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ABSTRACT. The characterization of global solutions to the obstacle problems in RY, or
equivalently of null quadrature domains, has been studied for more than 90 years. In this
paper, we give a conclusive answer to this problem by proving the following long-standing
conjecture: The coincidence set of a global solution to the obstacle problem is either a half-
space, an ellipsoid, a paraboloid, or a cylinder with an ellipsoid or a paraboloid as base.
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1. INTRODUCTION

1.1. Null quadrature domains and the obstacle problem. In 1678, Newton stated his
famous no gravity in the cavity theorem: spherical shells do not exert gravitational force inside
the cavity of the shell. This result was later extended to ellipsoidal shells (homoeoid) first by
Laplace, and soon after by Ivory using a more geometric approach.
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2 COMPLETE CLASSIFICATION OF GLOBAL SOLUTIONS TO THE OBSTACLE PROBLEM

In modern terms, these results can be stated in terms of null quadrature domains. We
recall that an open set Q C RY is called a null quadrature domain if

/hda:zO
Q

for every harmonic function h € L(2)NC%(Q). With this terminology, the results of Newton,
Laplace, and Ivory can be stated saying the complement of a ball/elliposoid is a null quadra-
ture domain. In greater generality, one can prove that null quadrature domains include:

- half-spaces;

- exteriors of ellipsoids;

- exterior of paraboloids;

- cylinders over domains of the types listed above.

A major question, which has been investigated over the last 90 years, is to understand whether
this list includes all the possible null quadrature domains. Before discussing it, it is important
to point out that null quadrature domains are related to solutions to the obstacle problem.
More precisely, as discussed for instance in [4, Theorem II] and [14, Theorem 4.1],

Q) is a null quadrature domain <
Q = {u > 0} for some non-negative solution u € C’llo’c1 (RY) of Au = X{u>0}-

In other words, characterizing null quadrature domains is equivalent to characterizing the
coincidence set {u = 0} for global solutions to the obstacle problem

Au=x{usop, ©>0,  inRY (1.1)

It is well-known that global solutions to the obstacle problem are convex (see for instance [17,
Theorem 5.1]). In particular, the coincidence set {u = 0} is convex.

1.2. Classification results. The first partial classification of global solutions with compact
coincidence sets has been achieved more than 90 years ago: in 1931, Dives [6] showed that,
for N = 3, if {u = 0} has non-empty interior and is bounded then it is an ellipsoid. Many
years later, in 1979, Lewy gave a new proof of this result [16].

In 1981, Sakai gave a full classification of global solutions in two dimensions using complex
analysis (cf. [18]).

The higher dimensional analogue to Dive’s result, i.e., if {u = 0} is bounded and has non-
empty interior then it is an ellipsoid, was proved shortly after in two steps. First, in [5],
DiBenedetto and Friedman proved the result in 1986 under the additional assumption that
{u = 0} is symmetric with respect to the hyperplanes {z; = 0} for all j € {1,...,N}. Then,
in the same year, Friedman and Sakai [10] removed the symmetry assumption. Very recently,
in [9], two of the authors gave a concise proof of the characterization of compact coincidence
sets.

Hence, while global solutions with compact coincidence sets had been completely classified,
the structure of solutions with unbounded coincidence sets remained largely open and is related
to the following conjecture (here, one is implicitly assuming that {u = 0} has non-empty
interior, as otherwise solutions are trivially classified, see Remark 2.5 below):

Conjecture: The coincidence set of a global solution to the obstacle problem is either a
half-space, an ellipsoid, a paraboloid, or a cylinder with an ellipsoid or a paraboloid as base.

This conjecture, which has been investigated over more than 30 years, has been officially
raised in several papers: first by Shahgholian in [19, conjecture on p. 10|, then by Karp
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and Margulis in [13, Conjecture 4.5], and recently in the monograph ‘Research Problems in
Function Theory’ [11, §3.1 pp. 63-64, and Problem 3.28].

In the recent work [7] the first and third author, together with Shahgholian, have been able
to solve the conjecture in the case of “z-monotone” solutions when N > 6 (see Definition 2.8
and Remark 1.4 below).

Here we are able to fully characterize global solutions in the remaining dimensions (actually,
our proof gives a complete characterization for all dimensions N > 3), allowing us to prove
the conjecture above in full generality. Here is our main result:

Theorem 1.1 (Complete characterization of global solutions to the obstacle problem). Let
N > 2, and let u be a solution of (1.1) such that the coincidence set {u = 0} has non-empty
interior. Then the coincidence set is is either a half-space, an ellipsoid, a paraboloid, or a
cylinder with an ellipsoid or a paraboloid as base.

As we shall explain later, this result is a rather direct consequence of the classification of
xy-monotone solutions. More precisely, the core of this paper is the following:

Theorem 1.2 (Characterization of monotone solutions). Let N > 3 and let u be an xy-
monotone solution according to Definition 2.8 below. Then {u = 0} is a paraboloid.

Remark 1.3. Thanks to [8, Main Theorem], Theorem 1.1 implies a fine result on the behavior
of the regular part of the free boundary close to singularities.

Remark 1.4. As mentioned before, Theorem 1.2 has already been proved for N > 6 in [7]. A
reason for this dimensional restriction comes from the fact that, in the proof in [7], a key role
is played by the Newtonian potential associated to {u = 0}, defined (up to a multiplicative
constant) as W * X{u=0}- However, if {u = 0} is a paraboloid then the above convolution
converges only for N > 6.

As we shall see later, this definition of Newtonian potential can be “corrected” to obtain a
convergent expression also in lower dimensions (see Definition 3.1 and Lemma 3.3). However,
the positivity of the Newtonian potential is important for the arguments in [7], while our
generalized potential loses this property.

At a more “fundamental” level, the role of the dimension can be seen as follows: if p(x) =
lim, o0 @ denotes the blow-down polynomial appearing in Definition 2.8(iv), then the
behaviour of u — p changes considerably with the dimension. In particular, if {u = 0} is a
paraboloid (this is a particular case of xy-monotone solution) then one can check by explicit
computations that, for N > 4, there exists a linear function ¢ such that:

- fp,, lw —p — €| dx is bounded for N > 6;

- fBR |lu —p — €] dx ~ log(R) for N = 5;

- fBR lu—p—¢|dz ~ R for N = 4.

This different behavior is the reason for the dimensional restriction N > 6 in [7]. In this
paper, instead, we develop a new approach that only requires fBR |lu—p—{|dx = o(R), giving
a unified proof of Theorem 1.2 for N > 4. Unfortunately, in the “critical” dimension N = 3,
fBR |u —p|dx ~ Rlog R. In particular, there is no affine function that dictates the behaviour
at infinity of u —p. As the reader will see, this fact is a source of major difficulties for proving
Theorem 1.2 in dimension N = 3.

We note that also for N = 2 the behavior of u — p is superlinear: fBR |u — p|dz ~ R3/2.
However, when N = 2 one can rely on the Riemann mapping theorem to obtain a short proof
of Theorem 1.1 (see [18]).
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1.3. Structure of the paper. In Section 2 we introduce some notation and collect a series
of useful preliminary estimates on solutions to the obstacle problem and on the Alt-Caffarelli-
Friedman (ACF) functional that will play a crucial role in our proof.

In Section 3 we prove that, for an x-monotone solution u, one can define a Newtonian-
type potential V¢ associated with its coincidence set C = {u = 0} so that the expansion
u = p + V¢ holds.

Thanks to the Newtonian expansion proved in Section 3, in Section 4 we show that the
coincidence set C is asymptotically contained inside a paraboloid. The proof of this result
is rather easy in dimension N > 4, while the case N = 3 requires an extremely delicate
argument.

In Section 5, we use the result from Section 4 to analyze the asymptotic behavior of V.
In particular: for N > 4 we can show that V behaves at infinity like a linear function (up
to sublinear corrections); for N = 3, on each large ball Bg, V¢ is at most C'R-away from an
affine function whose slope behaves like log R. In other words, while for N > 4 the gradient
of V¢ is bounded, for N = 3 it has a BMO-type behavior (see Lemma 5.2).

In Section 6, exploiting the information on V obtained in the previous section, we can
construct matching paraboloid solutions (i.e., solutions that have paraboloids as coincidence
sets). More precisely, for N > 4 we can find a paraboloid solution up such that u —up grows
sublinearly at infinity. Instead, for N = 3, for each R we construct a paraboloid solution up,
such that ﬁ\\u —upg |l 11(By) < CR. With all this preparatory work, we can then prove our
main result.

More precisely, in Section 7 we focus on the case N > 4. In that case, applying the
ACF formula to the difference between u and suitable translations of the paraboloid solution
constructed in Section 6, and exploiting the sublinear growth at infinity, we are able to prove
that such solutions are ordered. Once this is achieved, we conclude easily.

Then, in Section 8 we focus on the case N = 3. In this case, due to the lack of a sublinear
approximation of u via paraboloid solutions, we cannot directly apply the ACF formula to
deduce that v and some suitable paraboloid solutions are ordered. Instead, we apply the
ACF formula to the functions % (u — up,)(R-) to construct a comparison solution u, whose
coincidence set is a paraboloid. Then, by a delicate ACF-type dichotomy, we show that one-
homogeneous blow-down limits of u — u, exist and:

- either they have constant sign (so u and us are “ordered at infinity”);

- or they are linear functions.

While in the first case we can conclude similarly to the case N > 4, the second case requires
a refined analysis. More precisely, exploiting the information that u — u, behaves as a linear
function at infinity, we can construct fine adjustments of the paraboloid solution us to show
that, for some suitable translations of us,, the ACF energy vanishes. Then, we conclude
similarly to the first case.

For completeness, in Section 9 we provide a new self-contained argument showing how
Theorem 1.1 follows from Theorem 1.2.

Acknowledgements. The second author has received funding from the European Research
Council under the Grant Agreement No. 721675 “Regularity and Stability in Partial Differ-
ential Equations (RSPDE)”. We thank Lili Du and the anonymous referees for several useful
comments on a preliminary version of this manuscript.
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2. NOTATION AND PRELIMINARIES

Throughout this work, RY will be equipped with the Euclidean inner product z - y and
the induced norm |z|. Due to the nature of the problem, we will often write 2 € RY as
r = (2',2n) € RN71 x R. Also, we denote by (e?);<;<n the elements of the canonical base
of RV,

In our estimates, C' denotes a generic positive constant that may change from line to line.
We shall use Cy whenever the constant depends only on the dimension.

We write B,(x) to denote the open N-dimensional ball of center xz and radius r, while
B! (z') is the open (N — 1)-dimensional ball of center 2/ € RV~! and radius r. Whenever the
center is omitted, it is assumed to be the origin 0.

When considering a set A, x4 shall denote the characteristic function of A. With #H*
we refer to k-dimensional Hausdorff measure. If A and B are two sets, we denote their
symmetric difference by AAB := (A\ B)U (B \ A). Given a function f : RN — R, we define
f+ = max{f,0} and f_ := max{—f,0}. Furthermore, we define the differential operator
V’f = (81f, ceey 8N,1f).

Definition 2.1 (Coincidence set). Given a solution u to the obstacle problem (1.1), we define
its coincidence set C to be

C :={u=0}.

Remark 2.2. As already mentioned before, global solutions to the obstacle problem are convex
(see e.g. [17, Theorem 5.1]). In particular, the coincidence set C of a global solution is convex.

To get compactness of solutions, it is useful to recall that they are uniformly C'!'-regular.
Also, as shown by Caffarelli, their blow-down limits with respect to quadratic rescaling are
either half-space solutions or quadratic polynomials (see [3]). We summarize these results in
the following two lemmas:

Lemma 2.3 (Characterization of blow-down limits). Let u : RY — [0,00) be a global solution
to the obstacle problem. Then the following convergence holds in C’llo’?( NY for each o € (0,1):

%max(w -e,0)2  for some e € OBy,

lim u(rz) _
royoo 12 32T Qu for some Q € RN*N symmetric,

non-negative definite, satisfying tr(Q) = 1.

A global solution of the form %max(:z: -e,0)? is called half-space solution.
Lemma 2.4 (Uniform regularity and compactness). The following reqularity and compactness
properties hold:
(i) Let u be a global solution to the obstacle problem in RN . Then HDzuHLN(RN) < Cy.
(ii) Let (up)pen be a sequence of global solutions to the obstacle problem in RN that vanish
at the origin. Then there exists a subsequence (ukj )jeN converging to a global solution
ug in C’llo’g(RN) for each a € (0,1). In addition, X{u, —0} = X{ug=0} @-€- in RN,
J

Proof. Since u is convex it follows that 0 < e < Au = X{y50y < 1 for all e € 9B;. This
proves (i).

Concerning (ii), we note that the compactness in C’llo’? (RY) is a direct consequence of (i) and
Ascoli-Arzela Theorem. The a.e. convergence of the characteristic functions of the contact
sets follows from [17, Proposition 3.17(i)-(ii)]. O



6 COMPLETE CLASSIFICATION OF GLOBAL SOLUTIONS TO THE OBSTACLE PROBLEM

Remark 2.5. As noted in the previous proof, global solutions grow at most quadratically at
infinity (cf. [17, Theorem 2.1]). Also, if the convex set {u = 0} has empty interior, then
Au = 1. Hence, Liouville’s theorem implies that the only global solutions whose coincidence
sets have empty interior are quadratic polynomials.

