ON DE GIORGI’'S CONJECTURE OF NONLOCAL
APPROXIMATIONS FOR FREE-DISCONTINUITY PROBLEMS:
THE SYMMETRIC GRADIENT CASE

S. ALMIL, E. DAVOLI, A. KUBIN, AND E. TASSO

ABSTRACT. We prove that E. De Giorgi’s conjecture for the nonlocal approximation
of free-discontinuity problems extends to the case of functionals defined in terms of
the symmetric gradient of the admissible field. After introducing a suitable class of
continuous finite-difference approximants, we show the compactness of deformations
with equibounded energies, as well as their Gamma-convergence. The compactness
analysis is a crucial hurdle, which we overcome by generalizing a Fréchet-Kolmogorov
approach previously introduced by two of the authors. A second essential difficulty
is the identification of the limiting space of admissible deformations, since a control
on the directional variations is, a priori, only available in average. A limiting rep-
resentation in GSBD is eventually established via a novel characterization of this
space.
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1. INTRODUCTION

Free-discontinuity problems and their approximation by means of Sobolev formula-
tions, discrete descriptions, or nonlocal functionals are a thriving research area owing
to their broad scope of applications, ranging from image reconstruction, to the mod-
eling of failure phenomena in continuum mechanics. A milestone in this direction was
a conjecture formulated by E. De Giorgi and proven by M. Gobbino [31], dealing with
the approximation via I'-convergence of the Mumford-Shah functional by a sequence
of nonlocal counterparts. Such analysis has then paved the way for further general-
izations in [22, 32]. All the aforementioned contributions deal with free-discontinuity
problems involving the full distributional gradient of the admissible maps. A question
that, to the authors’ knowledge, was so far left open, was whether similar nonlocal
approximation techniques would also prove successful for the study of free-boundary
problems involving more general differential operators.

In this paper we initiate the study of continuous finite-difference approximations of
linearized Griffith functionals. Aside from purely mathematical interest, such inquiries
are deeply rooted in the recent research lines which are developing in image processing
and data science. Motivated by applications in Magnetic Resonance Imaging (MRI) or
Positron Emission Tomography (PET), regularizers involving more general differential
operators than the gradient have been studied, e.g., in the settings of regularization
graphs [9], for higher-order Total Variation operators [12, 10], as well as in structural
Total Variation approaches [33] (see also [13] for a review on data-driven approaches in
image regularization). Concerning the data-science applicative interest, starting from
the variational analysis in [30], a novel research direction has open up for variational
studies on point clouds (see, e.g., [0, 15, 16, 24]), as well as related machine-learning
applications [11]. The corresponding mathematical study of generalized graph-based
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differential constraints different from curl A = 0 is, to the authors’ knowledge, a
thriving, mostly unexplored, subject (see, e.g., [34] and the references therein).

The case study we tackle here is a symmetrized counterpart of the nonlocal energies
considered in [31, 32]. In order to describe our findings, we first recall the results [31],
where the sequence of functionals

1 N — 2 o
Fe(u, Q) == 5”“/9 Qarctan <M) eI P dalde,  we LY(Q) (1.1)
X

is shown to I'-converge, as € tends to zero, to the Mumford-Shah energy
ﬁMSI/ﬁ(u,Q) = / |Vu(z)|?dz + VaH"" 1 (J,), u € GSBV(Q). (1.2)
Q

In (1.2), the acronym GSBV stands for the space of functions with generalised spe-
cial bounded variation (roughly speaking, maps whose truncations are functions of
bounded variations with distributional gradients exhibiting null Cantor part), cf. [4,
Section 4.5]. Note that the multiplicative constants in (1.2) depend only on the choice
of the integrand arctan(z) and on the weight function e~ 1*1”.

It is thus natural, in a first stage, to ask whether the functional

Fe(u, Q) := ! /Qxﬂarctan (((u(:ﬁ’) —u(@) - (@' - x))2> e 1T P de dar (1.3)

6n+1 53

defined for measurable functions u € L°(Q; R"™) provides, analogously, a nonlocal ap-
proximation, in the sense of I'-convergence, of linearized free discontinuity problems of
the form

F(u,Q) := /Q<p(e(u)) dz + CH"'(J,), ue€ GSBD(Q)

for suitable choices of the density ¢ and of the constant C' > 0. In the expression above,
GSBD(€2) denotes the space of functions with generalized special bounded deformation

(see [20]), and e(u) the absolutely continuous part of the symmetric distributional
gradient £(u) := D“%D“T.

The structure of (1.3) aligns with the principles of linearized theories in continuum
mechanics, where only the symmetric part of the gradient contributes to the defor-
mation energy. This consideration naturally motivates the assumption that only the
component of u(z') — u(x) projected along the direction ' — z should provide energy
contributions. By setting £ := 2/ — z, when the differences (u(z + &) — u(z)) - £ are
relatively small, the functionals in (1.3) behave like pure bulk energies. For large values
of (u(x + €f) — u(z)) - £, instead, the energies in (1.3) saturate, effectively detecting
and penalizing the size of the discontinuities of w.

An important remark concerns the fact that the energies in (1.1) only approximate
the Mumford-Shah functional under suitable additional assumptions on the geometry
of Q, such as Lipschitz regularity (see [31, Remark 7.1]). Such requirements may
not be fully consistent when handling free-boundary problems where discontinuities
are already present within the material. Consider, for example, the case of a crack-
initiated domain, where the presence of an (n — 1)-dimensional set I" C €2, representing
an initial crack makes the set  \ I' not Lipschitz.

This possible lack of regularity of €2 calls for a more refined approach, which we
address by modifying the energies in (1.3) as follows. First, for every ¢ € S"~! and
every Borel set E C § we introduce the functionals F; ¢(u, E), defined as

1 e (=€) —u@) O\ o e
F.e(u, E) ._E/EO(E_&C) ¢ < - )d, e LO(Q;R™).




FINITE-DIFFERENCE APPROXIMATION OF FREE/DISCONTINUITY PROBLEMS IN GSBD 3

The specific structure of (1.3) allows one to make use of Fubini’s theorem and rewrite
it as an average of F; ¢ with respect to all possible directions . Specifically, we have

Fe(u, E) = /E_E Faé(u,E)e_‘ngE,

€

where E — F :={y € R" : y = 2’ — z, for some x,2’ € E}. The relevant functionals
for our analysis, denoted by FZ(u, (), depend on a further degree of freedom, encoded
by a parameter p € [1,00), and take the form

FP(u, ) :=sup Z (AQ Fe ¢(u, B)pe«EIQdf)p’ u € LO(Q; R™). (1.4)

% Bew

In the expression above, % represents the class of all finite families of pairwise disjoint
open balls contained in . This supremum procedure over % allows the functional FZ
to bypass irregularities within the domain €. In fact, by choosing p = 1, the strict
superadditivity of the set function F. ¢(u,-) leads to the strict inequality F! < F.

For p > 1, the presence of the LP-norm in the definition (1.4) should be viewed as
a reqularizing effect.

The major difficulty we face in the analysis of (1.4) is the lack of a clear compactness
strategy. The results of [3, 19, 20] cannot be applied, as the sequence F?¥ is defined over
the space of measurable maps, so that neither a differential structure nor integrability
assumptions are given a priori. Thus, our main result is the following compactness and
closure theorem for sequences u. with equibounded energy FZ, for some p € [1, +0c0).

Theorem 1.1 (Closure and compactness). Let Q@ C R™ be open, let p > 1, and let
{uc}eso C LO(S;R™) be such that

sup FP (ue, 2) < 0. (1.5)
e>0

Then, there exists a subsequence €, — 0 as k — oo such that the set
A={xeQ:|u,(z) = o0 as k — oo} (1.6)

has finite perimeter, and u., — u pointwise almost everywhere in Q\ A for some
measurable function u: Q\ A — R™. In addition, for almost every c € R, the extension
of u to the whole of ) defined as u = c on A, satisfies w € GSBD(Q2) and

likrn inf 7P (ug, Q) > FP(u,Q) := / ople(w))dr + ByH" 1 (J, Ud*A), (1.7)
— 00 (9}

where pp: ME<H — [0,00) is a 2-homogeneous function and By is a positive constant.

For p =1 we have the following explicit form
2 1 =
Flu,Q) = 7T/ (|e(u)|2 + fdiv(u)Q) dz + 71-7'?-[”71(:]11),
2 Ja 2 2

whenever u € GSBD(9).

For the precise definition of the bulk energy density ¢, and of the surface energy
density 3, we refer to Lemma 4.6.

In proving Theorem 1.1 we addressed two main correlated hurdles. The first diffi-
culty concerns the identification of a limit map w. In this respect, we may compare our
setting to the existing literature concerning nonlocal approximation of Free Discontinu-
ity problems. In particular, the recent works [28, 35, 39], inspired by the corresponding
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results on the Mumford-Shah functional [7, 36], provide a nonlocal approximation of
a class of Griffith-type functionals in terms of a bulk energy of the form

1/ f(EW(e(u)) * ps) dz

€Ja

featuring the convolution of a volume density W (e(u)) for a Sobolev map u and a po-
tential f whose behavior is similar to that of arctan in (1.3). The compactness issues
in the mentioned articles are overcome due to the presence of an a priori differential
structure of the displacement u, relying on compactness in GSBD [19, 20]. We remark
that such a direct approach is not applicable in our framework, as u. are only measur-
able fields with no control on their symmetric gradient. A similar issue appeared in a
discrete fashion in [I, 23] on a deterministic lattice, which indeed proposed a discrete
finite-difference approximation of Griffith-type of energies in the spirit of [5, 18, 17,

] with a finite range of interaction. Their approach to compactness builds upon the
construction of GSBD-competitors with uniformly bounded energy, which is facilitated
by the lack of long-range interactions. This approach allowed again for the application
of compactness in GSBD. The continuous nature of 72 and its infinite horizon make
the adaptation of the strategy of [23] rather challenging.

It turned out that in our setting we can work directly on the sequence u., bypassing
the modification approach of [23]. Our method relies on Fréchet-Kolmogorov, and thus
amounts to prove equi-continuity of translations. This technical step is provided in
the proof of Theorem 1.1 and shares common ideas with [3], where the proof of the
compactness theorem of [19] was first revisited, avoiding the use of Korn and Korn-
Poincaré inequalities. Once again, the lack of a symmetric gradient and the structure
of F., which features an extra integration over the directions £ € R", do not allow us to
select a preferred basis to control translations, as it was the case in [3]. Nevertheless,
the slicing properties of the functionals F. make it possible to control the translations
of the maps arctan(uc(z) - ) both with respect to x and £. Pointwise convergence out
of an exceptional set A C  is thus recovered by Fréchet-Kolmogorov Theorem.

The next step in the proof of Theorem 1.1 consists in showing that u belongs to
GSBD(1), yielding the characterization of the domain of the T-limit of FZ. Broadly
speaking, the non-local nature of the approximating functional FZ results in a limiting
function space consisting of measurable vector fields that exhibit generalized bounded
deformation in a weaker sense. To explain this phenomenon more precisely, recall that
u € GBD(R2) if and only if u is a measurable vector field and there exists a finite Radon

measure \ on 2 such that, for every ¢ € S®~!, the generalized directional variation ﬂﬁ
of u - ¢, as introduced in [26, Definition 4.10], satisfies:
i5(B) < M\(B), for every Borel set B C Q. (1.8)

By a slicing argument, a similar approach to that proposed by M. Gobbino in [31]
gives that the limit field u € L°(2;R™) satisfies condition (1.8) in an averaged form
with respect to £, namely,

/ fi5,(B) dH"1(¢) < A(B), for every Borel set B C Q. (1.9)
S§n—1

The fact that (1.8) is replaced in our setting by (1.9) is a huge obstacle to establish
the structural properties of the limiting function space. In particular, the technique

presented in [26] for deriving the GBD-structural properties fails, and we need to rely
on the more recent integral geometric approach introduced in [2]. The main difference
from the approach in [2] lies in the role of the flatness of R™, where rescaling and

translating the domain preserve straight lines as geodesics, maintaining invariance in
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the associated GBD-space. Furthermore, the GDB-theory developed in [25] provides
a quite general method to relate the jump set of u to the behavior of codimension one
slices, which we are able to adapt to our setting. We remark that such an approach
seems not to be successful in a Riemannian manifold. In Propositions 3.14-3.16, we
leverage the above features to avoid relying on a Korn-Poincaré-type inequality to
estimate the dimensionality of the set on which the jump of all one-dimensional slices
of u concentrate. Ultimately, we conclude in Theorem 3.1 that the limit map u belongs
to GSBD(2), and thus characterize the domain of the I'-limit of F£. For the detailed
definitions of the relevant quantities and the proof of the structural properties, we refer
the reader to Sections 2 and 3, respectively.

An alternative approach. After this paper was submitted, the authors became
aware that another equivalent characterization of GSBD, based on controlling the
measures /lg through finitely many direction £, has been established in [21]. Instead
we adopt here a totally different perspective, by first deriving fine properties of the
limiting space and then proving it coincides with GSBD via some integro-geometrical
arguments.

Eventually, we obtain the following I'-convergence result for the sequence FZ.

Theorem 1.2 (T'-convergence). Let @ C R™ be open. For every p > 1 the family
of functionals {FF}.~o0 T-converges in L°(;R™) to the Griffith-type functional FP
defined as

FPu.Q) = /ngp(e(u))dx + ByH™ 1 (Ju)  for u € GSBD(R),

00 otherwise in L°(Q; R™),

(1.10)

where @, and 3, are given as in Theorem 1.1.

Combining Theorem 1.1 with the I'-convergence of Theorem 1.2, we further deduce
convergence of minimisers of £ to minimisers of F? under suitable Dirichlet boundary
conditions (cf. Theorem 5.2).

