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Abstract. We study partial regularity for degenerate elliptic systems of double-phase type, where the

growth function is given by H(x, t) = tp+a(x)tq with 1 < p ≤ q and a(x) a nonnegative C0,α-continuous
function. Our main result proves that if q

p
≤ 1 + α

n
, the gradient of any weak solution is locally Hölder

continuous, except on a set of measure zero.

1. Introduction

This article deals with nonlinear degenerate elliptic systems of double phase type:

(1.1) div A(x,Du) = 0 in Ω,

where Ω ⊂ Rn with n ≥ 2 is an open set, u = (u1, . . . , uN ) with N ≥ 1, and A : Ω × RN×n → RN×n.
More precisely, let H : Ω× [0,∞)→ [0,∞) be defined by

(1.2) H(x, t) := tp + a(x)tq ,

with a : Ω→ R and 1 < p ≤ q satisfying

(1.3) a ∈ C0,α(Ω) , 0 ≤ a ≤ L , and
q

p
≤ 1 +

α

n
,

for some α ∈ (0, 1] and L > 0. Then the nonlinearity A(x, ξ) satisfies the following double phase type
growth and ellipticity conditions:

(A1) |A(x, ξ)|+ |ξ||DξA(x, ξ)| ≤ LH ′(x, |ξ|) ,

(A2) 〈DξA(x, ξ)λ |λ〉 ≥ νH ′′(x, |ξ|)|λ|2 ,

for every x ∈ Ω and ξ ∈ RN×n, λ ∈ RN×n and for some 0 < ν ≤ L, where H ′(x, t) and H ′′(x, t) denote
the first and second derivatives of t→ H(x, t), respectively, and 〈· | ·〉 denotes the Euclidean inner product
in RN×n. Note that in the region where a(x) = 0, we have H(x, t) = tp so that H has a p-phase, while in
the region where a(x) > 0, the function H has a (p, q)-phase. In particular, if a(x) ≡ 0, then H(x, t) ≡ tp
and thus A(x, ξ) satisfies the standard p-growth condition. We also note that (A2) implies that for every
x ∈ Ω and ξ1, ξ2 ∈ RN×n,

(1.4) 〈A(x, ξ1)−A(x, ξ2) | ξ1 − ξ2〉 ≥ ν̃H ′′(x, |ξ1|+ |ξ2|)|ξ1 − ξ2|2

for some ν̃ > 0 depending on p, q and ν. We say that a function u ∈W 1,1(Ω;RN ) with H(·, |Du|) ∈ L1(Ω)
is a weak solution to (1.1) if

(1.5)

ˆ
Ω

〈A(x,Du) |Dψ〉dx = 0

holds for all ψ ∈W 1,1
0 (Ω;RN ) with H(·, |Dψ|) ∈ L1(Ω).

The Hölder continuity of the gradient of weak solutions for degenerate or singular elliptic systems of
the form (1.1) has been a long-standing and still active research topic. In the case of a single equation,
i.e., N = 1, if H(x, t) ≡ H0(t) := tp + a0t

q for some constant a0 ≥ 0, and A(x, ξ) satisfies conditions
(A1), (A2) along with a suitable Hölder continuous condition for the x variable, then the gradient of the
weak solution to (1.1) is locally Hölder continuous. See [38], and also [47, 36] for the case a0 = 0. (Note
that the paper [38] considers a more general function than H0(t).) However, this everywhere regularity
result does not extend to the vectorial case, particularly when N ≥ 2 and n ≥ 3, even if A(x, ξ) ≡ A0(ξ)
and H(x, t) = t2. See [37] for more discussion for vectorial problems.

Neverthelss, if the system satisfies an isotropic structure, the gradient of the weak solution is locally

Hölder continuous. Uhlenbeck [46] proved that if A(x, ξ) ≡ %(|ξ|2)ξ and %(t) ∼ |t|
p−2
2 with p > 2 ( see

[46, (1.3) and (1.4)] for detailed conditions on % which are known as the Uhlenbeck structure condition),
then the gradient of the weak solution is locally Hölder continuous. The prototype of a system satisfying
the Uhlenbeck structure is the p-Laplace system

div
(
|Du|p−2Du

)
= 0 in Ω.
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This result was extended to the case 1 < p < 2 by Tolksdorf [45]. We remark that the p-Laplace system
is degenerate when p > 2, and singular when 1 < p < 2, since |Du|p−2 tends to ∞ or 0 as |Du| → 0,
respectively. Moreover, by setting %(t) = ϕ′(

√
t)/
√
t, where ϕ′ is the derivative of a given function ϕ, we

have

div

(
ϕ′(|Du|)
|Du|

Du

)
= 0 in Ω,

which is the Euler-Lagrange system of the isotropic energy
´

Ω
ϕ(|Du|) dx. For this system, Diening,

Stroffolini and Verde [21] proved everywhere C1,α-regularity by assuming a suitable condition on ϕ,
which generalizes the Uhlenbeck condition [46, (1.3) and (1.4)].

Although we cannot expect everywhere Hölder continuity of the gradient of weak solutions to gen-
eral degenerate system (1.1), partial Hölder continuity, that is, Hölder continuity except on a Lebesgue
measure zero set, can still be achieved by assuming a suitable condition on A(x, ξ) additionally. Duzaar
and Mingione [24] first obtained partial Hölder continuity results for the gradient of weak solutions when
A(x, ξ) = A0(ξ) and H(x, t) ≡ tp. The key tool in their proof is harmonic approximation: specifically,
A-harmonic and p-harmonic approximation. The A-harmonic approximation was first used in partial
regularity theory by Duzaar and Grotwoski [23]; see also [27]. On the other hand, the p-harmonic ap-
proximation was first obtained in [25]. Note that the harmonic approximation results in [23, 25] are
proved by using contradiction argument. See [26] for more discussion on harmonic approximation. Later,
harmonic approximations in more general settings have been obtained by Diening, Lengeler, Stroffolini
and Verde [20, 22], which will be introduced in Section 2.4, where the proofs employ Lipschitz truncation
argument instead of the contradiction method. For further results on partial regularity in degenerate
systems or relevant variational problems, we refer to [5, 6, 7, 11, 32, 43].

The energy of the form

(1.6)

ˆ
Ω

|Du|p + a(x)|Du|q dx ,

known as the double phase energy, and related equations and systems have been intensively studied over
the last decade, especially following sharp and comprehensive regularity results obtained in the papers of
Baroni, Colombo and Mingione [12, 13, 3, 4]. The double phase energy has been first introduced by Zhikov
[48, 49, 50] in the context of Homogenization and as an example exhibiting Lavrentiev phenomenon.
Subsequently, Esposito, Leonetti and Mingione [28], as well as Fonseca, Malý and Mingione [29], provided
further examples of double phase problems related to Lavrentiev phenomenon, which also establish the
sharpness of the condition (1.3) in order to obtain regularity results. In particular, the latter paper
also investigates some regularity results namely, higher integrability and fractional differentiability of
corresponding solutions. Finally, a sharp and maximal regularity result has been obtained in [12, 13, 4].
Specifically, it was shown that if u is a minimizer of the energy (1.6) with the condition (1.3), then

Du ∈ C0,γ
loc (Ω) for some γ ∈ (0, 1). For further regularity results related to double phase type problems,

we refer to [2, 8, 9, 14, 15, 16, 17, 33, 39, 40, 41, 42, 44] and the references therein.
Partial regularity for nondegenerate systems with double phase growth has been studied in [40, 41, 44],

where the term ‘nondegenerate’ for the system (1.1) means |DξA(x,0)| ∼ 1. Furthermore, those papers
assume the superquadratic condition, namely the smaller exponent p of H is larger that or equal to 2.
However, the general case of degenerate systems with double phase growth has not yet been explored. In
this paper, we consider degenerate systems of the form (1.1) with double phase growth and prove partial
Hölder regularity of the gradient of their weak solutions (see Theorem 1.1). Notably, we do not assume
that the superquadratic condition holds, and thus a unified approach independent of the the exponent p
is required.

The proof of the main theorem (Theorem 1.1) is based on the harmonic approximation approach
introduced in [24], which has been further developed for the Orlicz growth case in [11, 32]. The double
phase growth condition presents different phenomena, as it does not imply uniform ellipticity with respect
to the gradient variable. Therefore, we need to develop the approach in our setting. Moreover, the excess
functional and methodology used in [40, 41] are not working on this paper, since we are also dealing with
the degenerate case as well as both the superquadratic (p ≥ 2) and the subquadratic (1 < p < 2) cases
at the same time. To handle this challenge, we introduce the following new excess functional:

Φ(x0, r,Q) :=
1

H−Br(x0)(|Q|)
−
ˆ

Br(x0)

|VH−
Br(x0)

(Du)−VH−
Br(x0)

(Q)|2 dx ,

where

VH−
Br(x0)

(Q) =

√
(H−Br(x0))

′(|Q|)
|Q|

Q , Q ∈ RN×n , and H−Br(x0)(t) := tp + inf
x∈Br(x0)

a(x)tq , t ≥ 0 .

Here, the double phase function H is frozen at the infimum of the modulating coefficient a(x) on the ball
Br(x0).
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We distinguish between degenerate and nondegenerate regimes using an alternative condition, and
prove that weak solutions to (1.1), or its variations, are almost ϕ-harmonic with ϕ(t) = tp + atq for some

a ≥ 0, or almost A-harmonic for some A ∈ RN
2×n2

that satisfies the Legendre-Hadamard ellipticity
condition. Note that we establish almost harmonicity through a new approach which is applicable to the
p-phase and the (p, q)-phase at the same time. This potentially simplifies known comparison arguments
such as those in [12, 14, 4]). Finally we apply A-harmonic and ϕ-harmonic approximation lemmas to
derive excess decay estimates. Furthermore, we emphasize that our new excess functional depends on the
radius of the ball Br(x0). This requires a more delicate analysis in the iteration process.

The remainder of the paper is organized as follows. In Section 1.1, we present our main result,
Theorem 1.1. Section 2 introduces the necessary notation, elementary inequalities, harmonic functions
and harmonic approximation results. In section 3, we obtain Caccioppoli type estimates and reverse
Hölder type inequalities with higher integrability estimates. Section 4 provides decay estimates for both
nondegenerate and degenerate regimes and iterate those decay estimates on shrinking balls. Finally, in
Section 5, we prove our main result Theorem 1.1.

1.1. Main result. Let us introduce the main result of the paper. We assume additional conditions on the
nonlinearity A(x, ξ), in order to prove a partial regularity result. For the dependence on the x-variable,
we assume that

(A3) |A(x1, ξ)−A(x2, ξ)| ≤ L|x1 − x2|β0 (H ′(x1, |ξ|) +H ′(x2, |ξ|)) + L|a(x1)− a(x2)||ξ|q−1 ,

for some β0 ∈ (0, 1), for every x1, x2 ∈ Ω and every ξ ∈ RN×n. For the non-degenerate case, we further
require

(A4) |DξA(x, ξ1)−DξA(x, ξ2 + ξ1)| ≤ L
(
|ξ2|
|ξ1|

)β0

H ′′(x, |ξ1|) , whenever |ξ2| ≤
1

2
|ξ1| ,

for every x ∈ Ω and ξ1, ξ2 ∈ RN×n. For the degenerate case, instead, we assume the following: for every
δ > 0, there exists κ = κ(δ) > 0 such that

(A5)

∣∣∣∣A(x, ξ)−H ′(x, |ξ|) ξ
|ξ|

∣∣∣∣ ≤ δH ′(x, |ξ|) , whenever 0 < |ξ| ≤ κ ,

for every x ∈ Ω and ξ ∈ RN×n.

Theorem 1.1. Let H : Ω × [0,∞) → [0,∞) be defined as in (1.2) complying with (1.3), and A :
Ω × RN×n → RN×n comply with (A1)–(A5). If u ∈ W 1,1(Ω;RN ) with H(·, |Du|) ∈ L1(Ω) is a weak
solution to (1.1), then there exist β = β(n,N, p, q, ν, L, α, [a]C0,α , β0) ∈ (0, 1) and an open subset Ω0 ⊂ Ω
such that |Ω \ Ω0| = 0 and

Du ∈ C0,β
loc

(
Ω0;RN×n

)
.

Moreover, Ω \ Ω0 ⊂ Σ1 ∪ Σ2 where

Σ1 :=

x0 ∈ Ω : lim inf
r→0+

−
ˆ

Br(x0)

|VH−
Br(x0)

(Du)− (VH−
Br(x0)

(Du))x0,r|2 dx > 0

 ,

Σ2 :=

x0 ∈ Ω : lim sup
r→0+

−
ˆ

Br(x0)

|VH−
Br(x0)

(Du)|2 dx =∞

 .

where H−Br(x0)(t) and VH−
Br(x0)

(P) are defined as in (2.15) and (2.12) with ϕ(t) = H−Br(x0)(t), respectively.

Remark 1. We note from (2.15), (2.13) and (2.14) that

−
ˆ

Br(x0)

|VH−
Br(x0)

(Du)|2 dx ≤ −
ˆ

Br(x0)

|VH(Du)|2 dx

and

−
ˆ

Br(x0)

|VH−
Br(x0)

(Du)− (VH−
Br(x0)

(Du))x0,r|2 dx . −
ˆ

Br(x0)

|VH(Du)− (VH(Du))x0,r|2 dx .

