup
r∈[0,h]

‖∂ht σ(r)‖L2(Ω).

We set

Fh(t) :=

∫
Ω

|∂ht v(t)|2 dx+

∫
Ω

A∂ht σ(t) · ∂ht σ(t) dx,

so that by the Young inequality, for all ε > 0 and for all t ∈ [0, T ]

(3.27) Fh(t) ≤ Cε + C

∫ t

0

Fh(s) ds+

∫∫
Qt

∂ht ρ · E∂ht v dx ds+ ε sup
r∈[0,h]

Fh(r)

for some constants C > 0 and Cε > 0 depending on ρ, w, σ0, and v0, but independent of
(α, λ, h).

We now bound the space-time integral in the right-hand side of (3.27). We note that

∂ht ρ · E∂ht v =
1

n
tr(∂ht ρ) div ∂ht v + ∂ht ρD · E∂ht v.

Since ∂ht Dγ(σ(t)) is a deviatoric matrix, the first equation of (3.24) gives

div ∂ht v(t) = tr(A∂ht σ̇(t))− 1

h
1(0,h)(t) div v0,

so that, integrating by parts in time yields∫∫
Qt

tr(∂ht ρ(s)) div ∂ht v(s) dx ds

= −
∫∫

Qt

tr(∂ht ρ̇(s))tr(A∂ht σ(s)) dx ds+

∫
Ω

tr(∂ht ρ(t))tr(A∂ht σ(t)) dx

− 1

h

∫∫
Qt

1(0,h)(s)tr(∂
h
t ρ(s)) div v0 dx ds.

By the Cauchy inequality and the assumption (3.5) on ρ we obtain∣∣∣ ∫∫
Qt

tr(∂ht ρ(s)) div ∂ht v(s) dx ds
∣∣∣ ≤ C +

∫ t

0

Fh(s) ds+
1

2
Fh(t)

for all t ∈ [0, T ]. On the other hand using the time regularity (3.6) of ρD∫∫
Qt

∂ht ρD(s) · E∂ht v(s) dx ds =

∫ t−h

0

∫
Ω

2ρD(s)− ρD(s− h)− ρD(s+ h)

h2
· Ev(s) dx ds

+
1

h

∫ t

t−h

∫
Ω

ρD(s)− ρD(s− h)

h
· Ev(s) dx ds

− 1

h

∫ h

0

∫
Ω

ρD(s)− ρD(0)

h
· Ev0 dx ds

≤ C sup
s∈[0,t]

∫
Ω

|Ev(s)| dx,

where C > 0 depends on ρD in view of (3.6), but is independent of (α, λ, h). Applying the
above estimates in (3.27) leads to

Fh(t) ≤ Cε + C

(∫ t

0

Fh(s) ds+ sup
s∈[0,t]

∫
Ω

|Ev(s)| dx

)
+ ε sup

r∈[0,h]

Fh(r) for all t ∈ [0, T ].

By the Gronwall Lemma we infer that, for all t ∈ [0, T ],

Fh(t) ≤ eCT
(
Cε + C sup

s∈[0,t]

‖Ev(s)‖L1(Ω) + ε sup
r∈[0,h]

Fh(r)

)
.
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Choosing ε small enough leads to the following estimate

sup
s∈[0,t]

Fh(s) ≤ C
(

1 + sup
s∈[0,t]

‖Ev(s)‖L1(Ω)

)
,

and letting h→ 0

(3.28) ess sup
s∈[0,t]

(
‖σ̇(s)‖2L2(Ω) + ‖v̇(s)‖2L2(Ω)

)
≤ C

(
1 + sup

s∈[0,t]

‖Ev(s)‖L1(Ω)

)
.

We next bound Ev in L∞(0, T ;L1(Ω;Mn×n
sym )). Thanks to (3.13), the fact that Dγ(σ) is

a deviatoric matrix and the safe load condition (3.8), we have for a.e. s ∈ [0, t]∫
Ω

(Ev(s)−Aσ̇(s)) · (σ(s)− ρ(s)) dx =

∫
Ω

Dγ(σ(s)) · σ(s) dx−
∫

Ω

Dγ(σ(s)) · ρ(s) dx

≥ rK
∫

Ω

|Dγ(σ(s))| dx− ‖ρD(s)‖L∞(Ω)

∫
Ω

|Dγ(σ(s))| dx ≥ c
∫

Ω

|Dγ(σ(s))| dx,

where c > 0. Since |Ev(s)| ≤ |Aσ̇(s)|+ |Dγ(σ(s))| we obtain∫
Ω

|Ev(s)| dx ≤
∫

Ω

|Aσ̇(s)| dx+
1

c

∫
Ω

(Ev(s)−Aσ̇(s)) · (σ(s)− ρ(s)) dx.

In order to estimate 〈σ(s)− ρ(s), Ev(s)〉, we test the second equation in (3.18) with v(s)−
ẇ(s) ∈ H1

ΓD
(Ω;Rn) obtaining∫

Ω

v̇(s) · (v(s)− ẇ(s)) dx+

∫
Ω

σ(s) · (Ev(s)− Eẇ(s)) dx =

∫
Ω

ρ(s) · (Ev(s)− Eẇ(s)) dx,

so that∫
Ω

(σ(s)− ρ(s)) · Ev(s) dx = −
∫

Ω

v̇(s) (v(s)− ẇ(s)) dx+

∫
Ω

(σ(s)− ρ(s)) · Eẇ(s) dx.

We conclude that for all ε > 0

(3.29)

∫
Ω

|Ev(s)| dx ≤
∫

Ω

|Aσ̇(s)| dx+
1

c

(
−
∫

Ω

Aσ̇(s) · (σ(s)− ρ(s)) dx

−
∫

Ω

v̇(s) · (v(s)− ẇ(s)) dx+

∫
Ω

(σ(s)− ρ(s)) · Eẇ(s) dx
)

≤ Cε
(

1 + ‖σ(s)‖2L2(Ω) + ‖v(s)‖2L2(Ω)

)
+ ε

(
‖σ̇(s)‖2L2(Ω) + ‖v̇(s)‖2L2(Ω)

)
,

where Cε > 0 is independent of (α, λ). Gathering (3.28), (3.29), and choosing ε small enough,
we infer for all t ∈ [0, T ],

ess sup
s∈[0,t]

(
‖σ̇(s)‖2L2(Ω) + ‖v̇(s)‖2L2(Ω)

)
≤ C sup

s∈[0,t]

(
1 + ‖σ(s)‖2L2(Ω) + ‖v(s)‖2L2(Ω)

)
.

On the other hand, for every s ∈ [0, t]

‖σ(s)‖2L2(Ω) ≤
∥∥∥∥σ0 +

∫ s

0

σ̇(r) dr

∥∥∥∥2

L2(Ω)

≤ 2‖σ0‖2L2(Ω) + 2

(∫ s

0

‖σ̇(r)‖L2(Ω) dr

)2

≤ C

(
1 +

∫ t

0

‖σ̇(r)‖2L2(Ω) dr

)
(3.30)

and a similar computation holds for v. We deduce that for a.e. t ∈ [0, T ]

‖σ̇(t)‖2L2(Ω) + ‖v̇(t)‖2L2(Ω) ≤ C
∫ t

0

(
1 + ‖σ̇(s)‖2L2(Ω) + ‖v̇(s)‖2L2(Ω)

)
ds.

By the Gronwall Lemma and by (3.30) we finally obtain that for a.e. t ∈ [0, T ]

(3.31) ‖σ̇(t)‖2L2(Ω) + ‖v̇(t)‖2L2(Ω) + ‖σ(t)‖2L2(Ω) + ‖v(t)‖2L2(Ω) ≤ C,



SPATIAL REGULARITY FOR GENERAL YIELD CRITERIA IN PERFECT PLASTICITY 15

where C > 0 is independent of (α, λ). This proves (3.19).

Step 3: Further bounds. In view of (3.29) we deduce that

(3.32) sup
s∈[0,T ]

∫
Ω

|Ev(s)| dx ≤ C,

so that (3.20) follows by the Poincaré-Korn inequality and the boundary condition v = ẇ
on ΓD.

We now prove inequalities (3.21)–(3.23). Multiplying the first equation of (3.18) by σ(t),
the second equation of (3.18) by v(t) − ẇ(t) ∈ H1

ΓD
(Ω;Rn) and integrating by parts in

space-time, we get that for all 0 ≤ t1 ≤ t2 ≤ T ,∫ t2

t1

∫
Ω

Dγ(σ) · σ dx ds

=

∫ t2

t1

∫
Ω

(
−Aσ̇ · σ − v̇ · (v − ẇ) + (σ − ρ) · Eẇ + ρ · Ev

)
dx ds

=

∫ t2

t1

∫
Ω

(
−Aσ̇ · σ − v̇ · (v − ẇ) + (σ − ρ) · Eẇ +

1

n
tr(ρ) div v + ρD · Ev

)
dx ds

=

∫ t2

t1

∫
Ω

(
−Aσ̇ · σ − v̇ · (v − ẇ) + (σ − ρ) · Eẇ +

1

n
tr(ρ)tr(Aσ̇) + ρD · Ev

)
dx ds

≤ C(t2 − t1),

where we used that div v = tr(Aσ̇) by the first equation in (3.18), the a priori estimates
(3.31) and (3.32), as well as the assumptions (3.5)–(3.6) on ρ and (3.4) on w. We thus get

sup
t∈[0,T ]

∫
Ω

Dγ(σ(t)) · σ(t) dx ≤ C.

Taking into account inequalities (3.12) and (3.13) for Dγα,λ it follows that

sup
t∈[0,T ]

∫
Ω

(1 + (d2(σ(t))∧λ2))
1
2α−

1
2 d`(σ(t)) dx ≤ C for ` = 1, 2,

while, by the convexity of γ which gives Dγ(ξ) · ξ ≥ γ(ξ)− γ(0),

sup
t∈[0,T ]

∫
Ω

γ(σ(t)) dx ≤ C +
α

α+ 1
Ln(Ω),

This inequality and the definition of γα,λ yield, in particular, that

sup
t∈[0,T ]

∫
Ω

(
1 + d2(σ(t)) ∧ λ2)

) 1
2α+ 1

2 dx ≤ C
(

1 +
1

α

)
.

This concludes the proof. �

Remark 3.2. The solution provided by Theorem 3.1 satisfies the following energy balance:
for all t ∈ [0, T ]

1

2

∫
Ω

Aσα,λ(t) · σα,λ(t) dx+
1

2

∫
Ω

|vα,λ(t)|2 dx

+

∫ t

0

∫
Ω

(
γα,λ(σα,λ) + γ∗α,λ

(
Dγα,λ(σα,λ)

)
− ρD ·Dγα,λ(σα,λ)

)
dx ds

=
1

2

∫
Ω

Aσ0 ·σ0 dx+
1

2

∫
Ω

|v0|2 dx+

∫ t

0

∫
Ω

(
v̇α,λ · ẇ+ρ · (Aσ̇α,λ−Eẇ) +Eẇ ·σα,λ

)
dx ds,

where γ∗α,λ stands for the convex conjugate of γα,λ.
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Indeed, omitting again the dependence on α and λ, multiplying the first equation in (3.18)
by σ and using the second equation we get for a.e. s ∈ (0, T )∫

Ω

Aσ̇(s) · σ(s) dx+

∫
Ω

Dγ(σ(s)) · σ(s) dx

=

∫
Ω

(Ev(s)− Eẇ(s)) · σ(s) dx+

∫
Ω

Eẇ(s) · σ(s) dx

= −
∫

Ω

v̇(s) · (v(s)− ẇ(s)) dx+ 〈L(s), v(s)− ẇ(s)〉+

∫
Ω

Eẇ(s) · σ(s) dx.