Organization of the paper. The paper is organized as follows. In Section 2, we
collect a few preliminary definitions and results. Section 3 is devoted to establish the
main properties of the spaces of limiting deformations. Sections 4 and 5 are devoted
to the proofs of our compactness, and I'-convergence result, respectively.

Outlook. The analysis provided in this work offers the opportunity to explore several
further research lines. On the one hand, the compactness argument of Theorem 1.1
and the slicing technique of Theorem 1.2 may be further tested against discrete finite-
difference approximations on point clouds of vectorial free discontinuity problems, in
the spirit of [3, 16, 30] for the Total Variation, the Mumford-Shah, and the perime-
ter functionals. Such research line is the subject of a preprint which is currently in
preparation.

On the other hand, the use of a slicing argument for the study of the variational limit
restricts the choice of the approximating sequence F, which in turn determines the
class of admissible densities ¢, in (1.10). The study of more general approximations
and of integral representation formulas in the spirit of [22, 1, 23] will be the subject
of future investigation. A possible strategy to generalize our result to the case of
arbitrary Lamé constants could be to rely on the presence of further discrete-divergence
terms, along the lines of [1, 23]. The extension of our compactness result and of our
identification of the limiting domain for such a model would be possible without any
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change to the structure of the current proof. The associated Gamma-convergence
analysis, on the other hand, deserves the development of a novel representation theory.

2. DEFINITIONS AND NOTATION

Recall the functionals ¢ and F; ¢ defined in the introduction. Given A C R, we

further set )
1 t —u(t
F.(u,A) := / arctan ((u( t+e) —ut) )dt,
€ JA 3

for every measurable function u: B C R — R such that A C BN (B —¢). For the
sequel it is convenient to introduce the following class of Mumford-Shah and Griffith
functionals. For v > 0, the former reads as

Y [ |Vu(z)|?dz + H*1(J,), ue GSBV(Q),
+00, u € L (Q)\ GSBV(Q).

loc

MS,(u, Q) := {

For A > 0, we define the Griffith functional by

G (0, 9) = {)\ N ]e(u)(x)|20d1‘ +H (T, ue GSBD(Q),
00, u e LY(;R™)\ GSBD(Q).
For every ¢ € R" \ {0}, every z € R", and every E C R", we define
ES:={tcR:z+tEcE}.
For u: E — R"™ we define ai: Eg — R as
(1) = u(z +1€) - .

For v: E — R, we denote by v&: ES — R the function v} (t) := v(z + t€). For A C R
open and v: A — R measurable, we set J! :={t € J,NA: [vF(t) — v (t)] > 1}.

The proof of the following measurability property is postponed to Section 3.

Lemma 2.1. Let u: Q — R™ be L"-measurable. Assume that for H* ‘-a.e. £ € S*1,
for H -a.e. y € II¢, the function ﬂg belongs to BVlDC(Qg). Then, for every open set
U C Q the map

(.€) = [DAS|(UZ \ J3e) + HOUE N T L) (2.1)

is (L™ @ H"1)-measurable on Q x S"~1. In particular, for every open set U C Q we
have that the map

€ /H DI\ Tl + MO 0 T )aH )
is H" 1-measurable on S*1.

Next, we recall a measurability property originally stated in [20, Lemma 3.6].

Lemma 2.2. Let v: Q — R be L"-measurable and let & € S"!. Assume that for
H" 1 -a.e. y € IS, the function 115 belongs to BVZOC(Qg). Then, for every Borel set
B C Q the map

y — |DvS|(BS \ Jgg) +H(B5N Jig)
is H" Y-measurable on TI¢.

We are now in position to define the space GBV? (€; R").
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Definition 2.3. We say that a L£"-measurable function u: 2 — R”™ belongs to the
space GBVE(Q;R") if for H" -a.e. £ € S* ! and for H" -a.e. y € II¢ the function
5 € BVie(Q5) and

/S </H§ | Diig| (25 \ J;§> +HO(Q5 N Jég)dHnl(y)>dH"1(§) <oo. (22

Moreover, we say that u € GSBVE(Q;R") if u € GBVE(Q;R") and 4§ € SBV;0.(€5)
for H" l-a.e. € € S"! and for H" l-a.e. y € TI.

Remark 2.4. Observe that the space GBV®(Q;R") introduced in Definition 2.3 does
not coincide a priori with GBD(2) introduced in [26, Definition 4.1]. This is be-
cause the control in (2.2) is not pointwise in & but only in average with respect to

the H" 'L S" '-measure. Nevertheless, we will show in Section 3.2 that, under an
additional assumption, actually GSBV¢ (€; R”) = GSBD(Q).

In view of the measurability property contained in Lemma 2.2 we provide the fol-
lowing definition.

Definition 2.5. Let 2 C R” open and let u:  — R™ be L"-measurable. Then for

every £ € S* ! we define the Borel regular measure ﬂ% in  as follows. We define ,&%

on () as the unique Borel regular measure on () that satisfies for every open set U C 2
BEW) = [ DA\ L) + HOUS 1 Tk (),
I1¢ Y y
whenever for H"!-a.e. y € II¢ the function ag belongs to BV;OC(UZ?), while 45 (U) = oo

otherwise.

Remark 2.6. Since the hypothesis of De Giorgi-Letta’s Theorem [1] are fulfilled, the

extension of the set function U ﬂﬁ(U ) to a Borel regular measure on € is uniquely

guaranteed by the formula
15 (B) == inf{aS(U): BC U, U C Q open}.

Remark 2.7. In view of (2.2), if u € GBV?(Q) we have that 5 € M (Q) for H1-
a.e. £ € S"1. Moreover, for such ¢, we can make use of the measurability property
contained in Lemma 2.2 to infer

SB) = [ IDESI(BE\ Tl + HOBE 0 T a7 ),
for every Borel set B C €.

Definition 2.8. For p > 1, u € GBV®(Q), and ¢ € " ! such that ik € M), we

define i}, on Q as the unique Borel regular measure on 2 that satisfies
1

= sup Z </Sn Nz (B)P dH"™ 1(§)> for U C Q open, (2.3)

where 4 denotes any finite family of pairwise disjoints open balls contained in U.

Observe that for p = 1 the following explicit representation of /1. holds true
fL(U) = / A5 (U)YAHL(E)  for U € Q open. (2.4)
Sn—1
Remark 2.9. We observe that, by virtue of Jensen’s inequality, it holds true that

an I(Sn 1) » /Luv

in the sense of measures for every p > 1.
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Remark 2.10. Also in this case, by De Giorgi-Letta’s Theorem [1] the extension of the
set function U ~ jif,(U) to a Borel regular measure on {2 is uniquely guaranteed by

@b (B) :=inf{gl(U): BCU, UC S open}.

The above formula immediately gives also the uniqueness of the extension to a Borel
regular measure on ).

We conclude this section with a remark concerning the definition of the functionals
F2 as well as the definition of the measures [i},.

Remark 2.11. We observe that in (1.4) and (2.3) we can equivalently take the supre-

mum over any family of countable pairwise disjoint open balls and the result would be

the same. In addition, all the results as well as their proofs remain unchanged if we

replace Z with any class made of finitely many pairwise disjoint convex and open sets.
We also remark that the functional (1.4) could be replaced by

FP(u,Q) = sup 3 (/

1
F, ¢(u, B)pe_m2 df) !
? Bew

without any substantial change in the proofs that follow. In particular, with this choice
we would have exactly F'(u, B) = F.(u, B) for every open ball B C R™.

3. STRUCTURE OF THE SPACE GBV¥¢

The present section addresses the study of the space GBVg(Q;R”) introduced in
Definition 2.3. In particular, we focus on the structure of functions u € GSBV¢(Q,R").
As a byproduct, we prove the following identification Theorem.

Theorem 3.1. Let 2 C R"™ open. A measurable function u: Q — R™ belongs to
GSBD(R) if and only if u € GSBVE(Q;R™).

In the next subsection, we discuss some measurability issues which justify for-
mula (2.2) in Definition 2.3.

3.1. Preliminaries. We start with a technical proposition for one-dimensional func-
tions. We introduce the class 7 of all functions 7 € C!(R) such that —3 < 7 < %
and 0 < 7/ < 1. We recall that, given an open set I C R and given (;) € C(I),
7 € CY(I), we have 7; — 7 in CL (I) if and only if for every open set U € I it holds
|75 = Tllzee @y + 17} = 7'l ooy — 0 as j — oo,

Proposition 3.2. Let I C R be open and let u € BV,.(I). Let furthermore T CT be
any countable set which is dense with respect to the C’lloc-topology. For every U open
subset of I, it holds

k

[Du|(U\ J,) + HOU N J,) = sup sup » | D(ri(w))|(Us), (3.1)
€ i=1

where the second supremum is taken over all the families 71,...7; € T and all the
families of pairwise disjoint open subsets Uy, ..., U of U.

Proof. Since u € BV,.(I), for every U € I open and compactly contained in I, the
condition (a) of [26, Theorem 3.5] is satisfied. Therefore, we can apply [26, Theorem
3.8] to the one-dimensional function uL U € BV(U) to deduce that (3.1) holds true

for every open set U’ C U if we replace 7 with the entire family 7. In order to pass
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from a compactly contained open set U to the whole of I, it is enough to consider a
sequence Uy € I with Uy ' I and notice that

|Du|(Uy \ J) + HO(Up N ) A | Dul(T\ Jy) + HO(I N Jy),  as k — oo.
In order to conclude the proof of formula (3.1) we need to show that it is enough to
consider the supremum on the smaller family 7. To this purpose we simply notice
that for every U € I, being u € BV(U), we have |lu|| §Am. Hence, by applying
the chain rule for BV-function (see for instance [1]), if (1) C 7T is such that 7; — 7 in
Cl.(R), then
[D(7j(u) = 7(u)|(U) < [I75 = Tllcr((=mmy) [Pul(U) =0, as j — oc.

With this information at hand we infer that the double supremum in the right hand-
side of (3.1) does not change when restricted to 7. O

We are now in position to prove Lemma 2.1.

Proof of Lemma 2.1. The assumptions of the lemma are equivalent to: for H" '-a.e.
£ e S" L for LM-a.e. x € Q, the function s belongs to BVZOC(Qg).

We claim that for every open set U C Q and every 7 € T the map (z,§) —
|D7 (%) |(U$) is (£ ® H™)-measurable on © x S"~1. To show the claim, consider
a countable dense subset D C C!(R) in the C} -topology. Notice that, for every
f €L (R)and every I C R open, we have

loc

|IDf|(I) = sup / fDedt = sup / f Do dt. (3.2)
peckn) JR peCHI)ND JR
llell oo <1 llell oo <1

Now consider a sequence of open sets U}, € U with U}, /U, and consider a sequence
of functions vy, € CH(U) with 0 < v < 1 while vy = 1 on Uj. Notice that, for
every p € C2(R), the map (z,&) — [ 7(25) D((vg)5e) dt is (L™ ® H"~1)-measurable
(for instance by virtue of Fubini’s Theorem). By formula (3.2), we have for every
(7,€) € Q x S*! that

|DT(a5)[((UR)5) < hi(a,€) := sup / 7(i5) D((vp)59) dt < |D7(a5)|(US).
eeCR)ND /R
llell oo <1

Notice that, since the countable supremum of measurable functions is a mesurable
function, hy(z,€) is (£" ® H"!)-measurable. By the monotone property of measures,
we know that | D7(a$)|(U})35) 7 |Dr(a5)|(US) for every (z,€) € @ x "1 as k — oo,
meaning that hy(z, ) — |Dr(a5)|(US) for every (z,¢) € Q x S*! as k — oo. Thanks
to the fact that pointwise limits of sequences of measurable functions are measurable
functions, the claim follows.

By combining the previous claim with Proposition 3.2, we deduce that the map in
(2.1) is the countable supremum of measurable maps, therefore, it is measurable. The
proof is thus concluded. O

We discuss here the measurability of & — fi%(B) for B Borel subset of €.

Proposition 3.3. Let Q) C R" open and let u: Q2 — R™ be L™-measurable and such that
for H* t-a.e. £ € S and H" '-a.e. y € TI¢ the function ﬁg belongs to BVZOC(Qg).
For every € € S*™! and for every U open subset of 2, it holds

k
j50) = supsup Y- |De(ru- (U, (33)
€ i=1
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where the second supremum is taken over all the families 7,...7, € T and all the
families of pairwise disjoint open subsets Uy, ..., U of U.

Proof. Whenever € € S* ! and U C § are such that ﬂg(U ) < 00, equality (3.3) holds
in view of [26, Theorem 3.8]. It remains to consider the case fi%,(U) = co. For simplicity
of notation, we denote by 7n the set function given by the right-hand side of (3.3). By
contradiction, assume that n(U) < oo. In particular, for every 7 € 7 we have

[ Der(u-&IU) <n(U) < oo. (3-4)

Hence, D¢t (u-§) € My(U). By a Carathéodory construction using n as Gauge function
and the family of all open balls contained in U as set of generators, we obtain a Borel
regular measure A on U, with As as approximating measure for § > 0 (see, e.g., [29,
Section 2.10.1]). For every V' € U, for every 6 > 0 small enough, and for every covering
G of V made of open balls in R"™ with diameter smaller than §, we may assume that
Uaeg A C U. By Besicovitch covering theorem, there exists a dimensional constant
¢(n) >0 and Gy, ... ,gc(n) disjoint countable subfamilies of G such that

In particular, we have that A\;(V) < ¢(n)n(U), which yields the inequality A(V) <
c(n)n(U) for every V' € U. Taking the limit V'~ U we conclude that A is a positive
bounded Radon measure on U. By using (3.4) it is not difficult to show that actually
for every Borel set B C U we have that [De7(u-€)|(B) < A(B) whenever 7 € 7. Thus,

we are in a position to apply [26, Theorem 3.5 to deduce that 25(U) < A(U) < oo,
which is a contradiction. Thus, it must be 7(U) = oo and equality (3.3) is satisfied. O

Corollary 3.4. Under the assumptions of Proposition 3.3, for every open set U C )
the map & — /l%(U) is lower-semicontinuous on S*1.

