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ABSTRACT. The well-posedness of a class of optimal control problems is analysed, where
the state equation couples a nonlinear degenerate Fokker-Planck equation with a sys-
tem of Ordinary Differential Equations (ODEs). Such problems naturally arise as mean-
field limits of Stochastic Differential models for multipopulation dynamics, where a large
number of agents (followers) is steered through parsimonious intervention on a selected
class of leaders. The proposed approach combines stability estimates for measure solu-
tions of nonlinear degenerate Fokker-Planck equations with a general framework of as-
sumptions on the cost functional, ensuring compactness and lower semicontinuity prop-
erties. The Lie structure of the state equations allows one for considering non-Lipschitz
nonlinearities, provided some suitable dissipativity assumptions are considered in addi-
tion to non-Euclidean Hölder and sublinearity conditions.
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1. INTRODUCTION

1.1. Presentation of the problem. The aim of this work is to study a class of optimal
control problems driven by a dynamic of the type{

∂tµt = −v · ∇xµt + σ∆vµt − divv(v[t,µ](z)µt) (t, x, v) ∈ (0, T ]× R2d,

µ0 = µ̄ (x, v) ∈ R2d,
(1.1)

where σ ∈ R and the drift field v is allowed to depend explicitly on a solution µ of the
problem. Hence, the above is a nonlinear Fokker-Planck equation driven by a nonlocal
drift field v[t,µ] depending on the state of the system, a typical example being the choice

v[t,µ](z) = H(t, z) ∗ µt .

Furthermore, (1.1) is the natural mean field counterpart of second order multi-agents
systems with additive noise, see (1.3) below. In fact, in this case a drift field of the
form v[t,µ] naturally arises if one assumes that the natural dynamic is driven by mu-
tual interactions (see Appendix D). These type of mean field systems are in connection
with a great number of applications. Indeed, multiagent systems have been used in
several contexts, such as in biology to model cell aggregation [15, 19, 23, 26], in chem-
istry to model chemical networks [30, 37, 38], or even to describe human interaction
in social sciences [14, 20, 31, 45]. Furthermore, controlled leader-follower multiagent
systems have been used, for instance, in the context of gene regulation in microbial
consortia [34, 44], traffic control [41], swarms control [7], or even oil cleaning through
controlled robots [49]. The controllability of this kind of leader-follower systems, with
a fixed finite (sufficiently small) number of followers, has been widely studied, see, for
instance, [9, 28, 29]. On the other hand, the mean-field approach for a large number
of followers has been considered for instance in [3] for crowd control and in [40] for
prevention of maritime crime. A general study of these mean-field control problems
arising from first-order leader-follower systems with additive noise has been presented
in [8], while the notion of continuification of controlled systems has been further explored
for instance in [32, 33]. It is clear that this list of applications and references is far from
being exhaustive. Furthermore, let us stress that one could be interested in the control
of a second-order system, as in [1, 2], in which the followers are subject to an additive
noise only in the velocity component. Hence, we consider (1.1) as a second-order gen-
eralization of the mean-field system obtained in [8].

Before describing our point of view in detail, it is useful to give a closer look to
the notion of solution we need to consider when dealing with (1.1). Indeed, the well-
posedness of the class of optimal control problems we consider heavily relies on stabil-
ity estimates for solutions in suitable spaces. Thus, this structure immediately suggests
that it is natural to look for solutions to (1.1) in Wasserstein spaces (see Section 2), and
hence the definition of solution to (1.1) we are interested into is the following.

Definition 1.1. Let p ≥ 1, T > 0 (possibly T = ∞) and µ ∈ Wp(R2d). A continuous curve
of probability measures µ ∈ C([0, T ];Wp(R2d)) is a solution of (1.1) if and only if for all
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ψ ∈ C∞
c (R2d) and for all t ∈ [0, T ] it holds∫
R2d

ψ dµt −
∫
R2d

ψ dµ =

∫ t

0

∫
R2d

(v · ∇xψ + v[s,µ](z) · ∇vψ + σ∆vψ) dµs ds. (1.2)

If T = ∞, we say that µ is a global solution of (1.1), otherwise we call it a local solution.

As a first goal of our work, we will focus on uniqueness and stability issues for (1.1).
In doing so, we consider a set of assumptions on the drift term v[t,µ] which is as gen-
eral as possible and allows for possibly unbounded non-globally Lipschitz drift fields
provided some Hölder continuity combined with a dissipativity condition are satisfied
(see Assumptions (v) below). Indeed, we refer to v3 as a dissipativity condition since
for p = 2 it is implied by the metrical dissipativity condition considered in [17], see
also [16], as shown in Appendix A.

Despite the presence of a nonlinearity in the structure of (1.1), the results we are going
to show strongly rely on well-posedness results for a linear counterpart, that has been
analyzed in [5]. Furthermore a key point for uniqueness and stability issues consists in
showing that (1.1) is indeed equivalent to its McKean-Vlasov counterpart, in the sense
that a solution µ is always the law of a stochastic process of the type

dX(t) = V (t)dt

dV (t) = v[t,µ](X(t), V (t))dt+
√
2σdB(t)

X(0) = X0 V (0) = V0 µ = Law(X, V ),

(1.3)

whereB is a d-dimensional Brownian motion on (Ω,Σ,P), v : [0, T ]×C([0, T ];Wp(R2d))×
R2d → Rd is a measurable function, σ > 0 and Z0 = (X0, V0) ∈ Lp(Ω;R2d). For
this reason, throughout this work we fix a probability space (Ω,Σ,P) and we con-
sider the following adapted formalism for McKean-Vlasov SDEs to the case of our in-
terest. For simplicity, by Z ∈ Lp(Ω;C(R+

0 ;R2d)) we actually mean that {Z(t)}t∈[0,T ] ∈
Lp(Ω;C([0, T ];R2d)) for all T > 0.

Definition 1.2. Let p ≥ 1, T > 0 (possibly T = ∞) and consider the McKean-Vlasov
SDE (1.3), for t ∈ [0, T ]. We say that a stochastic process Z = (X, V ) is a strong soution
of (1.3) if Z ∈ Lp(Ω;C([0, T ];R2d)),

∫ t
0
|v[t,µ](Z(s))| ds <∞ for all t ∈ [0, T ] and

X(t) = X0 +

∫ t

0

V (s)ds and V (t) = V0 +

∫ t

0

v[s,µ](Z(s))ds+
√
2σB(t), (1.4)

for a.a. t ∈ [0, T ] a.s., where µ = Law(Z). We say that uniqueness in law holds for (1.3)
if for any two strong solutions Z1, Z2 we have Law(Z1(t)) = Law(Z2(t)) for all t ∈ [0, T ].
We say that pathwise uniqueness holds for (1.3) if for any two strong solutions Z1, Z2

we have P(Z1 = Z2) = 1. Clearly pathwise uniqueness implies uniqueness in law, while
the converse is also true by [18, Theorem 3.2]. For such a reason, we just state that the
strong solution is unique.
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1.2. Our assumptions. Specifically, in order to state our main results we need to in-
troduce a suitable set of assumptions to consider. For any p ≥ 1, t ≥ 0 and µ ∈
C([0, T ];Wp(R2d)) we set

Mp(t,µ) := sup
0≤s≤t

Mp(µs) := sup
0≤s≤t

∫
R2d

|z|pdµs,

then the assumptions we will consider throughout this work are the following ones.

Assumptions on v: (v)

(v0) v : [0,+∞) × C(R+
0 ;Wp(R2d)) × R2d → Rd

is a Carathéodory map, i.e. it is
continuous in the variable (µ, z) ∈ C([0, T ];Wp(R2d)) × R2d and measurable
in the variable t ∈ [0, T ].

(v1) For all T > 0 there exist two constants K > 0 and β ∈ [0, 1) such that

|v[t,µ](z)| ≤ K
(
1 + |x|

β
3 + |v|β +

(
Mp(T,µ)

) 1
p

)
for every z ∈ R2d, t ∈ [0, T ] and for every µ ∈ C([0, T ];Wp(R2d)).

(v2) For all T > 0 there exists an exponent α ∈ (β, 1] with the property that for
all R > 0 there exists a constant L > 0 and such that for all t ∈ [0, T ], for
all µ ∈ C([0, T ];Wp(R2d)) with Mp(T,µ) ≤ R and for all z1, z2 ∈ R2d with
|z1|, |z2| ≤ R it holds

|v[t, µ](z1)− v[t, µ](z2)| ≤ L
(
|x1 − x2|

α
3 + |v1 − v2|α

)
.

(v3) For all T > 0 there exists a constant D ≥ 0 such that for any couple of
stochastic processes Zj = (Xj, Vj) ∈ Lp(Ω;C([0, T ];R2d) with X ′

j = Vj in
[0, T ], Z1(0) = Z2(0) and µj = Law(Xj, Vj), j = 1, 2, it holds∫ t

0

E
[
|V1(s)− V2(s)|p−2(v[s,µ1](Z1(s))− v[s,µ2](Z2(s))) · (V1(s)− V2(s))

]
ds

≤ D

∫ t

0

sup
0≤z≤s

E[|Z1(z)− Z2(z)|p] ds ∀t ∈ [0, T ].

(v4) For all T > 0, t ∈ [0, T ] and µ1,µ2 ∈ C([0, T ];Wp(R2d)) with µ1
s = µ2

s for all
s ∈ [0, t] it holds v[t,µ1] = v[t,µ2].

Despite its generality, it is clear that the dissipativity condition (v3) is not easily ver-
ified. However, we can still provide some sufficient conditions for its validity, see Ap-
pendix A. In the notation for v, we separate the variables t and µ and (X(t), V (t)) for the
following reason: throughout the proof of the main theorem, we will freeze the variable
µ and study (1.3) as a simple SDE, and we only need measurability in t.
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1.3. Main results. Our first main result concerns well-posedness of (1.1) in the sense
discussed above of which we give a precise statement here, while for the proof we refer
to Section 3.

Theorem 1.3. Let p ≥ 1, µ ∈ Wp(R2d) and suppose Assumptions (v) hold. Then the non
linear Cauchy problem (1.1) admits a unique global solution µ ∈ C

γp
loc(R

+
0 ;Wp(R2d)), where

γp =
1

max{2,p} , that can be charachterized as follows. Let B be a d-dimensional Brownian motion
and (X0, V0) ∈ Lp(Ω;R2d) be independent of B with µ = Law(X0, V0). Then there exists a
unique global strong solution (X, V ) ∈ Lp(Ω;C(R+

0 ;R2d)) of (1.3) and µ is the unique solution
of (1.1). Furthermore, for all T > 0 there exist two functions C : R+

0 → R+
0 and Φ̃ : R+

0 ×R+
0 →

R+
0 such that C is non-decreasing, Φ̃(t; ·) is non-increasing for all t ≥ 0, Φ̃(·;h) is a Young

function for all h ≥ 0 and it holds

Mp(T,µ) +M Φ̃p(·;K)(T,µ) + sup
0≤t,s≤T
t̸=s

Wp(µt, µs)

|t− s|γp
≤ C(K), (1.5)

where K is the constant defined in (v1).

Furthermore, we derive the following stability result for solutions to the nonlinear
system.

Corollary 1.4. Fix µ ∈ Wp(R2d) and consider a function v : [0, T ] × C([0, T ];Wp(R2d)) ×
R2d → Rd sequence vj : [0, T ] × C([0, T ];Wp(R2d)) × R2d → Rd satisfying Assumptions (v),
where the constants K and D in (v1) and (v3) are independent of j. Denote by K the set of
curves of probability measures µ ∈ C([0, T ];Wp(R2d)) satisfying (1.5). Assume that

lim
j→∞

vj[t,µ](z) = v[t,µ](z), for any t ∈ [0, T ],µ ∈ K, z ∈ R2d.

Let µj , µ be the unique solutions of (1.1) with vj and v. Then

lim
j→∞

sup
0≤t≤T

Wp(µ
j
t , µt) = 0.

Eventually, we will turn our attention to optimal control problems connected with
nonlinear Fokker-Planck equations. In the situation we consider, a two population sys-
tem is given. A discrete leader population Yi(t), with i = 1, . . . ,m, is controlled by a
policy maker whose aim is steering a population of followers towards a decided goal
through mutual interactions. As naturally done in the kinetic approximation of multi-
agent systems, the followers population is described by a distribution µ(t), whereas
the dynamic is a second order one. Indeed, control fields act on the leaders Yi, with
i = 1, . . . ,m. Furthermore, the diffusion term ∆vµ reflects the presence of additive noise
on the velocity of the generic follower as in (1.3). Specifically, the control dynamic we
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consider is of the form
∂tµt = −v · ∇xµt + σ∆vµt − divv((v[t,µ](z)

+w[t,Y (t),W (t)](z))µt)) (t, x, v) ∈ (0, T ]× R2d

Ẏ(t) = W(t) = F [t,µ](Y (t)) + u(t,µ) t ∈ (0, T ]

µ0 = µ, Y(0) = Y, W(0) = W,

(1.6)

under some specific assumptions thoroughly described in Section 4 and that allow for
admissible controls u(t, µ) to allow the policy-maker to tune its action on the state of the
system. In this sense, our results can be seen as a genaralization to second order systems
of control problems considered in [5]. However, a relevant difference is that we allow
for a way more general structure of the drift v[t,µ] considering unbounded Lipschitz
frameworks. Then equation (4.1) is coupled with the cost functional

F [u] =

∫ T

0

L(t,Y ,µ) dt+

∫ T

0

Ψ(u(t,µ)) dt,

where (Y ,µ) is the solution of (4.1) with control u, L is a Lagrangian functional ac-
counting for closedness to the decided target and Ψ is a convex control cost. The specific
assumptions on admissible controls and on the functional F are discussed in Section 4.
Thus, our second main result consists in showing the existence of a minimizer as it is
stated below.

Theorem 1.5. Suppose that Assumptions (v), (w), (F ) and (F) hold and let A be the class of
admissible controls described via Assumptions (A). Then the optimal control problem

Problem 1

Find u⋆ ∈ A such that
F [u⋆] = min

u∈A
F [u].

admits at least a solution.

These control type results can be applied to various problems arising from real life
phenomena. A model application is presented in Appendix D. It can be considered
as a second order generalization of multiagent control problem analysed in [8, 9], as
proposed, for instance, in [1, 2].

1.4. Structure of our work. The paper is structured as follows. In Section 2 we intro-
duce the notation and we give some preliminaries on the involved spaces of functions
and measures. In particular, in Section 2.5 we recall the statement of the well-posedness
result in the linear case, as shown in [5], and, at the same time, we prove, in Proposition
2.3, a moment estimate that will be crucial in the remainder of the work.

Section 3 is entirely devoted to the proofs of Theorem 1.3 and Corollary 1.4. The proof
of Theorem 1.3 is divided in 6 steps: first we prove the existence of the solution in case
v is uniformly sublinear (i.e., when v1 holds without the additional term involving the
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measure) for a finite time horizon; this is right after extended to the general case, still
for a finite time horizon; next, uniqueness of the local solution is shown and then this
is used to construct the unique global solution; once existence and uniqueness has been
shown, the Hölder continuity (in the Wasserstein distance) and finally the higher mo-
ment estimate is shown. Corollary 1.4 represent a stability result in terms of suitable
perturbations of the velocity field v. Notice that, since v3 could be not trivial to verify,
sufficient conditions, including the metric dissipativity condition, are given in Appen-
dix A.

In Section 4 we discuss the optimal control Problem 1 on the PDE-ODE system 1.6.
Precisely, we first prove the existence and uniqueness of the solution of (1.6) for any
given control u, together with a stability result with respect to suitable perturbations
of the control function. Technical results related to the PDE-ODE systems are left in
Appendix B. Right after, we set the control problem and then we prove Theorem 1.5.
Possible different classes of admissible controls are described in Appendix C while a
specific example is given in Appendix D.

2. USEFUL NOTATION AND PRELIMINARY RESULTS

Throughout the paper, C will denote any constant depending at most on d, α, β, σ, p, T
and µ whose value is not relevant.

2.1. Wasserstein spaces. Let (B, dB) be a complete separable metric space and B(B) be
the Borel σ-algebra on B. We denote by P(B) the space of (Borel) probability measures
on B. For any µ, ν ∈ P(B), let Π(µ, ν) be the set of (measure) couplings of µ and ν
(see [46, Definition 1.1]), i.e. Borel probability measures γ ∈ P(B×B) such that for any
A,B ∈ B(B) we have

γ(A×B) = µ(A), γ(B×B) = ν(B).

For any p ≥ 1 and x0 ∈ B we denote by

Mp(µ;x0) =

∫
B

(dB(x, x0))
pdµ(x)

the p-th moment (with respect to x0 ∈ B) of µ ∈ P(B). It is clear that if Mp(µ;x0) < ∞
for some x0 ∈ B, then it is finite for all x0 ∈ B. The p-th Wasserstein space over B is
defined as (see [46, Definition 6.4])

Wp(B) := {µ ∈ P(B) : Mp(µ;x0) <∞, ∀x0 ∈ B},

equipped with the distance (see [46, Definition 6.1])

Wp(µ, ν) = inf
γ∈Π(µ,ν)

(∫
B×B

(dB(x, y))
p dγ(x, y)

) 1
p

.

It is well-known (see [46, Theorem 6.18]) that Wp(B) is a complete separable metric
space. If B is a Banach space, then we will denote Mp(µ) :=Mp(µ; 0).
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2.2. Spaces of continuous functions and related Wasserstein spaces. For any T > 0,
we denote by C([0, T ];B) the space of continuous functions f : [0, T ] → B equipped
with the uniform distance, i.e.

d∞(f, g) = sup
t∈[0,T ]

dB(f(t), g(t)).

Clearly, C([0, T ];B) is a complete separable metric space. Furthermore, we denote by
C(R+

0 ;B), where R+
0 := [0,+∞), the space of continuous functions f : R+

0 → B. In
general, for reader’s convenience, we will directly refer to C(R+

0 ;B) as C([0, T ];B) with
T = ∞.

Furthermore, for any t ∈ [0, T ], we denote by evt the evaluation map defined on f ∈
C([0, T ];B) as evt(f) = f(t). For any given measure µ ∈ P(C([0, T ];B)) and any t ∈
[0, T ], we denote

µt = evt♯µ,

where ♯ denotes the pushforward.
In what follows, we will use the notation µ ∈ C([0, T ];Wp(B)) to denote continuous

curves of probability measures, with µ = {µt}t∈[0,T ]. In particular, if B is a Banach space
and T <∞, also C([0, T ];Wp(B)) is a Banach space under the norm(

Mp(T,µ)
) 1

p := sup
0≤s≤T

(Mp(µs))
1
p .

We write µ ∈ Wp(C([0, T ];B)) to state that there exists a Borel probability measure (that
we still denote µ) on C([0, T ];B) such that µt = evt♯µ. With this identification, we can
say that Wp(C([0, T ];B)) ⊂ C([0, T ];Wp(B)), since, clearly,

Mp(T,µ) ≤Mp(µ),

where the second p-th order moment is taken in Wp(C([0, T ];B)).
Notice that for any T1 > T2 and any µ = {µt}t∈[0,T1] ∈ C([0, T1];Wp(B)) we still denote

µ = {µt}t∈[0,T2] (i.e. truncating the flow at T2), so that with such an identification we
have C([0, T1];Wp(B)) ⊂ C([0, T2];Wp(B)).

For any γ ∈ (0, 1] and T > 0 (with T ̸= ∞), we can consider the set Cγ([0, T ];Wp(B))
of γ-Hölder continuous curves, i.e. µ ∈ Cγ([0, T ];Wp(B)) if and only if

sup
0≤t,s≤T
t̸=s

Wp(µt, µs)

|t− s|γ
<∞.

Thanks to the previous identification, we can also define the set Cγ
loc(R

+
0 ;Wp(B)) of

locally γ-Hölder continuous curves, that is to say that µ ∈ Cγ
loc(R

+
0 ;Wp(B)) if and only

if µ ∈ Cγ([0, T ];Wp(B)) for all T > 0.

2.3. Random variables and couplings. Throughout the paper, we will fix a probability
space (Ω,Σ,P) on which all the random quantities will be defined. In general, we call
any measurable function X : Ω → B a B-valued random variable and we denote the
set of all B-valued random variables as M(Ω;B).
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The law of a random variable X ∈ M(Ω;B) is defined as Law(X) = X♯P, i.e. for any
A ∈ B(B)

Law(X)(A) = P(X−1(A)).

