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Abstract

We revisit the partial C1,α regularity theory for minimizers of non-parametric integrals with emphasis
on sharp dependence of the Hölder exponent α on structural assumptions for general zero-order terms. A
particular case of our conclusions carries over to the parametric setting of Massari’s regularity theorem for
prescribed-mean-curvature hypersurfaces and there confirms optimal regularity up to the limit exponent.
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8 The optimal Hölder exponent in Massari’s regularity theorem 24

References 25

1 Introduction

In this paper, for n,N ∈ N and bounded open Ω ⊆ Rn, we further develop the partial C1,α regularity theory
for minimizers of variational integrals

F [w] ..=

∫
Ω

[
f(Dw) + g( · , w)

]
dx (1.1)

which depend on Dw and ( · , w) through separate integrands f : RN×n → R and g : Ω×RN → R, respectively.
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We focus on cases with standard assumptions on f , but very general hypotheses on g and on the sharp
dependence of the exponent α in the C1,α regularity on the latter hypotheses. More precisely, we impose on
g a Morrey-Hölder condition of type

|g(x, y)− g(x, ŷ)| ≤ Γ(x)(1 + |y|+ |ŷ|)q−β |y − ŷ|β for all x ∈ Ω and y, ŷ ∈ RN (1.2)

with Hölder and growth exponents 0 < β ≤ q < ∞ for the y-variable and with x-dependence controlled
by a non-negative function Γ whose precise regularity will be measured on the scale of Morrey spaces. In
particular, in the general tradition of [35] we admit non-differentiability of g(x, y) in y and consequently non-
availability of the Euler equation of F . Moreover, we directly foreshadow that the formulation of assumption
(1.2) is tailored out, to some extent, for an application to the somewhat different setting of Massari’s C1,α

regularity theorem [58, 59] for sets with variational mean curvature in Lp. Indeed, as we explain in more
detail later on, in the Massari setting we here complement the results of our predecessor paper [74] and
achieve the final sharpening of the regularity conclusion.
However, for the moment we return to the setting of (1.1) and aim at giving precise statements of our
results, which concern interior regularity and can thus be conveniently formulated for local minimizers in the
following sense:

Definition 1.1 (local minimizers). Assume that f is a Borel function with lim sup|z|→∞
|f(z)|
|z|2 <∞ and that

g is a Carathéodory integrand. Then we call u ∈W1,2
loc(Ω,RN ) with g( · , u) ∈ L1

loc(Ω) a local minimizer of F
from (1.1) if, for every x ∈ Ω, there exists some r > 0 with Br(x) b Ω such that∫

Br(x)

[
f(Du) + g( · , u)

]
dx ≤

∫
Br(x)

[
f(Dw) + g( · , w)

]
dx

holds for all w ∈W1,2
u (Br(x),RN ) with g( · , w) ∈ L1(Br(x)).

We remark that (1.2) together with below-mentioned assumptions on β, q, Γ ensures that g( · , w) ∈ L1
loc(Ω)

holds either for all w ∈ W1,2
loc(Ω,RN ) or none at all. This said, it becomes apparent that the integrability

requirements on the zero-order term in Definition 1.1 only serve to exclude trivial cases which do not allow
for a meaningful notion of local minimality, and indeed when additionally imposing a very mild assumption
such as g( · , 0) ∈ L1

loc(Ω), for instance, we could also drop these requirements completely.
Our main result now reads as follows:

Theorem 1.2 (partial regularity for variational integrals with Morrey-Hölder zero-order integrand). We
consider a strictly quasiconvex (in the sense of the later Definition 2.3) C2 integrand f : RN×n → R which

has at most quadratic growth in the sense of lim sup|z|→∞
|f(z)|
|z|2 <∞. Moreover, in case n ≥ 3, we abbreviate

2∗ ..= 2n
n−2 and assume that a Carathéodory integrand g : Ω×RN → R satisfies (1.2) with

β ∈ (0, 1] , q ∈ [β, 2∗) , (1.3)

and with a non-negative function Γ which in turn satisfies, for the exponents

sβ ..=

(
2∗

β

)′
=

2∗

2∗−β
and sq ..=

(
2∗

q

)′
=

2∗

2∗−q
,

the two Morrey conditions (see Section 2 for definitions of the spaces)

Γ ∈ L
sβ ,n+sβ((2−β)α−β)
loc (Ω) for some α ∈ (0, 1) (1.4)

and {
Γ ∈ L

sq
loc(Ω) , if q > 2 ,

Γ ∈ L
sq,t
loc (Ω) with t > n− sqq , if q ≤ 2 .

(1.5)

Then, for every local minimizer u of F from (1.1), there exists an open set Ωreg ⊆ Ω such that

|Ω \ Ωreg| = 0 and u ∈ C1,α
loc (Ωreg,R

N ) .

In case n ∈ {1, 2} the result remains valid with the range for q in (1.3) replaced by q ∈ [β,∞), with sβ in

(1.4) replaced by any s > 1, and with (1.5) replaced by the requirement Γ ∈ L
η,max{n−q,0}
loc (Ω) for some η > 1.
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In Theorem 1.2, our main point is in determining the gradient Hölder exponent α of the minimizers and more
precisely its sharp dependence on the parameters β, q, and Γ from the Morrey-Hölder condition (1.2) for the
zero-order integrand g. Somewhat surprisingly, this dependence has rarely been addressed, though even with
a focus on partial C1,α regularity in general vectorial frameworks we are aware of an abundance of positive
results in [63, 41, 37, 12, 5, 32, 30, 38, 1, 11, 31, 34, 6, 2, 33, 49, 67, 47, 13, 22, 20, 15, 9, 46, 19, 50, 21,
23, 24, 55, 53, 60, 54, 16, 28, 72, 73, 14, 27, 25, 26, 8, 52, 56, 43] and of counterexamples in [18, 42, 66, 75,
76, 65, 77, 62, 61]. However, at least the works [36, 48, 70] consider conditions of types similar to (1.2) with
q = β. Here, [36] establishes in fact full regularity for scalar and specific vectorial cases. In particular, for
Γ ∈ L∞loc(Ω), this work reaches C1,α regularity with the optimal exponent α = β

2−β , which is reproduced by

our result; cf. situation (A) below. Moreover, a remark in [36] predicts — still for q = β, the specific vectorial
case mentioned, and in the context of full regularity — even the general Hölder exponent of Theorem 1.2
(though in quite different terminology) and the one of the subsequent situation (B) with Γ ∈ Lploc(Ω). In
contrast, the works [48, 70] deal with partial regularity in frameworks closer to ours and reach once more
the exponent α = β

2−β in case q = β, Γ ∈ L∞loc(Ω), but not the finer ones for Γ in Morrey and Lp spaces.

Concerning the exponent β
2−β , it should also be mentioned that it has in fact been discovered even before

and occurs also in [17, 68, 69, 3, 51], partially in different form and for more specific model cases. Finally,
a Morrey-Hölder condition similar to (1.2) has been treated also in [71], where specifically [71, Corollary 3]
asserts partial C1,α regularity of a minimizer u under a condition of type (1.2), possibly with β < q, plus
an a priori Morrey hypothesis on u itself. However, as these results are derived from a general theory of
almost-minimizers, the accessible exponents α stay beyond β

2 and already in case Γ, |u| ∈ L∞loc(Ω) cannot

reach the previously mentioned optimal exponent β
2−β .

At this stage, with the sharp dependence of α still being our main concern, we turn to several technical
observations on the governing conditions (1.3), (1.4), (1.5) for the parameters and in particular on the
Morrey conditions (1.4) and (1.5) for Γ.
First, we put on record that only (1.4) but not (1.5) influences the Hölder exponent α. Therefore, we have
conveniently formulated (1.4) with the exponent n + sβ((2−β)α − β) such that α ∈ (0, 1) eventually turns
out to be exactly the exponent of the resulting C1,α regularity. In addition, we point out that the case of

interest is only α ≤ β
2−β , since in case of larger α we have L

sβ ,n+sβ((2−β)α−β)
loc (Ω) = {0}, and this enforces via

(1.4) and (1.2) that g(x, y) is independent of y and that the zero-order term of F trivializes. Turning to the
complementary condition (1.5), we remark that this hypothesis — though not relevant for determining α —
seems technically inevitable in making the first steps towards (C1) regularity in the above generality, while
it can be dropped in slightly restricted frameworks to be discussed below. Let us also observe that the case
distinction within (1.5) seems formally reasonable, since q ≤ 2 is equivalent with n − sqq ≥ 0 and thus the
distinction prevents us from considering negative t.
We remark that, similar to the modification mentioned for n ∈ {1, 2}, also in dimension n ≥ 3 we could

require (1.4) in the form Γ ∈ L
s,n+s((2−β)α−β)
loc (Ω) for any s ≥ sβ . However, in view of the standard Morrey

space embedding L
s,n+s((2−β)α−β)
loc (Ω) ⊂ L

sβ ,n+sβ((2−β)α−β)
loc (Ω) for all s ≥ sβ (cf. Section 2), this does not

win any generality, and thus we have indeed given the above statement for s = sβ .
Further, we record that if one reads Theorem 1.2 for merely obtaining C1,α regularity with some α > 0, then
(1.4) reduces to Γ ∈ L

sβ ,t
loc (Ω) for some t > n − sββ. However, even this reduced version of (1.4) remains

incomparable with (1.5) (except in the basic case q = β), essentially since L
sq,n−sqq
loc (Ω) embeds only into

L
sβ ,n−sβq
loc (Ω) but not into L

sβ ,n−sββ
loc (Ω).

Let us also briefly point out that the conditions recorded in Theorem 1.2 for the cases n ∈ {1, 2} can be
formally derived∗ by replacing 2∗ with an arbitrarily large finite exponent and accordingly the occurrences
of sβ and sq in (1.4) and (1.5) with some s > 1 and η > 1 arbitrarily close to 1. In this light, we consider
the case n ∈ {1, 2} of Theorem 1.2 as a usual and plausible complement to the main case n ≥ 3.
Finally, we mention that the proof of Theorem 1.2 is based on the A-harmonic approximation method
introduced in [29] and further developed in [22, 20, 19, 23, 24, 28, 72, 73], for instance. As usual in partial

∗Indeed, the formal replacement transforms (1.5) into either q > 2, Γ ∈ Lηloc(Ω) for some η > 1 or q ≤ 2, Γ ∈ Lη,tloc(Ω) for
some η > 1 and some positive t > n − ηq. This is reasonable for n = 2 and with modified case distinction between q > 1 and
q ≤ 1 also for n = 1. Finally, it reduces to the adapted requirement of the theorem, since in case q ≤ n having Γ ∈ Lη,tloc(Ω) for

some η > 1 and some positive t > n− ηq turns out to be equivalent with having Γ ∈ Lη,n−qloc (Ω) for some η > 1.

3



regularity theory, this method also provides an explicit characterization of the regular set Ωreg, which will be
stated in the later Section 7 and may prove very handy. In particular, whenever everywhere C1 regularity
or partial C1 regularity with better information on the size of Ω \ Ωreg than just |Ω \ Ωreg| = 0 is already
available, then Theorem 1.2 can boost also these types of regularity to the level of C1,α with optimal α. The
same is true for the subsequent Theorems 1.3, 1.4, and indeed our intended application to the situation of
Massari’s regularity theorem is one instance which exploits this observation.

We find it reasonable to complement Theorem 1.2 with a variant for minimizers which are known to be in
L∞loc(Ω), since such local boundedness may be obtained a priori from maximum principles or C0 regularity
methods at least in scalar cases or cases with specific structure. Anyway, under such an assumption we can
fully drop the complementary Morrey condition (1.5) and impose on Γ only the sole assumption (1.4):

Theorem 1.3 (partial regularity for a priori L∞loc minimizers). We again consider a strictly quasiconvex
C2 integrand f : RN×n → R which has at most quadratic growth. Moreover, we impose on g the same
assumptions as in Theorem 1.2 with q ∈ [β, 2∗) replaced by† q ∈ [β,∞) and with (1.5) dropped. Then, if a
local minimizer u of F satisfies u ∈ L∞loc(Ω,RN ), the conclusion of Theorem 1.2 remains valid.