Within the class of global solutions to the obstacle problem, we now introduce some ter-
minology for denoting some special solutions

Definition 2.6 (Cylindrical solutions). We say that a global solution to the obstacle problem
is cylindrical if there exists e € By such that

Vu-e=0 inRY.
A useful criterion for being a cylindrical solution is contained in the following:

Lemma 2.7. Let u be a global solution, and assume that its coincidence set C contains an
infinite line. Then wu is constant in the direction of that line.

Proof. First of all we may assume that C has non-empty interior, as otherwise u is a non-
negative quadratic polynomial (see Remark 2.5) and the result follows easily.

Since C is convex, the assumption of containing a line implies that C is a product, namely
there exists a system of coordinates such that C = K x R for some convex set K  RV~-11
Hence, given o € R, the global solution u, () := u(x 4+ ce™) has the same contact set as u,
and therefore A(u — uy) = 0. Since u — u, vanishes on C which has non-empty interior, it
follows by unique continuation that u — u, = 0. Since o is arbitrary, this shows that wu is
invariant in the e’V-direction, proving the result. ]

Definition 2.8 (xy-monotone solutions). We say that a global solution to the obstacle problem
(1.1) is zy-monotone if:
(i) C has non-empty interior;
(ii) C C {xn >0} and CN{zny =0} ={0};
(iii) Onu < 0 in RY;
(iv) lim, 00 “(T’;”*“) = %x’TQx’ =: p(2') in CI{)’?(RN) for each o € (0,1), where x = (2/,zN),

and Q € RN-DXWN=1) 45 symmetric, positive definite, and satisfies tr(Q) = 1.

Remark 2.9. Thanks to Definition 2.8(ii)-(iii), if u is xx-monotone then {te" : ¢ > 0} C C.
Also, since the matrix Q € RV=Dx(V=1) in Definition 2.8(iv) is positive definite, there exists
a constant ¢, > 0 such that

p(a') > cp‘x"Q for all z’ € RV-L. (2.1)

The following important result on xy-monotone solutions is proved in [7, Proposition 5.1]
and will be used in Lemma 3.3 to prove that the generalized Newtonian potential associated
to the contact set of an xy-monotone solution is well-defined.

IThis classical fact can be proved as follows. Assume that the line £ is parallel to e”, say £ = {Z + se” :
s € R} for some & € R, and define K, := C N {znx = 7}. Let conv(A) denote the convex hull of the set
A. Then, by convexity of C, conv(K, U¥) C C for any 7 € R. Since conv(K, U/f) = K, x R, it follows that
C D K xR with £ x R :=U; (K; x R). On the other hand, it is clear by construction that C C K x R, so the
result follows.
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Lemma 2.10 (C is “almost contained” in a paraboloid). Let N > 3, and let u be an zy-
monotone solution. Fix 6 € (0,1), and define T5 := {(y’,yN) eRN Y2 < yjlv+5}. Then
there exists a radius © > 1 such that

C\ By C {yn > 7} NT5. (2.2)

Definition 2.11 (Ellipsoids and Paraboloids). We call a set E C R ellipsoid if, after a
translation and a rotation,

8
oS

S
<

N
E:{xGRN:Z gl}
j=1"17

for some a = (ay,...,an) € (0,00)N. We call a set P C RN a paraboloid, if, after a
translation and a rotation,

P= {(w’,xN) eRN :zn>0,2 € \/xNE’},
where E' is an (N — 1)-dimensional ellipsoid.

An important role in this paper will be played by the Alt-Caffarelli-Friedman (ACF) func-
tional originally introduced in [1]: given a function v : RY — R with N > 2, we define

1|Vl Vo_[?

2V dz. (2.3)

D(v,r) =

T4 ’.’L‘|N72
Br

We recall in the following lemma some useful facts about the ACF functional.

Lemma 2.12 (Properties of the Alt-Caffarelli-Friedman monotonicity functional). Let N >
2, and let v : RV = R be a continuous WI})CQ function such that both vy and v— are subhar-
monic. Then:

(i) The functional ®(v,r) is finite for each r >0, and
r— (v, r) is non-decreasing.
(ii) The following bound holds for any r > 0:
||Z|1])Vi_|§ dx < CN<][ V4 d:1;>2.
By Bar
(iii) The following bound holds for any r > 0:

B(v,7) < f{j(f v+dx>2<][ Udyc)Q.

4ar 4r

(iv) Assume that ®(v,R) — 0 as R — co. Then either v >0 in RY orv <0 in RY.

Proof. Usually (i) is stated and proved under the extra assumption v(0) = 0. However, as
noted in [17, Theorem 2.4], this extra condition is not needed and therefore (i) holds in our
setting.

By Holder’s inequality and subharmonicity of v4, we can estimate

Cn
vl Z2(myy < vl ooy 10 1By @0d 0]l foo(p,,) < v lvells,). o (24)
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Also, as noted in [17, Section 2.2.3], the bound

Vuwl|?
||$|Nl2 dx < CN<][ w? dx)

T 2r

holds for any non-negative subharmonic function w. Applying this inequality to w = v4+ and
using (2.4), we obtain (ii).

Multiplying the two estimates in (ii) (the one for vy with the one for v_), (iii) follows.

To prove (iv) we can assume that there is a point y € RV such that v(y) = 0 as otherwise,
by continuity of v, either v > 0 or v < 0 and the result is trivially true. By the monotonicity
and non-negativity of ®, our assumption implies that ®(v,r) = 0 for all » > 0. Hence, by the
definition of the ACF functional (cf. (2.3)), for each r € (0, 00),

either Vvy =0 inB, or Vv_=0 in B,.
Since by assumption v(y) = 0 we deduce that, for all r > |y|,
either vy =0 inB, or wv_=0 in B,.
Therefore, by continuity,
either v =0 in UBT:RN or v_=0 in UBT:RN,
>y >y
which proves (iv). O
We conclude this section with a couple of simple but important results on the difference of

two global solutions. These results will play a crucial role in the proof of Theorem 1.2 where
we will apply the ACF functional to the difference of two global solutions.

Lemma 2.13 (Subharmonicity properties and Caccioppoli estimate). Let uy,us : RY — R
be global solutions to the obstacle problem. Then the following hold:

(i) The functions (u; — u2)4, (up —u2)—, and |uy — ug| are subharmonic.

(ii) The following bound holds for any r > 0:

C
][]V(ul —ug)|*dx < T—JQV ][(ul — up)? dz.
BT BQT

Proof. Set w := uy — uz and note that, since Au; = X {4,501,
AW = X{u; 50} = X{uz>0} = 0 inside {u1 > ua}. (2.5)

Choosing a sequence of smooth, convex, non-decreasing functions ¢. : R — R such that
Pel(—o0,0) = 0 and p(s) — s4 as € — 0 locally uniformly, we see that

Alpe(w)] = @L(w) [X{ur>0) = X{uz>0y] + #2 (w)[Vw|* > 0.

Letting ¢ — 0, we conclude that (u; — u2)4+ is subharmonic. Since (u; —u2)— = (u2 — u1)+,
by symmetry between wu; and uy we deduce that (u; — ug)— is subharmonic. Finally, since
|up — ug| = (u1 — ua)4 + (w1 — u2)_, the subharmonicity of |u; — usg| follows. This proves (i).

To prove (ii) we define w,.(x) := % and we note that, as a consequence of (2.5), it holds
wyAw, > 0, or equivalently

A(w?) > 2|Vw,|?. (2.6)
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Now, fix n € C2°(B2) a non-negative cut-off function satisfying 7 = 1 in Bj. Integrating the
inequality (2.6) against 7 we obtain

1
/|Vw7«|2d:r §/|Vwr|2nd:r < 2/ w? Andz < C’/w?dx,
B By b2 By

as desired. 0

Remark 2.14. As a direct consequence of Lemma 2.13(i) we recover the well-known fact that,
given a global solution u, (J.u)+ and (Jeu)— are subharmonic for each e € 9B;. Indeed, given

h > 0 it suffices to apply Lemma 2.13(i) to u and u(- + he) to deduce that both (“(Lhe)_“)
+

and (W) are subharmonic, and then the result follows by letting A — 0.
Lemma 2.15 (Strong convergence). Let ¢ € (0,00) and let (ug)ken, (Vi)ken be two sequences
of global solutions to the obstacle problem in RN such that

wg = up — v —w  weakly in Wl’Q(BQ) as k — oo,
for some harmonic function w : RN — R. Then, for each 6 € (0,1),

wE = up — v = w  strongly in WLQ(B(;Q) as k — .
Proof. First of all note that, for all £k € N,

wpAwy = (ur — V) (Xfup>00 = X{op>0}) =

Hence, given n € C2°(B,; [0,00)) satisfying n = 1 in Bs,, integrating by parts twice we get

/|Vwk\ /|Vwk| n= —/(kaUJk'V??+Wk;Awk) < —/kawk'Vn

where the last equality follows by the harmonicity of w.
Now, choosing a sequence (1;)jen C Co°(By;[0,00)) such that n; =1 in B, for all j € N
and 1; — XxB,, pointwise in By, we conclude that

limsup/]Vwk|2 < /]Vw|2.
k—o0
Bs, Bs,

Therefore, by the lower-semicontinuity of the Dirichlet energy we deduce that || Vwg|[ ;25 50)

[Vl 2 Bs,)" This convergence of the L?-norm of the gradients together with the weak
convergence implies the desired strong convergence. O

3. THE NEWTONIAN POTENTIAL EXPANSION

As mentioned in Remark 1.4, in [7] a very important role is played by the Newtonian po-
tential associated to the coincidence set of a solution, defined (up to a multiplicative constant)
as mﬁ * xc. Unfortunately, if C is a paraboloid then the above convolution converges only

for N > 6. For this reason we will introduce a generalized Newtonian potential in the spirit of
[12], which will be shown in Lemma 3.3 to be well-defined and to have subquadratic growth.
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Definition 3.1 (Generalized Newtonian potential). Let N > 3, and define the function
1 1 Ty
_ — _(N-2)—=

ly[ V2 ly™

Given M C RY measurable, assume that G(x,-)xym € LY(RY) for each x € RN. Then we
define the generalized Newtonian potential associated to M as

Vi (z) == aN/G(a:,y) dy, where ay :=
M

for all z,y € RV,

1

NN 2B (3.1)

Lemma 3.2 (Scaling of the generalized Newtonian potential). Let M C RN be a measurable
set for which Vs is well-defined. Then Vi satisfies the following scaling law:

Vi (yz) =42 Vi, (2) for all v > 0.
Y

Proof. The proof follows from a direct calculation: since

G(yz,y) =+ NG (m, y) for all v > 0, z,y € RV,
Y

Vi (yz) = aN/G(vw,y) dy = '72_N04N/G (x g) dy
M M

— > Nay [ Gla, 27N dz =42 Vi y(a).
vy

O

Lemma 3.3 (Generalized Newtonian potential of C). Let N > 3, and let u be an x x-monotone
solution in the sense of Definition 2.8. Then

(i) The generalized potential Vi of C is well-defined and locally bounded.

(ii) Ve(z) grows subquadratically as |x| — co. More precisely, there exists a constant C such

that
Ve ()] N
WSC foralle]R .
(iii) Ve € Wli’f(RN) for each p € [1,00), AVe = —xe, and Ve (0) = |VVe(0)| = 0.

Proof. Fix 0 € (0,1), let Ty be as in Lemma 2.10, and recall that (2.2) holds.
To prove the estimate, we first note that the trivial bound
1 1 ||
\G(a:,y)\ < N—2 + N—2 + (N - 2) N—1
|z =yl |l |yl
holds. Also, by the Taylor expansion f(1) = f(0) + f/(0) + fol(l — 7)f"(7) dr applied to

f(T) = W, we get

jz/?

|G(z,y)| < C—%
yY

for |y| > 2|z|. (3.2)
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Using these two bounds and (2.2), we obtain (here 7 > 1 is the radius provided by Lemma 2.10)

1 1 x
/|G($,y)’dy§/ ( N—2 + N—2 (N 2) | | 1> dy
c cnBy: \ |z — ¥l |y yY

1 1 ||
—l—/ — + — + (N —2) — | dy
cm(BM\B%)(!ﬂc—y!N 2y Jy| ™ 1)

2
—I—C/ ‘$| ~ dy
C\(BajaUBar) [y~
1 1 |z|
g/‘ i v—2 ) gy (33)
Bw<|x—y|N 2N Jy|™ 1)
1 1 |z|
—l—/ — + — + (N —2) — | dy
Tm(Bzﬂ\B%)(!x—y!N 2N y Mt
|z
+C dy—I1+IQ+Ig
TS\(BQ\.Z\UB%" ’y‘
Since the integral of W over a ball is maximized when x coincides with the center of

the ball,? to bound the first integral I; we note that

| | 1 1
S = LUELY e S VEL e B (s SRR
/JB%(!w—y!N S V1 2) B Jy|N 2 By Jy)V

therefore

L <C(1+ |z|). (3.4)
About I, we note that this integral is nonzero only if |x| > 7. In such a case, we observe
that, provided that f is large enough,

TsN (B2‘33| \BQ;) cTsN {f <yn < 2|l’|}
Hence, noticing that w +3—N<1+§for N > 3, since ﬁ < y%v we get