Therefore, since |VH(Du)|2 ∼ H(·, |Du|) ∈ L1(Ω), by Lebesgue differentiation theorem, we see that
|Σ1| = |Σ2| = 0.
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2. Preliminaries and auxiliary results

2.1. Basic notation. We denote by Ω an open bounded domain of Rn. For x0 ∈ Rn and r > 0, Br(x0)
is the open ball of radius r centred at x0. In the case x0 = 0, we will often use the shorthand Br in place
of Br(x0). If f ∈ L1(Br(x0);Rm), we denote the average of f by

(f)x0,r := −
ˆ

Br(x0)

f dx .

We denote by RN×n the set of all N×n matrices. For a = (a1, . . . , aN ) ∈ RN and x = (x1, . . . , xn) ∈ Rn,
we denote their tensor product by a⊗ x := {aixj}i,j ∈ RN×n. For a function u ∈ L1(Ω;RN ), we denote
by Du its distributional derivative in RN×n. If p > 1, then p′ := p

p−1 denotes the Hölder conjugate

exponent of p. If 1 < p < n, the number p∗ := np
n−p stands for the Sobolev conjugate exponent of p,

whereas p∗ is any real number larger than p if p ≥ n. 1U is the characteristic function with respect to
U ⊂ Rn, that is, 1U (x) = 1 if x ∈ U and 1U (x) = 0 if x 6∈ U . f . g means f ≤ cg for some c ≥ 1
depending on structure constants, and f ∼ g means f . g and g . f .

2.2. Some basic facts on N–functions. We recall here some elementary definitions and basic results
about Orlicz functions. The following definitions and results can be found, e.g., in [34, 35, 10, 1].

A real-valued function ϕ : [0,∞) → [0,∞) is said to be an N -function if it is convex and satisfies
the following conditions: ϕ(0) = 0, ϕ admits the derivative ϕ′ and this derivative is right continuous,
non-decreasing and satisfies ϕ′(0) = 0, ϕ′(t) > 0 for t > 0, and limt→∞ ϕ′(t) =∞. We say that ϕ satisfies
the ∆2-condition if there exists c > 0 such that for all t ≥ 0 holds ϕ(2t) ≤ c ϕ(t). We denote the smallest
possible such constant by ∆2(ϕ). Since ϕ(t) ≤ ϕ(2t), the ∆2-condition is equivalent to ϕ(2t) ∼ ϕ(t).

For an N -function ϕ, we assume that

(2.1) p1 ≤ inf
t>0

tϕ′(t)

ϕ(t)
≤ sup

t>0

tϕ′(t)

ϕ(t)
≤ p2 ,

for some 1 < p1 ≤ p2 <∞. Furthermore, we can also assume that ϕ ∈ C2((0,∞)) satisfies

(2.2) 0 < p1 − 1 ≤ inf
t>0

tϕ′′(t)

ϕ′(t)
≤ sup

t>0

tϕ′′(t)

ϕ′(t)
≤ p2 − 1 .

Note that if ϕ satisfies (2.2), then (2.1) holds hence we have

(2.3) ϕ(t) ∼ tϕ′(t) and ϕ(t) ∼ t2ϕ′′(t) , t > 0 .

For instance, ϕ(t) := tp, 1 < p < ∞, is an N -function satisfying (2.2) with p1 = p2 = p. Also, for H
defined as in (1.2) and each x ∈ Ω, ϕ(t) := H(x, t) is an N -function satisfying (2.2) with p1 = p and
p2 = q.

We denote the Young-Fenchel-Yosida conjugate function of ϕ by ϕ∗(t) := sups≥0(st−ϕ(s)). It is again
an N -function; it satisfies (2.1) with p2

p2−1 and p1
p1−1 in place of p1 and p2, respectively. We will denote

by ∆2(ϕ,ϕ∗) constants depending on ∆2(ϕ) and ∆2(ϕ∗). Also, it is easy to check that (ϕ∗)∗ = ϕ.

Proposition 2.1. Let ϕ : [0,∞)→ [0,∞) be an N -function complying with (2.1). Then

(a) the mappings

t ∈ (0,∞)→ ϕ′(t)

tp1−1
,
ϕ(t)

tp1
and t ∈ (0,∞)→ ϕ′(t)

tp2−1
,
ϕ(t)

tp2

are nondecreasing and nonincreasing, respectively. In particular,

ϕ(at) ≤ ap1ϕ(t) , ϕ′(at) ≤ ap1−1ϕ′(t) , 0 < a < 1 ,

ϕ(bt) ≤ bp2ϕ(t) , ϕ′(bt) ≤ bp2−1ϕ′(t) , b > 1 .
(2.4)

Moreover,

ϕ∗(at) ≤ a
p2
p2−1ϕ(t) , ϕ∗(bt) ≤ a

p1
p1−1ϕ(t) .

(b) (Young’s inequality) for any λ ∈ (0, 1] it holds that

st ≤ λ−p2+1ϕ(s) + λϕ∗(t) ,

st ≤ λϕ(s) + λ−
1

p1−1ϕ∗(t) .
(2.5)

(c) there exists a constant c = c(p1, p2) > 1 such that

(2.6) c−1ϕ(t) ≤ ϕ∗(t−1ϕ(t)) ≤ cϕ(t) .

In particular, it follows from (2.4) that both ϕ and ϕ∗ satisfy the ∆2-condition with constants ∆2(ϕ)
and ∆2(ϕ∗) determined by p1 and p2.

We will use the following lemma. (see [18, Lemma 20])
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Lemma 2.2. Let ϕ be a N -function with ϕ,ϕ∗ ∈ ∆2. Then for all P0,P1 ∈ RN×n with |P0|+ |P1| > 0,
there holds ˆ 1

0

ϕ′(|(1− θ)P0 + θP1|)
|(1− θ)P0 + θP1|

dθ ∼ ϕ′(|P0|+ |P1|)
|P0|+ |P1|

,

where hidden constants depend only on ∆2(ϕ,ϕ∗).

By Lϕ(Ω;RN ) and W 1,ϕ(Ω;RN ) we denote the classical Orlicz and Orlicz–Sobolev spaces, i. e., f ∈
Lϕ(Ω;RN ) iff f ∈ L1(Ω;RN ) with

´
Ω
ϕ(|f |) dx < ∞ and f ∈ W 1,ϕ(Ω;RN ) iff f ∈ W 1,1(Ω;RN ) with

|f |, |Df | ∈ Lϕ(Ω). The space W 1,ϕ
0 (Ω;RN ) will denote the closure of C∞0 (Ω;RN ) in W 1,ϕ(Ω;RN ). For

simplicity, we write ‖f‖Lϕ(Ω) = ‖|f |‖Lϕ(Ω) for f ∈ Lϕ(Ω;RN×n).
Another important toolset is the shifted N -functions {ϕa}a≥0 (see [18]). We define for t ≥ 0

(2.7) ϕa(t) :=

ˆ t

0

ϕ′a(s) ds with ϕ′a(t) := ϕ′(a+ t)
t

a+ t
.

Note that ϕa satisfy the ∆2-condition uniformly in a ≥ 0, and we have the following relations:

ϕa(t) ∼ ϕ′a(t) t ;(2.8)

ϕa(t) ∼ ϕ′′(a+ t)t2 ∼ ϕ(a+ t)

(a+ t)2
t2 ∼ ϕ′(a+ t)

a+ t
t2 ,(2.9)

ϕ(a+ t) ∼ [ϕa(t) + ϕ(a)] ,(2.10)

We recall also that, by virtue of [18, Lemma 30], uniformly in λ ∈ [0, 1] and a ≥ 0 holds

(2.11) ϕ∗a(λϕ′(a)) ∼ λ2ϕ(a) .

We define

(2.12) Vϕ(P) :=

√
ϕ′(|P|)
|P|

P, P ∈ RN×n.

In particular, we write Vp(P) to denote Vϕ(P) when ϕ(t) = tp. We have that

(2.13) |Vϕ(P)−Vϕ(Q)|2 ∼ ϕ|Q|(|P−Q|)

holds uniformly for every P,Q ∈ RN×n (see [20, Lemma 7]). We also recall from [19, Lemma A.2] that
for g ∈W 1,ϕ(Br(x0);Rm),

(2.14) −
ˆ

Br(x0)

|Vϕ(g)−Vϕ((g)x0,r)|2 dx ∼ −
ˆ

Br(x0)

|Vϕ(g)− (Vϕ(g))x0,r|2 dx .

The following version of Sobolev-Poincaré inequality for double phase problems has been proved in
[39, Theorem 2.13].

Lemma 2.3 (Sobolev-Poincaré inequality). Let H be defined as in (1.2) and (1.3). Then there exists
θ0 = θ0(n, p, q) ∈ (0, 1) such that for any w ∈W 1,1(Ω;RN ) and Br = Br(x0) ⊂ Ω with r ≤ 1, we have

−
ˆ

Br

H

(
x,
|w − (w)x0,r|

r

)
dx ≤ c(1 + [a]C0,α‖Dw‖q−pLp(Br))

−ˆ
Br

[H (x, |Dw|)]θ0 dx

 1
θ0

,

for some c = c(n, p, q) ≥ 1.

Let x−x0,r, x
+
x0,r ∈ Br(x0) be such that

a−x0,r := a(x−x0,r) = inf
x∈Br(x0)

a(x) and a+
x0,r := a(x+

x0,r) = sup
x∈Br(x0)

a(x) .

Then we write

(2.15) H−Br(x0)(t) := H(x−x0,r, t) and H+
Br(x0)(t) := H(x+

x0,r, t) .

In order to obtain a Sobolev-Poincaré inequality for the shifted function H|Q| we need an a priori
higher integrability assumption on the gradient.

Lemma 2.4 (Sobolev-Poincaré inequality). Let H be defined as in (1.2) and (1.3), and let Q ∈ RN×n,
with Q 6= 0. Then there exist θ = θ(n, p, q) ∈ (0, 1) such that for any w ∈ W 1,1(Ω;RN ) with Dw ∈
L
p(1+s0)
loc (Ω) for some s0 > 0, and Br b Ω with r ≤ 1 satisfying ‖Dw‖Lp(1+s0)(Br) ≤ 1, we have

−
ˆ

Br

H|Q|

(
x,
|w − (w)Br |

r

)
dx ≤ c

−ˆ
Br

[
(H−Br )|Q|(|Dw|)

]θ
dx

 1
θ

+ c(rα(s0) + rα|Q|q−p)|Q|p ,

for some c = c(n, p, q, α, [a]C0,α) ≥ 1, where α(s0) := α− (q−p)n
p(1+s0) > 0.
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Proof. Since
H|Q|(x, t) ∼ (t+ |Q|)p−2t2 + a(x)(t+ |Q|)q−2t2

. (t+ |Q|)p−2t2 + a−Br (t+ |Q|)q−2t2 + rα(t+ |Q|)q−2t2

. (H−Br )|Q|(t) + rα(tq + |Q|q),
we can estimate, by using the Sobolev-Poincarè inequality for shifted N -function (H−Br )|Q|(t) (see, e.g.,
[18, Theorem 7]) and for function ϕ(t) = tq,

−
ˆ

Br

H|Q|

(
x,
|w − (w)Br |

r

)
dx . −

ˆ

Br

(H−Br )|Q|

(
|w − (w)Br |

r

)
dx+ rα −

ˆ

Br

(
|w − (w)Br |

r

)q
dx+ rα|Q|q

.

−ˆ
Br

[
(H−Br )|Q|(|Dw|)

]θ1
dx

 1
θ1

+ rα

−ˆ
Br

|Dw|q∗ dx


q
q∗

+ rα|Q|q,

where θ1 ∈ (0, 1) and q∗ := min{1, nq
n+q} < p. Set θ := max{θ1, q∗/p} ∈ (0, 1). Note that by Hölder’s

inequality

rα

−ˆ
Br

|Dw|q∗ dx


q
q∗

≤ rα
−ˆ
Br

|Dw|pθ dx

 1
θ
−ˆ
Br

|Dw|p(1+s0) dx


q−p

p(1+s0)

≤ rα−
(q−p)n
p(1+s0) ‖Dw‖q−p

Lp(1+s0)(Br)

−ˆ
Br

|Dw|pθ dx

 1
θ

.

Using this and the facts that ‖Dw‖Lp(1+s0)(Br) ≤ 1 and ϕ(t) . ϕ|Q|(t) +ϕ(|Q|) with ϕ(t) = tp, we obtain

−
ˆ

Br

H|Q|

(
x,
|w − (w)Br |

r

)
dx .

(
1 + r

α− (q−p)n
p(1+s0)

)−ˆ
Br

[
(H−Br )|Q|(|Dw|)

]θ
dx

 1
θ

+ r
α− (q−p)n

p(1+s0) |Q|p + rα|Q|q.
This completes the proof. �

The following lemma is useful to derive a higher integrability result. It is a variant of the results by
Gehring [30] and Giaquinta-Modica [31, Theorem 6.6].

Lemma 2.5. Let B0 ⊂ Rn be a ball, f ∈ L1(B0), and g ∈ Ls0(B0) for some s0 > 1. Assume that for
some γ ∈ (0, 1), c1 > 0 and all balls B with 2B ⊂ B0

−
ˆ

B

|f |dx ≤ c1

−ˆ
2B

|f |γ dx

1/γ

+ −
ˆ

2B

|g|dx .