Another standard observation in C1 regularity theory is that in the presence of even a priori gradient bounds
one merely needs locally uniform convexity/ellipticity and can in fact dispense with any global uniformity.
This results in the following further variant of our results, suitable for the announced application to Massari’s
regularity theorem:

Theorem 1.4 (partial regularity for a priori W1,∞
loc minimizers in non-uniformly elliptic cases). We consider

a C2 integrand f : RN×n → R which is strictly convex in the sense of D2f(z)ξ · ξ > 0 for all z, ξ ∈ RN×n
and has at most quadratic growth. Moreover, we impose on g the same assumptions as in Theorem 1.2
with q ∈ [β, 2∗) replaced by q ∈ [β,∞) and with (1.5) dropped. Then, if a local minimizer u of F satisfies
u ∈W1,∞

loc (Ω,RN ), the conclusion of Theorem 1.2 still holds.

In order to better illustrate the significance of our assumptions (1.2), (1.3), (1.4), (1.5) for the zero-order
integrand g : Ω × RN → R, we next touch briefly upon specific situations, to which we will return in full
detail in the later Section 7.4. For the moment, we tacitly understand that in case n ∈ {1, 2} the previously
outlined modifications are in force and that the first-order integrand f is suitably well-behaved. Then two
model situations are as follows:

(A) (uniformly) C0,β integrands g: In this basic situation, assume (1.2), (1.3) and Γ ∈ L∞loc(Ω). Then,
the embedding L∞loc(Ω) ⊂ Ls,nloc (Ω) implies (1.4) and (1.5), and our results reproduce partial C1,α regu-

larity with the known exponent α = β
2−β if β < 1 and clearly with every α < 1 if β = 1.

(B) Lp-C0,β integrands g: Now assume that (1.2), (1.3) hold with Γ ∈ Lploc(Ω) for some p ∈
(
n
β ,∞

)
.

Then, via p ≥ sβ and Lploc(Ω) ⊂ L
sβ ,n−sβn/p
loc (Ω), we deduce (1.4) with largest admissible exponent

α = β−n/p
2−β , and in case of‡ p ≥ sq we also infer (1.5). Thus, our results yield partial C1,α regularity

with α = β−n/p
2−β (specifically α = 1−np in case β = 1), where the additional condition p ≥ sq is required

for the general framework of Theorem 1.2, but can be dropped in the a priori bounded cases of Theorems
1.3 and 1.4.

In fact, a decisive motivation for the present work arises in the scalar case N = 1 from integrands g of the
integral form

g(x, y) = −
∫ y

0

H(x, t) dt for x ∈ Ω , y ∈ R (1.6)

with suitable H ∈ L1
loc(Ω × R). By observing that the indefinite integral of an Lr(R) function has an

Lr(R) derivative and is (1− 1
r )-Hölder continuous on R (or a corresponding explicit estimate with Hölder’s

inequality), the previous situations with β = q = 1− 1
r then give rise to the following ones:

†In fact, we could also replace the term (1 + |y|+ |ŷ|)q−β in (1.2) with an arbitrary locally bounded function of y and ŷ, but
for simplicity we stick to the above form of (1.2).

‡In case n ≥ 3 one can check by computation that this condition is an extra requirement only for q > 2∗
(
1− β

n

)
= 2n−β

n−2
.
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(A’) (uniformly) W1,r integrands g: Assume that g takes the form (1.6) with H ∈ L∞loc(Ω,Lr(R)), i.e.
supx∈K ‖H(x, · )‖Lr(R) < ∞ for all K b Ω, with some r ∈ (1,∞]. We then conclude partial C1,α

regularity with α = r−1
r+1 if r <∞ and clearly with every α < 1 if r =∞.

(B’) Lp-W1,r integrands g: Now assume that g takes the form (1.6) with H ∈ Lploc(Ω,Lr(R)), i.e.∫
K
‖H(x, · )‖pLr(R) dx < ∞ for all K b Ω, with some r ∈ (1,∞] and p ∈ (nr′,∞). We then conclude

partial C1,α regularity with α = r−1−nr/p
r+1 (specifically α = 1−np in case r =∞).

Our final application exploits Theorem 1.4 in the case (B’) with p = r ∈ (n+ 1,∞) and the corresponding

optimal Hölder exponent α = αopt
..= p−(n+1)

p+1 . It concerns minimizers of Massari’s functional

FUH(F ) ..= P(F,U)−
∫
U∩F

H dx ,

defined for fixed open U ⊆ Rn+1 and H ∈ L1(U) on sets F ⊆ Rn+1 of finite perimeter P(F,U) in U . In this
setting, our previous work [74] came up with the explicit exponent αopt and established partial C1,α regularity
of minimizers of FUH with H ∈ Lploc(U) for all α < αopt, while examples of irregularity were given for all
α > αopt. Here, indeed, we finally sharpen these results by pushing regularity to the limit case α = αopt:

Theorem 1.5 (optimal Massari-type regularity). Consider an open set U ⊆ Rn+1 and H ∈ L1(U)∩Lploc(U)
with n+ 1 < p <∞. If a set E ⊆ Rn+1 of finite perimeter in U minimizes FUH among all sets F ⊆ Rn+1 of
finite perimeter in U such that F4E b U , then ∂∗E∩U is relatively open in ∂E∩U and is an n-dimensional

C1,αopt-submanifold with αopt
..= p−(n+1)

p+1 . Moreover, the singular set (∂E \ ∂∗E) ∩ U is empty in case n ≤ 6
and has Hausdorff dimension at most n−7 in case n ≥ 7.

The plan of the paper is now as follows. We collect preliminaries and organize our assumptions in Sections
2 and 3, respectively. Then, on the basic level, we follow the known A-harmonic approximation strategy:
We deal with a Caccioppoli inequality in Section 4, with approximate A-harmonicity in Section 5, and with
excess estimates in Section 6. Finally, we prove Theorems 1.2, 1.3, 1.4 and return to the model situations
(A), (B), (A’), (B’) in Section 7, while in Section 8 we finally establish Theorem 1.5.

2 Preliminaries

Generalities

By Br(x) we denote the ball in Rn with center x ∈ Rn and radius r > 0. We abbreviate Br ..= Br(0). By
c(t1, . . . , tk), k ∈ N, we denote a constant which only depends on the numbers, vectors, matrices or functions
t1, . . . , tk. For p ∈ [1,∞), we define the Sobolev exponent as p∗ ..= np

n−p if p < n and as (arbitrarily large)

number§ p∗ ∈ (p,∞) if p ≥ n. Moreover, we denote the conjugate exponent p
p−1 of p ∈ (1,∞) by p′.

For functions u : Rn → RN and constants ζ ∈ RN , ξ ∈ RN×n, we set

uξ,ζ(x) ..= u(x)− ζ − ξx for all x ∈ Rn . (2.1)

If u is even in L1
loc(Ω,RN ), we write (u)Ω for the mean value −

∫
Ω
v dx ..= 1

|Ω|
∫

Ω
udx and abbreviate (u)x,r if

Ω = Br(x) with x ∈ Rn and r > 0. For u ∈ Lploc(Ω,RN ) with p ∈ [1,∞), the Lebesgue differentiation theorem
gives that a.e. x ∈ Ω is an Lp-Lebesgue point of u in the sense that limr↘0

1
|Br |

∫
Br(x)∩Ω

|u− u∗(x)|p dy = 0

holds for some corresponding Lebesgue value u∗(x) ∈ RN . Moreover, u∗ equals u a.e. and is sometimes called
the Lebesgue representative of u.

Morrey spaces

In this paper, we use Morrey spaces in the sense of the following definition.

§It may seem intuitive to set p∗ =∞ for p > n. However, in our context, the convention above is more useful.
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Definition 2.1 (Morrey spaces). Let p ∈ [1,∞) and r ∈ [0,∞). We define the Morrey space

Lp,r(Ω) ..= {h ∈ Lp(Ω) : ‖h‖Lp,r(Ω) <∞} ,

where the value

‖h‖Lp,r(Ω)
..= sup

ρ>0,x∈Ω

(
1

ρr

∫
Ω∩Bρ(x)

|h|p dx

) 1
p

is called the Lp,r Morrey norm of h.

Remark 2.2. Hölder’s inequality yields the optimal embedding

Lp,n−α(Ω) ⊆ Lr,n−a(Ω) for all r ≤ min
{

1,
a

α

}
p, and p ∈ [1,∞], α, a ∈ [0, n] .

In particular, there holds Lp(Ω) = Lp,0(Ω) ⊆ Lr,n−
n
p r(Ω) for all r ∈ [1, p]. Moreover, Lebesgue’s differentiation

theorem implies Lp,n(Ω) = L∞(Ω) and Lp,r(Ω) = {0} for all r > n.

Quasiconvexity and growth conditions

Quasiconvexity was introduced by Morrey in [64] as a generalization of convexity. In several cases, quasicon-
vexity of the integrand turned out to be equivalent to lower semicontinuity of variational integrals. Thus,
quasiconvexity is decisive in the existence theory of minimizers. In addition, it is a crucial hypothesis for
partial regularity of (local) minimizers as well. We recast the definition as follows.

Definition 2.3 ((strict) quasiconvexity). A function h ∈ C0(RN×n) is called quasiconvex if

−
∫

B1

h(ξ + Dϕ) dx ≥ h(ξ)

is satisfied for all ϕ ∈ C∞cpt(B1,R
N ) and all ξ ∈ RN×n. It is called strictly quasiconvex if, for each bound

M > 0, there exists a positive constant QM such that

−
∫

B1

h(ξ + Dϕ) dx ≥ h(ξ) + QM −
∫

B1

|Dϕ|2 dx (2.2)

holds for all ϕ ∈ C∞cpt(B1,R
N ) and all ξ ∈ RN×n with |ξ| < M .

Remark 2.4. Whenever a function h is quasiconvex and has at most quadratic growth, (2.2) stays valid for
all ϕ ∈W1,2

0 (B1,R
N ) by approximation.

Next we record that quasiconvexity together with the quadratic growth condition of this paper naturally
implies a linear bound for the derivative of the integrand, suitable rescaled growth conditions, and the
Legendre-Hadamard condition for the second derivatives of the integrand.

Lemma 2.5. Let h ∈ C2(Rn) be a quasiconvex function such that |h(z)| ≤ λ(1 + |z|2) for some λ > 0 and
all z ∈ Rn. Then there exists Λ = Λ(n, λ) > 0 such that |Dh(z)| ≤ Λ(1 + |z|) for all z ∈ Rn.

The proof of Lemma 2.5 can be found, for instance, in [39, Lemma 5.3, Proposition 5.2].

Lemma 2.6. Let h : Rn → R be a C2 function satisfying the growth condition

|h(x)| ≤ c1(1 + |x|2) and |Dh(x)| ≤ c2(1 + |x|)

for some c1, c2 > 0 and all x ∈ Rn. Then, for each R > 0, there exists a positive constant c depending only
on c1, c2, R and supBR+1

|D2h| such that, for all x ∈ BR and all t > 0, it holds

|h(x+ ty)− h(x)− tDh(x) · y|
t2

≤ c|y|2 and
|Dh(x+ ty)−Dh(x)|

t
≤ c|y|,
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Lemma 2.6 originates from [1, Lemma II.3]. The proof given there relies on the mean value theorem combined
with a case distinction in terms of |ty|.
Lemma 2.7 (Legendre-Hadamard condition). Consider a strictly quasiconvex function h ∈ C2(RN×n) and
ξ ∈ RN×n with |ξ| < M for some M > 0. Then D2h(ξ) satisfies the Legendre-Hadamard condition with
constant 2QM , that is, D2h(ξ)ζxT · ζxT ≥ 2QM |ζ|2|x|2 for all x ∈ Rn, ζ ∈ RN .

The proof is analogous to [39, Proposition 5.2]. Indeed, the second-order criterion for the minimum at t = 0 of
the single-variable function t 7→

∫
Ω
h(ξ+ tDϕ)−QM |tDϕ|2 dx gives

∫
Ω

D2h(ξ)Dϕ ·Dϕdx ≥ 2QM

∫
Ω
|Dϕ|2 dx

for all ϕ ∈ C1
cpt(Ω,R

N ). This inequality is tested with ϕ(y) = η(y) cos(τx · y)ζ and ϕ(y) = η(y) sin(τx · y)ζ,
where η ∈ C1

cpt(Ω) and τ ∈ R are a cut-off function and a parameter, respectively, and in the limit τ → ∞
one obtains the claim. For further details we refer once more to the proof of [39, Proposition 5.2].

A-harmonic approximation

We use the following notion of A-harmonic functions or in other words of weak solutions to second-order
constant-coefficient linear PDE systems.