1 2|zl 1
—— dy < / dy = / HYNHTs N {yn = t}) s dt
/Tm(BM\B%) Jy| N2 Tonfi<yy<2lal} YN 7 =2
20z )
gc/ FEEREAN g < O(1 4 [2) TN < o(1 4 2, (3.5)
7

and analogously

1 2zl (v 1)a4s)
/ N_ldygc*/ £ N g
T50(Ba)z|\B2#) |y 7

< +]a) 2N < o1 1 2. (3.6)

2This follows, for instance, from the Hardy-Littlewood inequality

/ flyg(y)dy < / Fr( y) dy, f*,¢" symmetric decreasing rearrangement of f, g > 0,
R"L

applied with f(y) = m and g(y) = xB, (v). Indeed, in this case, f*(y) = ‘le s and ¢* = g.
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Therefore, combining (3.5) and (3.6),

1 ‘5U| 146
— + (N —2) | dy < O(1 + |z) T,
/TmBM\Bz;)(yIN ? yY 1)

m, we use again that the integral of W over

a ball is maximized when z’ coincides with the center of the ball. This yields

1 1 1 116
dy’z/ dy'é/ dy' =Ct >
/Tam{yNt} |2 — /[N 2 O e T w2

Finally, to estimate the integral of

1140 1446
t 2 t 2
and therefore, since —— < -,
z—y| = |z'—v/|
1 20z (s 346
T5N(Ba|z\B2#) ‘x - y‘ 7

Overall, this proves that Iy < C(1+ |a:|)3%6
Finally, for I3, we simply note that

Tg\(BQM U Bs:) CTsN {yN > max{|1:],f}},

hence
J* |2 dy < |z|? HYN"YTsn{yn =1t S dt
. 1) YN })tN
15\(32‘“118% \y| max{|z|,7}

_ C|x|2/ PN G < Ol + J2))
max{|z|,7}
Combining all these bounds, we have shown that
348
[ 16 wlay < e,

where ¢ € (0,1) is arbitrary. This proves that V¢ is well-defined and locally bounded. Also,
choosing § = 1/2, we obtain that

[Ve()]

(N—1) 1+5)+1

N<oa+ |zt (3.7)

— = < (C; for all z € RY 3.8

T+ fal)7e = 77 35
where the constant C; y depends only on the dimension N and the radius 7 defined in (2.2)
for 6 =1/2.

To prove the W?2P-regularity of Vz we note that, for o > 2max{#, |z|},
2 e
(N=1)(1+46)
Ve(@) — Vens, ()| < C Ll dy < om?/ $5 N g < Ol
T5\Bo ’y| 0

This implies that V¢ is the locally uniform limit of the sequence of the continuous functions
Vens, as 0 — oo. Also, since

1 1
OzNAx< N5 T TN 3 — (N — 2) > = —0, in the sense of distributions,
|z -yl || ly[Y
one easily deduces that AVenp, = —xcnB, € L>®(RN) for each ¢ > 0. Thus, by elliptic

regularity, the functions Venp, are locally uniformly bounded in W2P for each p < co. In
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particular because of the compact embedding W2P?(B,) — C1%(B,) forp > N and a = 1— %,
we deduce that

Vens, = Ve and  VVeng, = Ve locally uniformly in RY, as o — oc.
Since G(0,-) =0 and V,G(0,-) = 0, we obtain for each ¢ > 0 that
Ve, (0) = / GO0.y)dy =0,  VVenp,(0) = / V.G(0,) dy = 0,
CNB, CNB,
so we conclude that V¢(0) = VV(0) = 0. O

As a consequence of the previous lemma, we can now show the following important result.

Proposition 3.4 (Newtonian potential expansion). Let N > 3, let u be an xy-monotone
solution in the sense of Definition 2.8, and let p be the blow-down limit in Definition 2.8(iv).
Then the expansion

u=p+ Ve
holds.
Proof. Recall that, thanks to Lemma 3.3(iii), V¢ is a strong VVlif (RN) solution of AV = —xc.
Moreover, if we set v := u — p, then v € C’llo’c1 (RY) (see Lemma 2.4(i)) and it solves the same
equation as Vg, i.e., Av = —x¢. Hence v — V¢ is harmonic in RY, and it follows from

Definition 2.8(iv) and Lemma 3.3(ii) that v — V¢ has subquadratic growth. This allows us to
apply Liouville’s theorem to obtain that

v—Ve={0+c,
where £ is a linear function and c is a constant. Thus
u=p+Ll4+c+Ve inRV,
Now, since 0 € 9C, it follows from Lemma 3.3(iii) that
0 = u(0) = p(0) + £(0) + ¢+ V¢(0) = ¢,
0 = Vu(0) = Vp(0) + V£(0) + V1¢(0) = VL.
This proves that both ¢ and ¢ vanish, concluding the proof. O

As we shall see in the next section, this potential expansion allows us to obtain a very
precise control on the asymptotic behavior of the coincidence set C.

4. IMPROVED ESTIMATE ON THE ASYMPTOTIC BEHAVIOR OF THE COINCIDENCE SET C

The goal of this section is to prove that C is contained in some paraboloid. While for NV > 4
there is a very simple argument to prove this result, the proof for N = 3 is amongst the most
delicate of this paper (see in particular the proof of Lemma 4.3 below).

Proposition 4.1 (C is contained in a paraboloid). Let N > 3, and let u be an xn-monotone
solution in the sense of Definition 2.8. Then there are constants ag,yo € (0,00) such that:

(i) CO{xn > ao} C {|2'|* < voxn};
(ii) CN{xny < ap} is bounded.



14 COMPLETE CLASSIFICATION OF GLOBAL SOLUTIONS TO THE OBSTACLE PROBLEM

Proof. Thanks to Lemma 2.10 it follows that C N {zy < a} is bounded for each a > 0, so (ii)
holds for each ag > 0. In particular, it suffices to prove (i) for ag sufficiently large.

We first prove the result in the case N > 4 (since the proof is very simple), and then focus
on the delicate case N = 3.
e The case N > 4. Arguing as in the proof of Lemma 3.3, given § € (0,1), for |z| > 7 we
have

1 1 1 |z|
Vew) = [ Glep)dy = | - v - (V-2 |y
ay c cnBae \ |z — gV 2 JyN 2 y ¥

1 1 ||
+/ — — — — (N —2) — ) dy
CN(By|z|\B2#) (‘:U - y‘N 2 ‘y’N 2 ’y‘N !

|z[?
-C —~xdy=h+ L+ I3
T5\(Bz|s|UB2#) |y

(cp. (3.3)). Again as in the proof of Lemma 3.3, we have that |I;| < C(1 + |z|) and

W=(+8) 4y

1436

N<o@+|z) for N >4

15| < Claf*(1 + |a])

(cp. (3.4) and (3.7)). For Iz, we observe that the first term is non-negative and we estimate
the remaining two as in (3.5) and (3.6), so to get

1 |z|
IQZ—/ —~x— + (N —2) _)dy
Taﬁ(Bzcc\B%)(‘y’N 2 ’y‘N !

(N-1)(48) 3

> —C(1+ |z]) N>_C0+z) 2" for N >4

Choosing § < 1/3 proves that Ve(z) > —C(1 + |z|) for all x € RV,

Now, applying Proposition 3.4 and combining this bound with (2.1), whenever = € {u = 0}
we obtain

0 =u(z) = p(x) + Ve(z) > cpl|2’|* — C(1 +|z]) > cp|2/)* — C — Cl2'| — Clzy]|.
From this estimate, we easily deduce that
2|2 < C(1 + |zn|) = C(1 + zn) for all z € {u = 0}

(recall that {u =0} C {xxy > 0}), so (i) follows.
e The case N = 3. This case follows from Lemmas 4.2 and 4.3 below. U

The rest of the section is devoted to the proof of Lemmas 4.2 and 4.3.

Lemma 4.2 (Sections of C are controlled by their measure). Let N = 3, and let u be an
x N -monotone solution in the sense of Definition 2.8. Define C;y == {y' € R?: (y,t) € C} and
H(t) := H2(C;) for allt > 0. Then:

- either {Ci}i>0 is bounded, i.e., sup;sq diam(Ct) < oo;

- or there exist ag > 1 and Cy < oo such that, for all x5 > ao,

Cuy C {|2')* < CoH (x3)}.
Proof. We may assume that

sup diam(C;) = oo. (4.1)
>0
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Suppose, towards a contradiction, that the statement of the lemma is not true. Then, there
exists a sequence (2")peny C R? X (0, 00), with 2™ = ((2")’, 2%), such that 2§ — oo as n — 00
and, for all n € N,

" eC and |(™)]* > nH(z}). (4.2)
Define d, := diam(Cyy). From Lemma 2.10 we know that, given ¢ € (0,1),
d, < (azg)# for all n sufficiently large. (4.3)

On the other hand, (4.1) together with the monotonicity of ¢ +— diam(C;) (recall that, by
Definition 2.8, u is decreasing in the e3-direction) imply that

d, — 00 asn — oo.

Let us define for each n € N the rescaling

(o) o= MDD

Note that, as a consequence of (4.2), the convex sets {u,, = 0} N{x3 = 0} C R? have diameter
1, contain the origin, and their H2-measure goes to zero. Hence, thanks to Lemma 2.4(ii),
the fact that t — C(t) is increasing (again by the fact that u is decreasing in the e3-direction),
and the convergence of coincidence sets (see [17, Proposition 3.17 (iv) and Proposition 3.17
(v)]), passing if necessary to a subsequence we obtain that

up, — ug  in CLY(R®) as n — oo,

with
diam({up = 0} N {z3 =0}) > 1, H{up =0} N{-1<z3 <0} =0, (4.4)

where ug is a global solution to the obstacle problem. Also, since 0 € C (cf. Definition 2.8(ii))
and ¢ € (0,1), it follows from (4.3) that
dist n n
ist(0, (0, 25)) > B 00 asn — .
dp, (z3) 2
Thus, by the convexity of C (cf. Remark 2.2), we deduce that {te3 : t <0} C {ug = 0}. On
the other hand, the fact that {te®:t > 0} C C (see Remark 2.9) implies that {te®:t > 0} C
{up = 0}. Hence

{te? : t € R} C {ug = 0},
and therefore it follows from Lemma 2.7 that wg is invariant the e3-direction, i.e.
up(x) = up(z’,0) for all z € R3.

Combining this information with (4.4), we deduce that the coincidence set of vy has measure
zero, hence Remark 2.5 implies that ug coincides with a quadratic polynomial ¢ = ¢(z’). On
the other hand, [7, Lemma B.2] implies that the blow-down limit of g is p (being the blow-
down limit of u), and therefore the only possibility is that ug = ¢ = p. By the nondegeneracy
of p in R? (see Definition 2.8(iv)), this implies that {ug = 0} N {z3 = 0} coincides with
the origin, a contradiction to the fact that this set has diameter at least 1 (see (4.4)). This
contradiction proves the lemma. ]
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Lemma 4.3 (The measure of sections grows at most linearly). Let N = 3, and let u be an
xn-monotone solution in the sense of Definition 2.8. Then there exists a constant C such
that, for all t > 0,

HA(CN{zg=t}) < C(1+1).

Proof. We split the proof into 8 steps.
Step 1. Preliminary observations about sections of C.
Recall the notation C; := {y/ € R?: (y/,t) € C} and H(t) := H?(Cy).
First, we claim that v/H is a concave function, i.e., for all X € [0,1] and t;,ts > 0,
M H(t) + (1 = NVH(t2) < VHM + (1 — Nta).

Indeed, by the Brunn-Minkowski inequality in R?,
2
</\ H2(Cp) + (1= ) 7—[2(Ct2)> < H2(ACy, + (1= A)Cyy).

Hence, since ACy; + (1 — A\)Cty C Cyy4(1-a)t, (by the convexity of C), the claim follows.
Now, the concavity of v H together with the S.moothness3 of JC implies that

(VH) (t)(t —s) < VH(t)—/H s)(t—s) forall0 <s<t. (4.5)

In particular, since H(0) > 0,

(VH)'(t) < @ for all t > 0. (4.6)
Furthermore, by the monotonicity of w in the xs-direction,
0< H(s) < H(t) forall 0 < s < t. (4.7)
Finally, from Lemma 2.10 we infer that for every § € (0,1) there is a(d) > 0 such that
H(t) < 't for all t > a(4). (4.8)

Step 2. The generalized Newtonian potential expansion.
Let Vi be the generalized Newtonian potential of the coincidence set C, cf. Definition 3.1.
Thanks to Lemma 4.2 and (4.8) it follows that, for ¢ > 0 sufficiently large,

1 1 t
=% for all y = (¢, y3) € Ry := {t—\/H(t) <3 <t+\/%}mc-

T ted -yl Jyl yP

Combining this with Proposition 3.4, Remark 2.9, and Definition 2.8(iv), we find that, for ¢
sufficiently large,

- 1 1 t
C\R¢

Step 3. A one-dimensionalized version of V. 3
The objective of this step is to replace the potential integral defining V¢ by a one-dimensional

3Since C is a convex set with non-empty interior, it follows from the regularity theory of the free boundary
for the obstacle problem that OC is smooth (see for instance [3]). However, if one does not want to rely on this
result, it suffices to replace (v/H)' with the right or left limit of the derivative of v/ H, which always exist by
the concavity of vH.
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integral, up to a well-controlled error. To be more precise, we claim that there exists a
constant C' such that, for all ¢ > 0 sufficiently large,

/ <1 L ty?’) dy — W(t)' < C(H(t) +t), (4.10)

[te3 —yl |yl |y?

