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Abstract. The characterization of global solutions to the obstacle problems in RN , or
equivalently of null quadrature domains, has been studied for more than 90 years. In this
paper, we give a conclusive answer to this problem by proving the following long-standing
conjecture: The coincidence set of a global solution to the obstacle problem is either a half-
space, an ellipsoid, a paraboloid, or a cylinder with an ellipsoid or a paraboloid as base.
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1. Introduction

1.1. Null quadrature domains and the obstacle problem. In 1678, Newton stated his
famous no gravity in the cavity theorem: spherical shells do not exert gravitational force inside
the cavity of the shell. This result was later extended to ellipsoidal shells (homoeoid) first by
Laplace, and soon after by Ivory using a more geometric approach.
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2 COMPLETE CLASSIFICATION OF GLOBAL SOLUTIONS TO THE OBSTACLE PROBLEM

In modern terms, these results can be stated in terms of null quadrature domains. We
recall that an open set Ω ⊂ RN is called a null quadrature domain ifˆ

Ω
h dx = 0

for every harmonic function h ∈ L1(Ω)∩C0(Ω). With this terminology, the results of Newton,
Laplace, and Ivory can be stated saying the complement of a ball/elliposoid is a null quadra-
ture domain. In greater generality, one can prove that null quadrature domains include:
- half-spaces;
- exteriors of ellipsoids;
- exterior of paraboloids;
- cylinders over domains of the types listed above.
A major question, which has been investigated over the last 90 years, is to understand whether
this list includes all the possible null quadrature domains. Before discussing it, it is important
to point out that null quadrature domains are related to solutions to the obstacle problem.
More precisely, as discussed for instance in [4, Theorem II] and [14, Theorem 4.1],

Ω is a null quadrature domain ⇔

Ω = {u > 0} for some non-negative solution u ∈ C1,1
loc (R

N ) of ∆u = χ{u>0}.
In other words, characterizing null quadrature domains is equivalent to characterizing the
coincidence set {u = 0} for global solutions to the obstacle problem

∆u = χ{u>0}, u ≥ 0, in RN . (1.1)
It is well-known that global solutions to the obstacle problem are convex (see for instance [17,
Theorem 5.1]). In particular, the coincidence set {u = 0} is convex.

1.2. Classification results. The first partial classification of global solutions with compact
coincidence sets has been achieved more than 90 years ago: in 1931, Dives [6] showed that,
for N = 3, if {u = 0} has non-empty interior and is bounded then it is an ellipsoid. Many
years later, in 1979, Lewy gave a new proof of this result [16].

In 1981, Sakai gave a full classification of global solutions in two dimensions using complex
analysis (cf. [18]).

The higher dimensional analogue to Dive’s result, i.e., if {u = 0} is bounded and has non-
empty interior then it is an ellipsoid, was proved shortly after in two steps. First, in [5],
DiBenedetto and Friedman proved the result in 1986 under the additional assumption that
{u = 0} is symmetric with respect to the hyperplanes {xj = 0} for all j ∈ {1, . . . , N}. Then,
in the same year, Friedman and Sakai [10] removed the symmetry assumption. Very recently,
in [9], two of the authors gave a concise proof of the characterization of compact coincidence
sets.

Hence, while global solutions with compact coincidence sets had been completely classified,
the structure of solutions with unbounded coincidence sets remained largely open and is related
to the following conjecture (here, one is implicitly assuming that {u = 0} has non-empty
interior, as otherwise solutions are trivially classified, see Remark 2.5 below):

Conjecture: The coincidence set of a global solution to the obstacle problem is either a
half-space, an ellipsoid, a paraboloid, or a cylinder with an ellipsoid or a paraboloid as base.
This conjecture, which has been investigated over more than 30 years, has been officially
raised in several papers: first by Shahgholian in [19, conjecture on p. 10], then by Karp
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and Margulis in [13, Conjecture 4.5], and recently in the monograph ‘Research Problems in
Function Theory’ [11, §3.1 pp. 63-64, and Problem 3.28].

In the recent work [7] the first and third author, together with Shahgholian, have been able
to solve the conjecture in the case of “xN -monotone” solutions when N ≥ 6 (see Definition 2.8
and Remark 1.4 below).

Here we are able to fully characterize global solutions in the remaining dimensions (actually,
our proof gives a complete characterization for all dimensions N ≥ 3), allowing us to prove
the conjecture above in full generality. Here is our main result:
Theorem 1.1 (Complete characterization of global solutions to the obstacle problem). Let
N ≥ 2, and let u be a solution of (1.1) such that the coincidence set {u = 0} has non-empty
interior. Then the coincidence set is is either a half-space, an ellipsoid, a paraboloid, or a
cylinder with an ellipsoid or a paraboloid as base.

As we shall explain later, this result is a rather direct consequence of the classification of
xN -monotone solutions. More precisely, the core of this paper is the following:
Theorem 1.2 (Characterization of monotone solutions). Let N ≥ 3 and let u be an xN -
monotone solution according to Definition 2.8 below. Then {u = 0} is a paraboloid.
Remark 1.3. Thanks to [8, Main Theorem], Theorem 1.1 implies a fine result on the behavior
of the regular part of the free boundary close to singularities.
Remark 1.4. As mentioned before, Theorem 1.2 has already been proved for N ≥ 6 in [7]. A
reason for this dimensional restriction comes from the fact that, in the proof in [7], a key role
is played by the Newtonian potential associated to {u = 0}, defined (up to a multiplicative
constant) as 1

|x|N−2 ∗ χ{u=0}. However, if {u = 0} is a paraboloid then the above convolution
converges only for N ≥ 6.

As we shall see later, this definition of Newtonian potential can be “corrected” to obtain a
convergent expression also in lower dimensions (see Definition 3.1 and Lemma 3.3). However,
the positivity of the Newtonian potential is important for the arguments in [7], while our
generalized potential loses this property.

At a more “fundamental” level, the role of the dimension can be seen as follows: if p(x) =
limr→∞

u(rx)
r2

denotes the blow-down polynomial appearing in Definition 2.8(iv), then the
behaviour of u − p changes considerably with the dimension. In particular, if {u = 0} is a
paraboloid (this is a particular case of xN -monotone solution) then one can check by explicit
computations that, for N ≥ 4, there exists a linear function ` such that:
-
ffl
BR
|u− p− `| dx is bounded for N ≥ 6;

-
ffl
BR
|u− p− `| dx ' log(R) for N = 5;

-
ffl
BR
|u− p− `| dx '

√
R for N = 4.

This different behavior is the reason for the dimensional restriction N ≥ 6 in [7]. In this
paper, instead, we develop a new approach that only requires

ffl
BR
|u−p−`| dx = o(R), giving

a unified proof of Theorem 1.2 for N ≥ 4. Unfortunately, in the “critical” dimension N = 3,ffl
BR
|u− p| dx ' R logR. In particular, there is no affine function that dictates the behaviour

at infinity of u−p. As the reader will see, this fact is a source of major difficulties for proving
Theorem 1.2 in dimension N = 3.

We note that also for N = 2 the behavior of u − p is superlinear:
ffl
BR
|u − p| dx ' R3/2.

However, when N = 2 one can rely on the Riemann mapping theorem to obtain a short proof
of Theorem 1.1 (see [18]).
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1.3. Structure of the paper. In Section 2 we introduce some notation and collect a series
of useful preliminary estimates on solutions to the obstacle problem and on the Alt-Caffarelli-
Friedman (ACF) functional that will play a crucial role in our proof.

In Section 3 we prove that, for an xN -monotone solution u, one can define a Newtonian-
type potential VC associated with its coincidence set C = {u = 0} so that the expansion
u = p+ VC holds.

Thanks to the Newtonian expansion proved in Section 3, in Section 4 we show that the
coincidence set C is asymptotically contained inside a paraboloid. The proof of this result
is rather easy in dimension N ≥ 4, while the case N = 3 requires an extremely delicate
argument.

In Section 5, we use the result from Section 4 to analyze the asymptotic behavior of VC .
In particular: for N ≥ 4 we can show that VC behaves at infinity like a linear function (up
to sublinear corrections); for N = 3, on each large ball BR, VC is at most CR-away from an
affine function whose slope behaves like logR. In other words, while for N ≥ 4 the gradient
of VC is bounded, for N = 3 it has a BMO-type behavior (see Lemma 5.2).

In Section 6, exploiting the information on VC obtained in the previous section, we can
construct matching paraboloid solutions (i.e., solutions that have paraboloids as coincidence
sets). More precisely, for N ≥ 4 we can find a paraboloid solution uP such that u−uP grows
sublinearly at infinity. Instead, for N = 3, for each R we construct a paraboloid solution uPR

such that 1
|BR|‖u−uPR

‖L1(BR) ≤ CR. With all this preparatory work, we can then prove our
main result.

More precisely, in Section 7 we focus on the case N ≥ 4. In that case, applying the
ACF formula to the difference between u and suitable translations of the paraboloid solution
constructed in Section 6, and exploiting the sublinear growth at infinity, we are able to prove
that such solutions are ordered. Once this is achieved, we conclude easily.

Then, in Section 8 we focus on the case N = 3. In this case, due to the lack of a sublinear
approximation of u via paraboloid solutions, we cannot directly apply the ACF formula to
deduce that u and some suitable paraboloid solutions are ordered. Instead, we apply the
ACF formula to the functions 1

R(u− uPR
)(R ·) to construct a comparison solution u∞ whose

coincidence set is a paraboloid. Then, by a delicate ACF-type dichotomy, we show that one-
homogeneous blow-down limits of u− u∞ exist and:
- either they have constant sign (so u and u∞ are “ordered at infinity”);
- or they are linear functions.
While in the first case we can conclude similarly to the case N ≥ 4, the second case requires
a refined analysis. More precisely, exploiting the information that u−u∞ behaves as a linear
function at infinity, we can construct fine adjustments of the paraboloid solution u∞ to show
that, for some suitable translations of u∞, the ACF energy vanishes. Then, we conclude
similarly to the first case.

For completeness, in Section 9 we provide a new self-contained argument showing how
Theorem 1.1 follows from Theorem 1.2.

Acknowledgements. The second author has received funding from the European Research
Council under the Grant Agreement No. 721675 “Regularity and Stability in Partial Differ-
ential Equations (RSPDE)”. We thank Lili Du and the anonymous referees for several useful
comments on a preliminary version of this manuscript.
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2. Notation and preliminaries

Throughout this work, RN will be equipped with the Euclidean inner product x · y and
the induced norm |x|. Due to the nature of the problem, we will often write x ∈ RN as
x = (x′, xN ) ∈ RN−1 × R. Also, we denote by (ei)1≤i≤N the elements of the canonical base
of RN .

In our estimates, C denotes a generic positive constant that may change from line to line.
We shall use CN whenever the constant depends only on the dimension.

We write Br(x) to denote the open N -dimensional ball of center x and radius r, while
B′
r(x

′) is the open (N − 1)-dimensional ball of center x′ ∈ RN−1 and radius r. Whenever the
center is omitted, it is assumed to be the origin 0.

When considering a set A, χA shall denote the characteristic function of A. With Hk
we refer to k-dimensional Hausdorff measure. If A and B are two sets, we denote their
symmetric difference by A4B := (A \B) ∪ (B \A). Given a function f : RN → R, we define
f+ := max{f, 0} and f− := max{−f, 0}. Furthermore, we define the differential operator
∇′f := (∂1f, . . . , ∂N−1f).
Definition 2.1 (Coincidence set). Given a solution u to the obstacle problem (1.1), we define
its coincidence set C to be

C := {u = 0}.
Remark 2.2. As already mentioned before, global solutions to the obstacle problem are convex
(see e.g. [17, Theorem 5.1]). In particular, the coincidence set C of a global solution is convex.

To get compactness of solutions, it is useful to recall that they are uniformly C1,1-regular.
Also, as shown by Caffarelli, their blow-down limits with respect to quadratic rescaling are
either half-space solutions or quadratic polynomials (see [3]). We summarize these results in
the following two lemmas:
Lemma 2.3 (Characterization of blow-down limits). Let u : RN → [0,∞) be a global solution
to the obstacle problem. Then the following convergence holds in C1,α

loc (R
N ) for each α ∈ (0, 1):

lim
r→∞

u(rx)

r2
=


1
2 max(x · e, 0)2 for some e ∈ ∂B1,

1
2x

TQx for some Q ∈ RN×N symmetric,
non-negative definite, satisfying tr(Q) = 1.

A global solution of the form 1
2 max(x · e, 0)2 is called half-space solution.

Lemma 2.4 (Uniform regularity and compactness). The following regularity and compactness
properties hold:

(i) Let u be a global solution to the obstacle problem in RN . Then
∥∥D2u

∥∥
L∞(RN )

≤ CN .
(ii) Let (uk)k∈N be a sequence of global solutions to the obstacle problem in RN that vanish

at the origin. Then there exists a subsequence (ukj )j∈N converging to a global solution
u0 in C1,α

loc (R
N ) for each α ∈ (0, 1). In addition, χ{ukj=0} → χ{u0=0} a.e. in RN .

Proof. Since u is convex it follows that 0 ≤ ∂eeu ≤ ∆u = χ{u>0} ≤ 1 for all e ∈ ∂B1. This
proves (i).

Concerning (ii), we note that the compactness in C1,α
loc (R

N ) is a direct consequence of (i) and
Ascoli-Arzelà Theorem. The a.e. convergence of the characteristic functions of the contact
sets follows from [17, Proposition 3.17(i)-(ii)]. □
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Remark 2.5. As noted in the previous proof, global solutions grow at most quadratically at
infinity (cf. [17, Theorem 2.1]). Also, if the convex set {u = 0} has empty interior, then
∆u ≡ 1. Hence, Liouville’s theorem implies that the only global solutions whose coincidence
sets have empty interior are quadratic polynomials.

Within the class of global solutions to the obstacle problem, we now introduce some ter-
minology for denoting some special solutions

Definition 2.6 (Cylindrical solutions). We say that a global solution to the obstacle problem
is cylindrical if there exists e ∈ ∂B1 such that

∇u · e ≡ 0 in RN .

A useful criterion for being a cylindrical solution is contained in the following:

Lemma 2.7. Let u be a global solution, and assume that its coincidence set C contains an
infinite line. Then u is constant in the direction of that line.

Proof. First of all we may assume that C has non-empty interior, as otherwise u is a non-
negative quadratic polynomial (see Remark 2.5) and the result follows easily.

Since C is convex, the assumption of containing a line implies that C is a product, namely
there exists a system of coordinates such that C = K × R for some convex set K ⊂ RN−1.1

Hence, given σ ∈ R, the global solution uσ(x) := u(x + σeN ) has the same contact set as u,
and therefore ∆(u − uσ) ≡ 0. Since u − uσ vanishes on C which has non-empty interior, it
follows by unique continuation that u − uσ ≡ 0. Since σ is arbitrary, this shows that u is
invariant in the eN -direction, proving the result. □

Definition 2.8 (xN -monotone solutions). We say that a global solution to the obstacle problem
(1.1) is xN -monotone if:

(i) C has non-empty interior;
(ii) C ⊂ {xN ≥ 0} and C ∩ {xN = 0} = {0};

(iii) ∂Nu ≤ 0 in RN ;
(iv) limr→∞

u(rx)
r2

= 1
2x

′TQx′ =: p(x′) in C1,α
loc (R

N ) for each α ∈ (0, 1), where x = (x′, xN ),
and Q ∈ R(N−1)×(N−1) is symmetric, positive definite, and satisfies tr(Q) = 1.

Remark 2.9. Thanks to Definition 2.8(ii)-(iii), if u is xN -monotone then {teN : t ≥ 0} ⊂ C.
Also, since the matrix Q ∈ R(N−1)×(N−1) in Definition 2.8(iv) is positive definite, there exists
a constant cp > 0 such that

p(x′) ≥ cp
∣∣x′∣∣2 for all x′ ∈ RN−1. (2.1)

The following important result on xN -monotone solutions is proved in [7, Proposition 5.1]
and will be used in Lemma 3.3 to prove that the generalized Newtonian potential associated
to the contact set of an xN -monotone solution is well-defined.