Then there exist s1 > 1 and c2 > 1 such that g ∈ Ls1loc(B) and for all s2 ∈ [1, s1]−ˆ
B

|f |s2 dx

1/s2

≤ c2 −
ˆ

2B

|f |dx+ c2

−ˆ
2B

|g|s2 dx

1/s2

.

We conclude this section with the following useful lemma about an almost concave condition, see [40,
Lemma 2.2].

Lemma 2.6. Let Ψ : [0,∞)→ [0,∞) be non-decreasing and such that t→ Ψ(t)
t be non-increasing. Then

there exists a concave function Ψ̃ : [0,∞)→ [0,∞) such that

1

2
Ψ̃(t) ≤ Ψ(t) ≤ Ψ̃(t) for all t ≥ 0.

2.3. A-harmonic and ϕ-harmonic functions. Let A be a bilinear form on RN×n. We say that A is
strongly elliptic in the sense of Legendre-Hadamard if for all b ∈ RN and z ∈ Rn, it holds that

(2.16) νA|b|2|z|2 ≤ 〈A(b⊗ z) | (b⊗ z)〉 ≤ LA|b|2|z|2

for some LA ≥ νA > 0. We say that a Sobolev function w on a ball BR(x0) is A-harmonic on BR(x0) if
it satisfies −div(ADw) = 0 in the sense of distributions; i.e.,ˆ

BR(x0)

〈ADw |Dψ〉dx = 0 , for all ψ ∈ C∞0 (BR(x0);RN ) .
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It is well known from the classical theory (see, e.g. [31, Chapter 10]) that w is smooth in the interior of
BR(x0), and it satisfies the estimate

(2.17) sup
BR/2(x0)

|Dw|+R sup
BR/2(x0)

|D2w| ≤ c(n,N, νA, LA) −
ˆ

BR(x0)

|Dw|dx .

Moreover, if u ∈ W 1,ϕ(BR;RN ), where ϕ is an N -function with ϕ,ϕ∗ ∈ ∆2, then there exists a unique

A-harmonic mapping w ∈ u+W 1,ϕ
0 (BR;RN ) and we have the following Calderón-Zygmund type estimate

(see for instance [20, Theorem 18 and Remark 19]):

(2.18) −
ˆ

BR(x0)

ϕ(|Dw|) ≤ c(n,N, νA, LA,∆2(ψ,ψ∗)) −
ˆ

BR(x0)

ϕ(|Du|) dx .

Let ϕ ∈ C1([0,∞)) be an N -function satisfying (2.1). We say that a map w ∈ W 1,ϕ(BR(x0);RN ) is
ϕ-harmonic on B%(x0) if w is a weak solution to the system

(2.19) div

(
ϕ′(|Dw|)
|Dw|

Dw

)
= 0 in BR(x0) ,

that is, ˆ
BR(x0)

〈
ϕ′(|Dw|)
|Dw|

Dw

∣∣∣∣Dψ〉 dx = 0 , for all ψ ∈ C∞0 (BR(x0);RN ) .

We notice that if ϕ(t) = tp+atq, then ϕ satisfies (2.2), and Dw and Vϕ(Dw) are locally Hölder continuous
due to the following results, see [21, Proposition 2.4 and Theorem 2.5].

Proposition 2.7. Let
ϕ(t) = tp + atq with 1 < p ≤ q and a ≥ 0 ,

and Vϕ be defined as in (2.12). Then there exist a constant c > 0 and an exponent γ0 ∈ (0, 1) depending
only on n, N , p and q (independent of a) such that if w ∈W 1,ϕ(BR(x0),RN ) is a weak solution to (2.19),
then for every τ ∈ (0, 1], there hold

sup
BτR/2(x0)

ϕ(|Dw|) ≤ c −
ˆ

BτR(x0)

ϕ(|Dw|) dx ,

and

(2.20) −
ˆ

BτR(x0)

|Vϕ(Dw)− (Vϕ(Dw))x0,τR|2 dx ≤ cτ2γ0 −
ˆ

BR(x0)

|Vϕ(Dw)− (Vϕ(Dw))x0,R|2 dx .

2.4. Harmonic type approximation results. We recall here two different harmonic type approxima-
tion results. The first one is the A-harmonic approximation, which addresses the problem of finding an
A-harmonic function w which is close to a given a Sobolev function u on a ball Br. Such a function is
the A-harmonic function with the same boundary values as u; i.e., a Sobolev function w which satisfies

(2.21)

{
−div(ADw) = 0 on Br

w = u on ∂Br

in the sense of distribution.
The following is the version of the A-harmonic approximation stated in [11, Lemma 2.7], which re-

lies on [20, Theorem 14]. It is obtained, coupling the A-harmonic approximation result proven in [20,
Theorem 14] with the higher integrability result coming from Caccioppoli and Poincaré inequalities.

Lemma 2.8. Let A be a strongly elliptic (in the sense of Legendre-Hadamard) bilinear form on RN×n,
ϕ be an N-function with ϕ,ϕ∗ ∈ ∆2, and let s > 1 and µ > 0. Then for every ε > 0, there exists δ > 0
depending on n, N , νA, LA, ∆2(ϕ,ϕ∗) and s such that the following holds. If u ∈W 1,ϕ(Br;RN ) satisfies

−
ˆ

Br

ϕ(|Du|) dx ≤

−ˆ
Br

ϕ(|Du|)s dx

 1
s

≤ ϕ(µ) ,

and is an almost A-harmonic in Br in the sense that∣∣∣∣−ˆ
Br

〈ADu |Dψ〉dx
∣∣∣∣ ≤ δµ‖Dψ‖∞

for all ψ ∈ C∞0 (Br;RN ), then there holds

−
ˆ

Br

ϕ

(
|u−w|

r

)
dx+ −

ˆ

Br

ϕ(|Du−Dw|) dx ≤ εϕ(µ) ,

where w ∈W 1,ϕ(Br;RN ) is the unique weak solution of (2.21).
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Now, moving on to ϕ-harmonic mappings, the following ϕ-harmonic approximation lemma ([22,
Lemma 1.1]) is the extension to general convex functions of the p-harmonic approximation lemma [24], [25,
Lemma 1], and allows to approximate “almost ϕ-harmonic” mappings by ϕ-harmonic ones. In particular,
we present the version introduced in [11, Corollary 2.10].

Lemma 2.9. Let ϕ be an N -function satisfying (2.1), s > 1, and c0 > 0. For every ε > 0 there exists
δ > 0 depending only on ε, n, N , p, q, s and c0 such that the following holds. If u ∈ W 1,ϕ(Br;RN )
satisfies −ˆ

Br

ϕ(|Du|)s dx

 1
s

≤ c0 −
ˆ

Br

ϕ(|Du|) dx ,

and is almost ϕ-harmonic in the sense that

−
ˆ

Br

〈
ϕ′(|Du|)
|Du|

Du

∣∣∣∣Dψ〉 dx ≤ δ

−ˆ
B2r

ϕ(|Du|) dx+ ϕ(‖Dψ‖∞)


for all ψ ∈ C∞0 (Br;RN ), then the unique ϕ-harmonic w ∈ u +W 1,ϕ

0 (Br;RN ) satisfies

−
ˆ

Br

|Vϕ(Du)−Vϕ(Dw)|2 dx ≤ ε −
ˆ

B2r

ϕ(|Du|) dx ,

where Vϕ is as in (2.12).

3. Caccioppoli and reverse Hölder type estimates

Throughout this section, let H : Ω× [0,∞)→ [0,∞) be defined as in (1.2) complying with (1.3), and
A : Ω× RN×n → RN×n comply with (A1)–(A4).

3.1. Caccioppoli type estimates. Let Br = Br(x0) ⊂ Ω, Q ∈ RN×n and `x0,r,Q be the affine function
defined as

`x0,r,Q(x) := (u)x0,r + Q(x− x0) , x ∈ Rn .

The first key tool is the following Caccioppoli type estimate for u− `x0,r,Q.

Lemma 3.1. (Caccioppoli estimates) Let u ∈ W 1,1(Ω;RN ) with H(·, |Du|) ∈ L1(Ω) be a weak solution
to (1.1). Then B2r(x0) ⊂ Ω with r ≤ 1 and Q ∈ RN×n with (2r)α|Q|q−p ≤ 1, we have

−
ˆ

Br(x0)

H|Q|(x, |Du−Q|) dx ≤ c −
ˆ

B2r(x0)

H|Q|

(
x,
|u− `x0,r,Q|

2r

)
dx

+ c(rβ0 + rα|Q|q−p)
q
q−1H+

B2r(x0)(|Q|) ,

(3.1)

for some constant c = c(n,N, p, q, [a]C0,α , ν, L) > 0, where α and β0 are as in (1.3) and (A4), respectively.

Proof. The proof scheme is nowadays standard, compare, e.g., with the argument of [40, Lemma 4.1].
We use the shorthands `r, Br and x−r for `x0,r,Q, Br(x0) and x−x0,r, respectively. We consider a cut-off
function η ∈ C∞0 (B2r) such that 0 ≤ η ≤ 1, η ≡ 1 on Br and |Dη| ≤ c(n)/r, and, correspondingly, we
define the function ψ := ηq(u− `r). Note that

(3.2) Dψ = ηqD(u− `r) + qηq−1(u− `r)⊗Dη .

Taking ψ as a test function in (1.1) and using the identity

(3.3) −
ˆ

B2r

〈A(x−2r,Q) |Dψ〉dx = 0

we get

0 = −
ˆ

B2r

〈A(x,Du)−A(x−2r,Q)) |Dψ〉dx = −
ˆ

B2r

〈A(x,Du)−A(x,Q)) |Dψ〉dx

+ −
ˆ

B2r

〈A(x,Q)−A(x−2r,Q)) |Dψ〉dx ,
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whence, taking into account (3.2),

J1 : = −
ˆ

B2r

ηq〈A(x,Du)−A(x,Q) |Du−Q〉dx

= −
ˆ

B2r

〈A(x−2r,Q)−A(x,Q) |Dψ〉dx− q −
ˆ

B2r

ηq−1〈A(x,Du)−A(x,Q) | (u− `r)⊗Dη〉dx

=: J2 + J3 .

(3.4)

Now, we proceed to estimate each term above separately. With (1.4) and (2.9) we get

(3.5) J1 ≥
1

c̃
−
ˆ

B2r

ηqH|Q|(x, |Du−Q|) dx

for some c̃ ≥ 1. To estimate J3 we use (A1), (2.7), Lemma 2.2, Young’s inequality with ϕ(t) = H|Q|(x, t),
(2.6) and (2.8) and we get

|J3| ≤ c −
ˆ

B2r

(ˆ 1

0

|DξA(x, τ(Du−Q) + Q)|dτ
)
|Du−Q| |u− `r|

2r
dx

≤ c −
ˆ

B2r

H ′(x, |Q|+ |Du−Q|)
(|Q|+ |Du−Q|)

|Du−Q| |u− `r|
2r

dx

≤ c −
ˆ

B2r

H|Q|(x, |Du−Q|)
|Du−Q|

|u− `r|
2r

dx

≤ 1

4c̃
−
ˆ

B2r

H|Q|(x, |Du−Q|) dx+ c −
ˆ

B2r

H|Q|

(
x,
|u− `r|

2r

)
dx .

(3.6)

As for J2, from (A3) and using Young’s inequalities (2.5) for ϕ(t) = H|Q|(x, t) for each x ∈ Ω and
ϕ(t) = ϕ̃|Q|(t) with ϕ̃(t) = tp, (2.11), we obtain

|J2| . −
ˆ

B2r

(
rβ0H ′(x, |Q|) + rα|Q|q−1

)
|Dψ|dx

. −
ˆ

B2r

{
rβ0 + rα|Q|q−p

}
(H|Q|)

′(x, |Q|)|Dψ|dx

≤ 1

4c̃
−
ˆ

B2r

ηqH|Q|(x, |Du−Q|) dx+ c −
ˆ

B2r

H|Q|

(
x,
|u− `r|

2r

)
dx

+ c −
ˆ

B2r

(H|Q|)
∗ (x,{rβ0 + rα|Q|q−p

}
(H|Q|)

′(x, |Q|)
)

dx

≤ 1

4c̃
−
ˆ

B2r

ηqH|Q|(x, |Du−Q|) dx+ c −
ˆ

B2r

H|Q|

(
x,
|u− `r|

2r

)
dx

+ c(rβ0 + rα|Q|q−p)
q
q−1H(x+

2r, |Q|) .

(3.7)

Plugging the estimates (3.5), (3.6) and (3.7) into (3.4) and reabsorbing some terms we obtain (3.1). The
proof of (3.1) is then concluded. �

As a consequence of Sobolev-Poincaré inequality Lemma 2.3, Lemma 3.1 for Q = 0 and Gehring’s
lemma with increasing supports (Lemma 2.5), we deduce a higher integrability result for H(x, |Du|):

Lemma 3.2. (Higher integrability) Let u ∈ W 1,1(Ω;RN ) with H(·, |Du|) ∈ L1(Ω) be a weak solution to
(1.1). There exist constants σ0 > 0 and c > 0 depending on n, N , p, q, ν, L, α and [a]C0,α such that for
any B2r ⊂ Ω with ‖H(·, |Du|)‖L1(B2r) ≤ 1, we have(

−
ˆ

Br(x0)

[H(x, |Du|)]1+σ0 dx

) 1
1+σ0

≤ c −
ˆ

B2r(x0)

H(x, |Du|) dx .