Definition 2.8 (A-harmonic function, [70, Section 3]). Let A be a bilinear form on RN×n satisfying

A(ζxT , ζxT ) ≥ λ|ζ|2|x|2 (2.3)

|A| ≤ Λ (2.4)

for some λ,Λ > 0 and all x ∈ Rn, ζ ∈ RN . A function h ∈W1,2(Ω,RN ) is called an A-harmonic function
on Ω if ∫

Ω

A(Dh,Dϕ) dx = 0 for all ϕ ∈W1,2
0 (Ω,RN ).

The next lemma can be found in a slightly more general version in [72, Lemma 6.8]. It will be crucial in
deriving excess estimates for local minimizers by comparison with A-harmonic functions and ultimately by
exploiting the good estimates of linear regularity theory.

Lemma 2.9 (A-harmonic approximation). Let A be a bilinear form on RN×n which satisfies (2.3) and (2.4)
for some λ,Λ > 0. For every ε > 0, there exist δ = δ(ε, n,N, λ,Λ) > 0 and c = c(n,N, λ,Λ) > 0 such that,
whenever w ∈W1,2(Bρ(x0),RN ) and Ψ ∈ (0, 1] satisfy

−
∫

Bρ(x0)

|Dw|2 dx ≤ Ψ2 and

∣∣∣∣∣ −
∫

Bρ(x0)

A(Dw,Dϕ) dx

∣∣∣∣∣ ≤ δΨ ‖Dϕ‖L∞(Bρ(x0))

for all ϕ ∈W1,∞
0 (Bρ(x0),RN ), then there exists an A-harmonic function h ∈ C∞(Bρ(x0),RN ) with

‖Dh‖
C
(

B ρ
2

(x0)
) + ρ‖D2h‖

C
(

B ρ
2

(x0)
) ≤ c and −

∫
B ρ

2
(x0)

∣∣∣∣w −Ψh

ρ

∣∣∣∣2 dx ≤ Ψ2ε.

In fact, the lemma will eventually be used with the choice A ..= D2f(ξ), where f is the first-order integrand
of our theorems and Lemma 2.7 guarantees the validity of the Legendre-Hadamard condition (2.3).

An iteration lemma

The following lemma, for which we refer to [39, Lemma 6.1], will be decisive for the proof of a later Caccioppoli
inequality.

Lemma 2.10 (iteration lemma). Let 0 ≤ r < R and let v : [r,R] → [0,∞) be a bounded and non-negative
function such that for all r1 < r2 in [r,R] the estimate

v(t) ≤ a

(r2 − r1)τ
+

b

(r2 − r1)t
+ C + µv(s)

holds true with exponents τ, t > 0, some constants a, b, C ≥ 0 and µ ∈ [0, 1). Then there exists a constant
c = c(α, µ) > 0 such that

v(r) ≤ c

(
a

(R− r)τ
+

b

(R− r)t
+ C

)
.
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Campanato’s integral characterization of Hölder continuity

The following proposition connects integral oscillation controls and Hölder continuity in an optimal way. It
can be found, for instance, in [39, Theorem 2.9].

Proposition 2.11 (Campanato’s integral characterization of Hölder continuity). Let p ∈ [1,∞), α ∈ (0, 1]
and v ∈ Lp(Ω). The Lebesgue representative v∗ of v is in C0,α

loc (Ω) if and only if there exist a constant c > 0
such that for all x ∈ Ω, r > 0 with Br(x) ⊆ Ω, the inequality

−
∫

Br(x)

|v − (v)x,r|p dy ≤ crαp

is satisfied.

The perimeter and variational mean curvatures

In Section 8 we adapt our regularity results to sets of variational mean curvature in Lp. We directly warn
the reader that we set these parametric considerations in the ambient space Rn+1 and then find the optimal

exponent p−(n+1)
p+1 , while in the context of the ambient space Rn the same exponent clearly reads p−n

p+1 .
However, our setting is convenient in transferring regularity from the non-parametric to the parametric
framework.

We now give a brief introduction to the theory of variational mean curvatures. For an Ln-measurable set
E ⊆ Rn+1 and an open set U ⊆ Rn+1, the perimeter of E in U is defined by

P(E,U) ..= sup

{∫
E

divϕdx : ϕ ∈ C1
cpt(U,R

n+1), ‖ϕ‖C(U) ≤ 1

}
.

We say that E is a set of finite perimeter in U if P(E,U) <∞. The perimeter measures the boundary of a
set. Indeed, the structure theorem of De Giorgi guarantees P (E,U) = Hn−1(∂∗E ∩ U) for sets E of locally
finite perimeter in U , where the reduced boundary ∂∗E is defined as in [4, Definition 3.54] and is invariant
under modification of E by null sets. In particular, we record ∂E = ∂∗E whenever E has C1 boundary.
In connection with variational curvatures, we consider the measure theoretic interior

E(1) ..=

{
x ∈ Rn+1 : lim

r↘0

|E ∩ Br(x)|
|Br(x)|

= 1

}
as a representative of the Ln-measurable set E. The main advantage is that, for every other representative
E′ of E, it holds ∂E′ ⊇ ∂E(1) = ∂∗E. For more background on perimeter and BV theory, we refer to [4, 40,
57].

Variational mean curvatures are motivated by the strong connection between the Massari functional FUH and
the mean curvature of C2-submanifolds and in a sense indeed generalize the notion of mean curvature for
(reduced) boundaries of arbitrary Ln-measurable sets. However, the perspective differs from the classical
one of differential geometry in that variational mean curvatures are indeed functions defined on the entire
ambient space Rn+1.

Definition 2.12 ((local) variational mean curvatures, [45, p. 197]). Let U ⊆ Rn+1 be an open set. We say
that a set E ⊆ Rn+1 of finite perimeter in U has (local) variational mean curvature H ∈ L1(U) in
U if

FUH(E) ≤ FUH(F ) holds for all measurable sets F ∈ Rn+1 such that F 4E b U ,

where we abbreviated

FUH(F ) ..= P(F,U)−
∫
U∩F

H dx .

Remark 2.13 ([7, p. 149], [58, p. 357-358]).

i) If H is a variational mean curvature H of E in U , then each L1(U) function which is larger than H
on E ∩ U a.e. and smaller than H a.e. on U \ E is also a variational mean curvature of E in U . In
particular, from one variational mean curvature of E in U one can obtain infinitely many others.
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ii) If E ⊆ Rn+1 has C1 boundary, if a part of ∂E is the graph of a C1 function defined on some open
Ω ⊆ Rn such that v(Ω) b (0, R) for some R > 0, and if H is a variational mean curvature of E in some
open U such that Ω× [0, R] ⊆ U , then v minimizes the functional

G[w] ..=

∫
Ω

√
1 + |Dw(x)|2 −

∫ w(x)

0

H(x, t) dtdx

among all w ∈ C1
u(Ω) with w(Ω) b (0, R). This fact allows for transferring regularity from the non-

parametric case of minimizers of (1.1) to the parametric case of sets of variational mean curvature in
Lp.

Although Remark 2.13 i) shows that variational curvatures are far from being unique, a good integrability
of the curvature still implies a strong regularity result, as originally proved by Massari in [59, Theorem 3.1,
Theorem 3.2].

Theorem 2.14 (Massari’s regularity theorem). Consider p ∈ (n+ 1,∞], α ..= 1
4

(
1 − n+1

p

) (
where we

understand 1
4

(
1− n+1

p

)
= 1

4 in case p =∞
)
, an open set U ⊆ Rn+1, and a set E ⊆ Rn+1 of finite perimeter

in U . If there exists a variational mean curvature H ∈ Lp(U) of E in U , then the following hold.

i) ∂∗E ∩ U is an n-dimensional C1,α-manifold relatively open in ∂E ∩ U .

ii) For all t ∈ (n−7, n+1], it holds Ht((∂E \∂∗E)∩U) = 0, where we understand Ht ..= H0 in case t < 0.

Remark 2.15 (optimality of the parameters in Theorem 2.14).

i) The ranges of the parameters p and t are optimal. In fact, [44, Example 2.2] and [45, Section 2]
show that the theorem fails for p ≤ n + 1, and in [10, Theorem A] it is proved that the Simons cone
C =

{
x ∈ R8 : x2

1 + x2
2 + x2

3 + x2
4 < x2

5 + x2
6 + x2

7 + x2
8

}
is an area-minimizing cone (i.e. has vanishing

variational mean curvature) with ∂C \ ∂∗C = {0}.

ii) As foreshadowed in the introduction, the Hölder exponent α = 1
4

(
1 − n+1

p

)
is not optimal. In fact,

in our predecessor paper [74] we applied Tamanini’s regularity results [78] for almost-minimizers of

perimeter to improve the exponent in Theorem 2.14 to arbitrary α < p−(n+1)
p+1 and at the same time

showed by counterexamples that C1,α regularity may fail for α > p−(n+1)
p+1 . In particular, this confirmed

the conjecture of [44, Remark 3.4] that Theorem 2.14 should hold with exponents α(n, p) such that
limp→∞ α(n, p) = 1. Here, with Theorem 1.5 we close the last gap in this regard by showing that, for

p ∈ (n+ 1,∞), Theorem 2.14 extends to the case of the limit exponent α = αopt
..= p−(n+1)

p+1 . (As a

side remark we record that in case p =∞ the limit exponent 1 and thus C1,1 regularity can be reached
only for n = 1, but not for n ≥ 2, as shown in [74, Proposition 3.6] and [44, Remark 3.4], respectively.)

3 Overall assumptions and settings

We generally work with dimensions n,N ∈ N and a bounded open set Ω ⊆ Rn. As first-order integrand we
fix a C2 function f : RN×n → R of at most quadratic growth

lim sup
|z|→∞

|f(z)|
|z|2

<∞ , (3.1)

and as zero-order integrand a Carathéodory function g : Ω × RN → R which satisfies the Morrey-Hölder
condition (1.2) with a non-negative function Γ and exponents β ∈ (0, 1] and q ∈ [β, 2∗) as in (1.3). We
continue abbreviating sβ ..= 2∗/(2∗−β) ∈ (1,∞) and sq ..= 2∗/(2∗−q) ∈ (1,∞).
Next we set up conventions in order to unify the Morrey conditions (1.4), (1.5) imposed on Γ for n ≥ 3 with
their counterparts for n ∈ {1, 2}. In fact, since we can replace Ω with subdomains, we may and do assume that
these assumptions hold in global instead of local Morrey spaces. Furthermore, on one hand we can assume
α ≤ β

2−β (compare the introduction), on the other hand, for n ∈ {1, 2}, we understand that 2∗ ∈ (2,∞) is
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essentially arbitrary, but large enough to ensure sβ ≤ s for the exponent s > 1 in Theorem 1.2 (plus a similar
requirement added a few lines below). We remark that in principle this leads to a dependence of several
constants in later estimates on the choice of 2∗. However, whenever we explicitly list such dependencies in
the sequel, we always think of the main case n ≥ 3 with 2∗ = 2n

n−2 fully determined by n, and thus we tacitly
disregard any additional dependency on the parameter 2∗ in case n ∈ {1, 2}. With these conventions in force,
we may now recast (1.4) for arbitrary dimension n in the convenient form of

Γ ∈ Lsβ ,n−sββ+sβ(2−β)α(Ω) with α ∈
(
0, β

2−β
]
∩ (0, 1) , (3.2)

and we generally abbreviate
Γ1

..= ‖Γ‖
Lsβ,n+sβ((2−β)α−β))(Ω)

.

Furthermore, in case n ∈ {1, 2} we require 2∗ to be large enough also for sq ≤ η with the exponent η > 1 of
Theorem 1.2. Then, we may recast (1.5) for arbitrary dimension n as

in case q > min{2, n} : Γ ∈ Lsq (Ω) ,

in case q ≤ min{2, n} : Γ ∈ Lsq,n−sqq+2δ(Ω) with δ ∈ (0, 1) ,
(3.3)

where e.g. in case n ∈ {1, 2}, q ≤ n the passage to (3.3) works by observing Γ ∈ Lsq,n−q(Ω) and taking
δ ∈ (0, 1) such that 2δ ≤ sqq − q. We correspondingly abbreviate

Γ2
..= ‖Γ‖Lsq (Ω) and Γ2

..= ‖Γ‖Lsq,n−sqq+2δ(Ω) ,

respectively. Additionally, in case q > min{2, n} we observe sqq > n and for later convenience still consider
a fixed exponent δ ∈ (0, 1) such that

in case q > min{2, n} : 2δ ≤ sqq − n . (3.4)

In handling D2f , given t1, . . . , tk > 0, k ∈ N, we apply the convention that Λ̃t1,...,tk denotes a constant such
that

Λ̃t1,...,tk ≥ sup{|D2f(z)| : z ∈ RN×n, |z| < c(t1, . . . , tk)|} .
Moreover, since f is C2, for each M > 0, there exists a modulus of continuity νM : [0,∞) → [0,∞) for D2f
such that limt↘0 νM (t) = νM (0) = 0 and

|D2f(A)−D2f(B)| ≤
√
νM (|A−B|2) for all A,B ∈ RN×n such that |A| ≤M , |B| ≤M + 1 . (3.5)

Without loss of generality, we can choose νM such that it is bounded by 4Λ̃2
M . In fact, in the sequel we

mostly work with a concave upper bound ν̂M for νM in the sense of the subsequent remark.