Proof. We notice that equality (3.3) holds for every U C Q open, for every £ € S*~1.
In particular, the right-hand side of (3.3) is lower-semicontinuous w.r.t. £ € S"~! for

fixed U C €2 open, hence £ — /lg(U ) is also lower-semicontinuous. (]

Thanks to Corollary 3.4, the integral (2.2) in Definition 2.3 is now justified. We
further notice that il can be extended to a finite Radon measure on (2, that we still
denote by ji..

Remark 3.5. We point out that whenever u € GBV (€; R™), the integral formula (2.4)
can be extended also for K C ) compact. Indeed, it is enough to take a sequence Uy
of open subsets of {2 such that K = (), Ux. Then, for every k € N we have that

L (é v) = [ (é ;) 4w o).

Passing to the limit as k — oo, by dominated convergence (recall that i5() €
L'(S™ 1)) we deduce that

ki) = [ A e,
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3.2. Proof of Theorem 3.1. In this section we prove that if u € GSBV®({;R")
then u € GSBD(2). Such implication is a consequence of the following two theorems,
concerning the structure properties of functions in GSBVg(Q; R™).

Theorem 3.6. Let u € GBVE(Q;R™) and assume that i is a finite measure. Then
for H* 1-a.e. £ € S"1 we have

(Ju)g = ‘]ag’ for H' L-a.e. y g (3.5)
Theorem 3.7. Let u € GBVE(Q;R™). Then there exists e(u) € LY(Q; M) such

sym
that
ap- lim {40¥) ~ (@) — e(“)("“’>§y —2))-(y—x)
y—T ‘y — g;‘
holds for a.e. x € Q. Moreover, for a.e. £ € R\ {0} and for H" '-a.e. y € II¢ we
have

=0

e(u)gg €= Vﬁg L'-a.e. on Qg (3.6)

Postponing the proofs of Theorems 3.6 and 3.7 to Subsections 3.2.1 and 3.2.2, re-
spectively, we conclude this section showing how to exploit them to prove Theorem 3.1.

Proof of Theorem 3.1. The only non trivial implication is u € GSBV¢ (€; R") implies
u € GSBD(2). From the very definition of GSBD(2) we need to show the existence
of a finite Borel measure A on € such that for every ¢ € S*~!

@5 € SBV0e(25), for H" '-ae. y € I (3.7)
(5 (B) < M(B), for every B C Q Borel. (3.8)

By combining Theorem 3.6 together with the countably (n — 1)-rectifiability of J,,
(see [27]), we make use of the Area Formula to infer for H" !-a.e. & € S~ ! that for
every Borel set B C ()

[ ADTSIBE Tl + OB T 0w = [ (e A e e,

BNJy

where D7 denotes the jump part of the distributional derivative. In particular, there
exists a dimensional constant 0 < ¢, < 1 such that for every v € R” and v € S"~!

(A< [ (0 €AD - gar (e <l AL

In addition, by Theorem 3.7 we have also for H" '-a.e. £ € S"~! and for every Borel
set B C Q)

/HEIWEI(Bg)dHn—I( )= / </ le(u)$ - fldt> A" (y)
— [ letwe ¢l da.

Therefore since fil is a finite measure (recall also |e(u)| € L'(2)), the Borel measure
= le(u )\E” ()] A D)H LTy, is ﬁnlte and for H" l-a.e. £ € S"! we have

(5 (B) < M\(B), for every B C Q Borel. (3.9)

In order to get the full conditions (3.7) and (3.8) for every & € S*~1, given ¢ € S*1,
we consider & — £ such that each & satisfies (3.7), (3.8) and by virtue of Corollary
3.4 we infer that

iS5 (U) < limkinf (5k(U) < MU), for every U C Q open.
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Since A is a finite Borel measure, the above inequality can be further extended to every
Borel set B C € by outer regularity. This proves (3.8). In order to verify the validity of
(3.7) we notice that, from (3.9) and by the definition of GSBV¢ (Q; R™), we know that
for a dense set of & € S"~! conditions (3.7) and (3.8) hold true. From [26, Theorem
3.5], for every such ¢ we have

|D7(u-&)|(B) < A(B), forevery B C () Borel, (3.10)

whenever 7 € 7. By exploiting (3.10) and the lower semi-continuity of £ — |D7(u
&)|(U) for every open set U C €, we argue as before and show that actually (3.10)

holds for every £ € S*~! and every Borel set B C . By using again [26, Theorem 3.5],

we infer that for every ¢ € S"~! property (3.8) holds true, and also ﬂg € BVZOC(QS)

for H"1-a.e. y € II¢. Eventually, condition (3.8) and the specific form of ), together
with a simple disintegration argument with respect to the projection m¢: R" — II¢,
give exactly the validity of (3.7). O

3.2.1. Proof of Theorem 3.6. In slicing the jump set we will follow the line developed
in [2]. As already explained in the introduction, the main difference is that, in contrast
to the case of a generic Riemannian manifold, the flatness of R™ allows to avoid the
use of a Korn-Poincaré type of inequality. We start by introducing a class of relevant
measures. Before doing this, we recall a measurability lemma.

Lemma 3.8. Let u: Q2 — R™ be L™-measurable. Then, for every Borel set B C ) we
have that

Y — Z D] A1) is H" " -measurable (3.11)
teB;
& / Z H][ A1) dH™ (y) is H" L -measurable. (3.12)
teB;
Proof. See [2, Lemma 4.5]. O

Given an L™-measurable function u: 2 — R™, by virtue of (3.11) we consider for
every £ € S"! the (outer) Borel regular measure 7¢ of R™ given by

/ > (5@l A1)dH™(y) B CQ Borel, (3.13)
teB§
ne(E) :=inf{n¢(B) : E C B, B C ) Borel}. (3.14)

We note that the definition of 7¢ in (3.13) does not depend on the representative of u
in its Lebesgue class.

Definition 3.9 (The outer measure .%,1). Let u: 2 — R"™ be measurable and let
{ne}eesn—1 be the family of measures in (3.13)-(3.14). By virtue of (3.12), via the
classical Caratheodory’s construction, we define the (outer) Borel regular measure
Fu,1 on ) as

Fu1(E) = sup inf 3 / ne(B)AH™(©),
§>0 Gs Begy /"

whenever E C ) and where Gy is the family of all countable Borel covers of F made
of sets having diameter less than or equal to 6.
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Remark 3.10. For every u € GBV®(Q;R") and for every Borel set B C €, it holds
SuaB) = [ wmawro- [ ([ 5 (la§olnn) aw ) )=o)
Sn—1 Sn—1 11é

teB y
Given E C R”, we define the codimension one slice of E as
ES:={yell*+s¢:ycE}.

Proposition 3.11. Let £ € S"', s € R and let u € GBVE(Q;R"). Then for H" -
a.e. y € OS there exists

ap-lim  u(z) = u$t(y), (3.15)

Z%y,
2€(HE +56)NQ

where Hg ={z€R":z-£>0} and H, is defined similarly.

Proof. Since u € GBV®(Q; R™) we can find a basis {¢1, . .., &} of R™ such that 4§ (€) <
oo for i = 1,...,n. By applying [26, Theorem 5.1], we infer that

ap-lim  wu(z)- & =: U;t(y)

z—Y,
ze(H?i#»séi)ﬂQ
exists for every i = 1,...,n and for H" lae. y € 0S. Since 1,0, 6n form a basis
we can readily conclude that the limit in (3.15) exists and, in particular, u§™(y) - & =
+
v (). O

Thanks to Proposition 3.11, we are now in a position to identify a precise represen-
tative for co-dimension one slices through (n — 1)-planes.

Deﬁnitlon 3.12. Given ¢ € S™ ! and u: Q — R", we define for every s € R the
function @S : II¢ + s€ — TI¢ as

a(y) = me(ust(y), e Qs
where u$T is defined in (3.15).

Proposition 3.13. Let u € GBVE(Q;R"). Then for H" ‘-a.e. & € S* and for
Ll-a.e. s €R the function s e GBVS(Qg; I1¢).

Proof. First of all we notice that the Borel regular measure on S*~! defined as B —
Jon—1 H'2(B N 1IIE) dH"1(€) is invariant under the action of the orthogonal group.
Hence from [29, Theorem 2.7.7] we infer the existence of a dimensional constant ¢(n)
such that

H" H(B) = ¢(n) H (BN dH (&) VB c S" ! Borel set,  (3.16)
Sn—1
By using (2.2) and (3.16) it holds for H" !-a. £ € S*~!

o> [ @)
énsn—1

[ (] Gyepani) a2,
ense—1 NJim
Since H"HLIIS = [H" 2L (7 N (II° + s€)] ® L', we have

/mmgn_l ( /H n(ﬂu)ZdH”_l(y))dH"_Q(n)
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) /HW“ (/R </Hm(r{€+s§) (AU () )AL () ) W2 ().

Finally we observe that, for every &, n € S"71, w-n = m¢(u™) - n L -a.e., thus we can
substitute in the above integral (fi,); = (ﬂﬁg)z, which concludes the proof. O

Next we prove a key technical proposition.

Proposition 3.14. Assume that Theorem 3.6 holds true up to dimension n — 1. Let
u: 0 = R"™ be measurable. Then, it holds

Fu1({z € Q: for every €S x ¢ Je with s s.t. x € I° + s¢})=0. (3.17)
Proof. Let E be the set in (3.17), i.e.,
E:={xcQ:forevery £ cS" ! 2¢ Je with s s.t. z € I° + s¢}. (3.18)

We show that F is jil-measurable. We proceed as in [2, Lemma 4.4]. Let 7 := arctan,
we define s : QO x S"7! x S»71 5 R” and i : Q x S*7! x S* 1 = R” as

T((@.);(2)) dH" (),

s;-t(ac,g, v) = limsup/ .

™SO S8 +(2-€)E)N(Hy +a)NBr(2)
it(z, & v :zliminf/ r((@5,):(2)) d n=L(z),

J (z,6,v) ™SO ST (2-6)€)N(HF +2)N B, (z) ( I'S)J( AR (2)

for j = 1,...,n. We notice that st and i* are Borel measurable in Q x S*~! x
S"~L. Indeed, the integrand functions are Borel measurable in the variables (z, &, v, 2).
Hence, Fubini’s theorem implies that the integral functions are Borel measurable in
QxS 1 xS*~1. Finally, both liminf and limsup can be computed by restricting r € Q
because of the continuity of the integrals with respect to . Then, the set

B = {(w,f,y) e xS xsrt. sT(x, & v) =it (z,&,v), s (2,6,v) =i (2,€,v),
o &v) £ 5@, 6v), st gv) e (—5,5) forj=1....n},

is Borel measurable. Furthermore, Q \ E = 71(B), where 71: Q x S*7!1 x S~ = Q) is

the projection over the first component. Then, by the measurable projection Theorem

(see for instance [29, Section 2.2.13]) the set Q \ E is fiL-measurable, and the same

holds for F.

From the very definition of E, we note that it holds (E N (II¢ + s£)) N Je=10
for every £ € S"! and s € R. Moreover, we know from Proposition 3.13 that for
H lae. £ €S" ! and for L'-a.e s € R we also have ﬁ§ € GBV‘S(QE; Hé).

For simplicity let us denote v := . Then, by the assumption that Theorem 3.6
holds true, we have, for £'-a.e. s € R,

Jﬁg = (Jo)] (3.19)

for H" 2-a.e. n € S" 1 NII¢ and H" 2-ae. y € II7 N (II¢ 4 s£). Since the map
(2,5) — u5(z) coincides with the map u(z) for H" '-a.e. z € Qf and for L-a.e. s € R,
and since 7 € II¢, we have as well

uy +tn) -1 = me(us(y + tn) -0 = v(y +tn) - n,

for Ll-ae. s € R, for H" 2-ae. y € 1" N (I + s¢), and for Llae. ¢t € Q). In
particular, by virtue of Fubini’s Theorem (up to measurability issues....), and using
also (3.19), we infer that for H" 2-a.e. n € S""' NTI¢ it holds

Jay NE] = T N B = (J,)g N E] = (J,NE)] =0 for H" -ae. y eI,
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where in the last equality we have used the relation (E N (II¢ + s£)) N .J, = () valid for
every s € R. Summarizing we have obtained that for H" '-a.e. £ € S*!
Jagn NE] =0, for H" 2ae. n e SVINTIE and H™ L-ae. y € II7. (3.20)
Eventually, by (3.16), we infer from (3.20) that
Je N E§ =0, forH" l-ae £eS" ! and H" l-ae. yell.
Y

From the very definition of the measures n¢ (cf. (3.13)) we obtain that n¢(E) = 0 for
Hrlae. & € S"L. As a direct consequence of the definition of Jy,1 we conclude
Fu1(E) = 0. O

Before proving the dimensional estimate on the set where the measure .#, 1 is con-
centrated, we need the following proposition.

Proposition 3.15. Let A C R" be measurable. Consider the real vector space L°(A)
made of all Lebesque equivalence classes of measurable functions v: A — R endowed
with the metric d(-,-) defined as

d(v1,v2) 3:/ lvg —vo| Aldz, wvi,v € LY(A),
A

which induces the convergence in measure. Then, any finite dimensional vector sub-
space V. C L°(A) is a complete metric space with respect to the distance d(-,-).

The proposition above is a direct consequence of Riesz Theorem (see for instance
[37, Theorem 1.21]). To keep the presentation self contained, we include a proof in the
Appendix A.