Moreover, for every t ∈ (0, 1] there exists ct = ct(n,N, p, q, ν, L, α, [a]C0,α , t) > 0 such that(
−
ˆ

Br(x0)

[H(x, |Du|)]1+σ0 dx

) 1
1+σ0

≤ ct
(
−
ˆ

B2r(x0)

H(x, |Du|)t dx

) 1
t

.(3.8)
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Remark 2. Lemma 3.2 implies H(·, |Du|) ∈ L1+σ0

loc (Ω). Then for each Ω′ b Ω, there exists r0 ∈ (0, 1]
such that for any B2r(x0) ⊂ Ω′ with r ∈ (0, r0],

(3.9) |B2r(x0)| ≤ 1 and

ˆ
B2r(x0)

H(x, |Du|)1+σ0 dx ≤ 1 .

Lemma 3.3. Let u ∈ W 1,1(Ω;RN ) with H(·, |Du|) ∈ L1(Ω) be a weak solution to (1.1), and let σ0 > 0
be the exponent of Lemma 3.2. There exists a constant c = c(n,N, p, q, ν, L, α, [a]C0,α) > 0 such that for
any B2r(x0) b Ω satisfying (3.9) with r ≤ 1/2, we have(

−
ˆ

Br(x0)

[H(x, |Du|)]1+σ0 dx

) 1
1+σ0

≤ cH−B2r(x0)

(
−
ˆ

B2r(x0)

|Du|dx
)
.(3.10)

In particular, we have

(3.11) −
ˆ

Br(x0)

(H−B2r(x0))
′(|Du|) dx ≤ c(H−B2r(x0))

′
(
−
ˆ

B2r(x0)

|Du|dx
)
.

Proof. For simplicity, we omit writing the center x0 in the proof, and use the shorthands H±2r in place of
H±B2r(x0). We first note that (3.9) and Young’s inequality imply

(3.12)

ˆ
B2r

H(x, |Du|) dx ≤ 1

1 + σ0

ˆ
B2r

H(x, |Du|)1+σ0 dx+
σ0

1 + σ0
|B2r| ≤ 1 .

Therefore, we obtain (3.8) which yields, for t = 1
q ,(

−
ˆ

Br

[H(x, |Du|)]1+σ0 dx

) 1
1+σ0

≤ c
(
−
ˆ

B2r

[H+
2r(|Du|)]

1
q dx

)q
.(3.13)

Now, since the function Ψ(t) := [H+
2r(t)]

1
q complies with the assumptions of Lemma 2.6, by Jensen’s

inequality we conclude that(
−
ˆ

B2r

[H+
2r(|Du|)]

1
q dx

)q

. H+
2r

(
−
ˆ

B2r

|Du|dx
)
. H−2r

(
−
ˆ

B2r

|Du|dx
)

+ rα
(
−
ˆ

B2r

|Du|dx
)q

.

(3.14)

On the other hand, using Hölder’s inequality, (3.9) and (1.3) we have

(3.15) rα(|Du|)q−p2r ≤ rα(|Du|p)
q−p
p

2r ≤ rα
(
|Du|p(1+σ0)

) q−p
p(1+σ0)

2r
. rα−n

q−p
p(1+σ0) ≤ 1 .

Consequently, applying the previous inequalities (3.14) and (3.15) to (3.13),we obtain (3.10).
Furthermore, since(

(H−B2r
)′ ◦ (H−2r)

−1
)
(t) ∼ t

(H−B2r
)−1(t)

and t 7→ 1

(H−2r)
−1(t)

is non-increasing,

by Lemma 2.6 with Ψ(t) = t/(H−2r)
−1(t), Jensen’s inequality and (3.10), the estimate (3.11) follows as:

−
ˆ

Br

(H−2r)
′(|Du|) dx ≤ c

(
(H−B2r

)′ ◦ (H−2r)
−1
)(
−
ˆ

Br

H−2r(|Du|) dx

)

≤ c
(
(H−2r)

′ ◦ (H−2r)
−1
)(
−
ˆ

Br

H(x, |Du|) dx

)

≤ c(H−2r)′
(
−
ˆ

B2r

|Du|dx
)
.

This completes the proof. �

Now, we are in position to establish a higher integrability result for H|Q|(x, |Du −Q|), Q 6= 0. By

Lemma 3.2 we know that Du ∈ Lp(1+σ0)
loc (Ω;RN×n), and, in view of Remark 2, we can find balls Br such

that ‖Du‖Lp(1+σ0)(Br) ≤ 1. Thus, for such balls the Sobolev-Poincaré inequality of Lemma 2.4 holds with

s0 = σ0. Recall the constant α(s0) in the lemma. The following higher integrability result then follows
again from Lemma 3.1 and Lemma 2.5:
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Lemma 3.4. (Improved higher integrability) Let u ∈ W 1,1(Ω;RN ) with H(·, |Du|) ∈ L1(Ω) be a weak
solution to (1.1). There exist constants σ > 0 and c > 0 depending on n, N , p, q, ν, L, α and [a]C0,α

such that for any B2r ⊂ Ω with ‖H(·, |Du|)‖L1(B2r) ≤ 1 and Q ∈ RN×n with 0 < (2r)α|Q|q−p ≤ 1, we
have (

−
ˆ

Br(x0)

[
H|Q|(x, |Du−Q|)

]1+σ
dx

) 1
1+σ

≤ c −
ˆ

B2r(x0)

H|Q|(x, |Du−Q|) dx+ c
[
(rβ0 + rα|Q|q−p)

q
q−1 + rα0 + rα|Q|q−p

]
H+
B2r(x0)(|Q|) ,

(3.16)

where

(3.17) α0 := α(σ0) = α− (q − p)n
p(1 + σ0)

.

Moreover, for every t ∈ (0, 1] there exists ct = ct(n,N, p, q, ν, L, α, [a]C0,α , t) > 0 such that

(
−
ˆ

Br(x0)

[
H|Q|(x, |Du−Q|)

]1+σ
dx

) 1
1+σ

≤ ct

{(
−
ˆ

B2r(x0)

H|Q|(x, |Du−Q|)t dx

) 1
t

+
[
(rβ0 + rα|Q|q−p)

q
q−1 + rα0 + rα|Q|q−p

]
H+
B2r(x0)(|Q|)

}
.

(3.18)

3.2. Reverse Hölder type estimates. By the higher integrability result in Lemma 3.4, under assump-
tion (3.9), we can obtain from the following reverse Hölder type estimates for |Du−Q| with the shifted
N -function H|Q| when Q = (Du)x0,2r.

Lemma 3.5. Let u ∈ W 1,1(Ω;RN ) with H(·, |Du|) ∈ L1(Ω) be a weak solution to (1.1), and let σ > 0
be the exponent of Lemma 3.4. There exists a constant c = c(n,N, p, q, ν, L, α, [a]C0,α) > 0 such that for
any B2r b Ω satisfying (3.9) with r ≤ 1/2 and for Q = (Du)x0,2r, we have(

−
ˆ

Br(x0)

[H|Q|(x, |Du−Q|)]1+σ dx

) 1
1+σ

≤ c(H−B2r(x0))|Q|

(
−
ˆ

B2r(x0)

|Du−Q|dx
)

+ crα1H−B2r(x0)(|Q|) ,
(3.19)

where

(3.20) α1 := min

{
β0q

q − 1
, α0

}
,

and the constants q, β0 and α0 are from (1.2), (A4) and (3.17), respectively.

Proof. We adopt here the same notation and perform a similar argument as for Lemma 3.3. Again,
as in (3.12), Young’s inequality implies

´
B2r(x0)

H(x, |Du|) dx ≤ 1. From this we also deduce that

‖Du‖Lp(B2r) ≤ 1, whence using Hölder’s inequality, (1.3) and the facts that 2r ≤ 1 and |B1| > 1, we
obtain

(2r)α|Q|q−p ≤ rα(|Du|p)
q−p
p

2r ≤ (2r)α−n
q−p
p |B1|−

q−p
p ≤ 1 .

Therefore, when Q = (Du)2r, we obtain (3.18) which yields, for t = 1
q ,(

−
ˆ

Br

[
H|Q|(x, |Du−Q|)

]1+σ
dx

) 1
1+σ

≤ c
(
−
ˆ

B2r

[(H+
2r)|Q|(|Du−Q|)]

1
q dx

)q
+ c

[
(rβ0 + rα|Q|q−p)

q
q−1 + rα0 + rα|Q|q−p

]
H+

2r(|Q|) .
(3.21)

Now, since the function Ψ(t) := [(H+
2r)|Q|(t)]

1
q complies with the assumptions of Lemma 2.6, by Jensen’s

inequality we conclude that(
−
ˆ

B2r

[(H+
2r)|Q|(|Du−Q|)]

1
q dx

)q

. (H+
2r)|Q|

(
−
ˆ

B2r

|Du−Q|dx
)
. (H−2r)|Q|

(
−
ˆ

B2r

|Du−Q|dx
)

+ rα
(
−
ˆ

B2r

|Du−Q|dx+ |Q|
)q

.

(3.22)
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On the other hand, using Hölder’s inequality, (3.9) and (1.3) we have

(3.23) rα|Q|q−p ≤ rα(|Du|)q−p2r ≤ rα(|Du|p)
q−p
p

2r ≤ rα
(
|Du|p(1+σ0)

) q−p
p(1+σ0)

2r
. rα−n

q−p
p(1+σ0) = rα0 .

Thus, using (2.10) it holds that

rα
(
−
ˆ

B2r

|Du−Q|dx+ |Q|
)q
. rα0

(
−
ˆ

B2r

|Du−Q|dx+ |Q|
)p

. rα0

{
(H−2r)|Q|

(
−
ˆ

B2r(x0)

|Du−Q|dx
)

+ (H−B2r(x0))(|Q|)
}(3.24)

Consequently, applying the previous inequalities (3.22), (3.23) and (3.24) to (3.21), we obtain (3.19).
This concludes the proof. �

Finally, we derive comparison estimates concerned with the functions H(x, t) and H−B2r
(t). Note that

H(x, t)−H−B2r
(t) = (a(x)− a−2r)tq and H ′(x, t)− (H−B2r

)′(t) = q(a(x)− a−2r)tq−1.

Lemma 3.6. Let u ∈ W 1,1(Ω;RN ) with H(·, |Du|) ∈ L1(Ω) be a weak solution to (1.1). There exists
α2 = α2(n,N, p, q, ν, L, α, [a]C0,α) > 0 such that for any B2r(x0) b Ω satisfying (3.9) with r ≤ 1/2, we
have

(3.25) −
ˆ

Br(x0)

(a(x)− a−x0,2r
)|Du|q−1 dx ≤ crα2(H−B2r(x0))

′
(
−
ˆ

B2r(x0)

|Du|dx
)

and

(3.26) −
ˆ

Br(x0)

(a(x)− a−x0,2r
)|Du|q dx ≤ crα2H−B2r(x0)

(
−
ˆ

B2r(x0)

|Du|dx
)

for some c = c(n,N, p, q, ν, L, α, [a]C0,α) > 0.

Proof. To enlighten the notation, set Bρ = Bρ(x0), a±ρ = a±x0,ρ, H
±
ρ := H±Bρ(x0) and H+,∗

ρ := (H+
Bρ(x0))

∗.

Let σ̄ := nσ0

2(1+σ0) > 0, where σ0 > 0 is from Lemma 3.2, and set positive constants

σ1 := α+ (−n+ σ̄)
q − p
p

and σ2 := {nσ0 − σ̄(1 + σ0)} σ0(p− 1)

p(1 + σ0)
.

Now, we have to distinguish between two cases, depending on whether condition H(x, |Du|) ≤ r−n+σ̄

is satisfied or not. Set

E := {H(x, |Du|) ≤ r−n+σ̄} ∩Br and F := Br\E ,

and split the integral on the left hand side of (3.25) as

−
ˆ

Br

(a(x)− a−2r)|Du|q−1dx = −
ˆ

Br

1E(x)(a(x)− a−2r)|Du|q−1 dx

+ −
ˆ

Br

1F (x)(a(x)− a−2r)|Du|q−1 dx

=: JE + JF .

(3.27)

Note that on E it holds that |Du|p ≤ r−n+σ̄. We then have, with (3.11),

|JE | . −
ˆ

Br

1E(x)rα+(−n+σ̄) q−pp |Du|p−1 dx ≤ rσ1

p
−
ˆ

Br

(H−2r)
′(|Du|) dx

≤ crσ1(H−2r)
′
(
−
ˆ

B2r

|Du|dx
)
.

(3.28)

Now, we turn to the estimate of JF . Using Jensen’s inequality for H+,∗
2r , the fact that H+,∗

2r (t) ≤ H∗(x, t)
for every x ∈ B2r and t > 0, and recalling that ϕ(t) := H(x, t), with fixed x, complies with (2.6) and
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(2.3), we get

|JF | . −
ˆ

Br

1F (x)H ′(x, |Du|) dx

. (H+,∗
2r )−1

(
−
ˆ

Br

1F (x)H+,∗
2r (H ′(x, |Du|)) dx

)

. (H+,∗
2r )−1

(
−
ˆ

Br

1F (x)H(x, |Du|) dx

)
.

