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Abstract. In this paper we solve the Bernstein problem for a broad class of smooth, non-characteristic
hypersurfaces in the second sub-Riemannian Heisenberg group H2.

1. Introduction

The Euclidean Bernstein problem. The Bernstein problem, originally solved by Bernstein in R2

(cf. [6]), consists in characterizing entire solutions u : Rn → R to the minimal surface equation

(1.1) div

(
Du√

1 + |Du|2

)
= 0.

Thanks to the joint effort of Fleming (cf. [33]), De Giorgi (cf. [27]), Almgren (cf. [2]), Simons (cf.
[66]) and Bombieri, De Giorgi and Giusti (cf. [7]), we know that, for n ⩽ 7, entire solutions to (1.1) are
affine functions, or, equivalently, their graphs are hyperplanes. Moreover, for n ⩾ 8, there exist entire
analytic solutions to (1.1) which are not affine. Indeed, the well-known monotonicity formula for the
perimeter density allows to reduce the solution to the Bernstein problem in Rn+1 to the existence of
singular minimal cones in Rn (cf. [33, 27]), which occurs if and only if n ⩾ 8 (cf. [2, 66, 7]). The very
same approach is suitable for the solution to a way more general formulation of the Bernstein problem,
i.e. the characterization of global perimeter minimizers in Rn. In this setting, when n ⩽ 7, the unique
non-empty global perimeter minimizers in Rn are half-spaces, while there are counterexamples when
n ⩾ 8. We refer to [41] for a detailed account on the Bernstein problem in the Euclidean space.

An alternative approach. A new approach to the Bernstein problem was proposed by Schoen,
Simon and Yau in their seminal paper [63], where the authors solved the latter in the class of com-
plete, stable hypersurfaces satisfying suitable volume growth assumptions and under the additional
constraint n ⩽ 6. This second approach can be summarized in the following steps.

1. Combining the celebrated Simons identity for minimal hypersurfaces S ⊆ Rn (cf. [66]), namely

(1.2) ∆Sh = −|h|2h,
with the Kato-type inequality

(1.3)

(
1 +

2

n− 1

) ∣∣∇S |h|2
∣∣2 ⩽ 4|h|2|∇Sh|2

(cf. [63]), one provides a lower bound for ∆S |h|2 of the form

(1.4) 2|h|2∆S |h|2 ⩾
(
1 +

2

n− 1

) ∣∣∇S |h|2
∣∣2 − 4|h|6.
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Here, h is the second fundamental form associated to S, ∆S is the tangential Laplacian and ∇S

is the tangential gradient.
2. Owing to (1.4), one establishes Lp-estimates for stable hypersurfaces such as

(1.5)

∫
S
|h|pφp dσ ⩽ C

∫
S
|∇Sφ|p dσ,

where C is a geometric constant, p lies in a range of exponents which depends on the dimension
n, σ is the surface measure and φ is a smooth test function.

3. Assuming that S satisfies volume growth conditions of the form

(1.6) σ(S ∩Br(p)) = O
(
rn−1

)
as r → ∞, one exploits (1.5) to show that S is totally geodesic, meaning that h ≡ 0.

4. Complete, totally geodesic Euclidean hypersurfaces are hyperplanes.

In particular, since for n ⩽ 7 boundaries of perimeter minimizers are smooth, complete, stable hyper-
surfaces and satisfy (1.6) (cf. [46]), this new approach yields a new solution to the Bernstein problem
when n ⩽ 6. Although this second approach fails to solve the Bernstein problem in its full general-
ity, as the case n = 7 is not covered, it is originally stated in the more general setting of Riemannian
manifolds satisfying suitable curvature constraints. Moreover, it has the advantage of being applicable
to the solution of the so-called stable Bernstein problem, i.e. the characterization of complete, stable
hypersurfaces, thus without a priori requiring that they are boundaries of global perimeter minimizers.
While the thee-dimensional version of the latter has been solved by do Carmo and Peng (cf. [28]),
Fischer-Colbrie and Schoen (cf. [32]) and Pogorelov (cf. [56]) via ad hoc techniques, Schoen-Simon-
Yau’s approach reduces the solution to the higher dimensional case to the establishment of volume
growth estimates as in (1.6). Following this approach, Chodosh and Li (cf. [17]), Chodosh, Li, Minter
and Stryker (cf. [18]) and Mazet (cf. [48]) recently solved the stable Bernstein problem in R4, R5 and
R6 respectively (cf. also [5] for some recent developments).

The sub-Riemannian Bernstein problem. Like its Euclidean and Riemannian precursors, the
sub-Riemannian Bernstein problem is an intriguing topic within the broader framework of sub-
Riemannian geometry, It fits into the more general context of studying minimal hypersurfaces in
sub-Riemannian structures (cf. [13, 14, 15, 25, 30, 38, 57, 39, 42, 52, 53, 58, 65] and references
therein). This research area is particularly relevant in the sub-Riemannian Heisenberg group Hn,
which constitutes a prototypical model in the setting of Carnot groups (cf. [8]), sub-Riemannian man-
ifolds (cf. [1]), CR manifolds (cf. [11]) and Carnot-Carathéodory spaces (cf. [43]). We briefly recall
that the n-th Heisenberg group (Hn, ·) is R2n+1 endowed with the group law

p · p′ = (x̄, ȳ, t) · (x̄′, ȳ′, t′) =

x̄+ x̄′, ȳ + ȳ′, t+ t′ +

n∑
j=1

(
x′jyj − xjy

′
j

) ,

where we denoted points p ∈ R2n+1 by p = (x̄, ȳ, t) = (x1, . . . , xn, y1, . . . , yn, t). With this operation,
Hn is a Carnot group, whose associated horizontal distribution, which we denote by H, is generated
by the left-invariant vector fields

Zj = Xj =
∂

∂xj
+ yj

∂

∂t
and Zn+j = Yj =

∂

∂xj
− xj

∂

∂t

for j = 1, . . . , n. A vector field which is tangent to H at every point is called horizontal. If we denote
by T the left-invariant vector field ∂

∂t , then X1, . . . , Xn, Y1, . . . , Yn, T constitutes a global frame of
left-invariant vector fields. The only nontrivial commutation relations are

[Xj , Yj ] = −[Yj , Xj ] = −2T

for any j = 1, . . . , n. Hn inherits a sub-Riemannian structure by fixing be the unique Riemannian
metric ⟨·, ·⟩ which makes X1, . . . , Xn, Y1, . . . , Yn, T orthonormal. Moreover, Hn can be endowed with
an appropriate affine connection ∇, the so-called pseudohermitian connection, which is metric but
not torsion-free, and in a sense realizes it as a flat sub-Riemannian model. These tools both provide
an intrinsic definition of perimeter, the so-called horizontal perimeter, and enhance the study of the
extrinsic geometry of submanifolds in Hn. Consequently, the sub-Riemannian formulation of the
Bernstein problem appears just as natural as its Riemannian counterpart. Nevertheless, its essence is
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substantially different from the Euclidean one. First of all, a suitable generalization of the Euclidean
monotonicity formula is known to hold only for particular classes of hypersurfaces (cf. [24]), whereas
its validity for general hypersurfaces remains a major open problem in the field. Moreover, there
are several examples of minimal cones, both smooth (cf. [61, 14, 42]) and with low regularity (cf.
[58, 50]) which are not flat from the intrinsic viewpoint of Hn. This new phenomenon is caused by
the fact that an hypersurface S ⊆ Hn, although smooth from a classical differential standpoint, may
be intrinsically irregular due to the presence of the so-called characteristic points, i.e. those points
p ∈ S for which the tangent space TpS coincides with the horizontal distribution Hp. For the above-
mentioned reasons, the first approach we have described in the Euclidean setting does not appear to
be suitable for this context, neither in H1 nor in higher dimension. Nevertheless, by means of ad hoc
techniques, the Bernstein problem in H1 is now largely solved. In [45], Hurtado, Ritoré and Rosales
(cf. also [14, 61, 25, 26]) proved that a complete, two-sided, connected, stable C2-surface in H1 must
be a vertical plane (without characteristic points), a horizontal plane (with one characteristic point)
or the hyperbolic paraboloid t = x1y1 (with a line of characteristic points). In general, we recall that
a vertical hyperplane in Hn is an Euclidean hyperplane which is tangent to T at every point. The
hyperbolic paraboloid, which is a cone for the intrinsic geometry of Hn, can be easily lifted to provide
smooth, non-flat, minimal cones for any n ⩾ 2 (cf. [55]). The situation is different when considering
surfaces without characteristic points, which we will call non-characteristic. In this regard, Barone
Adesi, Serra Cassano and Vittone (cf. [4]) showed that entire, stable intrinsic graphs associated to a
C2-function are vertical planes. The same conclusion was achieved by Galli and Ritoré (cf. [36]) in the
class of non-characteristic, complete, two-sided, connected and stable C1-surfaces. The C1-regularity
assumption was later improved to Euclidean Lipschitz regularity by Nicolussi Golo and Serra Cassano
(cf. [51]) and by the first author and Ritoré (cf. [40]). We point out that the best possible regularity
to guarantee the above rigidity in H1 is still an open problem (cf. [68] for some developments in
this direction). On the other hand, although in H1 there are counterexamples to the regularity of
perimeter minimizers, some evidences (cf. e.g. [10]) suggest that it is reasonable to study the higher
dimensional Bernstein problem in the smooth category. Therefore, in light of the above results and
considerations, the appropriate intrinsic formulation of the Bernstein conjecture in arbitrary dimension
reads as follows.

sub-Riemannian stable Bernstein problem. Is it true that smooth, complete, two-sided, con-
nected, stable non-characteristic hypersurfaces S ⊆ Hn are vertical hyperplanes?

While, as we have just noticed, the problem in H1 is fairly well understood, very little can be said
in the higher dimensional case. In [4] the authors provide a negative answer to this question for n ⩾ 5,
essentially by lifting the Euclidean analytic counterexamples available in Rn+1 when n ⩾ 8. However,
the purely Euclidean character of these counterexamples suggests that the dimensional bound n ⩾ 5
might not be optimal. In any case, the validity of this long-standing conjecture in the remaining cases
H2, H3 and H4 remains a completely open problem. In this paper we affirmatively solve the Bernstein
conjecture in a broad class of hypersurfaces in the second sub-Riemannian Heisenberg group H2. More
precisely, since the classical Euclidean approach does not align well with this setting, we identify some
reasonable assumptions whereby to develop and apply an approach in the style of Schoen-Simon-Yau.