Recall the definition of ©**~1 (see [29] for further details)

p(Br())

0*" Yy, z) := limsup —

r—0 r

for every measure p € MT(Q) and x € Q.

Proposition 3.16. Let u € GBVE(Q;R™). Then, for jil-a.c. x € Q, the condition
o =Y(al,x) = 0 implies that = ¢ J_e for every £ € S"=1, with s € R such that

x € TI¢ + s¢€.
Proof. In order to simplify the notation we set for every x €  and ¢ € S*~!
OS () := [ D] (@5 \ J%) + HO( 1 T%)

O, (u) = /S DSI(Q5\ T) + HOOE 0 T AR ).

Step 1. We claim that

45 € BVioe(Q5), for (L" @ H" D-ace. (z,6) € Q x S*1 (3.21)
(z,6) = O5(u) is (L™ ® H"1)-measurable (3.22)
/ Oulu) d < e () (). (3.23)

Q

Indeed, from the definition of GBVS(Q;R"), we know that for H" -a.e. & € S»!
we have ﬁg € BVloc(Qg) for " l-a.e. y € TI¢. Equivalently, for H" l-a.e. ¢ € S*~!
we have ﬁfrg(l,) € BVZOC(QZ(I)) for L"-a.e. x € Q, where m¢: R" — II¢ denotes the
orthogonal projection. Therefore, by using Fubini’s Theorem on the product space

Q x S*! with measure £® @ H" !, and the fact that a5 =

me(a)r e immediately
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infer the validity of (3.21). To prove (3.23), in view of the measurability (3.22) (see
Lemma 2.1), it is enough to make use of Fubini’s Theorem and exchange the order of
integration in = and &.

Step 2. Let us assume by contradiction that the measure . has null (n — 1)-density
at = while the set ¥ C S?~! defined as

Y= {SESnflszJﬂg}

is not empty. Fix £ € ¥. By the same arguments used to prove the measurability of
the set E defined in (3.18), it can be shown that ¥ is H"~!-measurable.

Let z € Q, then = € II¢ + s¢ with s = 2-£&. Now define for every 0 < r < dist(z, 92)
the rescaled function u,: B1(0) — R" as u,(z) := u*(z+7rz), and @, : B1(0)NII¢ — R”
as Uy (z) := me(u™ (z + 12)).

From formula (3.3), we deduce that u, € GBVE(B;(0); R") and that ﬂgr(Bl(O)) =

=08 (B, (x)) for H" t-a.e. € € S™L. Let us further denote the map ¢: R® — R™

defined as
6(2) = EL if 2z#0
0, if z=0.

From our assumption, we have, for ¢ € ¥, that there exists v € I 1S”~! such that
Uy — fue in measure asr — 07, where f,¢(2):=a,esign(z-v)+b,e (3.24)
for some a, ¢ € R™\ {0} and b, ¢ € R™.

Step 3. We claim that there exist a subsequence of radii 7 \, 0 and vectors {z1, ..., zpan } C
B1(0) \ {0}, such that {z(;_1)p41,---,2jn} are linearly independent vectors contained

in the j-th orthant of R", z; are points of approximate continuity for w,,, while (3.21)
holds true for z = z; and v = u,,, and O, (u,,) — 0F forevery k =1,2,... as k — o0.
Notice that, once the claim is proved, by the Fundamental Theorem of Calculus to-
gether with the concavity of the truncation function, there exists j = 1,...,2™ such
that for H" l-a.e. 2z € B1(0) NII¢ and for every i = (j — 1)n + 1,...,jn, we have
&2z >0 and

[ty (20) =ty (2)) - @2 = 20)| AL < [A5*(B1(0)), k=1,2,... (3.25)

We notice that the right-hand side of (3.25) is H" !-measurable as a function of
z. Indeed, we could have chosen the vectors {z1, ..., znon} so that 5 — |/, |(B1(0))
are measurable maps between the o-algebra of "~ !-measurable subsets of S*~! and
the Borel o-algebra of R (this follows similarly as in the proof of Lemma 2.1). Then,
2 > |25 7*)|(B,(0)) is simply the composition of i + |/, |(B1(0)) with z — ¢(z—z),
which is Borel measurable and whose preimages of H"™ !-negligible sets are H" !
negligible.

To prove the claim we first notice that the assumption ©"~ (L, x) = 0 implies that
fie. (B1(0)) = 0 as r — 0. By letting A, := 2}, (B1(0)) we see from (3.23) applied to
u=wu, and Q = By(0) N X;, where ¥, is the j-th orthant, that

L"{z € Bi1(0)N%;: O:(ur) > cn(Q)VAr}) < VA, for every 0 < r < dist(z, 09).

Therefore, by passing to a subsequence rj, \, 0 such that >, \/A,, < L"(B1(0))/2",
we have that the set A := (", {z € B1(0) N E; : Os(up,) < cn(R2 \/Tk} satisfies
L"(A) > 0. In particular, we can find {z(j_1)n41,-- - 2jn} C ANY; in generic position
such that z; is an approximate continuity point for w,, and (3.21) holds true with
u=1u, and x =z for every k =1,2,... and i = (j — 1)n+1,...,jn. The fact that
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O, (uy,) — 0" for every i = (j — 1)n+1,...,jn as k — oo is a direct consequence of
the fact that {z(;_1)n41,--->2jn} C A. The claim is thus proved.

Step 4. Fix j =1,...,2" such that £ - z; > 0 for i = (j — 1)n,...,jn. For simplicity
assume j = 1. We observe that for every i =1,...,n

lim pet =) (B(0) =0 for H* lace. z € T N By (0) (3.26)
r—

since @~ 1(al x) = 0.
Since {z1,...,2,} are linearly independent vectors, we obtain that
{#(z—21),...,0(z — z,)} is a basis of R" for H" t-a.e. z € I* N B1(0).  (3.27)

Therefore, for H" 1-a.e. z € II¢ N (B1(0) \ B1/2(0)) we find real smooth coefficients
{c1(2),...,cn(2)} such that ¢(z) = >, ci(2)d(z — 2). In addition, combining (3.25)
and (3.27) we infer for every i = 1,...,n that

|(try (2) =, (2))-d(2—2;)|A1 — 0, pointwise for H" ' -a.e. z € TI* N (B1(0) \ B1(0)) as k — oco.

1
2

Therefore, for every sufficiently large k (depending on 2)

[ure(2) - $(2) = Y cil2)ur (21) - $(z = z0)| A 1

< Z lci(2)[|(ury, (2) = ur (20)) - @(z — zi)[ A1
< Z e ()15 (B1(0))
By (3.26), the above inequality yields that for H" l-a.e. z € II* N (B1(0) \ B
|ur, (2) - ¢(2) — ch(z)urk(zl) co(z—z)| =0, as k — oo.
Thus, by recalling (3.24), we have for H" !-a.e. z € II* N (B1(0) \ B%(O))

fre(2) =D ci(2)up, (21) - ¢(z — 2)| = 0, as k — 0. (3.28)

%

(0))

1
2

We conclude by showing that (3.28) gives a contradiction. Consider the finite-
dimensional real vector subspace V of LO(II* N (B1(0) \ B1(0));R") generated by
2
the elements {v;;: II* N (B1(0) \ B1(0)) — R™ : i,j = 1,...,n}, where v;;(2) :=
2
¢i(2)pj(z — zi) (¢j := ¢ - €j). Condition (3.28) combined with Proposition 3.15 (recall
that pointwise convergence implies convergence in measure) implies that the function
fu¢ restricted to II¢ N (B1(0) \ B1(0)) belongs to V. Since the generators v;; are all
2
smooth functions, any linear combination of them still belongs to C°°(II¢ N (By(0) \
B: (0)) ; R™), forcing a, ¢ = 0. This is not possible because we assumed at the beginning
2
a,¢ # 0 and we reach a contradiction. The proof is thus concluded. O

We are now in position to prove Theorem 3.6.

Proof of Theorem 3.6. We proceed by induction. Observe that in dimension one the
theorem is trivially true. Now, assume that the theorem holds true in dimension n — 1.
Therefore, from Proposition 3.14 we infer that the measure .#,; concentrates on the
complement in  of the set E defined in (3.18). Since by Proposition 3.16 we have that
Q\E C{xe€Q:0" (il ) > 0}, then by applying the classical density estimates
for Radon measure (cf. [29]) we infer that Q \ E is o-finite with respect to H" 1.
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We are thus in position to apply Besicovitch-Federer structure theorem [29] to write
Q\ E = RUU where R C Q is countably (n — 1)-rectifiable while the Borel set U C
satisfies

H" Y (me(U)) =0, for H" t-ae. £ eS™ L
Eventually, from the very construction of ., 1, the above property immediately implies
that .#,1(U) = 0 and hence .#,; concentrates on the rectifiable set R. In particular
we deduce the fundamental inclusion

Je C Rg, for H" tae. £ € S* ! and for H" tae. y e IS,
Y

We can then conclude by arguing as in the proof of [2, Theorem 4.12].
O

3.2.2. Proof of Theorem 3.7. The proof follows the line of [26, Theorem 9.1], we report
here only the main differences.
We set
E:={¢ e R"\ {0} : 45 € BV(Q) for a.e. y € II*}. (3.29)
Observe that £"(R™ \ Z) = 0. Without loss of generality, we may assume that v is a
Borel function with compact support in €2 and that ’Ilg € BV(Qg) for every £ € = and
for every y € TI¢. For every x € Q we define

1 [P
48 (x) := limsup — / u(z + s) - £ds, (3.30)
p—0t PJ—p
P o€ —4f
ef(z) == limsupl/ @z 4 58) = @) ds.
p—0t+ 4P Jo S

We observe that u¢ and ef are Borel functions and have compact support on . In
particular,
e (z) = p*ef(x) for every p > 0 and every z € Q. (3.31)

By the Lebesgue Differentation Theorem, for every y € II¢ we have
166 — € 1 in Qf
(a%)y =1y, L -ae. in Q.

Since ﬂg S BV(Q%) and (fﬁ)g is a good representative of 2235/ by (3.30), we obtain that

vis(t) = lim ()00 + ) 50 _ (60 (3.32)

for every y € II¢ and for L'-a.e. t € Qg
As in [26, Theorem 9.1], the following parallelogram identity holds
ST (x) + 57 (x) = 265 (2) + 2e8(x) for ae. z € Q, (3.33)

for every £, € R" such that £,n,£ +n,§ —n € E.
Recall (3.29). Let & € E. By induction, we consider

£, €5y :=E < N ﬂ5+qg@-)

1<i<k—1q€Q
and we remark that £"(R™ \ Z;) = 0. Define X as the vector space over Q generated
by {&k}ren. Since LM(R™\ Ex) = 0 for every k € N, the sequence {&}ren can be
chosen to be dense in R™. We remark that, since = is closed by multiplication with
scalars, then by construction X C =. Since X is countable and owing to (3.33), there
exists a Borel set N C € such that £"(NN) = 0 and the parallelogram identity

e (z) + 57 (x) = 2e5 () + 2e5(x) (3.34)
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holds for every z € 2\ N and for every &,n € X.

Since ef(z) is also positively homogeneous of degree 2 by (3.31), we deduce by [27,
Proposition 11.9] that for every z € © \ N there exists a symmetric bilinear form
B, : X x X — R such that

ef(z) = Bu(§,€)

for every ¢ € X. This implies that for every x € Q\ N there exists a symmetric matrix
e(u)(x) € MZ25" such that

sym
e (x) = e(u) ()¢ - € (3.35)
for every € € X.

Let us fix £y € Z. We want to prove that (3.35) holds for £ = £y and for a.e. x € Q.
Let X be the vector subspace over Q generated by X U {{p}. Since Xy is countable,
there exists a Borel set No C Q, with N C Ny and L£™(Np) = 0, such that (3.34) holds
for every x € Q\ Ny and for every {,n € Xy. Arguing as before, we prove that for
every x € 0\ Ny there exists a symmetric matrix A(x) € My " such that

sym

et(x) = A(x)¢ - € (3.36)
for every ¢ € Xy. Since X C Xy and N C Ny, equalities (3.35) and (3.36) hold for
every z € \ Ny and for every £ € X. This implies that A(z) = e(u)(z) for every
x € 2\ Ny. Since (3.36) holds for every x € Q\ Ny and for every £ € Xy, we deduce
that the same is true for (3.35). Since & € X, we conclude that (3.35) holds for £ = &
for every x € Q\ Np.

By the arbitrariness of £y we have shown that for a.e. £ € R" we have

et (x) = e(u)(x)€- € a.e. in Q.
Lastly, (3.6) follows by combining the above equality and (3.32).
Finally, the fact that e(u) € L1(Q;M%%") follows from

sym

[ et < en //S Ve €l dede
= [ o [ s oe- larayag

< iy () < oo
4. PROOF OF THEOREM 1.1

We divide this section into two subsection. The first one contains a number of
preliminary results that will be exploited in the second subsection, where the proof of
Theorem 1.1 is carried out.

4.1. Preliminary results. We start with a general estimate.

Lemma 4.1. For every positive integer n it holds true

le] n
sup/ ——— dH"(n) < oo. 4.1
e€R™ J By (0)\ B, /4(0) 1 T+ le-n|? ) 1)

Proof. An application of Coarea Formula with the map f: R” — R defined as f(n) :=
|n| allows us to write

sup / LQ "(n)
ccR J B (0)\By,4(0) 1 + e - 7|

! le|
= sup AN )d
ccR" /1/4 </83p(0) 1+ e-n|? (m ) 4
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= sup /4 </ pnl‘e‘dq{n—l(n)> dp
eekn J1/a \ Jop,(0) 1 + p*le - nf?