The convexity and differentiability of γ ensure that

Dγ(σ(s)) · σ(s) = γ(σ(s)) + γ∗(Dγ(σ(s))) a.e. in Ω,

while (3.7) together with the fact that Dγ(σ) ∈Mn×n
D a.e. in Ω× (0, T ) imply that

〈L(s), v(s)− ẇ(s)〉 =

∫
Ω

ρ(s) · (Ev(s)− Eẇ(s)) dx

=

∫
Ω

ρD(s) ·Dγ(σ(s)) dx+

∫
Ω

ρ(s) · (Aσ̇(s)− Eẇ(s)) dx.

In this way we arrive at the identity∫
Ω

v̇(s) · v(s) dx+

∫
Ω

Aσ̇(s) ·σ(s) dx+

∫
Ω

(
γ(σ(s)) + γ∗(Dγ(σ(s)))− ρD(s) ·Dγ(σ(s))

)
dx

=

∫
Ω

(
v̇(s) · ẇ(s) + ρ(s) · (Aσ̇(s)− Eẇ(s)) + Eẇ(s) · σ(s)

)
dx.

Integrating with respect to time between 0 and t yields the announced energy equality.

We now prove higher spatial regularity of the solution (σα,λ, vα,λ) of the Norton-Hoff
dynamic problem (3.18), with uniform estimates with respect to the parameters α and λ.

Theorem 3.3 (Higher spatial regularity). In addition to the assumptions of Theo-
rem 3.1 suppose further that

• ∂K is of class C2 and its second fundamental form is positive definite at every point
of ∂K;

• σ0 ∈ H1
loc(Ω;Mn×n

sym );

• f ∈ L2(0, T ;H1
loc(Ω;Rn)).

Then, for every open set ω ⊂⊂ Ω there exists a constant Cω > 0, depending on ω but
independent of (α, λ), such that

(3.33) sup
t∈[0,T ]

(
‖∇σα,λ(t)‖L2(ω) + ‖∇vα,λ(t)‖L2(ω)

)
≤ Cω.

Proof. Throughout the proof ω denotes an open set compactly supported in Ω. Let ω′ be a
further open set such that ω ⊂⊂ ω′ ⊂⊂ Ω, and let ϕ ∈ C∞c (ω′; [0, 1]) be a cut-off function
satisfying ϕ = 1 in ω. For every 1 ≤ k ≤ n, x ∈ ω′, and h < dist(ω′, ∂Ω), we will use the
notation

∂hk ζ(x) =
ζ(x+ hek)− ζ(x)

h
for the difference quotient of a general function ζ defined on Ω with values in a vector space.

As in the proof of Theorem 3.1, we omit the super/subscripts (α, λ) and simply write
σ ≡ σα,λ, v ≡ vα,λ, γ ≡ γα,λ. We also denote by Qt := Ω× (0, t) the space-time cylinder.

We divide the proof into two steps.

Step 1: Bad non-uniform bounds. We first show that

(3.34) σ ∈ L∞(0, T ;H1
loc(Ω;Mn×n

sym )).

We have
A∂hk σ̇ + ∂hkDγ(σ) = ∂hkEv a.e. in ω′ × (0, T ).



SPATIAL REGULARITY FOR GENERAL YIELD CRITERIA IN PERFECT PLASTICITY 17

Multiplying the previous equation by ϕ4∂hkσ and integrating over Ω yields for a.e. t ∈ (0, T ),∫
Ω

ϕ4A∂hk σ̇(t) · ∂hkσ(t) dx+

∫
Ω

ϕ4∂hkDγ(σ(t)) · ∂hkσ(t) dx =

∫
Ω

ϕ4∂hkEv(t) · ∂hkσ(t) dx.

We rewrite the right-hand side using the second equation of (3.18) tested with ϕ4∂hk v(t) ∈
H1

0 (Ω;Rn) (note that it vanishes on the whole ∂Ω, so there are no boundary terms when
integrating by parts): since∫

Ω

∂hk v̇(t) · ϕ4∂hk v(t) dx+

∫
Ω

∂hkσ(t) · E(ϕ4∂hk v(t)) dx =

∫
Ω

∂hk f(t) · ϕ4∂hk v(t) dx

we obtain∫
Ω

ϕ4A∂hk σ̇(t) · ∂hkσ(t) dx+

∫
Ω

ϕ4∂hkDγ(σ(t)) · ∂hkσ(t) dx

= −
∫

Ω

∂hk v̇(t) · ϕ4∂hk v(t) dx−
∫

Ω

∂hkσ(t) ·
(
∂hk v(t)⊗∇ϕ4

)
dx+

∫
Ω

∂hk f(t) · ϕ4∂hk v(t) dx.

Integrating with respect to time yields for all t ∈ (0, T ),

(3.35)
1

2

∫
Ω

ϕ4A∂hkσ(t) · ∂hkσ(t) dx+
1

2

∫
Ω

ϕ4∂hk v(t) · ∂hk v(t) dx

+

∫∫
Qt

ϕ4∂hkDγ(σ) · ∂hkσ dx ds =
1

2

∫
Ω

ϕ4A∂hkσ0 · ∂hkσ0 dx+
1

2

∫
Ω

ϕ4∂hk v0 · ∂hk v0 dx

−
∫∫

Qt

∂hkσ ·
(
∂hk v ⊗∇ϕ4

)
dx ds+

∫∫
Qt

∂hk f · ϕ4∂hk v dx ds.

Owing to the convexity of γ, the third term in the left-hand side of the previous equation
is nonnegative. Using that (σ0, v0) ∈ H1

loc(Ω;Mn×n
sym )×H1(Ω;Rn), v ∈ L∞(0, T ;H1(Ω;Rn)),

and the Hölder inequality, we get that∫
Ω

ϕ4A∂hkσ(t) · ∂hkσ(t) dx+

∫
Ω

ϕ4∂hk v(t) · ∂hk v(t) dx

≤ C

[
1 + ‖∇ϕ‖L∞(Ω)‖∇v‖L∞(0,T ;L2(Ω))

(
sup

s∈[0,T ]

∫
Ω

ϕ4A∂hkσ(s) · ∂hkσ(s) dx

)1/2

+ ‖f‖2L2(0,T ;H1(ω′)) + ‖∇v‖2L∞(0,T ;L2(Ω))

]
,

where the constant C > 0 is independent of h. Invoking the Cauchy inequality yields

(3.36) sup
t∈[0,T ]

∫
Ω

ϕ4A∂hkσ(t) · ∂hkσ(t) dx ≤ Cα,

where Cα > 0 depends on α (through the L2 norm of ∇v(t)), but is independent of h. This
proves (3.34).

Since Dγ : Mn×n
sym → R is Lipschitz continuous, piecewise C1, and Dγ(0) = 0, it follows

that Dγ(σ) ∈ L∞(0, T ;H1
loc(Ω;Mn×n

D )). As a consequence, for a.e. t ∈ [0, T ]
∂hk v → ∂kv strongly in L2

loc(Ω;Rn),

∂hkσ → ∂kσ strongly in L2
loc(Ω;Mn×n

sym ),

∂hkDγ(σ)→ ∂kDγ(σ) strongly in L2
loc(Ω;Mn×n

D ),
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as h→ 0, and passing to the limit in (3.35), thanks to the uniform bound (3.36), we infer

(3.37)
1

2

∫
Ω

ϕ4A∂kσ(t) · ∂kσ(t) dx+
1

2

∫
Ω

ϕ4|∇v(t)|2 dx

+

∫∫
Qt

ϕ4∂kDγ(σ) · ∂kσ dx ds =
1

2

∫
Ω

ϕ4A∂kσ0 · ∂kσ0 dx+
1

2

∫
Ω

ϕ4|∇v0|2 dx

−
∫∫

Qt

∂kσ ·
(
∂kv ⊗∇ϕ4

)
dx ds+

∫∫
Qt

∂kf · ϕ4∂kv dx ds.

Step 2: Uniform bounds. From now on, C > 0 will always stand for a general constant
independent of the parameters (α, λ). We start with an estimate for the term∫∫

Qt

∂kσ ·
(
∂kv ⊗∇ϕ4

)
dx ds

in the right-hand side of (3.37). By the second equation in (3.18) we have that for all
1 ≤ k ≤ n

v̇k = (div σ)k + fk = (div σD)k +
1

n
∂k(trσ) + fk,

hence

∂kσij = ∂k(σD)ij +
1

n
∂k(trσ)δij = Σijk + (v̇k − fk)δij ,

where

Σijk := ∂k(σD)ij − (div σD)kδij .

Note for future use that Σijk is a linear function of the first partial derivative of σD only.
Using the summation convention over repeated indexes, we have∫∫

Qt

∂kσ ·
(
∂kv ⊗∇ϕ4

)
dx ds =

∫∫
Qt

∂kσij∂kvi∂jϕ
4 dx ds

= 2

∫∫
Qt

∂kσij(Ev)ik∂jϕ
4 dx ds−

∫∫
Qt

∂kσij∂ivk∂jϕ
4 dx ds

= 2

∫∫
Qt

Σijk(Ev)ik∂jϕ
4 dx ds+ 2

∫∫
Qt

(Ev)ik(v̇k − fk)∂iϕ
4 dx ds

−
∫∫

Qt

∂kσij∂ivk∂jϕ
4 dx ds.

Integrating the last term by parts in space we get∫
Ω

∂kσij∂ivk∂jϕ
4 dx = −〈∂kiσij , vk∂jϕ4〉H−1(ω′)×H1

0 (ω′) −
∫

Ω

vk∂kσij∂ijϕ
4 dx

=

∫
Ω

∂kvk∂iσij∂jϕ
4 dx+

∫
Ω

vk∂iσij∂jkϕ
4dx−

∫
Ω

vk∂kσij∂ijϕ
4 dx

=

∫
Ω

(Ev)kk(v̇j − fj)∂jϕ4 dx+

∫
Ω

vk∂iσij∂jkϕ
4 dx

−
∫

Ω

vk∂kσij∂ijϕ
4 dx,
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which yields∫∫
Qt

∂kσ ·
(
∂kv ⊗∇ϕ4

)
dx ds

= 2

∫∫
Qt

Σijk(Ev)ik∂jϕ
4 dx ds+ 2

∫∫
Qt

(Ev)ik(v̇k − fk)∂iϕ
4 dx ds

−
∫∫

Qt

(Ev)kk(v̇j − fj)∂jϕ4 dx ds−
∫∫

Qt

vk∂iσij∂jkϕ
4 dx ds

+

∫∫
Qt

vk∂kσij∂ijϕ
4 dx ds.(3.38)

The second term at the right-hand side can be bounded in the following way:∣∣∣∣∫∫
Qt

(Ev)ik(v̇k − fk)∂iϕ
4 dx ds

∣∣∣∣
≤ C

[∫∫
Qt

ϕ4|∇v|2 dx ds+ ‖v̇‖2L∞(0,T ;L2(Ω)) + ‖ϕf‖2L2(0,T ;L2(Ω))

]
.