(€{ys>a})\R¢
where
t—/H(1)
1 1 t 1 1 t
W(t) = / <ts_s_52>H(S)dS+ / <st_s_32>H(8)d8’
@ t++/H(t)

with a := max{ag, a(d)} > 0, where ag is as in Lemma 4.2, a(d) is as in (4.8), and 6 > 0 is
sufficiently small (§ < 1/2 suffices here).

For the remainder of this step, fix a point y = (¢/,s) € C \ R¢. Note that, by the definition
of R¢, we have |t — s| > y/H(t). Combining Lemma 4.2, (4.5), (4.6), and (4.7),

ly'|? < CH(s) < CH(t) for all s € (a,t —+/H(t)) and (4.11)
ly'|? < CH(s) <C(\/ )+~ t)>2
< C<H(t) + Htgt) (s — t)2> for all s > ¢+ /H(t). (4.12)

Let us now note that, by the mean value theorem, there is & ; € (0, ]y’|?) such that

1 1 ts ( 1 1t )
VE—02+WE VEFWE (24 |yP)} ls—t| s 2
< 1 1 _ 1 _ 3 ts
((s = 1) + &)

12
< 3 vl (4.13)
2 (s +&)2 (52 +&st)
For s € (a,t —+/H(t)), we can estimate the right-hand side above as

3
2

N

1 1 1 ts o
5 3 3 -3 5 5 |y’
(=12 +&)2 (24802 (87 +&)?
1 1 1 3ts

< |- - 42
_2‘(75—5)3—’_33+ 0

1 t
/(2 /2
v S2<(t—s)3+s4>’y”

0 (4.13) implies that

1 1 ts ( 1 1 t)
Ve + VP <32+|y\2>% st s &

t
§2< + )P foralse (ot — VAD). (414)
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Now, combining first (4.14), (4.11), (4.8), and (4.7), we see that

1 1 tys 1 1 ¢
/ He g W WE) Y / = 5 2 )H)ds

| ylo oy

CN{a<ys<t—+/H(t)} a
t—/H(0)
1 t
< — 4+ — )H(s)?
<C / <(t—s)3+s4> (s)“ds
t—+/H(t) t—/H(t) yos
+

< CH(? / (t_ls)gds e / T ds < CUH (D) + 1) (4.15)

Concerning the case s > t + y/H(t), we can either apply the Taylor formula f(1) = f(0) +
F1O) 4 [(1=7)f"(7) dr with f(7) := ((5 — t7)2 + £51) "2 to get

1 1 ts

t2 t2
<C s <C 5
((s=t)2+ &) (s—1)

3 3
(s =12 +&)2 (2 +8&0)2 (24 &si)
or, by a direct estimate, we can bound

njot

1 1 ts

1 1 3t

- < ++ 5] <
(=12 +&)? (24602 (2+&i] =07 s s
Combining the last two inequalities with (4.13), this implies

1 1 ts ( 1 1 t)
V=0 +lyP VR (2 ly): \s—t s 8

1 2 2 /H @)
< Cmm{ G0 (s—t)5}|y/| for all s >t 4+ /H(t). (4.16)
Using (4.7), (4.12), (4.16), and (4.8), we obtain

o0
1 1 tys / 1 1 ¢
= BV gy — — - 2 \H(s)d
/ (!t€3—y| |yl !y\?’) Y <S—t s 82> (s)ds

Cn{ys>t+/H(t)} t++/H(t)
<C 7 i ! r H(s)*d
min
= (s—0) (s—tp ¢
t++/H(t)

2t 00
1 t2
< H(s)? — __H(s)?
<C / PEnE (s) d8+0/(s—t)5 (s)“ds
t++/H(t) 2t
2t

1 Tl |
< CH(2t)? / Mds+0H(t)/<(s_t)5 + (S_t)3>H(s) ds
/D) 2t
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2t [ee]
H(t 2 1 2 1
< C<H(t) + tg )t — t)2> / ot CH(t)/<(‘:)5 + (5)3>31+5 ds < CH(L).
t++/H(t) 2t N2 2
This bound, together with (4.15), concludes the proof of (4.10).
Step 4. Estimating W from below.
To simplify notation we set, for t > a,
t—\/H(t) [
1 1 t 1 1 t
= -—-——= |H = -3 |H
o= [ (-t Saea wme= [ (- D)
a t++/H(t)

so that W (t) = Wi (t) + Wa(t).
To estimate W7 from below, we split the integral so that the integrand in each part has a
sign. More precisely, since

1 1 1 1
—f—LSOforsE a,i and —f—i20f0rs€ i,t— H(t)|,
t—s s s2 V2 t—s s s2 V2

we set W1 = W171 + WLQ with

R O
Wy () = / (t R 82> H(s)ds,  Wia(t) = / (t -1 SQ)H(S) ds.
a t/\/i

We estimate Wi 1 by neglecting the first term, so to get

t/V2 t t
Wya(t) > — / <i+;)H(s)dsz—/f@ds—t/i(2‘s)ds.

a

To estimate W o, using (4.5), (4.7), and (4.6), we obtain

t—/H(?) t—/H(?) t—/H(?)
Wia(t) = H(t) / — ds + / H(SZ :f(t) ds — / <i + ;) H(s)ds
t/\V2 t/\V2 t/\V2
> H(1) <log(t) +1log (1 — %)) — LH(t)log(H(t))
t—+/H(t) t—+/H(t)
- / (VH(t) +/H(s)) H(ti — 1) 45— cng / (i + St) ds
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m\/Ht H
> H(t)log(t) — 3 H(t)log(H(t)) — 2/ H / <)_mds—0H(t)

t—s
t/V2
t—/H(D)
> H(t)log(t) ~ LH() log(H(0) - 2VH@) [ (V) (s)ds - CH(1
t/\2

> H(t)log(t) — 3 H(t)log(H(t)) — CH(t).

It remains to estimate Wa(¢). Since the integrand in W5 is non-negative, using (4.7) we obtain
that

W) > 0 [ (1 _1_f)d5>H()1og() H (1) log(H (1)) — H(1).

s—t s s2
t++/H(t)
Combining all estimates, we find the lower bound
t ¢
W(t) > 2H(t)log(t) — H(t)log(H (t)) — CH(t) — / H‘ES) ds — t/ H;(;) ds. (4.17)

a a

Step 5. An integral inequality.
Combining (4.9), (4.10), and (4.17), we deduce the existence of a constant C' such that, for
t > 0 sufficiently large,

t

CLH(8) + 1) > 2H(#) log(t) — H(t) log(H / H(s) 4y {@d

which implies, in particular, that

C(H(t)+1t)>2(H(t) +t)log(t) — (H(t) + t)log(H(t) + t)

Hence, setting

for all ¢ sufficiently large we get

Cob(t) > (t) log(t) — () log((t)) — / (s / 08) g

t t

> —01osw(0) — 7 [ws)as+ [ PO @iy

a a
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Our goal in the following is to show that v is globally bounded. To this end, let us replace v
by the monotone function

U(t) := sup ¥(s).

s€la,t]

In order to find an integral inequality for ¥, given t > a let 7 = 7(t) € [a,t] be such that
U(t) = (7). Then, by the definition of ¥,

U(s) = U(t) for all s € [,t]. (4.19)
Noticing that %fat U(s)ds > L [TW(s)ds (since ¥ is increasing) and that W(t) > v(t) by

construction, we deduce that

CU(t) + U(t)log(P(t)) +

| =

t T
1
[ w)ds = o)+ v ostom) + 1 [ wis)ds
Thus, since ¥(s) > ¢(s) for all s > a, it follows from (4.18) and (4.19) that

C(t) + U () 1og(\1/(t))+1/\p(s) ds > /wds:/wds

S
a

t

[V, (YO0,

- s s
a a
Since 1 fj U(s)ds < ¥(t) (by the monotonicity of ¥), we can simplify the relation above to

conclude that
t

CU(t) + U(t)log(T(t)) > ¥(t)log(t) — / qjis) ds. (4.20)

a

Step 6. Switching to a differential inequality and comparison.

Define F(t) := [* Y& ds. Then F'(t) = Y™ > 0 and (4.20) becomes
—CF'(t) — F'(t)log(F'(t)) < Fit) (4.21)

Since H(t) < t11° (see (4.8)) it follows that ¢ (t) < 2t°. Therefore W(t) < 2t°, from which it
follows that

Fi(t) <201 and F(t)g%t‘s. (4.22)

In particular, this yields
F'(t) -0 and 0> F'(t)log(F'(t)) =0 as t — 00.
Note now that, for 7p > 0 small enough, the function
h:(0,79) — (0,00), h(r) = —-C1 —71log(r) = —C7 + 7|log 7|
is strictly increasing, invertible, and has a locally Lipschitz-continuous inverse. Also, for
to > 0 sufficiently large, F'(t) < 19 and
F(t)

h(F'(t)) < — for all t > t.
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This implies that the above ODE enjoys the comparison principle, i.e., if G : (tp,00) — R,
with 0 < G'(t) < 70, satisfies
G()

h(G'(t)) > & forallt >ty and F(to) < G(to)

then F(t) < G(t) for all t > .
Step 7. Construction of a comparison solution.

Let A > 1,B > 0, and define G4 p : (0,00) — R as G p(t) := Alog(t) — B. Then
Wp(t) = 4 € (0,79) provided ¢t > Ay, and with the choice B := A(C + log(A)) it holds
A A A A Alog(t
= Alog(tt) -5 = GA’f(t) for all ¢t > 0.

Fix now § € (0, 5) and define A := t2°. If ¢ is chosen sufficiently large, then G4 5(t) € (0,79)
for t > tg. Also, thanks to (4.22) we get

Gap(to) = 3 log(to) — 26t log(to) — C13° = ((1 — 26) log(tg) — C)t3° > F(to).

Step 8. Conclusion.
By the comparison principle mentioned in Step 6, choosing A and B as in Step 7 we deduce
that

F(t) < Gap(t) < Alog(t) for all t > tg. (4.23)
Also, for all 0 < z,y < 1,
> hiz) = ~Ca +ollogla)] — o< b <Y 2
y>h(zx)=-Cx+x T x < < = )
[log(z)| ~ [log(y)|  —log(y)
Hence, recalling (4.21), (4.23), and (4.22), for t > ¢, we obtain
F(t) Alog(t)
Fl(t) <2 ¢ <9t _ 2Alog(t) < %,

_ log(@) _ log<%g(t)> t(log(t) — log(log(t)) — log(A)) t
provided that to has been chosen sufficiently large. Recalling that F'(t) = y > # this
implies that

H(t t
(Z—i_ =(t) <4A for all t >t
which concludes the proof. [l

5. LINEAR AND ALMOST-LINEAR BEHAVIOR OF Vg

In this section we prove that, for N > 4, the generalized Newtonian potential V can
be written as the sum of a linear function and a correction with sublinear growth towards
infinity. In contrast, for N = 3, the best one can show is the following BMO-type property:
on every large ball Br there exists an affine function Ag whose slope grows like log R and
whose average distance from V¢ is of order R.

We begin with the case N > 4.
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Lemma 5.1 (Asymptotic growth of the Generalized Newtonian Potential in dimension
N > 4). Let N > 4, let u be an xx-monotone solution in the sense of Definition 2.8,
and let Vi be the generalized Newtonian potential (as defined in (3.1)) of the coincidence set
C. Then V¢ can be written as Ve := We — b with

We() = ay /C<|$ - ;M - |y\fl”> dy,  le(@)i=a- <aN(N = i dy>,

where both integrals are well-defined. Also, there exists a constant C' such that

][\Wc(:r)| dz < CR'? for all R sufficiently large. (5.1)
Br

Proof. Since V¢ is well-defined, it suffices to show that ¢ is well-defined. For this, we need

to prove that ﬁXc € LY(RN).

Let ag and g be as in Proposition 4.1. Then, since N > 4, thanks to Proposition 4.1 and
noticing that ﬁ < Z%N for yn > 0, we can estimate

1 1 1
/Nldyﬁ/ ]\71dy+/ vt W
c [yl cn{yn<ao} 1Yl {yn>a0}fly' P<voyn} 1Yl

o0 1 o0
§C+/ HNl(B:/W)WdtSC<1+/ t(N=1D/24(1=N) dt)
ap

ag
< C<1+/ t_3/2dt> < o0,
ao

which proves that f¢(x) is a well-defined linear function.
Now, to prove (5.1), by the mean value theorem it holds

1 1
z—y Ny N

Hence, given x € B with sufficiently large R, we can write

||
<C
|y|N -1

for |y| > 2|z|. (5.2)

1 1
We(e) <ay [ Ly
cnfosyn<allz —yN 2 |y[N 2
N / 1 L,
an —5 — Yy
cnfasyy<eryljz —y[N 2 |y[N T
1 1
+ozN/ — — — | dy =: J1(z) + Jo(x) + J3(x).
cnfun2myl |z —y[N 2 |y

Thanks to (5.2) and Proposition 4.1(i), we can estimate
o 1 o
J3(z) < Clz| /2R HY T ({ly)? < 0t}) = dt < CR/2R t3/2dt < CRY2.