We denote by Lp(Ω;B) the subspace of M(Ω;B) of random variables X with the prop-
erty that there exists x0 ∈ B such that

E[(dB(X, x0))
p] <∞, (2.1)

where E is the expected value. It is clear that if (2.1) holds for a specific choice of x0 ∈
B, then it holds for any x0 ∈ B. We define a coupling of two probability measures
µ, ν ∈ P(B) as any random variable (X, Y ) ∈ M(Ω;B × B) such that Law(X) = µ
and Law(Y ) = ν (see [46, Definition 1.1]). It is clear that for any µ, ν ∈ P(B) and any
measure coupling γ ∈ Π(µ, ν), there exists a coupling (X, Y ) such that Law(X, Y ) = γ.
Also note that µ ∈ Wp(B) if and only if for any X ∈ M(Ω;B) with Law(X) = µ it holds
X ∈ Lp(Ω;B). In particular, this means that we can rewrite the Wasserstein distance
between µ and ν as

Wp
p (µ, ν) = inf

(X,Y )∈Lp(Ω;B×B)
Law(X)=µ, Law(Y )=ν

E[(dB(X, Y ))p].

For T > 0 (possibly T = ∞) and X ∈ M(Ω;C([0, T ];B)), we can define for any t ∈ [0, T ]

X(t) : Ω 7→ B

ω 7→ X(t)(ω) = evt(X(ω)).

Hence, X(t) ∈ M(Ω;B) for any t ∈ [0, T ], and if Law(X) = µ, then Law(X(t)) = µt. In
particular, we can identify X as a B-valued stochastic process with continuous trajecto-
ries.

2.4. Young functions. Let us recall the definition of Young function: we say that Φ is a
Young function if for any x ≥ 0

Φ(x) =

∫ x

0

φ(y)dy,

where
(i) φ(0) = 0 and φ(y) > 0 for any y > 0;
(ii) φ is non-decreasing;
(iii) φ is right-continuous;
(iv) lim

y→+∞
φ(y) = +∞.

We say that a Young function Φ satisfies the ∆2 condition if there exists a constantCΦ > 1
such that for any x ≥ 0

Φ(2x) ≤ CΦΦ(x).

It is known (see [42, Remark 4.4.6]) that any Young function Φ satisfying the ∆2 condi-
tion is such that there exist two constants C0 > 0 and p > 1 such that

Φ(x) ≤ C0x
p, ∀x ≥ 1.
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The converse is not always true. By definition, Young functions are non-decreasing,
convex, and satisfy

lim
x→+∞

Φ(x)

x
= +∞

For further details on Young functions, we refer to [42, Chapter 4].
For our purposes, it will be useful to consider moments with respect to Young func-

tions. Indeed, let Φ : [0,+∞) → [0,+∞) be a Young function and (B, dB) be a complete
separable metric space. Then for any µ ∈ P(B), we define

MΦ(µ;x0) =

∫
B

Φ(dB(x, x0)) dµ(x)

and we say that µ ∈ WΦ(B) if and only if there exists x0 ∈ B such that MΦ(µ;x0) < ∞
(or, equivalently, MΦ(µ;x0) < ∞ for any x0 ∈ B). If B is a Banach space, then we set
MΦ(µ) := MΦ(µ; 0). Observe that, for instance, if we set Φp(x) = xp for p > 1, then
WΦ(B) = Wp(B). Similarly to what we did for the moments of order p, we set

MΦ(t,µ) = sup
0≤s≤t

MΦ(µs)

for any µ ∈ C([0, T ];WΦ(B)), where B is a Banach space.
An important result that will be frequently employed is the de la Vallée-Poussin Theo-

rem (see [36, Theorem T22]). More precisely, it states that a sequenceXn of random vari-
ables is uniformly integrable if and only if there exists a Young function Φ : [0,+∞) →
[0,+∞) such that Φ(x) ≤ x2 and

sup
n

E [Φ(|Xn|)] <∞.

We use this result in combination with the Dunford-Pettis Theorem (see [13, Theorem
4.30]). Indeed, if for some p ≥ 1 we have X ∈ Lp(Ω), then the set {|X|p} is clearly
a weakly compact set in L1. Hence, it must be uniformly integrable and thus by the
de la Vallée-Poussin Theorem we know that there exists a Young function such that
E[Φ(|X|P )] <∞. This proves the following result.

Proposition 2.1. Let µ ∈ Wp(B). Then there exists a Young function Φ with the property that
Φ(x) ≤ x2 and defining Φp(x) = Φ(xp) we have µ ∈ WΦp(B).

2.5. The linear equation. Given a function F : [0,+∞) × R2d → Rd we will consider
the following set of assumptions:
(A0) F : [0,+∞) × R2d → Rd is a Carathéodory map, i.e. it is measurable in the first

variable and continuous in the second one;
(A1) For any T > 0, there exist two constants C > 0 and β ∈ (0, 1) such that

F (t, x, v) ≤ C(1 + |x|
β
3 + |v|β),

for all t ∈ [0, T ] and (x, v) ∈ R2d;
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(A2) For any T > 0 and any compact set K ⊂ R2d there exist two constants L > 0 and
α ∈ (β, 1] such that

|F (t, x1, v1)− F (t, x2, v2)| ≤ L(|x1 − x2|
α
3 + |v1 − v2|α)

for all t ∈ [0, T ] and (x1, v1), (x2, v2) ∈ K.
We also define

[F ]β,T := sup
t∈[0,T ]

(x,v)∈R2d

F (t, x, v)

1 + |x|β3 + |v|β
.

We recall the following existence and uniqueness result for an associated linear sys-
tem proved in [5].

Theorem 2.2. Under Assumptions (A0),(A1) and (A2), for any µ0 ∈ W1(R2d) and T > 0, the
equation {

∂tµt = −v · ∇xµt + σ∆vµt − divv(F (t, z)µt) (t, x, v) ∈ R+
0 × R2d,

µ0 = µ (x, v) ∈ R2d,
(2.2)

admits exactly one global solution µ := {µt}t∈R+
0

∈ C(R+
0 ;W1(R2d)), which can be charac-

terized as follows. Let B be a d-dimensional Brownian motion and (X0, V0) ∈ M(Ω;R2d)
be independent of B and such that Law(X0, V0) = µ, then there exists a stochastic process
(X, V ) ∈ L1(Ω;C([0, T ];R2d)) for all T > 0 such that µ = Law(X, V ) and (X, V ) is the
pathwise unique strong solution to

dX(t) = V (t) dt t ∈ R+
0

dV (t) = F (t,X(t), V (t)) dt+
√
2σ dB(t) t ∈ R+

0

X(0) = X0, V (0) = V0.

(2.3)

Actually, we can show that the solution µ is slightly more regular, depending on the
regularity of the initial data µ. Before doing this, we state an inequality that we will use
often throughout the paper, whose interest is not only related to the proof of the next
proposition. Precisely, for any T > 0 and p > 1 it holds

E

[
sup
t∈[0,T ]

|B(t)|p
]
≤ 1√

π

(
2p
√
T

p− 1

)p

Γ

(
p+ 1

2

)
, (2.4)

that follows by Doob’s maximal inequality (see [43, Theorem II.1.7]) and the formula for
the absolute p-moments of a Gaussian random variable [.....].

We have the following result.

Proposition 2.3. Let Assumptions (A0), (A1) and (A2) hold true. Let Φ : [0,+∞) → [0,+∞)
be either the identity or a Young function satisfying Φ(x) ≤ x2 and define Φp(x) = Φ(xp)
for any x ≥ 0 and p ≥ 1. Let µ ∈ C([0, T ];W1(Rd)) be the unique solution of (2.2). If
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µ ∈ WΦp(R2d) for some p ≥ 1, then µ ∈ WΦp(C([0, T ];R2d)) and there exist two constants
C1, C2 depending only on p, β, T and σ such that

M Φ̃p
(T,µ) ≤MΦ̃p

(µ) ≤ C2

(
1 +MΦp(µ) + [F ]2pβ,T

)
, (2.5)

where

Φ̃(r) = Φ

(
e−C1[F ]pβ,TT

3C1

r

)
.

If, furthermore, Φ satisfies the ∆2 condition, then there exists a constant C3 depending only on
Φ, p, β, T and σ such that

MΦp(T,µ) ≤ C3

(
1 +MΦp(µ) + [F ]2pβ,T

)
eC3[F ]pβ,T . (2.6)

Finally, if we consider the solution Z = (X, V ) of (2.3), it also holds, almost surely,

sup
0≤s≤T

|Z(s)| ≤ C4

(
|Z0|+ [F ]β,T + σ sup

0≤s≤T
|B(s)|

)
eC4([F ]β,T+1)T . (2.7)

Proof. Let us first show that if Φ satisfies the ∆2 condition, then (2.5) implies (2.6). In-
deed, in such a case, since Φ(2x) ≤ CΦΦ(x) for a constant CΦ > 1, we have

Φ(xp) ≤ C
| log2(2C1)|
Φ eC1 log(CΦ)[F ]pβ,TT Φ̃(xp).

This is enough to prove the desired implication.
Now we prove (2.5). Let Z = (X, V ) be any strong solution of (2.3) and recall that

µ = Law(Z). By Assumption (A1) and the second equation in (2.3) we know that there
exists a constant C1 depending on p and T such that

|V (s)|p ≤ C1

(
|V0|p + [F ]pβ,T + [F ]pβ,T

∫ t

0

(
|X(τ)|

pβ
3 + |V (τ)|pβ

)
dτ + sup

0≤s≤t
σp|B(s)|p

)
By using Young’s inequality on |X(τ)| pβ3 and |V (τ)|pβ with exponents respectively 3

β
and

1
β

and taking the supremum inside the integral, we get

|V (s)|p ≤ C2

(
|V0|p + [F ]pβ,T + [F ]pβ,T

∫ t

0

sup
0≤z≤τ

(|X(z)|p + |V (z)|p) dτ + σp sup
0≤s≤t

|B(s)|p
)

(2.8)
for some constant C2 depending only on p, T and β. Moreover, we also have, by the first
eqution in (2.3),

|X(s)|p ≤ C3

(
|X0|p +

∫ t

0

sup
0≤z≤τ

|V (z)|pdτ
)
, (2.9)

where C3 is a constant depending only on p and T . Summing (2.9) and (2.8) and taking
the supremum, it is clear that

sup
0≤s≤t

|Z(s)|p ≤ C4

(
|Z0|p + [F ]pβ,T + ([F ]pβ,T + 1)

∫ t

0

sup
0≤z≤τ

|Z(z)|pdτ + σp sup
0≤s≤t

|B(s)|p
)
,



OPTIMAL CONTROL PROBLEMS DRIVEN BY NONLINEAR DEGENERATE FP EQUATIONS 13

where C4 = max{C2, C3} and we can use Grönwall’s inequality to get

sup
0≤s≤t

|Z(s)|p ≤ C4

(
|Z0|p + [F ]pβ,T + σp sup

0≤s≤t
|B(s)|p

)
eC4([F ]pβ,T+1)T . (2.10)

For p = 1, (2.10) implies (2.7).
Now we apply the function Φ on both sides of (2.10), obtaining, by convexity and the

bound Φ(x) ≤ x2, setting C1 =
1

3C4
,

Φ̃

(
sup
0≤s≤t

|Z(s)|p
)

≤ 1

3
Φ (|Z0|p) + [F ]2pβ,T + σ2p sup

0≤s≤t
|B(s)|2p. (2.11)

Finally, we take the expectation on both sides of (2.11) and we use (2.4) to achieve (2.5).
□

3. PROOF OF THEOREM 1.3 AND COROLLARY 1.4

3.1. Proof of Theorem 1.3. We proceed in four steps: first we prove the existence of
a solution under a stronger assumption; then we weaken such assumption to get the
actual existence result; next we prove uniqueness of the local solution; finally, we prove
existence and uniqueness of the global solution.

3.1.1. Existence with v uniformly sublinear. We first assume that v satisfies (v0), (v2) and
(v3), while we substitute (v1) with the following further assumption:
(v1) For all T > 0 there exist two constants K > 0 and β ∈ [0, 1) such that

|v[t,µ](z)| ≤ K
(
1 + |x|

β
3 + |v|β

)
for every z ∈ R2d, t ∈ [0, T ] and for every µ ∈ C([0, T ];Wp(R2d)).

Let T > 0 (with T ̸= +∞) and (X0, V0) be any random variable independent of B with
Law(X0, V0) = µ. Fix any curve of probability measures ν ∈ C([0, T ];Wp(R2d)) and
consider the following SDE.

dX(t) = V (t)dt t ∈ (0, T ]

dV (t) = Fν(t,X(t), V (t))dt+
√
2σdB(t) t ∈ (0, T ]

X(0) = X0, V (0) = V0,

(3.1)

where Fν(t, x, v) = v[t,ν](x, v). Notice that, by Assumptions (v0), (v1) and (v2), we
know that the function Fν satisfies Assumptions (A0), (A1) and (A2), hence, by Theo-
rem 2.2, there exists a unique strong solution (Xν , Vν) ∈ L1(Ω;C([0, T ];R2d)) of (3.1). Let
ν̃ = Law(Xν , Vν). By Proposition 2.1, we know that there exists a Young functions Φ
such that Φ(x) ≤ x2 and µ ∈ WΦp(R2d), where Φp(r) = Φ(rp). Thus, by Proposition 2.3,
in particular (2.6), we know that

Mp(ν̃) ≤ C(1 + [Fν ]
2p
β,T )e

C[Fν ]
p
β,T ≤ C(1 +K2p)eCK

p

, (3.2)
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where we also used Assumption (v1), and

MΦ̃ν
p
(ν̃) ≤ C(1 + [Fν ]

2p
β,T ) ≤ C(1 +K2p), (3.3)

where
Φ̃ν(r) = Φ

(
Ce−C[Fν ]

p
β,T r
)
.

It is clear, since Φ is increasing, that for all r ≥ 0

Φ(r) := Φ
(
Ce−CK

p

r
)
≤ Φ

(
Ce−C[Fν ]

p
β,T r
)
= Φ̃ν(r),

hence, by (3.3) we have
MΦp

(ν̃) ≤ C(1 +K2p). (3.4)

Notice that both bounds (3.2) and (3.3) are uniform with respect to ν. It is also clear, by
(3.2), that (Xν , Yν) ∈ Lp(Ω;C([0, T ];R2d)). Then we can consider the map

T : ν ∈ Wp(C([0, T ];R2d)) 7→ T ν = Law(Xν , Yν) ∈ Wp(C([0, T ];R2d)).

We want to show that T admits a fixed point. To do this, we first prove that

Im(T ) = {T ν : ν ∈ Wp(C([0, T ];R2d))}

is relatively (sequentially) compact in Wp(C([0, T ];R2d)). First, we claim that the family
{(Xν , Vν)}ν∈Wp(C([0,T ];R2d)) is uniformly tight, i.e. for any ε > 0 there exists a compact set
Kε ⊂ C([0, T ];R2d) such that

sup
ν∈Wp(C([0,T ];R2d))

P ((Xν , Vν) ̸∈ Kε) < ε.

To prove this, we first fix γ < 1/2 and consider the random variable

LB,γ = sup
t,s∈[0,T ]
t̸=s

|B(t)−B(s)|
|t− s|γ

,

that is a.s. finite by the γ-Hölder continuity of the Brownian motion. By Fernique’s
theorem (see [21, Theorem 1.3.2]), we know that there exists α > 0 such that E

[
eαLB,γ

]
<

∞, which in turn implies that E [|LB,γ|n] < ∞ for all n ∈ N. Furthermore, we observe
that

|Vν(t)− Vν(s)| ≤
∫ t

s

|v[τ,ν](Xν(τ), Vν(τ))|dτ +
√
2σLB,γ|t− s|γ

≤ K|t− s|+K

∫ t

s

(|Xν(τ)|
β
3 + |Vν(τ)|β)dτ +

√
2σLB,γ|t− s|γ

≤ CK(1 + sup
τ∈[0,T ]

|Zν(τ)|)|t− s|+
√
2σLB,γ|t− s|γ

≤ CK(1 + |Z0|+K + sup
τ∈[0,T ]

|B(τ)|+ LB,γ)e
CK |t− s|γ, (3.5)
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where we used Assumption (v1) in the second inequality, Young’s inequality with ex-
ponents 3

β
and 1

β
in the third inequality and (2.7) in the fourth inequality. Furthermore,

we easily have

|Xν(t)−Xν(s)| ≤

(
sup
τ∈[0,T ]

|Vν(τ)|

)
|t−s| ≤ C

(
1 + |Z0|+K + sup

0≤τ≤T
|B(τ)|

)
|t−s|, (3.6)

where we used again (2.7). Consider, for any δ ∈ (0, T ] and n ∈ N, the (random) modu-
lus of continuity

mν(δ) = sup
t,s∈(0,T ]
|t−s|<δ

|(Xν(t), Vν(t))− (Xν(s), Vν(s))|.

Then we have, by (3.5) and (3.6),

mν(δ) ≤ C

(
1 + |Z0|+K + sup

τ∈[0,T ]
|B(τ)|+ LB,γ

)
δγ

and taking the expectation

E [mν(δ)] ≤ C

(
1 +M1(µ) +K + E[ sup

τ∈[0,T ]
|B(τ)|] + E [LB,γ]

)
δγ ≤ C(1 +K)δγ

where we used the inequality E[supτ∈[0,T ] |B(τ)|] ≤
√
E[supτ∈[0,T ] |B(τ)|2] and (2.4). Now

fix any ε > 0 and any η ∈ (0, 1]. By Markov’s inequality we have

P(mν(δ) ≥ ε) ≤ E[mν(δ)]

ε
≤ C(1 +K)

δγ

ε
.

Hence, if we set δ0 =
(εη)

1
γ

C(1+K)
, we get, for any δ < δ0 and any n ∈ N,

P(mn(δ) ≥ ε) ≤ η.

Combining this with the fact that Law(Xν(0), Vν(0)) = µ for any n ∈ N, we conclude
that the sequence {(Xν , Vν)}n∈N is uniformly tight by [11, Theorem 7.3].

Next, we claim that {(Xν , Vν)}ν∈Wp(C([0,T ];R2d)) are uniformly Lp-integrable, i.e., setting
ν̃ = Law(Xν , Yν) and BR = {Z ∈ C([0, T ];R2d), supt∈[0,T ] |Z(t)| < R}, we have

sup
ν∈Wp(C[0,T ];R2d)

lim
R→+∞

∫
C([0,T ];R2d)\BR

sup
t∈[0,T ]

|Z(t)|pdν̃(Z) = 0.

Indeed, (3.4) guarantees that there exists a Young function Φ such that

sup
ν∈Wp(C([0,T ];R2d))

E

[
Φ

(
sup
τ∈[0,T ]

|(Xν(τ), Vν(τ))|p
)]

≤ C(1 +K2p),
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which in turn implies the uniform Lp-integrability by the de la Vallée-Poussin Theorem.
Thus, by the characterization of relatively compact sets in Lebesgue-Bochner spaces,
shown in [47, Theorem 2.1], we know that

Im⋆(T ) := {(Xν , Yν) ∈ Lp(Ω;C([0, T ];R2d)), ν ∈ Wp(C([0, T ];R2d))}
is relatively compact in Lp(Ω;C([0, T ];R2d)), while by [4, Proposition 7.1.5] we get that
Im(T ) is relatively compact.