< 4" sup /S e dH™ 1 (n).

cern Jsn-1 1+ |e - n)?
Hence, it is enough to prove
‘€| n—1
sup / ——— dH"(n) < 0. 4.2)
eckn Jsn-1 1+ e n|? ( (

We remark that, since the integrand in (4.2) is rotation invariant, we can assume
e = Aeq, where X € R and e; is the first element of the canonical basis. Moreover, we
observe that by setting 1, := n - e; it is enough to show

sup dH" " (n) <

A>0 /Sj;l 1+ A2
for some & € (0,1), where S} 1 = 8" 1 {0 < < 6}. Indeed, the integral
A
i dHTH ()
/Snlﬁ{m>6} 1+ A2nf

is uniformly bounded by a constant only depending on n and 9.
By applying the Coarea Formula with the map f: S?"~! — R defined as f(n) := m

we have
A Jgn-1 n—
/S?_l L+ A2} :i%: dH )
< s e [ e o = )
s T fl Jy Tt
< C(n,9) /1 A dt = C(n, ) arctan(\) < C(n, 5)2
o 1+ 222 2
This concludes the proof of (4.1). O
We now recall some useful results shown in [31] for the study of nonlocal approxi-

mations of the Mumford-Shah functional. For the reader’s convenience, we report the
proof of Lemma 4.5, highlighting the ambient space {2 in the functional. The proofs
of Lemmas 4.2-4.4 coincide with those of [31].

Lemma 4.2 ([31, Lemma 3.2]). Let I = [a,b] be an interval, let {u:.}eso C L} (R),
and let u € Li,(R). Let us assume the following:

(i) ue = u in L} (R);

(ii) a and b are Lebesgue points of u.

ther (u(B) — uf >>2}

hlgi}(l)lfFE(us,I) _mln{Q, b_a

Lemma 4.3 ([3], Lemma 3.3]). Let u € L*°(R). Then there exists a € R such that
(i) a + q is a Lebesgue point of u for every q € Q;
(ii) every sequence {uy}reny C L*°(R) that satisfies the following conditions:
—ug(a+ %) =ula+ %) forall z € Z;
—ifrelatfa+t ZJ,QI], then u(z) belongs to the interval with endpoints
u(a+ %) and u(a + =4);

has a subsequence converging to u in L} (R).
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Lemma 4.4 ([31, Lemma 5.1]). Let Q C R™ be an open set. For every u € L°(,R™),
every E € ), every § > 0, and every & € R™ such that £+ §§ C ), we have that

/E | arctan(u(z 4 0§) - §) — arctan(u(x) - §)|dz < Crd(1 + Fse(u, E)),

for some Cg > 0 only depending on E.

Lemma 4.5 ([31, Lemma 5.3]). Let Q C R"™ be an open set, E € Q, R C R", and
n > 0 be such that R C % and

dist(E,09Q) > n sup|¢].
£ER

Then, for every u € LY(;R™), € > 0, and m € N such that me < n we have that

/Fmgyg(u,E)dfg/Fsyg(u,Q) d¢. (4.3)
R R

Proof. Given € > 0, we prove the statement by induction over m. If m = 1 there is
nothing to prove. Let us assume that (4.3) holds for m and prove it for m+1, assuming
that (m+ 1)e < n. In particular, this implies that £ C  — (m + 1)e€ for every £ € R.
For A, B € R it holds

(A+ B)?

arctan
( m+1

B2
) < arctan(A?) + arctan (m) .

Applying such inequality to
(u(z + (m+1)ef) —~ulz +meg)) € 5 _ (u(z+mef) —u(z)) ¢
Ve Ve ’
with x € F and ¢ € R, we get that
((u(x + (m + 1)e€) — u()) - )"
(m+1)e arctan < (m+1)e >
((u(z + (m + 1)e€) — u(x + met)) - §)2>
~ (m+1)e 5
m 1 (((u(w+m5£) u(:c))-f)2>

+ ——arctan
(m+1)me me

A=

arctan <

Integrating over x € E and ¢ € R and performing a change of variable in the first
integral on the right-hand side we obtain

/RF(m+1)E,§(U, E)d¢ < (m—i—ll)g /R/E+ms£ arctan <((u(x + 65)6 u(@)) '5)2> dz d¢

m
+(m+1)/RFmE’£(U7E)d§

1 m
< (m—}—l)/RFe’g(u’Q)df—'_(m—i—l)/RFme’g(u’E)df’

where, in the last inequality, we have used that F + mef C QN Q — €. Hence, we
conclude for (4.3) by the induction hypothesis. O

We conclude this section with the following lemma, which characterizes the den-
sity ¢, and the constant /3, appearing in (1.7) and in the definition of the functional FP
in (1.10).
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Lemma 4.6. Letp > 1, let 2 C R™ be an open set, and let @,: MEIH — [0,00) be the
map with quadratic gmwth defined as

op(A) == (/ (JAS - §|2)P |§|Pe—5|2d§) ’ for A e Mg and p < oo.
R”

Then, there exists a positive constant B, > 0 such that for every uw € GSBD(Q;R") it
holds

Supz (/( MSi(ag,Bg)dH”_l(y)y\£|pe_|5|2d£>p

— [ ety ds + ),
where B is the set of all possible finite families of pairwise disjoint balls in 2.

Proof. We recall that

T R R s
S MS (i, BS) = /B5 Vi Pdr + ZHO(T,¢ 0 B).
Yy

Integrating the expression above in y € II¢, by Theorem 3.7 we obtain for the first
term

/HE /Bg |§||Vft§|2d7' H ) = / / EIIVu(y + 7€) - €* dr dH" " (y)
/ / Elle(u)(y + TE)¢ - €2 dr dH"(y)
~ [ telletwas - as.

On the other hand, by the area formula and Theorem 3.6, for the second term we get

/ KO 1 B dH (y) = / € llva(e) - €] A ().
¢ 4 B

w

We define for every ball B C 2 the function

((w, B) ( /| ( [ @ a3 | umBIVu(:c)-§|dH”_1(x)>p|gype—I£|2 d§>i

and for every open A C ) we set
w(u, A) = 5up Z ¢(u, B),
#a BeRB

where % 4 is any finite family of disjoint balls contained in A. Then, p can be extended
to a Borel measure (which we still denote by p with a slight abuse of notation). We
also observe that there exists a positive constant C' only depending on n and p such
that for every open set A C 2 we have

u(u, A) < CG (u, A), (4.4)

where the inequality follows by the definition of p. In particular, (4.4) holds for every
Borel set. Hence, we decompose p in the following way

(s, B) = /B f(x) da + /J e @

for every Borel set B C 2, for some densities f and g.
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We start by calculating the density f, which is given by

_ iy AU Br(2))
f(z) = lim o
for L™a.e. x € Q). Let x €  be such that

. 1

ling = / le(u)(y) — e(u)(@)*dy = 0, (4.5)
r—017r Br(ac)

n—1

i H" ™ (J, N By (x)) 0 (46)
r—0 rn

We recall that L"-a.e. x € Q satisfy (4.5) and (4.6). Consider Bp, (, a family of covers
of B,(x) such that

M(uv Br(.’L')) - ZBG%BT@) <(u7 B)

lim g =0, (4.7)
LB (7)) = Spey. . LB
im (B (x)) erezmz) ( ):O. 48)
In view of (4.7), for every § > 0 we have
4 , B
Fa) = lim P B @)y uBedn o (4 D)
r—=0  wpr" r—0 Wy ™
1
= li -¢12d
lim —— B%w( L (et - et + etw@ne - Py
T ) n—=10, 3\’ P o—l€1? ’
05 ]t w) e dg)
<1 14 68)P 2P (BYPIePe € > 4.9
< lim BE;W( | oyl e myigre a) @)
1 s\ 7
i S ([ (0 k) - etoPan) e ac)
! " Bedp,(x) " JB
(4.10)
. 1 ™ . el p e g
+ i BE%Z‘;(Z) (/n(Q/uﬂBlvu(y) ¢l dH (y)) [€[Pe dé)
(4.11)

The limit in (4.10) rewrites as

1 q
1+ ( [ e df) liy

which is equal to zero by (4.5). The limit in (4.11) is bounded by

T 2p— € 1 n—1
5 ([ 1epe dg) D DR Y

BeZp, (x)

Z / e(u)(y) — e(u)(z)Pdy

Be%g,.
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which is also equal to zero by (4.6). Finally, by (4.8) the limit in (4.9) is equal to

(1+9) ( /R (e()(@)g - €P)” \s|pe—'f'2ds) "= (14 D)y (el @)

for every & > 0, and thus f(z) < ¢p(e(u)(z)). The other inequality follows from
similar arguments.
In order to calculate the density g we consider x € J, such that

y)E - £|2dy
lim fBT T , (4.12)
r—0 rn—
n—1 ., Br
lim 74— nfl(gj)) =1, (4.13)
r—0 wn,lr”
1
lim/ vu(y) — v (2)| dH™ H(y) = 0. 4.14
ti s [ )~ R ) (4.14)

We remark that H" l-a.e. x € J, satisfy (4.12)—(4.14). We consider a family of covers
BB, (z) of Br(x) such that

M(u7 Br(l‘)) - ZBE%BT@) C(ua B)

lim — =0. (4.15)
Thanks to (4.15) we obtain
g(z) = lim p(u, Br(x)) _ lim =278
r—0 wy_qr7L r—0 wWp_1r—1
: 1 @ _
=lim——rs D ( LG 10 - @) + e -glan
n—1 BE@BT(z) n JuNB

3=

+ /B (le(w)(y)¢ f\Qdy)p|£!pe"5'2d§)

st Y ([ (5] e danww) e o)’

BEL%BT(Z) w
(4.16)

ﬂi%%llw 2. ( / . (g[]umg‘vu<y>—uu<m>|d%"1<y>)p|512”e'52d£)

Be%p, ()
(4.17)

. 1 )2 5p ,—¢[?
iy 3 (/ / ay) e Pag)” (aas)

BG%’BT(I

Similarly as before, the limit in (4.17) is equal to zero by (4.13) and (4.14). From
(4.12) it follows that also (4.18) is zero. Finally, we observe that (4.16) is equal to

2 ([ e -eplepeag)” =,

hence g(z) < f,. The reverse inequality follows from similar computations.

3=
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4.2. Proof of Theorem 1.1. Consider any subsequence ¢, — 0 and set uy := u.,.
By Holder’s inequality, we have

M = sup}"alk(uk,Q) < C(n,p)sup FF, (ur, ) < oo.
keN keN

We divide the proof into 6 steps. In Steps 1 and 2 we prove that u; converges point-
wise, up to an exceptional set A, to some limit function u by a Fréchet-Kolmogorov
argument. Steps 3-6 are devoted to show that u is indeed a GSBV®-function and
that A is of finite perimeter.

Step 1: Fix two open sets F' € EF € 2 and define f: 2 x R®™ — R by

Ji(@,8) :=7(up(x) - §) = arctan(ug(z) - £).
Let k € N be sufficiently large so that By4(0) \ By /4(0) C Qa;kﬂ (notice that 2 — € is an
open set containing the origin) and 4e;, < dist(FE,0). In particular, this implies that
F C E CQ— g€ for every & € B4(0) \ By4(0) and every ¢t € [0,1]. For simplicity
of notation, let us set R := Ba(0) \ By/2(0). In order to apply Fréchet-Kolmogorov

Theorem on F x R, we start by showing that for every o > 0 there exist ¢ € (0, 1) such
that

/FR\fk(mm,s)—fk<w,£>rdxd53a for 1 € By(0). (4.19)

Instead of proving (4.19), we prove a slightly different equivalent statement: for
every o > 0 there exist ¢ € (0,1) and k € N such that

[ fatn - Awoldd e orpeBO) mdkzE o (420)
FxR
For every n € B1(0), £ e R" and j = 1,2,..., we define f% € R" as
, 1
& =&+ 57}.
We remark that by Lemma 4.1 for every nn € B1(0) and j € N we have that

p / Ldgg sup/ ¢d£§ C (4.21)
B4(0)

ceRn JR 1+ |e- &) ccRn \By0) 1+ le - &2

for some positive constant C' only depending on the dimension n.
Let us now fix j > 4 such that j > 4|F|C/a. We repeatedly apply the triangle
inequality to obtain for ¢ € [0, 1]

| fe(z +tn, &) — fr(z, )] (4.22)
< (@ +0,8) = fula + 0, G + | fu(z + 0, &) — fula — jt&, &)
+ | frle = Gt&,6) — fulz — 76, &) + | fulx — 5, &) — fil,€)].
The first term in (4.22) is bounded as follows
|filw +10,€) — fr(a +tn, &) (4.23)

s+ ) ) — (e bty €y < | [T e
= |T(ug(x +1tn) - &) — 7(ug(x +1tn) - :/ —
! wp(atinye 1+

1 1 (6 _
Smax{lﬂﬂk(xﬂn)f!?’1+|uk(:c+tn)~€%!2})W($+tn> &0

1 1 1
< = max{ , — k(@ + )],
J Ut Jug (@ +80) - €271 4 g (2 + tn) - €2
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Thanks to (4.21), we deduce from (4.23) that

/R Fela+ 00.€) — fulw + tn, )| dé < ;c. (4.24)

for the same constant C' defined in (4.21). Hence, we infer from (4.24) and from the
choice of j that for every z € F, t € [0,1], k € N, and n € B1(0), it holds

/R il 19.€) = fila+ 1.6 € < 1 (4.25)

The very same argument allows us to bound the third term on the right-hand side
of (4.22) for every x € F, t € [0,1], k € N, and n € B;(0) as

/R il =716, 6) = fllr = 6. )] d€ < 717 (4.26)

For the second term on the right-hand side of (4.22) we have

/R/F’fk(x—’_tn’S%)_fk(x_]tgaé%ﬂdxdf

:/R/F_jté!fk(xﬂjgg,g%)—fk(x,gg)\dxdg
AR A - Vded

S/EXR!T(Uk(ertjfn) &) — 7(up(z) - &)|de de,

if jt < 1, since F' € E. We apply the change of variable ¢ = ‘fg to the last integral
above to obtain

/R /F fela+ t0.60) — il — o€, 60)|da de

<

/ (g + £6) - €) — T(up(x) - €)]dr e
Ex(B4(0)\B1,4(0))

Recall that, by Lemma 4.4, for t € [0,1) and £ € B4(0)\Bj 4(0) such that E+tj¢§ C Q

we have
/E |7 (uk(z +15§) - &) — T(up(x) - §)|da < Crtj(1+ Fij ¢ (up, E)). (4.27)

Choose t, € (0, 1) sufficiently small so that
FCE+jt£CcQ for every £ € (B4(0) \ By/4(0)) and every t € [0,1,],  (4.28)

Cpjta(l+ M) < %.