Also, thanks to Proposition 4.1(ii), it follows that |J1(z)| < C. Finally, for Ja(z) we have

2R
1
Ja(z) < aN/ —wvdy+C HYN (B ) v At
(ly'2<roun 3n{0<yy <2} |z —y|V 2 o VAot iN—2
<aN/ ————5 dy + CR?.
{ly'[2<2v0R}N{0<yn<2R} | — ¥|
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Now, for the first term on the right hand side, if we write x = Rz with z € By and we perform
the change of variables y — Ry, we see that

1 1
/{y'|2<2wOR}m{OSyNs2R} o —y| ¥ (<20 }nfosyn<e) |z — Ry[Y 2
1
_ n2
=i / 2.2% — N2
{ly12<22 }nfosyn<2y |2 — |

Hence, combining all these bounds, we obtain that

][ We(x)|dz < CRY? + ][ Jo() dar
Br Br

1
2 HiviE<Tehntosyvsa) [z —y|

Concerning the last integral we observe that

dy. (5.3)

1
1

Thus, since H|y’|2 < 2%} N{0 <yn < 2}‘ < % for N > 4, it follows from Fubini’s Theo-

rem that

][Wc(az)| dz < CRY? + aNRQ/ dz dy
s {lvrP<

?}Q{OSWQ}BZ[ |2 —yV 2

2
< CRY2 + CR? {|y/\2 < ;"} N{0<yy < 2}‘ < CRY2.

We now focus on the three-dimensional case.

Lemma 5.2 (BMO-type estimate in dimension N = 3). Let N = 3, let u be an x n-monotone
solution in the sense of Definition 2.8, and let Vi be the generalized Newtonian potential (as
defined in Definition 3.1) of the coincidence set C. Then, for each R > 0 the affine function
Ag given by

1 1 vy (Re2+vy) (v+ Re?)
AR(z) = - — d
b =as | ( R R T v
C

is well-defined. Also, there exists a constant C' such that

][‘V(j(l‘) — Ag(x)} dx < CR for all R sufficiently large. (5.5)
Br

Proof. We split the proof into two steps.

Step 1. Ag is well-defined and affine.

Set

1 z-y (Red+y) (z+ Red)

R — _
@Y = T RE T P ReS + 4

Y|




COMPLETE CLASSIFICATION OF GLOBAL SOLUTIONS TO THE OBSTACLE PROBLEM 25

and write

/ ()| dy < / la®(z,y)| dy + / (2, y) dy = I + L.
c cn{ys<2R} cn{ys>2R}

Since af(z,-) € LL (R3) and C N {y3 < 2R} is bounded (thanks to Lemma 2.10), it follows
that Iy < Cp for some constant depending on R. To estimate I, by a Taylor expansion and
the mean value theorem, we have

1 Re?) -y Re3 - (v + Re?
@ (xy,_‘ : 7+( )3 ’ | (3 3)\
|Re3 +y| |yl |yl |Re3 + g
1 1

+(Re* +2) y| — — ———— 5.7

|( e +e) y<\y|3 |Re3+yr3)’ (57)
2
<cf|+c(ﬁF”D+cmRFm) for |y| > 2R.

y y y

Hence, recalling Proposition 4.1(i), we can estimate (here and below, ag and 7y are the
constants from Proposition 4.1)

bgcmR+uu/

cn{ys>2R} ]y|3 dy < CR(E + |z]) / H? {|y/\2 < Vot})
Y3

gcm3+mu/ ?agcm+um (5.8)
2R

which proves that Ag is well-defined.
Observe now that the integrand af in the definition of Ag is integrable (by what we have
just seen) and differentiable in z. Also, for each y € C and b := max{ag, R}, it holds

Y Re3 4y
VeaR (e y)| = | Ly~ gt
[Veat )| = [ ~ TRy
2 sRe’ +y
< ‘ |2Xm{y3<b} '/ g <|sRe3+y\3> ds|xen{ys>by (¥) (5.9)

2
< WXCQ{yng}( )+C| ‘3XCﬂ{y3>b}( Y).

Since the right-hand side is integrable in R? (again, thanks to Proposition 4.1), it follows from
dominated convergence that

Re3 +y
AB@) = s [ VaaR gy = [ (25 R g 1
VA (x) ozg/V a’*(z,y)dy = as WE + Re® 1y Y, (5.10)
C C

which is constant in R3. This proves that Ag‘ is an affine function.
Step 2. Proof of (5.5). Recalling the definition of G(z,y) in Definition 3.1, we have

Ve(z) — AB(z)| < a3 / G, y) — af(z,y)| dy
CN{0<ys<2R}

+ 043/ |G(x,y) — aR(x,y)\ dy =: Ji(z) + Ja(z).
Cﬂ{y3>2R}
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By (3.2) and (5.7), for x € Br with R > ag we can estimate
o
1
2 2 2
Jo(z) < CR /m HA({ly/? < 20t)) 5 dt < CR (5.11)

(cp. (5.8)). For Ji(z), thanks to Proposition 4.1, for R sufficiently large we have
Cn{ys < 2R} C {ly']* < 270R} x {0 < y3 < 2R}.
Thus, since

G(Rr, Ry) — a®(Re, Ry) = ~[G(z.y) — a'(x.)),

R
if we write x = Rz with z € B; and perform the change of variables y — Ry, we see that
[ ey -yl < [ Gla,y) — " (z,p)] dy
Cn{ys<2R} {ly’I?<2voR}N{0<ys<2R}

[ Gz,y) — a(z,9)| dy
{ly <22 }n{o<ys<2)

(cp. (5.3)). Altogether we proved that

][‘Vc(x) — Ag(:z:)‘ dz < ][ (Ji(z) + Jo(z)) dz < CR+ ][ Ji(z) dz

Br Br Br

<CR+ 043R2][/ . |G(z,y) — al(z,y)|dydz. (5.12)
2 < dniosys2)

Concerning the last integral, we observe that, on the domain of integration, |e3 + y| > 1 and
|z + 3| < 3. Hence, we can estimate

1 1 (3 +1y) - (z+¢€?)
2=yl [e?+y le3 +yf

1

G(z,y) —al(z,y)| = < +
Gry) —a' (=) —

4. (5.13)

Thus, since H]y’P < 2%} N{0<ys < 2}‘ < £, it follows from Fubini’s Theorem and (5.4)
that

1
][|Vc(m)—Ag(m)’dmSC’R+0¢3R2/ ][< +4> dzdy
{\y’|2<2%}m{0§y3§2} |z =y

BR Bl

< CR+ CR?

2
{y'|2 < ;f)}ﬁ{OSys §2}‘ < CR, (5.14)
as desired. OJ

We conclude this section by proving a sharp bound on the growth of Ag(O) and the different
components of its gradient. This result will be used later in the proofs of Corollary 6.5,
Proposition 8.1, and Proposition 8.2.

Lemma 5.3 (Growth of A). Let N =3, let u be an xn-monotone solution in the sense of
Definition 2.8, and let Aé% be as in Lemma 5.2. Then there exists a constant C' such that

IV'AE| < C, |0;AF| < ClogR, |Af(0)|<CR for all R sufficiently large.
(Here, V' denotes the gradient with respect to the first 2 variables.)
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Proof. For the first bound we note that, for y € C,

/ /
ViaR(z,y _\y_y <2 lV] 5.15
Vae )l = |~ Re | < 2P (>15)
where a® is the function defined in (5.6). Thus, thanks to Proposition 4.1,
/‘VxlaR(x,y)’dySZ/ dy—|—2/ ‘y|
C Cﬂ{y3<a0} ’y| Cn{ys>ao} y3
2 /12 (’YO ) 12
<C+2 7—[ {1¥'|* < ot}) dt<C+C dt < C.

Recalling (5.10), this proves that |V’A§| <C.
For the second bound, we apply (5.9) and Proposition 4.1 to obtain that, for R > ag,

R
/‘8x3aR(az,y)‘dy§C 2dy—l—C’ 2dy+C’/ T3 dy
¢ Cﬁ{y3<ao} Y| Cr{ao<ys<R} |Vl Cr{ys>R} \Z/|

<c+c H2({’y|2<70t}) dt+cR/ H({y/” < 20t)) 5

<C+C/ dt+CR/ —dt<ClogR

Thus, |93AF| < Clog R.
Finally, in order to estimate AZ(0), we write

/ (0, )| dy < / (0, )| dy + / 10, )| dy = Jy + Jo.
¢ cn{ys<2R} cn{ys>2R}

Using (5.8) with z = 0, we immediately get J, < CR. Concerning Ji, for y € C N {ys < 2R}
we can estimate

R 3

2
R
a0, < =+ 557735 < > (5.16
40, 9)1 lyl - RE+1[yl> Yl )
hence
1
J1 < 3/ dy+C T dy
Cn{ys<ao} |y\ cn{ao<ys<2R} Y|
2R 1 2R
<ovo [T H(WP <o)y db < C c/ dt < CR, (5.17)
ap ao
concluding the proof.
]

6. CONSTRUCTING MATCHING PARABOLOID SOLUTIONS

In this section, given N > 3, we construct “matching” paraboloid solutions, i.e., solutions
that have paraboloids as coincidence sets and have the same second-order asymptotics at
infinity as the solution u. More precisely, for NV > 4 we find a fixed paraboloid solution up
such that u—up grows sublinearly at infinity. Instead, in the critical dimension N = 3, for any
sufficiently large R we construct a paraboloid solution up, such that supg, lu —up,| < CR,
where the constant C is independent of R.
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We begin with a result about the existence of paraboloid solutions with prescribed as-
ymptotic behavior at infinity. Since the proof is rather classical and follows from a minor
modification of the one of [7, Theorem 7.1], we postpone it to Appendix A.

Lemma 6.1 (Existence of paraboloid solutions with prescribed asymptotic behavior at in-
finity). Given N > 3, let p = p(z’) be a homogeneous quadratic polynomial as in Defini-
tion 2.8(iv). Then there exists a (unique) ellipsoid

2 2
EU:{yGRN4:$+n”+z§1§1}CRN4 with a; >0 fori=1,...,N —1,
1 N—-1

such that the following holds.
Define the paraboloid P = Pg := {(y/,yn) € RN"1 x [0,00) : v/ € \JynE'}. Then there
exists a global solution up with P as coincidence set and p as quadratic blow-down limit, i.e.,

AUP = X{up>0}7 up 2 0 m RN, {’U,P = O} = P,

and
UPTF;AZU) —p(2')  in Cllo’g(RN) asr — o0, «a€(0,1).
Also, for each v > 0, the function u,p(x) := ’yQuP(%) is a global solution with vP as
coincidence set and p as blow-down limit, and it satisfies the potential expansion
uyp=p+Vyp in RY. (6.1)

In the next result, we show that, if N > 4, we can actually find paraboloid solutions with
prescribed behavior up to linear order. Given a € RY, we use the notation Uyp—q to denote
the solution that has vP — a as coincidence set. Note that this solution is obtained simply
by translating the solution having P as coincidence set, namely up_,(z) = uyp(z + a).

Lemma 6.2 (Existence of paraboloid solutions with prescribed linear behavior at infinity in
dimension N > 4). Let N > 4, let p = p(2') be a homogeneous quadratic polynomial as in
Definition 2.8(iv), and let P be as in Lemma 6.1. For any b = (b/,by) € RVN~! x (—00,0)
there exist ' € RN"! and v > 0 such that the following holds: for each o € R,

1
R][ ‘uvp_(T/J)(x) —p(a') —b-z|dz =0 as R — .
Br

Proof. As noted before, u,p_(; ) (z) = uyp(z' + 7', xn + o). Hence, since p is a quadratic
polynomial, recalling Lemma 5.1 we have

Uyp— (7 o) (@) = p(a' +7') + Vyp(a' + 72N +0)
= p(a’) + V'p(a’) - 7" + p(7') (6.2)

— (@' + 7,2y +0)- <aN(N - 2)/ ’l‘/Ndy> + Wyp(a' + 728 + 0),
vP Y

where V’p denotes the first N — 1 components of Vp = (V'p,0) € R¥~1 x R and W, p is
defined analogously to W¢ in Lemma 5.1, namely

1 1
W,p(z) := aN/ ( — — — ) dy.
! e \Jz—y" 7 JyN
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Note now that, by symmetry,
aN(N—Z)/ LNdy:)weN, where A, := aN(N—Q)/ L]\]]de>0.
P Y] P [yl
Thus
Uy p— (') (x) = p(a’) + V'p(a') - 7" +p(v') — M(zy +0)+ W«/P(J}/ +7 N +0).
Recalling that V/p(2’) = Q2’ with @ symmetric and invertible, choosing 7/ := Q¥ we get
Vip(') -7 =¥ 2.
In addition, it follows by monotone convergence that v +— A, is continuous and

)W—>ozN(N—2)/ y—]\]fvdy:oo as y — 00,
RN -1x(0,00) [y

Ay — 0 as v — 0.