Now we prove that T is continuous. Indeed, consider any sequence {νn}n∈N ⊂
Wp(C([0, T ];R2d)) converging towards ν ∈ Wp(C([0, T ];R2d)) and denote by (Xn, Vn)
the solutions of (3.1) with respect to νn for each n ∈ N. Assume, without loss of gener-
ality, that

lim sup
n→+∞

Wp(T νn, T ν) = lim
n→+∞

Wp(T νn, T ν)

and recall that there exists a subsequence {(Xnk
, Vnk

)}k∈N converging towards (X∞, V∞) ∈
Lp(Ω;C([0, T ];R2d)) both in the Lp-norm and almost surely. Now we show that the limit
(X∞, V∞) is the solution of (3.1) associated with ν. Indeed, by Assumption (v0), we
know that for any t ∈ [0, T ] and almost surely

lim
k→∞

v[t,νnk ](Xnk
(t), Vnk

(t)) = v[t,ν](X∞(t), V∞(t)). (3.7)

Now fix any ω ∈ Ω such that (3.7) holds. In the following we will omit the dependence
on ω for the ease of the reader. By Assumption (v1), it holds

v[t,νnk ](Xnk
(t), Vnk

(t)) ≤ K(1 + |Xnk
(t)|

β
3 + |Vnk

(t)|β) ≤ CK(1 + sup
0≤s≤T

|Znk
(t)|)

≤ CK(1 + |Z0|+K + sup
0≤s≤T

|B(s)|)eCK ,

where the upper bound is independent of t ∈ [0, T ] and n ∈ N. Hence, by the dominated
convergence theorem, we get

V∞(t) = lim
k→∞

Vnk
(t) = V0 + lim

k→∞

∫ t

0

v[s,νnk ](Xnk
(s), Vnk

(s))ds+
√
2σB(s)

= V0 +

∫ t

0

v[s,ν](X∞(s), V∞(s))ds+
√
2σB(s),

while, since Vnk
→ V∞ uniformly almost surely,

X∞(t) = lim
k→∞

Xnk
(t) = X0 + lim

k→∞

∫ t

0

Vnk
(s)ds = X0 +

∫ t

0

V∞(s)ds,

i.e. (X∞, V∞) solves (3.1) with respect to ν. This shows that for all k ∈ N (Xnk
, Vnk

) and
(X∞, V∞) constitute a coupling of T νnk and T ν and then

lim
n→+∞

Wp(T νn, T ν) = lim
k→+∞

Wp(T νnk , T ν)

≤ lim
k→+∞

E

[
sup
t∈[0,T ]

|(Xnk
(t), Vnk

(t))− (X∞(t), V∞(t))|p
]
= 0.
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Since ν ∈ Wp(C([0, T ];R2d)) is arbitrary, this implies that T is continuous.
We can then use Schauder’s fixed point theorem to ensure that there exists

µ ∈ Wp(C([0, T ];R2d)) such that µ = T µ. We only need to show that µ is a solution
of (1.1). To do this, let (X, V ) be the solution of (3.1) associated with µ. Then, since
µ = T µ = Law(X, V ), the process (X, V ) solves the McKean-Vlasov SDE (1.3). To
obtain (1.2), let ψ ∈ C∞

c (R2d). By Itô’s formula [39, Theorem 4.1.2] we have

ψ(X(t), V (t)) = ψ(X0, V0) +

∫ t

0

(V (s) · ∇xψ(X(s), V (s))

+v[s,µ](X(s), V (s)) · ∇vψ(X(s), V (s)) + σ∆vψ(X(s), V (s))) ds

+
√
2σ

d∑
j=1

∫ s

0

∂ ψ

∂ vj
(X(s), V (s))dBj(s),

whereBj is the j-th coordinate of the d-dimensional Brownian motionB = (B1, . . . , Bd).
Since ψ ∈ C∞

c (R2d), it is clear that for all j = 1, . . . , d it holds

∣∣∣∣ ∂ ψ∂ vj (X(s), V (s))

∣∣∣∣ ≤ ∥∇ψ∥L∞(R2d) , ∀s ≥ 0,

hence
∫ s
0
∂ ψ
∂ vj

(X(s), V (s))dBj(s) is a martingale [39, Corollary 3.2.6] and then

E

[∫ s

0

∂ ψ

∂ vj
(X(s), V (s))dBj(s)

]
= 0, j = 1, . . . , d.

As a consequence we get

E [ψ(X(t), V (t))] = E [ψ(X0, V0)] + E

[∫ t

0

(V (s) · ∇xψ(X(s), V (s))

+v[s,µ](X(s), V (s)) · ∇vψ(X(s), V (s)) + σ∆vψ(X(s), V (s))) ds

]
.(3.8)

Next, notice that

|V (s) · ∇xψ(X(s), V (s))| ≤ |Z(s)| ∥∇ψ∥L∞(R2d)

|v[s,µ](X(s), V (s)) · ∇vψ(X(s), V (s))| ≤ CK(1 + |Z(s)|) ∥∇ψ∥L∞(R2d)

σ∆vψ(X(s), V (s)) ≤ σ ∥∆ψ∥L∞(R2d) ,
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hence

E

[∫ t

0

|V (s) · ∇xψ(X(s), V (s))

+v[s,µ](X(s), V (s)) · ∇vψ(X(s), V (s)) + σ∆vψ(X(s), V (s))| ds
]

≤ C(1 +K)(∥∇ψ∥L∞(R2d) + ∥∆ψ∥L∞(R2d))

∫ t

0

E[1 + |Z(s)|]ds

≤ C(1 +K)(∥∇ψ∥L∞(R2d) + ∥∆ψ∥L∞(R2d))(1 +M1(T ;µ))T,

where we recall, by Hölder’s inequality, that M1(T ;µ) ≤
(
Mp(T ;µ)

) 1
p < ∞. Thus we

can use Fubini’s theorem in (3.8) to achieve

E [ψ(X(t), V (t))] = E [ψ(X0, V0)] +

∫ t

0

E [(V (s) · ∇xψ(X(s), V (s))

+v[s,µ](X(s), V (s)) · ∇vψ(X(s), V (s)) + σ∆vψ(X(s), V (s)))] ds.

Now we use the fact that µt = Law(X(t), V (t)) and µ = Law(X0, V0) to finally get∫
R2d

ψdµt =

∫
R2d

ψdµ+

∫ t

0

∫
R2d

(v · ∇xψ + v[s,µ](z) · ∇vψ + σ∆vψ) dµsds,

that is (1.2).

3.1.2. Existence for a general v. Now, let us consider v as in the statement of Theorem 1.3.
For any N > 0 let ηN ∈ C∞

c (R) such that supp(ηN) ⊂ [−1, N + 1], ηN(r) = 1 for any r ∈
[0, N ] and ηN(x) ∈ [0, 1] for any r ∈ R. Define, for any t ∈ [0, T ], µ ∈ C([0, T ];Wp(R2d))
and z ∈ R2d,

vN [t,µ](z) = v[t,µ](z) ηN(Mp(t,µ))

By definition, vN satisfies (v0), (v2) and (v4). Furthermore, notice that

|vN [t,µ](z)| ≤ K
(
1 + |x|

β
3 + |y|β + (Mp(T,µ))

1
p

)
ηN(Mp(t,µ)).

If Mp(t,µ) ≤ N + 1, then

|vN [t,µ](z)| ≤ K(N + 1)
1
p

(
1 + |x|

β
3 + |y|β

)
,

otherwise
|vN [t,µ](z)| = 0 ≤ K(N + 1)

1
p

(
1 + |x|

β
3 + |y|β

)
,

hence vN satisfies (v1). To use the first clam of this proof, it is not necessary to check
whether (v3) still holds. For any N ∈ N, we can find a solution µN ∈ Wp(C([0, T ];R2d))
of (1.1) with drift vN and a stochastic process (XN , YN) ∈ Lp(Ω;C([0, T ];R2d)) solving
(1.3) such that µN = Law(XN , VN). Now we need to prove a further uniform bound
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on the moments Mp(t,µ
N). To do this we argue as in the proof of Proposition 2.3. Fix

t ∈ [0, T ] and observe that for any s ≤ t

|VN(s)|p ≤ C

(
|V0|p +

∫ s

0

|vN [τ,µN ](XN(τ), VN(τ))|pdτ + sup
0≤τ≤T

|B(τ)|p
)

≤ C

(
|V0|p +K +K

∫ s

0

(
|XN(τ)|

pβ
3 + |VN(τ)|pβ +Mp(τ ;µ

N)
)
dτ + sup

0≤τ≤T
|B(τ)|p

)
≤ C

(
|V0|p +K +K

∫ s

0

(|XN(τ)|p + |VN(τ)|p) dτ +K

∫ t

0

Mp(τ ;µ
N)dτ + sup

0≤τ≤T
|B(τ)|p

)
,

where we used the fact that |vN [τ,µN ](z)| ≤ |v[τ,µN ](z)|, Assumption (v1) and Young’s
inequality with exponents 3

β
and 1

β
. On the other hand, for any s ≤ t

|XN(t)|p ≤ C

(
|X0|p +

∫ s

0

|VN(τ)|pdτ
)

and then, setting ZN = (XN , VN),

|ZN(s)|p ≤ C

(
|Z0|p +K +K

∫ s

0

|ZN(τ)|pdτ +K

∫ t

0

Mp(τ ;µ
N)dτ + sup

0≤τ≤T
|B(τ)|p

)
.

By Grönwall’s inequality, this implies

|ZN(s)|p ≤ C

(
|Z0|p +K +K

∫ t

0

Mp(τ ;µ
N)dτ + sup

0≤τ≤T
|B(τ)|p

)
eKT .

Now take the expectation to achieve

Mp(µ
N
s ) ≤ C

(
1 +Mp(µ) +K +K

∫ t

0

Mp(τ ;µ
N)dτ

)
eKT , (3.9)

where we also used (2.4) (and Hölder’s inequality if p = 1). Since (3.9) holds for all
s ∈ [0, t], we can take the supremum and get

Mp(t,µ
N) ≤ C

(
1 +Mp(µ) +K +K

∫ t

0

Mp(τ ;µ
N)dτ

)
eKT ,

which in turn implies, by Grönwall’s inequality,

Mp(t,µ
N) ≤ C (1 +K) eKT (1+e

KT ). (3.10)

Now consider any N > C (1 +K) eKT (1+e
KT ). Then

vN [t,µ
N ](XN(t), VN(t)) = v[t,µN ](XN(t), VN(t)),

thus (XN , VN) solves (1.3), while µN = Law(XN , VN) solves (1.1). This also proves the
first bound in (1.5).
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3.1.3. Uniqueness of the local solution. Let us first show that if µ is a solution of (1.1), then
there exists a strong solution (X, V ) of (1.3) such that µ = Law(X, V ). To do this, fix a
solution µ of (1.3) and define Fµ(t, x, v) = v[t,µ](x, v). Then µ solves the linear PDE{

∂tµt = −v · ∇xµt + σ∆vµt − divv(Fµ(t, z)µt) (t, x, v) ∈ R+
0 × R2d,

µ0 = µ̄ (x, v) ∈ R2d,

hence, by Theorem 2.2 we know that µ = Law(X, V ) where (X, V ) is the strong solu-
tion of (3.1). The fact that (X, V ) ∈ Lp(Ω;C([0, T ];R2d)) follows by (2.6) where Φ is the
identity. Hence, in particular, by definition of Fµ, (X, V ) solves (1.3) as required.

Now assume that µ1,µ2 ∈ C([0, T ];Wp(R2d)) are both solutions of 1.1 and let Zj =
(Xj, Vj) ∈ Lp(Ω;C([0, T ];R2d)) be the respective solutions of (1.3) with Law(Xj, Vj) = µj ,
j = 1, 2. Define the auxiliary processes δX(t) = X1(t)−X2(t), δV (t) = V1(t)− V2(t) and
δZ(t) = Z1(t)− Z2(t). Consider any t ∈ [0, T ] and s ∈ [0, t]. For a fixed ω ∈ Ω for which
(1.4) holds, we have

δV (s, ω) =

∫ s

0

(v[τ,µ1](Z1(τ, ω))− v[τ,µ2](Z2(τ, ω)))dτ,

i.e. δV (·, ω) is absolutely continuous. As a consequence also |δV (·, ω)|p is absolutely
continuous and by the chain rule and taking the expectation it holds

E [|δV (s)|p] = pE

[∫ s

0

|δV (τ)|p−2 (v[τ,µ1](Z1(τ))− v[τ,µ2](Z2(τ))) · δV (τ)dτ

]
.

Now we want to use Fubini’s theorem to exchange the expectation with the integral. To
do this, we observe that

|δV (τ)|p−1 |v[τ,µ1](Z1(τ))− v[τ,µ2](Z2(τ))|

≤ CK(|V1(τ)|p−1 + |V2(τ)|p−1)
(
1 + |X1(τ)|

β
3 + |V1(τ)|β + |X2(τ)|

β
3 + |V2(τ)|β

+
(
Mp(τ,µ

1)
) 1

p +
(
Mp(τ,µ

1)
) 1

p

)
≤ CK(|V1(τ)|p−1 + |V2(τ)|p−1)(|X1(τ)|

β
3 + |X1(τ)|

β
3 )

+ CK(|V1(τ)|p−1 + |V2(τ)|p−1 + |V1(τ)|p−1+β + |V2(τ)|p−1+β)

+ CK(|V1(τ)|p−1 + |V2(τ)|p−1)
((
Mp(τ,µ

1)
) 1

p +
(
Mp(τ,µ

2)
) 1

p

)
≤ CK

[
1 + (|V1(τ)|p + |V2(τ)|p) + (|X1(τ)|p + |X2(τ)|p) +

((
Mp(τ,µ

1)
)
+
(
Mp(τ,µ

2)
))]

,

where in the last inequality we used Young’s inequality. Taking the expectation it is not
difficult to check that

E
[
|δV (τ)|p−1 |v[τ,µ1](Z1(τ))− v[τ,µ2](Z2(τ))|

]
≤ CK(1 +Mp(T,µ

1) +Mp(T,µ
2))
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where the right-hand side is independent of τ . Hence, we can use Fubini’s theorem to
get

E [|δV (s)|p] = p

∫ s

0

E
[
|δV (τ)|p−2 (v[τ,µ1](Z1(τ))− v[τ,µ2](Z2(τ))) · δV (τ)

]
dτ

≤ CD

∫ s

0

sup
0≤r≤τ

E[|δZ(r)|p]dτ, (3.11)

where we used the dissipativity assumption (v3). We also have, clearly,

E [|δX(s)|p] ≤ C

∫ s

0

E [|δV (τ)|p] dτ ≤ C

∫ s

0

sup
0≤r≤τ

E [|δZ(r)|p] dτ. (3.12)

Combining (3.11) and (3.12) and taking the supremum over [0, t] we get

sup
0≤s≤t

E [|δZ(s)|p] ≤ C(D + 1)

∫ t

0

sup
0≤r≤τ

E[|δZ(r)|p]dτ.

Since this holds for all t ∈ [0, T ], we can use Grönwall’s inequality to achieve
sup0≤s≤t E [|δZ(s)|

p] = 0 for all t ∈ [0, T ], which in turn implies Z1 = Z2 a.s. Hence
µ1 = µ2. Observe that this also shows that (1.3) admits a unique strong solution.

3.1.4. Constructon of the global solution. Now consider any increasing sequence Tn ↑ +∞
and denote by µn the local solution of (1.1) on [0, Tn]. Let n1 < n2 and observe that
µn2 still solves (1.1) on [0, T1]. Hence, by uniqueness of the local solution, µn1 = µn2 on
[0, T1]. For such a reason, if we denote n(t) = min{n ≥ 0 : t ≥ Tn}, we can define the
continuous curve of probability measures µ ∈ C(R+

0 ;Wp(R2d)) by setting

µt = µ
n(t)
t , ∀t ∈ R+

0 .

It is clear that µ is the unique global solution we are searching for. Analogously, if we
set (Xn, Vn) to be the respective solutions of (1.3), a similar argument shows that the
stochastic process (X, V ) ∈ Lp(Ω;C(R+

0 ;R2d)) defined as

(X(t), V (t)) = (Xn(t)(t), Vn(t)(t))

still solves (1.3) and µ = Law(X, V ).

3.1.5. Hölder continuity of the solution. For any t ≥ 0, let Σt be the σ-algebra generated
by (X0, V0) and {B(s); s ≤ t}. Then it is not difficult to check that (X, V ) is a stochastic
process adapted to the filtration {Σt}t≥0. Now let µ be the solution fo (1.1) and Z =
(X, V ) the solution of (1.3) with µ = Law(X, V ) = Law(Z). Let T > 0, t ≥ 0 and consider
h > 0 such that 0 ≤ t < t + h ≤ T , without loss of generality. Clearly, (Z(t + h), Z(t))
constitute a coupling of µt+h and µt, hence

Wp(µt+h, µt) ≤ (E [|Z(t+ h)− Z(t)|p|])
1
p
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Set Ṽ (h) = V (t+h)−V (t), X̃(h) = X(t+h)−X(t) and Z̃(h) = Z(t+h)−Z(t). Observe
in particular that

X̃(h) =

∫ t+h

t

V (s)ds

and then

E
[
|X̃(h)|p

]
≤ hp−1E

[∫ t+h

t

|V (s)|pds
]
≤ hpMp(T ;µ) ≤ C(1 +K)eKT (1+e

KT )hp, (3.13)

where we used (3.10). As a consequence, we get

Wp(µt+h, µt) ≤
(
E
[∣∣∣Z̃(h)|p∣∣∣]) 1

p ≤ C

((
E
[∣∣∣X̃(h)|p

∣∣∣]) 1
p
+
(
E
[∣∣∣Ṽ (h)|p

∣∣∣]) 1
p

)
≤ C

(
(1 +K)

1
p e

KT (1+eKT )
p h+

(
E
[∣∣∣Ṽ (h)|p

∣∣∣]) 1
p

)
, (3.14)

hence we only need to estimate E
[∣∣∣Ṽ (h)|p

∣∣∣]. We have

Ṽ (h) =

∫ h

0

ṽ[s,µ](X̃(s) +X(t), Ṽ (s) + V (t)) ds+
√
2σB̃(h).

Where ṽ[h,µ](z) = v[t+ h,µ](z) and B̃(h) = B(t+ h)−B(t). Fix ε > 0 and set Hp,ε(x) =

(|x|2 + ε)
p
2 . Once we recall that B̃ is still a Brownian motion and Hp,ε ∈ C2(Rd), we can

use Itô’s formula to write

Hp,ε(Ṽ (h)) = ε
p
2

+

∫ h

0

(
∇Hp,ε(Ṽ (τ)) · ṽ[τ,µ](X̃(τ) +X(t), Ṽ (τ) + V (t)) + σ∆Hp,ε(Ṽ (τ))

)
dτ

+
√
2σ

∫ h

0

∇Hp,ε(Ṽ (τ))dB̃(τ).

Next, for any h ≥ 0, let Σ̃t
h be the σ-algebra generated by {(X(s), V (s)), s ∈ [0, t]} and

{B̃(τ); τ ∈ [0, h]}. Then (X̃, Ṽ ) is adapted to the filtration {Σ̃t
h}h≥0 and then, for any

N ∈ N, the random variable

TN(h) := min{inf{τ > 0 : |Ṽ (τ)| ≥ N}, h}

is a {Σ̃t
h}h≥0-stopping time. Observe further that

Hp,ε(Ṽ (TN(h))) = ε
p
2

+

∫ TN (h)

0

(
∇Hp,ε(Ṽ (τ)) · ṽ[τ,µ](X̃(τ) +X(t), Ṽ (τ) + V (t)) + σ∆Hp,ε(Ṽ (τ))

)
dτ

+
√
2σ

∫ TN (h)

0

∇Hp,ε(Ṽ (min{τ, TN(h)}))dB̃(τ). (3.15)



OPTIMAL CONTROL PROBLEMS DRIVEN BY NONLINEAR DEGENERATE FP EQUATIONS 23

Before taking the expectation on both sides, observe that

∇Hp,ε(x) = p(|x|2 + ε)
p−2
2 x (3.16)

and then

|∇Hp,ε(Ṽ (min{τ, TN(h)}))| ≤ pN(N2 + ε)
p−2
2 .

Thus the process
∫ h
0
∇Hp,ε(Ṽ (min{τ, TN(h)}))dB̃(τ) is a martingale [39, Corollary 3.2.6].

Hence, since TN(h) is a bounded stopping time, we can use the optional stopping theo-
rem [43, Theorem II.3.2] to get

E

[∫ TN (h)

0

∇Hp,ε(Ṽ (min{τ, TN(h)}))dB̃(τ)

]
= 0.