1This classical fact can be proved as follows. Assume that the line ℓ is parallel to eN , say ℓ = {x̄ + seN :
s ∈ R} for some x̄ ∈ RN , and define Kτ := C ∩ {xN = τ}. Let conv(A) denote the convex hull of the set
A. Then, by convexity of C, conv(Kτ ∪ ℓ) ⊂ C for any τ ∈ R. Since conv(Kτ ∪ ℓ) = Kτ × R, it follows that
C ⊃ K × R with K× R := ∪τ (Kτ × R). On the other hand, it is clear by construction that C ⊂ K × R, so the
result follows.
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Lemma 2.10 (C is “almost contained” in a paraboloid). Let N ≥ 3, and let u be an xN -
monotone solution. Fix δ ∈ (0, 1), and define Tδ :=

{
(y′, yN ) ∈ RN : |y′|2 < y1+δN

}
. Then

there exists a radius r̂ > 1 such that
C \B2r̂ ⊂ {yN > r̂} ∩ Tδ. (2.2)

Definition 2.11 (Ellipsoids and Paraboloids). We call a set E ⊂ RN ellipsoid if, after a
translation and a rotation,

E =

{
x ∈ RN :

N∑
j=1

x2j
a2j
≤ 1

}
for some a = (a1, . . . , aN ) ∈ (0,∞)N . We call a set P ⊂ RN a paraboloid, if, after a
translation and a rotation,

P =
{
(x′, xN ) ∈ RN : xN ≥ 0, x′ ∈

√
xNE

′},
where E′ is an (N − 1)-dimensional ellipsoid.

An important role in this paper will be played by the Alt-Caffarelli-Friedman (ACF) func-
tional originally introduced in [1]: given a function v : RN → R with N ≥ 2, we define

Φ(v, r) :=
1

r4

ˆ

Br

|∇v+|2

|x|N−2
dx

ˆ

Br

|∇v−|2

|x|N−2
dx. (2.3)

We recall in the following lemma some useful facts about the ACF functional.

Lemma 2.12 (Properties of the Alt-Caffarelli-Friedman monotonicity functional). Let N ≥
2, and let v : RN → R be a continuous W 1,2

loc function such that both v+ and v− are subhar-
monic. Then:

(i) The functional Φ(v, r) is finite for each r > 0, and
r 7→ Φ(v, r) is non-decreasing.

(ii) The following bound holds for any r > 0:
ˆ

Br

|∇v±|2

|x|N−2
dx ≤ CN

( 
B4r

v± dx
)2

.

(iii) The following bound holds for any r > 0:

Φ(v, r) ≤ CN
r4

( 
B4r

v+ dx
)2( 

B4r

v− dx
)2

.

(iv) Assume that Φ(v,R)→ 0 as R→∞. Then either v ≥ 0 in RN or v ≤ 0 in RN .

Proof. Usually (i) is stated and proved under the extra assumption v(0) = 0. However, as
noted in [17, Theorem 2.4], this extra condition is not needed and therefore (i) holds in our
setting.

By Hölder’s inequality and subharmonicity of v±, we can estimate

‖v±‖2L2(B2r)
≤ ‖v±‖L∞(B2r)

‖v±‖L1(B2r)
and ‖v±‖L∞(B2r)

≤ CN
rN
‖v±‖L1(B4r)

. (2.4)



8 COMPLETE CLASSIFICATION OF GLOBAL SOLUTIONS TO THE OBSTACLE PROBLEM

Also, as noted in [17, Section 2.2.3], the bound
ˆ

Br

|∇w|2

|x|N−2
dx ≤ CN

( 
B2r

w2 dx
)

holds for any non-negative subharmonic function w. Applying this inequality to w = v± and
using (2.4), we obtain (ii).

Multiplying the two estimates in (ii) (the one for v+ with the one for v−), (iii) follows.
To prove (iv) we can assume that there is a point y ∈ RN such that v(y) = 0 as otherwise,

by continuity of v, either v > 0 or v < 0 and the result is trivially true. By the monotonicity
and non-negativity of Φ, our assumption implies that Φ(v, r) ≡ 0 for all r > 0. Hence, by the
definition of the ACF functional (cf. (2.3)), for each r ∈ (0,∞),

either ∇v+ ≡ 0 in Br or ∇v− ≡ 0 in Br.

Since by assumption v(y) = 0 we deduce that, for all r > |y|,
either v+ ≡ 0 in Br or v− ≡ 0 in Br.

Therefore, by continuity,

either v+ ≡ 0 in
⋃
r>|y|

Br = RN or v− ≡ 0 in
⋃
r>|y|

Br = RN ,

which proves (iv). □

We conclude this section with a couple of simple but important results on the difference of
two global solutions. These results will play a crucial role in the proof of Theorem 1.2 where
we will apply the ACF functional to the difference of two global solutions.

Lemma 2.13 (Subharmonicity properties and Caccioppoli estimate). Let u1, u2 : RN → R
be global solutions to the obstacle problem. Then the following hold:

(i) The functions (u1 − u2)+, (u1 − u2)−, and |u1 − u2| are subharmonic.
(ii) The following bound holds for any r > 0: 

Br

|∇(u1 − u2)|2 dx ≤ CN
r2

 

B2r

(u1 − u2)2 dx.

Proof. Set w := u1 − u2 and note that, since ∆ui = χ{ui>0},

∆w = χ{u1>0} − χ{u2>0} ≥ 0 inside {u1 > u2}. (2.5)
Choosing a sequence of smooth, convex, non-decreasing functions ϕε : R → R such that
ϕε|(−∞,0) ≡ 0 and ϕε(s)→ s+ as ε→ 0 locally uniformly, we see that

∆[ϕε(w)] = ϕ′
ε(w)

[
χ{u1>0} − χ{u2>0}

]
+ ϕ′′

ε(w)|∇w|2 ≥ 0.

Letting ε→ 0, we conclude that (u1 − u2)+ is subharmonic. Since (u1 − u2)− = (u2 − u1)+,
by symmetry between u1 and u2 we deduce that (u1 − u2)− is subharmonic. Finally, since
|u1 − u2| = (u1 − u2)+ + (u1 − u2)−, the subharmonicity of |u1 − u2| follows. This proves (i).

To prove (ii) we define wr(x) := w(rx)
r2

and we note that, as a consequence of (2.5), it holds
wr∆wr ≥ 0, or equivalently

∆(w2
r) ≥ 2|∇wr|2. (2.6)
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Now, fix η ∈ C∞
c (B2) a non-negative cut-off function satisfying η ≡ 1 in B1. Integrating the

inequality (2.6) against η we obtainˆ

B1

|∇wr|2 dx ≤
ˆ

B2

|∇wr|2η dx ≤ 1

2

ˆ
B2

w2
r∆η dx ≤ C

ˆ

B2

w2
r dx,

as desired. □
Remark 2.14. As a direct consequence of Lemma 2.13(i) we recover the well-known fact that,
given a global solution u, (∂eu)+ and (∂eu)− are subharmonic for each e ∈ ∂B1. Indeed, given
h > 0 it suffices to apply Lemma 2.13(i) to u and u(·+he) to deduce that both

(
u(·+he)−u

h

)
+

and
(
u(·+he)−u

h

)
−
are subharmonic, and then the result follows by letting h→ 0.

Lemma 2.15 (Strong convergence). Let % ∈ (0,∞) and let (uk)k∈N, (vk)k∈N be two sequences
of global solutions to the obstacle problem in RN such that

wk := uk − vk ⇀ w weakly in W 1,2(Bϱ) as k →∞,

for some harmonic function w : RN → R. Then, for each δ ∈ (0, 1),
wk = uk − vk → w strongly in W 1,2(Bδϱ) as k →∞.

Proof. First of all note that, for all k ∈ N,
wk∆wk = (uk − vk)

(
χ{uk>0} − χ{vk>0}

)
≥ 0.

Hence, given η ∈ C∞
c (Bϱ; [0,∞)) satisfying η ≡ 1 in Bδϱ, integrating by parts twice we getˆ

Bδϱ

|∇wk|2 ≤
ˆ

Bϱ

|∇wk|2η = −
ˆ

Bϱ

(wk∇wk · ∇η + ηwk∆wk) ≤ −
ˆ

Bϱ

wk∇wk · ∇η

→ −
ˆ

Bϱ

w∇w · ∇η =

ˆ

Bϱ

|∇w|2η as k →∞,

where the last equality follows by the harmonicity of w.
Now, choosing a sequence (ηj)j∈N ⊂ C∞

c (Bϱ; [0,∞)) such that ηj ≡ 1 in Bδϱ for all j ∈ N
and ηj → χBδϱ

pointwise in Bϱ, we conclude that

lim sup
k→∞

ˆ

Bδϱ

|∇wk|2 ≤
ˆ

Bδϱ

|∇w|2.

Therefore, by the lower-semicontinuity of the Dirichlet energy we deduce that ‖∇wk‖L2(Bδϱ)
→

‖∇w‖L2(Bδϱ)
. This convergence of the L2-norm of the gradients together with the weak

convergence implies the desired strong convergence. □

3. The Newtonian potential expansion

As mentioned in Remark 1.4, in [7] a very important role is played by the Newtonian po-
tential associated to the coincidence set of a solution, defined (up to a multiplicative constant)
as 1

|x|N−2 ∗ χC . Unfortunately, if C is a paraboloid then the above convolution converges only
for N ≥ 6. For this reason we will introduce a generalized Newtonian potential in the spirit of
[12], which will be shown in Lemma 3.3 to be well-defined and to have subquadratic growth.
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Definition 3.1 (Generalized Newtonian potential). Let N ≥ 3, and define the function

G(x, y) :=
1

|x− y|N−2
− 1

|y|N−2
− (N − 2)

x · y
|y|N

for all x, y ∈ RN .

Given M ⊂ RN measurable, assume that G(x, ·)χM ∈ L1(RN ) for each x ∈ RN . Then we
define the generalized Newtonian potential associated to M as

VM (x) := αN

ˆ

M

G(x, y) dy, where αN :=
1

N(N − 2)|B1|
. (3.1)

Lemma 3.2 (Scaling of the generalized Newtonian potential). Let M ⊂ RN be a measurable
set for which VM is well-defined. Then VM satisfies the following scaling law:

VM (γx) = γ2 V 1
γ
M (x) for all γ > 0.

Proof. The proof follows from a direct calculation: since

G(γx, y) = γ2−NG

(
x,
y

γ

)
for all γ > 0, x, y ∈ RN ,

VM (γx) = αN

ˆ

M

G(γx, y) dy = γ2−NαN

ˆ

M

G

(
x,
y

γ

)
dy

= γ2−NαN

ˆ
1
γ
M

G(x, z)γN dz = γ2 V 1
γ
M (x).

□

Lemma 3.3 (Generalized Newtonian potential of C). Let N ≥ 3, and let u be an xN -monotone
solution in the sense of Definition 2.8. Then

(i) The generalized potential VC of C is well-defined and locally bounded.

(ii) VC(x) grows subquadratically as |x| → ∞. More precisely, there exists a constant C such
that

|VC(x)|
(1 + |x|)7/4

≤ C for all x ∈ RN .

(iii) VC ∈W 2,p
loc (R

N ) for each p ∈ [1,∞), ∆VC = −χC, and VC(0) = |∇VC(0)| = 0.

Proof. Fix δ ∈ (0, 1), let Tδ be as in Lemma 2.10, and recall that (2.2) holds.
To prove the estimate, we first note that the trivial bound

|G(x, y)| ≤ 1

|x− y|N−2
+

1

|y|N−2
+ (N − 2)

|x|
|y|N−1

holds. Also, by the Taylor expansion f(1) = f(0) + f ′(0) +
´ 1
0 (1 − τ)f ′′(τ) dτ applied to

f(τ) := 1
|τx−y|N−2 , we get

|G(x, y)| ≤ C |x|
2

|y|N
for |y| > 2|x|. (3.2)
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Using these two bounds and (2.2), we obtain (here r̂ > 1 is the radius provided by Lemma 2.10)
ˆ
C
|G(x, y)| dy ≤

ˆ
C∩B2r̂

(
1

|x− y|N−2
+

1

|y|N−2
+ (N − 2)

|x|
|y|N−1

)
dy

+

ˆ
C∩(B2|x|\B2r̂)

(
1

|x− y|N−2
+

1

|y|N−2
+ (N − 2)

|x|
|y|N−1

)
dy

+ C

ˆ
C\(B2|x|∪B2r̂)

|x|2

|y|N
dy

≤
ˆ
B2r̂

(
1

|x− y|N−2
+

1

|y|N−2
+ (N − 2)

|x|
|y|N−1

)
dy (3.3)

+

ˆ
Tδ∩(B2|x|\B2r̂)

(
1

|x− y|N−2
+

1

|y|N−2
+ (N − 2)

|x|
|y|N−1

)
dy

+ C

ˆ
Tδ\(B2|x|∪B2r̂)

|x|2

|y|N
dy =: I1 + I2 + I3.

Since the integral of 1
|x−y|N−2 over a ball is maximized when x coincides with the center of

the ball,2 to bound the first integral I1 we note thatˆ
B2r̂

(
1

|x− y|N−2
+

1

|y|N−2

)
dy ≤ 2

ˆ
B2r̂

1

|y|N−2
dy ≤ C and

ˆ
B2r̂

1

|y|N−1
dy ≤ C,

therefore
I1 ≤ C(1 + |x|). (3.4)

About I2, we note that this integral is nonzero only if |x| > r̂. In such a case, we observe
that, provided that r̂ is large enough,

Tδ ∩ (B2|x| \B2r̂) ⊂ Tδ ∩ {r̂ < yN < 2|x|}.

Hence, noticing that (N−1)(1+δ)
2 + 3−N ≤ 1 + δ for N ≥ 3, since 1

|y| ≤
1
yN

we get
ˆ
Tδ∩(B2|x|\B2r̂)

1

|y|N−2
dy ≤

ˆ
Tδ∩{r̂<yN<2|x|}

1

yN−2
N

dy =

ˆ 2|x|

r̂
HN−1(Tδ ∩ {yN = t}) 1

tN−2
dt

≤ C
ˆ 2|x|

r̂
t
(N−1)(1+δ)

2
+2−N dt ≤ C(1 + |x|)

(N−1)(1+δ)
2

+3−N ≤ C(1 + |x|)1+δ, (3.5)

and analogously
ˆ
Tδ∩(B2|x|\B2r̂)

1

|y|N−1
dy ≤ C

ˆ 2|x|

r̂
t
(N−1)(1+δ)

2
+1−N dt

≤ C(1 + |x|)
(N−1)(1+δ)

2
+2−N ≤ C(1 + |x|)δ. (3.6)

2This follows, for instance, from the Hardy-Littlewood inequalityˆ
Rn

f(y)g(y) dy ≤
ˆ
Rn

f∗(y)g∗(y) dy, f∗, g∗ symmetric decreasing rearrangement of f, g ≥ 0,

applied with f(y) = 1
|x−y|N−2 and g(y) = χBr (y). Indeed, in this case, f∗(y) = 1

|y|N−2 and g∗ = g.
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Therefore, combining (3.5) and (3.6),
ˆ
Tδ∩(B2|x|\B2r̂)

(
1

|y|N−2
+ (N − 2)

|x|
|y|N−1

)
dy ≤ C(1 + |x|)1+δ.

Finally, to estimate the integral of 1
|x−y|N−2 , we use again that the integral of 1

|x′−y′|N−2 over
a ball is maximized when x′ coincides with the center of the ball. This yieldsˆ

Tδ∩{yN=t}

1

|x′ − y′|N−2
dy′ =

ˆ
B′

t
1+δ
2

1

|x′ − y′|N−2
dy′ ≤

ˆ
B′

t
1+δ
2

1

|y′|N−2
dy′ = Ct

1+δ
2 ,

and therefore, since 1
|x−y| ≤

1
|x′−y′| ,ˆ

Tδ∩(B2|x|\B2r̂)

1

|x− y|N−2
dy ≤ C

ˆ 2|x|

r̂
t
1+δ
2 dt ≤ C|x|

3+δ
2 .

Overall, this proves that I2 ≤ C(1 + |x|)
3+δ
2 .

Finally, for I3, we simply note that
Tδ\(B2|x| ∪B2r̂) ⊂ Tδ ∩

{
yN > max{|x|, r̂}

}
,

henceˆ
Tδ\(B2|x|∪B2r̂)

|x|2

|y|N
dy ≤ |x|2

ˆ ∞

max{|x|,r̂}
HN−1(Tδ ∩ {yN = t}) 1

tN
dt

= C|x|2
ˆ ∞

max{|x|,r̂}
t
(N−1)(1+δ)

2
−N dt ≤ C|x|2(1 + |x|)

(N−1)(1+δ)
2

+1−N ≤ C(1 + |x|)1+δ. (3.7)

Combining all these bounds, we have shown thatˆ
C
|G(x, y)| dy ≤ C(1 + |x|)

3+δ
2 ,

where δ ∈ (0, 1) is arbitrary. This proves that VC is well-defined and locally bounded. Also,
choosing δ = 1/2, we obtain that

|VC(x)|
(1 + |x|)7/4

≤ Cr̂,N for all x ∈ RN (3.8)

where the constant Cr̂,N depends only on the dimension N and the radius r̂ defined in (2.2)
for δ = 1/2.