Remark 3.1. For each bounded function ν : [0,∞) → [0,∞) with limt↘0 ν(t) = ν(0) = 0, there exists a
concave upper bound ν̂ in the sense that

ν̂ ∈ Aν ..= {Θ: [0,∞)→ [0,∞) |Θ is concave and Θ ≥ ν}

with limt↘0 ν̂(t) = ν̂(0) = 0 and sup[0,∞) ν̂ ≤ sup[0,∞) ν. These properties imply that ν̂ is non-decreasing,
and clearly one can choose ν̂ as the concave hull infΘ∈Aν Θ of ν.

Proof of the claim in Remark 3.1. It holds Aν 6= ∅ since the constant function with value C ..= sup[0,∞) ν
is in Aν . Setting ν̂(t) ..= infΘ∈Aν Θ(t) for t ∈ [0,∞), we have ν̂ ∈ Aν and ν̂ ≤ C. For every ε ∈ (0, C],
there exists δ > 0 such that ν([0, δ]) ⊆ [0, ε]. Then Θε(t) ..= 1[δ,∞)(t)C + 1[0,δ)(t)

(
ε+ t

δ (C− ε)
)

is in
Aν with limt↘0 Θε(t) = Θε(0) = ε. Taking into account ν̂ ≤ Θε and the arbitrariness of ε, we arrive at
limt↘0 ν̂(t) = ν̂(0) = 0. Finally, we deduce that ν̂ is non-decreasing: For arbitrary t1 ≤ t2 in [0,∞) and
λ ∈ (0, 1], we write t2 = (1−λ)t1 +λt3 for suitable t3 ∈ [0,∞) and deduce from concavity and non-negativity
of ν̂ that ν̂(t2) ≥ (1− λ)ν̂(t1). In the limit λ↘ 0 this implies ν̂(t2) ≥ ν̂(t1).

In all statements to follow, we now consider a local minimizer u ∈ W1,2(Ω,RN) of the integral
(1.1) in the sense of Definition 1.1, and we fix a ball Bρ(x0) b Ω with ρ ∈ (0, 1]. Beyond that, we
will work in one of the following settings, which reproduce the frameworks of Theorems 1.2, 1.3, 1.4 in the
introduction (except again for using global instead of local spaces).
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Setting 1. This setting is essentially the one of Theorem 1.2 and the basic one for our purposes. We impose
all assumptions previously discussed in this section and additionally assume that f is strictly quasiconvex.

Setting 2. This setting is essentially the one of Theorem 1.3. We assume that the local minimizer u satisfies
u ∈ L∞(Ω,RN ). Among the Morrey conditions discussed we keep only (3.2), while we drop (3.3) and (3.4).
Instead of q ∈ [β, 2∗) we allow even arbitrary q ∈ [β,∞), and we again assume that f is strictly quasiconvex.

Setting 3. This setting is essentially the one of Theorem 1.4. We assume that the local minimizer u satisfies
u ∈W1,∞(Ω,RN ), and we define M ..= ‖u‖W1,∞(Ω,RN ). Again, we keep only (3.2), but drop (3.3) and (3.4),
and we allow arbitrary q ∈ [β,∞). Finally, we assume that, for each M > 0, there exists λM > 0 such that
we have

D2f(z)ξ · ξ ≥ λM |ξ|2 for all ξ, z ∈ RN×n such that |z| ≤M . (3.6)

Since (3.6) still implies that f is quasiconvex (though not necessarily strictly quasiconvex in the precise sense
of Definition 2.3), Lemma 2.5 and the growth condition (3.1) imply that in each setting there exist constants
Λ > 0 and ΛD = ΛD(n,N,Λ) > 0 such that

|f(z)| ≤ Λ(1 + |z|2) and |Df(z)| ≤ ΛD(1 + |z|) for all z ∈ RN×n. (3.7)

4 Caccioppoli inequality

Caccioppoli-type inequalities are crucial in the partial regularity theory for minimizers u of quasiconvex
integrals. Our subsequent version essentially controls the L2 norm of Duξ,ζ via L2 and L2∗ norms of uξ,ζ ,
where it is crucial that the L2∗ terms are either superlinear in uξ,ζ or come with an arbitrarily small ε in
front.

Lemma 4.1 (Caccioppoli’s inequality). We consider Setting 1. For every M > 0 there exist a constant
c = c(n,N, β, q,QM ,Γ1,Γ2,Λ,M, Λ̃M ) > 0 such that

−
∫

B ρ
2

(x0)

∣∣Duξ,ζ∣∣2 dx ≤ c

 −∫
Bρ(x0)

∣∣∣∣uξ,ζρ
∣∣∣∣2dx+ ε

(
−
∫

Bρ(x0)

∣∣∣∣uξ,ζρ
∣∣∣∣2∗dx

) 2
2∗

+ −
∫

Bρ(x0)

∣∣∣∣uξ,ζρ
∣∣∣∣2∗dx+ ε−

β
2−β ρ2min{α,δ}


for all ε ∈ (0, 1], ζ ∈ RN , ξ ∈ RN×n with |ζ|+ |ξ| ≤M , and the affine function uξ,ζ defined in (2.1).

Proof. W.l.o.g. we assume x0 = 0. In order to apply Lemma 2.10 for R = ρ and r = ρ
2 , we fix r1 < r2 in

(
ρ
2 , ρ
)
.

Moreover, let η ∈ C∞cpt(R
n) be a cut-off function with spt(η) ⊆ Br2 , η = 1 on Br1 and |Dη| ≤ 2

r2−r1 . We set

v(x) ..= uξ,ζ(x) = u(x)−ζ−ξx, ϕ ..= ηv and ψ ..= (1−η)v. By the product rule we have ϕ,ψ ∈W1,2
0 (Bρ,R

N )
with ϕ = v on Br1 . Employing the quasiconvexity of f and the bound |ξ| ≤M we then estimate

QM

∫
Br1

|Dv|2 dx ≤ QM

∫
Br2

|Dϕ|2 dx ≤
∫

Br2

f(ξ + Dϕ)− f(ξ) dx . (4.1)

Now, the equality Du− ξ = Dv = Dϕ+ Dψ on Bρ gives

QM

∫
Br1

|Dv|2 dx ≤
∫

Br2

f(ξ + Dϕ)− f(ξ) dx

= F [u]−F [u− ϕ] +

∫
Br2

g(x, u− ϕ)− g(x, u) dx

+

∫
Br2

f(Du−Dψ)− f(Du) dx+

∫
Br2

f(ξ + Dψ)− f(ξ) dx .

(4.2)
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The vanishing of Dψ on Br1 leads to

QM

∫
Br1

|Dv|2 dx ≤
(
F [u]−F [u− ϕ]

)
+

∫
Br2

g(x, u− ϕ)− g(x, u) dx

+

∫
Br2 \Br1

f(Du−Dψ)− f(Du) + Df(ξ)Dψ dx

+

∫
Br2 \Br1

f(ξ + Dψ)− f(ξ)−Df(ξ)Dψ dx

=.. I + II + III + IV .

Next we suitably estimate the right-hand side terms I, II, III, and IV. Clearly, we can control I by observing
F [u] − F [u − ϕ] ≤ 0 thanks to the minimizing property of u. Next we handle the term II, which for our
purposes is the decisive one. To this end we recall assumption (1.2) which gives

II =

∫
Br2

g(x, u− ϕ)− g(x, u) dx ≤
∫

Br2

Γ(1 + |u|+ |ϕ|)q−β |ϕ|β dx ≤
∫

Br2

Γ(1 + |u|+ |v|)q−β |v|β dx. (4.3)

Taking into account |ζ|+ |ξ| ≤M we deduce

II ≤ c(β, q,M)

(∫
Bρ

|v|βΓ dx+

∫
Bρ

|v|qΓ dx

)
. (4.4)

The application of Hölder’s inequality with exponents 2∗

β and sβ = 2∗

2∗−β gives

∫
Bρ

|v|βΓ dx ≤

(∫
Bρ

|v|2
∗
dx

) β
2∗
(∫

Bρ

Γsβ dx

) 1
sβ

.

For further estimating the preceding term, we distinguish the cases n ≥ 3 and n ∈ {1, 2}. In the case n ≥ 3,
we employ Young’s inequality with exponents 2

β and 2
2−β to conclude (with the arbitrary ε > 0 from the

statement of Lemma 4.1)

∫
Bρ

|v|βΓ dx ≤ ε

(∫
Bρ

|v|2
∗
dx

) 2
2∗

+ ε−
β

2−β

(∫
Bρ

Γsβ dx

) 2
sβ(2−β)

.

Taking into account the Morrey condition Γ ∈ Lsβ ,n−sββ+sβ(2−β)α(Ω) from (3.2) for Γ and the equality
(n− sββ) 2

sβ(2−β) = n (where the latter follows in case n ≥ 3 from the definitions of sβ and 2∗), we deduce

∫
Bρ

|v|βΓ dx ≤ ε

(∫
Bρ

|v|2
∗
dx

) 2
2∗

+ Γ
2

2−β
1 ε−

β
2−β ρn+2α .

In view of 2
2∗n+ 2 = n we further get

∫
Bρ

|v|βΓ dx ≤ c(n, β,Γ1)

[
ερn

(
−
∫

Bρ

∣∣∣∣vρ
∣∣∣∣2∗ dx

) 2
2∗

+ ε−
β

2−β ρn+2α

]
. (4.5)

Next we turn to the case n ∈ {1, 2} which requires a slight technical modification of the preceding estimates.
Indeed, we still apply Young’s inequality with exponents 2

β and 2
2−β , but with the ε in the preceding now

replaced by ερn−
2
2∗ n−2. This means that we first get

∫
Bρ

|v|βΓ dx ≤ ερn− 2
2∗ n−2

(∫
Bρ

|v|2
∗
dx

) 2
2∗

+ ε−
β

2−β ρ
β

2−β ( 2
2∗ n+2−n)

(∫
Bρ

Γsβ dx

) 2
sβ(2−β)

.
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Then we arrive at (4.5) also in this case and essentially as before, since in spite of now n 2
2∗ + 2 > n we still

have β
2−β ( 2

2∗n + 2 − n) + (n − sββ) 2
sβ(2−β) = n even with our convention of an arbitrary 2∗ > 2 in case

n ∈ {1, 2}.
At this point we continue our reasoning back in arbitrary dimension n, but in estimating the second integral
on the right-hand side of (4.4) we distinguish cases for q. We first treat the case q ≤ min{2, n}. By Young’s
inequality with exponents 2∗

q and sq and by the Morrey condition Γ ∈ Lsq,n−sqq+2δ(Ω) of (3.3) it follows

∫
Bρ

|v|qΓ dx ≤
∫

Bρ

∣∣∣∣vρ
∣∣∣∣2∗dx+ ρsqq

∫
Bρ

Γsq dx ≤
∫

Bρ

∣∣∣∣vρ
∣∣∣∣2∗dx+ Γ

sq
2 ρ

n+2δ . (4.6)

In the opposite case q > min{2, n}, taking into account that Γ ∈ Lsq (Ω) and qsq ≥ n+ 2δ by (3.3) and (3.4)
and further recalling ρ ≤ 1, we readily observe that the estimate (4.6) is also valid.
Now, back to the general case we collect the estimates (4.4), (4.5), (4.6) and obtain

II ≤ c(n, β, q,M,Γ1,Γ2)

[
ερn

(
−
∫

Bρ

∣∣∣∣vρ
∣∣∣∣2∗dx

) 2
2∗

+

∫
Bρ

∣∣∣∣vρ
∣∣∣∣2∗dx+ ε−

β
2−β ρn+2 min{α,δ}

]
.