Taking the expectation in (3.15) and then the absolute value we achieve

E
[
Hp,ε(Ṽ (TN(h)))

]
≤ ε

p
2

+ E

[∫ h

0

(∣∣∣∇Hp,ε(Ṽ (τ)) · ṽ[τ,µ](X̃(τ) +X(t), Ṽ (τ) + V (t))
∣∣∣+ σ

∣∣∣∆Hp,ε(Ṽ (τ))
∣∣∣) dτ] .(3.17)

Now we use (v1) and (3.16) to get∣∣∣∇Hp,ε(Ṽ (τ)) · ṽ[τ,µ](X̃(τ) +X(t), Ṽ (τ) + V (t))
∣∣∣

≤ pK(|Ṽ (τ)|2 + ε)
p−2
2 |Ṽ (τ)|(1 + |X̃(τ) +X(t)|

β
3 + |Ṽ (τ) + V (t)|β +

(
Mp(t+ τ ;µ)

) 1
p )

≤ CK(|Ṽ (τ)|2 + ε)
p−1
2 (1 + |X̃(τ)|

β
3 + |X(t)|

β
3 + |Ṽ (τ)|β + |V (t)|β +

(
Mp(t+ τ ;µ)

) 1
p )

≤ CKHp,ε(Ṽ (τ)) + CK(|Ṽ (τ)|2 + ε)
p−1
2 (1 + |X̃(τ)|

β
3 + |X(t)|

β
3 + |V (t)|β +

(
Mp(t+ τ ;µ)

) 1
p ).

To handle the second summand, we use Young’s inequality with exponent p, and then
we achieve∣∣∣∇Hp,ε(Ṽ (τ)) · ṽ[τ,µ](X̃(τ) +X(t), Ṽ (τ) + V (t))

∣∣∣
≤ CKHp,ε(Ṽ (τ)) + CKp(1 + |X̃(τ)|

βp
3 + |X(t)|

βp
3 + |V (t)|βp +Mp(t+ τ ;µ))

≤ CKHp,ε(Ṽ (τ)) + CK(1 + |X̃(τ)|p + |Z(t)|p +Mp(T ;µ)).

Taking the expectation this leads to

E
[∣∣∣∇Hp,ε(Ṽ (τ)) · ṽ[τ,µ](X̃(τ) +X(t), Ṽ (τ) + V (t))

∣∣∣]
≤ CKE

[
Hp,ε(Ṽ (τ))

]
+ CK(1 + (1 +K)eKT (1+e

KT )), (3.18)
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where we also used (3.10) and (3.13). Plugging (3.18) into (3.17) we have

E
[
Hp,ε(Ṽ (TN(h)))

]
≤ ε

p
2 + CK

∫ h

0

E
[
Hp,ε(Ṽ (τ))

]
dτ

+ CK(1 + (1 +K)eKT (1+e
KT ))h+ σ

∫ h

0

E
[∣∣∣∆Hp,ε(Ṽ (τ))

∣∣∣ dτ] .(3.19)

Next, observe that since V is a global solution of (1.3), it cannot blow up in finite time,
hence it must hold limN→∞ TN(h) = h. Furthermore, for almost all ω ∈ Ω, V (and then
Ṽ ) is continuous. Hence, by Fatou’s Lemma, taking the limit inferior in (3.19) we get

E
[
Hp,ε(Ṽ (h))

]
≤ ε

p
2 + CK

∫ h

0

E
[
Hp,ε(Ṽ (τ))

]
dτ

+ CK(1 + (1 +K)eKT (1+e
KT ))h+ σ

∫ h

0

E
[∣∣∣∆Hp,ε(Ṽ (τ))

∣∣∣ dτ] . (3.20)

Furthermore, notice that

∆Hp,ε(x) = p(|x|2 + ε)
p−4
2 [(p+ d− 2)|x|2 + dε],

hence ∣∣∣∆Hp,ε(Ṽ (h))
∣∣∣ ≤ C(|Ṽ (h)|2 + ε)

p−2
2

Now we have to distinguish among two cases. If p > 2 we get, by Young’s inequality
with exponent p

p−2
, ∣∣∣∆Hp,ε(Ṽ (h))

∣∣∣ ≤ C(1 +Hp,ε(|Ṽ (h)|)). (3.21)

Hence, using (3.21) into (3.20), we achieve

E
[
Hp,ε(Ṽ (h))

]
≤ ε

p
2 + C(1 +K)

∫ h

0

E
[
Hp,ε(Ṽ (τ))

]
dτ

+ CK(1 + (1 +K)eKT (1+e
KT ))h.

Since h ∈ [0, T − t] is arbitrary, we can use Grönwall’s inequality to get

E
[
Hp,ε(Ṽ (h))

]
≤
(
ε

p
2 + CK(1 + (1 +K)eKT (1+e

KT ))h
)
eC(1+K)h.

It remains to take the limit as ε → 0 to finally achieve, by the dominated convergence
theorem,

E
[
|Ṽ (h)|p

]
≤ CK(1 + (1 +K)eKT (1+e

KT ))eC(1+K)h.

Using the latter inequality into (3.14), we have the local 1/p-Hölder continuity of µ and
the third bound in (1.5).

If p ≤ 2 instead we use ∣∣∣∆Hp,ε(Ṽ (h))
∣∣∣ ≤ Cε

p−2
2
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and then

E
[
Hp,ε(Ṽ (h))

]
≤ ε

p
2 + CK

∫ h

0

E
[
Hp,ε(Ṽ (τ))

]
dτ

+ CK(1 + (1 +K)eKT (1+e
KT ))h+ Cε

p−2
2 h.

Again, by Grönwall’s inequality we have

E[|Ṽ (h)|p] ≤ E
[
Hp,ε(Ṽ (h))

]
≤
(
ε

p
2 + CK(1 + (1 +K)eKT (1+e

KT ))h+ Cε
p−2
2 h
)
eCK .

The latter inequality holds for any ε > 0 and any h ∈ [0, T − t], hence, we can take ε = h
so that

E[|Ṽ (h)|p] ≤
(
1 + CK(1 + (1 +K)eKT (1+e

KT ))
)
h

p
2 eCK .

Again, we get the local 1/2-Hölder continuity of µ and the third bound in (1.5) by (3.14).

3.1.6. Higher moment estimate. It remains to prove the second bound in (1.5). Again,
consider the Young function Φ such that µ ∈ WΦp(R2d). Observe that, by (v1) and (3.10),
we have, for all t ∈ [0, T ] and z ∈ R2d

v[t,µ](z) ≤ C(1 +K)eKT (1+e
KT )(1 + |x|

β
3 + |v|β).

Hence we can use (2.5) to get

M Φ̃p(·;K)(T,µ) ≤ C(1 + (1 +K)eKT (1+e
KT )),

where
Φ̃(r;K) = Φ

(
Ce−C(1+K)eKT (1+eKT )

r
)
.

This ends the proof.
□

Remark 3.1. Notice that, to prove the existence of local solutions, Assumption (v3) is not
needed. Furthermore, for uniqueness, one only needs that Assumption (v3) holds on
solutions of (1.3).

3.2. Proof of Corollary 1.4. From now on, we fix the time horizon T > 0. Let Zj =
(Xj, Vj) and Z = (X, V ) be the solutions of (1.3) associated with vj and v respectively.
Then, clearly, µjt = Law(Xj(t), Vj(t)) and µt = Law(X(t), V (t)), hence

sup
0≤t≤T

(
Wp(µ

j
t , µt)

)p ≤ C sup
0≤t≤T

(E[|Zj(t)− Z(t)|p]) .

Let 0 ≤ t ≤ T . Once we notice that δVj(t) := Vj(t) − V (t) is absolutely continuous, we
can use the chain rule to get for any s ∈ [0, t]

E [|δVj(s)|p] = pE

[∫ s

0

|δVj(τ)|p−2 (vj[τ,µ
j](Zj(τ))− v[τ,µ](Z(τ))) · δVj(τ)dτ

]
.
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Now notice that, by Young’s inequality and (v1) we get

|δVj(τ)|p−1
∣∣vj[τ,µj](Zj(τ))− v[τ,µ](Z(τ))

∣∣
≤ C(K + 1)

(
1 + |Zj(τ)|p + |Z(τ)|p +Mp(T ;µj) +Mp(T ;µj)

)
,

and then ∫ s

0

E
[
|δVj(τ)|p−1

∣∣vj[τ,µj](Zj(τ))− v[τ,µ](Z(τ))
∣∣] dτ

≤ C(K + 1)T
(
1 +Mp(T ;µj) +Mp(T,µ)

)
≤ C(K + 1)T (1 +HT (K)) ,

where we also used (1.5). Hence we can employ Fubini’s theorem to get

E [|δVj(s)|p] = p

∫ s

0

E
[
|δVj(τ)|p−2 (vj[τ,µ

j](Zj(τ))− v[τ,µ](Z(τ))) · δVj(τ)
]
dτ

= p

∫ s

0

E
[
|δVj(τ)|p−2 (vj[τ,µ

j](Zj(τ))− vj[τ,µ](Z(τ))) · δVj(τ)
]
dτ

+ p

∫ s

0

E
[
|δVj(τ)|p−2 (vj[τ,µ](Z(τ))− v[τ,µ](Z(τ))) · δVj(τ)

]
dτ

= I1 + I2. (3.22)

For the first term, we use (v3) to get

I1 ≤ D

∫ s

0

sup
0≤r≤τ

E[|δZj(r)|p]dτ, (3.23)

where δZj(r) := Zj(r) − Z(r). Next, we move to I2. To handle it we use Young’s in-
equality as follows

I2 ≤ p

∫ s

0

E
[
|δVj(τ)|p−1 |vj[τ,µ](Z(τ))− v[τ,µ](Z(τ))|

]
dτ

≤ C

(∫ s

0

sup
0≤r≤τ

E [|δZj(r)|p] dτ +
∫ s

0

E [|vj[τ,µ](Z(τ))− v[τ,µ](Z(τ))|p] dτ
)
.(3.24)

We denote

Rj(s) =

∫ s

0

E [|vj[τ,µ](Z(τ))− v[τ,µ](Z(τ))|p] dτ

and we notice that it is a nondecreasing function. Hence we get, combining (3.22), (3.23)
and (3.24)

E [|δVj(s)|p] ≤ C(1 +D)

∫ s

0

sup
0≤r≤τ

E [|δZj(r)|p] dτ + CRj(s). (3.25)

Next, we observe that

E [|δXj(s)|p] ≤ T p−1

∫ s

0

E [|δVj(τ)|p] dτ ≤ T p−1

∫ s

0

sup
0≤r≤τ

E [|δZj(r)|p] dτ, (3.26)



OPTIMAL CONTROL PROBLEMS DRIVEN BY NONLINEAR DEGENERATE FP EQUATIONS 27

where δXj(t) := Xj(t) − X(t). Combining (3.25) and (3.26) and taking the supremum
on [0, t] we have

sup
0≤s≤t

E [|δZj(s)|p] ≤ C(1 +D)

∫ t

0

sup
0≤r≤τ

E [|δZj(r)|p] dτ + CRj(t),

that, by Grönwall’s inequality, implies

sup
0≤s≤T

E [|δZj(s)|p] ≤ eC(1+D)Rj(T )

and then

sup
0≤t≤T

(
Wp(µ

j
t , µt)

)p ≤ eC(1+D)Rj(T ).

It remains to show that the right-hand side converges to 0. To do this, it is sufficient to
observe that, by (v1) and Young’s inequality

|vj[τ,µ](Z(τ))− vj[τ,µ](Z(τ))| ≤ CK
(
1 + |Z(τ)|p +Mp(T,µ)

)
,

where ∫ T

0

E
[
CK

(
1 + |Z(τ)|p +Mp(T,µ)

)]
dτ ≤ CK(1 +Mp(T,µ)) <∞.

Hence, by the dominated convergence theorem and the fact that µ satisfies (1.5),
limj→∞ Rj(T ) = 0. This concludes the proof. □

4. THE PDE-ODE SYSTEM AND A RELATED OPTIMAL CONTROL PROBLEM

In this section we apply the previous results to a mean field sparse optimal control
problem. Precisely, we consider the following PDE-ODE system [1, 2]

∂tµt = −v · ∇xµt + σ∆vµt − divv((v[t,µ](z)

+w[t,H ](z))µt)) (t, x, v) ∈ (0, T ]× R2d

Ẏ(t) = W(t) = F [t,µ](Y ) + u(t,µ) t ∈ (0, T ]

µ0 = µ, Y(0) = Y,

(4.1)

where µ ∈ C([0, T ];Wp(R2d)), H = (Y,W) : [0, T ] → R2m, v : [0, T ]×C([0, T ];Wp(R2d))×
R2d → R, w : [0, T ] × C([0, T ];R2m) × R2d → Rd, F : [0, T ] × C([0, T ];Wp(R2d)) ×
C([0, T ];Rm) → Rm, u : [0, T ] × C([0, T ];Wp(R2d)) → Rm, µ ∈ Wp(R2d), and H =
(Y ,W ) ∈ R2m.

Definition 4.1. We say that (µ,Y ) ∈ C([0, T ];Wp(R2d)×R2m) is a solution of (4.1) if and
only if µ is solution of{
∂tµt = −v · ∇xµt + σ∆vµt − divv((v[t,µ](z) +w[t,H ](z))µt)) (t, x, v) ∈ (0, T ]× R2d

µ0 = µ,
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in the sense of Definition 1.1 and Y satisfies

Y(t) = Y +

∫ t

0

(F [s,µ](Y ) + u(s,µ)) ds t ∈ (0, T ]

From now on, we assume that v satisfies Assumptions (v). Furthermore we consider
the following assumptions of w and F :

Assumptions on w: (w)

(w0) w : [0, T ]×C([0, T ];R2m)×R2d → Rd is a Carathéodory map, i.e., it is measur-
able in the variable t ∈ [0, T ] and continuous in (H , z) ∈ C([0, T ];R2m)×R2d.

(w1) There exists a constant Kw > 0 such that for any t ∈ [0, T ], z ∈ R2d and
H ∈ C([0, T ];R2m) it holds

|w[t,H ](z)| ≤ Kw(1 + sup
0≤s≤t

|H(s)|+ |x|
β
3 + |v|β),

where β is the exponent in (v1).
(w2) There exists a constant Lw such that for any t ∈ [0, T ], Hj ∈ C([0, T ];R2m)

and zj ∈ R2d, j = 1, 2, it holds∣∣w[t,H1](z1)−w[t,H2](z2)
∣∣ ≤ Lw

(
sup
0≤s≤t

|H1 −H2|+ |z1 − z2|
)
.

Assumptions on F : (F )

(F0) F : [0, T ]×C([0, T ];Wp(R2d))×C([0, T ];Rm) → Rm is a Carathéodory map, i.e.
is measurable in t ∈ [0, T ] and continuous in (µ,Y ) ∈ C([0, T ];Wp(R2d)) ×
C([0, T ];Rm).

(F1) There exists a constant KF > 0 such that

|F (t,µ)(Y )| ≤ KF

(
1 + sup

0≤s≤t
|Y (s)|+

(
Mp(T ;µ)

) 1
p

)
,

for all µ ∈ C([0, T ];Wp(R2d)), Y ∈ C([0, T ];Rm) and t ∈ [0, T ].
(F2) There exists a constant LF > 0 such that

|F [t,µ](Y 1)− F [t,ν](Y 2)| ≤ LF

(
sup
0≤s≤t

|Y 1(s)− Y 2(s)|+ sup
0≤s≤t

Wp(µs, νs)

)
,

for all µ,ν ∈ C([0, T ];Wp(R2d)), Y j ∈ C([0, T ];Rm), j = 1, 2 and t ∈ [0, T ].

Lastly, concerning the controls u = (uj)j=0,...,m, we fix two constants Mu and Lu and
we denote by A the set of admissible controls, characterized as follows:
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Assumptions on u ∈ A: (A)

(A0) u : [0, T ]×C([0, T ];Wp(R2d)) → Rm is a Carathéodory map, i.e., it is measur-
able in t ∈ [0, T ] and continuous in µ ∈ C([0, T ];Wp(R2d)).

(A1) For all t ∈ [0, T ] it holds

|u(t, δ0)| ≤Mu,

where δ0 ∈ Wp(C([0, T ];R2d)) is the Dirac delta measure concentrated in the
constant function 0 ∈ C([0, T ];R2d).

(A2) For all µ,ν ∈ C([0, T ];Wp(R2d)), j = 1, . . . ,m and t ∈ [0, T ], it holds

|uj(t,µ)− uj(t,ν)| ≤
Lu

m
sup
0≤s≤t

Wp(µs, νs).

By Assumptions (A1) and (A2), for all u ∈ A it holds

|u(t,µ)| ≤ |u(t,µ)− u(t, δ0)|+ |u(t, δ0)| ≤ Lu(Mp(t;µ))
1
p +M0,

where we used the fact that (Mp(t;µ))
1
p = sup0≤s≤tWp(µs, δ0). Hence, if we set

Ku = max{Lu,Mu},
then we have that for all µ ∈ C([0, T ];Wp(R2d)) and all t ∈ [0, T ] it holds

|u(t,µ)| ≤ Ku(1 + (Mp(t;µ))
1
p ). (4.2)

4.1. Well-posedness of the PDE-ODE system (4.1). Before setting the control problem,
let us show that the system (4.1) is well-posed. Our proof relies on some preliminary
results that are proved in Appendix B. First of all, for any fixed T > 0, u ∈ A and
µ ∈ C([0, T ];Wp(R2d)) we introduce the system{

Ẏµ(t) = Wµ(t) = F [t,µ](Yµ) + u(t,µ) t ∈ (0, T ]

µ0 = µ, Yµ(0) = Y,
(4.3)

which admits a unique solution Yµ thanks to Lemma B.1. Then we define the map
S : C([0, T ];Wp(R2d))×A× [0, T ] → R2m as follows:

S[µ,u](t) = Hµ(t) = (Yµ(t),Wµ(t)),

where Yµ is the unique solution of (4.3). For any fixed u ∈ A, we also define the map

Gu : [0, T ]× C([0, T ];Wp(R2d))× R2d → Rd

as follows:
Gu[t,µ](z) = v[t,µ](z) +w[t,S[µ,u]](z),

which satisfies assumptions (v0), (v1), (v2) and (v3) thanks to Lemma B.2.
Once this is established, we set

KG := Kv +Kw(1 +KF )(1 + C1 +KF +Ku),
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where C1 is defined in Lemma B.1, and we denote by

K :=

µ ∈ C([0, T ];Wp(R2d)) : Mp(T,µ) +M Φ̃p(·;KG)(T ;µ) + sup
0≤s,t≤T
t̸=s

Wp(µt, µs)

|t− s|γp
≤ C(KG)

 ,

where Φ̃ and C are the functions defined in Theorem 1.3 and γp =
1

max{2,p} . We also set

C1(K) := (C1 + C3)
(
1 + (C(KG))

1
p

)
,

where C1 and C3 are defined in Lemma B.1, and

K1 :=

Y ∈ C([0, T ];Rm) : sup
0≤s≤T

|Y (s)|+ sup
0≤t,s≤T
t̸=s

|Y (t)− Y (s)|
|t− s|

≤ C1(KG)

 .

By Lemma B.3 we know both K and K1 are compact subsets and K′ = K×K1. Then we
are in a position to prove (4.1) is well-posed.

Theorem 4.2. For any fixed u ∈ A there exists a unique solution (µ,Y ) ∈ C([0, T ];Wp(R2d))×
C([0, T ];Rm) of (4.1). In particular, if B is a d-dimensional Brownian motion and (X0, V0) ∈
Lp(Ω;R2d) is independent of B and µ = Law(X0, V0), then µ = Law(X, V ), where (X, V ) is
the unique global strong solution in Lp(Ω;C(R+

0 ;R2d)) of

dX(t) = V (t)dt t ∈ [0, T ]

dV (t) = (v[t,µ](X(t), V (t)) +w[t,H ](X(t), V (t))) dt+
√
2σdB(t) t ∈ [0, T ]

Ẏ (t) = W (t) = F [t,µ](Y ) + u(t,µ) t ∈ (0, T ]

X(0) = X0, V (0) = V0, µ = Law(X, V )

Y (0) = Y

(4.4)

Moreover, (µ,Y ) ∈ K′. Finally, if {uj}j∈N ⊂ A is a sequence of admissible controls such that
for all t ∈ [0, T ] and ν ∈ K

lim
j→∞

∫ t

0

uj(s,ν) ds =

∫ t

0

u(s,ν) ds

and (µj,Y j) are the respective solutions of (4.1), then,

lim
j→∞

sup
0≤t≤T

(
Wp(µ

j
t , µt) + |Hj(t)−H(t)|

)
= 0.