Now, on the set F we have rn−σ̄H(x, |Du|) > 1. This, combined with (3.10) and the second inequality
in (3.9) gives

|JF | . (H+,∗
2r )−1

(
−
ˆ

Br

1F (x)H(x, |Du|) dx

)

. (H+,∗
2r )−1

(
rσ0(n−σ̄) −

ˆ

Br

[H(x, |Du|)]1+σ0 dx

)

= c(H+,∗
2r )−1

(
rσ0(n−σ̄)

(
−
ˆ

Br

[H(x, |Du|)]1+σ0 dx

) 1
1+σ0

+
σ0

1+σ0

)

. (H+,∗
2r )−1

(
rσ0(n−σ̄)− nσ0

1+σ0

(
−
ˆ

Br

[H(x, |Du|)]1+σ0 dx

) 1
1+σ0

)

≤ rσ2(H+,∗
2r )−1

(
H−2r

(
−
ˆ

B2r

|Du|dx
))

≤ rσ2
(
(H+,∗

2r )−1 ◦H+
2r

)(
−
ˆ

B2r

|Du|dx
)
.

Moreover, since (H+,∗
2r )−1(H+

2r(t)) ∼ (H+
2r)
′(t) by (2.6), using (3.23) we have

(H+,∗
2r )−1

(
H+

2r

(
−
ˆ

Br

|Du|dx
))
. (H−2r)

′
(
−
ˆ

Br

|Du|dx
)
.

We then have

|JF | . rσ2(H−2r)
′
(
−
ˆ

B2r

|Du|dx
)
.(3.29)

Therefore, combining the above estimates (3.27), (3.28) and (3.29), and letting α2 ≤ min{σ1, σ2}, we
obtain (3.25). The estimate (3.26) follows a similar, and even slightly simpler, argument. Hence, we omit
its proof. �

4. Decay estimates for excess functionals

Let u ∈ W 1,1(Ω;RN ) with H(·, |Du|) ∈ L1(Ω) be a weak solution to (1.1), where H : Ω × [0,∞) →
[0,∞) is defined in (1.2) complying with (1.3) and A satisfies (A1)–(A5). We introduce the following
Campanato-type excess functionals, measuring the oscillations of Du:

(4.1) E(x0, r,Q) := −
ˆ

Br(x0)

|VH−
Br(x0)

(Du)−VH−
Br(x0)

(Q)|2 dx ,

and

(4.2) Φ(x0, r,Q) :=
E(x0, r,Q)

H−Br(x0)(|Q|)
.

If Q = (Du)x0,r, we will use the shorthand E(x0, r) ≡ E(x0, r, (Du)x0,r) and Φ(x0, r) ≡ Φ(x0, r, (Du)x0,r).
Note that, by (2.13) and (2.14), it holds that

(4.3) E(x0, r) ∼ −
ˆ

Br(x0)

|VH−
Br(x0)

(Du)− (VH−
Br(x0)

(Du))x0,r|2 dx ,

where Ha(x, t) denotes the shifted N function of H with shift a.
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Furthermore, we fix any B2r(x0) ⊂ Ω′ b Ω satisfying (3.9) with r ≤ 1/2. We first consider the
nondegenerate regime.

4.1. Non degenerate regime: almost A-harmonic functions. We can start with the linearization
procedure for system (1.1). Let us set

A(Q) :=
DξA(x−2r,Q)

H ′′(x−2r, |Q|)
, Q ∈ RN×n .

Note that the bilinear form A(Q) satisfies the Legendre-Hadamard condition (2.16) by virtue of (A1)–
(A2). We aim to prove that the function u− `x0,2r,Q is approximately A-harmonic. This fact, together
with the higher integrability result (3.16) will allow us to apply the A-harmonic approximation lemma:
Lemma 2.8. We also note that in this regime we do not use the assumption (A5).

Lemma 4.1. Let α2 be the exponent of Lemma 3.6, and β0 be from (A4). Then there exists c =
c(n,N, p, q, ν, L, α, [a]C0,α) > 0 such that∣∣∣∣ −ˆ

Br(x0)

〈A(Q)(Du−Q) |Dψ〉dx
∣∣∣∣

≤ c|Q|
{
Φ(x0, 2r,Q) + [Φ(x0, 2r,Q)]

1+β0
2 + (rα2 + rβ0)[1 + Φ(x0, 2r,Q)]

q−1
p

}
‖Dψ‖∞

(4.4)

for every ψ ∈ C∞0 (Br(x0);RN ).

Proof. It will suffice to prove (4.4) for ψ ∈ C∞0 (Br(x0);RN ) with ‖Dψ‖∞ ≤ 1, since the general case will
follow by a standard normalization argument. To enlighten notation, we omit the explicit dependence on
x0, and write H±2r(t) = H±B2r(x0)(t). From the definitions of A and w we have

H ′′(x−2r, |Q|)−
ˆ

Br

〈A(Q)(Dw −Q) |Dψ〉dx

= −
ˆ

Br

〈DξA(x−2r,Q)(Du−Q) |Dψ〉dx

= −
ˆ

Br

ˆ 1

0

〈[DξA(x−2r,Q)−DξA(x−2r,Q + t(Du−Q))](Du−Q) |Dψ〉dtdx

+ −
ˆ

Br

ˆ 1

0

〈[DξA(x−2r,Q + t(Du−Q))](Du−Q) |Dψ〉dtdx

=: J1 + J2 .

(4.5)

In order to estimate J1, we first observe that

J1 = −
ˆ

Br

1Ẽ(x)

ˆ 1

0

〈[DξA(x−2r,Q)−DξA(x−2r,Q + t(Du−Q))](Du−Q) |Dψ〉dtdx

+ −
ˆ

Br

1F̃ (x)

ˆ 1

0

〈[DξA(x−2r,Q)−DξA(x−2r,Q + t(Du−Q))](Du−Q) |Dψ〉dtdx

=: J1,Ẽ + J1,F̃ ,

where Ẽ :=
{
x ∈ Br : |Du(x)−Q| ≥ 1

2 |Q|
}

, and F̃ := Br\Ẽ.
We start with the estimate of J1,Ẽ . From (A1) and (2.3),

|J1,Ẽ | ≤ c−
ˆ

Br

1Ẽ(x)

(ˆ 1

0

[
(H−2r)

′′(|Q|) + (H−B2r
)′′(|Q + t(Du−Q)|)

]
dt

)
|Du−Q|dx

. −
ˆ

Br

1Ẽ(x)
[
(H−2r)

′′(|Q|) + (H−2r)
′′(|Q|+ |Du|)

]
|Du−Q|dx

. −
ˆ

Br

1Ẽ(x)(H−2r)
′(|Q|+ |Du|) |Du−Q|

|Q|
dx .

For a.e. x ∈ Ẽ, it holds
|Q|+ |Du| ≤ |Du−Q|+ 2|Q| ≤ 5|Du−Q| ,

whence

(H−2r)
′(|Q|+ |Du|) . (H−2r)

′(|Q|+ |Du−Q|)
|Q|+ |Du−Q|

|Du−Q| .
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Now, using (2.7), (2.8) and (2.3) for ϕ(t) := H−2r(t), we finally get

|J1,Ẽ | .
1

|Q|
−
ˆ

Br

H|Q|(x
−
2r, |Du−Q|) dx . |Q|(H−2r)′′(|Q|)Φ(2r,Q) .

For what concerns J1,F̃ , by assumption (A4) we note that, for every t ∈ [0, 1],

∣∣DξA(x−2r,Q)−DξA(x−2r,Q + t(Du−Q))
∣∣ . (H−2r)

′′(|Q|)
(
|Du−Q|
|Q|

)β0

,

so that

|J1,F̃ | . |Q|(H
−
2r)
′′(|Q|)−

ˆ

Br

1F̃ (x)

(
|Du−Q|
|Q|

)1+β0

dx .

For a.e. x ∈ F̃ , we have

|Q|+ |Du−Q| < 3

2
|Q| ,

whence, using again (2.7), (2.8) for ϕ = H−2r, we obtain

|Du−Q|2

|Q|2
=

(H−2r)
′(|Q|)

(H−2r)
′(|Q|)

· |Du−Q|2

|Q|2
.

(H−2r)
′(|Q|+ |Du−Q|)|Du−Q|2

H−2r(|Q|)(|Q|+ |Du−Q|)

∼ 1

H−2r(|Q|)
H|Q|(x

−
2r, |Du−Q|) .

Combining the previous estimates and using Jensen’s inequality with 1+β0

2 < 1, we get

|J1,F̃ | . |Q|(H
−
2r)
′′(|Q|)−

ˆ

Br

(
1

H−2r(|Q|)
H|Q|(x

−
2r, |Du−Q|)

) 1+β0
2

dx

. |Q|(H−2r)′′(|Q|)(Φ(2r,Q))
1+β0

2 .

Collecting the estimates for J1,Ẽ and J1,F̃ , we then infer

(4.6) |J1| . |Q|(H−2r)′′(|Q|)
[
(Φ(2r,Q))

1+β0
2 + Φ(2r,Q)

]
.

In order to estimate J2, we use Lagrange’s Mean Value Theorem, (3.3) combined with the definition
of weak solution, (A3) and we preliminary obtain

|J2| =
∣∣∣∣−ˆ
Br

〈A(x−2r, Du)−A(x,Du) |Dψ〉dx
∣∣∣∣

. rβ0 −
ˆ

Br

H ′(x, |Du|) dx+ −
ˆ

Br

|a(x−2r)− a(x)||Du|q−1 dx =: J3 + J4 .

(4.7)

To estimate J3 and J4, we observe that, since on Ẽ it holds that |Du−Q| ≥ 1
2 |Du−Q|+ 1

4 |Q|,
|Du|p . 1Ẽ(x)|Du−Q|p + |Q|p

≤ 1Ẽ(x)4
(|Du−Q|+ |Q|)p−1

|Du−Q|+ |Q|
|Du−Q|2 · |Q|

p

|Q|p
+ |Q|p

≤ 1Ẽ(x)4
(H−2r)

′(|Du−Q|+ |Q|)
|Du−Q|+ |Q|

|Du−Q|2 · |Q|p−1

(H−2r)
′(|Q|)

+ |Q|p

. 1Ẽ(x)4H|Q|(x
−
2r, |Du−Q|) · |Q|p−1

(H−2r)
′(|Q|)

+ |Q|p

. |Q|p
(
1Ẽ(x)4H|Q|(x

−
2r, |Du−Q|) · 1

H−2r(|Q|)
+ 1

)
,

(4.8)

where we used (2.7) and (2.3) for ϕ = H−2r(t). For J3, using (3.11) with Hölder’s inequality, (4.8) and
(2.13) and (2.3) for ϕ = H−2r, we have

J3 . r
β0(H−2r)

′
([
−
ˆ

B2r

|Du|p dx

]1/p)

. rβ0(H−2r)
′
(
|Q|
[

1

H−2r(|Q|)
−
ˆ

B2r

H−2r(|Du−Q|) dx+ 1

]1/p)
. rβ0

[
Φ(2r,Q)

q−1
p + 1

]
(H−2r)

′(|Q|) ∼ rβ0
[
Φ(2r,Q)

q−1
p + 1

]
(H−2r)

′′(|Q|)|Q| .
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For J4, by (3.25) and the previous estimation, we have

J4 . r
α2(H−2r)

′
(
−
ˆ

B2r

|Du|dx
)
. rα2

[
Φ(2r,Q)

q−1
p + 1

]
(H−2r)

′′(|Q|)|Q| ,

so that, taking into account (4.7), we finally get

(4.9) |J2| . (rβ0 + rα2)
[
Φ(2r,Q)

q−1
p + 1

]
(H−2r)

′′(|Q|)|Q| .
Therefore, inserting (4.6) and (4.9) into (4.5), the proof of (4.4) is completed. �

We now set

(4.10) α3 := min {α0, α1, α2, β0} ,
where α0, α1, α2 and β0 are from (3.17), (3.20), Lemma 3.6 and (A4), respectively, and
(4.11)

E∗(x0, ρ) := E(x0, ρ) + ρ
α3
2 H−Bρ(x0)(|(Du)x0,Bρ(x0)|) = H−Bρ(x0)(|(Du)x0,Bρ(x0)|)

(
Φ(x0, ρ) + ρ

α3
2

)
,

where the excess E(x0, ρ) was introduced in (4.1). For the ease of reading, we also recall the definition
of VH−

Bρ(x0)
given in (2.12); namely,

VH−
Bρ(x0)

(P) =

√
(H−Bρ(x0))

′(|P|)
|P|

P , P ∈ RN×n .

Now, we can prove the excess decay estimate in the non-degenerate regime.

Lemma 4.2. For every ε > 0, there exist small δ1, δ2 ∈ (0, 1) depending on n, N , p, q, ν, L, α, [a]C0,α ,
β0 and ε such that if

(4.12) −
ˆ

B2r(x0)

∣∣∣∣VH−
B2r(x0)

(Du)−
(
VH−

B2r(x0)
(Du)

)
x0,2r

∣∣∣∣2 dx ≤ δ1 −
ˆ

B2r(x0)

∣∣∣VH−
B2r(x0)

(Du)
∣∣∣2 dx

and

(4.13) r
α3
2 ≤ δ2 ,

then for every τ ∈ (0, 1/4)

−
ˆ

Bτr(x0)

∣∣∣∣VH−
Bτr(x0)

(Du)−
(
VH−

Bτr(x0)
(Du)

)
x0,τr

∣∣∣∣2 dx ≤ cτ2
(

1 +
ε

τn+2

)
E∗(x0, 2r) .