To prove the W 2,p-regularity of VC we note that, for % > 2max{r̂, |x|},

|VC(x)− VC∩Bϱ(x)| ≤ C
ˆ
Tδ\Bϱ

|x|2

|y|N
dy ≤ C|x|2

ˆ ∞

ϱ
t
(N−1)(1+δ)

2
−N dt ≤ C|x|2%δ−1.

This implies that VC is the locally uniform limit of the sequence of the continuous functions
VC∩Bϱ as %→∞. Also, since

αN∆x

(
1

|x− y|N−2
− 1

|y|N−2
− (N − 2)

x · y
|y|N

)
= −δx in the sense of distributions,

one easily deduces that ∆VC∩Bϱ = −χC∩Bϱ ∈ L∞(RN ) for each % > 0. Thus, by elliptic
regularity, the functions VC∩Bϱ are locally uniformly bounded in W 2,p for each p < ∞. In
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particular because of the compact embeddingW 2,p(Bϱ) ↪→ C1,α(Bϱ) for p > N and α = 1−N
p ,

we deduce that

VC∩Bϱ → VC and ∇VC∩Bϱ → ∇VC locally uniformly in RN , as %→∞.

Since G(0, ·) ≡ 0 and ∇xG(0, ·) ≡ 0, we obtain for each % > 0 that

VC∩Bϱ(0) =

ˆ
C∩Bϱ

G(0, y) dy = 0, ∇VC∩Bϱ(0) =

ˆ
C∩Bϱ

∇xG(0, y) dy = 0,

so we conclude that VC(0) = ∇VC(0) = 0. □

As a consequence of the previous lemma, we can now show the following important result.

Proposition 3.4 (Newtonian potential expansion). Let N ≥ 3, let u be an xN -monotone
solution in the sense of Definition 2.8, and let p be the blow-down limit in Definition 2.8(iv).
Then the expansion

u = p+ VC

holds.

Proof. Recall that, thanks to Lemma 3.3(iii), VC is a strongW 2,p
loc (R

N ) solution of ∆VC = −χC .
Moreover, if we set v := u− p, then v ∈ C1,1

loc (R
N ) (see Lemma 2.4(i)) and it solves the same

equation as VC , i.e., ∆v = −χC . Hence v − VC is harmonic in RN , and it follows from
Definition 2.8(iv) and Lemma 3.3(ii) that v − VC has subquadratic growth. This allows us to
apply Liouville’s theorem to obtain that

v − VC = `+ c,

where ` is a linear function and c is a constant. Thus

u = p+ `+ c+ VC in RN .

Now, since 0 ∈ ∂C, it follows from Lemma 3.3(iii) that

0 = u(0) = p(0) + `(0) + c+ VC(0) = c,

0 = ∇u(0) = ∇p(0) +∇`(0) +∇VC(0) = ∇`.

This proves that both ` and c vanish, concluding the proof. □

As we shall see in the next section, this potential expansion allows us to obtain a very
precise control on the asymptotic behavior of the coincidence set C.

4. Improved estimate on the asymptotic behavior of the coincidence set C

The goal of this section is to prove that C is contained in some paraboloid. While for N ≥ 4
there is a very simple argument to prove this result, the proof for N = 3 is amongst the most
delicate of this paper (see in particular the proof of Lemma 4.3 below).

Proposition 4.1 (C is contained in a paraboloid). Let N ≥ 3, and let u be an xN -monotone
solution in the sense of Definition 2.8. Then there are constants a0, γ0 ∈ (0,∞) such that:

(i) C ∩ {xN > a0} ⊂
{
|x′|2 < γ0xN

}
;

(ii) C ∩ {xN ≤ a0} is bounded.
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Proof. Thanks to Lemma 2.10 it follows that C ∩ {xN ≤ a} is bounded for each a > 0, so (ii)
holds for each a0 > 0. In particular, it suffices to prove (i) for a0 sufficiently large.

We first prove the result in the case N ≥ 4 (since the proof is very simple), and then focus
on the delicate case N = 3.
• The case N ≥ 4. Arguing as in the proof of Lemma 3.3, given δ ∈ (0, 1), for |x| > r̂ we
have

1

αN
VC(x) =

ˆ
C
G(x, y) dy ≥

ˆ
C∩B2r̂

(
1

|x− y|N−2
− 1

|y|N−2
− (N − 2)

|x|
|y|N−1

)
dy

+

ˆ
C∩(B2|x|\B2r̂)

(
1

|x− y|N−2
− 1

|y|N−2
− (N − 2)

|x|
|y|N−1

)
dy

− C
ˆ
Tδ\(B2|x|∪B2r̂)

|x|2

|y|N
dy =: I1 + I2 + I3

(cp. (3.3)). Again as in the proof of Lemma 3.3, we have that |I1| ≤ C(1 + |x|) and

|I3| ≤ C|x|2(1 + |x|)
(N−1)(1+δ)

2
+1−N ≤ C(1 + |x|)

1+3δ
2 for N ≥ 4

(cp. (3.4) and (3.7)). For I2, we observe that the first term is non-negative and we estimate
the remaining two as in (3.5) and (3.6), so to get

I2 ≥ −
ˆ
Tδ∩(B2|x|\B2r̂)

(
1

|y|N−2
+ (N − 2)

|x|
|y|N−1

)
dy

≥ −C(1 + |x|)
(N−1)(1+δ)

2
+3−N ≥ −C(1 + |x|)

1+3δ
2 for N ≥ 4.

Choosing δ ≤ 1/3 proves that VC(x) ≥ −C(1 + |x|) for all x ∈ RN .
Now, applying Proposition 3.4 and combining this bound with (2.1), whenever x ∈ {u = 0}

we obtain
0 = u(x) = p(x) + VC(x) ≥ cP |x′|2 − C(1 + |x|) ≥ cP |x′|2 − C − C|x′| − C|xN |.

From this estimate, we easily deduce that
|x′|2 ≤ C(1 + |xN |) = C(1 + xN ) for all x ∈ {u = 0}

(recall that {u = 0} ⊂ {xN ≥ 0}), so (i) follows.
• The case N = 3. This case follows from Lemmas 4.2 and 4.3 below. □

The rest of the section is devoted to the proof of Lemmas 4.2 and 4.3.

Lemma 4.2 (Sections of C are controlled by their measure). Let N = 3, and let u be an
xN -monotone solution in the sense of Definition 2.8. Define Ct := {y′ ∈ R2 : (y′, t) ∈ C} and
H(t) := H2(Ct) for all t ≥ 0. Then:
- either {Ct}t≥0 is bounded, i.e., supt≥0 diam(Ct) <∞;
- or there exist a0 > 1 and C0 <∞ such that, for all x3 ≥ a0,

Cx3 ⊂
{
|x′|2 < C0H(x3)

}
.

Proof. We may assume that
sup
t≥0

diam(Ct) =∞. (4.1)
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Suppose, towards a contradiction, that the statement of the lemma is not true. Then, there
exists a sequence (xn)n∈N ⊂ R2× (0,∞), with xn = ((xn)′, xn3 ), such that xn3 →∞ as n→∞
and, for all n ∈ N,

xn ∈ C and |(xn)′|2 > nH(xn3 ). (4.2)

Define dn := diam(Cxn3 ). From Lemma 2.10 we know that, given δ ∈ (0, 1),

dn ≤ (xn3 )
1+δ
2 for all n sufficiently large. (4.3)

On the other hand, (4.1) together with the monotonicity of t 7→ diam(Ct) (recall that, by
Definition 2.8, u is decreasing in the e3-direction) imply that

dn →∞ as n→∞.

Let us define for each n ∈ N the rescaling

un(x) :=
u((0, xn3 ) + dnx)

d2n
.

Note that, as a consequence of (4.2), the convex sets {un = 0}∩{x3 = 0} ⊂ R2 have diameter
1, contain the origin, and their H2-measure goes to zero. Hence, thanks to Lemma 2.4(ii),
the fact that t 7→ C(t) is increasing (again by the fact that u is decreasing in the e3-direction),
and the convergence of coincidence sets (see [17, Proposition 3.17 (iv) and Proposition 3.17
(v)]), passing if necessary to a subsequence we obtain that

un → u0 in C1,α
loc (R

3) as n→∞,

with

diam({u0 = 0} ∩ {x3 = 0}) ≥ 1, |{u0 = 0} ∩ {−1 < x3 < 0}| = 0, (4.4)

where u0 is a global solution to the obstacle problem. Also, since 0 ∈ C (cf. Definition 2.8(ii))
and δ ∈ (0, 1), it follows from (4.3) that

dist(0, (0, xn3 ))

dn
≥ xn3

(xn3 )
1+δ
2

→∞ as n→∞.

Thus, by the convexity of C (cf. Remark 2.2), we deduce that {te3 : t ≤ 0} ⊂ {u0 = 0}. On
the other hand, the fact that {te3 : t ≥ 0} ⊂ C (see Remark 2.9) implies that {te3 : t ≥ 0} ⊂
{u0 = 0}. Hence

{te3 : t ∈ R} ⊂ {u0 = 0},

and therefore it follows from Lemma 2.7 that u0 is invariant the e3-direction, i.e.

u0(x) = u0(x
′, 0) for all x ∈ R3.

Combining this information with (4.4), we deduce that the coincidence set of u0 has measure
zero, hence Remark 2.5 implies that u0 coincides with a quadratic polynomial q = q(x′). On
the other hand, [7, Lemma B.2] implies that the blow-down limit of u0 is p (being the blow-
down limit of u), and therefore the only possibility is that u0 = q = p. By the nondegeneracy
of p in R2 (see Definition 2.8(iv)), this implies that {u0 = 0} ∩ {x3 = 0} coincides with
the origin, a contradiction to the fact that this set has diameter at least 1 (see (4.4)). This
contradiction proves the lemma. □
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Lemma 4.3 (The measure of sections grows at most linearly). Let N = 3, and let u be an
xN -monotone solution in the sense of Definition 2.8. Then there exists a constant C such
that, for all t ≥ 0,

H2(C ∩ {x3 = t}) ≤ C(1 + t).

Proof. We split the proof into 8 steps.
Step 1. Preliminary observations about sections of C.
Recall the notation Ct := {y′ ∈ R2 : (y′, t) ∈ C} and H(t) := H2(Ct).

First, we claim that
√
H is a concave function, i.e., for all λ ∈ [0, 1] and t1, t2 ≥ 0,

λ
√
H(t1) + (1− λ)

√
H(t2) ≤

√
H(λt1 + (1− λ)t2).

Indeed, by the Brunn-Minkowski inequality in R2,(
λ
√
H2(Ct1) + (1− λ)

√
H2(Ct2)

)2
≤ H2(λCt1 + (1− λ)Ct2).

Hence, since λCt1 + (1− λ)Ct2 ⊂ Cλt1+(1−λ)t2 (by the convexity of C), the claim follows.
Now, the concavity of

√
H together with the smoothness3 of ∂C implies that

(
√
H)′(t)(t− s) ≤

√
H(t)−

√
H(s) ≤ (

√
H)′(s)(t− s) for all 0 ≤ s ≤ t. (4.5)

In particular, since H(0) ≥ 0,

(
√
H)′(t) ≤

√
H(t)

t
for all t > 0. (4.6)

Furthermore, by the monotonicity of u in the x3-direction,
0 ≤ H(s) ≤ H(t) for all 0 ≤ s ≤ t. (4.7)

Finally, from Lemma 2.10 we infer that for every δ ∈ (0, 1) there is a(δ) > 0 such that
H(t) ≤ t1+δ for all t ≥ a(δ). (4.8)

Step 2. The generalized Newtonian potential expansion.
Let VC be the generalized Newtonian potential of the coincidence set C, cf. Definition 3.1.
Thanks to Lemma 4.2 and (4.8) it follows that, for t > 0 sufficiently large,

0 ≤ 1

|te3 − y|
− 1

|y|
− ty3
|y|3

for all y = (y′, y3) ∈ Rt :=
{
t−

√
H(t) < y3 < t+

√
H(t)

}
∩ C.

Combining this with Proposition 3.4, Remark 2.9, and Definition 2.8(iv), we find that, for t
sufficiently large,

0 = u(te3) = VC(te
3) ≥ ṼC(te3) := α3

ˆ

C\Rt

(
1

|te3 − y|
− 1

|y|
− ty3
|y|3

)
dy. (4.9)

Step 3. A one-dimensionalized version of ṼC.
The objective of this step is to replace the potential integral defining ṼC by a one-dimensional

3Since C is a convex set with non-empty interior, it follows from the regularity theory of the free boundary
for the obstacle problem that ∂C is smooth (see for instance [3]). However, if one does not want to rely on this
result, it suffices to replace (

√
H)′ with the right or left limit of the derivative of

√
H, which always exist by

the concavity of
√
H.
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integral, up to a well-controlled error. To be more precise, we claim that there exists a
constant C such that, for all t > 0 sufficiently large,∣∣∣∣ ˆ

(C∩{y3≥a})\Rt

(
1

|te3 − y|
− 1

|y|
− ty3
|y|3

)
dy −W (t)

∣∣∣∣ ≤ C(H(t) + t), (4.10)

where

W (t) :=

t−
√
H(t)ˆ

a

(
1

t− s
− 1

s
− t

s2

)
H(s) ds+

∞̂

t+
√
H(t)

(
1

s− t
− 1

s
− t

s2

)
H(s) ds,

with a := max{a0, a(δ)} > 0, where a0 is as in Lemma 4.2, a(δ) is as in (4.8), and δ > 0 is
sufficiently small (δ < 1/2 suffices here).

For the remainder of this step, fix a point y = (y′, s) ∈ C \Rt. Note that, by the definition
of Rt, we have |t− s| ≥

√
H(t). Combining Lemma 4.2, (4.5), (4.6), and (4.7),

|y′|2 ≤ CH(s) ≤ CH(t) for all s ∈ (a, t−
√
H(t)) and (4.11)

|y′|2 ≤ CH(s) ≤ C
(√

H(t) +

√
H(t)

t
(s− t)

)2

≤ C
(
H(t) +

H(t)

t2
(s− t)2

)
for all s ≥ t+

√
H(t). (4.12)

Let us now note that, by the mean value theorem, there is ξs,t ∈ (0, |y′|2) such that∣∣∣∣∣ 1√
(s− t)2 + |y′|2

− 1√
s2 + |y′|2

− ts

(s2 + |y′|2)
3
2

−
(

1

|s− t|
− 1

s
− t

s2

)∣∣∣∣∣
≤ 1

2

∣∣∣∣∣ 1

((s− t)2 + ξs,t)
3
2

− 1

(s2 + ξs,t)
3
2

− 3
ts

(s2 + ξs,t)
5
2

∣∣∣∣∣|y′|2. (4.13)

For s ∈ (a, t−
√
H(t)), we can estimate the right-hand side above as

1

2

∣∣∣∣∣ 1

((s− t)2 + ξs,t)
3
2

− 1

(s2 + ξs,t)
3
2

− 3
ts

(s2 + ξs,t)
5
2

∣∣∣∣∣|y′|2
≤ 1

2

∣∣∣∣ 1

(t− s)3
+

1

s3
+

3ts

s5

∣∣∣∣|y′|2 ≤ 2

(
1

(t− s)3
+

t

s4

)
|y′|2,

so (4.13) implies that∣∣∣∣∣ 1√
(s− t)2 + |y′|2

− 1√
s2 + |y′|2

− ts

(s2 + |y′|2)
3
2

−
(

1

|s− t|
− 1

s
− t

s2

)∣∣∣∣∣
≤ 2

(
1

(t− s)3
+

t

s4

)
|y′|2 for all s ∈ (a, t−

√
H(t)). (4.14)
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Now, combining first (4.14), (4.11), (4.8), and (4.7), we see that∣∣∣∣∣
ˆ

C∩{a≤y3≤t−
√
H(t)}

(
1

|te3 − y|
− 1

|y|
− ty3
|y|3

)
dy −

t−
√
H(t)ˆ

a

(
1

t− s
− 1

s
− t

s2

)
H(s) ds

∣∣∣∣∣
≤ C

t−
√
H(t)ˆ

a

(
1

(t− s)3
+

t

s4

)
H(s)2 ds

≤ CH(t)2

t−
√
H(t)ˆ

a

1

(t− s)3
ds+ Ct

t−
√
H(t)ˆ

a

s2+2δ

s4
ds ≤ C(H(t) + t). (4.15)

Concerning the case s ≥ t +
√
H(t), we can either apply the Taylor formula f(1) = f(0) +

f ′(0) +
´ 1
0 (1− τ)f

′′(τ) dτ with f(τ) := ((s− tτ)2 + ξs,t)
− 3

2 to get∣∣∣∣∣ 1

((s− t)2 + ξs,t)
3
2

− 1

(s2 + ξs,t)
3
2

− 3
ts

(s2 + ξs,t)
5
2

∣∣∣∣∣ ≤ C t2

((s− t)2 + ξs,t)
5
2

≤ C t2

(s− t)5
,

or, by a direct estimate, we can bound∣∣∣∣∣ 1

((s− t)2 + ξs,t)
3
2

− 1

(s2 + ξs,t)
3
2

− 3
ts

(s2 + ξs,t)
5
2

∣∣∣∣∣ ≤
∣∣∣∣ 1

(s− t)3
+

1

s3
+

3t

s4

∣∣∣∣ ≤ C 1

(s− t)3
.