Structural assumptions. Let us be more precise about our assumptions, that we will call (H1),
(H2) and (H3). When a hypersurface S ⊆ Hn is non-characteristic, we can define its horizontal unit
normal ν as the normalization of the projection of the Riemannian unit normal N onto the horizontal
distribution H. Then the horizontal shape operator A is given by the covariant derivative of ν with
respect to the pseudohermitian connection ∇. Since, differently from the Riemannian setting, A is not
necessarily self-adjoint, its symmetrized counterpart Ã can be considered, and the associated horizontal
second fundamental forms h and h̃ can be defined (cf. [44, 23, 16, 59, 60]). The first assumption (H1)

requires that J(ν), the ninety-degree rotation of ν (cf. Section 2.1), is an eigenvector for h̃. This mild
assumption, which is automatically satisfied in H1, emerges naturally in the sub-Riemannian setting,
for instance in the study of umbilic hypersurfaces as introduced in [12] (cf. Section 3.4). Since S
is non-characteristic, the intersection between the horizontal distribution H and the tangent bundle
TS generates a (2n − 1)-dimensional sub-bundle HTS, the horizontal tangent bundle. In turn, the
latter admits the orthogonal decomposition HTS = span J(ν)⊕H′TS, where the (2n−2)-dimensional



4 G. GIOVANNARDI, A. PINAMONTI, AND S. VERZELLESI

sub-bundle H′TS is invariant under the complex structure induced by the rotation J . The remaining
tangent direction of S, say S, is non-horizontal and orthogonal to HTS, whence it is given by a linear
combination between T and ν. However, as S is non-characteristic, S cannot coincide with ν, so that
there exists a smooth function α, the fundamental function of S, such that S = T −αν belongs to TS.
The latter appears frequently in the sub-Riemannian theory of hypersurfaces in the Heisenberg group

(cf. e.g. [13, 12, 16, 59]) and can be equivalently defined by α = ⟨N,T ⟩
|NH| , where N

H is the projection of

the Riemannian unit normal N onto the horizontal distribution H. For instance, it is the curvature
of a length-minimizing geodesic realizing the distance between a hypersurface and a given point [60].
Moreover, when S is embedded in Hn, the fundamental function can be characterized by the identity
α = TdS , where dS is the signed Carnot-Carathéodory distance from S (cf. Section 3.1). Our second
assumption (H2) requests that the fundamental function α in constant along the sub-bundle H′TS.
Again, since H′TS = {0} when n = 1, (H2) is satisfied by every non-characteristic surface in H1.
Moreover, we stress that we are not prescribing any kind of behavior of α along the non-horizontal
direction S. In order to describe our last assumption, we recall that a smooth, non-characteristic
hypersurface S is minimal whether its horizontal mean curvature H vanishes, and that it is stable if
it is minimal and

(1.7)

∫
S
q ξ2 dσH ⩽

∫
S
|∇H,Sξ|2 dσH

for any ξ ∈ C1
c (S), where ∇H,S is the horizontal tangent gradient, σH is the sub-Riemannian surface

measure and q, the stability function, is defined by q = |h̃|2+4⟨∇α, J(ν)⟩+2(n+1)α2 (cf. Section 3.8).
If compared to the Riemannian stability inequality for minimal hypersurfaces immersed in a Riemann-
ian manifold, the stability function q plays the role of the Riemannian term |hR|2 +Ric(N,N), where
hR is the Riemannian second fundamental form, Ric is the Ricci curvature of the ambient manifold
and N is the unit normal. In the Riemannian framework, it is customary to rely on suitable lower
bounds for both the Ricci curvature and the sectional curvatures in order to achieve rigidity results
(cf. e.g [32, 63, 22] and references therein). Accordingly, we propose with (H3) a lower bound for the
stability function q of the form

(1.8) q ⩾ |h̃|2 + (2n− 2)α2 − ωα2,

depending on a parameter ω ∈ [0, 2]. Once more, (1.8) is verified by any complete minimal surface in
H1 with the best possible choice ω = 0, as shown by Galli and Ritoré in [36]. While (H1), (H2) and
(H3) are thus satisfied in H1, the relevance of this set of assumptions in arbitrary dimension is further
supported by the fact that they hold, again with ω = 0, for every minimal umbilic hypersurface (cf.
Remark 7.7). Furthermore, it would be interesting to understand the consistency of these assumptions
in the particular case of entire intrinsic graphs, which constitute a relevant class of hypersurfaces to
which our approach may apply.

The sub-Riemannian Schoen-Simon-Yau’s approach. The sub-Riemannian generalization of
Schoen-Simon-Yau’s approach moves from recent results proved by the last two authors of this paper
(cf. [55]). Namely, complete, non-characteristic, embedded hypersurfaces S ⊆ Hn with vanishing

symmetric horizontal second fundamental form h̃ are vertical hyperplanes. Our first step (cf. The-
orem 5.1) consists in the establishment of a full sub-Riemannian counterpart of the Simons identity
(1.2) for ∆H,Sh, where ∆H,S is the horizontal tangential Laplacian of S, which relates the latter to
the stability function q appearing in (1.7) with the aid of appropriate sub-Riemannian Gauss-Codazzi
equations (cf. Proposition 3.12). The previous result, which holds in arbitrary dimension and without
requiring (H1), (H2) and (H3), provides a significantly more complex formula than (1.2), and makes
clear the influence of the non-commutative structure in which we are operating. In our second step, we
exploit the full Simons identity to provide a lower bound for ∆̂H,S |h̃|2, where ∆̂H,S is the self-adjoint
counterpart of ∆H,S introduced by Danielli, Garofalo and Nhieu in [23]. As explained thoroughly
in Section 5, it is during this procedure that the importance of assumptions (H1), (H2) and (H3)
naturally appears. Moreover, the a priori lack of suitable sub-Riemannian geodesic frames requires
some delicate ad hoc computations (cf. Section 4). Although a result of this kind is actually available
in arbitrary dimension (cf. Section 5.2), the specific structure of H2 (cf. Section 5.3) allows to improve
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the latter to a more accurate lower bound of the form

(1.9) 2|h̃|2∆̂H,S |h̃|2 ⩾ 4|h̃|2|∇H,S h̃|2 − 4q|h̃|4 + 4α2|h̃|2
(
(4− 2ω)|h̃|2 − (6− 3ω)ℓ2

)
,

where ℓ is the eigenvalue associated with J(ν) and ω is forced by (H3). Next, in order to get rid

of the first-order term |∇H,S h̃|2, we exploit (H1) and (H2) to provide a sub-Riemannian parametric
Kato-type inequality in arbitrary dimension (cf. Section 5.4), whose version in H2 reads as

(1.10)

(
1 +

k

3

) ∣∣∣∇H,S |h̃|2
∣∣∣2 ⩽ 4|h̃|2|∇H,S h̃|2 + 4α2|h̃|2

(
(4k − 2)|h̃|2 + (2k − 6)ℓ2

)
,

where k ∈ [0, 2]. The last terms appearing in (1.9) and (1.10) respectively constitute a crucial novelty
compared to the Euclidean setting. Indeed, the presence of these two α2-remainders is essentially due
to the fact that, differently from the Euclidean setting, the lack of torsion-freeness of ∇ prevents h̃
from being a Codazzi tensor (cf. Proposition 3.13). As we will see shortly, a key step in our approach
consists in managing to control these additional terms. While the α2-reminder in (1.9) is constrained
by (H3), the freedom to choose k ∈ [0, 2] in (1.10) allows to balance between the contribution of the
gradient term and the α2-reminder. Roughly speaking, for a better control on the latter we need to
pay a worse contribution from the former. Combining (1.9) with (1.10) (cf. Section 5.5), we finally
establish the sub-Riemannian counterpart of (1.4), namely

(1.11) 2|h̃|2∆̂H,S |h̃|2 ⩾
(
1 +

k

3

)
|∇S |h̃|2|2 − 4q|h̃|4 + 4α2|h̃|2gS,k,ω,

where gS,k,ω is the appropriate contribution coming from the two α2-reminders of (1.9) and (1.10)
(cf. (5.32)). Once (1.11) is achieved, and as soon as it is possible to choose k ∈ [0, 2] small enough
to ensure that gS,k,ω ⩾ 0, we can exploit the stability inequality (1.7) to establish sub-Riemannian

Lp-estimates for h̃ in arbitrary dimension, namely

(1.12)

∫
S
|h̃|2β+2φ2β+2 dσH ⩽ C

∫
S
|∇H,Sφ|2β+2 dσH,

where φ ∈ C1
c (S), C = C(β, k) is a structural constant and β ∈

[
2n−1−k
2n−1 , 1 +

√
k

2n−1

)
. Heuristically,

the application of (1.12) to the solution to the Bernstein problem requires β to be chosen as close as
possible to its upper bound, since the bigger is the latter, the higher is the dimension n in which we
can apply this approach. Indeed, under natural sub-Riemannian volume growth assumptions of the
form

(1.13) σH(S ∩Br(p)) = O
(
r2n+1

)
as r → ∞ (cf. Section 7), (1.12) implies that∫

S∩Br(p)
|h̃|2β+2 dσH = O

(
r2n−1−2β

)
as r → ∞. All in all, then, we would like to choose k large enough to ensure that 2n − 1 − 2β ⩽ 0,
but still small enough to ensure that gS,k,ω ⩾ 0. Regarding the first condition, it is easy to verify that
even the optimal choice k = 2 allows only the case n = 2. On the other hand, when n = 2, every
choice k ∈

(
3
4 , 2
]
is an admissible candidate (cf. Section 7). Finally, if ω is sufficiently small (but

cf. Section 7 for finer considerations) it is always possible to choose k ∈
(
3
4 , 2
]
which ensures that

gS,k,ω ⩾ 0 (cf Proposition 7.3). In this way h̃ ≡ 0, whence, by [55], S is a vertical hyperplane. For

instance, when ω < 3
2 , our main result reads as follows.

Theorem 1.1. Let S ⊆ H2 be a smooth, complete, connected, embedded, two sided non-characteristic
hypersurface. Assume that S is stable. Assume that S verifies (H1), (H2) and (H3) with ω < 3

2 .
Assume in addition that there exists p ∈ S such that (1.13) holds. Then S is a vertical hyperplane.

Finally, we point out that the sub-Riemannian Schoen-Simon-Yau’s approach would be pointless
in H1. Indeed, in H1, every minimal surface satisfies h̃ ≡ 0, but there are examples of minimal non-
characteristic surfaces which are not vertical planes (cf. [25]). This difference between H1 and the
higher dimensional case may be explained by the fact that the horizontal tangent distribution HTS
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is bracket-generating if, and only if, n ⩾ 2 (cf. [3]). A relevant instance of this phenomenon can be
appreciated in the different approaches to regularity employed in H1 [9] and in higher dimension [10].

Plan of the paper. In Section 2 we recall some preliminaries concerning the Heisenberg group. In
Section 3 we collect some properties of non-characteristic hypersurfaces. In Section 4 we deduce useful
computational features of the symmetric form h̃. In Section 5 we introduce (H1), (H2) and (H3)
and we establish (1.11). In Section 6 we deduce (1.12). In Section 7 we prove (a finer version of)
Theorem 1.1. In Section 8 we provide the proof of the full Simons identity stated in Theorem 5.1.

Acknowledgements. The authors are grateful to Manuel Ritoré and Francesco Serra Cassano for
the many stimulating conversations on the topics of this paper.

2. Preliminaries

2.1. The Heisenberg group. In the following, we denote by Γ(THn) and Γ(H) the families of
smooth vector fields and of smooth horizontal vector fields respectively. The complex structure J :
Γ(THn) −→ Γ(THn) is the unique C∞(Hn)-linear map which satisfies

J(Xi) = Yi, J(Yi) = −Xi and J(T ) = 0

for any i = 1, . . . , n. In particular, observe that

(2.1) J(J(X)) = −X and ⟨X,J(X)⟩ = 0

for any X ∈ Γ(H), whence the latter, together with the distribution H, realizes Hn as a pseudoher-
mitian manifold (cf. [13, Appendix]). We recall that ⟨·, ·⟩ is the unique Riemannian metric which
makes X1, . . . , Xn, Y1, . . . , Yn, T orthonormal. Restricting the latter to the horizontal distribution H,
and still denoting this restriction by ⟨·, ·⟩, Hn inherits a sub-Riemannian structure which realizes it as
a sub-Riemannian manifold. We denote by | · | the norm induced by ⟨·, ·⟩. Moreover, we denote by ∇
the so-called pseudohermitian connection (cf. e.g. [60]), i.e. the unique metric connection (cf. [29])
whose torsion tensor is

(2.2) ∇XY −∇YX − [X,Y ] = 2⟨J(X), Y ⟩T

for any X,Y ∈ Γ(THn). Although ∇ is not a torsion-free connection, it has the advantage of vanishing
along left-invariant vector fields, meaning that

(2.3) ∇ZiZj = 0

for any i, j = 1, . . . , 2n+ 1 (cf. [59]). In view of (2.3), it is easy to check that

X ∈ Γ(THn), Y ∈ Γ(H) =⇒ ∇XY ∈ Γ(H).

Moreover, denoting by R the curvature tensor associated with ∇, i.e.