Let k € N sufficiently large and let us set tj, := ie; € (%‘,ta) for k > k and for some
ir € N. Thanks to (4.28), we apply (4.27) for t = t; and Lemma 4.5 with the choice
m = jik, obtaining

/ 7+ GtrE) - €) — T(up(a) - €)|de dé
Ex(B4(0)\B1,4(0))
- / 7 (une + Jier) - €) — T(up(a) - €)|de de
Ex(B4(0)\B1,4(0))
< CE]ZkEk/ (1+ Fﬁkeké(uk’ E))d¢
(B4(0)\B1,4(0))

< Cgjirep(l + felk (ug, 2)).
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Summarizing we have thus obtained for every k > k and every n € B1(0)
/ |fr( + ten, &) — fula — jtn€, €)|da de < CpFiper(l + FL (ur, Q) (4.29)
FxR

< Cpjta(l+ M) < %.

From the very same argument, we infer that for every k > k and every n € B;(0)

[ o= 3669 - fe Oldede < Cafinar(l+ FL (D) < 5. (130

Combining (4.25), (4.26), (4.29), (4.30), we have shown that for every k > k and
every 1 € B1(0) it holds

: Rfk(w +tn,§) — f(@,§) dedd < a, (4.31)

where we recall that tj, € (%, ¢,). Finally, setting ¢ := t,/2, (4.31) yields

//rfk<x+n,£>—fk<:c,£>rdxd§Sa,
RJF

for every k > k and every n € B;(0), which is precisely (4.20).
Step 2: Now we prove that for every a > 0 there exists ¢ € (0,1) such that

/ |fe(z, & +n) — fr(z,§|drdé < a for n € Bf(0) and k € N. (4.32)
FxR

Fix n € S* ! and let ¢t € (0,1). By arguing as in (4.23) we have that for x € F

|7 (ug () - (€ +tn)) — 7(up(x) - )]
1 1
L+ fug(2) - €127 14 |ug(z) - (€ +tn)]?

From this last inequality we deduce from Lemma 4.1 that

/R 7 (u(2) - (€ + tn)) — (ur(z) - )| dé < Ct, (4.33)

Stmax{

(@) 7.

for a positive constant C' only depending on the dimension n. By (4.33) there exists
t € (0,1) such that for every z € F, k € N, n € S"~1, and every ¢ € [0, 1]

/R a4 ) — file, ©)] dé < a (4.34)

Eventually, (4.34) leads to (4.32).

Thanks to (4.19) and (4.32), it is not difficult to see that we are in position to
apply Fréchet-Kolmogorov Theorem (see, e.g., [1 |, Theorem 4.26]) and obtain that the
sequence { fi}ren is relatively compact in L'(F x R) for every open set F' compactly
contained in ). Therefore, up to passing to a subsequence, we have fr — fs as
k — oo strongly in L} (2 x R). By a diagonal argument we can possibly pass to
another subsequence such that

fr = fx pointwise a.e. in Q x R. (4.35)

From (4.35), we deduce the existence of an orthonormal basis {n1,...,n,} of R” such
that

(g - m) = fo pointwise a.e. in € for every i = 1,...,n as k — oo,
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for some measurable function f! : Q — [~7/2,7/2]. Since arctan is a diffeomorphism

with its image, we deduce the existence of a measurable function u: £ — R"” such that
u=0on A and

up —>u a.e. in Q\ Aas k— o0 (4.36)

|ug| — oo a.e. in A as k — oo, (4.37)

where A is the set defined in (1.6). Eventually, up to passing to a subsequence, we
also assume that uy — v in measure in Q \ A. We further remark that

reA = klim lug(x) - €| =00 for ae. £ € R™. (4.38)
— 00

Step 3: Let A > 0 and let 7),: R — [—A, A\] be a strictly increasing function such that
7y < 1, limy 400 Ta(8) = £, and 7\(t) = ¢t for t € [-A/2,A/2]. Fix £ € R", and let
y € TI¢. For every A > 0, we want to construct suitable modifications {vjatjen C
SBV(Q) of (ﬂk)i)\(t) = Ta(ug(y +t&) - £), as in [31, Theorem 3.4, Step 2|, such that

Ui ﬂi,A in Lj,.(Q5) as j — oo, (4.39)

and
lim inf £z, (@), 10 (I — ex)) > gMS%(vj,A, I (4.40)

k—o0
for every j sufficiently large and every interval I &€ QS, where ﬁfj’ A1) = (u(y+1t£)-§)
for y +t£ € Q\ A and i}, (t) = ) for y + t€ € A.
We notice that by applying Fubini’s Theorem for a.e. £ we have
L"{z € A: liminf |ug(x) - & < o0}) = 0.
k—o0

Then thanks to (4.36)—(4.37), up to a subsequence which does not depend on & and y
we have (for every A > 0)

(ﬁk)f/ N ﬁj A in L.((Q\ A)f/) for every ¢ and for H"-a.e. y € II%, (4.41)
|(ﬁk)§/\\ — ]ﬁf/)\\ =A in L}OC(AS) for a.e. &, for H" -a.e. y € I, (4.42)
as k — oco. We further observe that, since 0 < 73 < 1, then |7\(t) — T\ (t)| < [t — ']
for every t,t' € R, leading to
Fe(faB) ZFs(T)\(f)vB)v (443)
for every € > 0, every measurable set B C R, and every measurable function f: B — R.
We extend the function ﬁg ) to Riin such a way that a§ \(t) =0fort € R\Q§ Let a €
R satisfy conditions (7) and (ii) of Lemma 4.3 for ﬁg »» and let I7 := [a—{—?, a+ ZTH] e R.
We define vj ) in every interval I7 in the following way:
o If j(qlg’A(a + Z;r—l) — ﬁg’A(a + f))2 < 5, then ;) is the affine function that
coincides with ﬂg » at the endpoints of I7;
o ifj(ﬁ;)\ (a—i—’%l) —ﬁi’)\ (a—i—?))2 > T, then v; 5 is the piecewise constant function
that coincides with ﬂg » at the endpoints of 7 and has a unique discontinuity
in the middle point of the interval.

Then by Lemma 4.3, up to subsequences, (4.39) holds. Moreover, v; € SBV(Qg) and

T . T .. z+1 U z 2
QMSi(Uj;)\,I;):mm{TJ (uj)\(a—i_ j >_u§’)‘<a+j>>}

for every j € N and z € Z such that I7 e Qg
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Let I C Qg be an interval and F' € I'N (I —¢y) for k sufficiently large, note that such
F exists since IN(I —¢g) — I as k — oco. We notice that for every j sufficiently large,
depending on F', every intervals IJ'-z such that If C IN(I—e) also satisfy F' C UZI]‘-Z.
By virtue of (4.41) and (4.42) we can make use of Lemma 4.2 in I7 and infer, for a.e.
¢ € R™ and for H" -a.e. y € TI¢, that
lim inf FEk((uk)£ I7) > MS (Uj)\, I7).

k—o0 YA I

To prove (4.40) we sum over all z such that I ]Z C IN (I —eg) for every j sufficiently
large

liminf ., ()55, 20 (I = &) 2 SMS2 (050, F).

From the semicontinuity of the Mumford-Shah functional with respect to the L}
convergence, taking the limit as j — oo and then as F' 7 I, we obtain

loc™

li}gir()lngk((ﬂk)j/\,Iﬁ (I —ep)) > MSz( i\ I). (4.44)

We recall that

Fl(u,Q) —sup Z / F. ¢(u, B)e ~lEP qg

BeA
—sup 3 / ( (S, BS N (B~ »s);f,)d“rt”—l(y)) ¢le1¢F de.

From (4.43), Fatou’s Lemma, and (1.5), we get

SUP / / liminf F, (( uk);/\,Bgﬁ(B—£k§)§)|§\e*|£|2d7{nfl(y)d{
nJ1

B ¢ k—oo
Be#

< sup > /n/ liminf F., ((a3)5, BS 0 (B — ex€)5)[€le 1€ anm L (y) de

B ¢ k—oo
Be#

< lim inf sup Z A Q /m F., ((a N (B - Ekf)g)]f\eﬂwd’]{n*l(y) d¢

k—oo @
< hgnlnf}_ (uk,Q) S M,

which yields for every open ball B C €2
lim inf Fo, ()5 5, BSN(B=ex6)5) < C for ae. £ €R", for H" -ae. y € TI° (4.45)

where the constant C' > 0 may depend on ¢ and y but not on A and B. The above
inequality combined with (4.44) implies that ﬂg} ) € SBVZOC(Qg) for a.e. £ € R" and
H' lae. y e TIE.

Step 4: We claim that for a.e. £ € R?, for H" '-a.e. y € II¢, and for every bounded
interval I C Qg we have

HOASNT) #0 = HO(J,e NI)#0or IC AS, (4.46)

yk

IfIc Ag we have nothing to prove. Let us assume that there exists s € I\ Ag.
By contradiction, assume /HO(Jag NI)=0.For a.e. £ € R", for H" -a.e. y € TI¢, by
YA

(4.44) and (4.45) we get
/ (Vi  (t)]2dt < C. (4.47)
I
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Since ﬁj/\ belongs to SBV(I) and since H(J

e NI ) = 0, it is absolutely continuous

A

<

in I. Hence, for t € I we have

IINOIE

1/2

< [@, \(s)| + lenght(1)"/ <,

t
/ Vi A (0 de

for every t € I, where the last inequality follows from (4.47) and the fact that s € T \Ag
Since HO(AS N 1) # 0 and (4.38) holds, there exists £ € A5 N I such that |a§/\(f)] >C
for every A > 0 sufficiently large, which is a contradiction. This concludes the proof
of (4.46).

Step 5: Let I C Qg be a bounded interval. We claim that, for a.e. £ € R™ and for
H* La.e. y € II¢, the set Af/ is a finite union of intervals and

™ % . N
5?{0(3 AN < lim inf Fz, ()55 I N (I = &) (4.48)

Moreover, A is a set of finite perimeter.

Denote by (Ag)d the points of density d of Ag. We want to prove that (Ag)l
an open set. By contradiction, suppose that there exist ¢ € (Af,)1 and a sequence
{sj}jen C 5\ (A§)1 such that s; — t. Since almost every points of Qg \ (AS)1 belong

to (Ag) we find another sequence {tj}jen C (Ag)o such that t; — t. Without loss of
generality we assume t < tJ 1 for every j € N. By definition of points of density zero,

for every j, there eX1sts a point tl [tg), t? +1> of density one. By the previous step, there

exists another increasing sequence t; € [t?,tj ) NJ, i Since the sequence {t;} en

is strictly increasing, there exist disjoint open 1ntervals I such that ¢; € I;. Now, by

applying (4.44) and (4.45) on every I; we obtain 3,1 < Z] HO(Je NI) S C, which
Y,

is a contradiction. Hence, (Ag)1 is open.

From now on we assume that Ag coincides with (Ag)l. Suppose that |I '\ A§| > 0,
otherwise there is nothing to prove. Let K be a connected component of Ag NI, and
let t1 € K, tg € T\ Ag. Then, by Step 4, there exists t € J.e N1 between t; and

A

Y,
to. Using a similar argument as above, we prove that HO(Jﬁg N 1) is greater than or
Y,

equal to the number of connected components of Ag N I and is uniformly bounded,
from which it follows that Aé is the union of a finite number of intervals. Finally, (4.48)
is a consequence of 7—[0(8*14E NIy <H(J, ¢ NI) and of (4.44).

To conclude we need to prove that A is of finite perimeter. Multiplying (4.48) by
|€le €” and then integrating in ¢ € R” and y € II¢ we obtain for every ball B C

Cn)H" 1 (9*ANB) < / ( . Ho(a*AgﬂBg)dH"”(y))\ﬂe*‘ﬂzdf

S/ </ liminf £, ()5, B§ 0 BS — 20)dH"~" () ) ¢l d
n e k—oo Y,
< liminf 7, (ug, B),

k—o0
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where the last inequality follows from Fatou’s Lemma. This proves in particular that
A has locally finite perimeter in 2. By Besicovitch covering Theorem there exist

a dimensional constant j(n) and By, ..., Bj,) countable families of pairwise disjoint
open balls contained in €2, such that Q C Ugg) Upen; B.