Proof. In order to enlighten the notation, we will omit the dependence on x0 and write VH±2r
and H±2r in

place of VH±
B2r(x0)

and H±B2r(x0), respectively. Set Q = (Du)2r and denote by `2r := `x0,2r,(Du)x0,2r
. We

first observe from (2.14) and (4.12) that

−
ˆ

B2r

∣∣∣VH−2r
(Du)

∣∣∣2 dx ≤ 2 −
ˆ

B2r

∣∣∣VH−2r
(Du)−VH−2r

(Q)
∣∣∣2 dx+ 2

∣∣∣VH−2r
(Q)

∣∣∣2
≤ c −
ˆ

Bτr

∣∣∣VH−2r
(Du)−

(
VH−2r

(Du)
)

2r

∣∣∣2 dx+ 2
∣∣∣VH−2r

(Q)
∣∣∣2

≤ cδ1 −
ˆ

B2r

∣∣∣VH−2r
(Du)

∣∣∣2 dx+ 2
∣∣∣VH−2r

(Q)
∣∣∣2 .

We choose δ1 ∈ (0, 1) small, so that cδ1 ≤ 1/2, hence, using the definition of VH−2r
and the fact that

|VH−2r
(P)|2 ∼ H−2r(|P|), we obtain

(4.14) −
ˆ

B2r

H−2r(|Du|) dx ≤ cH−2r(|Q|) .

Using (4.4), (4.2), (4.11) and the fact that Φ(2r) . δ ≤ 1 by (4.3) and (4.12), we get∣∣∣∣−ˆ
Br

〈A(Q)(Du−Q) |Dψ〉dx
∣∣∣∣ ≤ c{Φ(2r)

1
2 + Φ(2r)

β0
2 + r

α3
2

}( E∗(2r)

H−2r(|Q|)

) 1
2

|Q|‖Dψ‖L∞

≤ c̃1
{
δ

1
2
1 + δ

β0
2

1 + δ2

}(
E∗(2r)

H−2r(|Q|)

) 1
2

|Q|‖Dψ‖L∞

(4.15)

for every ψ ∈ C∞0 (Br;RN ).
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We next define an N -function ζ by

(4.16) ζ(t) :=
(H−2r)|Q|(t)

H−2r(|Q|)
∼ H−2r(|Q|+ t)

H−2r(|Q|)(|Q|+ t)2
t2 , t ≥ 0,

where the equivalence follows by (2.9). Then we have(
t

|Q|

)2

≤ 4
H−2r(|Q|+ t)

H−2r(|Q|)(|Q|+ t)2
t2 ≤ c̃2ζ(t), t ∈ [0, |Q|],

for some c̃2 ≥ 1. Moreover, we observe from Lemma 3.5 and (2.13) that(
−
ˆ

Br

[ζ(|Du−Q|)]1+σ dx

) 1
1+σ

=
1

H−2r(|Q|)

(
−
ˆ

Br

(H−2r)|Q|(|Du−Q|)1+σ dx

) 1
1+σ

≤ c

H−2r(|Q|)
−
ˆ

B2r

(H−2r)|Q|(|Du−Q|) dx+ crα1

≤ c̃3
E∗(2r)

H−2r(|Q|)
holds for some constant c̃3 ≥ 1.

With the constants c̃1, c̃2, c̃3 ≥ 1 determined above and c̃5 ≥ 1 determined below, we define

µ := max

{
c̃1,
√
c̃2c̃3(2c̃5)1/p

}[
E∗(2r)

H−2r(|Q|)

] 1
2

|Q| .

Then, choosing δi (i = 1, 2) sufficiently small, we see that

(4.17) µ ≤ max

{
c̃1,
√
c̃2c̃3(2c̃5)1/p

}
(qδ1 + δ2)

1
2 |Q| < |Q|.

Combining the previous estimates, we obtain

(4.18)

(
−
ˆ

Br

[ζ(|Du−Q|)]1+σdx

) 1
1+σ

≤ c̃3
E∗(2r)

H−2r(|Q|)
≤ 1

c̃2(2c̃5)1/p

(
µ

|Q|

)2

≤ 1

(2c̃5)1/p
ζ(µ) .

For given ε and ζ defined as above, we determine the constant δ as the one in Lemma 2.8. Then choosing
δi (i = 1, 2) sufficiently small such that

(4.19) δ
1
2
1 + δ

β0
2

1 + δ2 ≤ δ

and inserting (4.17) and (4.19) into (4.15), we obtain

−
ˆ

Br

〈A(Du−Q) |Dψ〉dx ≤ c̃1(δ
1
2
1 + δ

β0
2

1 + δ2)

max
{
c̃1,
√
c̃2c̃3(2c̃5)1/p

}µ‖Dψ‖∞ ≤ δµ‖Dψ‖∞.
Therefore, we can apply Lemma 2.8 to the function u− `2r in place of u and ϕ = ζ, so that recalling the
definition of ζ in (4.16) we have

1

H−2r(|Q|)
−
ˆ

Br

(H−2r)|Q|(|Du−Q−Dw|) dx ≤ εζ(µ) ,

where w is the A-harmonic function in Br with w = u− `2r on ∂Br. Moreover, since

ζ(µ) ≤ c H−2r(|Q|+ µ)

H−2r(|Q|)(|Q|+ µ)2
µ2 ≤ c

(
µ

|Q|

)2

≤ c E∗(2r)

H−2r(|Q|)
by (4.17), we obtain

(4.20) −
ˆ

Br

(H−2r)|Q|(|Du−Q−Dw|) dx ≤ c̃4εE∗(2r)

for a suitable constant c̃4 > 0. We further notice from the gradient estimates for w in (2.17) and (2.18)
and Jensen’s inequality that

sup
Br/2

|Dw| ≤ cζ−1

(
−
ˆ

Br

ζ(|Dw|) dx

)
≤ c̃5ζ−1

(
−
ˆ

Br

ζ(|Du−Q|) dx

)
for some c̃5 ≥ 1. Therefore, by (4.18) and (4.17), we see that

(4.21) sup
Br/2

|Dw| ≤ 1

2
µ ≤ 1

2
|Q|.
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Fix τ ∈ (0, 1/4). Note that the previous estimate yields 1
2 |Q| ≤ |Q + (Dw)τr| ≤ 3

2 |Q|, from which,
using also (2.13), we have

−
ˆ

Bτr

∣∣∣VH−τr
(Du)−

(
VH−τr

(Du)
)
τr

∣∣∣2 dx

≤ −
ˆ

Bτr

∣∣∣VH−τr
(Du)−VH−τr

(Q + (Dw)τr)
∣∣∣2 dx

. −
ˆ

Bτr

(H−τr)|Q+(Dw)τr|(|Du−Q− (Dw)τr|) dx

∼ −
ˆ

Bτr

(H−τr)|Q|(|Du−Q− (Dw)τr|) dx

. −
ˆ

Bτr

[
(H−τr)|Q|(|Du−Q−Dw|)− (H−2r)|Q|(|Du−Q−Dw|)

]
dx

+ −
ˆ

Bτr

(H−2r)|Q|(|Du−Q−Dw|) dx+ −
ˆ

Bτr

(H−τr)|Q|(|Dw − (Dw)τr|) dx

=: I1 + I2 + I3 .

We estimate I1, I2 and I3, separately. Note that by (4.20),

I2 . ετ
−nE∗(2r) .

For I1, using the gradient estimates for w in (2.17) and (2.18) with ψ(t) = tp, Hölder’s inequality, (3.26),
(4.14), and the smallness assumption (4.13) with choosing δ2 ≤ ε, we have

I1 . −
ˆ

Bτr

(a(x)− a−2r)(|Du|q + |(Du)2r|q + |Dw|q) dx

. τ−n −
ˆ

Br

(a(x)− a−2r)|Du|q dx+ rα|(Du)2r|q + (|Du|p)
q
p
r −
ˆ

Bτr

(a(x)− a−2r) dx

. τ−n −
ˆ

Br

(a(x)− a−2r)|Du|q dx+ rα(|Du|p(1+σ0))
q−p

p(1+σ0)

2r (H−2r(|Du|))2r

. rα2τ−n(H−2r(|Du|))B2r
+ rα0(H−2r(|Du|))2r

. rα3τ−nH−2r(|Q|) . ετ−nE∗(2r) ,

where we used also estimate (3.23) and the definition of α3 in (4.10). For I3, by (2.9), the regularity
estimates for w in (2.17), (4.21) and (2.18) with ϕ(t) = tp

I3 . (H−τr)|Q|(τr sup
Br/4

|D2w|) . (H−τr)|Q|(τ sup
Br/2

|Dw|) ∼ τ2(H−τr)|Q|

(
sup
Br/2

|Dw|
)

. τ2(H+
2r)|Q|

(
(|Dw|p)1/p

Br

)
. τ2H+

2r

(
(|Du−Q|p)1/p

Br

)
.

Moreover, by (3.23) and (4.14), we have

I3 . τ
2
[
(|Du−Q|p)B2r

+ a−2r(|Du−Q|p)q/pB2r
+ rα(|Du−Q|p)(q−p)/p

B2r

]
. τ2rα3H−2r(|Q|) . τ2E∗(2r) .

Consequently, combining the above results, we obtain the desired estimate. �

4.2. Degenerate regime: almost ϕ-harmonic functions. Now, we deal with the degenerate regime.
Here, we use the assumption (A5), in place of (A4).

Fix B2r = B2r(x0) ⊂ Ω′, for some Ω′ b Ω, satisfying (3.9). We further introduce the Morrey-type
excess

(4.22) Ψ(x0, ρ) := −
ˆ

Bρ(x0)

H−Bρ(x0)(|Du|) dx .

The first result is that every weak solution to (1.5) is almost H−B2r
-harmonic.
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Lemma 4.3. For every δ ∈ (0, 1), the inequality∣∣∣∣∣∣∣ −
ˆ

Br(x0)

〈
(H−B2r(x0))

′(|Du|) Du

|Du|

∣∣∣∣Dψ〉 dx

∣∣∣∣∣∣∣
≤ c∗

(
δ +

(H−B2r(x0))
−1(Ψ(x0, 2r))

κ
+ rα2

)(
Ψ(x0, 2r) +H−B2r(x0)(‖Dψ‖∞)

)(4.23)

holds for every ψ ∈ C∞0 (Br(x0);Rn) and for some constant c∗ = c∗(n,N, p, q, ν, L, α, [a]C0,α) > 0, where
κ = κ(δ) > 0 is given in (A5) and α2 is the exponent in Lemma 3.6.

Proof. For simplicity, we write Bρ = Bρ(x0) and H−ρ (t) := H−Bρ(x0)(t), and Ψ(ρ) = Ψ(x0, ρ) for ρ ∈ (0, 2r].

Let ψ ∈ C∞0 (Br;Rn) be such that ‖Dψ‖∞ ≤ 1. Then, by the definition of weak solution, we have

−
ˆ

Br

〈
(H−2r)

′(|Du|) Du

|Du|

∣∣∣∣Dψ〉 dx = −
ˆ

Br

〈
(H−2r)

′(|Du|) Du

|Du|
−H ′(x, |Du|) Du

|Du|

∣∣∣∣Dψ〉dx

+ −
ˆ

Br

〈
H ′(x, |Du|) Du

|Du|
−A(x,Du)

∣∣∣∣Dψ〉dx

=: I1 + I2 .

We start with the estimate of I2. Observe that

|I2| ≤ δ −
ˆ

Br

H ′(x, |Du|)χ{|Du|≤κ} dx+ c−
ˆ

Br

H ′(x, |Du|)χ{|Du|>κ} dx

≤ δ −
ˆ

Br

H ′(x, |Du|) dx+
c

κ
−
ˆ

Br

H(x, |Du|) dx ,

where we used (A5) on the set {|Du| ≤ κ}, while we exploited the growth assumption (A1) combined
with (2.3) for ϕ(t) := H(x, t), for every fixed x, elsewhere. Note that from (3.10), (3.11) and Jensen’s
inequality with (4.22),

−
ˆ

Br

H(x, |Du|) dx ≤ cH−2r ((Du)2r) ≤ c(H−2r)−1 (Ψ(2r)) ((H−2r)
′ ◦ (H−2r)

−1) (Ψ(2r)) ,

and

−
ˆ

Br

H ′(x, |Du|) dx ≤ c((H−2r)′ ◦ (H−2r)
−1)(Ψ(2r)) .

Therefore, we have

|I2| ≤ c
(
δ +

(H−2r)
−1(Ψ(2r))

κ

)
((H−2r)

′ ◦ (H−2r)
−1) (Ψ(2r)) .

Moreover, we have from (3.25) that

|I1| ≤ crα2((H−2r)
′ ◦ (H−2r)

−1) (Ψ(2r)) .

Collecting all the previous estimates, we obtain∣∣∣∣−ˆ
Br

(H−2r)
′(|Du|) Du

|Du|
: Dψ dx

∣∣∣∣
.

(
δ +

(H−2r)
−1(Ψ(2r))

κ
+ rα2

)
((H−2r)

′ ◦ (H−2r)
−1) (Ψ(2r)) ‖Dψ‖∞ .