Thus, by continuity, there exists v > 0 such that A, = —by. Hence, with these choices of 7/
and v, we get

u'yP—(T’,G)(x) - p(l',) —b-x= p(T/) — Ao+ va(iljl + 7—/7 TN + U)'

Applying Lemma 5.1 with v P in place of C, this implies that for sufficiently large R (depending
on 7/, v, and o),

][ |ty p—(77.0y(x) — p(&') = b- x| da < [p(7)| + Ay |o| + ][ \Wyp(@' + 7' 2y +0)|da
Br Br

1
<o+ Mol + | [Wap(e)|de < ORY,
| Br| Bar

and the result follows. O

Corollary 6.3. Let N > 4, and let u be an x-monotone solution in the sense of Definition
2.8. Then there exist a paraboloid P as in Lemma 6.1, v > 0, and 7" € RN such that, for
each o € R,
1
R][‘u—u,yp(ﬂp)‘dxﬁo as R — oo.
Br

Proof. Let p be as in Definition 2.8, let C be the coincidence set of u, and let £z be as in
Lemma 5.1, so that u = p — ¢ + We. Define

b=Vl = —an(N - 2)/yNdy.
¢ lyl

Since by = —any(N — 2) fc I;’%dy < 0, we can apply Lemmas 6.2 and 5.1 to deduce the

existence of P, v, and 7/ such that, for each o € R,
1 1 1
= ][ ‘u - uwp,(Tz’U)‘ dx < I ][ |[We(x)| dx + = ][ }uﬁ/p,(ﬂ’a) —p(z') —b- :L“ dr —0
Br Br Br

as R — oo. O
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In the critical dimension N = 3, the statement of Lemma 6.2 does not hold. The best
we can do in dimension N = 3 is to match, on any large ball Bp, the slope of the affine
approximation of V, . p in the e3-direction. This will be achieved in the proof of Corollary 6.5,
using Lemma 6.4 below. As a consequence, on any large ball Br, we can find a parabo-
loid Pp = vgP so that the average of u — up, over Bgr grows at most linearly in R (see
Corollary 6.5).

Lemma 6.4 (Matching on each ball By in dimension N = 3). Let N = 3, p = p(2') be the
blow-down polynomial defined in Definition 2.8(iv), and P as in Lemma 6.1. Also, for v > 0,
let Aﬁp be defined as in Lemma 5.2.

Then, given B > 0, there exist yg > 0 and Rp > 1 such that the following holds: For each
B €10,B] and R > Rp there exists v = v(B3, R) € [0,v5] such that

03All, = —Blog R. (6.3)

Proof. Note that, since u,p is an xy-monotone solution, A,IY%P is well-defined thanks to
Lemma 5.2. Also, as shown in Step 1 in the proof of Lemma 5.2,

R+ ys
AR — SR L B i B T 4
Al = o | < \y13+rRe3+y\3>dy (6.4)

yP

‘We now observe that

Y3 R+ys ) Y3 R+ys >
— L P Ny =1lim [ (- + d
/ ( yP? rRe3+y\3> Y= <ry\3+€ [Red + y|3+<

yP yP
. Y3 R+ys
- lim — d _ vy
=0 P y+/7p [Re3 + g+ Y

yP

_ 1 Y3 _ Y3

= / PR / P Y
YP\(vP+Re?) YP\(yP+Re?)

where the first equality follows from dominated convergence since the integrand is uniformly
convergent at infinity (see (5.9)), the second equality from the fact that each term in the
integrand is integrable for € > 0, the third equality from a change of variables, and the last
equality from monotone convergence when |y| > 1 and dominated convergence when |y| < 1.
This proves that

03 Alp = —ag / ‘z@% dy <0, (6.5)
YP\(vP+Re3)

In particular, since ¥P + Re® C {y3 > R}, for R > 1 it follows that

83A§p S —OZ3/ %dy (66)
vPN{RY/2<y3<R} |y

Note now that, for R/2 > ~ and for ¢ € \/Ay3E’ with y3 > RY/2, we have

1/2 1/2
lyl < 10/ + ys < Cay s’ + y3 < C RY 3?4+ y3 < (Cir + Dy,
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for some constant Cp: depending only on E’. Hence, thanks to (6.6),

1 o3 R 1
D3 AR §—a3/ dy < —F—""—— H2(VALE) = dt
3 A/P (CE'/ —|— 1)3 "/Pﬁ{Rl/2<y3<R} yg y (CE’ —|— 1)3 R1/2 ( 7 )t2
R 1 Cp
< —cpy —dt = ——~log R, (6.7)
R1/2 t 2

where cgr > 0 is a constant depending only on E’.
Hence, given B > 0, set v := c—z,B and Rp := max{7%,1}. Then, with these choices,

03Af p < —BlogR  forall R > Rp.

On the other hand, recalling (6.4) and (5.9), we can apply dominated convergence to deduce
that v +— 83A$P is continuous and

8314513 —0 as v — 0.

Hence, by continuity, given any § € [0, B] and R > Rp there exists v = v(3, R) € [0,vg] such
that (6.3) holds. O

Corollary 6.5. Let N = 3, and let u be an xn-monotone solution in the sense of Definition
2.8. Then there exist a paraboloid P as in Lemma 6.1 and positive constants 7, R, and C,
such that the following holds: for any R > R there exists yr € [0,7] such that

1 _
= ][ lu —up,|de < C, where Pr := yrP. (6.8)
Br

Proof. We begin by noticing that, since C is contained in some paraboloid (see Proposi-
tion 4.1), we can repeat the proof of (6.5) with C in place of 7P to show that

8314? = —Q3 / ’:Z% dy.
C\(C+Re3)

We now observe that, as a consequence of the monotonicity of the contact set in the e3-
direction (a direct consequence of the monotonicity of u), the right hand side above is strictly
negative. Thus, thanks to Lemma 5.3, there exist R > 1 and B > 0 such that

0> A8 > —-BlogR  forall R > R.

This allows us to apply Lemma 6.4 to deduce that, if we set 7 := yp and R:= max{lfi7 Rp},
then for any R > R there exists yg € (0,4] such that

D3AR, = 03AF <0, where Pg:=ygP. (6.9)

Using the potential expansion of both u and up;, (cf. Proposition 3.4 and (6.1)), thanks to
(6.9) we find that for all R > R,

][|U—UPR’C1.T: ][Vc—VPR|d33§ ][‘VC_A§|dx+][‘VPR_A§R‘dx
BR BR

BR BR

+ ][\Ag(O) — AR (0)] dz + ][\V’Aﬁ — V'AZ ||z| dz.
BR BR
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Applying Lemmas 5.2 and 5.3 to u, we can estimate
][yvc — Af|dz + ][{A{?(O)\ dz + ][\V’Agux| dz < CR.
Br Br Br

Also, since yg € (0,7], the very same arguments used for proving Lemmas 5.2 and 5.3 show
that

][|va — AR |dz + ][\AﬁR(O)\ dz + ][|V’A§§R\yw\ dz < C5R,
BR BR BR

where C5 depends only on P and ¥ (in particular, it is independent of R). Combining all
these estimates, we conclude the validity of (6.8). O
7. PROOF OF THEOREM 1.2: THE CASE N >4

Given u an x y-monotone solution as in Definition 2.8, using the ACF monotonicity formula
from Lemma 2.12 we will show that u and the comparison solutions u.p_(; ) provided by
Corollary 6.3 are ordered. Thanks to this important fact, the result will follow easily.

In order to simplify notation, we set

Py, :=~P —(7',0) and Uy :=tUyp_(r 4) (7.1)
Proposition 7.1 (Ordering in dimension N > 4). Let N > 4. Then, for all 0 € R,
either u <ugs n RY  or wu> Ug N RN,

Proof. Thanks to Lemma 2.13(i), we can apply Lemma 2.12(i)-(iii) with v = u—u, to deduce
that, for every r > 0,

R—o0 R—o00

1 4
O(u— ug,r) <limsup ®(u — uy, R) < Cy limsup(R ][ lu — ug]) =0,
Byr

where the last equality follows from Corollary 6.3. Hence, thanks to Lemma 2.12(iv) we
conclude that either © — u, > 0 or u — u, < 0, as desired. ]

We can now easily prove our main theorem.
Proof of Theorem 1.2: the case N > 4. Since u is an zy-monotone solution,
uw(0) =0,  u(—e)>o0. (7.2)

On the other hand, recalling (7.1), since P is a paraboloid contained in {zx > 0} with tip at
the origin, by the definition of P, (see (7.1)) it follows that

0¢P, foro<0, —eNep, foro>1,
therefore
ug(0) >0  foro <0, us(—eV)=0 foro>1. (7.3)
Combining (7.2), (7.3), and Proposition 7.1, we conclude that
U > U for o <0, Ue <u for o> 1. (7.4)

Now, let us define
o :=inf{oc € R:u, <u}.
Thanks to (7.4), € R is well-defined. We now claim that u = uz.
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Indeed, by definition of & there exists a sequence o;, — & such that u,, < u, therefore
us < u. Assume now towards a contradiction that u # us. Then there exists Z € RV such
that usz(Z) < u(x), and by continuity we can find € > 0 such that us_-(Z) < u(z). Since u and
ug—- must be ordered (because of Proposition 7.1), we conclude that uz_. < u, contradicting
the definition of &.

Since u = uz we conclude that {u = 0} is a paraboloid?, as desired. O

Remark 7.2. Tt is worth noticing that our argument gives a new proof of the characterization
of global solutions with compact coincidence set for any dimension N > 2. Indeed, when
C = {u = 0} is compact, we can write the expansion (cp. Lemma 5.1 and [9])

@) = plo) + Vela) = p(o) — - | VRN dy + [ (Knte=1) = Knlw) dy.

where K is the fundamental solution of the Laplacian (see (A.1)). Since C is compact,
all integrals converge and the remainder term (the last integral) is sublinear. Also, in this
compact case, p(x) = %.’ETQ.%‘ where Q € RV*N is symmetric and positive definite’.

Now, arguing as in Lemma 6.1, we find an ellipsoid £ C R such that ux has p as quadratic
blow-down limit. In addition, since @ is invertible on RY, choosing 7 := Q~'b with b :=
fc VKn(y)dy, for each v > 0 the function v — u,g_, has sublinear growth at infinity (cp.
Lemma 6.2). Then the ACF monotonicity formula implies that either v < uygp_r or u > uyp_-
(cp. Proposition 7.1), and finally a continuity argument implies the existence of a value ¥ > 0
such that « = usgp_- (cp. Proof of Theorem 1.2: the case N > 4), as desired.

8. PROOF OF THEOREM 1.2: THE CASE N = 3

Let u be an x y-monotone solution as in Definition 2.8. Also, for each R > R, let Pgr = g P
with g € [0,7] be the paraboloid provided by Corollary 6.5, so that (6.8) holds.

To simplify the notation, for each R > R and = € R3 we define
(u — upy)(Rx)

R )

so that (6.8) is equivalent to [|vg|| 1 (p,) < C for all R > R.

Thanks to this uniform gl—bound and Lemma 2.13(i), we can apply Lemma 2.12(i)-(iii) to
deduce that, for all r € (2R, R),

(ID(u—uPR,%) S@(u—uPR,g) :@(UR,%) <C. (8.1)

vr(z) =

Since 0 € {up, = 0}, it follows from Lemma 2.4(ii) that, passing if necessary to a subsequence,

Upy — Uso 0 CLY(R?)  as R — oo, (8.2)

where uy, is a global solution to the obstacle problem. Also, since P = yr P with vg € [0, 7],
it follows that

{ueo =0} = 7noP  forsome 1o €[0.3], P ={y/ € VINE'} (8.3)
(if Yoo = 0 then us = p).
4A posteriori, by the fact that {u = 0} is a convex set contained in {zxy > 0} with tip at the origin, the

only possibility is that & = 0 and 7' = 0. However this information is not relevant for our proof.
5This follows, for instance, from the proof of Theorem 1.1 in Section 9.
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Thanks to (8.2) and Fatou’s Lemma, (8.1) implies that ®(u — us, 5) < C for all 7 > 2R.
Hence, since @ is non-decreasing in r (see Lemma 2.12(i)), we obtain that

Q(u — Uoo,7) < C for all » > 0. (8.4)
8.1. Linear rescaling and ACF dichotomy. Let us now introduce the linear rescaling

(u — uoo)(re)
r
We prove the following important dichotomy.

wy(x) == for z € R® and r > 0. (8.5)

Proposition 8.1 (ACF alternative for u — ). Let too, Yoo, and P be as in (8.2)-(8.3), and
w, as in (8.5). Then there exists a sequence 1, — 0o such that wy, — w strongly in W2 (By)
as k — oco. In addition:

(i) either w has constant sign inside By (i.e., either w >0 or w < 0 a.e. in By);
(ii) or w is a linear function (i.e., there exists b € R® such that w(x) =b-x a.e. in By).

Proof. We will first prove that the family (w; ).~ is bounded in L!(B,), and use the bound-
edness of the ACF functional to deduce the desired dichotomy.

Step 1. There exists a constant C such that ||w,||p1 g,y < C for all v sufficiently large.

We begin by noticing that, thanks to Lemma 5.2, there exist affine linear functions A; and
Afyoo p such that, for all r sufficiently large,

][|u—p—AE‘dm§CT and ][‘uoo—p—A;oop’deCr

B4'r B4'r
(note that, in the case us, = p, the second estimate is trivially satisfied with A;OO p=0).
Setting A"(z) := 1(A%(rz) — Al p(rz)), it follows by the triangle inequality that

/ oy — AT|dz < C. (8.6)
By

Also, applying Lemma 5.3 to both u and us we deduce that [A"(0)| + |[V'A"(0)] < C', and
therefore (8.6) implies that

/ |wy () — apxg|dr < C for all r sufficiently large, where a, := 93.4"(0). (8.7)
By

In particular, by Chebyshev’s inequality,

2C
|Ba N {[wr — ays| > [ar|/2}] < o]
,

for all r sufficiently large. (8.8)
Suppose now towards a contradiction that the claim of this step is false. Then there exists
a sequence gy — o0 as k — oo such that [|wg,[|1(p,) — oo. In particular, (8.7) implies that
|, | = 00 as k — oo.