Combining the last two inequalities with (4.13), this implies∣∣∣∣∣ 1√
(s− t)2 + |y′|2

− 1√
s2 + |y′|2

− ts

(s2 + |y′|2)
3
2

−
(

1

|s− t|
− 1

s
− t

s2

)∣∣∣∣∣
≤ Cmin

{
1

(s− t)3
,

t2

(s− t)5

}
|y′|2 for all s ≥ t+

√
H(t). (4.16)

Using (4.7), (4.12), (4.16), and (4.8), we obtain∣∣∣∣∣
ˆ

C∩{y3≥t+
√
H(t)}

(
1

|te3 − y|
− 1

|y|
− ty3
|y|3

)
dy −

∞̂

t+
√
H(t)

(
1

s− t
− 1

s
− t

s2

)
H(s) ds

∣∣∣∣∣
≤ C

∞̂

t+
√
H(t)

min

{
1

(s− t)3
,

t2

(s− t)5

}
H(s)2 ds

≤ C
2tˆ

t+
√
H(t)

1

(s− t)3
H(s)2 ds+ C

∞̂

2t

t2

(s− t)5
H(s)2 ds

≤ CH(2t)2
2tˆ

t+
√
H(t)

1

(s− t)3
ds+ CH(t)

∞̂

2t

(
t2

(s− t)5
+

1

(s− t)3

)
H(s) ds
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≤ C
(
H(t) +

H(t)

t2
(2t− t)2

)2
2tˆ

t+
√
H(t)

1

(s− t)3
ds+ CH(t)

∞̂

2t

(
s2(
s
2

)5 +
1(
s
2

)3
)
s1+δ ds ≤ CH(t).

This bound, together with (4.15), concludes the proof of (4.10).
Step 4. Estimating W from below.
To simplify notation we set, for t ≥ a,

W1(t) :=

t−
√
H(t)ˆ

a

(
1

t− s
− 1

s
− t

s2

)
H(s) ds, W2(t) :=

∞̂

t+
√
H(t)

(
1

s− t
− 1

s
− t

s2

)
H(s) ds,

so that W (t) =W1(t) +W2(t).
To estimate W1 from below, we split the integral so that the integrand in each part has a

sign. More precisely, since

1

t− s
− 1

s
− t

s2
≤ 0 for s ∈

[
a,

t√
2

]
and 1

t− s
− 1

s
− t

s2
≥ 0 for s ∈

[
t√
2
, t−

√
H(t)

]
,

we set W1 =W1,1 +W1,2 with

W1,1(t) :=

t/
√
2ˆ

a

(
1

t− s
− 1

s
− t

s2

)
H(s) ds, W1,2(t) :=

t−
√
H(t)ˆ

t/
√
2

(
1

t− s
− 1

s
− t

s2

)
H(s) ds.

We estimate W1,1 by neglecting the first term, so to get

W1,1(t) ≥ −
t/
√
2ˆ

a

(
1

s
+

t

s2

)
H(s) ds ≥ −

tˆ

a

H(s)

s
ds− t

tˆ

a

H(s)

s2
ds.

To estimate W1,2, using (4.5), (4.7), and (4.6), we obtain

W1,2(t) = H(t)

t−
√
H(t)ˆ

t/
√
2

1

t− s
ds+

t−
√
H(t)ˆ

t/
√
2

H(s)−H(t)

t− s
ds−

t−
√
H(t)ˆ

t/
√
2

(
1

s
+

t

s2

)
H(s) ds

≥ H(t)
(
log(t) + log

(
1− 1√

2

))
− 1

2H(t) log(H(t))

−

t−
√
H(t)ˆ

t/
√
2

(√
H(t) +

√
H(s)

)√H(t)−
√
H(s)

t− s
ds− CH(t)

t−
√
H(t)ˆ

t/
√
2

(
1

s
+

t

s2

)
ds
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≥ H(t) log(t)− 1
2H(t) log(H(t))− 2

√
H(t)

t−
√
H(t)ˆ

t/
√
2

√
H(t)−

√
H(s)

t− s
ds− CH(t)

≥ H(t) log(t)− 1
2H(t) log(H(t))− 2

√
H(t)

t−
√
H(t)ˆ

t/
√
2

(
√
H)′(s) ds− CH(t)

≥ H(t) log(t)− 1
2H(t) log(H(t))− CH(t).

It remains to estimateW2(t). Since the integrand inW2 is non-negative, using (4.7) we obtain
that

W2(t) ≥ H(t)

∞̂

t+
√
H(t)

(
1

s− t
− 1

s
− t

s2

)
ds ≥ H(t) log(t)− 1

2H(t) log(H(t))−H(t).

Combining all estimates, we find the lower bound

W (t) ≥ 2H(t) log(t)−H(t) log(H(t))− CH(t)−
tˆ

a

H(s)

s
ds− t

tˆ

a

H(s)

s2
ds. (4.17)

Step 5. An integral inequality.
Combining (4.9), (4.10), and (4.17), we deduce the existence of a constant C such that, for
t > 0 sufficiently large,

C(H(t) + t) ≥ 2H(t) log(t)−H(t) log(H(t))−
tˆ

a

H(s)

s
ds− t

tˆ

a

H(s)

s2
ds

which implies, in particular, that

C(H(t) + t) ≥ 2(H(t) + t) log(t)− (H(t) + t) log(H(t) + t)

−
tˆ

a

H(s) + s

s
ds− t

tˆ

a

H(s) + s

s2
ds.

Hence, setting

ψ(t) :=
H(t) + t

t
,

for all t sufficiently large we get

Cψ(t) ≥ ψ(t) log(t)− ψ(t) log(ψ(t))− 1

t

tˆ

a

ψ(s) ds−
tˆ

a

ψ(s)

s
ds

≥ −ψ(t) log(ψ(t))− 1

t

tˆ

a

ψ(s) ds+
tˆ

a

ψ(t)− ψ(s)
s

ds. (4.18)
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Our goal in the following is to show that ψ is globally bounded. To this end, let us replace ψ
by the monotone function

Ψ(t) := sup
s∈[a,t]

ψ(s).

In order to find an integral inequality for Ψ, given t ≥ a let τ = τ(t) ∈ [a, t] be such that
Ψ(t) = ψ(τ). Then, by the definition of Ψ,

Ψ(s) = Ψ(t) for all s ∈ [τ, t]. (4.19)

Noticing that 1
t

´ t
a Ψ(s) ds ≥ 1

τ

´ τ
a Ψ(s) ds (since Ψ is increasing) and that Ψ(t) ≥ ψ(t) by

construction, we deduce that

CΨ(t) + Ψ(t) log(Ψ(t)) +
1

t

tˆ

a

Ψ(s) ds ≥ Cψ(τ) + ψ(τ) log(ψ(τ)) +
1

τ

τˆ

a

ψ(s) ds.

Thus, since Ψ(s) ≥ ψ(s) for all s ≥ a, it follows from (4.18) and (4.19) that

CΨ(t) + Ψ(t) log(Ψ(t)) +
1

t

tˆ

a

Ψ(s) ds ≥
τˆ

a

ψ(τ)− ψ(s)
s

ds =
τˆ

a

Ψ(t)− ψ(s)
s

ds

≥
τˆ

a

Ψ(t)−Ψ(s)

s
ds =

tˆ

a

Ψ(t)−Ψ(s)

s
ds.

Since 1
t

´ t
a Ψ(s) ds ≤ Ψ(t) (by the monotonicity of Ψ), we can simplify the relation above to

conclude that

CΨ(t) + Ψ(t) log(Ψ(t)) ≥ Ψ(t) log(t)−
tˆ

a

Ψ(s)

s
ds. (4.20)

Step 6. Switching to a differential inequality and comparison.
Define F (t) :=

´ t
a

Ψ(s)
s ds. Then F ′(t) = Ψ(t)

t > 0 and (4.20) becomes

−CF ′(t)− F ′(t) log(F ′(t)) ≤ F (t)

t
. (4.21)

Since H(t) ≤ t1+δ (see (4.8)) it follows that ψ(t) ≤ 2tδ. Therefore Ψ(t) ≤ 2tδ, from which it
follows that

F ′(t) ≤ 2tδ−1 and F (t) ≤ 2

δ
tδ. (4.22)

In particular, this yields
F ′(t)→ 0 and 0 > F ′(t) log(F ′(t))→ 0 as t→∞.

Note now that, for τ0 > 0 small enough, the function
h : (0, τ0)→ (0,∞), h(τ) := −Cτ − τ log(τ) = −Cτ + τ | log τ |

is strictly increasing, invertible, and has a locally Lipschitz-continuous inverse. Also, for
t0 > 0 sufficiently large, F ′(t) ≤ τ0 and

h(F ′(t)) ≤ F (t)

t
for all t ≥ t0.
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This implies that the above ODE enjoys the comparison principle, i.e., if G : (t0,∞) → R,
with 0 < G′(t) < τ0, satisfies

h(G′(t)) ≥ G(t)

t
for all t ≥ t0 and F (t0) ≤ G(t0)

then F (t) ≤ G(t) for all t ≥ t0.
Step 7. Construction of a comparison solution.
Let A > 1, B > 0, and define GA,B : (0,∞) → R as GA,B(t) := A log(t) − B. Then
G′
A,B(t) =

A
t ∈ (0, τ0) provided t > Aτ0, and with the choice B := A(C + log(A)) it holds

h(G′
A,B(t)) = −C

A

t
− A

t
log

(
A

t

)
= −A

t
(C + log(A)) +

A log(t)

t

=
A log(t)−B

t
=
GA,B(t)

t
for all t > 0.

Fix now δ ∈ (0, 12) and define A := t2δ0 . If t0 is chosen sufficiently large, then G′
A,B(t) ∈ (0, τ0)

for t ≥ t0. Also, thanks to (4.22) we get

GA,B(t0) = t2δ0 log(t0)− 2δt2δ0 log(t0)− Ct2δ0 =
(
(1− 2δ) log(t0)− C

)
t2δ0 ≥ F (t0).

Step 8. Conclusion.
By the comparison principle mentioned in Step 6, choosing A and B as in Step 7 we deduce
that

F (t) ≤ GA,B(t) ≤ A log(t) for all t ≥ t0. (4.23)

Also, for all 0 < x, y � 1,

y ≥ h(x) = −Cx+ x| log(x)| =⇒ x ≤ 2y

| log(x)|
≤ 2y

| log(y)|
=

2y

− log(y)
.

Hence, recalling (4.21), (4.23), and (4.22), for t ≥ t0 we obtain

F ′(t) ≤ 2
F (t)
t

− log
(
F (t)
t

) ≤ 2
A log(t)

t

− log
(
A log(t)

t

) =
2A log(t)

t
(
log(t)− log(log(t))− log(A)

) ≤ 4A

t
,

provided that t0 has been chosen sufficiently large. Recalling that F ′(t) = Ψ(t)
t ≥

ψ(t)
t this

implies that
H(t) + t

t
= ψ(t) ≤ 4A for all t ≥ t0

which concludes the proof. □

5. Linear and almost-linear behavior of VC

In this section we prove that, for N ≥ 4, the generalized Newtonian potential VC can
be written as the sum of a linear function and a correction with sublinear growth towards
infinity. In contrast, for N = 3, the best one can show is the following BMO-type property:
on every large ball BR there exists an affine function ARC whose slope grows like logR and
whose average distance from VC is of order R.

We begin with the case N ≥ 4.
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Lemma 5.1 (Asymptotic growth of the Generalized Newtonian Potential in dimension
N ≥ 4). Let N ≥ 4, let u be an xN -monotone solution in the sense of Definition 2.8,
and let VC be the generalized Newtonian potential (as defined in (3.1)) of the coincidence set
C. Then VC can be written as VC :=WC − `C with

WC(x) := αN

ˆ
C

(
1

|x− y|N−2
− 1

|y|N−2

)
dy, `C(x) := x ·

(
αN (N − 2)

ˆ
C

y

|y|N
dy
)
,

where both integrals are well-defined. Also, there exists a constant C such that 

BR

|WC(x)| dx ≤ CR1/2 for all R sufficiently large. (5.1)

Proof. Since VC is well-defined, it suffices to show that `C is well-defined. For this, we need
to prove that y

|y|N
χC ∈ L1(RN ).

Let a0 and γ0 be as in Proposition 4.1. Then, since N ≥ 4, thanks to Proposition 4.1 and
noticing that 1

|y| ≤
1
yN

for yN > 0, we can estimateˆ
C

1

|y|N−1
dy ≤

ˆ
C∩{yN≤a0}

1

|y|N−1
dy +

ˆ
{yN>a0}∩{|y′|2<γ0yN}

1

|y|N−1
dy

≤ C +

ˆ ∞

a0

HN−1(B′√
γ0t

)
1

tN−1
dt ≤ C

(
1 +

ˆ ∞

a0

t(N−1)/2+(1−N) dt
)

≤ C
(
1 +

ˆ ∞

a0

t−3/2 dt
)
<∞,

which proves that `C(x) is a well-defined linear function.
Now, to prove (5.1), by the mean value theorem it holds∣∣∣∣ 1

|x− y|N−2
− 1

|y|N−2

∣∣∣∣ ≤ C |x|
|y|N−1

for |y| > 2|x|. (5.2)

Hence, given x ∈ BR with sufficiently large R, we can write

|WC(x)| ≤ αN
ˆ
C∩{0≤yN≤a}

∣∣∣∣ 1

|x− y|N−2
− 1

|y|N−2

∣∣∣∣ dy
+ αN

ˆ
C∩{a≤yN≤2R}

∣∣∣∣ 1

|x− y|N−2
− 1

|y|N−2

∣∣∣∣ dy
+ αN

ˆ
C∩{yN≥2R}

∣∣∣∣ 1

|x− y|N−2
− 1

|y|N−2

∣∣∣∣ dy =: J1(x) + J2(x) + J3(x).

Thanks to (5.2) and Proposition 4.1(i), we can estimate

J3(x) ≤ C|x|
ˆ ∞

2R
HN−1({|y′|2 < γ0t})

1

tN−1
dt ≤ CR

ˆ ∞

2R
t−3/2 dt ≤ CR1/2.

Also, thanks to Proposition 4.1(ii), it follows that |J1(x)| ≤ C. Finally, for J2(x) we have

J2(x) ≤ αN
ˆ
{|y′|2<γ0yN}∩{0≤yN≤2R}

1

|x− y|N−2
dy + C

ˆ 2R

a0

HN−1(B′√
γ0t

)
1

tN−2
dt

≤ αN
ˆ
{|y′|2<2γ0R}∩{0≤yN≤2R}

1

|x− y|N−2
dy + CR1/2.
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Now, for the first term on the right hand side, if we write x = Rz with z ∈ B1 and we perform
the change of variables y 7→ Ry, we see thatˆ

{|y′|2<2γ0R}∩{0≤yN≤2R}

1

|x− y|N−2
dy = RN

ˆ
{
|y′|2< 2γ0

R

}
∩{0≤yN≤2}

1

|x−Ry|N−2
dy

= R2

ˆ
{
|y′|2< 2γ0

R

}
∩{0≤yN≤2}

1

|z − y|N−2
dy. (5.3)

Hence, combining all these bounds, we obtain that 

BR

|WC(x)| dx ≤ CR1/2 +

 

BR

J2(x) dx

≤ CR1/2 + αNR
2

 

B1

ˆ
{
|y′|2≤ 2γ0

R

}
∩{0≤yN≤2}

1

|z − y|N−2
dy dz.