To conclude, we use (2.6) and Young’s inequality, to obtain

((H−B2r
)′ ◦ (H−B2r

)−1) (Ψ(2r)) ‖Dψ‖∞ ≤ c(H−2r)∗
(
((H−2r)

′ ◦ (H−2r)
−1)(Ψ(2r))

)
+H−2r(‖Dψ‖∞)

≤ cΨ(2r) +H−2r(‖Dψ‖∞) .

�

We recall the exponent γ0 ∈ (0, 1) from Proposition 2.7. We are now in position to prove the excess
decay estimate in the degenerate regime.

Lemma 4.4. For every γ ∈ (0, γ0) and χ > 0, there exists τ, δ3, δ4 > 0 depending on n, N , p, q, ν, L,
α, [a]C0,α , γ and χ such that if

(4.24) χ −
ˆ

B2r(x0)

∣∣∣VH−2r
(Du)

∣∣∣2 dx ≤ −
ˆ

B2r(x0)

∣∣∣∣VH−2r
(Du)−

(
VH−2r

(Du)
)
x0,2r

∣∣∣∣2 dx ,
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(4.25) −
ˆ

B2r(x0)

∣∣∣∣VH−2r
(Du)−

(
VH−2r

(Du)
)
x0,2r

∣∣∣∣2 dx ≤ δ3 ,

and

(4.26) rα2 ≤ δ4 ,

then

−
ˆ

B2τr(x0)

∣∣∣∣VH−τr
(Du)−

(
VH−τr

(Du)
)
x0,τr

∣∣∣∣2 dx

≤ τ2γ −
ˆ

B2r(x0)

∣∣∣∣VH−2r
(Du)−

(
VH−2r

(Du)
)
x0,2r

∣∣∣∣2 dx .

(4.27)

Here, H−2r := H−B2r(x0).

Proof. To enlighten notation, we omit the explicit dependence x0.
We first determine τ = τ(n,N, p, q, ν, L, α, [a]C0,α , γ, χ) > 0 small so that

(4.28) τ ≤ 1

4
and c̃6τ

2γ0χ−1 ≤ τ2γ ,

where c̃6 = c̃6(n,N, p, q, ν, L, α, [a]C0,α) > 0 will be determined later. Set

(4.29) ε = τ2γ0+n .

For this ε, we denote the constant δ in Lemma 2.9, when ϕ = H−2r, s = 1+σ (σ is the constant determined
in Lemma 3.4), and c0 is the constant c given in Lemma 3.5, by δ0. We then choose δ such that

c∗δ ≤
δ0
2
,

where c∗ denotes the constant in (4.23), and hence κ = κ(δ) in (A5) is also determined. Moreover, by
the first two assumptions (4.24) and (4.25) we have

Ψ(2r) ≤ c −
ˆ

B2r

∣∣∣VH−2r
(Du)

∣∣∣2 dx ≤ c

χ
−
ˆ

B2r

∣∣∣VH−2r
(Du)−

(
VH−2r

(Du)
)

2r

∣∣∣2 dx ≤ c

χ
δ3 .

Hence, with (4.26), we have

c∗

(
δ +

(H−2r)
−1(Ψ(2r))

κ
+ rα2

)
≤ δ0

2
+ c∗max{χ−

1
p , χ−

1
q } (H−2r)

−1(δ1)

κ
+ c∗δ4 .

We choose δ3 and δ4 such that

c∗max{χ−
1
p , χ−

1
q } (H−2r)

−1(δ4)

κ
+ c∗δ4 ≤

δ0
2
.

Therefore, by Lemma 2.9 with ϕ = H−2r, we have

(4.30) −
ˆ

Br

∣∣∣VH−2r
(Du)−VH−2r

(Dw)
∣∣∣2 dx ≤ cεΨ(2r),

where w ∈ u +W
1,H−2r
0 (Br) is the unique H−2r-harmonic mapping coinciding with u on ∂Br.

Therefore, for τ ∈ (0, 1/4),

−
ˆ

B2τr

∣∣∣∣VH−2τr
(Du)−

(
VH−2τr

(Du)
)

2τr

∣∣∣∣2 dx ≤ −
ˆ

B2τr

∣∣∣∣VH−2τr
(Du)−

(
VH−2r

(Dw)
)

2τr

∣∣∣∣2 dx

≤ 4 −
ˆ

B2τr

∣∣∣∣VH−2τr
(Du)−VH−2r

(Du)

∣∣∣∣2 dx+ 4 −
ˆ

B2τr

∣∣∣∣VH−2r
(Du)−VH−2r

(Dw)

∣∣∣∣2 dx

+ 2 −
ˆ

B2τr

∣∣∣∣VH−2r
(Dw)−

(
VH−2r

(Dw)
)

2τr

∣∣∣∣2 dx .

(4.31)

Note that, since |
√

1 + t1 −
√

1 + t2|2 ≤ |t1 − t2| for t1, t2 ≥ 0, for every P ∈ RN×n we have∣∣∣VH−2τr
(P)−VH−2r

(P)
∣∣∣2 = |P|p

∣∣∣∣√1 + a−2τr
q

p
|P|q−p −

√
1 + a−2r

q

p
|P|q−p

∣∣∣∣2
≤ q

p
(a−2τr − a

−
2r)|P|q .
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Using this, (3.26) and (4.26), we have

−
ˆ

B2τr

∣∣∣VH−2τr
(Du)−VH−2r

(Du)
∣∣∣2 dx ≤ c −

ˆ

B2τr

(a−2τr − a
−
2r)|Du|q dx

≤ cτ−n −
ˆ

Br

(a(x)− a−2r)|Du|q dx

≤ cτ−nrα2 −
ˆ

B2r

∣∣∣VH−2r
(Du)

∣∣∣2 dx

≤ c̃6τ−nδ4 −
ˆ

B2r

∣∣∣VH−2r
(Du)

∣∣∣2 dx

(4.32)

for some constant c̃6 > 0. We further choose δ4 such that δ4 ≤ τn+2γ0 . Inserting (2.20), (4.30) with
(4.29), and (4.32) into (4.31) and using assumption (4.24) and (4.28), we finally obtain

−
ˆ

B2τr

∣∣∣VH−2τr
(Du)−

(
VH−τr

(Du)
)

2τr

∣∣∣2 dx ≤ c̃1τ2γ0 −
ˆ

B2r

∣∣∣VH−2r
(Du)

∣∣∣2 dx

≤ c̃1τ2γ0χ−1 −
ˆ

B2r

∣∣∣VH−2r
(Du)−

(
VH−2r

(Du)
)

2r

∣∣∣2 dx

≤ τ2γ −
ˆ

B2r

∣∣∣VH−2r
(Du)−

(
VH−2r

(Du)
)

2r

∣∣∣2 dx .

This concludes the proof of (4.27). �

4.3. Iteration in the nondegenerate regime. In this section we set up the iteration scheme which
proves the partial regularity of the weak solution u to the system (1.1). First we consider the nondegen-
erate case and, from Lemma 4.2, prove the following result.

Lemma 4.5. Let B2R(x0) b Ω with R ∈ (0, 1/4) satisfy (3.9) with r = R, and 0 < β ≤ α3/4, where
α3 ∈ (0, 1) is given by (4.10). There exist δ5, δ6 > 0 depending on n, N , p, q, ν, L, α, [a]C0,α , β0 and β
such that the following property holds: if

(4.33) −
ˆ

BR(x0)

∣∣∣VH−
BR(x0)

(Du)−
(

VH−
BR(x0)

(Du)

)
x0,R

∣∣∣2 dx ≤ δ5 −
ˆ

BR(x0)

∣∣∣VH−
BR(x0)

(Du)
∣∣∣2 dx

and

(4.34) R
α3
2 ≤ δ6 ,

then we have
(4.35)

−
ˆ

Br(x0)

∣∣∣VH−
Br(x0)

(Du)−
(
VH−

Br(x0)
(Du)

)
x0,r

∣∣∣2 dx

≤ c
( r
R

)2β

−
ˆ

BR(x0)

∣∣∣VH−
BR(x0)

(Du)−
(

VH−
BR(x0)

(Du)

)
x0,R

∣∣∣2 dx+ c r2β −
ˆ

BR(x0)

∣∣∣VH−
BR(x0)

(Du)
∣∣∣2 dx

for every r ∈ (0, R).

Proof. As usual, throughout the proof we omit the dependence on the point x0, and write H±Bρ(x0) = H±ρ .

Step 1. Choice of parameters. Choose the parameters τ and ε in Lemma 4.2 as follows

(4.36) τ := min

{(
1

2c∗

) 1
1−β

,

(
1

16

) 1
1−β
}

and ε :=
τn+1+β

2c∗
,

where the constant c∗ > 0 will be determined below. This determines δ1 and δ2 in Lemma 4.2. We next
choose δ5 and δ6 as follows:

(4.37) δ5 := min

{
δ1,

1

8(1 + τ−n)
,

(
√

2− 1)2(1− τβ)2τn

2

}
and δ6 := min {δ2, δ5} .
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Step 2. Induction. We prove by induction that the following inequalities hold

−
ˆ

B
τkR

|Vk(Du)− (Vk(Du))τkR|2 dx ≤ τ2β̃kδ5 −
ˆ

B
τkR

|Vk(Du)|2 dx;(4.38a)

−
ˆ

B
τkR

|Vk(Du)− (Vk(Du))τkR|2 dx ≤ τ (1+β̃)k −
ˆ

BR

|V0(Du)− (V0(Du))R|2 dx

+
1− τ (1−β̃)k

1− τ1−β̃
(τkR)2β̃ −

ˆ

BR

|V0(Du)|2 dx;

(4.38b)

−
ˆ

B
τkR

|Vk(Du)|2 dx ≤ 2 −
ˆ

BR

|V0(Du)|2 dx(4.38c)

for every k ≥ 0, where Vk := VH−
τkR

. For convenience, in the sequel we shall write (4.38a)k, (4.38b)k

and (4.38c)k to denote (4.38a), (4.38b) and (4.38c) for a specific value of k. Clearly, (4.38a), (4.38b) and
(4.38c) hold for k = 0 by (4.33).

We next suppose that (4.38a)h, (4.38b)h and (4.38c)h hold for h = 0, 1, 2, . . . , k − 1 for some k ≥ 1
and then prove (4.38a)k, (4.38b)k and (4.38c)k. By (4.37), (4.34) and (4.38a)k−1, we see that (4.12) and

(4.13) hold for r = τk−1R/2. Hence, we can apply Lemma 4.2 with r = τk−1R/2 and replacing τ by 2τ
to get

−
ˆ

B
τkR

|Vk(Du)− (Vk(Du))τkR|2 dx

≤ c∗τ2(1 + ετ−n−2)

(
−
ˆ

B
τk−1R

|Vk−1(Du)− (Vk−1(Du))τk−1R|2 dx+ (τk−1R)
α3
2 −
ˆ

B
τk−1R

|Vk−1(Du)|2 dx

)

for some constant c∗ > 0. Note that since c∗τ1−β ≤ 1
2 by (4.36), c∗ετ−β−n−1 = 1

2 and

c∗τ2(1 + ετ−n−2) = τ1+β(c∗τ1−β + c∗ετ−β−n−1) ≤ τ1+β .

Hence, recalling the facts that β < α3/4, δ6 ≤ δ5 by (4.37) and τ1−β ≤ 1
16 by (4.36), and using (4.38a)k−1,

(4.34), we see that

(4.39)

−
ˆ

B
τkR

|Vk(Du)− (Vk(Du))τkR|2 dx

≤ τ1+β

(
−
ˆ

B
τk−1R

|Vk−1(Du)− (Vk−1(Du))τk−1R|2 dx+ (τk−1R)
α3
2 −
ˆ

B
τk−1R

|Vk−1(Du)|2 dx

)

≤ τ1−βτ2β

(
τ2β(k−1)δ5 −

ˆ

B
τk−1R

|Vk−1(Du)|2 dx+ τ2β(k−1)δ6 −
ˆ

B
τk−1R

|Vk−1(Du)|2 dx

)

≤ 1

8
τ2βkδ5 −

ˆ

B
τk−1R

|Vk−1(Du)|2 dx.

On the other hand, by (4.38a)k−1 and the fact that 4(1 + τ−n)δ5 ≤ 1
2 by (4.37), we have

−
ˆ

B
τk−1R

|Vk−1(Du)|2 dx ≤ 4 −
ˆ

B
τk−1R

|Vk−1(Du)− (Vk−1(Du))τk−1R|2 dx

+ 4|(Vk−1(Du))τk−1R − (Vk−1(Du))τkR|2 + 4 −
ˆ

B
τkR

|Vk−1(Du)|2 dx

≤ 4
(
1 + τ−n

)
−
ˆ

B
τk−1R

|Vk−1(Du)− (Vk−1(Du))τk−1R|2 dx+ 4 −
ˆ

B
τkR

|Vk−1(Du)|2 dx

≤ 4
(
1 + τ−n

)
δ5 −
ˆ

B
τk−1R

|Vk−1(Du)|2 dx+ 4 −
ˆ

B
τkR

|Vk−1(Du)|2 dx

≤ 1

2
−
ˆ

B
τk−1R

|Vk−1(Du)|2 dx+ 4 −
ˆ

B
τkR

|Vk−1(Du)|2 dx
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which implies that

−
ˆ

B
τk−1R

|Vk−1(Du)|2 dx ≤ 8 −
ˆ

B
τkR

|Vk−1(Du)|2 dx ≤ 8 −
ˆ

B
τkR

|Vk(Du)|2 dx

since clearly a−
τk−1R

≤ a−
τkR

and this gives (H−
τk−1R

)′ ≤ (H−
τkR

)′. Inserting this into (4.39), we obtain
(4.38a)k.