Next we turn to the term III. Taking (3.7) into account, we apply Lemma 2.6 to estimate

III =

∫
Br2 \Br1

f(ξ + Dv −Dψ)− f(ξ) + f(ξ)− f(ξ + Dv) + Df(ξ)Dψ dx

=

∫
Br2 \Br1

f(ξ + Dv −Dψ)− f(ξ)−Df(ξ)(Dv −Dψ)−
∫ 1

0

[Df(ξ + tDv)−Df(ξ)] Dv dtdx

≤ c(n,N,Λ,M, Λ̃M )

∫
Br2 \Br1

|Dv −Dψ|2 + |Dv|2 dx .

For the term IV, the same type of estimate implies

IV =

∫
Br2 \Br1

∫ 1

0

[Df(ξ + tDψ)−Df(ξ)] Dψ dtdx ≤ c(n,N,Λ,M, Λ̃M )

∫
Br2 \Br1

|Dψ|2 dx.

The previous estimates can then be combined in order to jointly estimate III and IV by

III + IV ≤ c(n,N,Λ,M, Λ̃M )

∫
Br2 \Br1

|Dv|2 + |Dψ|2 dx ≤ c(n,N,Λ,M, Λ̃M )

∫
Br2 \Br1

|Dv|2 +

∣∣∣∣ v

r2 − r1

∣∣∣∣2 dx .

Collecting all estimates, we have∫
Br1

|Dv|2 dx

≤ c

∫
Br2 \Br1

|Dv|2 dx+

∫
Bρ

∣∣∣∣ v

r2 − r1

∣∣∣∣2 dx+ ερn

(
−
∫

Bρ

∣∣∣∣vρ
∣∣∣∣2 dx

) 2
2∗

+

∫
Bρ

∣∣∣∣vρ
∣∣∣∣2∗dx+ ε−

β
2−β ρn+2min{α,δ}

 .

In order to apply Lemma 2.10, we need a constant less than 1 in front of the first term on the right-hand
side. Therefore, using Widman’s hole filling trick, we first add c

∫
Br1
|Dv|2 dx and then divide by 1 + c to get

∫
Br1

|Dv|2 dx

≤ c

1 + c

∫
Br2

|Dv|2 dx+

∫
Bρ

∣∣∣∣ v

r2 − r1

∣∣∣∣2 dx+ ερn

(
−
∫

Bρ

∣∣∣∣vρ
∣∣∣∣2 dx

) 2
2∗

+

∫
Bρ

∣∣∣∣vρ
∣∣∣∣2∗dx+ ε−

β
2−β ρn+2min{α,δ} .
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Finally, by Lemma 2.10 we conclude

−
∫

B ρ
2

|Dv|2 dx ≤ c

 −∫
Bρ

∣∣∣∣vρ
∣∣∣∣2 dx+ ε

(
−
∫

Bρ

∣∣∣∣vρ
∣∣∣∣2 dx

) 2
2∗

+ −
∫

Bρ

∣∣∣∣vρ
∣∣∣∣2∗dx+ ε−

β
2−β ρn+2min{α,δ}

 .

This completes the proof of the lemma.

5 Approximate harmonicity

The following estimate prepares the ground for eventually applying the A-harmonic approximation of Lemma
2.9 with A = D2f(ξ).

Lemma 5.1 (approximate A-harmonicity). We consider Setting 1. For each bound M > 0, there exists a
constant c = c(n,N, β, q,Γ1,Γ2,Λ,M, Λ̃M ) > 0 such that

∣∣∣∣ −∫
Bρ(x0)

D2f(ξ)Duξ,ζ ·Dϕdx

∣∣∣∣ ≤ c

(
−
∫

Bρ(x0)

∣∣∣∣∣uξ,ζρ
∣∣∣∣∣
2∗

dx+
√
ν̂M (Φ)Φ + Φ + ρα

)
‖Dϕ‖L∞(Bρ(x0))

for all ϕ ∈W1,∞
0 (Bρ(x0),RN ), ζ ∈ Rn, ξ ∈ RN×n with |ζ|+ |ξ| ≤M , where we use

Φ ..= −
∫

Bρ(x0)

∣∣Duξ,ζ∣∣2dx ,

ν̂M from Remark 3.1, and uξ,ζ from (2.1).

Proof. W.l.o.g. we assume x0 = 0 and ‖Dϕ‖L∞(Bρ) = 1, which in particular implies ‖ϕ‖L∞(Bρ) ≤ ρ. We

abbreviate once more v ..= uξ,ζ and — in order to achieve convenient balance between the terms σβ−1ρ(2−β)α

and σ in the subsequent estimates (5.4) and (5.5), respectively — choose

σ ..= ρα ∈ (0, 1] .

We then split integrals as follows (where in particular we use
∫

Bρ
Dϕdx = 0):

−
∫

Bρ

D2f(ξ)Dv ·Dϕdx = −
∫

Bρ

D2f(ξ)Dv ·Dϕ−Df(Du) ·Dϕ+ Df(ξ) ·Dϕdx

+ −
∫

Bρ

Df(Du) ·Dϕ+
1

σ

[
f(Du− σDϕ)− f(Du)

]
dx

+
1

σ
−
∫

Bρ

f(Du)− f(Du− σDϕ) dx

=.. I + II + III .

(5.1)

We proceed by estimating the term III via minimality. Indeed, since u is a local minimizer of F , we have
F [u] ≤ F [u− σϕ] and may then rearrange terms and divide by σωnρ

n to find

III =
1

σ
−
∫

Bρ

f(Du)− f(Du− σDϕ) dx ≤ 1

σ
−
∫

Bρ

g(x, u− σϕ)− g(x, u) dx . (5.2)

Assumption (1.2) on g and the bound ‖ϕ‖L∞(Bρ) ≤ ρ then imply

III ≤ 1

σ
−
∫

Bρ

Γ(1 + 2|u|+ σρ)q−β(σρ)β dx ≤ c(β, q,M)

σ
−
∫

Bρ

Γ(1 + |v|)q−β(σρ)β dx

≤ c(β, q,M)σβ−1

(
ρβ −
∫

Bρ

Γ dx+ ρβ −
∫

Bρ

Γ|v|q dx

)
.

(5.3)
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In further estimating the terms on the right-hand side of (5.3), on one hand we exploit that (3.2) gives
Γ ∈ Lsβ ,n+sβ(2−β)α−sββ(Ω) ⊆ L1,n+(2−β)α−β(Ω) and thus

ρβ −
∫

Bρ

Γ dx ≤ c(n, β,Γ1) ρ(2−β)α .

On the other hand, we re-use the estimate (4.6) in form

ρβ −
∫

Bρ

Γ|v|q dx ≤ ρβ −
∫

Bρ

∣∣∣∣vρ
∣∣∣∣2∗ dx+ c(n, q,Γ2) ρβ+2δ ≤ ρ(1−β)α −

∫
Bρ

∣∣∣∣vρ
∣∣∣∣2∗ dx+ c(n, q,Γ2) ρ(2−β)α ,

where in the second step we exploited α ≤ β
2−β in discarding (at this stage insignificant) factors ρβ−(1−β)α ≤ 1

and ρβ+2δ−(2−β)α ≤ 1. Collecting the estimates and inserting the choice σ = ρα, we arrive at

III ≤ cσβ−1

(
ρ(1−β)α −

∫
Bρ

∣∣∣∣vρ
∣∣∣∣2∗dx+ ρ(2−β)α

)
= c

(
−
∫

Bρ

∣∣∣∣vρ
∣∣∣∣2∗dx+ ρα

)
(5.4)

with c = c(n, β, q,Γ1,Γ2,M). Next, we return to the term I from the right-hand side of (5.1). We partially
rewrite the term by integration, then in view of |ξ| ≤ M use (3.5) on the set U ..= {|Dv| < 1} and (3.7) on
its complement U c, and finally apply the Cauchy-Schwarz and Jensen inequalities. In this way we find

I =
1

|Bρ |

∫
Bρ ∩U

∫ 1

0

[
D2f(ξ)−D2f(ξ + τDv)

]
Dv ·Dϕdτ dx

+
1

|Bρ |

∫
Bρ ∩Uc

D2f(ξ)Dv ·Dϕ−Df(Du) ·Dϕ+ Df(ξ) ·Dϕdx

≤ −
∫

Bρ

√
ν̂M (|Dv|2) |Dv|dx+

1

|Bρ |

∫
Bρ ∩Uc

Λ̃M |Dv|+ ΛD(2 + |ξ|+ |Du|) dx

≤
√
−
∫

Bρ

ν̂M (|Dv|2) dx

√
−
∫

Bρ

|Dv|2 dx+ c(n,N,M,Λ, Λ̃M ) −
∫

Bρ

|Dv|2 dx

≤
√
ν̂M (Φ)

√
Φ + c(n,N,M,Λ, Λ̃M ) Φ .

Similarly, in order to control the term II, we work on the sets Ũ ..= {|Du| < 1} and Ũ c and deduce

II = −
∫

Bρ

−
∫ σ

0

[Df(Du)−Df(Du− tDϕ)] ·Dϕdtdx

=
1

|Bρ |

∫
Bρ ∩Ũ

−
∫ σ

0

∫ 1

0

D2f(Du− τtDϕ) tDϕ ·Dϕdτ dtdx

+
1

|Bρ |

∫
Bρ ∩Ũc

−
∫ σ

0

[Df(Du)−Df(Du− tDϕ)] ·Dϕdtdx

≤ Λ̃ −
∫

Bρ

−
∫ σ

0

t|Dϕ|2 dtdx+
ΛD

|Bρ |

∫
Bρ ∩Ũc

−
∫ σ

0

2 + |Du|+ |Du− tDϕ|dtdx

≤ Λ̃σ + c(n,N,M,Λ) −
∫

Bρ

|Dv|2 dx

= Λ̃ρα + c(n,N,M,Λ) Φ .

(5.5)

The combination of the estimates for I, II, and III gives

−
∫

Bρ(x0)

D2f(ξ)Dv ·Dϕdx ≤ c

(
−
∫

Bρ(x0)

∣∣∣∣vρ
∣∣∣∣2∗dx+

√
ν̂M (Φ)Φ + Φ + ρα

)
.
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The corresponding lower bound can be derived similarly: The term I in (5.1) is kept unchanged, the terms
II and III in (5.1) are replaced by

−
∫

Bρ

Df(Du) ·Dϕ− 1

σ

[
f(Du+ σDϕ)− f(Du)

]
dx and

1

σ
−
∫

Bρ

f(Du+ σDϕ)− f(Du) dx ,

respectively, and all three single terms are now estimated from below instead of above.

6 Excess estimates

We have now collected the main auxiliary results in order to derive estimates for the quadratic excess, defined
by

Φ(x0, ρ) ..= −
∫

Bρ(x0)

|Du− (Du)x0,ρ|2 dx and Φ(ρ) ..= Φ(0, ρ) .

Before turning to these estimates, however, we put on record one basic lemma on properties of the excess.

Lemma 6.1. For all r ∈ (0, ρ] and all ξ ∈ RN×n, we have the inequalities

Φ(x0, ρ) ≤ −
∫

Bρ(x0)

|Du− ξ|2 dx and Φ(x0, r) ≤
(ρ
r

)n
Φ(x0, ρ) .

Proof. The first estimate follows by checking that the quadratic functionRN×n → R , ξ 7→ −
∫

Bρ(x0)
|Du−ξ|2 dx

has its minimum point at (Du)x0,ρ. For r ∈ (0, ρ], an application of this estimate then gives

Φ(x0, r) ≤ −
∫

Br(x0)

|Du− (Du)x0,ρ|2 dx ≤ |Bρ(x0)|
|Br(x0)|

Φ(x0, ρ) =
(ρ
r

)n
Φ(x0, ρ)

and thus confirms the second claim.

Lemma 6.2 (excess improvement). We consider Setting 1. For every κ ∈
(
min{α, δ}, 1

)
and every M > 0,

there exist constants θ ∈ (0, 1), ε > 0, c > 0 such that

ρ+ Φ(x0, ρ) ≤ ε and |(Du)x0,ρ|+ |(u)x0,ρ| ≤M (6.1)

together imply
Φ(x0, θρ) ≤ θ2κΦ(x0, ρ) + cρ2min{α,δ}.

The constants c and θ all depend only on n, N, β, q, QM , Γ1, Γ2, Λ, M, Λ̃n,N,QM ,Λ,M , κ, and ε additionally
depends on α and νM .