Proof. Fix u ∈ A and consider the equation{
∂tµt = −v · ∇xµt + σ∆vµt − divv (Gu[t,µ](z)µt) (t, z) ∈ (0, T ]× R2d

µ0 = µ z ∈ R2d.
(4.5)

SinceGu satisfies Assumptions (v), then (4.5) admits a unique solution µ ∈ Cγp([0, T ];Wp(R2d))
that can be expressed as µ = Law(X, V ) as in the statement, by Theorem 1.3. In partic-
ular, µ belongs to K by (1.5). Furthermore, setting H = S[µ,u], we get that (µ,Y )
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clearly satisfies (4.1) and Y ∈ K1 by Lemma B.1. This shows the existence of a solu-
tion for (4.1). To prove uniqueness, let (µ′,Y ′) be another solution. Then, by Defini-
tion 4.1 and uniqueness of the solution of (4.3), we know that H ′ = S[µ′,u]. How-
ever, this means that µ′ is solution of (4.5), hence by Lemma B.1, then µ′ = µ and
H ′ = S[µ′,u] = S[µ,u] = H .

Now, let {uj}j∈N ⊂ A be a sequence of controls assumed as in the assumption. Then,
by Lemma B.4 and Corollary 1.4, we get that, for all t ∈ [0, T ],

lim
j→∞

sup
0≤s≤t

Wp(µ
j
s, µs) = 0. (4.6)

Furthermore, we observe that by definition∣∣Hj(t)−H(t)
∣∣ ≤ ∣∣S[µj,uj](t)− S[µ,uj](t)

∣∣+ ∣∣S[µ,uj](t)− S[µ,u](t)
∣∣

≤ C sup
0≤s≤T

Wp(µ
j
s, µs) +

∣∣S[µ,uj](t)− S[µ,u](t)
∣∣ ,

where we applied (B.3) and the assumptions on F and A. We get the desired statement
by taking the supremum, then the limit on both sides of the previous inequality and
using (B.4) and (4.6). □

4.2. The Control Problem. Now, we want to set a control problem on (4.1). Precisely,
we consider the cost functional

F [u] =

∫ T

0

L(t,µ,Y ) dt+

∫ T

0

Ψ(u(t,µ)) dt

where (µ,Y ) is the solution of (4.1) with given control u ∈ A, L is a lagrangian func-
tional accounting for closedness to the decided target and Ψ is a convex control cost. We
consider the following assumptions on the cost functional F .

Assumptions on F : (F)

(F0) L : [0, T ]×C([0, T ];Wp(R2d))×C([0, T ];Rm) and Ψ : Rm → R are measurable
and bounded from below.

(F1) L is continuous in the variables (µ,Y ).
(F2) There exists a function MK′ ∈ L1(0, T ) such that for a.a. t ∈ [0, T ] and all

(µ,Y ) ∈ K′

|L(t,µ,Y )| ≤MK′(t)

(F3) Ψ : Rm → R is convex.

We are now ready to prove Theorem 1.5.

4.3. Proof of Theorem 1.5. By Theorem 4.2, for any fixed u ∈ A the solution (µ,Y ) of
(4.1) belongs to K′. First, we show that F [u] < ∞ for all u ∈ A. Indeed, by (4.2) and
letting (µ,Y ) be the solution of (4.1) with control u, we have

|u(t,µ)| ≤ Ku(1 + C(KG)
1
p ).
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Now, let MΨ = sup
|x|≤Ku(1+C(KG)

1
p )
Ψ(x), which exists since Ψ is convex and thus contin-

uous. Hence

F [u] ≤
∫ T

0

ML(t) dt+MΨT <∞.

Now, we show that for any two controls u1,u2 ∈ A such that for all ν ∈ K and
t ∈ [0, T ] it holds u1(t,ν) = u2(t,ν), we have F [u1] = F [u2]. To do this, let (µ1,Y 1)
and (µ2,Y 2) be the solutions of (4.1) with controls u1 and u2. Since µ1 ∈ K, then
u1(t,µ

1) = u2(t,µ
1), and hence we have

Y 1(t) = Y +

∫ t

0

(F [s,µ1](Y 1) + u1(s,µ
1)) ds = Y +

∫ t

0

(F [s,µ1](Y 1) + u2(s,µ
1)) ds.

Thus, Y 1 also solves (4.3) with control u2 and measure µ1, i.e.

S[µ1,u2] = H1 = S[µ1,u2].

However, this means that

Gu1 [t,µ
1](z) = v[t,µ1](z) +w[t,S[µ1,u1]](z)

= v[t,µ1](z) +w[t,S[µ1,u2]](z) = Gu2 [t,µ
1](z)

and then µ1 solves (4.5) with field Gu2 . However, also µ2 solves (4.5) with the field
Gu2 . Hence, since for a given field Gu2 (4.5) admits a unique solution, µ1 = µ2 and also
H1 = H2. Then, it is clear, by definition of F , that F [u1] = F [u2]. Thus we are in a
position to consider the equivalence relation ∼ over A defined as

u1 ∼ u2 ⇔ u1(t,µ) = u2(t,µ) ∀t ∈ [0, T ], ∀µ ∈ K,

the quotient set Ã = A/ ∼ and the functional F̃ : Ã → R defined as

F̃ [[u]∼] = F [u], ∀[u]∼ ∈ Ã.

To actually work with F̃ , we need to provide a suitable representation of the quotient
set Ã. To do this, first notice that for any u ∈ A we consider a function U : [0, T ] →
C(K;Rm) defined as U(t) = u(t, ·) for t ∈ [0, T ], so that U(t)(µ) = u(t,µ) for any µ ∈ K.
Since

|u(t,µ)| ≤ Ku(1 + (C(KG))
1
p ),

and then ∫ T

0

sup
µ∈K

|u(t,µ)| dt ≤ Ku(1 + (C(KG))
1
p )T,

it is clear that U ∈ L1([0, T ];C(K;Rm)). Let Π : A → L1([0, T ];C(K;Rm)) be the function
that maps u into U as before. If u1 ∼ u2, then Πu1 = Πu2, i.e., Π is compatible with the
equivalence relation ∼. In particular, this means that we can define the map Π̃ : Ã → ΠA
such that Π̃[u]∼ = Πu. By definition, this map is surjective. Furthermore, assume that
Π̃[u1]∼ = Π̃[u2]∼. Then Πu1 = Πu2 hence u1(t,µ) = u2(t,µ) for all t ∈ [0, T ] and µ ∈ K,
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which in turn implies u1 ∼ u2 and [u1]∼ = [u2]∼. In particular, we have shown that Π̃ is
a bijection. From now on, without loss of generality, we identify Ã with ΠA and

F [u] = F̃ [Πu].

We can then rewrite Problem 1 as follows:

Problem 1⋆

Find U ⋆ ∈ Ã such that
F̃ [U ⋆] = min

U∈Ã
F̃ [U ].

Now let us consider a minimizing sequence {Un}n∈N ⊂ Ã for F̃ . We will prove that
this minimizing sequence admits (up to a subsequence) a limit U ⋆ in some sense that
will be specified later. To do this, however, we preliminarily need to prove that {Un}n∈N
is uniformly integrable and uniformly tight, i.e.

lim
R→+∞

sup
n∈N

∫
{t∈[0,T ]: supµ∈K |Un(t)(µ)|>R}

sup
µ∈K

|Un(t)(µ)| dt = 0, (4.7)

and for all ε > 0 there exists a compact-valued multifunction Γε : [0, T ] → 2C(K;Rm) with
measurable graph such that

sup
n∈N

|{t ∈ [0, T ] : Un(t) ̸∈ Γε(t)} < ε,

respectively. Let us first show the uniform integrability. Indeed, for all n ∈ N, there
exists un ∈ A such that Un = Πun and then, for all t ∈ [0, T ] and µ ∈ K,

|Un(t)(µ)| = |un(t,µ)| ≤ Ku(1 + (C(KG))
1
p ).

Hence, for R > Ku(1 + (C(KG))
1
p ), we clearly have∫

{t∈[0,T ]: supµ∈K |Un(t)(µ)|>R}
sup
µ∈K

|Un(t)(µ)| dt = 0

and then (4.7) holds.
Now we show the uniform tightness. To do this, we fix t ∈ [0, T ] and notice that, by

Assumption (A2) it holds

|Un(t)(ν1)−Un(t)(ν2)| ≤ Lu sup
0≤t≤T

Wp(µ
1
t , µ

2
t ), ∀µ1,µ2 ∈ K.

Notice that the uniform topology of C([0, T ];Wp(R2d)) is generated by the metric

d(µ1,µ2) = sup
t∈[0,T ]

Wp(µ
1
t , µ

2
t ), ∀µ1,µ2 ∈ C([0, T ];Wp(R2d)).
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Hence by Lemma B.3, K equipped with d is a compact Hausdorff space. Defining

K̃ =

f ∈ C(K;Rm) : sup
µ∈K

|f(µ)|+ sup
µ1,µ2

µ1 ̸=µ2

|f(µ1)− f(µ2)|
d(µ1,µ2)

≤ Lu +Ku(1 + (C(KG))
1
p )

 ,

which is a compact subset of C(K;Rm) by the Arzelá-Ascoli Theorem, we have Un(t) ∈
K̃ for all t ∈ [0, T ] and n ∈ N. Hence, to get the uniform tightness of {Un}n∈N it is
sufficient to set Γε(t) = K̃ for all ε > 0 and t ∈ [0, T ].

Now, we can use a suitable generalization of the Dunford-Pettis theorem, as in [10,
Theorem 1.3], which tells us that there exists a function U ⋆ ∈ L1([0, T ];C(K,Rm)) such
that, up to a non-relabelled subsequence, for all measurable subsets E ⊂ [0, T ]

lim
n→∞

sup
µ∈K

1

|E|

∣∣∣∣∫
E

(Un(t)(µ)−U ⋆(t)(µ)) dt

∣∣∣∣ = 0. (4.8)

Then we need to show that U ⋆ ∈ Ã. To do this, first observe that for any µ1,µ2 ∈ K it
holds, by Assumption (A2),

1

|E|

∣∣∣∣∫
E

(Un(t)j(µ
1)− Un

j (t)(µ
2)) dt

∣∣∣∣ ≤ Lu

m
sup

0≤s≤supE
Wp(µ

1
s, µ

2
s),

for any j = 1, . . . ,m, where Un = (Un
1 , · · · , Un

j ). Taking the limit as n → ∞ and using
(4.8) we get

1

|E|

∣∣∣∣∫
E

(U⋆
j (t)(µ

1)− U⋆
j (t)(µ

2)) dt

∣∣∣∣ ≤ Lu

m
sup

0≤s≤supE
Wp(µ

1
s, µ

2
s), (4.9)

where U ⋆ = (U⋆
1 , · · · , U⋆

m). Since U ⋆ ∈ L1([0, T ];C(K;Rm)), by [6, Proposition 1.2.2],
we know that almost any t ∈ [0, T ] is a Lebesgue point for U ⋆, i.e. there exists a set
ELeb ⊂ [0, T ] such that |[0, T ] \ ELeb| = 0 and for all t ∈ ELeb it holds

lim
h→0

1

h

∫ t+h

t

sup
µ∈K

|U ⋆(s)(µ)−U ⋆(t)(µ)| ds = 0.

In particular, if we fix µ ∈ K for all t ∈ ELeb we have

lim
h→0

∣∣∣∣1h
∫ t+h

t

U ⋆(s)(µ) ds−U ⋆(t)(µ)

∣∣∣∣ ≤ lim
h→0

1

h

∫ t+h

t

sup
µ∈K

|U ⋆(s)(µ)−U ⋆(t)(µ)| ds = 0.

Fix t ∈ ELeb and observe that by (4.9) for any h > 0 it holds∣∣∣∣1h
∫ t+h

t

(U⋆
j (s)(µ

1)− U⋆
j (s)(µ

2)) ds

∣∣∣∣ ≤ Lu

m
sup

0≤s≤t+h
Wp(µ

1
s, µ

2
s).

Now we take the limit as h→ 0 on both sides: on the left-hand side, we use the fact that
t ∈ ELeb, while on the right-hand side we use the continuity of µ1,µ2 ∈ K. Finally, for
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any j = 1, . . . ,m we achieve∣∣U⋆
j (t)(µ

1)− U⋆
j (t)(µ

2)
∣∣ ≤ Lu

m
sup
0≤s≤t

Wp(µ
1
s, µ

2
s). (4.10)

For t ̸∈ ELeb, without loss of generality, we set U ⋆(t) ≡ 0, since |[0, T ] \ ELeb| = 0 and
(4.10) still holds. Hence, we have U ⋆ satisfies (4.10) for all t ∈ [0, T ]. Next, notice that,
since δ0 ∈ K and by Assumption (A1), for any measurable subset E ⊂ [0, T ] we have

1

|E|

∣∣∣∣∫
E

Un(t)(δ0) dt

∣∣∣∣ ≤Mu.

With the same argument as before, we get, for all t ∈ ELeb,

|U ⋆(t)(δ0)| ≤Mu. (4.11)

Combining this with the fact that we set U ⋆(t) ≡ 0 whenever t ̸∈ ELeb, we infer (4.11)
holds for all t ∈ [0, T ].

Now, we fix t ∈ [0, T ] and introduce another equivalence relation ∼t on K, as follows:

µ1 ∼t µ
2 ⇔ µ1

s = µ2
s, ∀s ∈ [0, t].

Notice that, by (4.10), if µ1 ∼t µ
2 then U⋆

j (t)(µ
1) = U⋆

j (t)(µ
2) for all j = 1, . . . ,m. This

means that U⋆
j (t) is compatible with the equivalence relation ∼t and then we can define

the function Ũ⋆
j (t) : K̃t → R, where K̃t = K/ ∼t is the quotient of K with respect to the

equivalence relation ∼t, as
Ũ⋆
j (t)([µ]∼t) = U⋆

j (t)(µ).

Let us also denote by πt : K 7→ K̃t the projection, i.e. πtµ = [µ]∼t , and endow K̃t with
the quotient topology. Notice also that the function Πt : K → C([0, t];Wp(R2d)) defined
as (Πtµ)s = µs for all s ∈ [0, t] (i.e., Πt is the function that maps µ to its restriction on the
interval [0, t]) is compatible with ∼t, i.e., if µ1 ∼t µ

2 then Πtµ
1 = Πtµ

2. We endow ΠtK
with the uniform metric dt on C([0, t];Wp(R2d)), i.e.,

dt(µ
1,µ2) = sup

0≤s≤t
Wp(µ

1
s, µ

2
s), µ

1,µ2 ∈ ΠtK

It is clear that Πt is non-expansive, i.e., for all µ1,µ2 ∈ K it holds

dt(Πtµ
1,Πtµ

2) ≤ d(µ1,µ2).

Since Πt is compatible with ∼t, we define the map Π̃t : K̃t → ΠtK as Π̃t[µ]∼t = Πtµ,
which is clearly continuous with respect of the quotient topology on K̃t. Furthermore,
notice that if Πtµ

1 = Πtµ
2, then, by definition, µ1 ∼t µ

2. Hence, Π̃t is bijective. Finally,
consider an open set E ⊂ K̃t. We want to prove that Π̃tE is an open set. To do this, fix
[µ]∼t ∈ E. We want to fix a special representative µ ∈ [µ]∼t . Precisely, let µ̃ = Π̃t[µ]∼t

and define µ ∈ C([0, T ];Wp(R2d)) by setting µs = µ̃min{s,t} for s ∈ [0, T ]. It is not difficult
to check that µ ∈ K. In particular µ ∈ π−1

t (U), and notice that since π−1
t (E) is an open

set in K, there exists ε > 0 such that Bε(µ) := {ν ∈ K : d(µ,ν) < ε} ⊂ π−1
t (E).
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Now, we define Bε(Πtµ; t) := {ν ∈ ΠtK : dt(Πtµ,ν) < ε}. Since Πt is non-expansive,
we have ΠtBε(µ) ⊆ Bε(Πtµ; t). On the other hand, consider any ν̃ ∈ Bε(Πtµ; t) and
define ν ∈ C([0, T ];Wp(R2d)) by setting νs = ν̃min{s,t} for s ∈ [0, T ]. Again, it is not
difficult to check that ν ∈ K and d(ν,µ) < ε. Hence, ν̃ = Πtν with ν ∈ Bε(µ) and then
ν̃ ∈ ΠtBε(Πtµ; t). This shows that ΠtBε(µ) = Bε(Πtµ; t). Recalling that Πtµ = Π̃t[µ]∼t ,
we get

Bε(Πtµ; t) = ΠtBε(µ) = Π̃tπtBε(µ) ⊆ Π̃tE,

where we used the fact that since Bε(µ) ⊆ π−1
t (E). Since [µ]∼t ∈ E is arbitrary, Π̃tE is

an open set. In conclusion, Π̃t : K̃t → ΠtK is a homeomorphism.
Now we notice that Ũ⋆

j (t) ◦ Π̃−1
t is Lu

m
-Lipschitz. Indeed, for any µ̃1, µ̃2 ∈ ΠtK, letting

µj ∈ Π−1
t µ̃j for j = 1, 2, it holds∣∣∣Ũ⋆

j (t)(Π̃
−1
t (µ̃1))− Ũ⋆

j (t)(Π̃
−1
t (µ̃2))

∣∣∣ = ∣∣∣Ũ⋆
j (t)([µ

1]∼t)− Ũ⋆
j (t)([µ

2]∼t)
∣∣∣

=
∣∣U⋆

j (t)(µ
1)− U⋆

j (t)(µ
2)
∣∣

≤ Lu

m
sup
0≤s≤t

Wp(µ
1
s, µ

2
s) =

Lu

m
d(µ̃1, µ̃2).

Let us recall that also ΠtK is a compact subset of C([0, t];Wp(R2d)). Now we can use
McShane’s Extension Theorem (see [35]) to state that the function ũ⋆j(t, ·) defined as

ũ⋆j(t,ν) = min
µ∈ΠtK

{
Ũ⋆
j (t)(Π̃

−1
t µ) +

Lu

m
d(µ,ν)

}
, ν ∈ C([0, t];Wp(R2d)),

is the maximal Lu

m
-Lipschitz extension of Ũ⋆

j (t) ◦ Π̃−1
t on C([0, t];Wp(R2d)). Finally, we

set, for all t ∈ [0, T ] and µ ∈ C([0, T ];Wp(R2d)),

u⋆j(t,µ) = ũ⋆j(t,Πtµ)

and u⋆ = (u⋆j)j=1,...,m. We can clearly rewrite u⋆j as follows:

u⋆j(t,ν) = min
µ∈K

{
U⋆
j (t)(µ) +

Lu

m
sup
0≤s≤t

Wp(µ,ν)

}
, ν ∈ C([0, T ];Wp(R2d)),

so that it is clear that u⋆j is measurable in the variable t, as it is the minimum of a family
of measurable functions. Concerning the continuity on µ, notice that for all µ1,µ2 ∈
C([0, T ];Wp(R2d)),

∣∣u⋆j(t,µ1)− u⋆j(t,µ
2)
∣∣ = ∣∣ũ⋆j(t,Πtµ

1)− ũ⋆j(t,Πtµ
2)
∣∣ ≤ Lu

m
sup
0≤s≤t

Wp(µ
1
s, µ

2
s).
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This shows that u⋆ is continuous in the µ variable, so that (A0) holds, and that (A2) also
holds. Furthermore, notice that

|u⋆(t, δ0)|2 =
m∑
j=1

∣∣ũ⋆j(t,Πtδ0)
∣∣2 = m∑

j=1

∣∣∣Ũ⋆
j (t)(Π̃

−1
t Πtδ0)

∣∣∣2
=

m∑
j=1

∣∣∣Ũ⋆
j (t)([δ0]∼t)

∣∣∣2 = m∑
j=1

∣∣U⋆
j (t)(δ0)

∣∣2 ≤M2
0 ,

by (4.11), thus (A1) also holds. As a consequence, u⋆ ∈ A. However, if µ ∈ K, we have

u⋆j(t,µ) = ũ⋆j(t,Πtµ) = Ũ⋆
j (t)(Π̃

−1
t Πtµ) = Ũ⋆

j (t)([µ]∼t) = U⋆
j (t)(µ),

i.e. U ⋆ = Πu⋆ ∈ Ã.
It remains to show that U ⋆ is solution of Problem 1⋆. Recall that {Un}n∈N ⊂ Ã, hence

there exists a sequence of controls {un}n∈N ⊂ A such that Un = Πun. Let (µn,Y n) be
the respective solutions of (4.1). Furthermore, let (µ⋆,Y ⋆) be the solution of (4.1) with
control u⋆. Observe that Ψ : Rm → R is a convex function and let Ψ∗ be its Legendre
transform, i.e.