The same estimate holds for the third term at the right-hand side of (3.38). Since ∂jkϕ
4 =

ϕ2(12∂jϕ∂kϕ+ 4ϕ∂jkϕ), we have∣∣∣∣∫∫
Qt

vk∂iσij∂jkϕ
4 dx ds

∣∣∣∣ ≤ C [‖v‖2L∞(0,T ;L2(Ω)) +

∫∫
Qt

ϕ4A∂kσ · ∂kσ dx ds
]

and the same bound holds for the last term in (3.38). Applying the above estimates in (3.38)
and using that Aσ̇ +Dγ(σ) = Ev, we conclude that

−
∫∫

Qt

∂kσ ·
(
∂kv ⊗∇ϕ4

)
dx ds

≤ −2

∫∫
Qt

Σijk[Aσ̇ +Dγ(σ)]ik∂jϕ
4 dx ds+ C

(
‖v‖2W 1,∞(0,T ;L2(Ω)) + ‖ϕf‖2L2(0,T ;L2(Ω))

+

∫∫
Qt

ϕ4|∇v|2 dx ds+

∫∫
Qt

ϕ4A∂kσ · ∂kσ dx ds
)
,

so that from (3.37) we obtain

(3.39)
1

2

∫
Ω

ϕ4A∂kσ(t) · ∂kσ(t) dx+
1

2

∫
Ω

ϕ4|∇v(t)|2 dx+

∫∫
Qt

ϕ4∂kDγ(σ) · ∂kσ dx ds

≤ C
(
‖ϕσ0‖2H1(Ω) + ‖v0‖2H1(Ω) + ‖v‖2W 1,∞(0,T ;L2(Ω)) + ‖ϕf‖2L2(0,T ;L2(Ω))

+ ‖ϕ∇f‖2L2(0,T ;L2(Ω)) +

∫∫
Qt

ϕ4|∇v|2 dx ds+

∫∫
Qt

ϕ4A∂kσ · ∂kσ dx ds
)

− 2

∫∫
Qt

Σijk[Aσ̇ +Dγ(σ)]ik∂jϕ
4 dx ds.

We now focus on the last term in the right-hand side of (3.39). Since Σijk is a linear
function of the first order partial derivatives of σD, thanks to the Cauchy inequality, we
have ∫∫

Qt

ΣijkAσ̇ik∂jϕ
4 dx ds ≤ C

(∫∫
Qt

ϕ4A∂kσ · ∂kσ dx ds+ ‖σ̇‖2L∞(0,T ;L2(Ω))

)
.

Let us come to the term ∫∫
Qt

Σijk[Dγ(σ)]ik∂jϕ
4 dx ds.

Since by (3.11)

|Dγ(σ)| =
(
1 + d2(σ) ∧ λ2

) 1
2α−

1
2 d(σ)
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while |Σijk| ≤ C|∇σD|, we may write∣∣∣∣∫∫
Qt

[Dγ(σ)]ikΣijk∂jϕ
4 dx ds

∣∣∣∣(3.40)

≤ C
∫∫

Qt

(1 + d2(σ) ∧ λ2)
1
2α−

1
2 d(σ)|∇σD||∂jϕ4| dx ds

≤ C

(∫ t

0

∫
{d(σ)≤1}

ϕ4(1 + d2(σ) ∧ λ2)
1
2α−

1
2 d(σ)|∇σD|2 dx ds

)1/2

+ C

(∫ t

0

∫
{d(σ)>1}

ϕ4(1 + d2(σ) ∧ λ2)
1
2α−

1
2 |∇σD|2 dx ds

)1/2

,

where in the last step we used the Hölder inequality and (3.21) with ` = 1 and ` = 2.
Applying the Cauchy inequality, we get∣∣∣∣∫∫

Qt

[Dγ(σ)]ikΣijk∂jϕ
4 dx ds

∣∣∣∣
≤ CK

1 + CK

∫ t

0

∫
{d(σ)≤1}

ϕ4(1 + d2(σ) ∧ λ2)
1
2α−

1
2 d(σ)|∇σD|2 dx ds

+
CK

1 + CK

∫ t

0

∫
{d(σ)>1}

ϕ4(1 + d2(σ) ∧ λ2)
1
2α−

1
2 |∇σD|2 dx ds+ C,

where CK > 0 is the same constant as in (3.15). Since ∂K is of class C2 and its second
fondamental form is positive definite at every point, by (3.15) we have

∂kDγ(σ) · ∂kσ ≥ (1 + d2(σ) ∧ λ2)
1
2α−

1
2

CKd(σ)

1 + CKd(σ)
|∂kσD|2,

so that we conclude

1

2

∫
Ω

ϕ4A∂kσ(t) · ∂kσ(t) dx+
1

2

∫
Ω

ϕ4|∇v(t)|2 dx

+

∫∫
Qt

(1 + d2(σ) ∧ λ2)
1
2α−

1
2

CKd(σ)

1 + CKd(σ)
ϕ4|∇σD|2 dx ds

≤ C
(

1 + ‖ϕσ0‖2H1(Ω) + ‖v0‖2H1(Ω) + ‖v‖2W 1,∞(0,T ;L2(Ω)) + ‖σ‖2W 1,∞(0,T ;L2(Ω))

+ ‖ϕf‖2L2(0,T ;L2(Ω)) + ‖ϕ∇f‖2L2(0,T ;L2(Ω)) +

∫ t

0

(∫
Ω

ϕ4A∂kσ · ∂kσ dx+

∫
Ω

ϕ4|∇v|2 dx
)
ds

)
+

CK
1 + CK

∫ t

0

∫
{d(σ)≤1}

(1 + d2(σ) ∧ λ2)
1
2α−

1
2 d(σ)ϕ4|∇σD|2 dx ds

+
CK

1 + CK

∫ t

0

∫
{d(σ)>1}

(1 + d2(σ) ∧ λ2)
1
2α−

1
2ϕ4|∇σD|2 dx ds,

where the constant in front of the last two integrals was chosen in such a way that both
terms are compensated by the third integral on the left-hand side. By the coercivity of A
and (3.19) we conclude that for all t ∈ 0, T ),

‖ϕ2∇σ(t)‖2L2(Ω) + ‖ϕ2∇v(t)‖2L2(Ω) ≤ C1

∫ t

0

(
‖ϕ2∇σ‖2L2(Ω) + ‖ϕ2∇v‖2L2(Ω)

)
ds+ C2,

where C1, C2 > 0 are independent of (α, λ). By the Gronwall Lemma (3.33) follows, and
the proof is concluded. �



SPATIAL REGULARITY FOR GENERAL YIELD CRITERIA IN PERFECT PLASTICITY 21

3.3. Existence of a strong solution in dynamical perfect plasticity. In this section
we recover the existence of strong evolutions in dynamic perfect plasticity by considering the
Norton-Hoff approximations of the previous sections, and by letting the parameters α→ 0+

and λ→ +∞.

Theorem 3.4 (Strong evolutions in dynamic perfect plasticity). Under the assump-
tions of Theorem 3.3, let u0 ∈ H1(Ω;Rn) be such that div u0 = tr(Aσ0) in Ω. Then there
exists a unique triplet (u, e, p) with regularity

u ∈W 2,∞(0, T ;L2(Ω;Rn)) ∩W 1,∞(0, T ;H1
loc(Ω;Rn)) ∩W 1,∞(0, T ;BD(Ω)),

e ∈W 1,∞(0, T ;L2(Ω;Mn×n
sym )) ∩ L∞(0, T ;H1

loc(Ω;Mn×n
sym )),

p ∈W 1,∞(0, T ;M(Ω ∪ ΓD;Mn×n
D )) ∩W 1,∞(0, T ;L2

loc(Ω;Mn×n
D ))

satisfying the following conditions:

Kinematic compatibility: for all t ∈ [0, T ],

(3.41) Eu(t) = e(t) + p(t) Ln-a.e. in Ω, p(t) = (w(t)− u(t))� νHn−1 on ΓD;

Stress constraint: for all t ∈ [0, T ],

(3.42) σ(t) := Ce(t) ∈ K Ln-a.e. in Ω;

Equation of motion: for a.e. t ∈ [0, T ]

(3.43) ü− div σ = f Ln-a.e. in Ω;

Neumann boundary condition: for a.e. t ∈ (0, T ),

(3.44) σ(t)ν = g(t) Hn−1-a.e. on ΓN ;

Flow rule: for a.e. t ∈ (0, T ),

(3.45)

{
H(ṗ(t)) = σD(t) · ṗ(t) Ln-a.e. in Ω,

H((ẇ(t)− u̇(t))� ν) = (σ(t)ν)τ · (ẇ(t)− u̇(t)) Hn−1-a.e. on ΓD;

Initial condition:

(3.46) (u(0), u̇(0), e(0), p(0)) = (u0, v0,Aσ0, Eu0 −Aσ0).

Proof. Let αj → 0+ and λj → +∞ and let us denote with (σj , vj) the evolution given by
Theorem 3.1 with the choice α := αj and λ = λj , i.e., such that

(3.47)



Aσ̇j +Dγαj ,λj (σj) = Evj in Ω× (0, T ),

v̇j − div σj = f in Ω× (0, T ),

vj = ẇ on ΓD × (0, T ),

σjν = g on ΓN × (0, T ),

(σj(0), vj(0)) = (σ0, v0) in Ω

We divide the proof into six steps.

Step 1: Compactness. By applying the Ascoli-Arzelà Theorem we deduce from (3.19)
that there exists

(σ, v) ∈W 1,∞(0, T ;L2(Ω;Mn×n
sym ))×W 1,∞(0, T ;L2(Ω;Rn))

such that, up to subsequences,

(3.48)

{
σj(t) ⇀ σ(t) weakly in L2(Ω;Mn×n

sym ),

vj(t) ⇀ v(t) weakly in L2(Ω;Rn)
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for every t ∈ [0, T ] and

(3.49)

{
σj ⇀ σ weakly* in W 1,∞(0, T ;L2(Ω;Mn×n

sym )),

vj ⇀ v weakly* in W 1,∞(0, T ;L2(Ω;Rn)).

In addition, by (3.20) we have that

(3.50) vj ⇀ v weakly* in L∞(0, T ;BD(Ω)).

From Theorem 3.3 and the Urysohn property we also get that for all open sets ω ⊂⊂ Ω and
every t ∈ [0, T ] {

σj(t) ⇀ σ(t) weakly in H1(ω;Mn×n
sym ),

vj(t) ⇀ v(t) weakly in H1(ω;Rn),

so that σ ∈ L∞(0, T ;H1
loc(Ω;Mn×n

sym )) and v ∈ L∞(0, T ;H1
loc(Ω;Rn)) ∩ L∞(0, T ;BD(Ω)).

Step 2: The limit evolution. We now set for every t ∈ [0, T ]

u(t) := u0 +

∫ t

0

v(s) ds

as a Bochner integral in L2(Ω;Rn). It follows that u(0) = u0, u̇ = v and

u ∈W 2,∞(0, T ;L2(Ω;Rn)) ∩W 1,∞(0, T ;H1
loc(Ω;Rn)) ∩W 1,∞(0, T ;BD(Ω)).

We define

e := Aσ ∈W 1,∞(0, T ;L2(Ω;Mn×n
sym )) ∩ L∞(0, T ;H1

loc(Ω;Mn×n
sym )),

and, for all t ∈ [0, T ],

p(t) :=

{
Eu(t)− e(t) in Ω,

(w(t)− u(t))� νHn−1 on ΓD,

so that

p ∈W 1,∞(0, T ;M(Ω ∪ ΓD;Mn×n
sym )) ∩W 1,∞(0, T ;L2

loc(Ω;Mn×n
sym ))

and the kinematic compatibility conditions (3.41) are satisfied. Moreover from the first
equation in (3.47) and taking into account (3.49) and (3.50) we infer

(3.51) Dγαj ,λj (σj) ⇀ ṗ weakly* in L∞(0, T ;M(Ω ∪ ΓD;Mn×n
D )).

Together with the assumption div u0 = tr(Aσ0) in Ω, this implies in particular that p(t) ∈
Mn×n
D for every t ∈ [0, T ].

Step 3: The linear limit equations. By (3.48) we have that (σ(0), v(0)) = (σ0, v0) and
by the definition of u, e and p, we also get that (u(0), e(0), p(0)) = (u0,Aσ0, Eu0 −Aσ0),
so that the initial condition (3.46) is satisfied.