Concerning the last integral we observe thatˆ
B1

1

|z − y|N−2
dz ≤ C for all y ∈ RN . (5.4)

Thus, since
∣∣∣{|y′|2 < 2γ0

R

}
∩ {0 ≤ yN ≤ 2}

∣∣∣ ≤ C
R3/2 for N ≥ 4, it follows from Fubini’s Theo-

rem that  

BR

|WC(x)| dx ≤ CR1/2 + αNR
2

ˆ
{
|y′|2< 2γ0

R

}
∩{0≤yN≤2}

 

B1

1

|z − y|N−2
dz dy

≤ CR1/2 + CR2

∣∣∣∣{|y′|2 < 2γ0
R

}
∩ {0 ≤ yN ≤ 2}

∣∣∣∣ ≤ CR1/2.

□
We now focus on the three-dimensional case.

Lemma 5.2 (BMO-type estimate in dimension N = 3). Let N = 3, let u be an xN -monotone
solution in the sense of Definition 2.8, and let VC be the generalized Newtonian potential (as
defined in Definition 3.1) of the coincidence set C. Then, for each R > 0 the affine function
ARC given by

ARC (x) := α3

ˆ

C

(
− 1

|y|
+

1

|Re3 + y|
− x · y
|y|3

+
(Re3 + y) · (x+Re3)

|Re3 + y|3

)
dy

is well-defined. Also, there exists a constant C such that 

BR

∣∣VC(x)−ARC (x)∣∣ dx ≤ CR for all R sufficiently large. (5.5)

Proof. We split the proof into two steps.
Step 1. ARC is well-defined and affine.
Set

aR(x, y) := − 1

|y|
+

1

|Re3 + y|
− x · y
|y|3

+
(Re3 + y) · (x+Re3)

|Re3 + y|3
(5.6)
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and writeˆ
C
|aR(x, y)| dy ≤

ˆ
C∩{y3≤2R}

|aR(x, y)| dy +
ˆ
C∩{y3≥2R}

|aR(x, y)| dy =: I1 + I2.

Since aR(x, ·) ∈ L1
loc(R3) and C ∩ {y3 ≤ 2R} is bounded (thanks to Lemma 2.10), it follows

that I1 ≤ CR for some constant depending on R. To estimate I2, by a Taylor expansion and
the mean value theorem, we have

|aR(x, y)| ≤
∣∣∣∣ 1

|Re3 + y|
− 1

|y|
+

(Re3) · y
|y|3

∣∣∣∣+ |Re3 · (x+Re3)|
|Re3 + y|3

+

∣∣∣∣(Re3 + x) · y
(

1

|y|3
− 1

|Re3 + y|3

)∣∣∣∣ (5.7)

≤ C R2

|y|3
+ C

R(R+ |x|)
|y|3

+ C
R(R+ |x|)
|y|3

for |y| > 2R.

Hence, recalling Proposition 4.1(i), we can estimate (here and below, a0 and γ0 are the
constants from Proposition 4.1)

I2 ≤ CR(R+ |x|)
ˆ
C∩{y3≥2R}

1

|y|3
dy ≤ CR(R+ |x|)

ˆ ∞

2R
H2({|y′|2 < γ0t})

1

t3
dt

≤ CR(R+ |x|)
ˆ ∞

2R

1

t2
dt ≤ C(R+ |x|), (5.8)

which proves that ARC is well-defined.
Observe now that the integrand aR in the definition of ARC is integrable (by what we have

just seen) and differentiable in x. Also, for each y ∈ C and b := max{a0, R}, it holds∣∣∇xaR(x, y)∣∣ = ∣∣∣∣ y|y|3 − Re3 + y

|Re3 + y|3

∣∣∣∣
≤ 2

|y|2
χC∩{y3≤b}(y) +

∣∣∣∣
1ˆ

0

d
ds

(
sRe3 + y

|sRe3 + y|3

)
ds
∣∣∣∣χC∩{y3≥b}(y) (5.9)

≤ 2

|y|2
χC∩{y3≤b}(y) + C

R

|y|3
χC∩{y3≥b}(y).

Since the right-hand side is integrable in R3 (again, thanks to Proposition 4.1), it follows from
dominated convergence that

∇ARC (x) = α3

ˆ

C

∇xaR(x, y) dy = α3

ˆ

C

(
− y

|y|3
+

Re3 + y

|Re3 + y|3

)
dy, (5.10)

which is constant in R3. This proves that ARC is an affine function.
Step 2. Proof of (5.5). Recalling the definition of G(x, y) in Definition 3.1, we have∣∣VC(x)−ARC (x)∣∣ ≤ α3

ˆ
C∩{0≤y3≤2R}

|G(x, y)− aR(x, y)| dy

+ α3

ˆ
C∩{y3≥2R}

|G(x, y)− aR(x, y)| dy =: J1(x) + J2(x).
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By (3.2) and (5.7), for x ∈ BR with R ≥ a0 we can estimate

J2(x) ≤ CR2

ˆ ∞

2R
H2({|y′|2 < γ0t})

1

t3
dt ≤ CR (5.11)

(cp. (5.8)). For J1(x), thanks to Proposition 4.1, for R sufficiently large we have
C ∩ {y3 ≤ 2R} ⊂

{
|y′|2 < 2γ0R

}
× {0 ≤ y3 ≤ 2R}.

Thus, since
G(Rx,Ry)− aR(Rx,Ry) = 1

R
[G(x, y)− a1(x, y)],

if we write x = Rz with z ∈ B1 and perform the change of variables y 7→ Ry, we see thatˆ
C∩{y3≤2R}

|G(x, y)− aR(x, y)| dy ≤
ˆ
{|y′|2<2γ0R}∩{0≤y3≤2R}

|G(x, y)− aR(x, y)| dy

= R2

ˆ
{
|y′|2< 2γ0

R

}
∩{0≤y3≤2}

|G(z, y)− a1(z, y)| dy

(cp. (5.3)). Altogether we proved that
 

BR

∣∣VC(x)−ARC (x)∣∣ dx ≤  

BR

(
J1(x) + J2(x)

)
dx ≤ CR+

 

BR

J1(x) dx

≤ CR+ α3R
2

 

B1

ˆ
{
|y′|2< 2γ0

R

}
∩{0≤y3≤2}

|G(z, y)− a1(z, y)| dy dz. (5.12)

Concerning the last integral, we observe that, on the domain of integration, |e3 + y| ≥ 1 and
|z + e3| ≤ 3. Hence, we can estimate

|G(z, y)− a1(z, y)| =
∣∣∣∣ 1

|z − y|
− 1

|e3 + y|
− (e3 + y) · (z + e3)

|e3 + y|3

∣∣∣∣ ≤ 1

|z − y|
+ 4. (5.13)

Thus, since
∣∣∣{|y′|2 < 2γ0

R

}
∩ {0 ≤ y3 ≤ 2}

∣∣∣ ≤ C
R , it follows from Fubini’s Theorem and (5.4)

that  

BR

∣∣VC(x)−ARC (x)∣∣ dx ≤ CR+ α3R
2

ˆ
{
|y′|2< 2γ0

R

}
∩{0≤y3≤2}

 

B1

(
1

|z − y|
+ 4

)
dz dy

≤ CR+ CR2

∣∣∣∣{|y′|2 < 2γ0
R

}
∩ {0 ≤ y3 ≤ 2}

∣∣∣∣ ≤ CR, (5.14)

as desired. □

We conclude this section by proving a sharp bound on the growth of ARC (0) and the different
components of its gradient. This result will be used later in the proofs of Corollary 6.5,
Proposition 8.1, and Proposition 8.2.

Lemma 5.3 (Growth of ARC ). Let N = 3, let u be an xN -monotone solution in the sense of
Definition 2.8, and let ARC be as in Lemma 5.2. Then there exists a constant C such that

|∇′ARC | ≤ C, |∂3ARC | ≤ C logR, |ARC (0)| ≤ CR for all R sufficiently large.
(Here, ∇′ denotes the gradient with respect to the first 2 variables.)
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Proof. For the first bound we note that, for y ∈ C,∣∣∇′
xa
R(x, y)

∣∣ = ∣∣∣∣ y′|y|3 − y′

|Re3 + y|3

∣∣∣∣ ≤ 2
|y′|
|y|3

, (5.15)

where aR is the function defined in (5.6). Thus, thanks to Proposition 4.1,ˆ
C

∣∣∇x′aR(x, y)∣∣ dy ≤ 2

ˆ
C∩{y3≤a0}

1

|y|2
dy + 2

ˆ
C∩{y3≥a0}

|y′|
y33

dy

≤ C + 2

ˆ ∞

a0

H2({|y′|2 < γ0t})
(γ0t)

1/2

t3
dt ≤ C + C

ˆ ∞

a0

1

t3/2
dt ≤ C.

Recalling (5.10), this proves that |∇′ARC | ≤ C.
For the second bound, we apply (5.9) and Proposition 4.1 to obtain that, for R ≥ a0,ˆ
C

∣∣∂x3aR(x, y)∣∣ dy ≤ C ˆ
C∩{y3≤a0}

1

|y|2
dy + C

ˆ
C∩{a0≤y3≤R}

1

|y|2
dy + C

ˆ
C∩{y3≥R}

R

|y|3
dy

≤ C + C

ˆ R

a0

H2({|y′|2 < γ0t})
1

t2
dt+ CR

ˆ ∞

R
H2({|y′|2 < γ0t})

1

t3
dt

≤ C + C

ˆ R

a0

1

t
dt+ CR

ˆ ∞

R

1

t2
dt ≤ C logR.

Thus, |∂3ARC | ≤ C logR.
Finally, in order to estimate ARC (0), we writeˆ

C
|aR(0, y)| dy ≤

ˆ
C∩{y3≤2R}

|aR(0, y)| dy +
ˆ
C∩{y3≥2R}

|aR(0, y)| dy =: J1 + J2.

Using (5.8) with x = 0, we immediately get J2 ≤ CR. Concerning J1, for y ∈ C ∩ {y3 ≤ 2R}
we can estimate

|aR(0, y)| ≤ 2

|y|
+

R

R2 + |y|2
≤ 3

|y|
, (5.16)

hence

J1 ≤ 3

ˆ
C∩{y3≤a0}

1

|y|
dy + C

ˆ
C∩{a0≤y3≤2R}

1

|y|
dy

≤ C + C

ˆ 2R

a0

H2({|y′|2 < γ0t})
1

t
dt ≤ C + C

ˆ 2R

a0

dt ≤ CR, (5.17)

concluding the proof.
□

6. Constructing matching paraboloid solutions

In this section, given N ≥ 3, we construct “matching” paraboloid solutions, i.e., solutions
that have paraboloids as coincidence sets and have the same second-order asymptotics at
infinity as the solution u. More precisely, for N ≥ 4 we find a fixed paraboloid solution uP
such that u−uP grows sublinearly at infinity. Instead, in the critical dimension N = 3, for any
sufficiently large R we construct a paraboloid solution uPR

such that supBR
|u− uPR

| ≤ CR,
where the constant C is independent of R.
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We begin with a result about the existence of paraboloid solutions with prescribed as-
ymptotic behavior at infinity. Since the proof is rather classical and follows from a minor
modification of the one of [7, Theorem 7.1], we postpone it to Appendix A.

Lemma 6.1 (Existence of paraboloid solutions with prescribed asymptotic behavior at in-
finity). Given N ≥ 3, let p = p(x′) be a homogeneous quadratic polynomial as in Defini-
tion 2.8(iv). Then there exists a (unique) ellipsoid

E′ :=

{
y′ ∈ RN−1 :

y21
a21

+ . . .+
y2N−1

a2N−1

≤ 1

}
⊂ RN−1 with ai > 0 for i = 1, . . . , N − 1,

such that the following holds.
Define the paraboloid P = PE′ := {(y′, yN ) ∈ RN−1 × [0,∞) : y′ ∈ √yNE′}. Then there

exists a global solution uP with P as coincidence set and p as quadratic blow-down limit, i.e.,
∆uP = χ{uP>0}, uP ≥ 0 in RN , {uP = 0} = P,

and
uP (rx)

r2
→ p(x′) in C1,α

loc (R
N ) as r →∞, α ∈ (0, 1).

Also, for each γ > 0, the function uγP (x) := γ2uP
(
x
γ

)
is a global solution with γP as

coincidence set and p as blow-down limit, and it satisfies the potential expansion
uγP = p+ VγP in RN . (6.1)

In the next result, we show that, if N ≥ 4, we can actually find paraboloid solutions with
prescribed behavior up to linear order. Given a ∈ RN , we use the notation uγP−a to denote
the solution that has γP − a as coincidence set. Note that this solution is obtained simply
by translating the solution having γP as coincidence set, namely uγP−a(x) = uγP (x+ a).

Lemma 6.2 (Existence of paraboloid solutions with prescribed linear behavior at infinity in
dimension N ≥ 4). Let N ≥ 4, let p = p(x′) be a homogeneous quadratic polynomial as in
Definition 2.8(iv), and let P be as in Lemma 6.1. For any b = (b′, bN ) ∈ RN−1 × (−∞, 0)
there exist τ ′ ∈ RN−1 and γ > 0 such that the following holds: for each σ ∈ R,

1

R

 

BR

∣∣uγP−(τ ′,σ)(x)− p(x′)− b · x
∣∣ dx→ 0 as R→∞.

Proof. As noted before, uγP−(τ ′,σ)(x) = uγP (x
′ + τ ′, xN + σ). Hence, since p is a quadratic

polynomial, recalling Lemma 5.1 we have
uγP−(τ ′,σ)(x) = p(x′ + τ ′) + VγP (x

′ + τ ′, xN + σ)

= p(x′) +∇′p(x′) · τ ′ + p(τ ′) (6.2)

− (x′ + τ ′, xN + σ) ·
(
αN (N − 2)

ˆ
γP

y

|y|N
dy
)
+WγP (x

′ + τ ′, xN + σ),

where ∇′p denotes the first N − 1 components of ∇p = (∇′p, 0) ∈ RN−1 × R and WγP is
defined analogously to WC in Lemma 5.1, namely

WγP (x) := αN

ˆ
γP

(
1

|x− y|N−2
− 1

|y|N−2

)
dy.
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Note now that, by symmetry,

αN (N − 2)

ˆ
γP

y

|y|N
dy = λγe

N , where λγ := αN (N − 2)

ˆ
γP

yN

|y|N
dy > 0.

Thus

uγP−(τ ′,σ)(x) = p(x′) +∇′p(x′) · τ ′ + p(τ ′)− λγ(xN + σ) +WγP (x
′ + τ ′, xN + σ).

Recalling that ∇′p(x′) = Qx′ with Q symmetric and invertible, choosing τ ′ := Q−1b′ we get
∇′p(x′) · τ ′ = b′ · x′.

In addition, it follows by monotone convergence that γ 7→ λγ is continuous and

λγ → αN (N − 2)

ˆ
RN−1×(0,∞)

yN

|y|N
dy =∞ as γ →∞,

λγ → 0 as γ → 0.

Thus, by continuity, there exists γ > 0 such that λγ = −bN . Hence, with these choices of τ ′
and γ, we get

uγP−(τ ′,σ)(x)− p(x′)− b · x = p(τ ′)− λγσ +WγP (x
′ + τ ′, xN + σ).

Applying Lemma 5.1 with γP in place of C, this implies that for sufficiently large R (depending
on τ ′, γ, and σ),

 

BR

∣∣uγP−(τ ′,σ)(x)− p(x′)− b · x
∣∣ dx ≤ |p(τ ′)|+ λγ |σ|+

 

BR

∣∣WγP (x
′ + τ ′, xN + σ)

∣∣ dx
≤ |p(τ ′)|+ λγ |σ|+

1

|BR|

ˆ
B2R

|WγP (x)| dx ≤ CR1/2,

and the result follows. □

Corollary 6.3. Let N ≥ 4, and let u be an xN -monotone solution in the sense of Definition
2.8. Then there exist a paraboloid P as in Lemma 6.1, γ > 0, and τ ′ ∈ RN−1 such that, for
each σ ∈ R,

1

R

 

BR

∣∣u− uγP−(τ ′,σ)

∣∣ dx→ 0 as R→∞.