Proof. We assume x0 = 0 and Φ ..= Φ(ρ) > 0 and abbreviate

ξ ..= (Du)0,ρ , ζ ..= (u)0,ρ , v(x) ..= uξ,ζ(x) = u(x)− ζ − ξx , A ..= D2f(ξ) .

Our first aim is now applying the A-harmonic approximation lemma with this choice of A. To this end we
first deduce from the quasiconvexity assumption on f , Lemma 2.7, and the bound |ξ| ≤M that the conditions
(2.3), (2.4) are satisfied. Therefore, Lemma 5.1 guarantees∣∣∣∣∣ −

∫
Bρ

A(Dv,Dϕ) dx

∣∣∣∣∣ ≤ c1

(
−
∫

Bρ

∣∣∣∣vρ
∣∣∣∣2∗dx+

√
ν̂M (Φ)

√
Φ + Φ + ρα

)
‖Dϕ‖L∞(Bρ)

for all ϕ ∈W1,∞
0 (Bρ,R

N ). Taking into account (v)0,ρ = 0 and the Sobolev-Poincaré inequality, for a slightly

modified constant c1 = c1(n,N, β, q,Γ1,Γ2,M, Λ̃M ) > 0, we also get the estimate in form∣∣∣∣∣ −
∫

Bρ

A(Dv,Dϕ) dx

∣∣∣∣∣ ≤ c1

(
Φ

2∗
2 +

√
ν̂M (Φ)

√
Φ + Φ + ρα

)
‖Dϕ‖L∞(Bρ).
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Now, for εHA ∈ (0, 1] to be fixed below, we consider the corresponding δHA = δHA(εHA, n,N,QM ,Λ) > 0 of
Lemma 2.9, and we set

Ψ ..=
√

Φ +
2c1

δHA
ρα .

Then we have ∣∣∣∣∣ −
∫

Bρ

A(Dv,Dϕ) dx

∣∣∣∣∣ ≤ (c1

(√
ν̂M (Φ) +

√
Φ + Φ

2∗−1
2

)
+

1

2
δHA

)
Ψ ‖Dϕ‖L∞(Bρ)

for all ϕ ∈ W1,∞
0 (Bρ,R

N ). Since we can choose ε = ε(n,N, β, q,QM , Λ̃M ,Λ,Γ1,Γ2,M, α, νM , εHA) ∈ (0, 1)

small enough for deducing from (6.1) that c1

(√
ν̂M (Φ) +

√
Φ + Φ

2∗−1
2

)
≤ 1

2δHA and Ψ ≤ 1, we can ensure∣∣∣∣∣ −
∫

Bρ

A(Dv,Dϕ) dx

∣∣∣∣∣ ≤ δHAΨ ‖Dϕ‖L∞(Bρ)

for all ϕ ∈ W1,∞
0 (Bρ,R

N ) in order to then apply Lemma 2.9. Thus, there exist an A-harmonic function
h ∈ C∞(Bρ,R

N ) and a constant c2 = c2(n,N,QM ,Λ) > 0 such that we have

‖Dh‖C(B ρ
2

) + ρ‖D2h‖C(B ρ
2

) ≤ c2 (6.2)

and

−
∫

B ρ
2

∣∣∣∣v −Ψh

ρ

∣∣∣∣2 dx ≤ εHAΨ2 . (6.3)

In order to take proper advantage of (6.2) and (6.3) we first observe that (6.2) and Taylor expansion yield
the bound

‖h(x)− h(0)−Dh(0)x‖C(B2θρ(0)) ≤ 4c2θ
2ρ .

In the sequel we abbreviate

ξ̃ ..= ξ + Ψ Dh(0) and ζ̃ ..= ζ + Ψh(0) ,

and, for θ ∈
(
0, 1

4

]
to be determined at the end of the proof, we now fix εHA

..= θn+4. Then, from (6.3) and
the previous bound we obtain

−
∫

B2θρ

∣∣∣∣uξ̃,ζ̃θρ
∣∣∣∣2dx ≤ 1

4nθn+2
−
∫

B ρ
2

∣∣∣∣v −Ψh

ρ

∣∣∣∣2 dx+ Ψ2 sup
x∈B2θρ

∣∣∣∣h(x)− h(0)−Dh(0)x

2θρ

∣∣∣∣2
≤ c

( εHA

θn+2
+ θ2

)
Ψ2

≤ cθ2Ψ2

(6.4)

with c = c(n,N,QM ,Λ) > 0. Furthermore, we claim that the auxiliary estimates

|ξ̃ − ξ| = Ψ |Dh(0)| ≤ c Ψ and |ζ̃ − ζ| = Ψ |h(0)| ≤ c Ψρ (6.5)

hold with c = c(n,N,QM ,Λ,M). Indeed, the first estimate in (6.5) is evident from (6.2), while the second
one is now derived as follows. We first observe that (6.2) implies |h − h(0)| ≤ cρ on B ρ

2
. Then, via (6.3),

εHA < 1, and the Poincaré inequality we conclude

Ψ2|h(0)|2 ≤ c

(
−
∫

B ρ
2

|Ψh|2 dx+ Ψ2ρ2

)

≤ c

(
−
∫

B ρ
2

|v −Ψ2h|2 dx+ −
∫

B ρ
2

|v|2 dx+ Ψ2ρ2

)
≤ c(εHAΨ2ρ2 + ρ2Φ + Ψ2ρ2) ≤ c Ψ2ρ2

17



This completes the verification of (6.5) and in particular ensures |ξ̃|+ |ζ̃| ≤ c(n,N,QM ,Λ,M). At this stage,
we are ready for the main estimations, which draw on Lemma 6.1, on the Caccioppoli inequality of Lemma 4.1
with arbitrary εCI ∈ (0, 1] (to be determined at the end of this proof), on the Sobolev-Poincaré inequality, and
on the estimates (6.4) and (6.5). In fact, with a constant c = c(n,N, β, q,QM ,Γ1,Γ2,Λ,M, Λ̃n,N,QM ,Λ,M ),
which may change from line to line, we find

Φ(θρ) ≤ −
∫

Bθρ

|Du− ξ̃|2 dx

≤ c

(
−
∫

B2θρ

∣∣∣∣uξ̃,ζ̃θρ
∣∣∣∣2dx+ εCI

(
−
∫

B2θρ

∣∣∣∣uξ̃,ζ̃θρ
∣∣∣∣2∗dx

) 2
2∗

+ −
∫

B2θρ

∣∣∣∣uξ̃,ζ̃θρ
∣∣∣∣2∗dx+ ε

− β
2−β

CI (θρ)2min{α,δ}

)

≤ c

(
−
∫

B2θρ

∣∣∣∣uξ̃,ζ̃θρ
∣∣∣∣2dx+ εCI

(
θ−n−2∗ −

∫
Bρ

∣∣∣∣vρ
∣∣∣∣2∗dx

) 2
2∗

+ εCI

(
|ζ̃ − ζ|
θρ

+ |ξ̃ − ξ|
)2

+ θ−n−2∗ −
∫

Bρ

∣∣∣∣vρ
∣∣∣∣2∗dx+

(
|ζ̃ − ζ|
θρ

+ |ξ̃ − ξ|
)2∗

+ ε
− β

2−β
CI (θρ)2min{α,δ}

)

≤ c

(
θ2Ψ2 + εCIθ

− 2
2∗ n−2Φ + εCIθ

−2Ψ2 + θ−n−2∗Φ
2∗
2 + θ−2∗Ψ2∗ + ε

− β
2−β

CI (θρ)2min{α,δ}
)
.

By using Φ ≤ Ψ2 and by reducing to the worst powers of θ, we simplify the result of these estimations and
arrive at

Φ(θρ) ≤ c3

[(
θ2 + εCIθ

− 2
2∗ n−2 + Ψ2∗−2θ−n−2∗

)
Ψ2 + ε

− β
2−β

CI (θρ)2min{α,δ}] .
for c3 = c3(n,N, β, q,QM ,Γ1,Γ2,Λ,M, Λ̃n,N,QM ,Λ,M ). We now finalize the proof by determining the remain-

ing parameters. Taking into account κ < 1, we first take θ = θ(n,N, β, q,QM ,Γ1,Γ2,Λ,M, κ, Λ̃n,N,QM ,Λ,M )
small enough for having c3θ

2 ≤ 1
6θ

2κ. Then we make εCI (which depends on the same parameters as θ)

small enough to ensure c3εCIθ
− 2

2∗ n−2 ≤ 1
6θ

2κ, and we decrease ε (which after all depends additionally on α
and νM and now also on κ) such that, in addition to the earlier smallness requirement, (6.1) implies also
c3Ψ2∗−2θ−n−2∗ ≤ 1

6θ
2κ. Altogether, we finally end up with

Φ(θρ) ≤ 1

2
θ2κΨ2 + c3ε

− β
2−β

CI (θρ)2min{α,δ} ≤ θ2κΦ + cρ2min{α,δ} ,

where we exploited that 1
2Ψ2 ≤ Φ + 2c1

δHA
ρ2α ≤ Φ + 2c1

δHA
ρ2min{α,δ} by choice of Ψ. The constant c in this final

estimate once more depends on the same parameters as θ and εCI, and the proof is complete.

Lemma 6.3 (excess decay). We consider Setting 1. For every κ ∈
(
min{α, δ}, 1

)
and every M > 0, there

exist constants ε ∈ (0, 1] and c > 0 such that

ρ+ Φ(x0, ρ) ≤ ε and |(Du)x0,ρ|+ |(u)x0,ρ| ≤M (6.6)

together imply

Φ(x0, r) ≤ c

((
r

ρ

)2κ

Φ(x0, ρ) + r2min{α,δ}
)

for all r ∈ (0, ρ] .

Moreover, both ε and c only depend on the parameters n, N , β, q, QM , Γ1, Γ2, Λ, M , κ, and Λ̃n,N,QM ,Λ,M ,
and ε additionally depends on α and νM .

Proof. We assume x0 = 0 and for the moment abbreviate

γ ..= min{α, δ} .

We denote by θ, ε̃, and c̃ the constants from Lemma 6.2 (for the given κ and M). Moreover, we fix a new
quantity ε = ε(n,N, β, q,QM ,Γ1,Γ2,Λ,M, κ, Λ̃n,N,QM ,Λ,M , α, νM ) > 0 small enough that (6.6) implies

ρ+ Cρ2γ + Φ(ρ) ≤ ε̃, θ−
n
2

1− θκ
√

Φ(ρ) +
θ−

n
2

1− θγ
√

Cργ ≤M and
c1θ
−n

1− θ
ρ
(√

ε̃+ 2M
)
≤M (6.7)
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with C ..= c̃
θ2γ−θ2κ and the constant c1 = c1(n) of the Poincaré inequality relevant below. We claim that, for

all integers i ≥ 0, there hold

Φ(θiρ) ≤ θ2κiΦ(ρ) + C(θiρ)2γ , (6.8)

θiρ+ Φ(θiρ) ≤ ε̃ , (6.9)

|(Du)θiρ| ≤ 2M , (6.10)

|(u)θiρ| ≤ 2M . (6.11)

In fact, our main aim is proving (6.8), but it will be convenient to establish the above set of inequalities by
the following induction argument.

For i = 0, all claims follow readily from (6.6) and the preceding choice of ε. So, we assume (6.8)–(6.11) for
i = 0, 1, 2, . . . , k and deduce the validity of these claims for i = k + 1 as well. To this end, since we have
(6.9)–(6.11) for i = k, we may use Lemma 6.2 with θkρ instead of ρ. We find

Φ(θk+1ρ) ≤ θ2κΦ(θkρ) + c̃(θkρ)2γ .

Then, taking into account (6.8) for i = k, we conclude

Φ(θk+1ρ) ≤ θ2κ(k+1)Φ(ρ) + C(θkρ)2γθ2κ + c̃(θkρ)2γ

≤ θ2κ(k+1)Φ(ρ) + c̃(θkρ)2γ θ2κ

θ2γ − θ2κ
+ c̃(θkρ)2γ

= θ2κ(k+1)Φ(ρ) + c̃(θkρ)2γ

(
θ2κ

θ2γ − θ2κ
+ 1

)
= θ2κ(k+1)Φ(ρ) + C(θk+1ρ)2γ .