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z

for any X,Y, Z ∈ Γ(THn), (2.3) implies that R ≡ 0, whence Hn is flat from the pseudohermitian
standpoint. The pseudohermitian connection is related to the complex structure by

(2.4) ∇XJ(Y ) = J(∇XY ).

for any X,Y ∈ Γ(THn) (cf. e.g. [31]). Given a function f ∈ C∞(Hn), we denote by

∇f =

2n+1∑
j=1

(Zjf)Zj and ∇Hf =

2n∑
j=1

(Zjf)Zj

respectively the gradient and the horizontal gradient associated with the pseudohermitian connection
∇.
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2.2. Carnot-Carathéodory structure. An absolutely continuous curve Γ : [a, b] −→ Hn is called
horizontal whenever

(2.5) Γ̇(t) ∈ HΓ(t)

for a.e. t ∈ [a, b], and it is called sub-unit whenever it is horizontal and |Γ̇(t)| ⩽ 1 for a.e. t ∈ [a, b]. If
we define

d(p, q) := inf{b : Γ : [0, b] −→ Hn is sub-unit, Γ(0) = p and Γ(b) = q},
then Chow-Rashevskii theorem (cf. [19]) implies that d is a distance on Hn, the so-called Carnot-
Carathéodory distance. The metric space (Hn, d) is a prototype of Carnot-Carathéodory space. For
any r > 0 and any p ∈ Hn, we denote by Br(p) the open metric ball of radius r centered at p induced
by d.

2.3. Perimeter and perimeter minimizers. Let Ω ⊆ Hn be open and E ⊆ Hn measurable. The
horizontal perimeter (or H-perimeter) of E in Ω (cf. e.g. [34, 35, 37]) is defined by

PH(E,Ω) := sup

{∫
E
divH(φ̄) dL2n+1 : φ̄ ∈ C1

c (Ω,H), |φ̄|p ⩽ 1 for any p ∈ Ω

}
,

where by C1
c (Ω,H) we denote the class of compactly supported horizontal vector fields defined on Ω,

and where divH is the so-called horizontal divergence, defined by

divH

 n∑
j=1

(φjXj + φn+jYj)

 :=

n∑
j=1

(Xjφj + Yjφn+j)

for any
∑n

j=1(φjXj + φn+jYj) ∈ C1(Ω,H). We say that E is an H-Caccioppoli set whenever

PH(E,Ω) < +∞ for any bounded open set Ω ⊆ Hn. Finally, we recall (cf. e.g. [64]) that an
H-Caccioppoli set E is an H-perimeter minimizer in Ω whenever

PH(E,Ω) ⩽ PH(F,Ω)

for any Ω ⋐ Hn and for any H-Caccioppoli set F such that E∆F ⋐ Ω. When E is an H-perimeter
minimizer in Ω = Hn, we refer to it as global H-perimeter minimizer.

3. Geometric properties of non-characteristic hypersurfaces

3.1. Non-characteristic hypersurfaces. Let S ⊆ Hn be a smooth hypersurface without boundary.
We recall (cf. e.g. [64]) that a point p ∈ S is called characteristic when

Hp = TpS,

and is called non-characteristic otherwise. In the latter case, the horizontal tangent space

HTpS = Hp ∩ TpS
is a (2n − 1)-dimensional vector space. The set of characteristic points of S is denoted by S0 and is
called the characteristic set of S. When S0 = ∅, S is called non-characteristic, and the horizontal
tangent distribution HTS is actually a constant-rank sub-bundle of TS. According to the previous
notation, we denote by Γ(TS) and by Γ(HTS) the families of smooth vector fields which are tangent to
S and which are horizontal and tangent to S respectively. In the following, unless otherwise specified,
we assume that S is a smooth, embedded, non-characteristic hypersurface without boundary. When
our statements are of local nature, we assume without loss of generality that S is two-sided. We denote
by N its Riemannian unit normal, and by NH its projection onto H, that is

NH = N − ⟨N,T ⟩T.
Being S non-characteristic, then NH(p) ̸= 0 for any p ∈ S, so that the horizontal unit normal

ν =
NH

|NH|
is well-defined on the whole S. Notice that the horizontal unit normal can be characterized to be
the unique unitary horizontal vector field which is orthogonal to any horizontal tangent vector field.
When E is an H-Caccioppoli set in Hn with boundary of class C1, it is known (cf. e.g. [23]) that
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PH(E, ·) = |NH|H2n⌞∂E, being H2n the standard (2n)-dimensional Hausdorff measure. Therefore, if
S is a two-sided hypersurface as above, in the following we adopt the notation

σH = |NH|H2n⌞S

to denote the relevant sub-Riemannian hypersurface measure as introduced e.g. in [23, 47]. Let dS be
the signed Carnot-Carathéodory distance from S. Since S is smooth and non-characteristic, then dS

is smooth and satisfies the eikonal equation |∇HdS | = 1 in a neighborhood of S (cf. [60]). Therefore,
in the following, we assume that ν is defined in a neighborhood of S by

(3.1) ν = ∇HdS .

When ν is locally extended as in (3.1), it follows that

(3.2) Zk(νh) = Zh(νk)

for any h, k = 1, . . . , 2n such that |h− k| ≠ n, and

(3.3) Xk(νn+k) = Yk(νk)− 2α and Yk(νk) = Xk(νn+k) + 2α

for any k = 1, . . . , n, where here and in the following, according to [16, 12], we adopt the notation
α = TdS . In particular, an easy computation (cf. [55]) reveals that

(3.4) ∇νν = −2αJ(ν),

Moreover, the Riemannian normal N can be locally extended by letting

(3.5) N =
1√

1 + α2
ν +

α√
1 + α2

T.

Let us provide a more precise description of the tangent space to S. First, (2.1) implies that J(ν) ∈
Γ(HTS). Moreover, denoting by H′TS the distribution defined by

H′TpS = HTpS ∩ J (HTpS)

for any p ∈ S, it is easy to check that it is a (2n − 2)-dimensional sub-bundle of HTS, and that the
latter can be orthogonally decomposed as

HTS = H′TS ⊕ span J(ν).

Finally, (3.5) implies that the vector field S defined by

S = T − αν

belongs to Γ(TS) and satisfies ⟨S, X⟩ = 0 for any X ∈ Γ(HTS). Therefore, the tangent space to S
admits the orthogonal decomposition

TS = H′TS ⊕ span J(ν)⊕ spanS.

In the following, we denote by π : Γ(H) −→ Γ(HTS) the projection map

(3.6) π(X) = X − ⟨X, ν⟩ν =

2n−1∑
i=1

⟨X,Ei⟩Ei

for any X ∈ Γ(H) and any local orthonormal frame E1, . . . ,E2n−1 of HTS. A simple computation
shows that

(3.7) π(J(X)) ∈ Γ(H′TS) and J(π(J(X))) = −X + ⟨X, J(ν)⟩J(ν).

The horizontal unit normal ν evolves along S as follows.

Proposition 3.1. It holds that

(3.8) ∇Sν = ∇Hα+ 2α2J(ν).

In particular, if X ∈ Γ(HTS), then

(3.9) ⟨∇Sν,X⟩ = Xα+ 2α2⟨J(ν), X⟩.
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Proof. Let ν be extended as in (3.1). Then, recalling (3.4),

∇Sν = ∇T ν − α∇νν =
2n∑
j=1

T (Zjd)Zj + 2α2J(ν) =
2n∑
j=1

ZjαZj + 2α2J(ν) = ∇Hα+ 2α2J(ν).

Finally, (3.9) easily follows. □

3.2. Tangent pseudohermitian connection. The tangent pseudohermitian connection, denoted by
∇S : Γ(TS)× Γ(HTS) −→ Γ(HTS), is defined by

∇S
XY = ∇XY − ⟨∇XY, ν⟩ν

for any X ∈ Γ(TS) and any Y ∈ Γ(HTS). An easy computation reveals that ∇S is a well-defined
affine connection, and that it is metric in the sense that

(3.10) X⟨Y,Z⟩ = ⟨∇S
XY,Z⟩+ ⟨Y,∇S

XZ⟩
for any X ∈ Γ(TS) and any Y, Z ∈ Γ(HTS). Accordingly, the torsion tensor Tor∇S (X,Y ) : Γ(HTS)×
Γ(HTS) −→ Γ(TS) is defined by

Tor∇S(X,Y ) = ∇S
XY −∇S

YX − [X,Y ].

We stress that we are not requiring Tor∇S(X,Y ) to be horizontal, so that, by Frobenious theorem,
Tor∇S is well-defined. The latter admits the following explicit expression.

Proposition 3.2. Let X,Y ∈ Γ(HTS). Then

(3.11) Tor∇S(X,Y ) = 2⟨J(X), Y ⟩S.

Proof. Let X,Y ∈ Γ(HTS). If X =
∑2n

j=1X
jZj and Y =

∑2n
j=1 Y

jZj , then

−⟨[X,Y ], ν⟩ = ⟨Tor∇(X,Y ), ν⟩+ ⟨∇YX −∇XY, ν⟩
(2.2)
= 2⟨J(X), Y ⟩⟨ν, T ⟩+ ⟨∇Xν, Y ⟩ − ⟨∇Y ν,X⟩

(2.3)
=

2n∑
i,j=1

XiY j(Ziνj − Zjνi)

(3.2),(3.3)
= −2α

n∑
i=1

XiY n+i + 2α
n∑

i=1

Xn+iY i

= −2α⟨J(X), Y )⟩.
In particular,

Tor∇S(X,Y ) = Tor∇(X,Y )− ⟨Tor∇(X,Y ), ν⟩ν − ⟨[X,Y ], ν⟩ν = 2⟨J(X), Y ⟩S.

This concludes the proof. □

The following corollary of Proposition 3.2 will be crucial in the following developments.

Corollary 3.3. Let X ∈ Γ(H′TS). Then

(3.12) [J(ν), X] = ∇S
J(ν)X −∇S

XJ(ν) ∈ Γ(HTS).
In particular

(3.13) ⟨[J(ν), X], X⟩ = ⟨∇Xν, J(X)⟩.

If f ∈ C∞(S), we denote by

∇H,Sf =
2n−1∑
j=1

(Ejf) Ej

the horizontal tangential gradient associated with the connection ∇S , where E1, . . . ,E2n−1 is any local
orthonormal frame of HTS. More generally, if p ∈ N and T is a horizontal (p, 0)-tensor field (cf.
[29]), meaning that T : Γ(HTS)p −→ C∞(S) is a C∞(S)-multilinear map, the (p + 1, 0) tensor field
∇ST : Γ(TS)× Γ(HTS)p −→ C∞(S) is defined by

∇S
XT (X1, . . . , Xp) = X (T (X1, . . . , Xp))− T

(
∇S

XX1, . . . , Xp

)
− . . .− T

(
X1, . . . ,∇S

XXp

)
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for any X ∈ Γ(TS) and any X1, . . . , Xp ∈ Γ(HTS). According to the above notation, we denote by
∇H,ST the restriction of ∇ST to Γ(HTS)p+1. As a general fact, ∇S verifies the Leibniz-type rule

(3.14) ∇S
X(TU) = U∇S

XT + T∇S
XU

for any X ∈ Γ(TS) and any couple of tensor fields T,U . If T is as above, we denote its squared norm
by

|T |2 =
2n−1∑

i1,...,ip=1

T
(
Ei1 , . . . ,Eip

)2
for any local orthonormal frame E1, . . . ,E2n−1 of HTS. The horizontal tangential Hessian of T is the
(p+ 2, 0)-tensor field HessH,S T : Γ(HTS)p+2 −→ C∞(S) defined by

HessH,S T (X,Y,X1, . . . , Xp) = ∇S
X∇S

Y T (X1, . . . , Xp)

for any X,Y,X1, . . . , Xp ∈ Γ(HTS). Finally, the horizontal tangential Laplacian of T is the (p, 0)-
tensor field ∆H,ST : Γ(HTS)p −→ C∞(S) defined by

∆H,ST (X1, . . . , Xp) = traceHessH,S T (·, ·, X1, . . . , Xp) =

2n−1∑
j=1

HessH,S T (Ej ,Ej , X1, . . . , Xp)

for any X1, . . . , Xp ∈ Γ(HTS) and any local orthonormal frame E1, . . . ,E2n−1 of HTS. We denote by
RS : Γ(HTS)× Γ(HTS)× Γ(HTS) −→ Γ(HTS) the horizontal curvature tensor associated with ∇S ,
that is

RS(X,Y )Z = ∇S
X∇S

Y Z −∇S
Y ∇S

XZ −∇S
[X,Y ]Z

for any X,Y, Z ∈ Γ(HTS), and with some abuse of notation we let

RS(X,Y, Z,W ) = ⟨∇S
X∇S

Y Z −∇S
Y ∇S

XZ −∇S
[X,Y ]Z,W ⟩

for any X,Y, Z,W ∈ Γ(HTS). The horizontal Hessian of horizontal tensor fields is affected by RS as
follows.