Without loss of generality, we may assume that a, — oco. Then (8.7) and (8.8) imply
that, for sufficiently large k,

1
[{(wey,)— = 0} N Bu| = [{wg, <0} N Ba| 2 S|Ban{zs <=1/2},  [[(we,)-llLr(my) = o0,

1
[{(we, )+ = 0} N Bu| = [{wg, >0} N Ba| 2 S|Ban{zs >1/2},  l(weu)+llLr(may — oo
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This allows us to apply the Poincaré’s inequality to (w,, )+ and obtain
00 ¢ [[(we, )l L1 (Byy < ClIV(Wg,) £l L1(By)-

4> % inside By, it follows by Holder’s inequality that

Since
|

V(w + 2
VG5 sy < [ 1Vwo)sPar <o [ el
Ba By ‘$|

Thus, recalling that N = 3 and the definition of ®, we conclude that

dx.

00 +— D(wy,,4) = P(u — uso, 40k),

a contradiction to (8.4).
Step 2. Proof of the dichotomy.
Thanks to Step 1 and Lemma 2.12(ii), there exists 7 > 0 such that

2
/deﬁC for all > 7.
X

This implies the following non-concentration estimate for the ACF integrands: for each 4§ €
(0,1) and every r > &,

OS/N(H _52/W“”"5 dz < C42. (8.9)
Bs

In addition, since ﬁ > 1 inside Bj, we have that varHB(Bl) < C for all » > 7. Since

llwrl|£1(By) < C (from Step 1), there exists a sequence r, — oo such that

wy, —w  weakly in W?(By) as k — oc.
We now observe that the coincidence sets of u and u, satisfy the properties in Proposition 4.1,
therefore 2 ({u = 0} U {us = 0}) — {se® : s > 0} as 7 — oo. Hence, since A(u — us) = 0
outside {u = 0} U {uso = 0}, we deduce that Aw = 0 outside {se : s > 0}. Because this set
has zero harmonic capacity in R3, we conclude that Aw = 0 and therefore, by Lemma 2.15,

r, — W strongly in I/Vlicz(Bl) as k — oo. (8.10)

Combining the strong convergence (8.10) with the non-concentration estimate (8.9) we con-
clude that, for each ¢ € (0,1),

lim sup / [V wr’“ i‘ \Vwi] dz| < limsup / [V( wr’“ d —/ ]Vwi\ ’3052,
k—o00 k—o00
so, by the arbitrariness of 5
[V(wr)® d —>/’ as k — oo.
|z !w\

In particular ®(wy,, Q) — ®(w, p) as k — oo and therefore, by the monotonicity of the ACF
functional as well as (8.4),

00 > ®(uU — Uso, 00) = lim P(u — Uso, Tk0) = klim ¢ (wy,, 0) = (w, o) for each p € (0,1).
—00

k—o00
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This proves that ¢ — ®(w, p) is constant on (0,1). Since w is harmonic in By, the result
follows from [17, Theorem 2.9]. O

As we shall see later, if we are in Case (i) of Proposition 8.1, then it is easy to conclude. On
the other hand, Case (ii) requires a delicate argument that is performed in the next section.

8.2. Fine adjustment of u., at large scales. The goal of this section is to show that if
Case (ii) of Proposition 8.1 occurs, then we can find some fine adjustments of u, at large
scales to cancel the linear function b - x appearing in the blow-down limit.

Proposition 8.2 (Fine adjustment of the matching). Let uso, Yoo, 7, and P be as in (8.2)-
(8.3) and Corollary 6.5, and assume that
(u = Uyo p) (ri)
Tk
Then there exist 7' € R? and a sequence Vi, — Yoo, With v € [0,5 + 1], such that, for each
o €eR,

—b-x  strongly in WY(By), where 1y — 00 as k — oco.  (8.11)

(u - u’ykP—(T/,O'))(Tk’x)

— 0 strongly in L*(By) as k — oo. (8.12)
Tk

To prove this result, we will need a series of preliminary estimates on the behaviour of
paraboloid solutions under translation and scaling. We collect these in the lemmas below.

Lemma 8.3 (Translations of paraboloid solutions). Let P be as in (8.3). Then there exists
a constant C = C(P,7) such that, for every v € [0,5 + 1] and every 7 € R3,

][|V7P(ZE +7) = Vyp(z)|de < C’\7'|R3/4 for all R > max{|r]|,1}.

Proof. Using the fundamental theorem of calculus, for any R > |7| we can estimate

][va(a: +7) = Vyp(z)|de < C|7| ][ \VV,p(x)|dx.

Baor

Applying Hélder’s inequality and Lemma 2.13(ii) (note that V,p = u,p — p, where both u-p
and p are solutions to the obstacle problem) to the right-hand side above, we obtain

][|v7p(x+7)—vvp( )| dz < 7| ][vva 2)? dx<C ][|v )2 da.
Baor Byr

Recall now that thanks to (3.8), there exists a constant Cy such that [V, p(z)| < Cs(14]|z|)7/*
for all v € [0,7 + 1]. Combining these facts, we conclude that

][|va z+7) = Vyp(z)|dz < C|7|R¥*  for all R > max{|7|,1}.

O

Lemma 8.4 (The generalized Newtonian potential of scaled paraboloids). Let oo, Yoo, 7,
and P be as in (8.2)-(8.3) and Corollary 6.5, and for v € [0,7+1] and R > 0 define the affine
Sfunction
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A@P,%OP) (z) := Aﬁp(fﬂ) - Aﬁmp(fﬂ)

1 1 Ty (Re3+y)-(x—|—Re3)>
a3 [[——+ - + XyP = XrooP)(Y) dy-
R/< R R T = Ry R
Then there exists a modulus of continuity w = wpy : [0,00) = [0,00) such that w(0) = 0 and,
forall R > 1,
FlVar = Vor = Al iy de <l = 2D (8.3

Br

VAR by p)l Sw(r—el)  and AR, p) (O] Sw(ly— )R (8.14)

Proof. As we shall see, the proof of is slight modification of the ones of Lemmas 5.2 and 5.3.
We recall that AAB denotes the symmetric difference of two sets A and B.

Step 1. Proof of (8.13).

We follow the notation used in the proof of Lemma 5.2. Recalling Definition 3.1 and (5.6),
we have

Von(e) = Vopl@) = Al py(a)| < s [ Gl2,y) — af(, )| dy
(YPAyeo P)N{0<y3<2R}

+ a3 / Gla,y) — a®(e,y)|dy = Ju(2) + Ja(2).
(vPAvso P)N{y3>2R}

Using (3.2) and (5.7), for x € Br we estimate
2 > 2 ! ! ! 1
Jo(z) < OR / 12 ({y € Vi(V7E'DVI<E) }) 5 dt
2R

>~ 1
= CRHAE =l | 3t < Cly =l R

(cp. (5.11)). For Ji(x), we write x = Rz with z € By and we perform the change of variables
y — Ry, so that

Ji(z) < CR? |G(2,y) — a' (2,y)| dy

/{y'e\/W (VAE' &A= E) }ﬂ{0§y3§2}
(cp. (5.3)). Combining these two bounds, we get

f\vyp Vip(@) = Ay (@) do < f (D) + Jofa) da

Br

< Cly =yl R+ CR? f / Glz,y) — a' (=, )| dy dz
4 HvevB (e o mme) noznse

(cp. (5.12)). Concerning the last integral we note that (5.13) holds on the domain of integra-

tion. Hence, since Hy’ €/ % (\ﬁE’A,/%OE’)} N{0<ys < 2}‘ < %, using (5.4) and
Fubini’s Theorem we obtain

][‘V,yp — V%OP — .Agyp’%op)’ dx < Ch’ - 700|Ra
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(cp. (5.14)). This proves (8.13).
Step 2. Proof of (8.14).
For the first bound we note that, for y € vP Uy P, (5.15) holds. Hence

1 /
/ !Vz/aR(way)\dy§2/ dy + 2 / %d
(YPAyo P) (YPAvoo P)N{y3<1} ‘y| (YPAvoo P)N{y3>1} ’y‘
1
o e
(YPLvoo P)N{y3 <1} lyl

+C /100 H ({y e \/%(ﬁE'A\/fT.OE') b % 22

< 2/ dy + Cly — 7 / dt.
(YP Ao P)N{ys<1} \y|2 | | 13/2

By domlnated convergence, this proves the existence of a modulus of continuity w such that

For the second bound we write

/ 1aR(0, )| dy < / 1a7(0, )| dy
(vPAYoo P) (YPAvso P)N{y3<2R}

+ (0, dy = Ty + I
(YPAYoo P)N{y3 >2R}

Using (5.7), we immediately get

oo
< CRQ/ 12 ({y € VI(VIE' D) }) Lar
2R t
< CR?|y — 7ol / %dt < Cly — Yl R,

2R t

(cp. (5.8)). Concerning I, using (5.16) we have

R R
1
I < 3/ H? ({y’ € \/f(ﬁE’A\/vToE’)}) cdt < Cly - 'yoo\/ dt < C|y — Yol R
0
(cp. (5.17)). This implies that |A (v Pryoo P) (0)|] < Cly — Yoo| R, concluding the proof. O

Lemma 8.5. Let P be as in (8.3), and fir v € [0,5 + 1]. Then there exists a constant
C = C(P,7) such that for all R > 1,

0 C
’8 agA,yp S E
Proof. Recalling (5.10), it follows that
0 0 Y3 R+ ys / R+ ys3
— 93 Al| < / - d
‘8R ap| = ‘8R< Wi TR 13 )| Y T ) |oR\[ReS 1y
yP

1 1
<C | =———=dy<C 2({y € VALE'}) ———dt
<C [ frrgp =€ | 9 W < VIEY G

P
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c (R | C
< <7 - <7'
c/ _Rg/ththQd_R

Proof of Proposition 8.2. We note that, given v € [0,7 + 1], we have (cp. (6.2))
Uyp(r1,0)(T) = uyp(' + 7,23+ 0) = pa’ +7') + Vyp(z' + 7', 23 4 0)
= p(a) + V'p(@) -7+ p(7) + (Vop (o + 7,5+ 0) = Vip(a))
+ (Var(@) = Vaop(@) + Voo p(a)
= tyep(@) + V'p(a) - 7+ (Vap(2) = Vip(a))
+ [p(T’) + (va(x/ +7 23 +0) — va(x)ﬂ :
Let b= (b, b3) € R? x R. Recalling that V'p(z') = Q' with Q symmetric and invertible, we
choose 7/ := Q7 '¥ so that V'p(2) -7/ = b - 2’. Also, for each R > 1,
Vap(2) = Voep(@) = (Vap (@) = Vap (@) = Al _p)(@))
FAR O 4 VAR ot AR g

Combining all these identities and applying Lemmas 8.3 and 8.4, we obtain the existence of
a modulus of continuity w : [0,00) — [0, 00) such that, for x € Bp,

][ ’uvp_(ﬂg) (z) — uy p(x) =0 -2’ — 83,4@137%0]3@3) dz

<C (w(!'y — s )R+ R3/4) . (8.15)

Note that, without loss of generality, we can assume that w(t) > t (otherwise, it suffices to
replace w(t) with w(t) + t).
We now distinguish two cases, depending on whether ., > 0 or not.
e Case 1: v, > 0.
We note that, by a change of variables, for each A > 0 it holds

R+ ys AZ3 R+ A\z3
AR = —y?’dzx”’/—,, : d
D3N /( PERRTZESTE A NP RS 1 AP )Y
P

Yoo P Yoo
23 Btz R/A
=\ / —Tm A | dz = A03A (8.16)
N || |53 + 2|
Yoo

Thus, setting \ := %,

O3Al b ) = 0sAR, — 5 AR, = A[03A77 — 0347 L]+ (A~ 1354 5. (8.17)

Assuming now that ~ is sufficiently close to 7 so that A € [1/2,2], it follows from Lemma 8.5

that
95457, — 9347 P\</
R/

R 8 o
9 o Iy ’Yoo"
Voo

. pldr<CIAN-1|=C
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Thus, combining (8.15) and (8.17), we obtain

(e 9]

f%wme@»—%@Am—bﬂf—”‘”“%A&pmbxSCQAW—%wR+RWﬁ-
Br

We now observe that, as a consequence of Lemma 5.3 and (6.7), there exist constants 0 <
Coo < Cs such that

—Coo log R > 8314500 p>—CxlogR for all R sufficiently large.

In particular, for each R sufficiently large we can choose v = yg € [’yoo — CLZSI‘(;Y;" 7> Yoo T c'::i'gg‘” R}

such that %3314?% p = b3, and with such a choice we have
V-2 —b dz < C ¢ R R3/4 8.18
Wmﬂ«wﬂ@—wmﬂw— *r—sﬁ\x— “\logr )" (8.18)
Br

for all R sufficiently large. Choosing R = 7 and 7 = 7;,, and combining (8.11) and (8.18),
we obtain (8.12).

e Case 2: 7, = 0.

Note that in this case V,_p = 0. We first claim that b3 < 0. Indeed, from Definition 2.8(ii)
we know that u — p is harmonic in {y3 < 0}, which combined with (8.11) implies that

(u = p)(rez)
Tk
On the other hand, Definition 2.8(ii)-(iv) implies that (u — p)(—te3) > 0 for all + > 0. Thus

— b-z  uniformly in Bl/g(—e?’) as k — oo.