Ψ∗(x) = sup
y∈Rm

(y · x−Ψ(y)), x ∈ Rm.

Recall that Ψ∗ : Rm → R is still a convex function and that the Legendre transform is an
involution, i.e.,

Ψ(x) = Ψ∗∗(x) = sup
y∈Rm

(y · x−Ψ∗(y)), x ∈ Rm.

Fix y ∈ Rm and let Ψ(x; y) = y ·x−Ψ∗(y), which is an affine function. Then we have, for
any measurable subset E ⊂ [0, T ]∫

E

Ψ(Un(t)(µn); y) dt = y ·
∫
E

Un(t)(µn) dt−Ψ∗(y)|E|

= y ·
∫
E

Un(t)(µ⋆) dt−Ψ∗(y)|E|+ y · Rn(E), (4.12)

where
Rn(E) =

∫
E

(Un(t)(µn)−Un(t)(µ⋆)) dt.

Let us show that Rn → 0. To do this, first notice that

|Rn(E)| ≤
∫
E

|un(t,µn)− un(t,µ⋆)| dt ≤ Lu|E| sup
0≤s≤T

Wp(µ
,µ⋆).

By (4.8), we know that

lim
n→∞

∫
E

un(t,µ) dt =

∫
E

u⋆(t,µ) dt, ∀µ ∈ K,

hence we can use Theorem 4.2 to conclude that

lim
n→+∞

|Rn(E)| = 0.
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Taking the limit as n→ ∞ in (4.12) we get

lim
n→+∞

∫
E

Ψ(Un(t)(µn); y) dt = y ·
∫
E

U ⋆(t)(µ⋆) dt−Ψ∗(y)|E| =
∫
E

Ψ(U ⋆(t)(µ⋆); y) dt.

In particular, taking the supremum only on the left-hand side, we have∫
E

Ψ(U ⋆(t)(µ⋆); y) dt ≤ sup
y∈Rm

lim
n→+∞

∫
E

Ψ(Un(t)(µn); y) dt

≤ lim inf
n→+∞

sup
y∈Rm

∫
E

Ψ(Un(t)(µn); y) dt

≤ lim inf
n→+∞

∫
E

Ψ(Un(t)(µn)) dt =: G(E).

Notice that G is superadditive. Indeed, if we consider two measurable sets E1, E2 ⊂
[0, T ] with E1 ∩ E2 = ∅, then∫

E1∪E2

Ψ(Un(t)(µn)) dt =

∫
E1

Ψ(Un(t)(µn)) dt+

∫
E2

Ψ(Un(t)(µn)) dt

and taking the limit inferior we achieve

G(E1 ∪ E2) ≥ G(E1) + G(E2).

Hence, by the Localization Lemma (see [12, Proposition 1.16]), we have∫
E

Ψ(U ⋆(t)(µ⋆)) dt =

∫
E

sup
y∈Rm

Ψ(U ⋆(t)(µ⋆); y) dt (4.13)

≤ G(E) = lim inf
n→+∞

∫
E

Ψ(Un(t)(µn)).

Next, recall that by Theorem 4.2 we have

lim
j→∞

sup
0≤t≤T

(Wp(µ
j
t , µ

⋆
y) + |Hj(t)−H⋆(t)|) = 0

hence, by (F1),
lim
j→∞

L(t,µj,Y j) = L(t,µ⋆,Y ⋆).

We also recall that, still by Theorem 4.2, (µj,Hj) ∈ K′ for all j ∈ N. Thus, by (F2) and
dominated convergence,

lim
j→∞

∫ T

0

L(t,µj,Y j) dt =

∫ T

0

L(t,µ⋆,Y ⋆) dt. (4.14)

Finally, combining (4.13) and (4.14) we achieve

F̃ [U ⋆] ≤ lim
n→∞

F̃ [Un] = inf
U∈Ã

F [U ],

i.e., U ⋆ is solution of Problem 1⋆. □
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APPENDIX A. SOME SUFFICIENT CONDITIONS TO THE VALIDITY OF ASSUMPTION (v3)

As already underlined in the introduction, it could be difficult to verify that (v3) ac-
tually holds. For such reason, let us give some sufficient conditions for (v3) to be true.

Proposition A.1. Let Assumptions (v) (except for (v3)) hold true and denote

D([0, T ];R2d) = {(X, V ) ∈ C([0, T ];R2d) : X ′ = V }.

Consider the following properties:

(v′3) For any T > 0 there exists a constant D ≥ 0 such that for any t ∈ [0, T ], any couple
of measures µ1,µ2 ∈ Wp(C([0, T ];R2d)) supported on D([0, T ];R2d) with µ1

0 = µ2
0 and

any γ ∈ Π(µ1,µ2) it holds

∫
R2d×R2d

|v1 − v2|p−2(v[t,µ1](z1)− v[t,µ2](z2)) · (v1 − v2) dγt(z1, z2)

≤ D sup
0≤s≤t

(∫
R2d×R2d

|z1 − z2|p dγs(z1, z2)
)

(v′′3) For any T > 0 there exists a constant D ≥ 0 such that for any t ∈ [0, T ], any µ1,µ2 ∈
Wp(C([0, T ];R2d)) supported on D([0, T ];R2d) with µ1

0 = µ2
0 and z1, z2 ∈ R2d

∣∣v[t,µ1](z1)− v[t,µ2](z2)
∣∣ ≤ D( sup

0≤s≤t
Wp(µ

1
s, µ

2
s) + |z1 − z2|).

Then (v′′3) ⇒ (v′3) ⇒ (v3).

Proof. To show that (v′3) ⇒ (v3), consider any two processes Zj ∈ Lp(Ω;C([0, T ];R2d))
as in Assumption (v3) and let µj = Law(Zj) for j = 1, 2. Then µj is supported on
D([0, T ];R2d) and µ1

0 = µ2
0. Set also γ = Law(Z1, Z2) ∈ Π(µ1,µ2). Then, by (v′3), we have

E
[
|V1(t)− V2(t)|p−2(v[t,µ1](Z1(t))− v[t,µ1](Z2(t))) · (V1(t)− V2(t))

]
≤ D sup

0≤s≤t
E[|Z1(s)− Z2(s)|p].

Integrating on [0, T ] we get (v3).
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Now let us show that (v′′3) ⇒ (v′3). Fix µ1,µ2 ∈ Wp(C([0, T ];R2d)) and γ ∈ Π(µ1,µ2).
First consider the case p = 1. Observe that∫

R2d×R2d

|v1 − v2|−1(v[t,µ1](z1)− v[t,µ2](z2)) · (v1 − v2) dγt(z1, z2)

≤
∫
R2d×R2d

|v[t,µ1](z1)− v[t,µ2](z2)| dγt(z1, z2)

≤ D

∫
R2d×R2d

sup
0≤s≤t

W1(µ
1
s, µ

2
s) dγt(z1, z2) +D

∫
R2d×R2d

|z1 − z2| dγt(z1, z2)

≤ D sup
0≤s≤t

W1(µ
1
s, µ

2
s) +D sup

0≤s≤t

∫
R2d×R2d

|z1 − z2| dγs(z1, z2)

≤ 2D sup
0≤s≤t

∫
R2d×R2d

|z1 − z2| dγs(z1, z2)

On the other hand, if p > 1 we get∫
R2d×R2d

|v1 − v2|p−2(v[t,µ1](z1)− v[t,µ2](z2)) · (v1 − v2) dγt(z1, z2)

≤
∫
R2d×R2d

|v1 − v2|p−1|v[t,µ1](z1)− v[t,µ2](z2)| dγt(z1, z2)

≤ D

∫
R2d×R2d

|v1 − v2|p−1 sup
0≤s≤t

Wp(µ
1
s, µ

2
s) dγt(z1, z2)

+D

∫
R2d×R2d

|v1 − v2|p−1|z1 − z2| dγt(z1, z2)

≤ D
p− 1

p

∫
R2d×R2d

|v1 − v2|pdγt(z1, z2) +
D

p

∫
R2d×R2d

sup
0≤s≤t

Wp
p (µ

1
s, µ

2
s)dγt(z1, z2)

+D

∫
R2d×R2d

|z1 − z2|pdγt(z1, z2) ≤ 2D sup
0≤s≤t

∫
R2d×R2d

|z1 − z2|p dγs(z1, z2).

This ends the proof. □
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APPENDIX B. PRELIMINARIES FOR THE WELL-POSEDNESS OF THE PDE-ODE SYSTEM

In this subsection, we collect some useful preliminary results to prove the well-posedness
of the PDE-ODE system in (4.1). First of all, we consider an auxiliary system and we
show the existence and uniqueness of its solution, alongside with some additional qual-
itative properties.

Lemma B.1. Let Assumptions (v), (w), (F ) and (A) hold. Let T > 0, u ∈ A and µ ∈
C([0, T ];Wp(R2d)) be fixed, then the system{

Ẏµ(t) = Wµ(t) = F [t,µ](Yµ) + u(t,µ) t ∈ (0, T ]

µ0 = µ, Yµ(0) = Y,
(B.1)

admits a unique solution Yµ. Furthermore, setting Hµ = (Yµ,Wµ):
(i) there exist three constants Cj , j = 1, 2, 3, depending on p,KF , Ku, LF , Lu, T and H

such that

sup
0≤s≤T

|Yµ(s)| ≤ C1(1 +Mp(T ;µ)
1
p ), (B.2)

sup
0≤s≤T

|Yµ(s)− Yν(s)| ≤ C2 sup
0≤s≤T

Wp(µs, νs), (B.3)

|Yµ(s)− Yµ(t)| ≤ C3(1 +Mp(T ;µ)
p)|t− s|, ∀t ∈ [0, T ];

(ii) if there exists a sequence {uj}j∈N ⊂ A such that

lim
j→∞

∫ t

0

uj(s,µ)dt =

∫ t

0

u(s,µ)dt, ∀t ∈ [0, T ],

then
lim
j→∞

sup
t∈[0,T ]

|Hj
µ(t)−Hµ(t)| = 0, (B.4)

where Hj
µ is the solution of (B.1) with uj in place of u;

(iii) for any t ∈ [0, T ], if µ1,µ2 ∈ C([0, T ];Wp(R2d)) are such that µ1
s = µ2

s for all s ∈ [0, t],
then Hµ1(t) = Hµ2(t).

Proof. First of all, existence and uniqueness of the solution of (B.1) is proved by means
of the Picard iteration method, and for this reason we do not recall the proof here.

(i) Now, by (F1) and (4.2), it follows

sup
0≤s≤t

|Yµ(s)| ≤ C

(
1 + (KF +Ku)(1 +Mp(T ;µ)

1
p ) +KF

∫ t

0

sup
0≤z≤τ

|Yµ(z)|dτ
)

and then, by Grönwall inequality,

sup
0≤s≤t

|Yµ(s)| ≤ C
(
1 + (KF +Ku)(1 +Mp(T ;µ)

1
p )
)
e(KF+1)T .

leading to (B.2).
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Next, let us consider any µ,ν ∈ C([0, T ];Wp(R2d)). Then, by (F2) and (A2) we have

sup
0≤s≤t

|Yµ(s)− Yν(s)| ≤ LF

∫ t

0

sup
0≤r≤τ

|Yµ(r)− Yν(r)| dτ + (LF +Lu)

∫ t

0

sup
0≤r≤τ

Wp(µr, νr)dτ,

Hence, once again, by Grönwall’s inequality, we infer

sup
0≤s≤t

|Yµ(s)− Yν(s)| ≤ T (LF + Lu)e
LFT sup

0≤s≤t
Wp(µs, νs).

that is (B.3).
Finally, we fix 0 ≤ t ≤ s ≤ T and observe that

|Yµ(t)− Yµ(s)| ≤
∫ t

s

|F [τ,µ](Yµ)| dτ +
∫ t

s

|u(τ,µ)| dτ

≤ (KF +Ku + C1(KF + 1))(1 + (Mp(T,µ))
1
p )|t− s|.

(ii) By the assumptions of F and u, it is sufficient to verify the uniform convergence
on Y . We consider a fixed µ and u, and we assume there exists a sequence {uj}j∈N
satisfying the assumptions. Furthermore, we denote by (Y j

µ ,W
j
µ) and (Yµ,Wµ) the

solutions of the ODE (B.1) respectively with uj and u. Then, for all 0 ≤ s ≤ t ≤ T∣∣Y j
µ (s)− Yµ(s)

∣∣ ≤ LF

∫ s

0

sup
0≤r≤τ

∣∣Y j
µ (r)− Yµ(r)

∣∣ dτ + ∣∣∣∣∫ s

0

(
uj(τ,µ)− u(τ,µ)

)
ds

∣∣∣∣ ,
Now we take the supremum over [0, t] and we achieve

sup
0≤s≤t

∣∣Y j
µ (s)− Yµ(s)

∣∣ ≤ (LF + 1)

∫ t

0

sup
0≤r≤τ

∣∣Y j
µ (r)− Yµ(r)

∣∣ dτ +Rj(t),

where

Rj(t) := sup
0≤s≤t

∣∣∣∣∫ s

0

(
uj(s,µ)− u(s,µ)

)
ds

∣∣∣∣ ,
which, by Grönwall’s inequality, implies

sup
0≤s≤t

|Y j
µ (s)− Yµ(s)| ≤ Rj(t)e

(LF+1)T .

We only need to prove that limj→∞Rj(T ) = 0. To do this, consider the sequence of
functions

Jj(t) =

∫ t

0

(uj(s,µ)− u(s,µ)) ds.

By assumption, we have that for all t ∈ [0, T ] it holds limj→∞ Jj(t) = 0. Furthermore,
it is clear that Rj(T ) = sup0≤t≤T |Jj(t)|, hence we want to prove that Jj → 0 uniformly
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in [0, T ]. However, this is clear since the sequence Jj is equi-Lipschitz. Indeed, for all
0 ≤ s ≤ t ≤ T ,

|Jj(t)− Jj(s)| =
∣∣∣∣∫ t

s

(uj(τ,µ)− u(τ,µ)) dτ

∣∣∣∣ ≤ ∫ t

s

∣∣uj(τ,µ)− u(τ,µ)
∣∣ dτ

≤ 2Ku

(
1 +

(
Mp(t;µ)

) 1
p

)
|t− s|.

This shows (B.4).
(iii) The last statement follows by uniqueness of the solution of (B.1), together with

assumptions (F2) and (A2), which in turn imply that if µ1
s = µ2

s for all s ∈ [0, t], then
F [s,µ1](y) = F [s,µ2](y) and u(s,µ1) = u(s,µ2) for all s ∈ [0, t] and h ∈ R2m. □

Then, for reader’s convenience, we recall the definition of the map S : C([0, T ];Wp(R2d))×
A× [0, T ] → R2m:

S[µ,u](t) = Hµ(t),

where Hµ is the unique solution of (B.1). Furthermore, as already done in Section 4, for
any fixed u ∈ A, we also define the map

Gu : [0, T ]× C([0, T ];Wp(R2d))× R2d → Rd

as follows:
Gu[t,µ](z) = v[t,µ](z) +w[t,S[µ,u]](z).

Concerning Gu, we can prove the following result.

Lemma B.2. Fix u ∈ A. Then Gu satisfies Assumptions (v), where the constants are indepen-
dent of the choice of u ∈ A.

Proof. Since v already satisfies Assumptions (v), it is sufficient to verify that w[·,S[·,u]](·)
satisfies the same assumptions. First, we notice that (v0) is satisfied. Indeed, by (B.3)
and the assumptions on F , we know that S[·,u] is continuous. Since by (w0) is a
Carathéodory map, the composition w[·,S[·,u]](·) is also a Carathéodory map. Next,
we prove (v1). To do this, observe that by (w1)

|w[t,S[µ,u]](z)| ≤ Kw(1 + sup
0≤s≤t

|S[µ,u](s)|+ |x|
β
3 + |v|β),

and then, by (B.2) and the assumptions on F and A we have

|w[t,S[µ,u]](z)| ≤ Kw(1 +KF )(1 + C1 +KF +Ku)(1 +Mp(T ;µ)
1
p + |x|

β
3 + |v|β),

Assumption (v2) clearly follows by (w2). Now we prove (v3). To do this, let µ1,µ2 ∈
Wp(C([0, T ];R2d)), z1, z2 ∈ R2d and observe that, by (w2)

|w[t,S[µ1,u]](z1)−w[t,S[µ2,u]](z2)| ≤ Lw( sup
0≤s≤t

|S[µ1,u](s)− S[µ2,u](s)|+ |z1 − z2|)

≤ Lw(1 + LF + Lu(1 + C2)( sup
0≤s≤T

Wp(µ
1
s, µ

2
s) + |z1 − z2|),
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where we also used (B.3) and the assumptions on F and A. The latter inequality implies
(v3) (see Appendix A for more details). Finally, (v4) follows once we observe that if
µ1
s = µ2

s for all s ∈ [0, t], then S[µ1,u](s) = S[µ2,u](s) for all s ∈ [0, t] by Lemma B.1. □

The following lemma is a consequence of the Arzelá-Ascoli Theorem (see [27, Page
81]) and the characterization of compact subsets of Wp(R2d) (see [4, Proposition 7.1.5]).
It will be useful in the setting of the control problem.

Lemma B.3. K and K1 are compact subsets respectively ofC([0, T ];Wp(R2d)) andC([0, T ];Rm).

Proof. Concerning K1, we notice that the functions belonging to it are equibounded and
equi-Lipschitz, hence we can apply the Arzelá-Ascoli Theorem. Concerning K, let us
first observe that the curves of probability mesures belonging to it are equi-Hölder with
respect to the Wasserstein distance, hence equi-continuous. Furthermore, it is clear that
K is closed. Hence, it is only necessry to show that for for all t ∈ [0, T ] the set

Kt := {µt ∈ Wp(R2d) : µ ∈ K}

is relatively compact. Notice that Kt ⊂ Wp(R2d). We now prove that Kt is uniformly

tight. Fix ε > 0 and let δ = 2(C(KG))
1
p

ε
. Then, by Markov’s inequality, setting Bδ := {z ∈

R2d : |z| < δ},

µt(R2d \Bδ) ≤
M1(µt)

δ
≤ Mp(µt)

1
p

δ
≤ (C(KG))

1
p

δ
< ε.

Since δ is independent of the choice of µt ∈ Kt, this shows that Kt is uniformly tight.
Now we show that Kt has uniformly integrable p-moments. To do this, we claim that
there exists a probability measure P̃ on (R2d,B(R2d)) such that for all µt ∈ Kt there exists
a random variable Z on the probability space (R2d,B(R2d), P̃) with Law(Z) = µt. Despite
this property is well-known in measure theory, we provide here a proof for complete-
ness. Recall that (R2d,B(R2d)) and ([0, 1],B([0, 1])) are uncountable Polish spaces, hence
by Kuratowski’s Isomorphism Theorem (see [25, Theorem 15.6]) we know that there ex-
ists a Borel isomorphism f : [0, 1] → R2d. We equip ([0, 1],B([0, 1])) with the Lebesgue
measures Leb and we define P̃ = f♯Leb, i.e. the pushforward of Leb on (R2d,B(R2d))
through the Borel isomorphism f . Furthermore, for any µt ∈ Kt, denote µ̃t = f−1♯µt
the pushforward of µt on ([0, 1],B([0, 1])) through the Borel isomorphism f−1. Notice
that both P and µ̃t are probability measures. In particular, by Skorokhod’s representa-
tion theorem (see [48, Section 3.12]) we know that there exists a random variable Z̃ on
([0, 1],B([0, 1]), Leb) such that µ̃t = Law(Z̃). We set Z = f ◦ Z̃, which is measurable since
it is composition of measurable functions. Furthermore, for any Borel set B ∈ B(R2d),
we have

P̃(Z ∈ B) = Leb(Z̃ ∈ f−1(B)) = µ̃t(f
−1(B)) = µt(B),

i.e. Law(Z) = µt. Let

K̃t := {Z ∈ M(R2d,B(R2d), P̃) : Law(Z) ∈ Kt}.
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Then, by the previous argument, K̃t ̸= ∅ and for all µt ∈ Kt there exists Z ∈ K̃t such
that Law(Z) = µt. Hence, to prove that Kt has uniformly integrable p-moments, it is
sufficient to show that K̃t is uniformly Lp-integrable, or, equivalently, that {|Z|p, Z ∈
K̃t} is uniformly integrable. However, it is clear that, for any Z ∈ K̃t with Law(Z) = µt
for some µ ∈ K,

E
[
Φ̃p(|Z|;KG)

]
≤M Φ̃p(·;KG)(T,µ) ≤ C(KG),

where the right-hand side of the previous inequality is independent of Z. Hence, by the
de la Vallée-Poussin Theorem, {|Z|p, Z ∈ K̃t} is uniformly integrable and then Kt has
uniformly integrable p-moments. By [4, Proposition 7.1.5], we know that Kt is relatively
compact, hence K is equicontinuous, closed and pointwise relatively compact, which in
turn implies, by the Arzelá-Ascoli theorem, that K is compact. □

Finally, we observe that K′ := K × K1 is a compact subset of C([0, T ];Wp(R2d)) ×
C([0, T ];Rm). Then we are able to describe the behaviour of the field Gu with respect to
suitable variations of the control u ∈ A.