According to the second equation in (3.47), together with (3.49), we have that div σj ⇀
div σ weakly* in L∞(0, T ;L2(Ω;Rn)), so that σ ∈ L∞(0, T ;Hdiv(Ω;Mn×n

sym )) and the equation

of motion (3.43) is satisfied. Moreover, as σjν ⇀ σν weakly* in L∞(0, T ;H−
1
2 (∂Ω;Rn)), we

also get the validity of the Neumann boundary condition (3.44).
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Step 4: The stress constraint. Let us fix q > 1 and λ > 0. By the Hölder inequality we
have that for j large and all t ∈ [0, T ],∫

Ω

[
(1 + d2(σj(t)) ∧ λ2)q + q(1 + λ2)q−1(d2(σj(t))− λ2)+

]
dx

≤
∫

Ω

[
(1 + d2(σj(t)) ∧ λ2

j )
q + q(1 + λ2

j )
q−1(d2(σj(t))− λ2

j )
+
]
dx

≤
(∫

Ω

(1 + d2(σj(t)) ∧ λ2
j )

1
2αj

+ 1
2 dx

) 2qαj
αj+1

Ln(Ω)
1−

2qαj
αj+1

+
q

(1 + λ2
j )

1
2αj

+ 1
2−q

∫
Ω

(1 + λ2
j )

1
2αj
− 1

2 (d2(σj(t))− λ2
j )

+ dx.

Using next the uniform estimates (3.22) and (3.23), we infer that∫
Ω

[
(1 + d2(σj(t)) ∧ λ2)q + q(1 + λ2)q−1(d2(σj(t))− λ2)+

]
dx

≤
(
C
αj + 1

αj

) 2qαj
αj+1

Ln(Ω)
1−

2qαj
αj+1 +

2qC

(1 + λ2
j )

1
2αj

+ 1
2−q

.

By convexity of the function ξ 7→ (1 +d2(ξ)∧λ2)q + q(1 +λ2)q−1(d2(ξ)−λ2)+ and the weak
convergence (3.48), we have for every t ∈ [0, T ], q > 1 and λ > 0∫

Ω

[
(1 + d2(σ(t)) ∧ λ2)q + q(1 + λ2)q−1(d2(σ(t))− λ2)+

]
dx ≤ Ln(Ω).

Letting first λ→∞, the Fatou Lemma yields∫
Ω

(1 + d2(σ(t))q dx ≤ Ln(Ω).

Passing then to the limit as q → ∞, we deduce that d(σ(t)) = 0 Ln-a.e. in Ω, hence the
stress constraint (3.42).

Step 5: The flow rule. In order to conclude, it remains to prove that the flow rule holds
true. To this aim we will show that for a.e. t ∈ [0, T ]

(3.52) H(ṗ(t)) = [σD(t) · ṗ(t)] as measures on Ω ∪ ΓD,

where the left-hand side is interpreted as a convex function of measure, while the right-hand
side stands for the duality pairing between σD(t) and ṗ(t) (see Definition 2.1). Note that for

a.e. t ∈ [0, T ] we have σ(t) ∈ Sdyn
g by (3.42)–(3.44) and (u̇(t), ė(t), ṗ(t)) ∈ Adyn

ẇ(t) by kinematic

compatibility, so that the duality pairing is well defined.
Equality (3.52) immediately implies the flow rule (3.45). Indeed, since u̇(t) ∈ H1

loc(Ω;Rn)
and ṗ(t) ∈ L2

loc(Ω;Mn×n
D ), it follows from the integration by parts formula in Sobolev spaces

that [σD(t) · ṗ(t)] Ω = σD(t) · ṗ(t) in Ω, so that by (3.52)

H(ṗ(t)) = σ(t) · ṗ(t) Ln-a.e. in Ω.

On the other hand, according to [19, Lemma 3.8], we have that [σD(t)·ṗ(t)] ΓD = (σ(t)ν)τ ·
(ẇ(t)− u̇(t)) on ΓD, so that (3.52) on ΓD rewrite as

H((ẇ(t)− u̇(t))� ν) = (σ(t)ν)τ · (ẇ(t)− u̇(t)) Hn−1-a.e. on ΓD.

Since σ ∈ K a.e. in Ω× (0, T ), by [14, Proposition 2.4], the inequality H(ṗ(t)) ≥ [σD(t) ·
ṗ(t)] holds as measures in Rn for a.e. t ∈ [0, T ]. Thus, in order to prove (3.52) it is sufficient
to show that

(3.53) H(ṗ(t)) :=

∫
Ω∪ΓD

H

(
ṗ(t)

|ṗ(t)|

)
d|ṗ(t)| = [σD(t) · ṗ(t)](Rn) = 〈σD(t), ṗ(t)〉.

We will obtain this relation by means of an energy inequality.
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First of all let us note that for every ξ ∈Mn×n
D

γ∗αj ,λj (ξ) = sup
{
τ · ξ − γαj ,λj (τ)

}
≥ sup
τ∈K

{
τD · ξ − γαj ,λj (τD)

}
= H(ξ)− αj

αj + 1
.

Using the energy balance in Remark 3.2, we get that

(3.54)

1

2

∫
Ω

Aσj(t) ·σj(t) dx+
1

2

∫
Ω

|vj(t)|2 dx+

∫ t

0

∫
Ω

(
H
(
Dγαj ,λj (σj)

)
−ρD ·Dγαj ,λj (σj)

)
dx ds

≤ 1

2

∫
Ω

Aσ0 · σ0 dx+
1

2

∫
Ω

|v0|2 dx

+

∫ t

0

∫
Ω

(
v̇j · ẇ + ρ · (Aσ̇j − Eẇ) + Eẇ · σj

)
dx ds+

αj
αj + 1

Ln(Ω)T.

We claim that

(3.55)

∫ t

0

(
H(ṗ(s))− 〈ρD(s), ṗ(s)〉

)
ds

≤ lim inf
j→+∞

∫ t

0

∫
Ω

(
H(Dγαj ,λj (σj))− ρD ·Dγαj ,λj (σj)

)
dx ds.

If the claim is true, then by (3.48), (3.49), and (3.19) we can pass to the limit in (3.54) and
obtain

1

2

∫
Ω

Aσ(t) · σ(t) dx+
1

2

∫
Ω

|v(t)|2 dx+

∫ t

0

(
H(ṗ)− 〈ρD, ṗ〉

)
ds

≤ 1

2

∫
Ω

Aσ0 · σ0 dx+
1

2

∫
Ω

|v0|2 dx+

∫ t

0

∫
Ω

(
v̇ · ẇ + ρ · (Aσ̇ − Eẇ) + Eẇ · σ

)
dx ds,

which can be rewritten as

1

2

∫
Ω

Aσ(t) · σ(t) dx− 1

2

∫
Ω

Aσ0 · σ0 dx+

∫ t

0

H(ṗ) ds

≤
∫ t

0

〈ρD, ṗ〉 ds+

∫ t

0

∫
Ω

(
− v̇ · (v − ẇ) + ρ · (Aσ̇ − Eẇ) + Eẇ · σ

)
dx ds.

By assumption ρ(t) ∈ Sdyn
g for every t ∈ [0, T ]. Therefore, by applying (2.2) first to ρ and

then to σ (recall that from (3.43) we have −div σ = f − v̇ in Ω) we have

〈ρD, ṗ〉 =

∫
Ω

(
f · (v − ẇ) + ρ · (Eẇ −Aσ̇)

)
dx+

∫
ΓN

g · (v − ẇ) dHn−1

=

∫
Ω

(
(f − v̇) · (v − ẇ) + ρ · (Eẇ −Aσ̇)

)
dx+

∫
ΓN

g · (v − ẇ) dHn−1 +

∫
Ω

v̇ · (v − ẇ) dx

= 〈σD, ṗ〉+

∫
Ω

(
σ · (Aσ̇ − Eẇ) + v̇ · (v − ẇ) + ρ · (Eẇ −Aσ̇)

)
dx

a.e. in [0, T ]. We thus get

1

2

∫
Ω

Aσ(t) · σ(t) dx− 1

2

∫
Ω

Aσ0 · σ0 dx+

∫ t

0

H(ṗ) ds ≤
∫ t

0

(
〈σD, ṗ〉+ 〈σ,Aσ̇〉

)
ds,

so that ∫ t

0

(
H(ṗ)− 〈σD, ṗ〉

)
ds ≤ 0.

We conclude that H(ṗ(t)) = 〈σ(t), ṗ(t)〉 for a.e. t ∈ (0, T ), that is, (3.53) holds true.
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We now prove the claim (3.55), adapting an argument of the proof of [14, Theorem 3.3]
to our evolutionary setting. Let ϕ ∈ C∞c (Rn) be such that 0 ≤ ϕ ≤ 1 and ϕ = 0 in a
neighborhood of ΓN . Notice that, being the integrand nonnegative,

(3.56)

∫
Ω

(
H(Dγαj ,λj (σj))− ρD ·Dγαj ,λj (σj)

)
dx

≥
∫

Ω

(
H(ϕDγαj ,λj (σj))− ρD ·Dγαj ,λj (σj)ϕ

)
dx.

By integration by parts we may write∫
Ω

ρD ·Dγαj ,λj (σj)ϕdx =

∫
Ω

ρ · (Eẇ −Aσ̇j)ϕdx

+

∫
Ω

ρ · [(ẇ − vj)�∇ϕ)] dx−
∫

Ω

f · (ẇ − vj)ϕdx,

so that by (3.19), (3.49), and the Dominated Convergence Theorem

lim
j→+∞

∫ t

0

∫
Ω

ρD ·Dγαj ,λj (σj)ϕdx

=

∫ t

0

(∫
Ω

ρ · (Eẇ −Aσ̇)ϕdx+

∫
Ω

ρ · [(ẇ − v)�∇ϕ)] dx−
∫

Ω

f · (ẇ − v)ϕdx

)
ds

=

∫ t

0

〈[ρD · ṗ], ϕ〉 ds,

(3.57)

where in the last equality we used (2.1). On the other hand, since the convex functional H
is sequentially weakly* lower semicontinuous onM(Ω∪ΓD;Mn×n

D ), by [1, Proposition 2.31]

there exists a sequence {ηk}k∈N ⊂ C0(Ω ∪ ΓD;Mn×n
D ) such that

H(q) = sup
k∈N

∫
Ω∪ΓD

ηk · dq

for every q ∈ M(Ω ∪ ΓD;Mn×n
D ). Now, using (3.51), for every finite family {A1, . . . , Ah} of

open disjoint intervals in (0, t) we may write

lim inf
j→+∞

∫ t

0

∫
Ω

H(ϕDγαj ,λj (σj(s))) dx ds ≥ lim inf
j→+∞

h∑
k=1

∫
Ak

∫
Ω

H(ϕDγαj ,λj (σj(s))) dx ds

≥ lim inf
j→+∞

h∑
k=1

∫
Ak

∫
Ω

ηk ·Dγαj ,λj (σj(s))ϕdx ds

=

h∑
k=1

∫
Ak

∫
Ω∪ΓD

ϕηk · dṗ(s) ds,

so that, in view of Lemma 5.1 in the Appendix (applied to U = (0, t), λ = L1 and s 7→
fk(s) :=

∫
Ω∪ΓD

ϕηk · dṗ(s)) and of the positivity of H, taking the sup over k yields

(3.58) lim inf
j→+∞

∫ t

0

∫
Ω

H(ϕDγαj ,λj (σj(s)) dx ds ≥
∫ t

0

H(ϕṗ(s)) ds.

Gathering (3.56)–(3.58), we conclude

lim inf
j→+∞

∫ t

0

∫
Ω

(
H(Dγαj ,λj (σj))− ρD ·Dγαj ,λj (σj)

)
dx

≥
∫ t

0

H(ϕṗ(s)) ds−
∫ t

0

〈[ρD · ṗ], ϕ〉 ds,

so that (3.55) follows by letting ϕ tend to 1Ω∪ΓD (recall that |[ρD · ṗ]| ≤ C|ṗ| as measures).
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Step 6: Uniqueness. The uniqueness of the solution is standard and follows, e.g., from [7,
Section 4.5] (see also [9]). �

4. The quasi-static model

The regularity result for the dynamical model can be adapted to the quasi-static setting
under some slightly different assumptions on the prescribed displacements and exterior loads,
with some changes in the proofs. In this section we outline the main results.