Proof. Let p be as in Definition 2.8, let C be the coincidence set of u, and let `C be as in
Lemma 5.1, so that u = p− `C +WC . Define

b = −∇`C = −αN (N − 2)

ˆ
C

y

|y|N
dy.

Since bN = −αN (N − 2)
´
C
yN
|y|N

dy < 0, we can apply Lemmas 6.2 and 5.1 to deduce the
existence of P, γ, and τ ′ such that, for each σ ∈ R,

1

R

 

BR

∣∣u− uγP−(τ ′,σ)

∣∣ dx ≤ 1

R

 

BR

|WC(x)| dx+
1

R

 

BR

∣∣uγP−(τ ′,σ) − p(x′)− b · x
∣∣ dx→ 0

as R→∞. □
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In the critical dimension N = 3, the statement of Lemma 6.2 does not hold. The best
we can do in dimension N = 3 is to match, on any large ball BR, the slope of the affine
approximation of VγRP in the e3-direction. This will be achieved in the proof of Corollary 6.5,
using Lemma 6.4 below. As a consequence, on any large ball BR, we can find a parabo-
loid PR = γRP so that the average of u − uPR

over BR grows at most linearly in R (see
Corollary 6.5).

Lemma 6.4 (Matching on each ball BR in dimension N = 3). Let N = 3, p = p(x′) be the
blow-down polynomial defined in Definition 2.8(iv), and P as in Lemma 6.1. Also, for γ ≥ 0,
let ARγP be defined as in Lemma 5.2.

Then, given B > 0, there exist γB > 0 and RB ≥ 1 such that the following holds: For each
β ∈ [0, B] and R ≥ RB there exists γ = γ(β,R) ∈ [0, γB] such that

∂3A
R
γP = −β logR. (6.3)

Proof. Note that, since uγP is an xN -monotone solution, ARγP is well-defined thanks to
Lemma 5.2. Also, as shown in Step 1 in the proof of Lemma 5.2,

∂3A
R
γP = α3

ˆ

γP

(
− y3
|y|3

+
R+ y3
|Re3 + y|3

)
dy. (6.4)

We now observe thatˆ

γP

(
− y3
|y|3

+
R+ y3
|Re3 + y|3

)
dy = lim

ε→0

ˆ

γP

(
− y3
|y|3+ε

+
R+ y3

|Re3 + y|3+ε

)
dy

= lim
ε→0
−
ˆ

γP

y3
|y|3+ε

dy +
ˆ
γP

R+ y3
|Re3 + y|3+ε

dy

= lim
ε→0
−

ˆ

γP\(γP+Re3)

y3
|y|3+ε

dy = −
ˆ

γP\(γP+Re3)

y3
|y|3

dy,

where the first equality follows from dominated convergence since the integrand is uniformly
convergent at infinity (see (5.9)), the second equality from the fact that each term in the
integrand is integrable for ε > 0, the third equality from a change of variables, and the last
equality from monotone convergence when |y| > 1 and dominated convergence when |y| ≤ 1.
This proves that

∂3A
R
γP = −α3

ˆ

γP\(γP+Re3)

y3
|y|3

dy < 0, (6.5)

In particular, since γP +Re3 ⊂ {y3 ≥ R}, for R > 1 it follows that

∂3A
R
γP ≤ −α3

ˆ
γP∩{R1/2<y3<R}

y3
|y|3

dy. (6.6)

Note now that, for R1/2 ≥ γ and for y′ ∈ √γy3E′ with y3 ≥ R1/2, we have

|y| ≤ |y′|+ y3 ≤ CE′γ1/2y
1/2
3 + y3 ≤ CE′R1/4y

1/2
3 + y3 ≤ (CE′ + 1)y3,
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for some constant CE′ depending only on E′. Hence, thanks to (6.6),

∂3A
R
γP ≤ −

α3

(CE′ + 1)3

ˆ
γP∩{R1/2<y3<R}

1

y23
dy ≤ − α3

(CE′ + 1)3

ˆ R

R1/2

H2(
√
γtE′)

1

t2
dt

≤ −cE′γ

ˆ R

R1/2

1

t
dt = −cE

′

2
γ logR, (6.7)

where cE′ > 0 is a constant depending only on E′.
Hence, given B > 0, set γB := 2

cE′
B and RB := max{γ2B, 1}. Then, with these choices,

∂3A
R
γBP
≤ −B logR for all R ≥ RB.

On the other hand, recalling (6.4) and (5.9), we can apply dominated convergence to deduce
that γ 7→ ∂3A

R
γP is continuous and

∂3A
R
γP → 0 as γ → 0.

Hence, by continuity, given any β ∈ [0, B] and R ≥ RB there exists γ = γ(β,R) ∈ [0, γB] such
that (6.3) holds. □

Corollary 6.5. Let N = 3, and let u be an xN -monotone solution in the sense of Definition
2.8. Then there exist a paraboloid P as in Lemma 6.1 and positive constants γ̄, R̄, and C̄,
such that the following holds: for any R ≥ R̄ there exists γR ∈ [0, γ̄] such that

1

R

 

BR

|u− uPR
| dx ≤ C̄, where PR := γRP. (6.8)

Proof. We begin by noticing that, since C is contained in some paraboloid (see Proposi-
tion 4.1), we can repeat the proof of (6.5) with C in place of γP to show that

∂3A
R
C = −α3

ˆ

C\(C+Re3)

y3
|y|3

dy.

We now observe that, as a consequence of the monotonicity of the contact set in the e3-
direction (a direct consequence of the monotonicity of u), the right hand side above is strictly
negative. Thus, thanks to Lemma 5.3, there exist R̂ > 1 and B > 0 such that

0 > ∂3A
R
C ≥ −B logR for all R ≥ R̂.

This allows us to apply Lemma 6.4 to deduce that, if we set γ̄ := γB and R̄ := max{R̂, RB},
then for any R ≥ R̄ there exists γR ∈ (0, γ̄] such that

∂3A
R
PR

= ∂3A
R
C < 0, where PR := γRP. (6.9)

Using the potential expansion of both u and uPR
(cf. Proposition 3.4 and (6.1)), thanks to

(6.9) we find that for all R ≥ R̄, 

BR

|u− uPR
| dx =

 

BR

|VC − VPR
| dx ≤

 

BR

∣∣VC −ARC ∣∣ dx+

 

BR

∣∣VPR
−ARPR

∣∣ dx
+

 

BR

∣∣ARC (0)−ARPR
(0)
∣∣ dx+

 

BR

∣∣∇′ARC −∇′ARPR

∣∣|x| dx.
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Applying Lemmas 5.2 and 5.3 to u, we can estimate 

BR

∣∣VC −ARC ∣∣ dx+

 

BR

∣∣ARC (0)∣∣ dx+

 

BR

∣∣∇′ARC
∣∣|x| dx ≤ CR.

Also, since γR ∈ (0, γ̄], the very same arguments used for proving Lemmas 5.2 and 5.3 show
that  

BR

∣∣VPR
−ARPR

∣∣ dx+

 

BR

∣∣ARPR
(0)
∣∣ dx+

 

BR

∣∣∇′ARPR

∣∣|x| dx ≤ Cγ̄R,
where Cγ̄ depends only on P and γ̄ (in particular, it is independent of R). Combining all
these estimates, we conclude the validity of (6.8). □

7. Proof of Theorem 1.2: the case N ≥ 4

Given u an xN -monotone solution as in Definition 2.8, using the ACF monotonicity formula
from Lemma 2.12 we will show that u and the comparison solutions uγP−(τ ′,σ) provided by
Corollary 6.3 are ordered. Thanks to this important fact, the result will follow easily.

In order to simplify notation, we set
Pσ := γP − (τ ′, σ) and uσ := uγP−(τ ′,σ). (7.1)

Proposition 7.1 (Ordering in dimension N ≥ 4). Let N ≥ 4. Then, for all σ ∈ R,
either u ≤ uσ in RN or u ≥ uσ in RN .

Proof. Thanks to Lemma 2.13(i), we can apply Lemma 2.12(i)-(iii) with v = u−uσ to deduce
that, for every r > 0,

Φ(u− uσ, r) ≤ lim sup
R→∞

Φ(u− uσ, R) ≤ CN lim sup
R→∞

(
1

R

 

B4R

|u− uσ|
)4

= 0,

where the last equality follows from Corollary 6.3. Hence, thanks to Lemma 2.12(iv) we
conclude that either u− uσ ≥ 0 or u− uσ ≤ 0, as desired. □

We can now easily prove our main theorem.

Proof of Theorem 1.2: the case N ≥ 4. Since u is an xN -monotone solution,
u(0) = 0, u(−eN ) > 0. (7.2)

On the other hand, recalling (7.1), since P is a paraboloid contained in {xN ≥ 0} with tip at
the origin, by the definition of Pσ (see (7.1)) it follows that

0 6∈ Pσ for σ < 0, −eN ∈ Pσ for σ � 1,

therefore
uσ(0) > 0 for σ < 0, uσ(−eN ) = 0 for σ � 1. (7.3)

Combining (7.2), (7.3), and Proposition 7.1, we conclude that
uσ ≥ u for σ < 0, uσ ≤ u for σ � 1. (7.4)

Now, let us define
σ̄ := inf{σ ∈ R : uσ ≤ u}.

Thanks to (7.4), σ̄ ∈ R is well-defined. We now claim that u ≡ uσ̄.
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Indeed, by definition of σ̄ there exists a sequence σk → σ̄ such that uσk ≤ u, therefore
uσ̄ ≤ u. Assume now towards a contradiction that u 6≡ uσ̄. Then there exists x̄ ∈ RN such
that uσ̄(x̄) < u(x̄), and by continuity we can find ε > 0 such that uσ̄−ε(x̄) < u(x̄). Since u and
uσ̄−ε must be ordered (because of Proposition 7.1), we conclude that uσ̄−ε ≤ u, contradicting
the definition of σ̄.

Since u ≡ uσ̄ we conclude that {u = 0} is a paraboloid4, as desired. □

Remark 7.2. It is worth noticing that our argument gives a new proof of the characterization
of global solutions with compact coincidence set for any dimension N ≥ 2. Indeed, when
C = {u = 0} is compact, we can write the expansion (cp. Lemma 5.1 and [9])

u(x) = p(x) + VC(x) = p(x)− x ·
ˆ
C
∇KN (y) dy +

ˆ
C

(
KN (x− y)−KN (y)

)
dy,

where KN is the fundamental solution of the Laplacian (see (A.1)). Since C is compact,
all integrals converge and the remainder term (the last integral) is sublinear. Also, in this
compact case, p(x) = 1

2x
TQx where Q ∈ RN×N is symmetric and positive definite5.

Now, arguing as in Lemma 6.1, we find an ellipsoid E ⊂ RN such that uE has p as quadratic
blow-down limit. In addition, since Q is invertible on RN , choosing τ := Q−1b with b :=´
C ∇KN (y) dy, for each γ > 0 the function u − uγE−τ has sublinear growth at infinity (cp.
Lemma 6.2). Then the ACF monotonicity formula implies that either u ≤ uγE−τ or u ≥ uγE−τ
(cp. Proposition 7.1), and finally a continuity argument implies the existence of a value γ̄ > 0
such that u ≡ uγ̄E−τ (cp. Proof of Theorem 1.2: the case N ≥ 4), as desired.

8. Proof of Theorem 1.2: the case N = 3

Let u be an xN -monotone solution as in Definition 2.8. Also, for each R ≥ R̄, let PR = γRP
with γR ∈ [0, γ̄] be the paraboloid provided by Corollary 6.5, so that (6.8) holds.

To simplify the notation, for each R ≥ R̄ and x ∈ R3 we define

vR(x) :=
(u− uPR

)(Rx)

R
,

so that (6.8) is equivalent to ‖vR‖L1(B1)
≤ C for all R ≥ R̄.

Thanks to this uniform L1-bound and Lemma 2.13(i), we can apply Lemma 2.12(i)-(iii) to
deduce that, for all r ∈ (2R̄, R),

Φ
(
u− uPR

, r2
)
≤ Φ

(
u− uPR

, R2
)
= Φ

(
vR,

1
2

)
≤ C. (8.1)

Since 0 ∈ {uPR
= 0}, it follows from Lemma 2.4(ii) that, passing if necessary to a subsequence,

uPR
→ u∞ in C1,α

loc (R
3) as R→∞, (8.2)

where u∞ is a global solution to the obstacle problem. Also, since PR = γRP with γR ∈ [0, γ̄],
it follows that

{u∞ = 0} = γ∞P for some γ∞ ∈ [0, γ̄], P = {y′ ∈ √yNE′} (8.3)

(if γ∞ = 0 then u∞ = p).

4A posteriori, by the fact that {u = 0} is a convex set contained in {xN ≥ 0} with tip at the origin, the
only possibility is that σ̄ = 0 and τ ′ = 0. However this information is not relevant for our proof.

5This follows, for instance, from the proof of Theorem 1.1 in Section 9.
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Thanks to (8.2) and Fatou’s Lemma, (8.1) implies that Φ
(
u− u∞, r2

)
≤ C for all r ≥ 2R̄.

Hence, since Φ is non-decreasing in r (see Lemma 2.12(i)), we obtain that
Φ(u− u∞, r) ≤ C for all r > 0. (8.4)

8.1. Linear rescaling and ACF dichotomy. Let us now introduce the linear rescaling

wr(x) :=
(u− u∞)(rx)

r
for x ∈ R3 and r > 0. (8.5)

We prove the following important dichotomy.

Proposition 8.1 (ACF alternative for u−u∞). Let u∞, γ∞, and P be as in (8.2)-(8.3), and
wr as in (8.5). Then there exists a sequence rk →∞ such that wrk → w strongly in W 1,2(B1)
as k →∞. In addition:

(i) either w has constant sign inside B1 (i.e., either w ≥ 0 or w ≤ 0 a.e. in B1);
(ii) or w is a linear function (i.e., there exists b ∈ R3 such that w(x) = b · x a.e. in B1).

Proof. We will first prove that the family (wr)r>0 is bounded in L1(B4), and use the bound-
edness of the ACF functional to deduce the desired dichotomy.
Step 1. There exists a constant C such that ‖wr‖L1(B4) ≤ C for all r sufficiently large.
We begin by noticing that, thanks to Lemma 5.2, there exist affine linear functions ArC and
Arγ∞P such that, for all r sufficiently large, 

B4r

∣∣u− p−ArC∣∣ dx ≤ Cr and
 

B4r

∣∣u∞ − p−Arγ∞P

∣∣ dx ≤ Cr
(note that, in the case u∞ = p, the second estimate is trivially satisfied with Arγ∞P ≡ 0).
Setting Ar(x) := 1

r (A
r
C(rx)−Arγ∞P (rx)), it follows by the triangle inequality thatˆ

B4

|wr −Ar| dx ≤ C. (8.6)

Also, applying Lemma 5.3 to both u and u∞ we deduce that |Ar(0)| + |∇′Ar(0)| ≤ C , and
therefore (8.6) implies thatˆ

B4

|wr(x)− αrx3| dx ≤ C for all r sufficiently large, where αr := ∂3Ar(0). (8.7)

In particular, by Chebyshev’s inequality,

|B4 ∩ {|wr − αrx3| > |αr|/2}| ≤
2C

|αr|
for all r sufficiently large. (8.8)

Suppose now towards a contradiction that the claim of this step is false. Then there exists
a sequence %k → ∞ as k → ∞ such that ‖wϱk‖L1(B4) → ∞. In particular, (8.7) implies that
|αϱk | → ∞ as k →∞.

Without loss of generality, we may assume that αϱk → ∞. Then (8.7) and (8.8) imply
that, for sufficiently large k,

|{(wϱk)− = 0} ∩B4| ≥ |{wϱk < 0} ∩B4| ≥
1

2
|B4 ∩ {x3 < −1/2}|, ‖(wϱk)−‖L1(B4) →∞,

|{(wϱk)+ = 0} ∩B4| ≥ |{wϱk > 0} ∩B4| ≥
1

2
|B4 ∩ {x3 > 1/2}|, ‖(wϱk)+‖L1(B4) →∞.
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This allows us to apply the Poincaré’s inequality to (wϱk)± and obtain
∞← ‖(wϱk)±‖L1(B4) ≤ C‖∇(wϱk)±‖L1(B4).