Lemma B.4. Let {uj}j∈N ⊂ A and u ∈ A be such that

lim
j→∞

∫ t

0

uj(s,µ) ds =

∫ t

0

u(s,µ) ds, ∀t ∈ [0, T ], ∀µ ∈ K.

Then, for any t ∈ [0, T ], µ ∈ K and z ∈ R2d

lim
j→∞

Guj
[t,µ](z) = Gu[t,µ](z).

Proof. Fix µ ∈ K, t ∈ [0, T ] and z ∈ R2d. Then we have

|Guj
[t,µ](z)−Gu[t,µ](z)| = |w[t,S[µ,uj]](z)−w[t,S[µ,u]](z)|

≤ Lw sup
0≤s≤t

|S[µ,uj](s)− S[µ,u](s)|.

Taking the limit as j → ∞, we get the statement by Lemma B.1. □
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APPENDIX C. OTHER POSSIBLE CONTROL CLASSES

It could be possible, for modelling restrictions, that we can apply controls with some
more restrictive assumptions than the ones considered for A. Hence, in this section, we
consider three possible subclasses of A. Since the proofs of the existence of the solutions
to the related optimal control problems differ from Theorem 1.5 only of some technical
details, we will only underline the parts in which the proof are actually different.

C.1. Controls satisfying the Oscillation Restriction Criterion. First, let us assume that
the controls cannot oscillate too much. Precisely, we consider the class of admissible con-
trols AORC ⊂ A satisfying the additional condition

(AORC) For all compact sets K ⊂ C([0, T ];Wp(R2d)), all measurable sets A ⊆ [0, T ] and all
ε > 0, there exists a measurable set B ⊂ A such that

1

|B|

∫
B

sup
µ∈K

∣∣∣∣u(t,µ)− 1

|B|

∫
B

u(s,µ) ds

∣∣∣∣ dt < ε.

Assumption (AORC) can be recognized as a special form of the Oscillation Reduction Crite-
rion, introduced in [22] for real-valued functions and then discussed in [24] for Bochner
integrals. With this assumption, we can actually relax the requirements on the cost
functional F . Precisely, we assume that F satisfies (F0), (F1), (F2) and

(FORC) Ψ : Rm → R is continuous.

We are interested in the following optimal control problem:

Problem 2

Find u⋆ ∈ AORC such that
F [u⋆] = min

u∈AORC

F [u].

Theorem C.1. Under (F0), (F1), (F2) and (FORC), Problem 2 admits at least a solution.

Proof. We proceed as in the proof of Theorem 1.5 except that this time Un → U ⋆ in
measure by [10, Theorem 1.4]. Up to a non-relabelled subsequence, we can assume
Un(t) → U ⋆(t) in C(K;Rm) for a.a. t ∈ [0, T ]. Moreover, if we denote by (µn,Y n) the so-
lutions of (4.1) with controls un and (µ⋆,Y ⋆) the solution of (4.1) with control u⋆, we also
know that, by Theorem 4.2, µn → µ⋆ in C([0, T ];Wp(R2d)). Hence limn→∞Un(t)(µn) =
U ⋆(t)(µ⋆) for a.a. t ∈ [0, T ]. Furthermore, recall that |Ψ(Un(t)(µn))| ≤MΨ, where MΨ is
defined in the proof of Theorem 1.5. Hence, by dominated convergence, we get

lim
n→∞

∫ T

0

Ψ(Un(t)(µn)) dt =

∫ T

0

Ψ(U ⋆(t)(µ⋆)) dt.

The remainder of the proof is exactly the same sa the one of Theorem 1.5. □
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C.2. Controls with current-state dependence on µ. It could be the case that the control
we want to apply cannot depend on the whole trajectory of µ, but only on the current
state. To model this case, we consider the class of admissible controls AEV ⊂ A satisfy-
ing the additional condition:
(AEV) There exists a function u♯ : [0, T ] × Wp(R2d) → Rm such that u(t,µ) = u♯(t, µt)

for all µ ∈ C([0, T ];Wp(R2d)) and

|u♯(t, µ)− u♯(t, ν)| ≤ Lu

m
Wp(µ, ν)

for all t ∈ [0, T ] and µ, ν ∈ Wp(R2d).
We consider then the optimal control problem:

Problem 3

Find u⋆ ∈ AEV such that
F [u⋆] = min

u∈AEV

F [u].

Theorem C.2. Under (F0), (F1), (F2) and (F3), Problem 3 admits at least a solution.

Proof. Recall that, arguing as in Theorem 1.5, if we consider a minimizing sequence
{un}n∈N ⊂ AEV, then there exists a function u⋆ ∈ A such that

lim
n→∞

sup
µ∈K

1

|E|

∣∣∣∣∫
E

(un(t,µ)− u⋆(t,µ))

∣∣∣∣ dt = 0.

Hence, to prove the statement, it is sufficient to show that u⋆ ∈ AEV. To do this, consider
µ,ν ∈ K and observe that, by (AEV), for any j = 1, . . . ,m, t ∈ ELeb and h > 0 small
enough,

1

h

∣∣∣∣∫ t+h

t

(
unj (s,µ)− u⋆j(s,ν)

)
ds

∣∣∣∣ ≤ Lu

m

1

h

∫ t+h

t

Wp(µs, νs) ds.

Taking the limit as n→ ∞ and then as h ↓ 0, we get∣∣u⋆j(t,µ)− u⋆j(t,ν)
∣∣ ≤ Lu

m
Wp(µt, νt). (C.1)

This holds for all t ∈ [0, t] once we assume that u⋆j(t, ·) ≡ 0 for t ̸∈ ELeb. Now observe
that if µ ∈ K, then µt ∈ K♯, where

K♯ =
{
µ ∈ Wp(R2d) : Mp(µ) +MΦ̃(·;KG)(µ) ≤ C(KG)

}
.

On the other hand, if µ ∈ K♯, then µ♯ ∈ C([0, T ];Wp(R2d)) defined as µ♯t ≡ µ for all
t ∈ [0, t] belongs to K. Hence, we define u♯,⋆ : K♯ → Rm as follows

u♯,⋆(t, µ) = u⋆(t,µ♯).
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Then, for all µ ∈ K and t ∈ [0, T ], by a simple application of (C.1), it must hold

u⋆(t,µ) = u♯,⋆(t, µt). (C.2)

Using McShane’s Extension Theorem as in the proof of Theorem 1.5, we extend u♯,⋆(t, ·)
to the whole space Wp(R2d) and then we define u⋆(t, ·) on C([0, T ];Wp(R2d)) by means
of (C.2). As a consequence, u⋆ ∈ AEV, concluding the proof. □

C.3. Controls with separated variables. Among the controls in AEV, one could con-
sider the ones whose dependence on t and µt is separated. To do this, let ℓ ∈ N and fix
three positive constants Mh, Mg and Lg. We define the set A′ as the class of couples
(h, g) satisfying the following assumptions:

Assumptions on (h, g) ∈ A′: (A′)

(A′
0) h ∈ L1([0, T ];Rm×ℓ) and g ∈ C(Wp(R2d);Rℓ).

(A′
1) For all t ∈ [0, T ] it holds

|g(δ0)| ≤Mg,

where δ0 ∈ Wp(R2d) is the Dirac delta measure concentrated on 0 ∈ R2d.
(A′

2) It holds

|gj(µ)− gj(ν)| ≤
Lg

m
Wp(µ, ν),

for all µ, ν ∈ Wp(R2d), j = 1, . . . ,m and t ∈ [0, T ].
(A′

3) For almost all t ∈ [0, T ] it holds

|h(t)| ≤Mh,

where |h(t)| is the Frobenius norm of h(t).

Now fix (h, g) ∈ A′ and consider the function u : (t,µ) 7→ h(t)g(µt). Clearly, u is a
Carathéodory map. Furthermore, since the Frobenius norm is sub-multiplicative, for
any t ∈ [0, T ]

|u(t, δ0)| ≤ |h(t)||g(δ0)| ≤MhMg,

while, denoting by hj the j-th row of h, for all t ∈ [0, T ] and µ,ν ∈ C([0, T ];Wp(R2d)),

|uj(t,µ)− uj(t,ν)| ≤ |hj(t)||g(µt)− g(νt)| ≤MhLg sup
0≤t≤T

Wp(µt, νt),

hence for Mu = MhMg and Lu = mMhLg, we have that u ∈ AEV. Setting Mu and
Lu as declared, we can define the call of admissible controls ASV ⊂ AEV satisfying the
additional condition
(ASV) There exists (h, g) ∈ A′ such that u(t,µ) = h(t)g(µt).

We are interested in the following optimal control problem:
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Problem 4

Find u⋆ ∈ ASV such that
F [u⋆] = min

u∈ASV

F [u].

Before proceeding with the proof of the existence of a solution for Problem 4, let us
notice that, with a similar argument as in the proof of Theorem C.2, it is possible to
reduce the problem on ASV to an analogous one on A′. Indeed, consider the function
Ψ′ : Rm×ℓ × Rℓ → R and the functional F ′ : A′ → R defined as follows:

Ψ′(h, g) = Ψ(hg), ∀(h, g) ∈ Rm×ℓ × Rℓ (C.3)

and

F ′[h, g] =

∫ T

0

L(t,µ,Y ) dt+

∫ T

0

Ψ′(h(t), g(µt)) dt, ∀(h, g) ∈ A′,

where (µ,Y ) is the solution of (4.1) with control u(t,µ) = h(t)g(µt). Notice that if
u ∈ ASV, then u(t,µ) = h(t)g(µt) for some (h, g) ∈ A′ and F [u] = F ′[h, g]. On the
other hand, if (h, g) ∈ A′, then u(t,µ) = h(t)g(µt) belongs to ASV and F [u] = F ′[h, g].
Hence, solving Problem 4 is equivalent to solving

Problem 5

Find (h⋆, g⋆) ∈ A′ such that

F ′[h⋆, g⋆] = min
(h,g)∈A′

F ′[u].

Notice that if we start from Problem 4, then Ψ′ must satisfy (C.3) in Problem 5. How-
ever, we could directly consider Problem 5 and be less restrictive on the dependence
of Ψ′ on the separated variables h and g. Indeed, we can assume that F ′ satisfies the
following assumptions:

Assumptions on F ′: (F ′)

(F ′
0) L : [0, T ] × C([0, T ];Wp(R2d)) × C([0, T ];R2m) and Ψ′ : Rm×ℓ × Rℓ → R are

measurable and bounded from below;
(F1) L is continuous in the variables (µ,Y ).
(F2) There exists a function ML ∈ L1(0, T ) such that for a.a. t ∈ [0, T ] and all

(µ,Y ) ∈ K′

|L(t,µ,Y )| ≤MK′(t)

(F ′
3) Ψ : Rm×ℓ × Rℓ → R is convex in the first variable and continuous in the

second one.

Theorem C.3. Problem 5 admits at least a solution.
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Proof. Arguing as in Theorem 1.5, since for all µ ∈ K it holds µt ∈ K′ for any t ∈ [0, T ],
solving Problem 5 is equivalent to solving

Problem 5⋆

Find (h⋆, g⋆) ∈ Ã′ such that

F̃ ′[h⋆, g⋆] = min
(h,g)∈Ã′

F̃ ′[h, g].

where Ã′ = ΠA′, Π : C([0, T ];Rm×ℓ)×C(Wp(R2d);Rℓ) → C([0, T ];Rm×ℓ)×C(K′;Rℓ) is the
domain restriction map, i.e. for all µ ∈ K′ and t ∈ [0, T ] it holds Π(h, g)(t, µ) = (h(t), g(µ)),
and for all Π(h, g) ∈ Ã′ it holds

F̃ ′[Π(h, g)] = F ′[h, g].

Now consider a minimizing sequence {(hn, gn)}n∈N ⊆ Ã′. Since |hn(t)| ≤ Mh for all
n ∈ N and almost all t ∈ [0, T ], then by the Dunford-Pettis theorem (see [13, Theorem
4.30]) we know that there exists a function h⋆ ∈ L1([0, T ];Rm×ℓ) such that, up to a non-
relabelled subsequence, hn ⇀ h⋆ in L1([0, T ];Rm×ℓ) and it is clear, arguing again as in
Theorem 1.5, that |h⋆(t)| ≤Mh for almost all t ∈ [0, T ]. Next, notice that for all µ ∈ K′

|gn(µ)| ≤ Lg(Mp(µ))
1
p +Mg ≤ Lg(C(KG))

1
p +Mg =: M̃g.

Hence {gn}n∈N ⊂ C(K′;Rℓ) are equibounded and equiLipschitz (by (A′
2)). Hence, up to

a non-relabelled subsequence, by the Arzelá-Ascoli theorem, there exists g⋆ ∈ C(K′;Rℓ)
such that gn → g⋆. With the same arguments as in Theorem 1.5, one can use the Mc-
Shane extension theorem to extend g⋆ to a function in C(Wp(R2d);Rℓ) whose compo-
nents are still Lg

m
-Lipschitz, hence proving that (h⋆, g⋆) ∈ Ã′. Furthermore, for all µ ∈ K,

t ∈ [0, T ] and n ∈ N, set un(t,µ) = h(t)gn(µt) and u⋆(t,µ) = h(t)g⋆(µt). Then, for all
t ∈ [0, T ] and µ ∈ K we have∣∣∣∣∫ t

0

un(s,µ) ds −
∫ t

0

u⋆(s,µ) ds

∣∣∣∣
≤
∫ t

0

|hn(s)| |gn(µs)− g⋆(µs)| ds+
∣∣∣∣∫ t

0

g⋆(µs) (h
n(s)− h⋆(s)) ds

∣∣∣∣
≤MhT sup

µ∈K
|gn(µ)− g⋆(µ)|+

∣∣∣∣∫ t

0

g⋆(µs) (h
n(s)− h⋆(s)) ds

∣∣∣∣ .
Hence, recalling that the function s ∈ [0, T ] 7→ g⋆(µs) belongs to L∞([0, T ];Rℓ), we can
take the limit to get

lim
n→∞

∣∣∣∣∫ t

0

un(s,µ) ds−
∫ t

0

u⋆(s,µ) ds

∣∣∣∣ = 0.
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As a consequence, if we denote by (µn,Y n) the solutions of (4.1) with controls un and
(µ⋆,Y ⋆) the solution of (4.1) with control u⋆, it holds, by Theorem 4.2, (µn,Y n) →
(µ⋆,Y ⋆) in C([0, T ];Wp(R2d))× C([0, T ];Rm). Furthermore, notice that

∫ T

0

Ψ′(hn(t), gn(µnt )) dt =

∫ T

0

(Ψ′(hn(t), gn(µnt ))−Ψ′(hn(t), g⋆(µ⋆t ))) dt

+

∫ T

0

Ψ′(hn(t), g⋆(µ⋆t )) dt.

To handle the first integral, we observe that∫ T

0

|Ψ′(hn(t), gn(µnt ))−Ψ′(hn(t), g⋆(µ⋆t ))| dt ≤
∫ T

0

sup
|h|≤Mh

|Ψ′(h, gn(µnt ))−Ψ′(h, g⋆(µ⋆t ))| dt

and recall that |gn(µnt )| , |g⋆(µ⋆t )| ≤ M̃g, so that, by dominated convergence,

lim
n→∞

∫ T

0

|Ψ′(hn(t), gn(µnt ))−Ψ′(hn(t), g⋆(µ⋆t ))| dt

= lim
n→∞

∫ T

0

sup
|h|≤Mh

|Ψ′(h, gn(µnt ))−Ψ′(h, g⋆(µ⋆t ))| dt = 0. (C.4)

On the other hand, arguing exactly as in Theorem 4.2, we have∫ T

0

Ψ′(h⋆(t), g⋆(µ⋆t )) dt ≤ lim inf
n→∞

∫ T

0

Ψ′(hn(t), g⋆(µ⋆t )) dt. (C.5)

Combining (C.4) and (C.5) we get∫ T

0

Ψ′(h⋆(t), g⋆(µ⋆t )) dt ≤ lim inf
n→∞

∫ T

0

Ψ′(hn(t), gn(µ⋆t )) dt

and then we proceed as in the proof of Theorem 4.2. □

Remark C.4. Notice that these are the controls considered in [8] for the first order case,
under more restrictive assumptions on the system (4.1).
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APPENDIX D. AN EXAMPLE OF APPLICATION OF THEOREM 1.5

In this appendix, we provide an example of second order mean field control problem
of the form of Problem 1 arising from a second order multi-agent system. Precisely, let
N,m ∈ N be respectively the number of followers and leaders. Denote by (Xj

N , V
j
N)

the position and velocity of the generic follower, for j = 1, . . . , N , and by (Y i
N ,W

i
N) the

position and velocity of the generic leader, for i = 1, . . . ,m. We assume the dynamics of
the leader-follower system is described by the following set of controlled SDEs:

dXj
N(t) = V j

N(t)dt
j = 1, . . . , N,

t ∈ [0, T ]

dV j
N(t) =

(
1

N

N∑
i=1

K1,1(X
i
N(t)−Xj

N(t), V
i
N(t)− V j

N(t))

+
1

m

m∑
i=1

K1,2(Y
i
N(t)−Xj

N(t),W
i
N(t)− V j

N(t))

)
dt

+
√
2σdBj(t)

j = 1, . . . , N,

t ∈ [0, T ]

Ẏ i
N(t) = W i

N(t) =
1

N

N∑
k=1

K2,1(X
k
N(t)− Y i

N(t))

+
1

m

m∑
k=1

K2,2(Y
k
N(t)− Y i

N(t)) + uiN(t,XN(t),VN(t))

i = 1, . . . ,m,

t ∈ [0, T ]

Xj
N(0) = Xj

0 , V
j
N(0) = V j

0 j = 1, . . . , N

Y i
N(0) = Y i

0 i = 1, . . . ,m,

(D.1)

where
• XN := (X1

N , . . . , X
N
N ), VN := (V 1

N , . . . , V
N
N ) and ZN := (XN ,VN);

• K1,j : R2d → Rd and K2,j : Rd → Rd are LKer-Lipschitz and MKer-bounded inter-
action kernels such that Ki,j(−x) = Ki,j(x);

• the initial data (Xj
0 , V

j
0 )j∈N are independent and identically distributed (i.i.d.)

random variables belonging to Wp(R2d) for some p > 1;
• for all i = 1, . . . ,m there exists a function ui : [0, T ]×W1(R2d) → Rd such that

uiN(t,x,v) = ui

(
1

N

N∑
j=1

δxj ,vj

)
,

where δxj ,vj are Dirac delta measures concentrated in (xj, vj) ∈ R2d for all j =
1, . . . , N . In particular, ui is such that |ui(t, δ0)| ≤Mu for every i = 1, . . . ,m and∣∣uik(t, µ)− uik(t, ν)

∣∣ ≤ Lu

md
W1(µ, ν),

for all k = 1, . . . , N , t ∈ [0, t] and µ, ν ∈ W1(R2d);
• the initial data {Y i

0}i=1,...,m ⊂ Rd are deterministic;
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• B = (B1(t), . . . , BN(t)) is a dN -dimensional standard Brownian motion.