(H ′4) We consider boundary displacements of the form

w ∈ H1(0, T ;H1(Ω;Rn)).

(H ′5) As in (H5), we consider exterior loads L(t) associated to a potential ρ(t) according to
(3.7), with regularity

ρ ∈ H1(0, T ;Hdiv(Ω;Mn×n
sym )), ρD ∈W 1,∞(0, T ;L∞(Ω;Mn×n

D )),

and satisfying the uniform safe-load condition (3.8).

4.1. Norton-Hoff approximation. We start by proving an existence result for a Norton-
Hoff approsimation of the quasistatic problem.

Theorem 4.1 (Quasi-static Norton-Hoff approximation). Assume hypotheses (H1)–
(H3), (H ′4), (H ′5) and (H6). Then, for every α ∈ (0, 1] and λ > 0 the problem

(4.1)



Aσ̇α,λ +Dγα,λ(σα,λ) = Evα,λ in Ω× (0, T ),

−div σα,λ = f in Ω× (0, T ),

vα,λ = ẇ on ΓD × (0, T ),

σα,λν = g on ΓN × (0, T ),

σα,λ(0) = σ0 in Ω

admits one and only one solution (σα,λ, vα,λ) with

σα,λ ∈ H1(0, T ;Hdiv(Ω;Mn×n
sym ))

and

vα,λ ∈ L2(0, T ;H1(Ω;Rn)).

Moreover, the following estimates hold:

(4.2) sup
t∈[0,T ]

‖σα,λ(t)‖L2(Ω) ≤ C,
∫ T

0

‖σ̇α,λ(t)‖2L2(Ω) dt ≤ C,

(4.3)

∫ T

0

∫
Ω

(
1 + d2(σα,λ) ∧ λ2

) 1
2α−

1
2 d`(σα,λ) dx dt ≤ C for ` = 1, 2,

(4.4)

∫ T

0

∫
Ω

(
1 + d2(σα,λ) ∧ λ2

) 1
2α+ 1

2 dx dt ≤ C
(

1 +
1

α

)
,

and

(4.5) ‖vα,λ‖L2(0,T ;BD(Ω)) ≤ C,

where C is a constant independent of α and λ.

Proof. As before, in order to simplify notation, we omit the explicit dependence on λ and
α. Lemma 5.2 in the Appendix guarantees the existence and uniqueness of a pair

(σ, v) ∈ H1(0, T ;Hdiv(Ω;Mn×n
sym ))× L2(0, T ;H1(Ω;Rn))

satisfying (4.1). We now focus on the estimates. As before we will denote by Qt the space
time cylinder Ω× (0, t).
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Step 1: Estimates for σ and σ̇. Testing the first equation of (4.1) with σ̇ and integrating
in time on [0, t] we get

(4.6)

∫∫
Qt

Aσ̇ · σ̇ dx ds+

∫
Ω

γ(σ(t)) dx−
∫

Ω

γ(σ0) dx =

∫∫
Qt

Ev · σ̇ dx ds

=

∫∫
Qt

(
(Ev − Eẇ) · σ̇ + Eẇ · σ̇

)
dx ds =

∫∫
Qt

(
(Ev − Eẇ) · ρ̇+ Eẇ · σ̇

)
dx ds.

Since Dγ(σ) is a deviatoric matrix, the first equation of (4.1) gives div v = tr(Aσ̇), so that∫
Ω

Ev · ρ̇ dx =

∫
Ω

EDv · ρ̇D dx+
1

n

∫
Ω

(div v)tr(ρ̇) dx

=

∫
Ω

EDv · ρ̇D dx+
1

n

∫
Ω

tr(Aσ̇)tr(ρ̇) dx,

and we infer thanks to the assumptions (H ′5) on ρ∫∫
Qt

Ev · ρ̇ dx ds ≤ C
∫ t

0

(
‖Ev(s)‖L1(Ω) + ‖ρ̇(s)‖L2(Ω)‖σ̇(s)‖L2(Ω)

)
ds.

From (4.6), the regularity assumptions on w and ρ together with the Cauchy Inequality, we
conclude that

(4.7)

∫ t

0

‖σ̇(s)‖2L2(Ω) ds ≤ C
(

1 +

∫ t

0

‖Ev(s)‖L1(Ω) ds

)
.

Let us estimate the right-hand side of (4.7). Following computations similar to those of
Step 2 in the proof of Theorem 3.1, thanks to (3.13) and the safe load condition (3.8), we
have for a.e. s ∈ (0, T )∫

Ω

(Ev(s)−Aσ̇(s)) · (σ(s)− ρ(s)) dx =

∫
Ω

Dγ(σ(s)) · σ(s) dx−
∫

Ω

Dγ(σ(s)) · ρ(s) dx

≥ rK
∫

Ω

|Dγ(σ(s))| dx− ‖ρD(s)‖L∞(Ω)

∫
Ω

|Dγ(σ(s))| dx ≥ c
∫

Ω

|Dγ(σ(s))| dx,

where c > 0. Since |Ev(s)| ≤ |Aσ̇(s)|+ |Dγ(σ(s))|, we obtain

(4.8)

∫
Ω

|Ev(s)| dx ≤
∫

Ω

|Aσ̇(s)| dx+
1

c

∫
Ω

(Ev(s)−Aσ̇(s)) · (σ(s)− ρ(s)) dx.

Let us estimate the term
∫

Ω
Ev(s) · (σ(s)− ρ(s)) dx. Since∫

Ω

σ(s) · (Ev(s)− Eẇ(s)) dx =

∫
Ω

ρ(s) · (Ev(s)− Eẇ(s)) dx,

we get ∫
Ω

(σ(s)− ρ(s)) · Ev(s) dx =

∫
Ω

(σ(s)− ρ(s)) · Eẇ(s) dx,

so that, using again the assumptions on ρ, we obtain from (4.8) that

(4.9)

∫
Ω

|Ev(s)| dx ≤ C‖σ̇(s)‖L2(Ω)

+ C(‖σ̇(s)‖L2(Ω) + ‖Eẇ(s)‖L2(Ω))(‖σ(s)‖L2(Ω) + ‖ρ(s)‖L2(Ω)).

Combining (4.7) and (4.9), and using the Cauchy inequality we deduce

(4.10)

∫ t

0

‖σ̇(s)‖2L2(Ω) ds ≤ C
(

1 +

∫ t

0

‖σ(s)‖2L2(Ω) ds

)
.

On the other hand, absolute continuity in time yields

‖σ(t)‖2L2(Ω) ≤ C + 2T

∫ t

0

‖σ̇(s)‖2L2(Ω) ds



28 J.-F. BABADJIAN, A. GIACOMINI AND M.G. MORA

for every t ∈ [0, T ], so that by (4.10)

‖σ(t)‖2L2(Ω) ≤ C
(

1 +

∫ t

0

‖σ(s)‖2L2(Ω) ds

)
for every t ∈ [0, T ]. By applying the Gronwall Lemma we finally deduce the first bound in
(4.2), which, in turn, together with (4.10), implies the second bound in (4.2).

Step 2: Further estimates. From (4.9) we deduce that

Ev ∈ L2(0, T ;L1(Ω;Mn×n
sym )),

so that (4.5) follows by the Poincaré-Korn inequality and the boundary condition v = ẇ
on ΓD.

We now prove (4.3) and (4.4). We multiply the first equation of (4.1) by σ and the second
equation by v and integrate in space. Using again that div v = tr(Aσ̇), we thus get that for
a.e. t ∈ (0, T )∫

Ω

Dγ(σ(t)) · σ(t) dx = −
∫

Ω

Aσ̇(t) · σ(t) dx+

∫
Ω

σ(t) · Eẇ(t) dx

+

∫
Ω

ρ(t) · (Ev(t)− Eẇ(t)) dx

= −
∫

Ω

Aσ̇(t) · σ(t) dx+

∫
Ω

σ(t) · Eẇ(t) dx+

∫
Ω

ρD(t) · EDv(t) dx

+
1

n

∫
Ω

tr(ρ(t))tr(Aσ̇(t)) dx−
∫

Ω

ρ(t) · Eẇ(t) dx.

It thus follows that ∫ T

0

∫
Ω

Dγ(σ) · σ dx dt ≤ C.

This immediately provides (4.3) by (3.12) and (3.13). On the other hand, the convexity of
γ ensures that Dγ(ξ) · ξ ≥ γ(ξ)− α

α+1 for every ξ ∈Mn×n
sym , hence∫ T

0

∫
Ω

γ(σ) dx dt ≤ C +
α

α+ 1
TLn(Ω),

from which (4.4) follows. �

Remark 4.2. As in the dynamical case (see Remark (3.2)), the following energy balance
holds: for all t ∈ [0, T ],

1

2

∫
Ω

Aσα,λ(t) · σα,λ(t) dx

+

∫ t

0

∫
Ω

(
γα,λ(σα,λ) + γ∗α,λ

(
Dγα,λ(σα,λ)

)
− ρD ·Dγα,λ(σα,λ)

)
dx ds

=
1

2

∫
Ω

Aσ0 · σ0 dx+

∫ t

0

∫
Ω

(
ρ · (Aσ̇α,λ − Eẇ) + Eẇ · σα,λ

)
dx ds,

where γ∗α,λ stands for the convex conjugate of γα,λ.

We now prove higher regularity of the stress σα,λ with uniform estimates with respect to
(α, λ) in dimension n ≤ 4.

Theorem 4.3 (Higher spatial regularity for the stress in dimension n ≤ 4). In
addition to the assumptions of Theorem 4.1, suppose further that

• ∂K is of class C2 and its second fundamental form is positive definite at every point
of ∂K;

• σ0 ∈ H1
loc(Ω;Mn×n

sym );

• f ∈ L∞(0, T ;W 1,∞
loc (Ω;Rn)).
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If n ≤ 4, then for every open set ω ⊂⊂ Ω there exists a constant Cω > 0, depending on ω
but independent of α and λ, such that

(4.11) sup
t∈[0,T ]

‖∇σα,λ(t)‖L2(ω) ≤ Cω.

Proof. We divide the proof into three steps and, again, omit the explicit dependence on
(λ, α). As before we will denote by Qt the space time cylinder Ω× (0, t).

Step 1: First regularity estimates. Let us prove that

(4.12) σ ∈ L2(0, T ;H1
loc(Ω;Mn×n

sym )).

Throughout the proof ω denotes an open set compactly contained in Ω. Let ω′ be a further
open set such that ω ⊂⊂ ω′ ⊂⊂ Ω, and let ϕ ∈ C∞c (ω′; [0, 1]) be a cut-off function such that
ϕ = 1 in ω. For every 1 ≤ k ≤ n, x ∈ ω′, and h < dist(ω′, ∂Ω), we recall the notation

∂hk ζ(x) =
ζ(x+ hek)− ζ(x)

h

for the difference quotient of a general function ζ defined on Ω with values in a vector space.
We have for a.e. t ∈ (0, T )

A∂hk σ̇(t) + ∂hkDγ(σ(t)) = ∂hkEv(t) a.e. in ω′.

Multiplying the previous equation by ϕ6∂hkσ(t) and integrating over Ω yield∫
Ω

ϕ6A∂hk σ̇(t) · ∂hkσ(t) dx+

∫
Ω

ϕ6∂hkDγ(σ(t)) · ∂hkσ(t) dx =

∫
Ω

ϕ6∂hkEv(t) · ∂hkσ(t) dx.