Proposition 3.4. Let T : Γ(HTS)× Γ(HTS) −→ C∞(S) be a (2, 0)-tensor field. Then

HessH,S T (Y,X,Z,W ) = HessH,S T (X,Y, Z,W )

+ T (RS(X,Y )Z,W ) + T (Z,RS(X,Y )W )

+ 2⟨J(X), Y ⟩
(
∇S

ST
)
(Z,W )

(3.15)

for any X,Y, Z,W ∈ Γ(HTS).

Proof. Let

S(A,B,C) = ∇S
AT (B,C) = A(T (B,C))− T (∇S

AB,C)− T (B,∇S
AC).

Then

HessH,S T (X,Y, Z,W ) = X(S(Y, Z,W ))− S(∇S
XY,Z,W )− S(Y,∇S

XZ,W )− S(Y,Z,∇S
XW )

= XY (T (Z,W ))−X(T (∇S
Y Z,W ))−X(T (Z,∇S

YW ))

−∇S
XY (T (Z,W )) + T (∇S

∇S
XY

Z,W ) + T (Z,∇S
∇S

XY
W )

− Y (T (∇S
XZ,W )) + T (∇S

Y ∇S
XZ,W ) + T (∇S

XZ,∇S
YW )

− Y (T (Z,∇S
XW )) + T (∇S

Y Z,∇S
XW ) + T (Z,∇S

Y ∇S
XW )

and, in the same way,

HessH,S T (Y,X,Z,W ) = Y X(T (Z,W ))− Y (T (∇S
XZ,W ))− Y (T (Z,∇S

XW ))

−∇S
YX(T (Z,W )) + T (∇S

∇S
Y X

Z,W ) + T (Z,∇S
∇S

Y X
W )

−X(T (∇S
Y Z,W )) + T (∇S

X∇S
Y Z,W ) + T (∇S

Y Z,∇S
XW )

−X(T (Z,∇S
YW )) + T (∇S

XZ,∇S
YW ) + T (Z,∇S

X∇S
YW ).
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Hence

HessH,ST (Y,X,Z,W )−HessH,S T (X,Y,W,Z) = TorS∇(X,Y )(T (Z,W ))

+ T (∇S
X∇S

Y Z −∇S
Y ∇S

XZ −∇S
∇S

XY−∇S
Y X

Z,W )

+ T (Z,∇S
X∇S

YW −∇S
Y ∇S

XW −∇S
∇S

XY−∇S
Y X

W )

= Tor∇S (X,Y )(T (Z,W ))− T (∇S
Tor∇S (X,Y )Z,W )− T (Z,∇S

Tor∇S (X,Y )W )

+ T (RS(X,Y )Z,W ) + T (Z,RS(X,Y )W )

= ∇S
Tor∇S (X,Y )T (Z,W ) + T (RS(X,Y )Z,W ) + T (Z,RS(X,Y )W )

(3.11)
= 2⟨J(X), Y ⟩∇S

ST (Z,W ) + T (RS(X,Y )Z,W ) + T (Z,RS(X,Y )W ).

□

3.3. Second fundamental forms and mean curvature. In the current literature, different types
of second fundamental form are available in the sub-Riemannian Heisenberg group (cf. e.g. [44, 23,
16, 59, 60]). The horizontal shape operator A : Γ(TS) −→ Γ(HTS) and the symmetric horizontal

shape operator Ã : Γ(HTS) −→ Γ(HTS) are defined respectively by

A(X) = ∇Xν and Ã(X) = ∇Xν + αJ ′(X)

for any X ∈ Γ(HTS), where

J ′ = J on H′TS and J ′(J(ν)) = 0.

It is easy to check that A and Ã are well-defined. Accordingly, the horizontal second fundamental
form h and the symmetric horizontal second fundamental form h̃ are the horizontal (2, 0)-tensor fields
defined by

h(X,Y ) = ⟨A(X), Y ⟩ and h̃(X,Y ) = ⟨Ã(X), Y ⟩
for any X,Y ∈ Γ(HTS). As in the Riemannian setting, the horizontal second fundamental form h
relates the connections ∇ and ∇S by the identity

∇XY = ∇S
XY − h(X,Y )ν

for any X,Y ∈ Γ(HTS). It is well known that h̃ is symmetric, while, when n ⩾ 2, h may not be

symmetric (cf. e.g. [23, 59]). More precisely, h and h̃ are related in the following way.

Proposition 3.5. Let X,Y ∈ Γ(HTS). Then

(3.16) h̃(X,Y ) = h(X,Y ) + αC(X,Y ) =
h(X,Y ) + h(Y,X)

2
,

where C : Γ(HTS) × Γ(HTS) −→ C∞(S), which we will refer to as commutation tensor, is the
skew-symmetric horizontal (2, 0)-tensor field defined by

C(X,Y ) = ⟨J(X), Y ⟩.

In particular

(3.17) h(Y,X) = h(X,Y ) + 2αC(X,Y ).

Finally,

(3.18) |h|2 = |h̃|2 + 2(n− 1)α2.

Proof. Let X,Y ∈ Γ(HTS). By definition of h and h̃ we have that

h̃(X,Y ) = h(X,Y ) + αC(X,Y ).

Moreover, since h̃ is symmetric and C is skew-symmetric in view of (2.1), then

h̃(X,Y ) = h̃(Y,X) = h(Y,X) + αC(Y,X) = h(Y,X)− αC(X,Y ),

whence (3.16) and (3.17) follow. Finally, (3.18) follows from [55, Proposition 5.4]. □
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According to its Riemannian counterpart, the horizontal mean curvature H is then defined by

(3.19) H = traceh = trace h̃ = divH ν,

the last identity following from [23]. In the following, we say that S is minimal whenever H ≡ 0.

Remark 3.6. Although we have defined the horizontal shape operator A only for horizontal tangent
vector fields, we stress that A(S) is nevertheless well-defined, and admits an explicit expression in
view of (3.8). Therefore, with a slight abuse of notation, in the following we shall use the notation
h(S, X) for a given X ∈ Γ(HTS).

3.4. Eigenvectors and umbilicity. Fix p ∈ S. Since h̃p is symmetric, then it is diagonalizable.
Therefore, in the following, we denote by F1, . . . ,F2n−1 any local orthonormal frame of HTS around
p such that

(3.20) h̃p(Fi|p,Fj |p) = λiδi,j

for any i, j = 1, . . . , 2n − 1, where λ1, . . . , λ2n−1 are the eigenvalues of h̃p. When S satisfies milder
assumptions, more can be said about F1, . . . ,F2n−1. According to [16, 12], in the following we adopt
the notation ℓ = h(J(ν), J(ν)), and we let X = ∇J(ν)ν − ℓJ(ν). As we know from [12], if p ∈ S, then

X|p = 0 if and only if Ã|p(H′TpS) ⊆ H′TpS. In particular, when

(H1) X ≡ 0,

J(ν)|p is an eigenvector of h̃p for any p ∈ S. Therefore, when (H1) holds and F1, . . . ,F2n−1 is as in
(3.20), we will always assume that

(3.21) F1, . . . ,Fn−1, . . . ,Fn+1, . . . ,F2n−1 ∈ Γ(H′TS) and Fn = J(ν).

A relevant class of hypersurfaces which satisfy (H1) is that of umbilic hypersurfaces introduced in [12].
We recall that S is called umbilic when (H1) holds and

λ1 = . . . = λn−1 = λn+1 = . . . = λ2n−1 =: λ

for any p ∈ S, where λ = λ(p). We collect some basic properties of umbilic hypersurfaces which will
be useful in the sequel.

Proposition 3.7. Let S be umbilic. Then

(3.22) ∇H,Sα = ⟨∇α, J(ν)⟩J(ν),

(3.23) ⟨∇α, J(ν)⟩ = λ2 − α2 − λℓ.

(3.24) |h̃|2 = ℓ2 − λℓ+Hλ,

and

(3.25) ℓ2 =
2n− 2

2n− 1
|h̃|2 − 2n− 3

2n− 1
Hℓ.

Assume in addition that S is minimal. Then

(3.26) ⟨∇Sα, J(ν)⟩ = 1

2n− 1
|h̃|2 − α2 ⩾ −α2.

Proof. First, (3.22) and (3.23) follow from [12, Proposition 4.2]. Recalling that

H = (2n− 2)λ+ ℓ and |h̃|2 = (2n− 2)λ2 + ℓ2,

(3.24) and (3.25) follow. Finally, if H ≡ 0, (3.26) follows from (3.23), (3.24) and (3.25). □
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3.5. Tangential Laplace-Beltrami operators. The general approach described in Section 3.2 al-
lows to associate to a function f ∈ C∞(S) a natural notion of tangential Laplacian, namely

(3.27) ∆H,Sf = traceHessH,S f.

On the other hand, the authors of [23] considered a Laplace-Beltrami operator on S of the form

(3.28)
2n∑
i=1

∇H,S
i ∇H,S

i f,

where the horizontal tangential derivatives

∇H,S
i f = Zif − ⟨∇Hf, ν⟩νi

for any i = 1, . . . , 2n do not depend on the chosen smooth extension of f (cf. [23]). As pointed out
in [23], the operator defined in (3.28), differently from the Riemannian framework, is not in general
self-adjoint. To this aim, the authors of [23] introduced a modified version of (3.28), the so-called
modified horizontal tangential Laplacian

(3.29) ∆̂H,Sf =
2n∑
i=1

∇H,S
i ∇H,S

i f + 2α
〈
∇Hf, J(ν)

〉
.

The most relevant feature of ∆̂H,S is that it is indeed self-adjoint (cf. [23, Corollary 11.4]), so that
the following integration-by-parts formula holds.

Proposition 3.8. Let φ ∈ C1
c (S) and ψ ∈ C2(S). Then

(3.30)

∫
S
φ ∆̂H,Sψ dσH = −

∫
S
⟨∇H,Sφ,∇H,Sψ⟩ dσH

In order to exploit (3.30), in the next proposition we show that (3.27) and (3.28) agree.