Notice that by standard theory of SDEs (see [39, Theorem 5.2.1]) for all N ∈ N there
exists a unique strong solution (XN ,VN ,YN ,WN), where XN = (Xj

N)j=1,...,N , VN =

(V j
N)j=1,...,N , YN = (Y j

N)j=1,...,m and WN = (W j
N)j=1,...,m. We would like to send, in some

sense, N → ∞. Heuristically, we expect the dynamic of a single follower to converge
towards the solution of the following McKean-Vlasov system of SDEs/ODEs:



dX(t) = V (t)dt t ∈ [0, T ]

dV (t) =

(
(K1,1 ∗ µt) (X(t), V (t))

+
1

m

m∑
i=1

K1,2(Y
i
N(t)−X(t),W i

N(t)− V (t))

)
dt

+
√
2σdB(t)

t ∈ [0, T ]

Ẏ
j
(t) = W j

N(t) = (K2,1 ∗ µt) (Y
j
(t))

+
1

m

m∑
i=1

K2,2(Y
i
(t)− Y

j
(t)) + uj(t, µt)

j = 1, . . . ,m,

t ∈ [0, T ]

X(0) = X0, V (0) = V 0

Y
j
(0) = Y j

0 j = 1, . . . ,m,

µ = Law(X,V ),

(D.2)

where

(K1,1 ∗ µt)(x, v) =
∫
R2d

K1,j(ξ − x, ν − v)dµt(ξ, ν),

(K2,1 ∗ µt)(y) =
∫
R2d

K2,j(ξ − y)dµt(ξ, ν).

We set now Z = (X,V ), W (t) = (W
j
(t))j=1,...,m, Y (t) = (Y

j
(t))j=1,...,m, H = (Y ,W ),

u(t,µ) = (uj(t, µt))j=1,...,m,

F [t,µ](Y ) :=

(
(K2,1 ∗ µt) (Y

j
(t)) +

1

m

m∑
i=1

K2,2(Y
i
(t)− Y

j
(t))

)
j=1,...,m

,

v[t,µ](Z) := (K1,1 ∗ µt) (X(t), V (t)),

w[t,H ](Z) :=
1

m

m∑
i=1

K1,2(Y
i
N(t)−X(t),W i

N(t)− V (t)),
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and Y0 = (Y j
0 )j=1,...,m. With this notation, we get exactly equation (4.4). Notice that,

clearly, v satisfies (B0) and (B4) and in particular

|v[t,µ](z)| ≤
∫
R2d

|K1,1(ξ − x, ν − v)| dµt(ξ, ν) ≤MKer, (D.3)

that implies (B1), while

|v[t,µ](z1)− v[t,µ](z2)| ≤
∫
R2d

|K1,1(ξ − x1, ν − v1)−K1,1(ξ − x2, ν − v2)| dµt(ξ, ν)

≤ LKer(|x1 − x2|+ |v1 − v2|), (D.4)

which, combined with (D.3), leads to (B2). Furthermore, for any µ1,µ2 ∈ W1(C([0, T ];R2d))
let γ ∈ Π(µ1,µ2) and denote by (Z1, Z2) ∈ L1(Ω;C([0, T ];R4d)) a random variable such
that γ = Law(Z1, Z2). It holds∣∣v[t,µ1](z)− v[t,µ2](z)

∣∣ ≤ E [|K1,1(X1(t)− x, V1(t)− v)−K1,1(X2(t)− x, V2(t)− v)|]
≤ LKerE [|Z1(t)− Z2(t)|] .

Since γ ∈ Π(µ1,µ2) is arbitrary, taking the infimum we get∣∣v[t,µ1](z)− v[t,µ2](z)
∣∣ ≤ LKerW1 (µ1,µ2) . (D.5)

Hence, (D.5) combined with (D.4) and Proposition A.1 shows that v satisfies (v3). It
is also clear that w satisfies Assumptions (w). Concerning F , the fact that it satisfies
Assumptions (F ) follows in the same way as we did for v. Finally, notice that the control
u ∈ AEV for some fixed constants Mu and Lu. Hence, by Theorem 4.2, there exist a
unique solution (µ,Y ) of (4.1) and µ = Law(X,V ) where Z = (X,V ) solves (D.2)
together with Y . The link between the solutions of (D.1) and (D.2) is underlined by the
following propagation of chaos result, whose proof is omitted since it is exactly the same
as the one of [8, Theorem 3.9].

Theorem D.1. Assume that Law(Xj
0 , V

j
0 ) = Law(X,V ) for all j ∈ N and (Z

j
)j∈N = (X

j
, Y

j
)j∈N

be a sequence of i.i.d. copies of the solution Z = (X,Y ) of (D.2). Then it holds

E

[
max

1≤n≤N
max
0≤t≤T

|Zn
N(t)− Z

n
(t)|+ max

0≤t≤T
|HN(t)−H(t)|

]
≤ Pd,p(N),

where Zn
N = (Xn

N , V
n
N ) for all n = 1, . . . , N , Hn

N = (Y n
N ,W

n
N) for all n = 1, . . . ,m, HN =

(Hn
N)n=1,...,m and Pd,p is a function depending only on d and p such that limN→∞ Pd,p(N) = 0.

Furthermore, it holds

lim
N→∞

E

[
sup

0≤t≤T
W1(µ

N
t , µt)

]
= 0, where µNt :=

1

N

N∑
j=1

δ(Xn
N (t),V n

N (t)). (D.6)

Hence, we also have, in (D.6), a Law of Large Numbers which guarantees that the em-
pirical measure µN of the followers in multiagent system (4.12) converges towards the



OPTIMAL CONTROL PROBLEMS DRIVEN BY NONLINEAR DEGENERATE FP EQUATIONS 55

solution of mean field limit PDE-ODE system (4.1). Furthermore, with the notation in-
troduced in Theorem D.1, we can rewrite (D.1) as follows:

dXN(t) = VN(t)dt t ∈ [0, T ],

dVN(t) =
(
v[t,µN ](Zj

N(t)) +w[t,HN ](Z
j
N(t))

)
j=1,...,N

dt

+
√
2σdB(t)

t ∈ [0, T ],

ẎN(t) = WN(t) = F [t,µN ](HN) + u(t,µN) t ∈ [0, T ],

XN(0) = (Xj
0)j=1,...,N , VN(0) = (V j

0 )j=1,...,N ,

YN(0) = Y0.

(D.7)

Now assume that we wanted to control (D.7). Precisely, for any N ∈ N we consider
the functional FN : AEV → R defined as

FN [u] = E

[∫ T

0

L(t,µN ,Y N) dt+

∫ T

0

Ψ
(
u(t,µN)

)]
under assumptions (F0), (F1), (F2) and (F3). We are interested in the following optimal
control problem:

Problem MAN

Find uN ∈ AEV such that
FN [uN ] = min

u∈AEV

FN [u].

To show that Problem MAN is well-posed, one needs some preliminaries. First of all,
let us define

Kn :=

µ ∈ C([0, T ];W1(R2d)) : Mp(T ;µ) + sup
0≤s,t≤T
s ̸=t

W1(µs, µt)

|t− s| 14
≤ n

 .

The fact that Kn ⊂ C([0, T ];W1(R2d)) is compact follows as in Lemma B.3. Then, we
need the following stability result.

Lemma D.2. Let {uj}j∈N ⊂ AEV and u⋆ ∈ AEV such that

lim
j→∞

∫ t

0

uj(s,µ) ds =

∫ t

0

u(s,µ) ds ∀t ∈ [0, T ], ∀µ ∈
⋃
n∈N

Kn.

Denote by µN,j and µN,⋆ the empirical measures of the followers in (D.7) with controls respec-
tively uj and u⋆ and by Hj

N and H⋆ the dynamics of the respective leaders. Then

lim
j→∞

E

[
sup

0≤t≤T
W1(µ

N,j
t ,µN,⋆

t ) + sup
0≤t≤T

|Hj
N(t)−H⋆

N(t)|
]
= 0. (D.8)
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Proof. Arguing as in Lemma B.1, we have

sup
0≤s≤t

∣∣Y j
N(s)− Y ⋆

N(s)
∣∣ ≤ Rj(t)e(LF+1)T , (D.9)

where this time

Rj(t) := sup
0≤s≤t

∣∣∣∣∫ s

0

(uj(τ,µN,j)− u⋆(τ,µN,⋆)) ds

∣∣∣∣
≤
∫ t

0

|uj(s,µN,j)− uj(s,µN,⋆)| ds+ sup
0≤s≤t

∣∣∣∣∫ s

0

(uj(τ,µN,⋆)− u⋆(τ,µN,⋆)) ds

∣∣∣∣
≤ Lµ

∫ t

0

W1(µ
N,j
s , µN,⋆s ) ds+ sup

0≤s≤t

∣∣∣∣∫ s

0

(uj(τ,µN,⋆)− u⋆(τ,µN,⋆)) ds

∣∣∣∣
=: Lµ

∫ t

0

W1(µ
N,j
s , µN,⋆s ) ds+Rj

1(t). (D.10)

Furthermore, notice that, by using (w2), (D.4) and (D.5),

|Zj
N(t)−Z⋆

N(t)| ≤ C

(∫ t

0

W1(µ
N,j
s ,µN,⋆

s ) ds

+

∫ t

0

|Zj
N(s)−Z⋆

N(s)| ds+ sup
0≤s≤t

|Hj
N(s)−H⋆

N(s)|
)

that, by Grönwall’s inequality, (D.9) and (D.10), leads to

W1(µ
N,j
t ,µN,⋆

t ) ≤ |Zj
N(t)−Z⋆

N(t)| ≤ C

(∫ t

0

W1(µ
N,j
s ,µN,⋆

s ) ds+Rj
1(t)

)
.

Using again Grönwall’s inequality, combining it with (D.9) and taking the supremum
and the expectation, we finally achieve

E

[
sup

0≤t≤T
W1(µ

N,j
t ,µN,⋆

t ) + sup
0≤t≤T

|Y j
N(t)− Y ⋆

N(t)|
]
≤ CE

[
Rj

1(T )
]
.

Once we show that µN,⋆ is Hölder-continuous, the fact that limj→∞ Rj
1(T ) = 0 follows

by the same arguments as in Theorem 4.2. On the other hand, by (4.2) and Proposition
2.3, we know that we can use the dominated convergence theorem to deduce

lim
j→∞

E

[
sup

0≤t≤T
W1(µ

N,j
t ,µN,⋆

t ) + sup
0≤t≤T

|Y j
N(t)− Y ⋆

N(t)|
]
= 0.

Finally, (D.8) follows by observing that

E

[
sup

0≤t≤T
|W j

N(t)−W ⋆
N(t)|

]
≤ CE

[
sup

0≤t≤T
W1(µ

N,j
t ,µN,⋆

t ) + sup
0≤t≤T

|Y j
N(t)− Y ⋆

N(t)|
]

for some constant C > 0.



OPTIMAL CONTROL PROBLEMS DRIVEN BY NONLINEAR DEGENERATE FP EQUATIONS 57

Hence, it only remains to prove the Hölder continuity of µN,⋆. To do this, let 0 ≤ s ≤
t ≤ T and recall that

|V ⋆
N(t)| ≤ |VN(0)|+ 2MKerT +

√
2σMB(T ), where MB(t) = sup

0≤s≤t
|B(s)|.

and

|V ⋆
N(t)−V ⋆

N(s)| ≤ 2MKer|t−s|+
√
2σLB|t−s|

1
4 , where LB := sup

0≤s<t≤T

|B(t)−B(s)|
|t− s|γ

,

so that
|Z⋆

N(t)−Z⋆
N(s)| ≤ (4MKer +

√
2σMB(T ))|t− s|+

√
2σLB|t− s|γ.

Taking the expectation and recalling that E[MB(T )],E[LB] < ∞ we get that µN,⋆ ∈⋃
n∈N Kn and we conclude the proof. □

Now we are ready to prove the existence of a solution for Problem MAN . Since the
proof is really similar to Theorem C.2, we only underline the main differences.

Theorem D.3. Under (F0), (F1), (F2) and (F3), Problem MAN admits at least a solution.

Proof. First, we recall that Wp(R2d) for p > 1 is a hemicompact dense subset of W1(R2d).
Precisely, for all n ∈ N define

K♯
n :=

{
µ ∈ W1(R2d) : Mp(µ) ≤ n

}
and observe that

⋃
n∈N K♯

n = Wp(R2d). The fact that K♯
n are compact subsets of W1(R2d)

is shown as in Lemma B.3. Consider a minimizing sequence {uj}j∈N ⊂ AEV for FN .
Arguing as in Theorem C.2 and using a diagonal argument we know that there exists a
function u⋆ : [0, T ] ×

⋃
n∈NKn → Rm such that, up to a non-relabelled subsequence, for

all µ ∈
⋃
n∈N Kn

lim
n→∞

1

|E|

∣∣∣∣∫
E

(un(t,µ)− u⋆(t,µ)) dt

∣∣∣∣ = 0 (D.11)

and, for all j = 1, . . . ,md, t ∈ [0, T ] and µ,ν ∈
⋃
n∈N Kn,

|u⋆j(t,µ)− u⋆j(t,ν)| ≤
Lu

md
W1(µt, νt).

The fact that u⋆ ∈ (AEV) follows as in Theorem C.2. Furthermore, by (D.11), denoting
by (ZN,j,Y j

N) and (ZN,⋆,Y j
N) the solutions of (D.7) with controls uj and u⋆ repsectively

and by µN,j and µN,⋆ the corresponding empirical measures of the followers, we have
(D.8) and then, up to a subsequence, almost surely

lim
j→∞

sup
0≤t≤T

W1(µ
N,j
t , µN,⋆t ) + sup

0≤t≤T
|Hj

N(t)−H⋆
N(t)| = 0.

Hence, by (F1), (F2) and the dominated convergence theorem, we have

lim
j→+∞

E

[∫ T

0

L(t,µN,j,Y j
N) dt

]
= E

[∫ T

0

L(t,µN,⋆,Y ⋆
N) dt

]
.
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On the other hand, the same arguments as in Theorem 1.5 and a simple application of
Fatou’s Lemma lead to

E

[∫ T

0

Ψ(uN,⋆(t,µN,⋆)) dt

]
≤ lim inf

j→∞
E

[∫ T

0

Ψ(uN,j(t,µN,j)) dt

]
.

The remainder of the proof follows as in Theorem 1.5. □

However, it is really difficult to provide (even numerically) a solution of Problem
MAN for a big value ofN . For such a reason, one tries to use a mean field limit approach,
justified by Theorem D.1, to provide a suitable approximation of the optimal control.
Indeed, on (4.4), one can consider the optimal control Problem 3, whose solution exists
by Theorem C.2 and is much more affordable, at least from the numerical point of view,
since it involves a system of a PDE and 2md ODEs, as in (4.1), in place of a system of
2(N +m)d SDEs as in (D.7). However, it remains to show that a solution of Problem 3
actually approximates, in some sense, a solution of Problem MAN . We will do this for a
slightly different problem. First we consider the following assumptions, that are more
restrictive that the ones we considered in Section 4.2.

Assumptions on FN : (FN)

(F0) L : [0, T ]×C([0, T ];Wp(R2d))×C([0, T ];Rm) and Ψ : Rm → R are measurable
and bounded from below;

(FN
1 ) There exists a non-negative increasing concave function ϖL : R+

0 → R+
0 such

that∣∣L(t,µ1,Y 1)− L(t,µ2,Y 2)
∣∣ ≤ ϖL

(
sup
0≤s≤t

W1(µ
1
s, µ

2
s) + sup

0≤s≤t
|Y 1(s)− Y 2(s)|

)
(F2) There exists a function M ′

L ∈ L1(0, T ) such that for a.a. t ∈ [0, T ], for all
µ ∈ C([0, T ];Wp(R2d)) and for all Y ∈ C([0, T ];Rm),

|L(t,µ,Y )| ≤M ′
L(t).

(F3) Ψ : Rm → R is convex.

Furthermore, we have to further reduce the set of controls we are working on. Precisely,
we define the class of controls AEVB ⊂ AEV satisfying (A0), (A2), (AEV) and
(AB) For all t ∈ [0, T ] and µ ∈ C([0, T ];W1(R2d)) it holds

|u(t,µ)| ≤Mu.

Assumption (AB) clearly implies (A1), but it is much more restrictive. We consider then
the following optimal control problems:
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Problem 3B

Find u⋆ ∈ AEVB such that
F [u⋆] = min

u∈AEVB

F [u].

Problem MABN

Find u⋆ ∈ AEVB such that

FN [u⋆] = min
u∈AEVB

FN [u].

Notice that in both cases the optimal solution u⋆ is obtained by considering a mini-
mizing sequence {uj}j∈N ⊂ AEVB such that for any measurable E ⊂ [0, T ] and µ ∈ K in
case of Problem 3B or µ ∈

⋃
n∈NKn in case of Problem MABN

lim
j→∞

1

|E|

∫
E

uj(t,µ) dt =
1

|E|

∫
E

u⋆(t,µ) dt.

Theorem C.2 already guarantees that u⋆ ∈ AEV. Furthermore, for all t ∈ ELeb and h > 0
small enough

1

h

∣∣∣∣∫ t+h

t

uj(t,µ) dt

∣∣∣∣ ≤Mu.

Hence, taking the limit as j → ∞ and then h ↓ 0, one show that u⋆ ∈ AEV B. As a
consequence, we have the following result:

Theorem D.4. There exists at least a solution for both Problems 3B and MABN .

Now, we can prove the following result:

Theorem D.5. Let {uN}N∈N ⊂ AEVB and u⋆ ∈ AEVB be such that for all t ∈ [0, T ] and
µ ∈

⋃
n∈N Kn

lim
N→∞

∫ t

0

uN(s,µ) ds =

∫ t

0

u⋆(s,µ) ds.

Then
F [u⋆] ≤ lim inf

N→∞
FN [uN ].

Furthermore for all u ∈ AEVB it holds

lim
N→∞

FN [u] = F [u].

Finally, it holds
lim
N→∞

min
u∈AEVB

FN [u] = min
u∈AEVB

F [u].
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Proof. Let {uN}N∈N ⊂ AEVB and u⋆ ∈ AEVB as in the statement. Denote by (ZN ,HN)
the solutions of (D.7) with controls uN , by µN the empirical measures of the followers
ZN and by (µN ,Y

N
) the solutions of (4.1) with controls uN . Arguing as in the proof

of [8, Theorem 4.6] and using Theorem D.1, we have

lim
N→∞

∣∣∣∣E [∫ T

0

L
(
t,µN ,YN

)
dt

]
−
∫ T

0

L
(
t,µN ,Y N

)
dt

∣∣∣∣ = 0. (D.12)

On the other hand, by Theorem 4.2 and Assumptions (FN
1 ) (that implies (F1)) and (F2),

we have

lim
N→∞

∣∣∣∣∫ T

0

L
(
t,µN ,Y N

)
dt−

∫ T

0

L
(
t,µ⋆,Y ⋆

)∣∣∣∣ = 0, (D.13)

where (µ⋆,Y ⋆) is the solution of (4.1) with control u⋆. Concerning Ψ, the same argu-
ments as in the proof of Theorem 1.5, together with Theorem D.1, and Fatou’s lemma
lead to ∫ T

0

Ψ(u⋆(t,µ⋆)) dt ≤ lim inf
N→∞

E

[∫ T

0

Ψ(uN(t,µN)) dt

]
.

This, together with (D.12) and (D.13) prove that

F [u⋆] ≤ lim inf
N→∞

FN [uN ].

Now consider a control u ∈ AEVB, denote by (ZN ,YN) the solutions of (D.7) with con-
trols u, by µN the empirical measures of the followers ZN and by (µ,Y ) the solutions
of (4.1) with controls u. Since Ψ is uniformly continuous on {z ∈ Rm : |z| ≤ Mu}, we
can consider a concave modulus of continuity ϖ2 and argue as in [8, Theorem 4.6], by
using also (A2) and Theorem D.1,

lim
N→∞

∣∣∣∣E [∫ T

0

Ψ
(
u(t,µN)

)
dt

]
−
∫ T

0

Ψ(u(t,µ)) dt

∣∣∣∣ = 0. (D.14)

Combining (D.12) and (D.14) we achieve

lim
N→∞

FN [u] = F [u].

Finally, the last statement follows as in [8, Proposition 4.7]. □

Remark D.6. It is worth noticing that the solution u⋆ of Problem 3B is an approximate
solution of Problem MABN in the sense that it can be used to provide a control whose cost
is nearly minimal. However, if uN is a solution of Problem MABN , one cannot guarantee
that u⋆ approximate uN , but only that FN [u⋆] is near FN [uN ].
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