Recalling the summation convention over repeated indexes, we may write using the second
equation in (4.1)∫

Ω

ϕ6∂hkEv(t) · ∂hkσ(t) dx = −
∫

Ω

∂hk vi(t)∂j(ϕ
6∂hkσij(t)) dx

= −
∫

Ω

∂hk vi(t)(−ϕ6∂hk fi(t) + ∂hkσij(t)∂jϕ
6) dx,

so that integrating in time

(4.13)
1

2

∫
Ω

ϕ6A∂hkσ(t) · ∂hkσ(t) dx+

∫∫
Qt

ϕ6∂hkDγ(σ) · ∂hkσ dx ds

=
1

2

∫
Ω

ϕ6A∂hkσ0 · ∂hkσ0 dx−
∫∫

Qt

∂hk vi(−ϕ6∂hk fi + ∂hkσij∂jϕ
6) dx ds.

By the convexity of γα,λ we obtain

1

2

∫
Ω

ϕ6A∂hkσ(t) · ∂hkσ(t) dx ≤ 1

2

∫
Ω

ϕ6A∂hkσ0 · ∂hkσ0 dx

−
∫∫

Qt

∂hk vi(−ϕ6∂hk fi + ∂hkσij∂jϕ
6) dx ds,

which yields

‖ϕ3∂hkσ(t)‖2L2(Ω) ≤ C
(

1 +

∫ t

0

(
‖∂hk v(s)‖L2(Ω)(‖f(s)‖H1(ω′) + ‖ϕ3∂hkσ(s)‖L2(Ω)

))
ds,

so that (4.12) follows by the Gronwall Lemma. Note that the previous argument does not
provide an estimate independent of (α, λ) because of the presence of the L2 norm of ∇v(s).

Step 2: Refined estimates. We now refine the argument of Step 1 to deduce a uniform
estimate with respect to the parameters α and λ.
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Since Dγ(σ(t)) ∈ H1
loc(Ω;Mn×n

sym ) by composition (because Dγ is Lipschitz continuous),

passing to the limit as h→ 0+ in (4.13) we get

(4.14)
1

2

∫
Ω

ϕ6A∂kσ(t) · ∂kσ(t) dx+

∫∫
Qt

ϕ6∂kDγ(σ) · ∂kσ dx ds

=
1

2

∫
Ω

ϕ6A∂kσ0 · ∂kσ0 dx−
∫∫

Qt

∂kvi(−ϕ6∂kfi + ∂jϕ
6∂kσij) dx ds.

The last term on the right-hand side of (4.14) can be rewritten as follows:

−
∫

Ω

∂kvi(−ϕ6∂kfi + ∂jϕ
6∂kσij) dx

= −
∫

Ω

(2(Ev)ik − ∂ivk)(−ϕ6∂kfi + ∂jϕ
6∂kσij) dx

= −2

∫
Ω

(Aσ̇ +Dγ(σ))ik(−ϕ6∂kfi + ∂jϕ
6∂kσij) dx

−
∫

Ω

vk(−ϕ6∂ikfi − 2∂kfi∂iϕ
6 + ∂kσij∂ijϕ

6) dx

= −2

∫
Ω

(Aσ̇ +Dγ(σ))ik(−ϕ6∂kfi + ∂jϕ
6∂kσij) dx

+

∫
Ω

(Aσ̇)kk(−ϕ6∂ifi − 2fi∂iϕ
6 + σij∂ijϕ

6) dx

−
∫

Ω

vk(∂ifi∂kϕ
6 + 2fi∂ikϕ

6 − σij∂ijkϕ6) dx,

where we used again the first equation in (4.1) and the fact that Dγ(σ) is deviatoric. Inte-
grating in time, by (4.2) we have that∣∣∣ ∫∫

Qt

(Aσ̇)kkσij∂ijϕ
6 dx ds

∣∣∣ ≤ C‖σ̇‖L2(0,T ;L2(Ω))‖σ‖L2(0,T ;L2(Ω)) ≤ C

and ∣∣∣ ∫∫
Qt

(Aσ̇)kk(ϕ6∂ifi + 2fi∂iϕ
6) ds

∣∣∣ ≤ C‖σ̇‖L2(0,T ;L2(Ω))‖f‖L2(0,T ;H1(ω′)) ≤ C.

By (4.5) and the continuous embedding of BD(Ω) into L
n
n−1 (Ω;Rn) we obtain∣∣∣ ∫∫

Qt

vk(∂ifi∂kϕ
6 + 2fi∂ikϕ

6) dx ds
∣∣∣

≤ C‖v‖
L2(0,T ;L

n
n−1 (Ω))

(
‖div f‖L2(0,T ;Ln(ω′)) + ‖f‖L2(0,T ;Ln(ω′))

)
≤ C.

Moreover, by the second estimate in (4.2) and the Cauchy inequality we deduce∣∣∣ ∫∫
Qt

(Aσ̇)ik∂kσij∂jϕ
6 dx ds

∣∣∣ ≤ C +

∫∫
Qt

ϕ6|∂kσ|2 dx ds,

where we also used that ∂jϕ
6 = 6ϕ5∂jϕ, while∣∣∣ ∫∫

Qt

ϕ6(Aσ̇)ik∂kfi dx ds
∣∣∣ ≤ C‖σ̇‖L2(0,T ;L2(Ω))‖∇f‖L2(0,T ;L2(ω′)) ≤ C.

Concerning the term∫∫
Qt

(Dγ(σ))ik(−ϕ6∂kfi + ∂kσij∂jϕ
6) dx ds,

by (3.11) we have∣∣∣ ∫∫
Qt

(Dγ(σ)ik∂kσij∂jϕ
6 dx ds

∣∣∣ ≤ C ∫∫
Qt

ϕ5(1 + d2(σ) ∧ λ2)
1
2α−

1
2 d(σ)|∂kσij | dx ds.
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Since 1
n∇(trσ) = −f − div σD in Ω, we deduce that |∇σ| ≤ |f |+ |∇σD|, which yields

∣∣∣ ∫∫
Qt

(Dγ(σ))ik∂kσij∂jϕ
6 dx ds

∣∣∣
≤ C

∫∫
Qt

ϕ5(1 + d2(σ) ∧ λ2)
1
2α−

1
2 d(σ)(|f |+ |∇σD|) dx ds

≤ C‖f‖L∞(0,T ;L∞(ω′))

∫∫
Qt

ϕ5(1 + d2(σ) ∧ λ2)
1
2α−

1
2 d(σ) dx ds

+ C

∫∫
Qt

ϕ5(1 + d2(σ) ∧ λ2)
1
2α−

1
2 d(σ)|∇σD| dx ds

≤ C

(
1 +

∫∫
Qt

ϕ5(1 + d2(σ) ∧ λ2)
1
2α−

1
2 d(σ)|∇σD| dx ds

)

where in the last inequality we used (4.3) with ` = 1. Again by (3.11) and (4.3) with ` = 1
we have

∣∣∣ ∫∫
Qt

ϕ6(Dγ(σ))ik∂kfi dx ds
∣∣∣

≤
∫∫

Qt

ϕ6(1 + d2(σ) ∧ λ2)
1
2α−

1
2 d(σ)|∇f | dx ds

≤ ‖∇f‖L∞(0,T ;L∞(ω′))

∫∫
Qt

ϕ6(1 + d2(σ) ∧ λ2)
1
2α−

1
2 d(σ) dx ds ≤ C.

The assumptions on K and (3.15) guarantee that

∫
Ω

ϕ6∂k(Dγ(σ) · ∂kσ dx ≥ CK
∫

Ω

ϕ6(1 + d2(σ) ∧ λ2)
1
2α−

1
2

d(σ)

1 + CKd(σ)
|∇σD|2 dx,

so that by (4.14) and all the previous estimates we finally obtain that

(4.15) C‖ϕ3∇σ(t)‖2L2(Ω) + CK

∫∫
Qt

ϕ6(1 + d2(σ) ∧ λ2)
1
2α−

1
2

d(σ)

1 + CKd(σ)
|∇σD|2 dx ds

≤ C +

∫ t

0

‖ϕ3∇σ(s)‖2L2(Ω) ds+ C

∫∫
Qt

ϕ5(1 + d2(σ) ∧ λ2)
1
2α−

1
2 d(σ)|∇σD| dx ds

+

∫∫
Qt

vkσij∂ijkϕ
6 dx ds.
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Applying the Cauchy-Schwarz inequality, we may write∫∫
Qt

ϕ5(1 + d2(σ) ∧ λ2)
1
2α−

1
2 d(σ)|∇σD| dx ds

=

∫ t

0

∫
{d(σ)≤1}

ϕ5(1 + d2(σ) ∧ λ2)
1
2α−

1
2 d(σ)|∇σD| dx ds

+

∫ t

0

∫
{d(σ)>1}

ϕ5(1 + d2(σ) ∧ λ2)
1
2α−

1
2 d(σ)|∇σD| dx ds

≤

(∫ t

0

∫
{d(σ)≤1}

ϕ6(1 + d2(σ) ∧ λ2)
1
2α−

1
2 d(σ)|∇σD|2 dx ds

) 1
2

×

×

(∫ t

0

∫
{d(σ)≤1}

(1 + d2(σ) ∧ λ2)
1
2α−

1
2 d(σ) dx ds

) 1
2

+

(∫ t

0

∫
{d(σ)>1}

ϕ6(1 + d2(σ) ∧ λ2)
1
2α−

1
2 |∇σD|2 dx ds

) 1
2

×

×

(∫ t

0

∫
{d(σ)>1}

(1 + d2(σ) ∧ λ2)
1
2α−

1
2 d(σ)2 dx ds

) 1
2

.

Thus, by the Cauchy inequality and by (4.3) for ` = 1, 2 we can rewrite (4.15) in the form

C‖ϕ3∇σ(t)‖2L2(Ω) + CK

∫∫
Qt

ϕ6(1 + d2(σ) ∧ λ2)
1
2α−

1
2

d(σ)

1 + CKd(σ)
|∇σD|2 dx ds

≤ C+

∫ t

0

‖ϕ3∇σ(s)‖2L2(Ω) ds+
CK

1 + CK

∫ t

0

∫
{d(σ)≤1}

ϕ6(1+d2(σ)∧λ2)
1
2α−

1
2 d(σ)|∇σD|2 dx ds

+
CK

1 + CK

∫ t

0

∫
{d(σ)>1}

ϕ6(1 + d2(σ) ∧ λ2)
1
2α−

1
2 |∇σD|2 dx ds+

∫∫
Qt

vkσij∂ijkϕ
6 dx ds,

so that we arrive at the inequality

(4.16) ‖ϕ3∇σ(t)‖2L2(Ω) ≤ C
(

1 +

∫ t

0

‖ϕ3∇σ(s)‖2L2(Ω) ds+

∫∫
Qt

vkσij∂ijkϕ
6 dx ds

)
.

Step 3: Conclusion. We claim that

(4.17)

∣∣∣∣∫∫
Qt

vkσij∂
3
ijkϕ

6 dx ds

∣∣∣∣ ≤ C (1 +

∫ t

0

‖ϕ3∇σ(s)‖2L2(Ω) ds

)
,

so that inequality (4.16) entails

‖ϕ3∇σ(t)‖2 ≤ C
(

1 +

∫ t

0

‖ϕ3∇σ(s)‖2L2(Ω) ds

)
and the result follows by the Gronwall Lemma.

It is in the proof of (4.17) that the restriction on the dimension n ≤ 4 comes in. Indeed,
if n ≤ 4, we have

n ≤ 2∗ =
2n

n− 2
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and by the Hölder Inequality and Sobolev embedding∣∣∣∣∫
Ω

vkσij∂ijkϕ
6 dx

∣∣∣∣ ≤ C

∫
Ω

|v||ϕ3σ| dx

≤ C‖v‖
L

n
n−1 (Ω)

‖ϕ3σ‖Ln(Ω)

≤ C‖v‖
L

n
n−1

(Ω)‖ϕ3σ‖L2∗ (Ω)

≤ C‖v‖
L

n
n−1 (Ω)

‖∇(ϕ3σ)‖L2(Ω).