Proposition 3.9. Let f ∈ C2(S). Set gi,jH = δi,j − νiνj for any i, j = 1, . . . , 2n. Then

∆H,Sf =

2n∑
i=1

∇H,S
i ∇H,S

i f =

2n∑
i,j=1

gi,jH ZiZjf −H⟨∇Hf, ν⟩,

Proof. Recalling that |ν| = 1,

2n∑
i=1

∇H,S
i ∇H,S

i f =

2n∑
i=1

ZiZif − ⟨∇Hf, ν⟩
2n∑
i=1

Ziνi −
2n∑

i,j=1

ZiZjfνiνj −
2n∑

i,j=1

ZjfZiνjνi

−
2n∑
i

⟨∇HZif, ν⟩νi +
2n∑
i=1

⟨∇H(⟨∇Hf, ν⟩νi), ν⟩νi

(3.19)
=

2n∑
i,j=1

gi,jH ZiZjf −H⟨∇Hf, ν⟩ −
2n∑

i,j=1

ZjfZiνjνi −
2n∑

i,j=1

ZjZifνiνj

+

2n∑
i,j,k=1

ZjZkf(νi)
2νjνk +

2n∑
i,j,k=1

ZkfZjνk(νi)
2νj +

2n∑
i,j,k=1

ZkfνkZjνiνiνj

=
2n∑

i,j=1

gi,jH ZiZjf −H⟨∇Hf, ν⟩ −
2n∑

i,j=1

ZjfZiνjνi −
2n∑

i,j=1

ZjZifνiνj

+

2n∑
j,k=1

ZjZkfνjνk +

2n∑
j,k=1

ZkfZjνkνj

=

2n∑
i,j=1

gi,jH ZiZjf −H⟨∇Hf, ν⟩.
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Let now E1, . . . ,E2n−1 be a local orthonormal frame of HTS. Set aji = ⟨Ei, Zj⟩ for any i = 1, . . . , 2n−1
and any j = 1, . . . , 2n. Then

(3.31)
2n∑
k=1

aki a
k
j = δij ,

2n∑
k=1

aki νk = 0 and
2n−1∑
k=1

alka
m
k = gl,mH

for any i, j = 1, . . . , 2n− 1 and any l,m = 1, . . . , 2n. Denoting by df(·) = ⟨∇f, ·⟩, we conclude that

∆H,Sf =

2n−1∑
j=1

∇S
Ej
∇S

Ej
f

=
2n−1∑
j=1

∇S
Ej
df(Ej)

=
2n−1∑
j=1

Ej(Ejf)−
2n−1∑
j=1

∇S
Ej
Ejf

=

2n−1∑
j=1

2n∑
h,k=1

ahjZh(a
k
jZkf)−

2n−1∑
j=1

⟨∇S
Ej
Ej ,∇f⟩

=
2n−1∑
j=1

2n∑
h,k=1

ahj a
k
jZhZkf +

2n−1∑
j=1

2n∑
h,k=1

ahjZh(a
k
j )Zkf

−
2n−1∑
j=1

⟨∇EjEj ,∇f⟩+
2n−1∑
j=1

⟨∇EjEj , ν⟩⟨∇f, ν⟩

(3.31)
=

2n∑
h,k=1

gh,kH ZhZkf +
2n−1∑
j=1

2n∑
h,k=1

ahjZh(a
k
j )Zkf

−
2n−1∑
j=1

2n∑
h,k=1

ahj ⟨∇Zh
akjZk,∇f⟩ −H⟨∇f, ν⟩

=

2n∑
h,k=1

gh,kH ZhZkf −H⟨∇f, ν⟩,

whence the thesis follows. □

3.6. The commutation tensor. We know from Proposition 3.5 how the commutation tensor C
intervenes in the lack of commutativity of h. Next we discuss how it affects the commutation of the
covariant derivative of h. First, C evolves along tangent vector fields as follows.

Proposition 3.10. Let X ∈ Γ(TS) and let Y,Z ∈ Γ(HTS). Then

(3.32)
(
∇S

XC
)
(Y,Z) = C(Z, ν)h(X,Y )− C(Y, ν)h(X,Z).

Proof. Let X,Y, Z be as in the statement. Then, by (2.4),

∇S
XC(Y,Z) = X(C(Y, Z))− C(∇S

XY, Z)− C(Y,∇S
XZ)

= X⟨J(Y ), Z⟩+ ⟨∇S
XY, J(Z)⟩ − ⟨J(Y ),∇S

XZ⟩
= ⟨∇XJ(Y ), Z⟩+ ⟨J(Y ),∇XZ⟩+ ⟨∇XY, J(Z))− ⟨J(Y ),∇XZ⟩
− ⟨∇XY, ν⟩⟨J(Z), ν⟩+ ⟨∇XZ, ν⟩⟨J(Y ), ν⟩

= C(Z, ν)h(X,Y )− C(Y, ν)h(X,Z).

□

With the aid of Proposition 3.5 and Proposition 3.10, we describe the lack of commutativity of ∇Sh
in its last two entries.
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Proposition 3.11. Let X,Y, Z ∈ Γ(HTS). Then

(3.33) ∇S
Xh(Y,Z) = ∇S

Xh(Z, Y ) + 2(Xα)C(Z, Y ) + 2αC(Y, ν)h(X,Z)− 2αC(Z, ν)h(X,Y ).

Proof. Fix X,Y, Z as in the statement. Then, by Proposition 3.5 and Proposition 3.10,

∇S
Xh(Y,Z) = X(h(Y,Z))− h(∇S

XY,Z)− h(Y,∇S
XZ)

= X(h(Z, Y )) + 2XαC(Z, Y ) + 2αX(C(Z, Y ))

− h(Z,∇S
XY )− 2αC(Z,∇S

XY )− h(∇S
XZ, Y )− 2αC(∇S

XZ, Y )

= ∇S
Xh(Z, Y ) + 2XαC(Z, Y ) + 2α∇S

XC(Z, Y )

= ∇S
Xh(Z, Y ) + 2XαC(Z, Y ) + 2αC(Y, ν)h(X,Z)− 2αC(Z, ν)h(X,Y ).

□

3.7. Gauss-Codazzi equations. With the next result we derive the sub-Riemannian counterpart of
the classical Gauss-Codazzi equations. We refer to [62] for a proof, which we include anyway for the
sake of completeness.

Proposition 3.12 (Gauss-Codazzi equations). Let X,Y, Z,W ∈ Γ(HTS). Then the Gauss equation

(3.34) RS(X,Y, Z,W ) = h(Y,Z)h(X,W )− h(X,Z)h(Y,W )

and the Codazzi equation

(3.35)
(
∇S

Y h
)
(X,Z) =

(
∇S

Xh
)
(Y,Z) + 2C(X,Y )h(S, Z)

hold.

Proof. We know that

∇XY = ∇S
XY − h(X,Y )ν.

Hence

∇X∇Y Z = ∇X∇S
Y Z −∇X(h(Y,Z)ν)

= ∇S
X∇S

Y Z − h(X,∇S
Y Z)ν −X(h(Y,Z))ν − h(Y, Z)A(X).

Similarly,

−∇Y ∇XZ = −∇S
Y ∇S

XZ + h(Y,∇S
XZ)ν + Y (h(X,Z))ν + h(X,Z)A(Y )

Moreover,

−∇[X,Y ]Z = −∇S
[X,Y ]Z + h([X,Y ], Z)ν

Summing the three equations term by term we get that

0
R≡0
= RS(X,Y )Z + h(X,Z)A(Y )− h(Y,Z)A(X)

+
(
Y (h(X,Z))− h(∇S

YX,Z)− h(X,∇S
Y Z)

)
ν(

−X(h(Y,Z)) + h(∇S
XY,Z) + h(Y,∇S

XZ)
)
ν

+ h(∇S
YX −∇S

XY + [X,Y ], Z)ν

= RS(X,Y )Z + h(X,Z)A(Y )− h(Y, Z)A(X)

+∇S
Y h(X,Z)ν −∇S

Xh(Y,Z)ν − h(Tor∇S (X,Y ), Z)ν

= RS(X,Y )Z + h(X,Z)A(Y )− h(Y, Z)A(X)

+∇S
Y h(X,Z)ν −∇S

Xh(Y,Z)ν − 2⟨J(X), Y ⟩h(S,Z)ν.
The thesis follows projecting the previous identity either on W or on ν. □

In the following, we shall also need the following Codazzi equation for the symmetric form h̃.

Proposition 3.13 (Codazzi equation for h̃). Let X,Y, Z ∈ Γ(HTS). Then

∇S
Y h̃(X,Z)−∇S

X h̃(Y, Z) = 2(Zα)C(X,Y ) + (Y α)C(X,Z)− (Xα)C(Y,Z)

+ 2α2C(ν, Z)C(X,Y ) + αC(ν,X)h(Y,Z)− αC(ν, Y )h(X,Z).
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Proof. In view of Proposition 3.5, Proposition 3.10 and Proposition 3.12,

∇S
Y h̃(X,Z)−∇S

X h̃(Y, Z) = ∇S
Y h(X,Z)−∇S

Xh(Y,Z) +∇S
Y (αC(X,Z))−∇S

X(αC(Y, Z))

= 2C(X,Y )h(S, Z) + (Y α)C(X,Z)− (Xα)C(Y,Z)

+ α∇S
Y C(X,Z)− α∇S

XC(Y, Z)

(3.9)
= 2(Zα)C(X,Y ) + 4α2C(X,Y )C(ν, Z) + (Y α)C(X,Z)− (Xα)C(Y,Z)

+ αC(Z, ν)h(Y,X)− αC(X, ν)h(Y,Z)

− αC(Z, ν)h(X,Y ) + αC(Y, ν)h(X,Z)

= 2(Zα)C(X,Y ) + 4α2C(X,Y )C(ν, Z) + (Y α)C(X,Z)− (Xα)C(Y, Z)

+ 2α2C(Z, ν)C(X,Y )− αC(X, ν)h(Y, Z) + αC(Y, ν)h(X,Z)

= 2(Zα)C(X,Y ) + (Y α)C(X,Z)− (Xα)C(Y,Z)

+ 2α2C(ν, Z)C(X,Y ) + αC(ν,X)h(Y,Z)− αC(ν, Y )h(X,Z).

□

Corollary 3.14. Let X,Y ∈ Γ(HTS). Then

∇S
X h̃(Y, Y ) = ∇S

Y h̃(X,Y ) + 3Y αC(Y,X) + 3α2⟨J(ν), Y ⟩C(Y,X)

+ α⟨J(ν), Y ⟩h̃(Y,X)− α⟨J(ν), X⟩h̃(Y, Y ).
(3.36)

3.8. Variation formulas. Let S ⊆ Hn be a smooth, embedded, non-characteristic hypersurface
without boundary. Assume in addition that S is two-sided. Let Ω ⊆ Hn be an open bounded set such
that Ω ∩ S ̸= ∅, and let ξ ∈ C1

c (Ω). Then it is known (cf. [49, 21, 62, 67]) that

(3.37)
d

dt
σH,t(Ω)

∣∣∣
t=0

=

∫
S
Hξ dσH

and

(3.38)
d2

dt2
σH,t(Ω)

∣∣∣
t=0

=

∫
S

(
|∇H,Sξ|2 − ξ2

(
q −H2

))
dσH,

where

(3.39) q =

2n∑
h,k=1

Zh(νk)Zk(νh) + 4⟨∇α, J(ν)⟩+ 4nα2

and where by σH,t we denote the horizontal surface measure associated with the smooth variation Et

along the vector field ξν. Observe that q does not depend on the chosen unitary extension of ν (cf.
[55]). Moreover, in view of [55, Proposition 5.1] and (3.18),

q = |h|2 + 4⟨∇α, J(ν)⟩+ 4α2 = |h̃|2 + 4⟨∇α, J(ν)⟩+ 2(n+ 1)α2.(3.40)

As customary (cf. e.g. [36]) we say that S is area stationary whenever the quantity in (3.37) vanishes
for any Ω and ξ as above, and that S is stable if it is area stationary and the quantity in (3.38) is
non-negative for any Ω and ξ as above. Notice that S is minimal if and only if it is area stationary.
In particular, when S is stable, the stability inequality

(3.41)

∫
S
qξ2 dσH ⩽

∫
S
|∇H,Sξ|2 dσH

holds for any ξ ∈ C1
c (S).