Since 1
|x| ≥

1
2 inside B4, it follows by Hölder’s inequality that

‖∇(wϱk)±‖
2
L1(B4)

≤ C
ˆ
B4

|∇(wϱk)±|
2 dx ≤ C

ˆ
B4

|∇(wϱk)±|2

|x|
dx.

Thus, recalling that N = 3 and the definition of Φ, we conclude that
∞← Φ(wϱk , 4) = Φ(u− u∞, 4%k),

a contradiction to (8.4).
Step 2. Proof of the dichotomy.
Thanks to Step 1 and Lemma 2.12(ii), there exists r̄ > 0 such thatˆ

B1

|∇(wr)±|2

|x|
dx ≤ C for all r > r̄.

This implies the following non-concentration estimate for the ACF integrands: for each δ ∈
(0, 1) and every r > r̄

δ ,

0 ≤
ˆ

Bδ

|∇(wr)±|2

|x|
dx = δ2

ˆ

B1

|∇(wrδ)±|2

|x|
dx ≤ Cδ2. (8.9)

In addition, since 1
|x| ≥ 1 inside B1, we have that ‖∇wr‖L2(B1) ≤ C for all r ≥ r̄. Since

‖wr‖L1(B2) ≤ C (from Step 1), there exists a sequence rk →∞ such that

wrk ⇀ w weakly in W 1,2(B1) as k →∞.
We now observe that the coincidence sets of u and u∞ satisfy the properties in Proposition 4.1,
therefore 1

r ({u = 0} ∪ {u∞ = 0}) → {se3 : s ≥ 0} as r → ∞. Hence, since ∆(u − u∞) = 0

outside {u = 0} ∪ {u∞ = 0}, we deduce that ∆w = 0 outside {se3 : s ≥ 0}. Because this set
has zero harmonic capacity in R3, we conclude that ∆w ≡ 0 and therefore, by Lemma 2.15,

wrk → w strongly in W 1,2
loc (B1) as k →∞. (8.10)

Combining the strong convergence (8.10) with the non-concentration estimate (8.9) we con-
clude that, for each % ∈ (0, 1),

lim sup
k→∞

∣∣∣∣ˆ
Bϱ

|∇(wrk)±|
2

|x|
dx−

ˆ

Bϱ

|∇w±|2

|x|
dx
∣∣∣∣ ≤ lim sup

k→∞

∣∣∣∣ˆ
Bδ

|∇(wrk)±|
2

|x|
dx−

ˆ

Bδ

|∇w±|2

|x|
dx
∣∣∣∣ ≤ Cδ2,

so, by the arbitrariness of δ,ˆ

Bϱ

|∇(wrk)±|
2

|x|
dx→

ˆ

Bϱ

|∇w±|2

|x|
dx as k →∞.

In particular Φ(wrk , %) → Φ(w, %) as k → ∞ and therefore, by the monotonicity of the ACF
functional as well as (8.4),
∞ > Φ(u− u∞,∞) = lim

k→∞
Φ(u− u∞, rk%) = lim

k→∞
Φ(wrk , %) = Φ(w, %) for each % ∈ (0, 1).
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This proves that % 7→ Φ(w, %) is constant on (0, 1). Since w is harmonic in B1, the result
follows from [17, Theorem 2.9]. □

As we shall see later, if we are in Case (i) of Proposition 8.1, then it is easy to conclude. On
the other hand, Case (ii) requires a delicate argument that is performed in the next section.

8.2. Fine adjustment of u∞ at large scales. The goal of this section is to show that if
Case (ii) of Proposition 8.1 occurs, then we can find some fine adjustments of u∞ at large
scales to cancel the linear function b · x appearing in the blow-down limit.

Proposition 8.2 (Fine adjustment of the matching). Let u∞, γ∞, γ̄, and P be as in (8.2)-
(8.3) and Corollary 6.5, and assume that

(u− uγ∞P )(rkx)

rk
→ b · x strongly in W 1,2(B1), where rk →∞ as k →∞. (8.11)

Then there exist τ ′ ∈ R2 and a sequence γk → γ∞, with γk ∈ [0, γ̄ + 1], such that, for each
σ ∈ R,

(u− uγkP−(τ ′,σ))(rkx)

rk
→ 0 strongly in L1(B1) as k →∞. (8.12)

To prove this result, we will need a series of preliminary estimates on the behaviour of
paraboloid solutions under translation and scaling. We collect these in the lemmas below.

Lemma 8.3 (Translations of paraboloid solutions). Let P be as in (8.3). Then there exists
a constant C = C(P, γ̄) such that, for every γ ∈ [0, γ̄ + 1] and every τ ∈ R3, 

BR

|VγP (x+ τ)− VγP (x)| dx ≤ C|τ |R3/4 for all R ≥ max{|τ |, 1}.

Proof. Using the fundamental theorem of calculus, for any R ≥ |τ | we can estimate 

BR

|VγP (x+ τ)− VγP (x)| dx ≤ C|τ |
 

B2R

|∇VγP (x)| dx.

Applying Hölder’s inequality and Lemma 2.13(ii) (note that VγP = uγP − p, where both uγP
and p are solutions to the obstacle problem) to the right-hand side above, we obtain

 

BR

|VγP (x+ τ)− VγP (x)| dx ≤ C|τ |
√√√√  

B2R

|∇VγP (x)|2 dx ≤ C |τ |
R

√√√√  

B4R

|VγP (x)|2 dx.

Recall now that, thanks to (3.8), there exists a constant Cγ̄ such that |VγP (x)| ≤ Cγ̄(1+|x|)7/4
for all γ ∈ [0, γ̄ + 1]. Combining these facts, we conclude that 

BR

|VγP (x+ τ)− VγP (x)| dx ≤ C|τ |R3/4 for all R ≥ max{|τ |, 1}.

□
Lemma 8.4 (The generalized Newtonian potential of scaled paraboloids). Let u∞, γ∞, γ̄,
and P be as in (8.2)-(8.3) and Corollary 6.5, and for γ ∈ [0, γ̄+1] and R > 0 define the affine
function
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AR(γP,γ∞P )(x) := ARγP (x)−ARγ∞P (x)

= α3

ˆ

R3

(
− 1

|y|
+

1

|Re3 + y|
− x · y
|y|3

+
(Re3 + y) · (x+Re3)

|Re3 + y|3

)
(χγP − χγ∞P )(y) dy.

Then there exists a modulus of continuity ω = ωP,γ̄ : [0,∞)→ [0,∞) such that ω(0) = 0 and,
for all R ≥ 1,  

BR

∣∣∣VγP − Vγ∞P −AR(γP,γ∞P )

∣∣∣ dx ≤ ω(|γ − γ∞|)R, (8.13)

|∇′AR(γP,γ∞P )| ≤ ω(|γ − γ∞|) and |AR(γP,γ∞P )(0)| ≤ ω(|γ − γ∞|)R. (8.14)

Proof. As we shall see, the proof of is slight modification of the ones of Lemmas 5.2 and 5.3.
We recall that A4B denotes the symmetric difference of two sets A and B.
Step 1. Proof of (8.13).
We follow the notation used in the proof of Lemma 5.2. Recalling Definition 3.1 and (5.6),
we have∣∣∣VγP (x)− Vγ∞P (x)−AR(γP,γ∞P )(x)

∣∣∣ ≤ α3

ˆ
(γP△γ∞P )∩{0≤y3≤2R}

|G(x, y)− aR(x, y)| dy

+ α3

ˆ
(γP△γ∞P )∩{y3≥2R}

|G(x, y)− aR(x, y)| dy =: J1(x) + J2(x).

Using (3.2) and (5.7), for x ∈ BR we estimate

J2(x) ≤ CR2

ˆ ∞

2R
H2
({
y′ ∈

√
t
(√
γE′4√γ∞E′)}) 1

t3
dt

= CR2H2(E′)|γ − γ∞|
ˆ ∞

2R

1

t2
dt ≤ C|γ − γ∞|R

(cp. (5.11)). For J1(x), we write x = Rz with z ∈ B1 and we perform the change of variables
y 7→ Ry, so that

J1(x) ≤ CR2

ˆ
{
y′∈
√

y3
R (

√
γE′△√

γ∞E′)
}
∩{0≤y3≤2}

|G(z, y)− a1(z, y)| dy

(cp. (5.3)). Combining these two bounds, we get 

BR

∣∣∣VγP (x)− Vγ∞P (x)−AR(γP,γ∞P )(x)
∣∣∣ dx ≤  

BR

(
J1(x) + J2(x)) dx

≤ C|γ − γ∞|R+ CR2

 

B1

ˆ
{
y′∈
√

y3
R (

√
γE′△√

γ∞E′)
}
∩{0≤y3≤2}

|G(z, y)− a1(z, y)| dy dz

(cp. (5.12)). Concerning the last integral we note that (5.13) holds on the domain of integra-
tion. Hence, since

∣∣∣{y′ ∈√y3
R

(√
γE′4√γ∞E′)} ∩ {0 ≤ y3 ≤ 2}

∣∣∣ ≤ C|γ−γ∞|
R , using (5.4) and

Fubini’s Theorem we obtain 

BR

∣∣∣VγP − Vγ∞P −AR(γP,γ∞P )

∣∣∣ dx ≤ C|γ − γ∞|R,
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(cp. (5.14)). This proves (8.13).
Step 2. Proof of (8.14).
For the first bound we note that, for y ∈ γP ∪ γ∞P , (5.15) holds. Henceˆ

(γP△γ∞P )

∣∣∇x′aR(x, y)∣∣ dy ≤ 2

ˆ
(γP△γ∞P )∩{y3≤1}

1

|y|2
dy + 2

ˆ
(γP△γ∞P )∩{y3≥1}

|y′|
|y|3

dy

≤ 2

ˆ
(γP△γ∞P )∩{y3≤1}

1

|y|2
dy

+ C

ˆ ∞

1
H2
({
y′ ∈

√
t
(√
γE′4√γ∞E′)}) t1/2

t3
dt

≤ 2

ˆ
(γP△γ∞P )∩{y3≤1}

1

|y|2
dy + C|γ − γ∞|

ˆ ∞

1

1

t3/2
dt.

By dominated convergence, this proves the existence of a modulus of continuity ω such that
|∇′AR(γP,γ∞P )| ≤ ω(|γ − γ∞|).

For the second bound we writeˆ
(γP△γ∞P )

|aR(0, y)| dy ≤
ˆ
(γP△γ∞P )∩{y3≤2R}

|aR(0, y)| dy

+

ˆ
(γP△γ∞P )∩{y3≥2R}

|aR(0, y)| dy =: I1 + I2.

Using (5.7), we immediately get

I2 ≤ CR2

ˆ ∞

2R
H2
({
y′ ∈

√
t
(√
γE′4√γ∞E′)}) 1

t3
dt

≤ CR2|γ − γ∞|
ˆ ∞

2R

1

t2
dt ≤ C|γ − γ∞|R,

(cp. (5.8)). Concerning I1, using (5.16) we have

I1 ≤ 3

ˆ R

0
H2
({
y′ ∈

√
t
(√
γE′4√γ∞E′)}) 1

t
dt ≤ C|γ − γ∞|

ˆ R

0
dt ≤ C|γ − γ∞|R

(cp. (5.17)). This implies that |AR(γP,γ∞P )(0)| ≤ C|γ − γ∞|R, concluding the proof. □

Lemma 8.5. Let P be as in (8.3), and fix γ ∈ [0, γ̄ + 1]. Then there exists a constant
C = C(P, γ̄) such that for all R ≥ 1, ∣∣∣∣ ∂∂R∂3ARγP

∣∣∣∣ ≤ C

R
.

Proof. Recalling (5.10), it follows that∣∣∣∣ ∂∂R∂3ARγP
∣∣∣∣ ≤ α3

ˆ

γP

∣∣∣∣ ∂∂R
(
− y3
|y|3

+
R+ y3
|Re3 + y|3

)∣∣∣∣ dy = α3

ˆ

γP

∣∣∣∣ ∂∂R
(

R+ y3
|Re3 + y|3

)∣∣∣∣ dy
≤ C

ˆ

γP

1

|Re3 + y|3
dy ≤ C

ˆ ∞

0
H2
({
y′ ∈

√
γtE′}) 1

(R+ t)3
dt
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≤ C
ˆ ∞

0

t

(R+ t)3
dt ≤ C

R3

ˆ R

0
t dt+ C

ˆ ∞

R

1

t2
dt ≤ C

R
.

□
Proof of Proposition 8.2. We note that, given γ ∈ [0, γ̄ + 1], we have (cp. (6.2))

uγP−(τ ′,σ)(x) = uγP (x
′ + τ ′, x3 + σ) = p(x′ + τ ′) + VγP (x

′ + τ ′, x3 + σ)

= p(x′) +∇′p(x′) · τ ′ + p(τ ′) +
(
VγP (x

′ + τ ′, x3 + σ)− VγP (x)
)

+
(
VγP (x)− Vγ∞P (x)

)
+ Vγ∞P (x)

= uγ∞P (x) +∇′p(x′) · τ ′ +
(
VγP (x)− Vγ∞P (x)

)
+
[
p(τ ′) +

(
VγP (x

′ + τ ′, x3 + σ)− VγP (x)
)]
.

Let b = (b′, b3) ∈ R2 × R. Recalling that ∇′p(x′) = Qx′ with Q symmetric and invertible, we
choose τ ′ := Q−1b′ so that ∇′p(x′) · τ ′ = b′ · x′. Also, for each R > 1,

VγP (x)− Vγ∞P (x) =
(
VγP (x)− Vγ∞P (x)−AR(γP,γ∞P )(x)

)
+AR(γP,γ∞P )(0) +∇

′AR(γP,γ∞P ) · x
′ + ∂3AR(γP,γ∞P )x3.

Combining all these identities and applying Lemmas 8.3 and 8.4, we obtain the existence of
a modulus of continuity ω : [0,∞)→ [0,∞) such that, for x ∈ BR, 

BR

∣∣∣uγP−(τ ′,σ)(x)− uγ∞P (x)− b′ · x′ − ∂3AR(γP,γ∞P )x3

∣∣∣ dx
≤ C

(
ω(|γ − γ∞|)R+R3/4

)
. (8.15)

Note that, without loss of generality, we can assume that ω(t) ≥ t (otherwise, it suffices to
replace ω(t) with ω(t) + t).

We now distinguish two cases, depending on whether γ∞ > 0 or not.
• Case 1: γ∞ > 0.
We note that, by a change of variables, for each λ > 0 it holds

∂3A
R
λγ∞P =

ˆ

λγ∞P

(
− y3
|y|3

+
R+ y3
|Re3 + y|3

)
dy = λ3

ˆ

γ∞P

(
− λz3
λ3|z|3

+
R+ λz3
|Re3 + λz|3

)
dz

= λ

ˆ

γ∞P

(
− z3
|z|3

+
R
λ + z3∣∣R
λ e

3 + z
∣∣3
)

dz = λ∂3A
R/λ
γ∞P . (8.16)

Thus, setting λ := γ
γ∞

,

∂3AR(γP,γ∞P ) = ∂3A
R
γP − ∂3ARγ∞P = λ

[
∂3A

R/λ
γ∞P − ∂3A

R
γ∞P

]
+ (λ− 1)∂3A

R
γ∞P . (8.17)

Assuming now that γ is sufficiently close to γ∞ so that λ ∈ [1/2, 2], it follows from Lemma 8.5
that ∣∣∂3AR/λγ∞P − ∂3A

R
γ∞P

∣∣ ≤ ˆ R

R/λ

∣∣∣∣ ∂∂r∂3ArγP
∣∣∣∣ dr ≤ C|λ− 1| = C

|γ − γ∞|
|γ∞|

.
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Thus, combining (8.15) and (8.17), we obtain 

BR

∣∣∣uγP−(τ ′,σ)(x)− uγ∞P (x)− b′ · x′ −
γ − γ∞
γ∞

∂3A
R
γ∞Px3

∣∣∣ dx ≤ C (ω(|γ − γ∞|)R+R3/4
)
.

We now observe that, as a consequence of Lemma 5.3 and (6.7), there exist constants 0 <
c∞ < C∞ such that

−c∞ logR ≥ ∂3ARγ∞P ≥ −C∞ logR for all R sufficiently large.