Taking into account (4.5) we deduce∫ t

0

∣∣∣∣∫
Ω

vkσij∂ijkϕ
6 dx

∣∣∣∣ ds ≤ C

∫ t

0

(
‖v(s)‖2

L
n
n−1 (Ω)

+ ‖∇(ϕ3σ(s))‖2L2(Ω)

)
ds

≤ C

∫ t

0

(
‖v(s)‖2BD(Ω) + ‖ϕ3∇σ(s)‖2L2(Ω) + ‖σ(s)‖2L2(Ω)

)
ds

≤ C

(
1 +

∫ t

0

‖ϕ3∇σ(s)‖2L2(Ω ds

)
.

The proof is now complete. �

4.2. Quasi-static evolutions in perfect plasticity. We conclude this section by an ex-
istence result for quasi-static evolutions in perfect plasticity, which follows by passing to the
limit in the quasi-static Norton-Hoff problem as α→ 0+ and λ→ +∞.

Theorem 4.4 (Quasi-static evolutions in perfect plasticity). Under the same as-

sumptions of Theorem 4.3, given (u0, e0, p0) ∈ Aqst
w(0) with e0 := Aσ0, there exists a triplet

(u, e, p) ∈ H1(0, T ;BD(Ω)×L2(Ω;Mn×n
sym )×M(Ω ∪ ΓD;Mn×n

D ))

satisfying the following condition:

Kinematic compatibility: for all t ∈ [0, T ],

(4.18) Eu(t) = e(t) + p(t) in Ω, p(t) = (w(t)− u(t))� νHn−1 on ΓD;

Stress constraint: for all t ∈ [0, T ],

(4.19) σ(t) := Ce(t) ∈ K Ln-a.e. in Ω;

Equilibrium equation: for all t ∈ (0, T ),

(4.20) −div σ(t) = f(t) Ln-a.e. in Ω;

Neumann boundary condition: for a.e. t ∈ (0, T ),

(4.21) σ(t)ν = g(t) Hn−1-a.e. on ΓN ;

Flow rule: for a.e. t ∈ (0, T ),

(4.22) H(ṗ(t)) = [σ(t) · ṗ(t)] in Ω ∪ ΓD;

Initial condition:

(4.23) (u(0), e(0), p(0)) = (u0, e0, p0).

Moreover, the stress component satisfies the following estimate: for every open set ω ⊂⊂ Ω
there exists a constant Cω > 0 such that

(4.24) sup
t∈[0,T ]

‖∇σ(t)‖L2(ω) ≤ Cω.
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Proof. Let αj → 0+ and λj → +∞, and let (σj , vj) be the evolution given by Theorem 4.1
with the choice α := αj and λ = λj . By applying the Ascoli-Arzelà Theorem we deduce
from (4.2) that there exists σ ∈ H1(0, T ;L2(Ω;Mn×n

sym )) such that, up to subsequences, for
every t ∈ [0, T ]

σj(t) ⇀ σ(t) weakly in L2(Ω;Mn×n
sym )

and

σj ⇀ σ weakly in H1(0, T ;L2(Ω;Mn×n
sym )).

Moreover, by (4.11) we infer that σ ∈ L∞(0, T ;H1
loc(Ω;Mn×n

sym )) and (4.24) holds. It thus

follows that σ(0) = σ0 and − div σ(t) = L(t) in [H1
ΓD

(Ω;Rn)]′ for every t ∈ [0, T ]. This last
condition corresponds to the weak formulation of the equilibrium equation (4.20) and the
Neumann boundary condition (4.21).

Concerning the velocities, from (4.5) we get that up to a further subsequence

vj ⇀ v weakly* in L2(0, T ;BD(Ω)).

We now set

u(t) := u0 +

∫ t

0

v(s) ds for every t ∈ [0, T ].

We define e(t) := Aσ(t) and p(t) := Eu(t)− e(t) in Ω, p(t) := (w(t)−u(t))� νHn−1 on ΓD.

It is thus clear that (u(t), e(t), p(t)) ∈ Aqst
w(t) from which kinematic compatibility (4.18) and

the initial condition (4.23) follow.
The stress constraint (4.19) and the flow rule (4.22) can be obtained by adapting Steps 4

and 5 in the proof of Theorem 3.4 for the dynamical case. �

Remark 4.5. The measure theoretic flow rule (4.22) can be expressed in a pointwise way.
Indeed, since σ(t) ∈ H1

loc(Ω;Rn) for a.e. t ∈ (0, T ), there exists the (Borel measurable) quasi-
continuous representative of σ(t) for the H1-capacity, which we denote by σ̂(t). Following
[14, 20, 10], (4.22) can be equivalently written as follows: for a.e. t ∈ (0, T )

H

(
ṗ(t)

|ṗ(t)|

)
= σ̂(t) · ṗ(t)

|ṗ(t)|
|ṗ(t)|-a.e. in Ω.

5. Examples

In this section, we show that, in the dynamic case, although the solutions are (Sobolev)
regular in the interior of the spatial domain, some jump might appear at the boundary, so
that the Dirichlet boundary condition might fail to be satisfied.

We will consider two examples in the one-dimensional case where Ω = (0, L) with L > 0.
We will assume that C (and thus A) is the identity tensor and K = [−1, 1] ⊂ R, so that
H(ξ) = |ξ| for every ξ ∈ R. As for notation, if f : (0, T ) × (0, L) → R stands for a generic

function, f ′ denotes the partial derivative with respect to the space variable, while ḟ denotes
the partial derivative with respect to the time variable.

5.1. The stationary case. Let w be a Dirichlet boundary data such that w(0) = 0 and
w(L) = a (with a ∈ R). Let (u, σ, p) ∈ [W 1,1(0, L) ∩H1

loc(0, L)] × [L∞(0, L) ∩H1
loc(0, L)] ×

[M([0, L]) ∩ L2
loc(0, L)] be the unique solution of the stationary dynamic problem, i.e.,

u′ = σ + p in (0, L),

p(0) = u(0)− w(0),

p(L) = w(L)− u(L),

u− σ′ = 0 in (0, L),

|σ| ≤ 1 in (0, L),

σp = |p| in (0, L),

σ(0)(w(0)− u(0)) = |w(0)− u(0)|,
σ(L)(w(L)− u(L)) = |w(L)− u(L)|.
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The first three conditions correspond to kinematic admissibility. The fourth equation is a
stationary variant of the equation of motion, while the fifth condition is the stress constraint.
The last three equations provide a stationary variant of the flow rule.

Note that the fourth equation actually shows that σ′ = u ∈ L2(0, L), hence σ ∈ H1(0, L).
In particular, σ ∈ C0([0, L]).

Case 1. If |a| ≤ tanh(L), the (unique) solution turns out to be purely elastic, i.e., for all
x ∈ [0, L], 

u(x) =
a sinh(x)

sinh(L)
,

σ(x) = u′(x) =
a cosh(x)

sinh(L)
,

p ≡ 0.

Observe that the Dirichlet boundary condition u = w on {0, L} is satisfied in the usual
sense, that is, no jumps appear at the boundary.

Case 2. If |a| > tanh(L), we look for a solution of the form
u(x) = 2α sinh(x),

σ(x) = 2α cosh(x),

p(x) = 0

for all x ∈ (0, L), for some some constant α ∈ R to be specified later. The boundary condition
u(0) = 0 = w(0) is clearly satisfied. Note that the stress constraint |σ| ≤ 1 imposes

|α| ≤ 1

2 cosh(L)
.

If u(L) = w(L), then α = a
2 sinh(L) , which enters into contradiction with |a| > tanh(L). As a

consequence, u(L) 6= w(L) and the flow rule on the boundary implies that |σ(L)| = 1, i.e.,

α = ± 1

2 cosh(L)
,

and also

0 ≤ σ(L)(a− u(L)) = σ(L)
(
a− 2α sinh(L)

)
= ±

(
a∓ tanh(L)

)
.

Since we assume that |a| > tanh(L), we obtain that

α =
1

2 cosh(L)
if a > tanh(L),

while

α = − 1

2 cosh(L)
if a < − tanh(L).

In both these cases we thus get the existence and uniqueness of a solution that does not
satisfy the Dirichlet boundary condition at L. The displacement u experiences a jump at
x = L and the plastic strain is concentrated at that point, i.e., p = (a− 2α sinh(L))δL.

5.2. The evolutionary case. The length L > 0 of the space interval being fixed, let a and
T be such that

0 < a < tanh(L) < aeT .
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Let w be a Dirichlet boundary data such that w(t, 0) = 0 and w(t, L) = aet for all t ∈ [0, T ].
Let (u, σ, p) be the unique solution of the evolutionary dynamic problem, i.e.,

(5.1)



u′ = σ + p in (0, T )× (0, L),

p(t, 0) = u(t, 0)− w(t, 0) for all t ∈ [0, T ],

p(t, L) = w(t, L)− u(t, L) for all t ∈ [0, T ],

ü− σ′ = 0 in (0, T )× (0, L),

|σ| ≤ 1 in (0, T )× (0, L),

σ(t)ṗ(t) = |ṗ(t)| in (0, L), for a.e. t ∈ [0, T ],

σ(t, 0)(ẇ(t, 0)− u̇(t, 0)) = |ẇ(t, 0)− u̇(t, 0)|, for all t ∈ [0, T ],

σ(t, L)(ẇ(t, L)− u̇(t, L)) = |ẇ(t, L)− u̇(t, L)| for all t ∈ [0, T ].

Let t0 ∈ (0, T ) be such that
aet0 = tanh(L).

On the time interval [0, t0] the solution coincides with the purely elastic solution, i.e.,

(5.2)


u(t, x) =

aet sinh(x)

sinh(L)
,

σ(t, x) = u′(t, x) =
aet cosh(x)

sinh(L)
,

p ≡ 0.

In order to compute the solution for the subsequent times t > t0, we introduce the
following sets:

A =

{
(t, x) ∈ (t0, T ]× [0, L] : x < cosh−1

(
sinh(L)

aet

)}
,

B =

{
(t, x) ∈ (t0, T ]× [0, L] : x > cosh−1

(
sinh(L)

aet

)}
,

and the curve

Γ =

{
(t, x) ∈ (t0, T ]× [0, L] : x = cosh−1

(
sinh(L)

aet

)
=: γ(t)

}
,

which is the interface between A and B (see Fig. 1).
For all (t, x) ∈ A we set

(5.3)


u(t, x) =

aet sinh(x)

sinh(L)
,

σ(t, x) = u′(t, x) =
aet cosh(x)

sinh(L)
,

p ≡ 0.

Note that |σ| < 1 in A and that A only contains the left Dirichlet boundary (t0, T ]× {0}.
We now compute the solution in B. We first set σ ≡ 1 in B. Note that this definition

ensures that σ is continuous across the curve Γ and across the set {t = t0}. We next use the
equation of motion in B to get that ü = σ′ = 0 in B, hence

u(t, x) = f(x)t+ g(x) for all (t, x) ∈ B
for some functions f , g.

On the other hand, since for all t ∈ (t0, T ), the functions x 7→ u(t, x) and x 7→ u̇(t, x)
belong to H1

loc(0, L), they must be continuous at the point x = γ(t). Writing these conditions
leads to

tanh(x) = f(x) ln

(
sinh(L)

a cosh(x)

)
+ g(x) and tanh(x) = f(x),

or still

f(x) = tanh(x), g(x) = tanh(x)

[
1− ln

(
sinh(L)

a cosh(x)

)]
.
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Figure 1. The elastic region (in light blue) and the plastic region (in light
red) in the example of Section 5.2.

For all (t, x) ∈ B we thus set

(5.4)

u(t, x) = tanh(x)

[
t+ 1− ln

(
sinh(L)

a cosh(x)

)]
,

σ(t, x) = 1,

and

(5.5) p(t, ·) = (u′(t, ·)− 1)L1 + (w(t, L)− u(t, L))δL

in B ∪ Γ. The continuity of σ, u, and u̇ across Γ and {t = t0} ensures that the equation of
motion ü−σ′ = 0 is satisfied in (0, T )× (0, L). By construction, the additive decomposition,
as well as the stress constraint, are also satisfied. It remains to check the validity of the flow
rule.