4. Further properties of the second fundamental forms

In this section we establish some additional properties of h and h̃ which will be useful in the next
section. Although we do believe that many of them may have an independent interest, in order to
facilitate a more conscious reading we would recommend the reader to skip directly to Section 5, and
if necessary to go back to this section in accordance with the references to the latter.
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Proposition 4.1. Let F1, . . . ,F2n+1 be as in (3.20). Then

(4.1) h̃p(Fj , J(Fj)) = 0

for any j = 1, . . . , 2n− 1 such that J(Fj)|p ∈ H′TpS, so that

(4.2) hp(Fj , J(Fj)) = −α and hp(J(Fj),Fj) = α

for any j = 1, . . . , 2n− 1 such that J(Fj)|p ∈ H′TpS. In addition

(4.3) h̃p
(
∇S

XFi,Fi

)
= 0

for any i = 1, . . . , 2n− 1 and any X ∈ Γ(TS). Moreover,

(4.4)

2n−1∑
i=1

Y
(
h̃
(
∇S

XFi,Fi

))
(p) = 0

for any X,Y ∈ Γ(TS). Finally,

(4.5)

2n−1∑
i=1

(
h̃p(∇S

X∇S
Y Fi,Fi) + h̃p(∇S

Y Fi,∇S
XFi)

)
= 0

for any X,Y ∈ Γ(TS).

Proof. To prove (4.1), notice that

h̃(Fj , J(Fj)) =

2n−1∑
k=1

⟨J(Fj),Fk⟩h̃(Fj ,Fk) = ⟨J(Fj),Fj⟩h̃(Fj ,Fj) = 0,

while (4.2) follows from (3.16). Fix i = 1, . . . , 2n− 1. Then

h̃
(
∇S

XFi,Fi

)
=

2n−1∑
k=1

〈
∇S

XFi,Fk

〉
h̃ (Fk,Fi) = λi

〈
∇S

XFi,Fi

〉
= 0,

whence (4.3) follows. Moreover, (4.4) follows since

2n−1∑
i=1

Y
(
h̃
(
∇S

XFi,Fi

))
(p) =

2n−1∑
i,k=1

Y
(〈

∇S
XFi,Fk

〉
h̃ (Fk,Fi)

)
(p)

=
2n−1∑
i,k=1

h̃p(Fi,Fk)Y
(〈
∇S

XFi,Fk

〉)
(p) +

2n−1∑
i,k=1

〈
∇S

XFi,Fk

〉
Y (h̃(Fi,Fk))(p)

(3.20)
=

2n−1∑
i=1

λiY
(〈
∇S

XFi,Fi

〉)
(p) +

2n−1∑
i,k=1

〈
∇S

XFi,Fk

〉
Y (h̃(Fi,Fk))(p)

(3.10)
=

2n−1∑
i,k=1

〈
∇S

XFi,Fk

〉
Y (h̃(Fi,Fk))(p)

(3.10)
= −

2n−1∑
i,k=1

〈
∇S

XFi,Fk

〉
Y (h̃(Fi,Fk))(p)

= 0,



18 G. GIOVANNARDI, A. PINAMONTI, AND S. VERZELLESI

the semi-last equality following by the symmetry of h̃. Finally,

2n−1∑
i=1

(
h̃(∇S

X∇S
Y Fi,Fi) + h̃(∇S

Y Fi,∇S
XFi)

)
=

2n−1∑
i,j=1

⟨∇S
X∇S

Y Fi,Fj⟩h̃(Fi,Fj) +

2n−1∑
i,j,k=1

⟨∇S
Y Fi,Fj⟩⟨∇S

XFi,Fk⟩h̃(Fj ,Fk)

(3.20)
=

2n−1∑
i=1

λi⟨∇S
X∇S

Y Fi,Fi⟩+
2n−1∑
i,j=1

λj⟨∇S
Y Fi,Fj⟩⟨∇S

XFi,Fj⟩

(3.10)
= −

2n−1∑
i=1

λi⟨∇S
Y Fi,∇S

XFi⟩+
2n−1∑
i,j=1

λj⟨∇S
Y Fi,Fj⟩⟨∇S

XFi,Fj⟩

= −
2n−1∑
i,j,k=1

λi⟨∇S
Y Fi,Fj⟩⟨∇S

XFi,Fk⟩⟨Fj ,Fk⟩+
2n−1∑
i,j=1

λj⟨∇S
Y Fi,Fj⟩⟨∇S

XFi,Fj⟩

=

2n−1∑
i,j=1

⟨∇S
Y Fi,Fj⟩⟨∇S

XFi,Fj⟩(λj − λi).

From one hand, exchanging the indices in the previous equation, we get that

(4.6)
2n−1∑
i,j=1

⟨∇S
Y Fi,Fj⟩⟨∇S

XFi,Fj⟩(λj − λi) =
2n−1∑
i,j=1

⟨∇S
Y Fj ,Fi⟩⟨∇S

XFj ,Fi⟩(λi − λj).

From the other hand, recalling (3.10), we infer that

(4.7)
2n−1∑
i,j=1

⟨∇S
Y Fi,Fj⟩⟨∇S

XFi,Fj⟩(λj − λi) =
2n−1∑
i,j=1

⟨∇S
Y Fj ,Fi⟩⟨∇S

XFj ,Fi⟩(λj − λi).

Therefore, combining (4.6) and (4.7), (4.5) follows. □

Proposition 4.2. Let X,Y ∈ Γ(HTS). Then

(4.8) trace∇S
Xh(·, ·) = XH

and

(4.9) traceHessH,S h(X,Y, ·, ·) = HessH,S H(X,Y ).

Proof. Fix X,Y as in the statement. Let p ∈ S. Being the trace operator independent of the choice
of the orthonormal basis, we let Let F1, . . . ,F2n+1 be as in (3.20). To prove (4.8), we observe that

trace∇S
Xh(·, ·) =

2n−1∑
i=1

∇S
Xh(Fi,Fi) = XH − 2

2n−1∑
i=1

h̃(∇S
XFi,Fi)

(4.3)
= XH.

Notice that

(4.10) HessH,S H(X,Y ) = ∇S
X∇S

YH = ∇S
X(Y H) = XYH −∇S

XY H.
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On the other hand, exploiting Proposition 4.1,

traceHessH,Sh(X,Y, ·, ·) =
2n−1∑
i=1

HessH,S h(X,Y,Fi,Fi)

=

2n−1∑
i=1

∇S
X∇S

Y h(Fi,Fi)

=

2n−1∑
i=1

∇S
X

(
Y h(Fi,Fi)− 2h̃(∇S

Y Fi,Fi)
)

=
2n−1∑
i=1

(
XY h(Fi,Fi)−∇S

XY h(Fi,Fi)− 2Y h̃(∇S
XFi,Fi)

− 2Xh̃(∇S
Y Fi,Fi) + 2h̃(∇S

∇S
XY

Fi,Fi) + 2h̃(∇S
Y ∇S

XFi,Fi) + 2h̃(∇S
Y Fi,∇S

XFi)
)

(4.3)
=

2n−1∑
i=1

(
XY h(Fi,Fi)−∇S

XY h(Fi,Fi)− 2Y h̃(∇S
XFi,Fi)

− 2Xh̃(∇S
Y Fi,Fi) + 2h̃(∇S

Y ∇S
XFi,Fi) + 2h̃(∇S

Y Fi,∇S
XFi)

)
(4.4)
=

2n−1∑
i=1

(
XY h(Fi,Fi)−∇S

XY h(Fi,Fi) + 2h̃(∇S
Y ∇S

XFi,Fi) + 2h̃(∇S
Y Fi,∇S

XFi)
)

(4.5)
=

2n−1∑
i=1

(
XY h(Fi,Fi)−∇S

XY h(Fi,Fi)
)

(4.10)
= HessH,S H(X,Y ).

□

Proposition 4.3. Let F1, . . . ,F2n−1 be as in (3.20). Then

(4.11)
1

2
∆H,S |h̃|2 = |∇H,S h̃|2 +

2n−1∑
j=1

h̃(Fj ,Fj)
(
∆H,S h̃

)
(Fj ,Fj)

at p.
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Proof. Notice that

|∇H,S h̃|2 =
2n−1∑
i,j,k=1

(
∇S

Fi
h̃(Fj ,Fk)

)2
=

2n−1∑
i,j,k=1

(
Fih̃(Fj ,Fk)− h̃(∇S

Fi
Fj ,Fk)− h̃(Fj ,∇S

Fi
Fk)
)2

=

2n−1∑
i,j,k=1

(
Fih̃(Fj ,Fk)

)2
+ 2

2n−1∑
i,j,k=1

(
h̃(∇S

Fi
Fj ,Fk)

)2
− 4

2n−1∑
i,j,k=1

Fih̃(Fj ,Fk)h̃(∇S
Fi
Fj ,Fk) + 2

2n−1∑
i,j,k=1

h̃(∇S
Fi
Fj ,Fk)h̃(Fj ,∇S

Fi
Fk)

=

2n−1∑
i,j,k=1

(
Fih̃(Fj ,Fk)

)2
+ 2

2n−1∑
i,j,k=1

⟨∇S
Fi
Fj ,Fk⟩2h̃(Fk,Fk)

2

− 4
2n−1∑
i,j,k=1

h̃(Fk,Fk)Fih̃(Fj ,Fk)⟨∇S
Fi
Fj ,Fk⟩

+ 2

2n−1∑
i,j,k=1

h̃(Fj ,Fj)h̃(Fk,Fk)⟨∇S
Fi
Fj ,Fk⟩⟨∇S

Fi
Fk,Fj⟩

(3.10)
=

2n−1∑
i,j,k=1

(
Fih̃(Fj ,Fk)

)2
+ 2

2n−1∑
i,j,k=1

⟨∇S
Fi
Fj ,Fk⟩2h̃(Fk,Fk)

2

+ 4

2n−1∑
i,j,k=1

h̃(Fj ,Fj)Fih̃(Fj ,Fk)⟨∇S
Fi
Fj ,Fk⟩ − 2

2n−1∑
i,j,k=1

h̃(Fj ,Fj)h̃(Fk,Fk)⟨∇S
Fi
Fj ,Fk⟩2

On the other hand,

2n−1∑
j=1

h̃(Fj ,Fj)
(
∆H,S h̃

)
(Fj ,Fj) =

2n−1∑
i,j=1

h̃(Fj ,Fj)∇S
Fi
∇S

Fi
h̃(Fj ,Fj)

=
2n−1∑
i,j=1

h̃(Fj ,Fj)∇S
Fi

(
Fih̃(Fj ,Fj)− 2h̃(∇S

Fi
Fj ,Fj)

)

=

2n−1∑
i,j=1

h̃(Fj ,Fj)FiFih̃(Fj ,Fj)− 2

2n−1∑
i,j=1

h̃(Fj ,Fj)Fih̃(∇S
Fi
Fj ,Fj)

−
2n−1∑
i,j=1

h̃(Fj ,Fj)∇S
Fi
Fih̃(Fj ,Fj) + 2

2n−1∑
i,j=1

h̃(Fj ,Fj)h̃

(
∇S

∇S
Fi

Fi
Fj ,Fj

)

−
2n−1∑
i,j=1

h̃(Fj ,Fj)Fih̃(∇S
Fi
Fj ,Fj) + 2

2n−1∑
i,j=1

h̃(Fj ,Fj)h̃(∇S
Fi
∇S

Fi
Fj ,Fj)

−
2n−1∑
i,j=1

h̃(Fj ,Fj)Fih̃(Fj ,∇S
Fi
Fj) + 2

2n−1∑
i,j=1

h̃(Fj ,Fj)h̃(∇S
Fi
Fj ,∇S

Fi
Fj)

(4.3)
=

2n−1∑
j=1

h̃(Fj ,Fj)∆
H,S(h̃(Fj ,Fj))− 4

2n−1∑
i,j=1

h̃(Fj ,Fj)Fih̃(∇S
Fi
Fj ,Fj)

+ 2

2n−1∑
i,j=1

h̃(Fj ,Fj)h̃(∇S
Fi
∇S

Fi
Fj ,Fj) + 2

2n−1∑
i,j=1

h̃(Fj ,Fj)h̃(∇S
Fi
Fj ,∇S

Fi
Fj).
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Notice that

−4

2n−1∑
i,j=1

h̃(Fj ,Fj)Fih̃(∇S
Fi
Fj ,Fj) = −4

2n−1∑
i,j,k=1

h̃(Fj ,Fj)Fi

(
⟨∇S

Fi
Fj ,Fk⟩h̃(Fk,Fj)

)
(3.20)
= −4

2n−1∑
i,j=1

h̃(Fj ,Fj)
2Fi

(
⟨∇S

Fi
Fj ,Fj⟩

)
− 4

2n−1∑
i,j,k=1

h̃(Fj ,Fj)Fih̃(Fk,Fj)⟨∇S
Fi
Fj ,Fk⟩

(3.10)
= −4

2n−1∑
i,j,k=1

h̃(Fj ,Fj)Fih̃(Fj ,Fk)⟨∇S
Fi
Fj ,Fk⟩.