We next show that (4.38b)k holds. From (4.39), (4.38b)k−1 and (4.38c)k−1, we have

−
ˆ

B
τkR

|Vk(Du)− (Vk(Du))τkR|2 dx

≤ τ1+β

(
−
ˆ

B
τk−1R

|Vk−1(Du)− (Vk−1(Du))τk−1R|2 dx+ (τk−1R)
α3
2 −
ˆ

B
τk−1R

|Vk−1(Du)|2 dx

)

≤ τ1+β −
ˆ

B
τk−1R

|Vk−1(Du)− (Vk−1(Du))τk−1R|2 dx+ τ1−β(τkR)2β −
ˆ

B
τk−1R

|Vk−1(Du)|2 dx

≤ τ (1+β)k −
ˆ

BR

|V0(Du)− (V0(Du))R|2 dx

+ τ1+β 1− τ (1−β)(k−1)

1− τ1−β (τk−1R)2β̃ −
ˆ

BR

|V0(Du)|2 dx+ (τkR)2β −
ˆ

BR

|V0(Du)|2 dx

= τ (1+β)k −
ˆ

BR

|V0(Du)− (V0(Du))R|2 dx+
1− τ (1−β)k

1− τ1−β (τkR)2β −
ˆ

BR

|V0(Du)|2 dx

which is (4.38b)k.

Finally, by (4.38a)h and (4.38c)h with h = 0, 1, 2, . . . , k−1 and the fact that τ−
n
2 (2δ3)

1
2

1

1−τ β̃
≤
√

2−1

by (4.37), we obtain

(
−
ˆ

B
τkR

|Vk(Du)|2 dx

) 1
2

≤ τ−n2
k−1∑
h=0

(
−
ˆ

B
τhR

|Vh+1(Du)− (Vh(Du))τhR|2 dx

) 1
2

+

(
−
ˆ

BR

|V0(Du)|2 dx

) 1
2

≤ τ−n2 δ
1
2
5

k−1∑
h=0

τβh
(
−
ˆ

B
τhR

|Vh(Du)|2 dx

) 1
2

+

(
−
ˆ

BR

|V0(Du)|2 dx

) 1
2

≤
(
τ−

n
2 (2δ5)

1
2

1

1− τβ
+ 1

)(
−
ˆ

BR

|V0(Du)|2 dx

) 1
2

≤
(

2 −
ˆ

BR

|V0(Du)|2 dx

) 1
2

which implies (4.38c)k.

Step 3. Decay estimates. Let r ∈ (0, R). Then τk+1R ≤ r < τkR for some k ≥ 0. Therefore, by the
same estimation as in (4.32) we have

−
ˆ

Br

|VH−r
(Du)− (VH−r

(Du))r|2 dx ≤ −
ˆ

Br

|VH−r
(Du)− (Vk(Du))τkR|2 dx

≤ 2−
ˆ

Br

|VH−r
(Du)−Vk(Du)|2 dx+ 2−

ˆ

Br

|Vk(Du)− (Vk(Du))τkR|2 dx

≤ cτ−n(τkR)α2 −
ˆ

B
τkR

|Vk(Du)|2 dx+ cτ−n −
ˆ

B
τkR

|Vk(Du)− (Vk(Du))τkR|2 dx

=: I + II .

For I, using (4.38c), we have

I . τ−n−α2(τk+1R)
α2
2 −
ˆ

BR

|V0(Du)|2 dx . τ−n−α2r
α2
2 −
ˆ

BR

|V0(Du)|2 dx .
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For II, by (4.38b), we have

II . τ−nτ (1+β)k −
ˆ

BR

|V0(Du)− (V0(Du))R|2 dx+ τ−n
1− τ (1−β)k

1− τ1−β (τkR)2β −
ˆ

BR

|V0(Du)|2 dx

. τ−n−1−β
( r
R

)2β

−
ˆ

BR

|V0(Du)− (V0(Du))R|2 dx+
τ−n−1−2β

1− τ1−β

( r
τ

)2β

−
ˆ

BR

|V0(Du)|2 dx .

Consequently, recalling the definition (4.36) of τ , we obtain (4.35). �

5. Proof of Theorem 1.1

We are now in position to prove Theorem 1.1.

Proof of Theorem 1.1. Let γ0 be the exponent of Lemma 2.7, and fix γ ∈ (0, γ1), where

β := min
{γ0

2
,
α3

4

}
.

With this β, we find δ5 and δ6 in Lemma 4.5. We also choose χ = δ5 and γ = β in Lemma 4.4.
Consequently, δ5 and δ6 in Lemma 4.5 and δ3, δ4 and τ in Lemma 4.4 are determined and depend only
on the structure constants.

Now, choose any point x1 ∈ Ω satisfying

lim inf
r→0+

−
ˆ

Br(x1)

∣∣∣VH−
Br(x1)

(Du)− (VH−
Br(x1)

(Du))x1,r

∣∣∣2 dx = 0

and

M := lim sup
r→0+

−
ˆ

Br(x1)

∣∣∣VH−
Br(x1)

(Du)
∣∣∣2 dx < +∞ .

Fix Ω′ b Ω such that x1 ∈ Ω′. Note that there exists r0 ∈ (0, 1/4) such that the inequalities in (3.9) hold
whenever B2r(x0) ⊂ Ω′ and r ∈ (0, r0). Moreover, we can find R0 ∈ (0, r0/2) such that B2R0(x1) ⊂ Ω′,
and moreover

(5.1) R
α3
2

0 ≤ min

{
δ3

4(M + 1)
, δ6, δ4

}
,

−
ˆ

BR0
(x1)

∣∣∣VH−BR0
(x1)(Du)− (VH−

BR0
(x1)

(Du))x1,R0

∣∣∣2 dx ≤ δ3
4

and −
ˆ

BR0
(x1)

∣∣∣VH−
BR0

(x1)
(Du)

∣∣∣2 dx ≤M + 1 .

Therefore, by the continuity of the integrals above with respect to the translation of the domain of
integration, there exists R1 ∈ (0, R0) such that for every x0 ∈ BR1

(x0) we have
(5.2)

−
ˆ

BR0
(x0)

∣∣∣∣VH−
BR0

(x0)
(Du)−(VH−

BR0
(x0)

(Du))x0,R0

∣∣∣∣2 dx ≤ δ3
2

and −
ˆ

BR0
(x0)

∣∣∣VH−
BR0

(x0)
(Du)

∣∣∣2 dx ≤ 2(M+1) .

Now, we fix an arbitrary point x0 ∈ BR1
(x1), and write

Vk(P) := VH−
B
τkR0

(x0)
(P) , P ∈ RN×n .

As usual, throughout the remaining part we omit the dependence on the point x0 and write H±r :=
H±Br(x0). We first suppose that

(5.3) δ5 −
ˆ

B
τkR0

|Vk(Du)|2 dx ≤ −
ˆ

B
τkR0

|Vk(Du)− (Vk(Du))τkR0
|2 dx for every k ≥ 0 .

In view of (5.1) and (5.2), applying Lemma 4.4 inductively for r = τkR0/2, we have

(5.4)

−
ˆ

B
τkR0

|Vk(Du)− (Vk(Du))τkR0
|2 dx

≤ τ2β −
ˆ

B
τk−1R0

|Vk−1(Du)− (Vk−1(Du))τk−1R0
|2 dx

≤ . . . ≤ τ2kβ −
ˆ

BR0

|V0(Du)− (V0(Du))R0
|2 dx ≤ τ2kβ δ3

2
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holds for every k ≥ 0. Hence, for r ∈ (0, R0) there exists k ≥ 0 such that τk+1R0 ≤ r < τkR0 and so, by
arguing as in (4.32) and using (5.4),

−
ˆ

Br

|VH−r
(Du)− (VH−r

(Du))r|2 dx ≤ −
ˆ

Br

|VH−r
(Du)− (Vk(Du))τkR0

|2 dx

≤ 2−
ˆ

Br

|VH−r
(Du)−Vk(Du)|2 dx+ 2−

ˆ

Br

|Vk(Du)− (Vk(Du))τkR0
|2 dx

≤ cτ−n(τkR0)α2 −
ˆ

B
τkR0

|Vk(Du)|2 dx+ cτ−n −
ˆ

B
τkR0

|Vk(Du)− (Vk(Du))τkR0
|2 dx

≤ c(δ−1
5 + 1)τ−n −

ˆ

B
τkR0

|Vk(Du)− (Vk(Du))τkR0
|2 dx

≤ cδ3(δ−1
5 + 1)τ−nτ2kβ ≤ cδ3(δ−1

5 + 1)τ−n
(

r

τR0

)2β

.

Therefore, we have

(5.5) −
ˆ

Br

|VH−r
(Du)− (VH−r

(Du))y,Br(y)|2

r2β
dx ≤ cδ3(δ−1

5 + 1)

τn+2βR2β
0

.

We next suppose that (5.3) does not hold. Then, there exists k0 ≥ 0 such that

(5.6) δ5 −
ˆ

B
τkR0

|Vk(Du)|2 dx ≤ −
ˆ

B
τkR0

|Vk(Du)− (Vk(Du))τkR0
|2 dx

for every k = 0, . . . , k0 − 1 (when k0 = 0, (5.6) is meaningless) and

(5.7) −
ˆ

B
τk0R0

|Vk0(Du)− (Vk0(Du))τk0R0
|2 dx < δ3 −

ˆ

B
τk0R0

|Vk0(Du)|2 dx .

If k0 = 0, in view of Lemma 4.5 with R = R0 and of (5.2), for every r ∈ (0, R0) we have

−
ˆ

Br

|VH−r
(Du)− (VH−r

(Du))r|2 dx ≤ c
(
r

R0

)2β

−
ˆ

BR0

|V0(Du)− (V0(Du))R0
|2 dx+ cr2β −

ˆ

BR0

|V0(Du)|2 dx

≤ cδ3
(
r

R0

)2β

+ cr2β(M + 1)

and so

(5.8) −
ˆ

Br

|VH−r
(Du)− (VH−r

(Du))r|2

r2β
dx ≤ c

(
δ3

R2β
0

+M + 1

)
.

It remains the case when (5.6) and (5.7) hold for some k0 ≥ 1. For r ∈ [τk0R0, R0), we obtain (5.5) by the
very same argument already used when (5.3) holds. On the other hand, if r ∈ (0, τk0R0), by Lemma 4.5
with R = τk0R0 and (5.5) with r = τk0R0, we have

−
ˆ

Br

|VH−r
(Du)− (VH−r

(Du))r|2 dx

≤ c
(

r

τk0R0

)2β

−
ˆ

B
τk0R0

|Vk0(Du)− (Vk0(Du))τk0R0
|2 dx+ cr2β −

ˆ

B
τk0R0

|Vk0(Du)|2 dx

≤ c δ3
2τn+2β

(
r

R0

)2β

+ cr2β −
ˆ

B
τk0R0

|Vk0(Du)|2 dx .
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Moreover, by arguing as in (4.32) and (5.4) for k = k0 − 1 and using (5.6) for k = k0 − 1,

−
ˆ

B
τk0R0

|Vk0(Du)|2 dx ≤ 2 −
ˆ

B
τk0R0

|Vk0(Du)−Vk0−1(Du)|2 dx+ 2 −
ˆ

B
τk0R0

|Vk0−1(Du)|2 dx

≤ cτ−n −
ˆ

B
τk0−1R0

|Vk0−1(Du)|2 dx

≤ cτ−nδ−1
5 −

ˆ

B
τk0−1R0

|Vk0−1(Du)− (Vk0−1(Du))τk0−1R0
|2 dx

≤ cτ−nδ−1
5 δ3.

Therefore, for every r ∈ (0, R0) we have

(5.9) −
ˆ

Br

|VH−r
(Du)− (VH−r

(Du))r|2

r2β
dx ≤ cδ3

τn+2βR2β
0

+ cτ−nδ−1
5 δ3.

Consequently, by (5.5), (5.8) and (5.9) we conclude that the inequality

−
ˆ

Br(x0)

|VH−
Br(x0)

(Du)− (VH−
Br(x0)

(Du))x0,r|2

r2β
dx ≤ C

holds for every ball Br(x0) with x0 ∈ BR1
(x1) and for every r ∈ (0, R0). Moreover, since we have from

(2.13) that

|VH−r
(P1)−VH−r

(P2)|2 ∼ (H−r )|P2|(|P1 −P2|)
∼ |Vp(P1)−Vp(P2)|2 + a−r |Vq(P1)−Vq(P2)|2

≥ |Vp(P1)−Vp(P2)|2 ,

the previous inequality together with (2.14) implies

−
ˆ

Br(x0)

|Vp(Du)− (Vp(Du))x0,r|2

r2β
dx ≤ C .

Hence Vp(Du) ∈ C0,β(BR1
(x1);RN×n), and this concludes the proof. �
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