(n)
Cn)H" 1 (9" A Z > Cn)H" (9" ANB)
i=1 BEB;

j(n)
< o
< g E hkrgg;f}" (ug, B)

1=1 BeB;

IN

. .. 1
j(n) hgggf Z F., (ug, B)
BeB;
< j(n)lim inf}"glk (ug, Q) < oo,
k—o0
where, in the last but one inequality above, we used Remark 2.11.
Step 6: We conclude by proving that v € GSBD(2) and that (1.7) holds.
Fix # be any finite family of disjoint balls in €2 and let B € #. For a.e. £ € R", for

H" Lae. y € ¢, for every interval I C B of the form [ = (t — 6,t+6) for t € 8*A§
and 6 > 0, by (4.43), (4.44) and (4.48), we have

hmmf F,, ((a )5 Bg N(B - €kf)§)
> lim inf P, ()5, 10 (B = ex8)j) + lim inf Fz, ()5, By \ TN (B = ex);)

> liminf Fo, ((i)y, 5.1 0 (B = ex€)j) + liminf B, (@), By \ 10 (B = ex€)j)

\ >\

>
-2

=100 A5nT) + 2 HO(J A\I)+/§ Vs (b)) dt.
Uy, B

y

HO(9*AS N T) + —MSg (ﬂf/,» BE\ )

:]

[\

Since the above inequality holds for every 6 > 0 and ¢ € 8*145, we get
imi 06, BE 6y > T/009% A¢ £ ()2
hkn_lgcgf F, ((g)y, By N (B — ex€)y) > 57—[ (0" A5 U Jﬁi,x) + /Bg (Vi ()] dt.

Since 7)(t) =t for t € [-A/2,A/2] and J ¢ = J.¢, we infer that
YA Y
.. N ™ *
lmint B, (045, 350 (B = 24)5) 2 SH07A5 U.Tc ) +/ Vs (1) 2 dt

s % R
57{ (07 A5 U J, ac) Vs, ()] dt.

/{tEBf,:m;A(tﬂg)\/Q}

Now, by sending A — oo we get for every ¢ € R

lim inf FL, ((di)5, BS N (B — 1)5) > g%o(a*AguJﬁg) +/B§ [Vas(t)[* dt
Yy

k—o0

™ N
> EMS%(ug(l _XAg) +CXAng§>'

By combining the above inequality with Fatou’s Lemma we deduce

P ) .
sup Z </n ( Msg(ﬂi(l - XAE) + CXAg,Bg)dH"_l(y)> |£|Pe—|§\ d£>



32 S. ALMI, E. DAVOLI, A. KUBIN, AND E. TASSO

=

P

P 2
< liminfsup ) < /Q_Q ( /H  Fe((n)g, By 0 (B —ekg)g)dw—l(y)> g[Pelé d£>

Be%#
= likn_l)icgff;pk (ug, Q) < o0,

€k

which implies that jif}() < oo, and hence, by Remark 2.9, also that u € GSBV¢(Q;R").
Thus by Theorem 3.1 we conclude that v € GSBD(2). In addition, recall that, by
Lemma 4.6, we have for every ¢ € R

1
p P
sup Z g </n < - MS%(ﬁi(l — XA%) Xy Bg)d’,l—[n—l(y)> ’£‘p€—|§2d€>

- /Q eple(uc(l — xa))dz + B,H" " (J,,),

where u.: Q — R” is defined as u. := u(l — x4) + cx4. Since a measure theoretic
argument yields that 0*A C J,, for a.e. ¢ € R, inequality (1.7) follows.

5. '-CONVERGENCE AND CONVERGENCE OF QUASI-MINIMISERS

This section is devoted to the proof of Theorem 1.2 as well as to the convergence,
up to subsequences, of quasi-minimizers of /% under Dirichlet boundary conditions.
The former is performed in Section 5.1, the latter in Section 5.2.

5.1. I'-convergence. We start with the following pointwise convergence result follow-
ing the strategy in [31, Theorem 3.4].

Proposition 5.1. Let I C R be an interval and let uw € GSBV(I). For every e > 0, it
holds

F(u,IN(I—¢) < gMS%(u,I). (5.1)

Proof. Since I is an interval, the set N (I —¢) is also an interval or it is empty. Assume
that it is not empty otherwise there is nothing to prove. Define A*:={t € IN(l—¢):
[t,t +e] N Jy, # 0}. Notice that t € I N (I — ¢) implies [t,t + €] C I. We have

i/ arctan <(u(t + 8)5_ u(t))2>dt < 21€’A6| < g”HO(Ju) )

Since arctanx < x for x > 0, we have

. 2
1 / arctan <(u(t +) —ult)) >dt
& JIN(I-¢))\Ae €

1 t+e
< / arctan (/ |Vu(r)|? dT) dt
€ J(INn(I—e))\Ae t

1 t+e
< / / |Vu(r)?drdt < /|Vu(t)|2dt.
€ JUn(I—-e)\A: Jt I

By combining the above two inequalities we conclude the proof. O

We are now in a position to conclude the proof of Theorem 1.2.

Proof of Theorem 1.2. We notice that the I'-liminf inequality is a direct consequence
of Theorem 1.1 (cf. (1.7)). To conclude for the I'-convergence, it is enough to show
that for every u € L°(£2;R™) it holds true

lim FP(u, Q) < FP(u,). (5.2)
e—0
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We begin by recalling that

FP(u,Q) = sup Z (ﬂz_ﬂ F, ¢(u, B)pe_5|2d§> '

% Ben

P , v
= sup Z (/Q_Q </H£ F.(a$, BSN (B —sg)g)dy> |¢[Pe dg) ,

where the supremum is taken over the set of finite families of disjoint open balls
contained in 2. Then, since (B — 5§)§ = Bg — ¢ and since Bg C R is an interval, we
combine the above equation with (5.1) and we deduce

£

1
p P
lim sup FZ(u,2) < limsup sup Z g <A . < MSQ(ag’BS)dy) |€’P€—|£|2d€)
i1 Hg ™

e—0 e—0 B

Be#
1
< u MSa (@, BEdy ) JelrePag )
= sup Z 5 z(uyv y) Y ’5‘ e é- :
2 Bew n I1¢ T
Thanks to Lemma 4.6 we infer (5.2). This concludes the proof of the theorem. O

5.2. Convergence of quasi-minimisers. For the purposes of this subsection, we fix
two open sets  C ' C R™. We further assume that 0p(2, namely, the Dirichlet part
of the boundary, satisfies pQ2 = QN Q. As it is customary in free discontinuity
problems, we consider a relaxed boundary condition on dp€). To this purpose, our
Dirichlet datum is given by a function f: dp{! — R™ which we identify, with a slight
abuse of notation, with the trace on dpQ of a function f € H1(€;R"). The domain
of our functionals is thus denoted by LS)C(Q’ ;R™) and defined as
LY R™) = {u € LO(Q;R") s u= f ae inQ\Q}.
In addition we define for every ¢ > 0 the functionals F¢ : LO(;R") — [0, 00| as
FP(u, ) ifue LY(Y;R”
fg’f(U,Q,) — 5( ) f( )
+00 otherwise in L°(€)'; R™)
and the limit functional 7P/ : LO(Y; R™) — [0, oo] as
FP(u, ) if u e GSBD(QY) N LAY R”
fﬂ?,f(u’ Q) = ( ) () f( )
+o0 otherwise in L°(QY; R™).

We further observe that the functional FP/ takes the form
FPI (u, ) = / op(e(u))dx + 5, <7—[”_1(Ju NQ)+H" (I, N 8DQ)> ,
Ql

and that the term H”_l(Ju N 0pf?) penalizes the part of Ip2 on which the Dirichlet
condition is not attained, namely, the set {x € dpQ : v (x) # f(z)} where v~ (x)
denotes the trace with respect to the inner normal to 0f) of u at z .

We have the following theorem.

Theorem 5.2. Let Q.9 C R™ be two open sets, let OpQ = 02N Q' be the Dirichlet
part of the boundary, and let f € H'(Y;R"™) be an admissible Dirichlet datum as

above. Assume that {ue}e>0 s a family of quasi-minimisers for {Fg”f}Do, namely,

1 pvf N 1 p:f / —
tig (P20 ) = int 0 ) ) <o, (53)
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Then, there exist a minimizer u € GSBD(Q') N LS{(Q’; R™) of FP/ and a subsequence
e, — 0 as k — oo such that us, — u almost everywhere in €Y.

Proof. By (5.2) we have that sup.-g FPI(f,) < co. Hence, condition (5.3) yields
SUpP,~q ff’f(ug, ) < co. We are thus in position to apply Theorem 1.1 to infer the
existence of a subsequence e — 0 as k — oo and a finite perimeter set A C Q'
such that A = {z € ' : |u., | = 00 as k — oo}, ue, — u pointwise a.e. in '\ A for
u € GSBD()) with u = 0 in A. In addition, (1.7) is fulfilled. Since u. = f a.e. in Q'\ 2
for every € > 0, we deduce A C (.

It remains to prove that u is actually a minimiser of FP/(-,€). We observe that
we cannot immediately infer that « is a minimiser from the I'-convergence given by
Theorem 1.2, since the sequence u., does not convergence in measure to v in the whole
of . Nevertheless, the proof can be achieved with the very same argument as in the
standard case. Indeed, take w € L°(€; R™). Since we want to prove that FPf (w, ') >
FP S (u, ), we assume with no loss of generality that w € GSBD(Q')N LS{(Q’; R™). By
virtue of (1.7), (5.2), and (5.3), we estimate

FPol (w, Q) = kh—glo Fféf(w, Q) > liﬁsip veLoi(rgl)f/;Rm)f;pJ(v’ Q)

= lim sup 77 (u, , Q') > / op(e(w))dz + B,H™ (T, U d* A)
Q/

k—o0

n—1
> [ eetwydo+ g )

= /Q eple(w) dz + 5, (H”*(Ju 1) +H"(J, N aDm) — P (u, ).

Thanks to the arbitrariness of w we deduce that 9*A C J, and that u is a minimizer
of FP:f, a

APPENDIX A.

Proof of Proposition 3.15. For every measurable set B C A we can consider the linear
map ig: LY(A) — LY%(B) defined as i(v) := vL B. Clearly, being V C L°(A), the
map ip is a well defined linear map between the vector spaces V' and V(B), where
we have set V(B) := {u € L%(B) : u = vL B, for some v € V}. We claim that there
exists . > 0 such that for every measurable set K C A with £L"(A\ K) < . we have
that the linear map ix: V — V(K) is injective. Indeed, fix a basis {vi,...,v;} for
V and assume by contradiction that there exists €; \, 0 and measurable sets K; C A
with £"(A \ K;) < ¢; such that there exists real coefficients, not all identically zero,

{ad,...,a]}, satisfying
k
> al(viLKj) =0. (A1)
=1

By renormalization, with no loss of generality, we may assume that for every i =

1,...,k and every j = 1,2,... it holds true \a{\ < 1 and there exists at least one
i(j) = 1,...,k such that |ag(j)| = 1. Up to pass to a not relabelled subsequence in

j, we may suppose that the index i(j) does not depend on j, and that ozg — o for

every i = 1,...,n, for some real coefficients {ay, ..., a;} which are not all identically
zero. Therefore, since K; A in measure we deduce that Zle olif;(v;) (extended

to zero out of K;) converges to Zle a;v; pointwise a.e. in A as j — oco. From (A.1)
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we immediately deduce that Zle a;v; = 0 in L°(A) which gives a contradiction. The
claim is thus proved.

Now assume that {w;};en C V is a Cauchy sequence. Since L°(A) is complete we
have d(wj,w) — 0 as j — oo for some w € L°(A). We want to prove that w € V.
Up to passing to a subsequence in j, the d-convergence implies w; — w pointwise a.e.
in A as j — oo. Therefore, for every 0 < € < g, we apply Egorov’s Theorem to find
a measurable set K C A such that L"(A\ K) < ¢ and w; — w uniformly on K as
Jj — oo. But this means that the sequence {ix(w;)};en is a sequence belonging to
the finite-dimensional vector space V(K ) and converging with respect to the L!'-norm.

Hence, we find real coefficients {af, ..., aff} such that ix (w) = Zle ol ik (v;), where
{vi,...,ux} is a basis of V. In order to conclude we need to show that, given a
sequence of measurable sets K; , A the coefficients {afj,...,afj} are definitely

constant as j — oo. So assume by contradiction that for every j > 1 we find j <
. . K K; K; K, .

J1 < jo such that {a;”",...,a, "} # {0 ”%,...,0,”?}. Now choose j; so large such
that L"(A\ (Kj, N Kj,)) < .. By our assumption on the non-coincidence between
the K -coefficients and the Kj,-coefficients, we deduce that the linear combination
S (o7t — o; ?)ik; nK;, (v;) is identically null in LY(K;, NKj,) while its coefficients
are not all identically equal to zero. But this gives a contradiction with the fact
that, thanks to our previous claim, the linear map ir; nk, : V — V(Kj N Kj,) C

L%(K;, N Kj,) is injective. O
ACKNOWLEDGEMENTS

This research has been supported by the Austrian Science Fund (FWF) through
grants 10.55776/F65, 10.55776/Y1292, 10.55776/P35359, 10.55776/F100800, by the
OeAD-WTZ project CZ04/2019 (MSMTCR 8J19AT013), by the Italian Ministry of
Research through the PRIN 2022 project No. 2022HKBF5C “Variational Analysis of
Complex Systems in Materials Science, Physics and Biology”, and by the University
of Naples Federico II through the FRA Project “ReSinApas”. S.A. and A.K. are also
members of the Gruppo Nazionale per I’Analisi Matematica, la Probabilita e le loro
Applicazioni (INAAM-GNAMPA). For open access purposes, the authors have applied
a CCBY public copyright license to any accepted manuscript version arising from this
submission.

Conflict of interest: The Authors declare no conflict of interest.

Data availability: The manuscript contains no associated data.

REFERENCES

[1] R. Alicandro, M. Focardi, and M.S. Gelli. “Finite-difference approximation of
energies in fracture mechanics”. In: Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)
29.3 (2000), pp. 671-709. 15SN: 0391-173X,2036-2145. URL: http://www.numdam.
org/item?id=ASNSP_2000_4_29_3_671_0.

[2] S. Almi and E. Tasso. “A general criterion for jump set slicing and applications”.
In: Preprint (2023).