Moreover,

2
2n−1∑
i,j=1

h̃(Fj ,Fj)h̃(∇S
Fi
∇S

Fi
Fj ,Fj)

(3.20)
= 2

2n−1∑
i,j=1

h̃(Fj ,Fj)
2⟨∇S

Fi
∇S

Fi
Fj ,Fj⟩

(3.10)
= −2

2n−1∑
i,j=1

h̃(Fj ,Fj)
2⟨∇S

Fi
Fj ,∇S

Fi
Fj⟩

= −2
2n−1∑
i,j,k=1

h̃(Fj ,Fj)
2⟨∇S

Fi
Fj ,Fk⟩2

(3.10)
= −2

2n−1∑
i,j,k=1

h̃(Fk,Fk)
2⟨∇S

Fi
Fj ,Fk⟩2.

Finally,

2
2n−1∑
i,j=1

h̃(Fj ,Fj)h̃(∇S
Fi
Fj ,∇S

Fi
Fj) = 2

2n−1∑
i,j,k=1

h̃(Fj ,Fj)h̃(Fk,Fk)⟨∇S
Fi
Fj ,Fk⟩2.

Therefore we infer that
(4.12)

|∇H,S h̃|2 +
2n−1∑
j=1

h̃(Fj ,Fj)
(
∆H,S h̃

)
(Fj ,Fj) =

2n−1∑
i,j,k=1

(
Fih̃(Fj ,Fk)

)2
+

2n−1∑
j=1

h̃(Fj ,Fj)∆
H,S(h̃(Fj ,Fj)).

We conclude noticing that

1

2
∆H,S |h̃|2 = 1

2

2n−1∑
i,j,k=1

∇S
Fi
∇S

Fi

(
h̃(Fj ,Fk)

2
)

=
2n−1∑
i,j,k=1

∇S
Fi

(
h̃(Fj ,Fk)Fih̃(Fj ,Fk)

)

=

2n−1∑
i,j,k=1

(
Fih̃(Fj ,Fk)

)2
+

2n−1∑
j=1

h̃(Fj ,Fj)∆
H,S(h̃(Fj ,Fj))

(4.12)
= |∇H,S h̃|2 +

2n−1∑
j=1

h̃(Fj ,Fj)
(
∆H,S h̃

)
(Fj ,Fj).

□

Proposition 4.4. Assume that (H1) holds. Then

⟨∇S |h̃|2, J(ν)⟩ = 2ℓ⟨∇ℓ, J(ν)⟩ − 4α|h̃|2 + 2αℓ2 + 2αHℓ.

In particular,

1

2
∆̂H,S |h̃|2 = 1

2
∆H,S |h̃|2 + 2αℓ⟨∇Sℓ, J(ν)⟩ − 4α2|h̃|2 + 2α2ℓ2 + 2α2Hℓ.
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Proof. Let F1, . . . ,F2n−1 be as in (3.20). Since X ≡ 0, we can assume that Fn = J(ν). Therefore

⟨∇S |h̃|2, J(ν)⟩ = J(ν)

2n−1∑
j,k=1

h̃(Fj ,Fk)
2


= 2

2n−1∑
j,k=1

h̃(Fj ,Fk)J(ν)
(
h̃(Fj ,Fk)

)
(3.20)
= 2

2n−1∑
j=1

h̃(Fj ,Fj)J(ν)
(
h̃(Fj ,Fj)

)
(3.17)
= 2

2n−1∑
j=1

h̃(Fj ,Fj)J(ν) (h(Fj ,Fj))

= 2ℓ⟨∇ℓ, J(ν)⟩+ 2
2n−1∑
j=1
j ̸=n

h̃(Fj ,Fj)J(ν) (h(Fj ,Fj)) .

Notice that

2

2n−1∑
j=1
j ̸=n

h̃(Fj ,Fj)J(ν) (h(Fj ,Fj)) = 2

2n−1∑
j=1
j ̸=n

h̃(Fj ,Fj)⟨∇S
J(ν)∇Fjν,Fj⟩+ 2

2n−1∑
j=1
j ̸=n

h̃(Fj ,Fj)⟨∇Fjν,∇S
J(ν)Fj⟩.

First, we have that

2
2n−1∑
j=1
j ̸=n

h̃(Fj ,Fj)⟨∇S
J(ν)∇Fjν,Fj⟩ = 2

2n−1∑
j=1
j ̸=n

h̃(Fj ,Fj)⟨∇J(ν)∇Fjν,Fj⟩

= 2
2n−1∑
j=1
j ̸=n

h̃(Fj ,Fj)⟨R(J(ν),Fj)ν,Fj⟩

+ 2
2n−1∑
j=1
j ̸=n

h̃(Fj ,Fj)⟨∇Fj∇J(ν)ν,Fj⟩+ 2
2n−1∑
j=1
j ̸=n

h̃(Fj ,Fj)⟨∇[J(ν),Fj ]ν,Fj⟩

R≡0
= 2

2n−1∑
j=1
j ̸=n

h̃(Fj ,Fj)⟨∇Fj∇J(ν)ν,Fj⟩+ 2
2n−1∑
j=1
j ̸=n

h̃(Fj ,Fj)⟨∇[J(ν),Fj ]ν,Fj⟩

(H1)+(3.12)
= 2

2n−1∑
j=1
j ̸=n

h̃(Fj ,Fj)⟨∇Fj (ℓJ(ν)) ,Fj⟩+ 2
2n−1∑
j=1
j ̸=n

h̃(Fj ,Fj)h([J(ν),Fj ],Fj)

(3.17)
= −2ℓ

2n−1∑
j=1
j ̸=n

h̃(Fj ,Fj)h(Fj , J(Fj)) + 2
2n−1∑
j=1
j ̸=n

h̃(Fj ,Fj)h([J(ν),Fj ],Fj)

(4.2)
= 2αℓ

2n−1∑
j=1
j ̸=n

h̃(Fj ,Fj) + 2

2n−1∑
j=1
j ̸=n

h̃(Fj ,Fj)h([J(ν),Fj ],Fj)

(4.2)
= 2αHℓ− 2αℓ2 + 2

2n−1∑
j=1
j ̸=n

h̃(Fj ,Fj)h([J(ν),Fj ],Fj)

︸ ︷︷ ︸
I

.
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Observe that

I
(3.17)
= 2

2n−1∑
j=1
j ̸=n

h̃(Fj ,Fj)h̃([J(ν),Fj ],Fj) + 2α

2n−1∑
j=1
j ̸=n

h̃(Fj ,Fj)⟨[J(ν),Fj ], J(Fj)⟩

(3.20)
= 2

2n−1∑
j=1
j ̸=n

h̃(Fj ,Fj)
2⟨[J(ν),Fj ],Fj⟩+ 2α

2n−1∑
j=1
j ̸=n

h̃(Fj ,Fj)⟨[J(ν),Fj ], J(Fj)⟩

(3.13)
= 2

2n−1∑
j=1
j ̸=n

h̃(Fj ,Fj)
2h(Fj , J(Fj)) + 2α

2n−1∑
j=1
j ̸=n

h̃(Fj ,Fj)⟨[J(ν),Fj ], J(Fj)⟩

(4.2)
= −2α

2n−1∑
j=1
j ̸=n

h̃(Fj ,Fj)
2 + 2α

2n−1∑
j=1
j ̸=n

h̃(Fj ,Fj)⟨[J(ν),Fj ], J(Fj)⟩

= −2α|h̃|2 + 2αℓ2 + 2α
2n−1∑
j=1
j ̸=n

h̃(Fj ,Fj)⟨[J(ν),Fj ], J(Fj)⟩.

On the other hand,

2

2n−1∑
j=1
j ̸=n

h̃(Fj ,Fj)⟨∇Fjν,∇S
J(ν)Fj⟩ = 2

2n−1∑
j=1
j ̸=n

h̃(Fj ,Fj)h(Fj ,∇S
J(ν)Fj)

(3.17)
= 2

2n−1∑
j=1
j ̸=n

h̃(Fj ,Fj)h̃(Fj ,∇S
J(ν)Fj)− 2α

2n−1∑
j=1
j ̸=n

h̃(Fj ,Fj)⟨∇S
J(ν)Fj , J(Fj)⟩

(4.3)
= −2α

2n−1∑
j=1
j ̸=n

h̃(Fj ,Fj)⟨∇S
J(ν)Fj , J(Fj)⟩

= 2α
2n−1∑
j=1
j ̸=n

h̃(Fj ,Fj)⟨Tor∇(Fj , J(ν)), J(Fj)⟩

− 2α
2n−1∑
j=1
j ̸=n

h̃(Fj ,Fj)⟨∇FjJ(ν), J(Fj)⟩ − 2α
2n−1∑
j=1
j ̸=n

h̃(Fj ,Fj)⟨[J(ν),Fj ], J(Fj)⟩

(2.2)
= −2α

2n−1∑
j=1
j ̸=n

h̃(Fj ,Fj)⟨∇FjJ(ν), J(Fj)⟩ − 2α
2n−1∑
j=1
j ̸=n

h̃(Fj ,Fj)⟨[J(ν),Fj ], J(Fj)⟩

= −2α
2n−1∑
j=1
j ̸=n

h̃(Fj ,Fj)
2 − 2α

2n−1∑
j=1
j ̸=n

h̃(Fj ,Fj)⟨[J(ν),Fj ], J(Fj)⟩

= −2α|h̃|2 + 2αℓ2 − 2α

2n−1∑
j=1
j ̸=n

h̃(Fj ,Fj)⟨[J(ν),Fj ], J(Fj)⟩.

Putting all the pieces together, the thesis follows. □
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5. Simons and Kato inequalities

The aim of this section is to provide a lower bound for ∆̂H,S |h̃|2. To this aim we establish and
properly combine suitable sub-Riemannian Simons and Kato inequalities.

5.1. The full Simons identity. Our first step consists in providing a full Simons-type identity for
the (2, 0)-horizontal tensor field ∆H,Sh associated to a minimal hypersurface. Due to its computational
complexity, in order to facilitate the reader’s overall understanding of our approach, we have postponed
its proof until Section 8. The sub-Riemannian Simons identity reads as follows.

Theorem 5.1. Let S be a smooth, embedded, non-characteristic hypersurface without boundary. As-
sume that S is minimal. Then

∆H,Sh(X,Y ) = −qh(X,Y ) + 8α2h(X,Y )

+ 4HessH,S α(π(J(X)), Y ) + 4HessH,S α(X,π(J(Y )))

+
(
16απ(J(X))α− 8α2h(X, J(ν)) + 4 (∇Xν)α

)
⟨Y, J(ν)⟩

− 2Xαh(Y, J(ν))− 2Y αh(X,J(ν))

+ 2αh(Y,∇π(J(X))ν)− 2α⟨∇X∇J(ν)ν, Y ⟩ − 4α2h(π(J(X)), π(J(Y )))

+ 2α ⟨J (∇Xν) ,∇Y ν⟩

for any X,Y ∈ Γ(HTS).