Thus, we arrive at (6.8) for i = k + 1, and this implies (6.9) for i = k + 1 via θ < 1 and the smallness
assumption (6.7). Next we turn to (6.10). By the Cauchy-Schwarz inequality and (6.8) for i = 0, 1, 2, . . . , k,
we estimate ∣∣(Du)θk+1ρ − (Du)ρ

∣∣ ≤ k∑
i=0

∣∣(Du)θi+1ρ − (Du)θiρ
∣∣

≤
k∑
i=0

(
−
∫

Bθi+1ρ

|Du− (Du)θiρ|2 dx

) 1
2

= θ−
n
2

k∑
i=0

√
Φ(θiρ)

≤ θ−n2
∞∑
i=0

(
θκi
√

Φ(ρ) +
√

Cθγiργ
)

=
θ−

n
2

1− θκ
√

Φ(ρ) +
θ−

n
2

1− θγ
√

Cργ .

Then, (6.10) for i = k+1 follows via (6.7) and (6.6). For (6.11), we argue similarly, but also involve Poincaré’s
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inequality. In fact, we have

∣∣(u)θk+1ρ − (u)ρ
∣∣ ≤ θ−n k∑

i=0

−
∫

Bθiρ

|u− (u)θiρ|dx

≤ c1θ
−n

k∑
i=0

θiρ −
∫

Bθiρ

|Du|dx

≤ c1θ
−n

k∑
i=0

θiρ

(
−
∫

Bθiρ

|Du− (Du)θiρ|dx+ |(Du)θiρ|

)

≤ c1θ
−n

k∑
i=0

θiρ
(√

Φ(θiρ) + 2M
)

≤ c1θ
−n

1− θ
ρ
(√
ε+ 2M

)
.

Then, also (6.11) for i = k + 1 follows via (6.7) and (6.6), and the induction argument is complete.

Now, consider r ∈ (0, ρ]. There exists an integer i ≥ 0 such that θi+1ρ < r ≤ θiρ. By (6.8) and Lemma 6.1,
for a constant c = c(n, N, β, q, QM , Γ1, Γ2, Λ, M, κ, Λ̃n,N,QM ,Λ,M ), we may estimate

Φ(r) ≤ θ−nΦ(θiρ)

≤ θ−n
(
θ2κiΦ(ρ) + C(θiρ)2γ

)
≤ θ−n−2κ

(
θ2κ(i+1)Φ(ρ) + C(θi+1ρ)2γ

)
≤ c

(
θ2κ(i+1)Φ(ρ) + (θi+1ρ)2γ

)
≤ c

((
r

ρ

)2κ

Φ(ρ) + r2γ

)
,

and the proof is complete.

7 Proofs of the partial regularity theorems

The excess estimates prepare the ground for deducing regularity of Du on the regular set Ωreg, defined as

Ωreg
..=

{
x ∈ Ω : lim inf

ρ↘0
−
∫

Bρ(x)

|Du− (Du)x,ρ|2 dy = 0 and lim sup
ρ↘0

|(Du)x,ρ|+ |(u)x,ρ| <∞
}
. (7.1)

Specifically for u ∈W1,∞(Ω,RN ) as in Setting 3, the set Ωreg is nothing but the set of L2-Lebesgue points of
Du. However, even for arbitrary u ∈W1,2(Ω,RN ), it is a standard consequence of the Lebesgue differentiation
theorem that a.e. point belongs to Ωreg and in other words we have |Ω \ Ωreg| = 0. Thus, this part of the
conclusions in our main results is not addressed in the sequel anymore.

7.1 Basic regularity conclusion

As announced above, we now apply the excess estimates of Proposition 2.11 to establish regularity on Ωreg.
However, in the situation of Setting 1 we will initially reach C1,min{α,δ} regularity with exponent min{α, δ}
only, while the full claim of Theorem 1.2 on C1,α regularity with the optimal exponent α is obtained only a
posteriori in a further step. We now work out the last details of the initial step, while the final sharpening
of the exponent is postponed to the subsequent Section 7.2

Proof of partial C1,min{α,δ} regularity in the situation of Setting 1. We consider an arbitrary x0 ∈ Ωreg and

the exponents α, δ ∈ (0, 1). Then we fix the ε > 0 from Lemma 6.3 which corresponds to κ ..= 1+min{α,δ}
2 and

M ..= 1+lim supρ↘0

(
|(Du)x0,ρ|+ |(u)x0,ρ|

)
. By the choice of Ωreg, we have limρ↘0 Φ(x0, ρ) = 0. Hence, there
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exists ρ0 ∈
(
0, 1

2

]
with B2ρ0(x0) b Ω and ρ0

2n + Φ(x0, 2ρ0) ≤ ε
2n and |(Du)x0,ρ0 |+ |(u)x0,ρ0 | < M . Further, by

continuity of x 7→ |(Du)x,ρ0 |+ |(u)x,ρ0 |, there exists r0 ∈ (0, ρ0] such that we have |(Du)x,ρ0 |+ |(u)x,ρ0 | ≤M
for all x ∈ Br0(x0). Lemma 6.1 gives

Φ(x, ρ0) ≤ −
∫

Bρ0 (x)

|Du− (Du)x0,2ρ0 |2 dx ≤ 2nΦ(x0, 2ρ0) ,

and thus ρ0 + Φ(x, ρ0) ≤ ε holds for all x ∈ Br0(x0). We may then apply Lemma 6.3 to infer

Φ(x, r) ≤ c

((
r

ρ0

)1+min{α,δ}

Φ(x, ρ0) + r2min{α,δ}
)

for all x ∈ Br0(x0) and all r ∈ (0, ρ0], and we end up with

−
∫

Br(x)

|Du− (Du)x,r|2 dx ≤ c

(
ρ

1−min{α,δ}
0

ρ
1+min{α,δ}
0

ε+ 1

)
r2min{α,δ} ≤ c (ερ

−2min{α,δ}
0 + 1)r2min{α,δ}

for all x ∈ Br0(x0) and r ∈ (0, ρ0]. By Proposition 2.11 with p = 2 we find that (the Lebesgue repre-

sentative of) Du is in C
0,min{α,δ}
loc (Br0(x0),RN×n) and therefore (the Lebesgue representative of) u is in

C
1,min{α,δ}
loc (Br0(x0),RN ). In particular, we find Br0(x0) ⊆ Ωreg, and we read off that Ωreg is open and that

u ∈ C
1,min{α,δ}
loc (Ωreg,R

N ) holds.

7.2 The refined Hölder exponent and a priori L∞ minimizers

Once we know a minimizer is L∞(loc) (either by previous reasoning or by assumption), we may improve the

Hölder exponent from min{α, δ} = min{α, δ} to α and at the same time may drop the additional Morrey
assumption of (3.3). This follows from the subsequent adaptations of Lemma 4.1 and Lemma 5.1, respectively.

Lemma 7.1 (Caccioppoli inequality for a priori L∞ minimizers). We consider Setting 2. For every M > 0,
there exists a constant c = c

(
n, N, β, q, QM , Γ1, Λ, M, Λ̃M , ‖u‖L∞(Bρ(x0))

)
such that we have

−
∫

B ρ
2

(x0)

|Duξ,ζ |2 dx ≤ c

(
−
∫

Bρ(x0)

∣∣∣∣uξ,ζρ
∣∣∣∣2dx+ ε

(
−
∫

Bρ(x0)

∣∣∣∣uξ,ζρ
∣∣∣∣2∗dx

) 2
2∗

+ ε−
β

2−β ρ2α

)

for all ε > 0, ζ ∈ RN , ξ ∈ RN×n with |ζ|+ |ξ| ≤M .

Proof. The proof is analogous to the proof of Lemma 4.1 with the slight difference that the a priori bound
ensures |ϕ|+ |u| ≤ c

(
M, ‖u‖L∞(Bρ(x0))

)
on Bρ(x0). Therefore, we can improve the estimate (4.3) in order to

control the term II from the proof of Lemma 4.1 by

II =

∫
Br2

g(x, u− ϕ)− g(x, u) dx ≤ c
(
β, q,M, ‖u‖L∞(Bρ)

) ∫
Bρ

Γ|v|β dx .

We combine this with the estimate (4.5), whose derivation is not changed, to find

II ≤ c
(
n, β, q,M,Γ1, ‖u‖L∞(Bρ)

)(
ερn

(
−
∫

Bρ

∣∣∣∣vρ
∣∣∣∣2∗dx

) 2
2∗

+ ε−
β

2−β ρn+2α

)
.

Estimating the other in exactly the same way as in the proof of Lemma 4.1, we come out with the claimed
form of the inequality.

Lemma 7.2 (approximate A-harmonicity for a priori L∞ minimizers). We consider Setting 2. For each
bound M > 0, there exists a constant c = c

(
n,N, β, q,Γ1,Λ,M, Λ̃M , ‖u‖L∞(Bρ(x0))

)
such that we have∣∣∣∣∣ −

∫
Bρ(x0)

D2f(ξ)Duξ,ζ ·Dϕdx

∣∣∣∣∣ ≤ c
(√

ν̂M (Φ)Φ + Φ + ρα
)
‖Dϕ‖L∞(Bρ(x0))

for all ϕ ∈W1,∞
0 (Bρ(x0),RN ), ζ ∈ Rn, ξ ∈ RN×n with |ξ| < M , where Φ is defined as in Lemma 5.1.
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Proof. The proof is analogous to the proof of Lemma 5.1 with the estimates from (5.3) to (5.4) replaced by
simply

III ≤ cσβ−1ρβ −
∫

Bρ

Γ dx ≤ cσβ−1ρ(2−β)α = cρα

for c = c
(
n, β,Γ1, q, ‖u‖L∞(Bρ)

)
. The estimates for the other terms remain the same as in the proof of Lemma

5.1.

At this stage, we finalize the proof of the first two results from the introduction.

Proof of Theorem 1.2 and Theorem 1.3. We first work in the situation of Setting 2 and thus prove Theorem
1.3. Indeed, with Lemmas 7.1 and 7.2 at hand we may go over the proofs of Lemma 6.2 and Lemma 6.3 in
order to reach the same conclusions with min{α, δ} replaced by α (and with constants which now depend
on ‖u‖L∞(Bρ(x0)), but no longer on Γ2). Then, in analogy with the reasoning of Section 7.1 we arrive at the

regularity claim u ∈ C1,α
loc (Ωreg,R

N ).

Now we turn to Setting 1 and finalize the proof of Theorem 1.2. To this end, we observe that the regularity
proved in Section 7.1 implies in particular u ∈ L∞loc(Ωreg,R

N ). Hence, on every open Ω̃ b Ωreg we are back

precisely to the situation of Setting 2, and u ∈ C1,α
loc (Ωreg,R

N ) is available from the previous reasoning.

7.3 Non-uniform ellipticity and a priori W1,∞ minimizers

Once we know a minimizer is W1,∞
(loc), we can even deal with locally uniform ellipticity in the sense of merely

(3.6). This standard observation leads to Theorem 1.4 and eventually also helps in proving Theorem 1.5. On
the technical side, it rests on yet another slightly adapted Caccioppoli inequality, as stated next.

Lemma 7.3 (Caccioppoli inequality for a priori W1,∞ minimizers in non-uniformly elliptic cases). We
consider Setting 3. For every M > 0, there exists a constant c = c(n,N, β, q,Γ1,Λ,M,M, Λ̃M , λM+M) such
that we have

−
∫

B ρ
2

(x0)

|Duξ,ζ |2 dx ≤ c

(
−
∫

Bρ(x0)

∣∣∣∣uξ,ζρ
∣∣∣∣2dx+ ε

(
−
∫

Bρ(x0)

∣∣∣∣uξ,ζρ
∣∣∣∣2∗dx

) 2
2∗

+ ε−
β

2−β ρ2α

)
for all ε > 0, ζ ∈ RN , ξ ∈ RN×n with |ζ| + |ξ| ≤ M and all x0 ∈ Ω, ρ ∈ (0, 1] such that Bρ(x0) b Ω and
M ..= ‖u‖W1,∞(Bρ(x0)).

Proof. Since u is in particular in L∞(Ω,RN ), we can basically repeat the proof of Lemma 4.1 with the
modifications of Lemma 7.1. However, in this reasoning we replace the estimate (4.1) based on quasiconvexity
of f with the following computation. Indeed, we first recall Dv = Duξ,ζ = Du − ξ and record |ξ + τDv| ≤
|ξ| + |Du| ≤ M +M for all τ ∈ [0, 1] in the present situation. On the basis of this observation we then use
the possibly non-uniform ellipticity (3.6) to estimate and rewrite

λM+M

2

∫
Br1

|Dv|2 dx ≤
∫

Br1

∫ 1

0

∫ 1

0

D2f(ξ + τtDv)Dv ·Dv tdτ dtdx

≤
∫

Br2

∫ 1

0

∫ 1

0

D2f(ξ + τtDϕ)Dϕ ·Dϕ tdτ dtdx

=

∫
Br2

f(ξ + Dϕ)− f(ξ)−Df(ξ) ·Dϕdx

=

∫
Br2

f(ξ + Dϕ)− f(ξ) dx .