(u—p)(=rre’) .
T

0< —bs as k — oo,

proving the claim.
Now, if bs = 0 then the result follows by choosing v = 0. Otherwise, applying (8.16) with
v > 0 in place of A and P in place of 7, P, we get

R
O3 AR p) = 05AT = 405 AT)
Moreover, for each v € (0, 1], we know from Lemma 5.3 and (6.7) that
—Coo l0g(R/7y) > 8314?/7 > —Co log(R/7) for all R sufficiently large.

Thus, recalling that b3 < 0, for each R sufficiently large we can find v = yr € (O, Cj'ffg‘ R]

such that 'ypﬁgAgMR = b3. Choosing R = rj, and v = 7,,, we conclude as in Case 1. ]
8.3. Ordering of solutions and conclusion.

Proposition 8.6 (Ordering in dimension N = 3). Let tuso, Yoo, and P be as in (8.2)-(8.3).
Then there exists 7' € R? such that for each o € R,

either  w < uy, _p_(75) N RY  or wu> Uy P—(+,0) N RV,

Proof. Let w,, and w be as in Proposition 8.1. We distinguish between the two cases in the
dichotomy.
e Case 1: Proposition 8.1(i) holds.



COMPLETE CLASSIFICATION OF GLOBAL SOLUTIONS TO THE OBSTACLE PROBLEM 41

In this case we have that either ||(wrk)+\|L1(Bl) — 0 or H(wrk)*”Ll(Bl) — 0 as k — oo. Also,
since

Uy P(2) = Uy p(0,0) () = Uy P(2) = Uno p (@ + 0€%) = Vo p(2) = Vi p(z + 0€?),

defining wy, () := (u_u%opf(o"’))(rw), Lemma 8.3 yields

Tk

B
||wy,, — wk,aHLl(Bl) = Q ][ Vyopr(x) = Vi p(x +Ue3)| dz < C|1L/|4 —0 as k — oo.
Tl re

By,

Hence, for each o € R, either |’(wk70)+HL1(Bl) — 0 or H(wkﬂ)—HLl(Bl) — 0 as k — oo.
Therefore, thanks to Lemma 2.12(i)-(iii), for each o € (0,00) it holds

0<P(u— ol + ae?’),g) < leI{:O(I)(u —Uso(- + o€, )

. . 2 2
= im @ (wie, 1) < Climsup|(wie)+ Iz 5 (ko)1 (s, =0
Applying Lemma 2.12(iv) proves the result with 7/ = 0.
e Case 2: Proposition 8.1(ii) holds.

/ . oL / (u_u'yka(r’,a))(Tkm)
Let 7 and 7" be as in Proposition 8.2, and define wj, (x) := - . Note
that, since 7 — 7o and solutions to the obstacle problems are locally bounded in C%!
(cf. Lemma 2.4(i)),

Uy p—(7/,0) = Uy P—(1,0) = Uoo(- + (7',0))  in C’lt’?(]R?’) as k — oo,
which implies in particular that, given g € (0, c0),
P(u— Unyy P— (7 0 0) = ®(u—ux(-+ (7',0)),0) ask— oc.

Since |lwy, ,[lL1(B,) — 0, it follows from Lemma 2.12(i)-(iii) that, for each o € (0, o0),

0< <I>(u — Uso (- + (7, 0)), Q) = kli_)m <I>(u — Uy, P—(r0)5 g) < likmsuptﬁ(u — Uy P— (1,55 %)
o — 00

. . 2 2
= hkm_)solipfb(w%,m 1) < Cllasip\\(wé,a)+\\Ll(Bl)H(wé,a)fHLl(Bl) = 0.

Hence, the result follows again from Lemma 2.12(iv). O
We can now prove our main result.

Proof of Theorem 1.2: the case N = 3. The proof is almost identical to the one of Theo-
rem 1.2 for N > 4 given in Section 7, the only difference being the application of Propo-
sition 8.6 instead of Proposition 7.1. ]

9. PROOF OF THEOREM 1.1

As explained after the statement of [7, Main Theorem**], every non-cylindrical solution
with unbounded coincidence set is x-monotone. Hence, to prove Theorem 1.1 for N > 3,
it suffices to characterize xx-monotone solutions for N > 3, which is exactly the result of
Theorem 1.2. For completeness and convenience of the interested reader, we present here an
original alternative argument to show how Theorem 1.1 follows from Theorem 1.2.
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Proof of Theorem 1.1. Let u be a global solution in RY with non-empty coincidence set.

We can assume that u is non-cylindrical (see Definition 2.6). Indeed, otherwise, up to a
change of coordinates u(y,z) = v(y) for (z,y) € RV=F x R¥, where v is a non-cylindrical
global solution in R*, and then it suffices to prove Theorem 1.1 for v. Also, as mentioned in
the introduction, Theorem 1.1 has already been proved for N = 2 in [18].

Hence, we assume that u is a non-cylindrical global solution in dimension N > 3, whose
coincidence set C := {u = 0} has non-empty interior (recall that C is convex, see Remark 2.2).
Then, we set u,(x) := u(:f) and define g(z) := lim, o0 uy(x) (cf. Lemma 2.3). We distinguish
several cases.

e Case 1: g is a half-space solution.

By a translation and a rotation we can assume that {u = 0} C {xx < 0} and that 0 € 0{u =
0}. Then, since {u = 0} is convex we deduce that {u, = 0} = 1{u = 0} C {u = 0} for every
r > 1, and letting r — oo we conclude that {g = 0} C {u = 0}.

On the other hand, since g is a half-space solution, {g = 0} is a half-space passing through
the origin. So the only option is that {g = 0} = {u = 0} = {zx < 0}.

Thanks to this fact, we deduce that A(u —g) = 0 and (u — g)|{zy<0y = 0. By unique
continuation this implies that u = g, and since ¢ is constant in the directions orthogonal to
e we obtain that u is cylindrical, a contradiction.

e Case 2: g(z) = %.Z’TQI‘ s a quadratic polynomial solution with Q) positive definite.

Since () is positive definite, there exists a constant ¢y > 0 such that g > ¢y on 0B;. Hence, it
follows from the local uniform convergence of u, to g that u(z) > £|xz|? for sufficiently large
|z|. This implies that the coincidence set {u = 0} is compact, so the result follows from [10]
(see also [9] or Remark 7.2).

e Case 3: g(z) = 327Qu is a quadratic polynomial solution with ker(Q) # {0}.

Step 1. u is monotone in the directions of ker(Q).

Let e € 0B1Nker(Q). Then O.u = 0.(u—g). Also, if we define v, (x) := (u=g)(rz) _ up(x)—g(z),
Holder’s inequality and Lemma 2.13(ii) imply that

2
(][ ]er|dx> < ][\er|2dx < C][U?,dl’ — 0 as r — oo.
Bo

By By

It follows that
1 1
f@euldx: ][|8e(u—g)dx:][laevr|da:—>0 as r — oo. (9.1)
r
By

-
By By
Thus, thanks to Remark 2.14, (9.1), and Lemma 2.12(iii)-(iv), we deduce that either d.u > 0

or Jeu < 0. Since Jeu # 0 (as u is non-cylindrical) and d.u is harmonic outside the coincidence
set of u, it follows by the strong maximum principle that

either eu > 0 or Jou < 0 inside {u > 0}. (9.2)

Step 2. ker(Q) is one-dimensional.
Indeed, assume by contradiction that there exists a two-dimensional plane IT C ker(Q). Then,
by Step 1,

for any e € 0B1 N1, (9.2) holds.
Since 0B; N1I is a circle, given a point & € {u > 0} we can consider a curve [0,1] 5 s
e(s) C 9B NI such that e(0) = —e(1). Then, noticing that 9. yu(Z) = —0.)u(Z), it follows
by continuity that there exists s € (0,1) such that Je(syu(¥) = 0. This contradicts (9.2) and
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proves that ker(Q) is one-dimensional.

Step 3. u is z-monotone.

Thanks to Steps 1 and 2, we may assume that ker(Q) = Re” and that dyu > 0. Thus, since
by assumption C = {u = 0} has non-empty interior, u satisfies Definition 2.8(i)-(iii)-(iv).
Also, up to a translation, we can assume that C C {xx > 0} and that 0 € OC.

To conclude that u is x y-monotone, we only need to show that C N {zy = 0} = {0}. This
follows from [2, 15]. Indeed, since C is convex with non-empty interior, [2, Section 1.8] (see
also [3, Theorem 7]) implies OC is of class C*!, and therefore it follows from [15] that dC is an
analytic hypersurface. In particular 9C cannot contain a segment, and therefore CN{zy = 0}
is a singleton. O

APPENDIX A. PROOF OF LEMMA 6.1

We split the proof into three steps.
Step 1. Construction of a suitable sequence of ellipsoids.
Let K denote the fundamental solution of the Laplace operator in R%, namely,

— £ log || ifd=2
Ky(z) = 27T1 1 . ’ Al
) { e 4= 3 Ay

Given p as in the statement, it follows from [5, Equation (5.4)] that there exists a unique
2
ellipsoid E' := {y’ e RV-1: z—% R yN L < 1} c RV=1 | with a; > 0, such that

1 N 1
VAE (2" = VAT(0) — p(a)) for all 2’ € E/,

where VAT denotes the (N — 1)-dimensional Newtonian potential of E’, i

/KN (@' — /) dy for all 2’ € RV~L.

Set
(2 := p(a’) — VAT (0) + VAE () for all 2/ € RV 7L, (A.2)
Then, it follows from [4, Theorem II] that u/, is a non-negative global solution to the obstacle
problem in RNV ~1 satisfying {u}, = 0} = E'.
We now complete E' to an N-dimensional ellipsoid approximating a paraboloid in the
following way: for each n € N, set

N—-1 2
Eri={zeRN: 2l e /2 x?VE’ zeRV: 22&+i <1p.
2 2n j_lan

From [5, Equation (5.3)] we infer that, for each n € N, there is a homogeneous quadratic
polynomial ¢" such that A¢™ = 1 and

NP/ \ _ 1/NP n fn
Ve (2) = Vg, (0) — ¢"(z) for all x € E", (A.3)
where

VNP /KNJ:— for all z € RY.
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Let us now translate the ellipsoids E™ so that they all touch the origin:

- . 2
En::En+n€N:{x€RN:ZJ+MS1} (A.4)

22
:{:UGRN: — + NSQJUN}-
j

Then, recalling (A.3), for all z € E™ we have
VAP () = Vgﬁnw (z) = Vé\ip(:n —ne™)
_ /NP n Ny _ y/NP; N n N
=Va, (0) —¢"(x —ne™) = Vgu' (ne™) —¢"(x —ne™).
Step 2. Switching to the obstacle problem and passing to the limit.
For all n € N, we define

upn(z) == ¢"(x —ne™) — VAL (nel) + VAL (2) for all z € RY.
As before, [4, Theorem II] guaranteess that ug» is a non-negative global solution to the
obstacle problem satisfying {ugn = 0} = E".

Since 0 € E™ = {ug» = 0} we deduce from Lemma 2.4(ii) that, passing if necessary to a
subsequence,

ugn — u* in CI{)’?(RN) and  X{upn=0} —* X{ur=0} a.€. as n — oo.

On the other hand, by construction (cf. (A.4)),

N-1_2
x>
: N . J _ ! /
XErn — xXp a.e. in RY asn — oo, whereP.—{ azng}_{x e\/a:NE},
j=1 "3

and therefore {u* =0} = P.
Step 3. Identification of the blow-down limit of u* and conclusion.
Let us define the following sequence of rescalings (u})gen:

u*(rgx + xk)

5 for z € RY, where z¥ := (0, k) and rj, :== Vk.
"k

up(x) ==

Since 0 € {u} = 0}, using Lemma 2.4(ii) once more we deduce that, passing if necessary to a
subsequence,

Al
up >y in CLS(RY)  ask — oo,

where uf is a non-negative global solution to the obstacle problem. Also, arguing as in Step
2, we see that the coincidence sets of u} converge to E' x R, hence {uf =0} = E’/ x R. This
implies that {u§ = 0} contains the ray {te’¥ : t € R}, so it follows from Lemma 2.7 that u} is
independent of zy, i.e.

uy(z) = uf(2',0) = ua’l(x’) for all z € RY. (A.5)

Since uy, constructed in Step 1 (cf. (A.2)) is the unique global solution to the obstacle

problem in RV~ with E’ as coincidence set, we deduce that u(*)’/ = ul. Also, since the
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classical Newton-potential VA (z') has subquadratic growth as |2/| — oo, we have that p(z’)
is the blow-down limit of u/;,. Thus, recalling (A.5),
ug (0x) _ wp(0r')

! . l,a
22 = 22 —p(2’) in O,

(RN as p — 0.
On the other hand, since in the limit as ¢ — oo the contact set of % has measure zero
(as a consequence of Lemma 2.4(ii)), the blow-down limit of v* is a homogeneous quadratic
polynomial p as well, i.e.
u*(ox)
02

Hence, we are in the position to apply [7, Lemma B.2] to u* and the sequence of rescalings
u¥ ) ren to deduce that p = p, which proves that p is the blow-down limit of ©*. In conclusion,

k) ke
u* is the desired paraboloid solution.

Finally, the remaining statements follow from Proposition 3.4 and Lemma 3.2. O

= plz)  in CLY(RY) as ¢ — oo.
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