In particular, for eachR sufficiently large we can choose γ = γR ∈
[
γ∞ − |b3|γ∞

c∞ logR , γ∞ + |b3|γ∞
c∞ logR

]
such that γR−γ∞

γ∞
∂3A

R
γ∞P = b3, and with such a choice we have

 

BR

∣∣∣uγRP−(τ ′,σ)(x)− uγ∞P (x)− b′ · x′ − b3x3
∣∣∣ dx ≤ C (ω( C

logR

)
R+R3/4

)
(8.18)

for all R sufficiently large. Choosing R = rk and γk = γrk , and combining (8.11) and (8.18),
we obtain (8.12).
• Case 2: γ∞ = 0.
Note that in this case Vγ∞P ≡ 0. We first claim that b3 ≤ 0. Indeed, from Definition 2.8(ii)
we know that u− p is harmonic in {y3 ≤ 0}, which combined with (8.11) implies that

(u− p)(rkx)
rk

→ b · x uniformly in B1/2(−e3) as k →∞.

On the other hand, Definition 2.8(ii)-(iv) implies that (u− p)(−te3) ≥ 0 for all t ≥ 0. Thus

0 ≤ (u− p)(−rke3)
rk

→ −b3 as k →∞,

proving the claim.
Now, if b3 = 0 then the result follows by choosing γ = 0. Otherwise, applying (8.16) with

γ > 0 in place of λ and P in place of γ∞P , we get

∂3AR(γP,γ∞P ) = ∂3A
R
γP = γ∂3A

R/γ
P .

Moreover, for each γ ∈ (0, 1], we know from Lemma 5.3 and (6.7) that

−c∞ log(R/γ) ≥ ∂3AR/γP ≥ −C∞ log(R/γ) for all R sufficiently large.

Thus, recalling that b3 < 0, for each R sufficiently large we can find γ = γR ∈
(
0, 2|b3|

c∞ logR

]
such that γR∂3AR/γRP = b3. Choosing R = rk and γk = γrk , we conclude as in Case 1. □

8.3. Ordering of solutions and conclusion.

Proposition 8.6 (Ordering in dimension N = 3). Let u∞, γ∞, and P be as in (8.2)-(8.3).
Then there exists τ ′ ∈ R2 such that for each σ ∈ R,

either u ≤ uγ∞P−(τ ′,σ) in RN or u ≥ uγ∞P−(τ ′,σ) in RN .

Proof. Let wrk and w be as in Proposition 8.1. We distinguish between the two cases in the
dichotomy.
• Case 1: Proposition 8.1(i) holds.
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In this case we have that either ‖(wrk)+‖L1(B1)
→ 0 or ‖(wrk)−‖L1(B1)

→ 0 as k →∞. Also,
since

uγ∞P (x)− uγ∞P−(0,σ)(x) = uγ∞P (x)− uγ∞P (x+ σe3) = Vγ∞P (x)− Vγ∞P (x+ σe3),

defining wk,σ(x) :=
(u−uγ∞P−(0,σ))(rkx)

rk
, Lemma 8.3 yields

‖wrk − wk,σ‖L1(B1)
=
|B1|
rk

 

Brk

|Vγ∞P (x)− Vγ∞P (x+ σe3)| dx ≤ C |σ|
r
1/4
k

→ 0 as k →∞.

Hence, for each σ ∈ R, either ‖(wk,σ)+‖L1(B1)
→ 0 or ‖(wk,σ)−‖L1(B1)

→ 0 as k → ∞.
Therefore, thanks to Lemma 2.12(i)-(iii), for each % ∈ (0,∞) it holds

0 ≤ Φ
(
u− u∞(·+ σe3), %

)
≤ lim

k→∞
Φ
(
u− u∞(·+ σe3), rk4

)
= lim

k→∞
Φ
(
wk,σ,

1
4

)
≤ C lim sup

k→∞
‖(wk,σ)+‖2L1(B1)

‖(wk,σ)−‖2L1(B1)
= 0.

Applying Lemma 2.12(iv) proves the result with τ ′ = 0.
• Case 2: Proposition 8.1(ii) holds.
Let γk and τ ′ be as in Proposition 8.2, and define w′

k,σ(x) :=
(u−uγkP−(τ ′,σ))(rkx)

rk
. Note

that, since γk → γ∞ and solutions to the obstacle problems are locally bounded in C1,1

(cf. Lemma 2.4(i)),

uγkP−(τ ′,σ) → uγ∞P−(τ ′,σ) = u∞(·+ (τ ′, σ)) in C1,α
loc (R

3) as k →∞,

which implies in particular that, given % ∈ (0,∞),

Φ
(
u− uγkP−(τ ′,σ), %

)
→ Φ

(
u− u∞(·+ (τ ′, σ)), %

)
as k →∞.

Since ‖w′
k,σ‖L1(B1) → 0, it follows from Lemma 2.12(i)-(iii) that, for each % ∈ (0,∞),

0 ≤ Φ
(
u− u∞(·+ (τ ′, σ)), %

)
= lim

k→∞
Φ
(
u− uγkP−(τ ′,σ), %

)
≤ lim sup

k→∞
Φ
(
u− uγkP−(τ ′,σ),

rk
4

)
= lim sup

k→∞
Φ
(
w′
k,σ,

1
4

)
≤ C lim sup

k→∞

∥∥(w′
k,σ)+

∥∥2
L1(B1)

∥∥(w′
k,σ)−

∥∥2
L1(B1)

= 0.

Hence, the result follows again from Lemma 2.12(iv). □

We can now prove our main result.

Proof of Theorem 1.2: the case N = 3. The proof is almost identical to the one of Theo-
rem 1.2 for N ≥ 4 given in Section 7, the only difference being the application of Propo-
sition 8.6 instead of Proposition 7.1. □

9. Proof of Theorem 1.1

As explained after the statement of [7, Main Theorem**], every non-cylindrical solution
with unbounded coincidence set is xN -monotone. Hence, to prove Theorem 1.1 for N ≥ 3,
it suffices to characterize xN -monotone solutions for N ≥ 3, which is exactly the result of
Theorem 1.2. For completeness and convenience of the interested reader, we present here an
original alternative argument to show how Theorem 1.1 follows from Theorem 1.2.
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Proof of Theorem 1.1. Let u be a global solution in RN with non-empty coincidence set.
We can assume that u is non-cylindrical (see Definition 2.6). Indeed, otherwise, up to a

change of coordinates u(y, z) = v(y) for (z, y) ∈ RN−k × Rk, where v is a non-cylindrical
global solution in Rk, and then it suffices to prove Theorem 1.1 for v. Also, as mentioned in
the introduction, Theorem 1.1 has already been proved for N = 2 in [18].

Hence, we assume that u is a non-cylindrical global solution in dimension N ≥ 3, whose
coincidence set C := {u = 0} has non-empty interior (recall that C is convex, see Remark 2.2).
Then, we set ur(x) := u(rx)

r2
and define g(x) := limr→∞ ur(x) (cf. Lemma 2.3). We distinguish

several cases.
• Case 1: g is a half-space solution.
By a translation and a rotation we can assume that {u = 0} ⊂ {xN ≤ 0} and that 0 ∈ ∂{u =
0}. Then, since {u = 0} is convex we deduce that {ur = 0} = 1

r{u = 0} ⊂ {u = 0} for every
r ≥ 1, and letting r →∞ we conclude that {g = 0} ⊂ {u = 0}.

On the other hand, since g is a half-space solution, {g = 0} is a half-space passing through
the origin. So the only option is that {g = 0} = {u = 0} = {xN ≤ 0}.

Thanks to this fact, we deduce that ∆(u − g) ≡ 0 and (u − g)|{xN≤0} = 0. By unique
continuation this implies that u ≡ g, and since g is constant in the directions orthogonal to
eN we obtain that u is cylindrical, a contradiction.
• Case 2: g(x) = 1

2x
TQx is a quadratic polynomial solution with Q positive definite.

Since Q is positive definite, there exists a constant c0 > 0 such that g ≥ c0 on ∂B1. Hence, it
follows from the local uniform convergence of ur to g that u(x) ≥ c0

2 |x|
2 for sufficiently large

|x|. This implies that the coincidence set {u = 0} is compact, so the result follows from [10]
(see also [9] or Remark 7.2).
• Case 3: g(x) = 1

2x
TQx is a quadratic polynomial solution with ker(Q) 6= {0}.

Step 1. u is monotone in the directions of ker(Q).
Let e ∈ ∂B1∩ker(Q). Then ∂eu = ∂e(u−g). Also, if we define vr(x) := (u−g)(rx)

r2
= ur(x)−g(x),

Hölder’s inequality and Lemma 2.13(ii) imply that( 
B1

|∇vr| dx
)2

≤
 

B1

|∇vr|2 dx ≤ C
 

B2

v2r dx→ 0 as r →∞.

It follows that
1

r

 

Br

|∂eu| dx =
1

r

 

Br

|∂e(u− g)| dx =

 

B1

|∂evr| dx→ 0 as r →∞. (9.1)

Thus, thanks to Remark 2.14, (9.1), and Lemma 2.12(iii)-(iv), we deduce that either ∂eu ≥ 0
or ∂eu ≤ 0. Since ∂eu 6≡ 0 (as u is non-cylindrical) and ∂eu is harmonic outside the coincidence
set of u, it follows by the strong maximum principle that

either ∂eu > 0 or ∂eu < 0 inside {u > 0}. (9.2)
Step 2. ker(Q) is one-dimensional.
Indeed, assume by contradiction that there exists a two-dimensional plane Π ⊂ ker(Q). Then,
by Step 1,

for any e ∈ ∂B1 ∩Π, (9.2) holds.
Since ∂B1 ∩ Π is a circle, given a point x̄ ∈ {u > 0} we can consider a curve [0, 1] 3 s 7→
e(s) ⊂ ∂B1∩Π such that e(0) = −e(1). Then, noticing that ∂e(0)u(x̄) = −∂e(1)u(x̄), it follows
by continuity that there exists s ∈ (0, 1) such that ∂e(s)u(x̄) = 0. This contradicts (9.2) and
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proves that ker(Q) is one-dimensional.
Step 3. u is xN -monotone.
Thanks to Steps 1 and 2, we may assume that ker(Q) = ReN and that ∂Nu ≥ 0. Thus, since
by assumption C = {u = 0} has non-empty interior, u satisfies Definition 2.8(i)-(iii)-(iv).
Also, up to a translation, we can assume that C ⊂ {xN ≥ 0} and that 0 ∈ ∂C.

To conclude that u is xN -monotone, we only need to show that C ∩ {xN = 0} = {0}. This
follows from [2, 15]. Indeed, since C is convex with non-empty interior, [2, Section 1.8] (see
also [3, Theorem 7]) implies ∂C is of class C1, and therefore it follows from [15] that ∂C is an
analytic hypersurface. In particular ∂C cannot contain a segment, and therefore C∩{xN = 0}
is a singleton. □

Appendix A. Proof of Lemma 6.1

We split the proof into three steps.
Step 1. Construction of a suitable sequence of ellipsoids.
Let Kd denote the fundamental solution of the Laplace operator in Rd, namely,

Kd(z) :=

{
− 1

2π log |z| if d = 2,
1

d(d−2)|B1|
1

|z|d−2 if d ≥ 3.
(A.1)

Given p as in the statement, it follows from [5, Equation (5.4)] that there exists a unique
ellipsoid E′ :=

{
y′ ∈ RN−1 :

y21
a21

+ . . .+
y2N−1

a2N−1
≤ 1
}
⊂ RN−1 , with ai > 0, such that

V NP
E′ (x′) = V NP

E′ (0)− p(x′) for all x′ ∈ E′,

where V NP
E′ denotes the (N − 1)-dimensional Newtonian potential of E′, i.e.

V NP
E′ (x′) :=

ˆ

E′

KN−1(x
′ − y′) dy′ for all x′ ∈ RN−1.

Set
u′E′(x′) := p(x′)− V NP

E′ (0) + V NP
E′ (x′) for all x′ ∈ RN−1. (A.2)

Then, it follows from [4, Theorem II] that u′E′ is a non-negative global solution to the obstacle
problem in RN−1 satisfying {u′E′ = 0} = E′.

We now complete E′ to an N -dimensional ellipsoid approximating a paraboloid in the
following way: for each n ∈ N, set

Ẽn :=

{
x ∈ RN : x′ ∈

√
n

2
−
x2N
2n

E′
}

=

{
x ∈ RN :

N−1∑
j=1

2x2j
a2jn

+
x2N
n2
≤ 1

}
.

From [5, Equation (5.3)] we infer that, for each n ∈ N, there is a homogeneous quadratic
polynomial qn such that ∆qn = 1 and

V NP
Ẽn (x) = V NP

Ẽn (0)− qn(x) for all x ∈ Ẽn, (A.3)
where

V NP
Ẽn (x) :=

ˆ

Ẽn

KN (x− y) dy for all x ∈ RN .
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Let us now translate the ellipsoids Ẽn so that they all touch the origin:

En := Ẽn + neN =

{
x ∈ RN :

N−1∑
j=1

2x2j
a2jn

+
(xN − n)2

n2
≤ 1

}
(A.4)

=

{
x ∈ RN :

N−1∑
j=1

2x2j
a2j

+
x2N
n
≤ 2xN

}
.

Then, recalling (A.3), for all x ∈ En we have

V NP
En (x) = V NP

Ẽn+neN
(x) = V NP

Ẽn (x− neN )

= V NP
Ẽn (0)− qn(x− neN ) = V NP

En (neN )− qn(x− neN ).

Step 2. Switching to the obstacle problem and passing to the limit.
For all n ∈ N, we define

uEn(x) := qn(x− neN )− V NP
En (neN ) + V NP

En (x) for all x ∈ RN .

As before, [4, Theorem II] guaranteess that uEn is a non-negative global solution to the
obstacle problem satisfying {uEn = 0} = En.
Since 0 ∈ En = {uEn = 0} we deduce from Lemma 2.4(ii) that, passing if necessary to a
subsequence,

uEn → u⋆ in C1,α
loc (R

N ) and χ{uEn=0} → χ{u⋆=0} a.e. as n→∞.

On the other hand, by construction (cf. (A.4)),

χEn → χP a.e. in RN as n→∞, where P :=

{N−1∑
j=1

x2j
a2j
≤ xN

}
=
{
x′ ∈

√
xNE

′} ,
and therefore {u⋆ = 0} = P .
Step 3. Identification of the blow-down limit of u⋆ and conclusion.
Let us define the following sequence of rescalings (u⋆k)k∈N:

u⋆k(x) :=
u⋆(rkx+ xk)

r2k
for x ∈ RN , where xk := (0, k) and rk :=

√
k.

Since 0 ∈ {u⋆k = 0}, using Lemma 2.4(ii) once more we deduce that, passing if necessary to a
subsequence,

u⋆k → u⋆0 in C1,α
loc (R

N ) as k →∞,

where u⋆0 is a non-negative global solution to the obstacle problem. Also, arguing as in Step
2, we see that the coincidence sets of u⋆k converge to E′ × R, hence {u⋆0 = 0} = E′ × R. This
implies that {u⋆0 = 0} contains the ray {teN : t ∈ R}, so it follows from Lemma 2.7 that u⋆0 is
independent of xN , i.e.

u⋆0(x) = u⋆0(x
′, 0) =: u⋆,

′

0 (x′) for all x ∈ RN . (A.5)

Since u′E′ constructed in Step 1 (cf. (A.2)) is the unique global solution to the obstacle
problem in RN−1 with E′ as coincidence set, we deduce that u⋆,

′

0 ≡ u′E′ . Also, since the
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classical Newton-potential V NP
E′ (x′) has subquadratic growth as |x′| → ∞, we have that p(x′)

is the blow-down limit of u′E′ . Thus, recalling (A.5),

u⋆,
′

0 (%x)

%2
=
u′E′(%x′)

%2
→ p(x′) in C1,α

loc (R
N−1) as %→∞.

On the other hand, since in the limit as % → ∞ the contact set of u⋆(ϱx)
ϱ2

has measure zero
(as a consequence of Lemma 2.4(ii)), the blow-down limit of u⋆ is a homogeneous quadratic
polynomial p̃ as well, i.e.

u⋆(%x)

%2
→ p̃(x) in C1,α

loc (R
N ) as %→∞.

Hence, we are in the position to apply [7, Lemma B.2] to u⋆ and the sequence of rescalings
(u⋆k)k∈N to deduce that p̃ = p, which proves that p is the blow-down limit of u⋆. In conclusion,
u⋆ is the desired paraboloid solution.

Finally, the remaining statements follow from Proposition 3.4 and Lemma 3.2. □
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