As foreshadowed above, the resulting inequality is then used as a one-to-one substitute for (4.1) in the
arguments already used for Lemma 4.1 and Lemma 7.1.

Proof of Theorem 1.4. We rely on Lemma 7.3 and on Lemma 7.2 and otherwise on the same arguments
explicated in Sections 6, 7.1, and 7.2 (where several constants now depend on M ..= ‖u‖W1,∞(Bρ(x0),RN ) and
λM+M, but no longer on QM , and where in the proof of Lemma 6.2 the requirement (2.3) comes directly
from (3.6)). By these arguments we then arrive at u ∈ C1,α

loc (Ωreg,R
N ) as before.
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7.4 Lp-Hölder zero-order terms and Lp-W1,r zero-order terms

In view of the embeddings of Lp spaces into Morrey spaces (cf. Remark 2.2), our main results have straightfor-
ward corollaries for the case of an Lp-Hölder zero-order term. Basically, this issue has already been touched
upon in situations (A) and (B) of the introduction, but still we prefer to explicate it here:

Corollary 7.4 (partial regularity for variational integrals with Lp-Hölder zero-order integrand). We suppose
that f is as Setting 1, Setting 2, or Setting 3. For the Carathéodory integrand g : Ω × RN → R we assume
(1.2) with merely

β ∈ (0, 1] , q ∈ [β, 2∗) , Γ ∈ Lploc(Ω) for some p ∈
(
n

β
,∞
]

and in case of Setting 1 additionally with p ≥ sq (where, for n ∈ {1, 2}, the range for q should be read as
q ∈ [β,∞) and the additional requirement as void). Then, for every local minimizer u of F from (1.1), we
have

u ∈ C1,α
loc (Ωreg,R

N ) with


α =

β − n/p
2− β

in case p <∞ ,

α =
β

2− β
in case p =∞ , β < 1 ,

any α < 1 in case p =∞ , β = 1 .

Proof. We first treat the case p < ∞. Since in case n ≥ 3 we have p > n
β > sβ and in case n ∈ {1, 2}

can deduce p ≥ sβ from p > n
β ≥ 1 by taking 2∗ large enough, in any dimension we infer Γ ∈ Lp(Ω) ⊆

Lsβ ,n−sβ
n
p (Ω) = Lsβ ,n+sβ((2−β)α−β)(Ω) for α = β−n/p

2−β . In case of Setting 1, by assumption or choice of 2∗ we

additionally get p ≥ sq and Γ ∈ Lp(Ω) ⊆ Lsq,n−sq
n
p (Ω) with n − sq np > n − sqβ ≥ n − sqq. Thus, we may

apply Theorem 1.2, Theorem 1.3, or Theorem 1.4, respectively, to deduce the claimed regularity.

The case p = ∞ is similar. Since we have Γ ∈ L∞(Ω) ⊂ Ls,n(Ω) for all s ∈ [1,∞), the claimed regularity
comes from Theorem 1.2, Theorem 1.3, or Theorem 1.4, respectively, with the choice α = β

2−β in case β < 1

and with arbitrary α ∈ (0, 1) in case β = 1.

We also explicate a corresponding result for an Lp-W1,r zero-order term or, in other words, for a zero-order
term of certain integral form. This essentially reproduces situations (A’) and (B’) of the introduction.

Corollary 7.5 (partial regularity for scalar variational integrals with Lp-W1,r zero-order integrands). We
suppose that f is as Setting 1, Setting 2, or Setting 3 in the scalar case N = 1. Moreover, we consider
H ∈ L1

loc(Ω×R) which satisfies

H ∈ Lp(Ω,Lr(R)) with r ∈ (1,∞] and p ∈ (nr′,∞](
with integrability understood in the sense of

∫
Ω
‖H(x, · )‖pLr(R) dx < ∞

)
. Then, for every local minimizer

u ∈W1,2
loc(Ω) of the variational integral

F [w] ..=

∫
Ω

[
f(Dw(x))−

∫ w(x)

0

H(x, t) dt

]
dx , (7.2)

we have

u ∈ C1,α
loc (Ωreg) with



α =
r − 1− nr/p

r + 1
in case p <∞ , r <∞ ,

α = 1− n/p in case p <∞ , r =∞ ,

α =
r − 1

r + 1
in case p =∞ , r <∞ ,

any α < 1 in case p =∞ , r =∞ .

Proof. We set

g(x, y) ..= −
∫ y

0

H(x, t) dt for x ∈ Ω and y ∈ R
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and then observe that Hölder’s inequality yields the Lp-Hölder condition

|g(x, y)− g(x, ŷ)| ≤ Γ(x)|y − ŷ|β for all x ∈ Ω and y, ŷ ∈ R

with Γ ∈ Lp(Ω) given by Γ(x) ..= ‖H(x, · )‖Lr(R) and with β ..= 1
r′ ∈ (0, 1]. Since we assume p > nr′ = n

β ,

this brings us in position to apply Corollary 7.4 with q = β (where now in view of sq = sβ and the initial
reasoning in the previous proof the additional requirement p ≥ sq is always valid). By inserting β = 1

r′ = r−1
r

into the exponents α of Corollary 7.4 the regularity outcome then takes the form of the current claim.

Remark 7.6. At least in case p = r <∞, the Hölder exponent α reached in Corollary 7.5 is optimal. This can
be confirmed by transferring the counterexamples of [74, Section 4] from the parametric to the non-parametric
setting (compare also Section 8 for transferring regularity the opposite way round).

8 The optimal Hölder exponent in Massari’s regularity theorem

At this stage we recall that our final aim is improving Massari’s regularity theorem up to the limit Hölder
exponent αopt. This will be achieved by considering the non-parametric Massari-type functional (7.2) with
H ∈ Lp(Ω×R) = Lp(Ω,Lp(R)) and on applying Corollary 7.5 in the particular case p = r. We already record
that in this case the requirement p > nr′ means nothing but p > n+ 1 and that, for p = r <∞, the Hölder

exponent reached in Corollary 7.5 actually boils down to our target exponent αopt = p−(n+1)
p+1 . In fact, with

Corollary 7.4 at hand, the proof of Theorem 1.5 essentially reduces to deducing a suitable non-parametric
minimality property from the parametric one assumed:

Proof of Theorem 1.5. We consider a set E ⊆ Rn+1 of finite perimeter in an open set U ⊆ Rn+1 and a
variational mean curvature H ∈ Lp(U) of E in U . Since we may replace H by H+1E −H−1Ec according to
Remark 2.13 i), we can assume H ≥ 0 on E and H ≤ 0 on Ec. We now derive the optimal regularity near
an arbitrary fixed x0 ∈ ∂∗E ∩ U .

Step 1 : Non-parametric rewriting with smooth variations. By isometry invariance of perimeter and variational
mean curvatures and by Theorem 2.14, we may directly assume that ∂E∩Ω = ∂∗E∩Ω is C1 and E∩(Ω×[0, R])
is the subgraph of u ∈ C1(Ω) for a bounded open set Ω ⊆ Rn and a constant R > 0 such that u(Ω) ⊆ (0, R)
and x0 ∈ Ω× (0, R) b U . In this situation, Remark 2.13 ii) asserts that u minimizes

G[w] ..=

∫
Ω

[√
1 + |Dw(x)|2 −

∫ w(x)

0

H(x, t) dt

]
dx

among all functions w = u+ ϕ with ϕ ∈ C1
cpt(Ω) such that w(Ω) ⊆ (0, R).

E ∩ (Ω× [0, R])

u

0

R

Ω

F ∩ (Ω× [0, R])

w

0

R

spt(ϕ)

Figure 1: Local parametrization of E via u and of test sets F via w

Step 2 : Extension to W1,2 variations with image in [ε,R− ε]. We first argue briefly that we can approximate
ψ ∈W1,2

0 (Ω) with ε ≤ u+ψ ≤ R− ε a.e. on Ω for some fixed ε > 0 by ϕk ∈ C1
cpt(Ω) such that (u+ϕk)(Ω) ⊆

(0, R) with respect to the W1,2 norm and a.e. on Ω. Indeed, possibly decreasing ε we may assume u(Ω) ⊆
(ε,R− ε), and we approximate ψ by ψk ∈ C1

cpt(Ω) in W1,2(Ω) and a.e. on Ω. In order to truncate suitably,

we choose Tε ∈ C1
(
R,
[

1
3ε,R−

1
3ε
])

with bounded derivative (Tε)
′ such that Tε(y) = y for y ∈

[
2
3ε,R−

2
3ε
]
.

It is then a standard matter to check that, for k →∞, we have convergence of Tε(u+ψk) to u+ψ in W1,2(Ω)
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and a.e. on Ω and consequently also of ϕk ..= Tε(u+ ψk)− u ∈ C1
cpt(Ω) to ψ in the same sense. Taking into

account that (u+ ϕk)(Ω) ⊆
[

1
3ε,R−

1
3ε
]

by choice of Tε, we have established the approximation claim.

Now, the convergence in W1,2(Ω) and a.e. on Ω implies convergence of the first-order and zero-order terms of
the functional G, respectively (where, for the latter one, we make use of the dominated convergence theorem).
All in all, we infer convergence of G[u+ ϕk] to G[u+ ψ]. Hence, we can conclude that u minimizes G among
all functions in u+ ψ ∈W1,2

u (Ω) with ε ≤ u+ ψ ≤ R− ε a.e. on Ω for some fixed ε > 0.

Step 3 : Extension to arbitrary W1,2 variations. Finally, we pass on to fully arbitrary competitors without
need for the (ε,R − ε) requirement of Step 2. We consider an arbitrary Φ ∈ W1,2

u (Ω) and, for ε > 0
small enough that u(Ω) ⊆ (ε,R− ε), record that the sharp truncation Ψ ..= max{min{Φ, R − ε}, ε} is in
W1,2
u (Ω) with DΨ = 1(ε,R−ε)(Φ) DΦ a.e. on Ω. We further define H̃(x, t) ..= 1[0,R](t)H(x, t). Then, since

H̃ ∈ L1(Ω×R) ∩ Lp(Ω×R) satisfies H ≥ 0 on Ω× [0, ε] ⊆ E and H ≤ 0 on Ω× [R− ε,R] ⊆ Ec, it follows

G̃[Φ] ..=

∫
Ω

[√
1 + |DΦ(x)|2 −

∫ Φ(x)

0

H̃(x, t) dt

]
dx

≥
∫

Ω

[√
1 + |DΨ(x)|2 −

∫ Ψ(x)

0

H̃(x, t) dt

]
dx = G[Ψ] ≥ G[u] = G̃[u] ,

where the last rewritings are based on the minimality established in Step 2 and on u(Ω) ⊆ (0, R), respectively.

Step 4 : Application of the non-parametric regularity result. The first-order integrand f(z) ..=
√

1 + |z|2 of

the functional G̃ is smooth and of at most quadratic growth (in fact, linear growth) with

D2f(z)ξ · ξ ≥ |ξ|2

(1 +M2)
3
2

for all z, ξ ∈ Rn with |z| ≤M .

Thus, f is as in Setting 3 with N = 1, while H̃ satisfies the conditions of Corollary 7.5 with r = p ∈ (n+ 1,∞),
and moreover we already know u ∈ C1(Ω) and thus read off Ωreg = Ω from (7.1). All in all, as indicated at the

beginning of this section, we may then apply Corollary 7.5 to deduce that the minimizer u of G̃ is in C1,α
loc (Ω)

with exactly the claimed exponent α = αopt = p−(n+1)
p+1 . Since we worked near an arbitrary x0 ∈ ∂∗E ∩U , we

have verified that ∂∗E ∩U is an n-dimensional C1,αopt -submanifold (and relatively open in ∂E ∩U). Finally,
the assertions on the size of the singular set (∂E \ ∂∗E) ∩ U are already contained in Theorem 2.14.
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363.

27



[57] F. Maggi. Sets of Finite Perimeter and Geometric Variational Problems. An Introduction to Geometric
Measure Theory. Cambridge University Press, 2012.
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