[3] S. Almi and E. Tasso. “A new proof of compactness in G(S)BD”. In: Advances in
Calculus of Variations 16.3 (2023), pp. 637-650. DOI: doi:10.1515/acv-2021-
0041.

[4] L. Ambrosio, N. Fusco, and D. Pallara. Functions of bounded variation and free
discontinuity problems. Oxford Mathematical Monographs. The Clarendon Press,
Oxford University Press, New York, 2000, pp. xviii4+-434. 1SBN: 0-19-850245-1.


https://doi.org/10.55776/F65
https://doi.org/10.55776/Y1292
https://doi.org/10.55776/P35359
https://doi.org/10.55776/F100800
http://www.numdam.org/item?id=ASNSP_2000_4_29_3_671_0
http://www.numdam.org/item?id=ASNSP_2000_4_29_3_671_0
https://doi.org/doi:10.1515/acv-2021-0041
https://doi.org/doi:10.1515/acv-2021-0041

36

[5]

[15]

[16]

[17]

REFERENCES

A. Bach, M. Cicalese, and M. Ruf. “Random finite-difference discretizations of
the Ambrosio-Tortorelli functional with optimal mesh-size”. In: STAM J. Math.
Anal. 53.2 (2021), pp. 2275-2318. 18SN: 0036-1410,1095-7154. por: 10 . 1137/
20M1312927.

A. Braides and M. Caroccia. “Asymptotic Behavior of the Dirichlet Energy on
Poisson Point Clouds”. In: Journal of Nonlinear Science 33.5 (2023), p. 80. DOI:
10.1007/s00332-023-09937~-7. URL: https://doi.org/10.1007/s00332-
023-09937-7.

A. Braides and G. Dal Maso. “Non-local approximation of the Mumford-Shah
functional”. In: Calc. Var. Partial Differential Equations 5.4 (1997), pp. 293-322.
ISSN: 0944-2669,1432-0835. DOI: 10.1007/s005260050068.

A. Braides and A. Piatnitski. “Homogenization of ferromagnetic energies on
Poisson random sets in the plane”. In: Arch. Ration. Mech. Anal. 243.2 (2022),
pp- 433-458. 18SN: 0003-9527,1432-0673. DOT: 10.1007/s00205-021-01732-6.
Kristian Bredies, Marcello Carioni, and Martin Holler. “Regularization graphsAia
unified framework for variational regularization of inverse problems”. In: Inverse
Problems 38.10 (Sept. 2022), p. 105006. DOI: 10.1088/1361-6420/ac668d. URL:
https://dx.doi.org/10.1088/1361-6420/ac668d.

Kristian Bredies and Martin Holler. “Higher-order total variation approaches
and generalisations”. In: Inverse Problems 36.12 (Dec. 2020), p. 123001. por:
10.1088/1361-6420/ab8£80. URL: https://dx.doi.org/10.1088/1361-
6420/ab8£80.

H. Brezis. Functional analysis, Sobolev spaces and partial differential equations.
Universitext. Springer, New York, 2011, pp. xiv+599. ISBN: 978-0-387-70913-0.
Eva-Maria Brinkmann, Martin Burger, and Joana Sarah Grah. “Unified Models
for Second-Order TV-Type Regularisation in Imaging: A New Perspective Based
on Vector Operators”. In: Journal of Mathematical Imaging and Vision 61.5
(2019), pp. 571-601. po1: 10.1007/510851-018-0861~-6. URL: https://doi.
org/10.1007/s10851-018-0861-6.

Tatiana A. Bubba, ed. Data-driven Models in Inverse Problems. Berlin, Boston:
De Gruyter, 2025. 1SBN: 9783111251233. DOI: doi: 10.1515/9783111251233.
URL: https://doi.org/10.1515/9783111251233.

L. Bungert and K. Stinson. “Gamma-convergence of a nonlocal perimeter arising
in adversarial machine learning”. In: Calculus of Variations and Partial Differ-
ential Equations 63.5 (2024), p. 114. DOI: 10.1007/s00526-024-02721-9. URL:
https://doi.org/10.1007/s00526-024-02721-9.

M. Caroccia. “A Compactness Theorem for functions on Poisson point clouds”.
In: Nonlinear Anal. 231 (2023), p. 113032.

M. Caroccia, A. Chambolle, and D. Slepéev. “Mumford-Shah functionals on
graphs and their asymptotics”. In: Nonlinearity 33.8 (2020), pp. 3846-3888. ISSN:
0951-7715,1361-6544. DOT: 10.1088/1361-6544/ab81ee.

A. Chambolle. “Finite-differences discretizations of the Mumford-Shah functional”.
In: M2AN Math. Model. Numer. Anal. 33.2 (1999), pp. 261-288. 1SSN: 0764-
583X,1290-3841. por: 10.1051/m2an:1999115.

A. Chambolle. “Image segmentation by variational methods: Mumford and Shah
functional and the discrete approximations”. In: STAM J. Appl. Math. 55 (1995),
pp. 827-863.

A. Chambolle and V. Crismale. “Compactness and lower semicontinuity in GSBD”.
In: J. Eur. Math. Soc. (JEMS) 23.3 (2021), pp. 701-719. 1SSN: 1435-9855,1435-
9863. DOI: 10.4171/jems/1021.


https://doi.org/10.1137/20M1312927
https://doi.org/10.1137/20M1312927
https://doi.org/10.1007/s00332-023-09937-7
https://doi.org/10.1007/s00332-023-09937-7
https://doi.org/10.1007/s00332-023-09937-7
https://doi.org/10.1007/s005260050068
https://doi.org/10.1007/s00205-021-01732-6
https://doi.org/10.1088/1361-6420/ac668d
https://dx.doi.org/10.1088/1361-6420/ac668d
https://doi.org/10.1088/1361-6420/ab8f80
https://dx.doi.org/10.1088/1361-6420/ab8f80
https://dx.doi.org/10.1088/1361-6420/ab8f80
https://doi.org/10.1007/s10851-018-0861-6
https://doi.org/10.1007/s10851-018-0861-6
https://doi.org/10.1007/s10851-018-0861-6
https://doi.org/doi:10.1515/9783111251233
https://doi.org/10.1515/9783111251233
https://doi.org/10.1007/s00526-024-02721-9
https://doi.org/10.1007/s00526-024-02721-9
https://doi.org/10.1088/1361-6544/ab81ee
https://doi.org/10.1051/m2an:1999115
https://doi.org/10.4171/jems/1021

REFERENCES 37

[20] A. Chambolle and V. Crismale. “Equilibrium configurations for nonhomogeneous
linearly elastic materials with surface discontinuities”. In: Ann. Sc. Norm. Super.
Pisa Cl. Sci. (5) 24.3 (2023), pp. 1575-1610. 1ssN: 0391-173X,2036-2145.

[21] Antonin Chambolle and Vito Crismale. “A characterization of Generalized func-
tions of Bounded Deformation”. In: (2025). cvgmt preprint. URL: http://cvgnt .
sns.it/paper/6990/.

[22] G. Cortesani. “Sequences of non-local functionals which approximate free-discontinuity
problems”. In: Arch. Rational Mech. Anal. 144.4 (1998), pp. 357-402. 1sSN: 0003-
9527. DoI: 10.1007/s002050050121.

[23] V. Crismale, G. Scilla, and F. Solombrino. “A derivation of Griffith functionals
from discrete finite-difference models”. In: Calc. Var. Partial Differential Equa-
tions 59.6 (2020), Paper No. 193, 46. 1ssN: 0944-2669,1432-0835. DOI: 10.1007/
s00526-020-01858-7.

[24] R. Cristoferi and M. Thorpe. “Large data limit for a phase transition model
with the p-Laplacian on point clouds”. In: Furopean J. Appl. Math. 31.2 (2020),
pp. 185-231. 1sSN: 0956-7925,1469-4425. DOL: 10.1017/s0956792518000645.

[25] G. Dal Maso. An introduction to I'-convergence. Vol. 8. Progress in Nonlinear
Differential Equations and their Applications. Birkhduser Boston, Inc., Boston,
MA, 1993, pp. xiv+340. 1SBN: 0-8176-3679-X. DOI: 10.1007/978-1-4612-0327~
8.

[26] G. Dal Maso. “Generalised functions of bounded deformation”. In: J. Fur. Math.
Soc. (JEMS) 15.5 (2013), pp. 1943-1997. 1sSN: 1435-9855,1435-9863. DOI: 10 .
4171/JEMS/410.

[27] G. Del Nin. “Rectifiability of the jump set of locally integrable functions”. In:
Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 22.3 (2021), pp. 1233-1240. 1sSN: 0391-
173X,2036-2145.

[28] F. Farroni, G. Scilla, and F. Solombrino. “On some non-local approximation of
nonisotropic Griffith-type functionals”. In: Math. Eng. 4.4 (2022), Paper No. 031,
22. 18SN: 2640-3501. DOI: 10.3934/mine.2022031.

[29] H. Federer. Geometric measure theory. Vol. Band 153. Die Grundlehren der math-
ematischen Wissenschaften. Springer-Verlag New York, Inc., New York, 1969,
pp. xiv+676.

[30] N. Garcia Trillos and D. Slepcev. “Continuum limit of total variation on point
clouds”. In: Arch. Ration. Mech. Anal. 220.1 (2016), pp. 193—241. 1sSN: 0003-
9527,1432-0673. DOI: 10.1007/s00205-015-0929~-2z.

[31] M. Gobbino. “Finite difference approximation of the Mumford-Shah functional”.
In: Communications on Pure and Applied Mathematics 51.2 (1998), pp. 197-228.
DOI: https://doi.org/10.1002/(SICI)1097-0312(199802)51:2<197::AID-
CPA3>3.0.C0;2-6.

[32] M. Gobbino and M.G. Mora. “Finite-difference approximation of free-discontinuity
problems”. In: Proc. Roy. Soc. Edinburgh Sect. A 131.3 (2001), pp. 567-595. ISSN:
0308-2105,1473-7124. por: 10.1017/50308210500001001.

[33] Michael Hintermiiller, Martin Holler, and Kostas Papafitsoros. “A function space
framework for structural total variation regularization with applications in in-
verse problems”. In: Inverse Problems 34.6 (Apr. 2018), p. 064002. DOI: 10.1088/
1361-6420/2ab586. URL: https://dx.doi.org/10.1088/1361-6420/aab586.

[34] Jian Liang and Hongkai Zhao. “Solving Partial Differential Equations on Point
Clouds”. In: SIAM Journal on Scientific Computing 35.3 (2013), A1461-A1486.
DOI: 10.1137/120869730.


http://cvgmt.sns.it/paper/6990/
http://cvgmt.sns.it/paper/6990/
https://doi.org/10.1007/s002050050121
https://doi.org/10.1007/s00526-020-01858-7
https://doi.org/10.1007/s00526-020-01858-7
https://doi.org/10.1017/s0956792518000645
https://doi.org/10.1007/978-1-4612-0327-8
https://doi.org/10.1007/978-1-4612-0327-8
https://doi.org/10.4171/JEMS/410
https://doi.org/10.4171/JEMS/410
https://doi.org/10.3934/mine.2022031
https://doi.org/10.1007/s00205-015-0929-z
https://doi.org/https://doi.org/10.1002/(SICI)1097-0312(199802)51:2<197::AID-CPA3>3.0.CO;2-6
https://doi.org/https://doi.org/10.1002/(SICI)1097-0312(199802)51:2<197::AID-CPA3>3.0.CO;2-6
https://doi.org/10.1017/S0308210500001001
https://doi.org/10.1088/1361-6420/aab586
https://doi.org/10.1088/1361-6420/aab586
https://dx.doi.org/10.1088/1361-6420/aab586
https://doi.org/10.1137/120869730

38

[35]

REFERENCES

R. Marziani and F. Solombrino. “Non-local approximation of free-discontinuity
problems in linear elasticity and application to stochastic homogenisation”. In:
Proc. Roy. Soc. Edinburgh Sect. A (2023), pp. 1-35. DOI: 10.1017/prm.2023.51.
M. Negri. “A non-local approximation of free discontinuity problems in SBV
and SBD”. In: Calc. Var. Partial Differential Equations 25.1 (2006), pp. 33-62.
ISSN: 0944-2669,1432-0835. DOI: 10.1007/s00526-005-0356-3.

W. Rudin. Functional analysis. Second. International Series in Pure and Applied
Mathematics. McGraw-Hill, Inc., New York, 1991, pp. xviii+424. 1SBN: 0-07-
054236-8.

M. Ruf. “Discrete stochastic approximations of the Mumford-Shah functional”.
In: Ann. Inst. H. Poincaré C Anal. Non Linéaire 36.4 (2019), pp. 887-937. ISSN:
0294-1449,1873-1430. DOI: 10.1016/j.anihpc.2018.10.004.

G. Scilla and F. Solombrino. “Non-local approximation of the Griffith functional”.
In: NoDEA Nonlinear Differential Equations Appl. 28.2 (2021), Paper No. 17, 28.
1ssN: 1021-9722,1420-9004. po1: 10.1007/s00030-021-00682-y.


https://doi.org/10.1017/prm.2023.51
https://doi.org/10.1007/s00526-005-0356-3
https://doi.org/10.1016/j.anihpc.2018.10.004
https://doi.org/10.1007/s00030-021-00682-y

	1. Introduction
	2. Definitions and notation
	3. Structure of the space GBVE
	3.1. Preliminaries
	3.2. Proof of Theorem 3.1

	4. Proof of Theorem 1.1
	4.1. Preliminary results
	4.2. Proof of Theorem 1.1

	5. -convergence and convergence of quasi-minimisers
	5.1. -convergence
	5.2. Convergence of quasi-minimisers

	Appendix A. 
	Acknowledgements
	Conflict of interest:
	Data availability:

	References