Since p is continuous on (0, T )× (0, L), from its explicit expression we get that

ṗ(t, x) =
(
1− tanh2(x)

)
1intB(t, x) ≥ 0

on (0, T )× (0, L), hence σ(t, x)ṗ(t, x) = |ṗ(t, x)| for all (t, x) ∈ (0, T )× (0, L). The flow rule
is thus satisfied in the interior of the space-time region.

For what concerns the flow rule on the boundary, we first notice that, according to (5.2)
and (5.3), we have u(t, 0) = 0, which also proves the validity of the flow rule at x = 0.

At the other boundary point x = L, we have u(t, L) = a = w(t, L) for all t ∈ [0, t0] by
(5.2). Moreover, for all t ∈ (t0, T ] we have

w(t, L)− u(t, L) = aet − tanh(L)

[
t+ 1− ln

(
tanh(L)

a

)]
,

which is a strictly increasing function of t over (t0, T ]. As a consequence, ẇ(t, L)−u̇(t, L) > 0
for all t > t0, and using that σ(t, L) = 1 by (5.4) and the expression (5.5), we get the validity
of the flow rule at x = L.

In conclusion, (5.2)–(5.5) is the unique solution to the one-dimensional evolutionary prob-
lem (5.1). The velocity u̇ experiences a boundary jump at x = L provided the final time T
is large enough (actually for all times t ∈ (t0, T ]). This shows the possibility to get spatial
singularities at the boundary, although solutions are smooth in the interior of the space-time
domain.

Appendix

In this appendix we collect some results that were of use in the previous sections and
show that the Hosford criterion, mentioned in the introduction, is covered by our analysis.

The lemma below, which was applied in the proof of Theorem 3.4, follows by an easy
adaptation of [1, Lemma 2.35].
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Lemma 5.1. Let λ be a positive Radon measure in an open set U ⊂ RN and, for every
k ∈ N, let fk : U → R be a Borel function such that∫

U

|fk| dλ < +∞.

Then ∫
U

(
sup
k
fk

)
+

dλ = sup

{∑
k∈I

∫
Ak

fk dλ

}
.

where the supremum at the right-hand side is taken over all finite sets I ⊂ N and all families
{Ak : k ∈ I} of pairwise disjoint open sets with compact closure in U .

We now state and prove a result that was used in the proof of Theorem 4.1.

Lemma 5.2. Assume hypotheses (H1), (H2), (H ′4), (H ′5) and (H6). Let Ψ : Mn×n
sym →Mn×n

sym

be a Lipschitz continuous function. Then the problem

(5.6)



Aσ̇ + Ψ(σ) = Ev in Ω× (0, T ),

−div σ = f in Ω× (0, T ),

v = ẇ on ΓD × (0, T ),

σν = g on ΓN × (0, T ),

σ(0) = σ0

has a unique solution (σ, v) ∈ H1(0, T ;Hdiv(Ω;Mn×n
sym ))× L2(0, T ;H1(Ω;Rn)).

Proof. On L2(Ω;Mn×n
sym ) we consider the scalar product

(5.7) 〈σ, τ〉A :=

∫
Ω

Aσ · τ dx for every σ, τ ∈ L2(Ω;Mn×n
sym ),

which is topologically equivalent to the standard scalar product by (3.1). We introduce the
set

Σ0(Ω) := {σ ∈ Hdiv(Ω;Mn×n
sym ) : div σ = 0 in Ω, σ · ν = 0 on ΓN},

which is a closed subspace of L2(Ω;Mn×n
sym ), and we denote the projection onto Σ0(Ω) with

respect to the scalar product (5.7) by Π0.
We consider the following problem: find θ ∈ H1(0, T ; Σ0(Ω)) such that

(5.8)

{
Π0(ρ̇(t) + θ̇(t)) + Π0

(
A−1Ψ(ρ(t) + θ(t))

)
= Π0

(
A−1Eẇ(t)

)
in Σ0(Ω),

θ(0) = σ0 − ρ(0).

Let
Λ : [0, T ]× Σ0(Ω)→ Σ0(Ω)

given by
Λ(t, ϑ) := Π0(ρ̇(t)) + Π0

(
A−1Ψ(ρ(t) + ϑ)

)
−Π0

(
A−1Eẇ(t)

)
.

Since Λ(t, ·) is Lipschitz continuous for a.e. t ∈ [0, T ] and Λ(·, ϑ) ∈ L2(0, T ; Σ0(Ω)) for
every ϑ ∈ Σ0(Ω), existence and uniqueness of solutions to problem (5.8) follow from the
Cauchy-Lipschitz Theorem. Now, the first equation in (5.8) implies that

〈ρ̇(t) + θ̇(t), τ〉A + 〈A−1Ψ(ρ(t) + θ(t)), τ〉A = 〈A−1Eẇ(t), τ〉A
for every τ ∈ Σ0(Ω), that is,∫

Ω

(
A(ρ̇(t) + θ̇(t)) + Ψ(ρ(t) + θ(t))− Eẇ(t)

)
· τ dx = 0

for every τ ∈ Σ0(Ω). This implies that for a.e. t ∈ [0, T ] there exists a unique z(t) ∈
H1(Ω;Rn) with z(t) = 0 on ΓD such that

A(ρ̇(t) + θ̇(t)) + Ψ(ρ(t) + θ(t))− Eẇ(t) = Ez(t).

We set σ(t) := ρ(t) + θ(t) and v(t) := z(t) + ẇ(t). We observe that v ∈ L2(0, T ;H1(Ω;Rn))
by construction. Thus, we have found a pair (σ, v) satisfying (5.6).
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On the other hand, if (σ, v) is a solution to (5.6), then θ(t) := σ(t) − ρ(t) satisfies (5.8)
and is therefore uniquely determined. Uniqueness of v then follows. �

We conclude this section by showing that the Hosford criterion fits in with the assumptions
of our regularity results.

Proposition 5.3. Let p ≥ 2. Let F : Mn×n
D → [0,+∞) be the function defined by

F (σ) =
∑

1≤i<j≤n

|σi − σj |p for all σ ∈Mn×n
D ,

where σ1, . . . , σn are the eigenvalues of σ, and let

K =
{
σ ∈Mn×n

D : F (σ) ≤ 1
}
.

Then K is a compact and convex subset of Mn×n
D . Moreover, its boundary ∂K is a C2

hypersurface and its second fundamental form is positive definite at every point of ∂K.

Proof. Let us define the function f : Rn → [0,+∞) by

f(x1, . . . , xn) =
∑

1≤i<j≤n

|xi − xj |p for all (x1, . . . , xn) ∈ Rn.

Clearly f is symmetric, i.e., for any permutation ϕ : Nn → Nn

f(x1, . . . , xn) = f(xϕ(1), . . . , xϕ(n)) for all (x1, . . . , xn) ∈ Rn.

By definition of F , for every σ ∈Mn×n
D we have that F (σ) = f(σ1, . . . , σn), where σ1, . . . , σn

are the eigenvalues of σ. Since f ∈ C2(Rn), [11, Theorem 5.5] shows that F ∈ C2(Mn×n
D ).

Moreover, by [24, Appendix A] we get that

(5.9) D2F (σ)ξ · ξ > 0 for every ξ ∈Mn×n
D ,

so that F is strictly convex on Mn×n
D . We infer that K is a closed and convex set and, since

it is bounded, it is also compact.
Let us turn now to the regularity properties of ∂K. Since F is p-homogeneous, it follows

from the Euler formula that

pF (σ) = DF (σ) · σ for all σ ∈Mn×n
D .

As a consequence, since F = 1 on ∂K, there is an open neighborhood U of ∂K such that
DF 6= 0 in U . In particular, ∂K = {F = 1} is a co-dimension 1 submanifold of Mn×n

D of
class C2.

Let us introduce the Gauss map N : U →Mn×n
D defined by

N(σ) =
DF (σ)

|DF (σ)|
for all σ ∈ U.

Then, N is of class C1 in U with

DN(σ) =
D2F (σ)

|DF (σ)|
− DF (σ)⊗ [D2F (σ)DF (σ)]

|DF (σ)|3
for all σ ∈ U.

In particular, for all ξ ∈Mn×n
D we have

DN(σ)ξ · ξ =
D2F (σ)ξ · ξ
|DF (σ)|

− DF (σ) · ξ
|DF (σ)|3

(
D2F (σ)DF (σ) · ξ

)
.

Using that the tangent space Tσ(∂K) to ∂K at σ ∈ ∂K is given by Tσ(∂K) = DF (σ)⊥, we
deduce that for all ξ ∈ Tσ(∂K)

DN(σ)ξ · ξ =
D2F (σ)ξ · ξ
|DF (σ)|

.

By (5.9) we infer that that DN(σ)ξ · ξ > 0 for all σ ∈ ∂K and all ξ ∈ Tσ(∂K). As a
consequence, the second fundamental form A(σ) of ∂K is positive definite for all σ ∈ ∂K. �
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Jacques Hadamard. AG and MGM acknowledge support by PRIN 2022 n.2022J4FYNJ
funded by MUR, Italy, and by the European Union – Next Generation EU. AG and MGM
are members of GNAMPA–INdAM.

References

[1] L. Ambrosio, N. Fusco, D. Pallara: Functions of Bounded Variations and Free Discontinuity Problems.

Clarendon Press, Oxford, 2000.

[2] G. Anzellotti: On the existence of the rates of stress and displacements for Prandtl-Reuss plasticity.
Quart. Appl. Math. 41 (1984), 181–208.

[3] G. Anzellotti: On the extremal stress and displacement in Hencky plasticity. Duke Math. J. 51 (1984),
133–147.

[4] G. Anzellotti, M. Giaquinta: Existence of the displacement field for an elasto-plastic body subject to

Hencky’s law and von Mises yield condition. Manuscr. Math. 32 (1980), 101–136.
[5] G. Anzellotti, S. Luckhaus: Dynamical evolution in elasto-perfectly plastic bodies. Appl. Math. Opt. 15

(1987), 121–140.

[6] J.-F. Babadjian: Traces of functions of bounded deformation. Indiana Univ. Math. J. 64 (2015), 1271–
1290.

[7] J.-F. Babadjian, R. Llerena: Mixed boundary conditions as limits of dissipative boundary conditions in

dynamic perfect plasticity. J. Convex Anal. 30 (2023), 81–110.
[8] J.-F. Babadjian, C. Mifsud: Hyperbolic structure for a simplified model of dynamical perfect plasticity.

Arch. Ration. Mech. Anal. 223 (2017), 761–815.

[9] J.-F Babadjian, M. G. Mora: Approximation of dynamic and quasi-static evolution problems in elasto-
plasticity by cap models. Quarterly Appl. Math. 73 (2015), 265–316.

[10] J.-F. Babadjian, M. G Mora: Stress regularity in quasi-static perfect plasticity with a pressure dependent
yield criterion. J. Differential Equations 264 (2018), 5109–5151.

[11] J. M. Ball: Differentiability properties of symmetric and isotropic functions. Duke Math. J. 51 (1984),

699–728.
[12] A. Bensoussan, J. Frehse: Asymptotic behaviour of the time dependent Norton-Hoff law in plasticity

theory and H1 regularity. Comment. Math. Univ. Carolin. 37 (1996), 285–304.
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(1981), 3–39.
[33] P. Suquet: Evolution problems for a class of dissipative materials. Quart. Appl. Math. 38 (1981), 391–

414.

[34] R. Temam: A generalized Norton-Hoff model and the Prandtl-Reuss law of plasticity. Arch. Rational
Mech. Anal. 95 (1986), 137–183.

[35] R. Temam: Mathematical problems in plasticity. Gauthier-Villars, Paris (1985). Translation of
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