5.2. Simons inequality in arbitrary dimension. We are going to combine Proposition 4.3, Propo-
sition 4.4 and Theorem 5.1 to provide a lower bound for ∆̂H,S |h̃|2. To this aim, we assume that (H1)
holds, so that, here and in the rest of this section, we can fix a local orthonormal frame F1, . . . ,F2n−1

which satisfies (3.20) and (3.21) at a given p ∈ S. Under these assumptions, we deduce the following
properties.

Proposition 5.2. Let j = 1, . . . , 2n− 1, j ̸= n. Then

(5.1) 2αh(Fj ,∇J(Fj)ν) = 2α2h(Fj ,Fj)− 2α2h(J(Fj), J(Fj))

and

(5.2) −2α⟨∇Fj∇J(ν)ν,Fj⟩ = −2α2ℓ.

Proof. Fix j = 1, . . . , 2n− 1, j ̸= n. Then

2αh(Fj ,∇J(Fj)ν)
(3.16)
= 2αh̃(Fj ,∇J(Fj)ν)− 2α2C(Fj ,∇J(Fj)ν)

=
2n−1∑
k=1

2α⟨∇J(Fj)ν,Fk⟩h̃(Fj ,Fk)− 2α2h(J(Fj), J(Fj))

= 2α⟨∇J(Fj)ν,Fj⟩h̃(Fj ,Fj)− 2α2h(J(Fj), J(Fj))

= 2αh(J(Fj),Fj)h̃(Fj ,Fj)− 2α2h(J(Fj), J(Fj))

(4.2)
= 2α2h(Fj ,Fj)− 2α2h(J(Fj), J(Fj)).

Moreover,

−2α⟨∇Fj∇J(ν)ν,Fj⟩ = −2αFjh(J(ν),Fj) + 2α⟨∇J(ν)ν,∇FjFj⟩
(H1)
= 2αℓ⟨J(ν),∇FjFj⟩
= −2αℓ⟨∇FjJ(ν),Fj⟩
= 2αℓh(Fj , J(Fj))

(4.2)
= −2α2ℓ.

□
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Owing to Theorem 5.1, we deduce that

∆H,Sh(J(ν), J(ν)) = −qℓ+ 4(∇J(ν)ν)α− 4ℓ⟨∇α, J(ν)⟩ − 2α⟨∇J(ν)∇J(ν)ν, J(ν)⟩
(H1)
= −qℓ− 2α⟨∇J(ν)∇J(ν)ν, J(ν)⟩
= −qℓ− 2α⟨∇ℓ, J(ν)⟩.

On the other hand, if j = 1, . . . , 2n− 1, j ̸= n,

∆H,Sh(Fj ,Fj) = −qh(Fj ,Fj) + 8α2h(Fj ,Fj) +Bα(Fj)− 4Fjαh(Fj , J(ν))

+ 2αh(Fj ,∇π(J(Fj))ν)− 2α⟨∇Fj∇J(ν)ν,Fj⟩ − 4α2h(π(J(Fj)), π(J(Fj)))

(H1)
= −qh(Fj ,Fj) + 8α2h(Fj ,Fj) +Bα(Fj)

+ 2αh(Fj ,∇J(Fj)ν)− 2α⟨∇Fj∇J(ν)ν,Fj⟩ − 4α2h(J(Fj), J(Fj))

(5.1),(5.2)
= −qh(Fj ,Fj) + 10α2h(Fj ,Fj) +Bα(Fj)− 2α2ℓ− 6α2h(J(Fj), J(Fj))

where Bα is defined by

(5.3) Bα(X) = 4HessH,S α(X, J(X)) + 4HessH,S α(J(X), X)

for any X ∈ Γ(H′TS). Notice that

(5.4) Bα(J(X)) = −Bα(X)

for any X ∈ Γ(H′TS). In this way, recalling (4.11),

1

2
∆H,S |h̃|2 = |∇H,S h̃|2 +

2n−1∑
j=1

h̃(Fj ,Fj)
(
∆H,S h̃

)
(Fj ,Fj)

= |∇H,S h̃|2 + ℓ
(
∆H,S h̃

)
(J(ν), J(ν)) +

2n−1∑
j=1
j ̸=n

h̃(Fj ,Fj)
(
∆H,S h̃

)
(Fj ,Fj)

= |∇H,S h̃|2 − qℓ2 − 2αℓ⟨∇Sℓ, J(ν)⟩

− q
2n−1∑
j=1
j ̸=n

h(Fj ,Fj)
2 + 10α2

2n−1∑
j=1
j ̸=n

h(Fj ,Fj)
2 − 6α2

2n−1∑
j=1
j ̸=n

h(Fj ,Fj)h(J(Fj), J(Fj))

+
2n−1∑
j=1
j ̸=n

h(Fj ,Fj)Bα(Fj)− 2α2ℓ
2n−1∑
j=1
j ̸=n

h(Fj ,Fj)

H≡0
= |∇H,S h̃|2 − qℓ2 − 2αℓ⟨∇Sℓ, J(ν)⟩

− q

2n−1∑
j=1
j ̸=n

h(Fj ,Fj)
2 + 10α2

2n−1∑
j=1
j ̸=n

h(Fj ,Fj)
2 − 6α2

2n−1∑
j=1
j ̸=n

h(Fj ,Fj)h(J(Fj), J(Fj))

+
2n−1∑
j=1
j ̸=n

h(Fj ,Fj)Bα(Fj) + 2α2ℓ2

= |∇H,S h̃|2 − q|h̃|2 + 10α2|h̃|2 − 8α2ℓ2 − 2αℓ⟨∇Sℓ, J(ν)⟩

− 6α2
2n−1∑
j=1
j ̸=n

h(Fj ,Fj)h(J(Fj), J(Fj)) +

2n−1∑
j=1
j ̸=n

h(Fj ,Fj)Bα(Fj).
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Recalling Proposition 4.4,

1

2
∆̂H,S |h̃|2 = |∇H,S h̃|2 − q|h̃|2 + 6α2|h̃|2 − 6α2ℓ2

− 6α2
2n−1∑
j=1
j ̸=n

h(Fj ,Fj)h(J(Fj), J(Fj)) +
2n−1∑
j=1
j ̸=n

h(Fj ,Fj)Bα(Fj).
(5.5)

Let us consider the family

(K1, . . . ,Kn−1,Kn,Kn+1, . . . ,K2n−1) = (J(F1), . . . , J(Fn−1), J(ν), J(Fn+1), . . . , J(F2n−1)).

Notice that (K1, . . . ,K2n−1) is still a local orthonormal frame for HTS near p. Exploiting the above
notation, we can rewrite (5.5) as

1

2
∆̂H,S |h̃|2 = |∇H,S h̃|2 − q|h̃|2 + 6α2|h̃|2

− 6α2
2n−1∑
j=1

h(Fj ,Fj)h(Kj ,Kj) +

2n−1∑
j=1
j ̸=n

h(Fj ,Fj)Bα(Fj).
(5.6)

In order to proceed, we further assume that

(H2) ∇H,Sα ≡ ⟨∇α, J(ν)⟩J(ν).

Proposition 5.3. Assume that both (H1) and (H2) hold. Let F1, . . . ,F2n−1 be as in (3.20), and
assume moreover that Fn = J(ν). Then

2n−1∑
j=1
j ̸=n

h(Fj ,Fj)Bα(Fj) = 4⟨∇α, J(ν)⟩|h̃|2 − 4⟨∇α, J(ν)⟩
2n−1∑
j=1

h(Fj ,Fj)h(Kj ,Kj).

Proof. Fix j ̸= n, j = 1, . . . , 2n− 1. By our choice of F1, . . . ,F2n−1 and by (H2), we deduce that

(5.7) Fjα = 0 and J(Fj)α = 0.

Therefore

Bα(Fj)
(5.3)
= 4HessH,S α(Fj , J(Fj)) + 4HessH,S α(J(Fj),Fj)

= 4∇S
Fj
(J(Fj)α) + 4∇S

J(Fj)
(Fjα)

= 4Fj(J(Fj)α)− 4⟨∇S
Fj
J(Fj),∇Sα⟩+ 4J(Fj)(Fjα))− 4⟨∇S

J(Fj)
Fj ,∇Sα⟩

(5.7)
= −4⟨∇S

Fj
J(Fj),∇Sα⟩ − 4⟨∇S

J(Fj)
Fj ,∇Sα⟩

(5.7)
= 4⟨∇α, J(ν)⟩

(
−⟨∇S

Fj
J(Fj), J(ν)⟩ − ⟨∇S

J(Fj)
Fj , J(ν)⟩

)
= 4⟨∇α, J(ν)⟩

(
−⟨∇FjJ(Fj), J(ν)⟩ − ⟨∇J(Fj)Fj , J(ν)⟩

)
= 4⟨∇α, J(ν)⟩

(
−⟨∇FjFj , ν⟩+ ⟨∇J(Fj)J(Fj), ν⟩

)
= 4⟨∇α, J(ν)⟩ (h(Fj ,Fj)− h(J(Fj), J(Fj))) .
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In this way,

2n−1∑
j=1
j ̸=n

h(Fj ,Fj)Bα(Fj) = 4⟨∇α, J(ν)⟩
2n−1∑
j=1
j ̸=n

h(Fj ,Fj)
2

− 4⟨∇α, J(ν)⟩
2n−1∑
j=1
j ̸=n

h(Fj ,Fj)h(J(Fj), J(Fj))

= 4⟨∇α, J(ν)⟩|h̃|2 − 4⟨∇α, J(ν)⟩
2n−1∑
j=1

h(Fj ,Fj)h(Kj ,Kj).

□

Since (H2) holds, we can exploit Proposition 5.3 to write (5.6) as

1

2
∆̂H,S |h̃|2 = |∇H,S h̃|2 − q|h̃|2 + 6α2|h̃|2

+ 4⟨∇α, J(ν)⟩|h̃|2 +
(
−6α2 − 4⟨∇α, J(ν)⟩

) 2n−1∑
j=1

h(Fj ,Fj)h(Kj ,Kj).
(5.8)

Let us further assume that

(5.9) 4⟨∇α, J(ν)⟩ ⩾ −6α2.

In this way, observing that∣∣∣∣∣∣
2n−1∑
j=1

h(Fj ,Fj)h(Kj ,Kj)

∣∣∣∣∣∣ ⩽
√√√√2n−1∑

j=1

h̃(Fj ,Fj)2

√√√√2n−1∑
j=1

h̃(Kj ,Kj)2 ⩽ |h̃|2,

we exploit (5.9) to infer that

(
−6α2 − 4⟨∇α, J(ν)⟩

) 2n−1∑
j=!

h(Fj ,Fj)h(Kj ,Kj) ⩾
(
−6α2 − 4⟨∇α, J(ν)⟩

)
|h̃|2,

so that

1

2
∆̂H,S |h̃|2 ⩾ |∇H,S h̃|2 − q|h̃|2.(5.10)

Remark 5.4. We point out that the inequality provided by (5.10) is sharp in the class of minimal
hypersurfaces which satisfy (H1), (H2) and (5.9). First, observe that, owing to Proposition 3.7 every
minimal umbilic hypersurface satisfies (H1), (H2) and (5.9). We claim that, when S is umbilic, equality
holds in (5.10). Indeed, notice that

2n−1∑
j=1

h(Fj ,Fj)h(Kj ,Kj) = ℓ2 + λ

2n−1∑
j=1
j ̸=n

h(Kj ,Kj)
H≡0
= ℓ2 − λℓ

(3.24)
= |h̃|2.(5.11)

In particular, plugging this identity into (5.8) implies the claim.

Remark 5.5. Let us recall (cf. (3.40)) that

q = |h̃|2 + 4⟨∇α, J(ν)⟩+ (2n+ 2)α2.

Therefore, if we assume (5.9), then

q ⩾ |h̃|2 + (2n− 4)α2 ⩾ |h̃|2 ⩾ 0.(5.12)
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5.3. A refined Simons inequality in H2. In the forthcoming sections, we shall need a more refined
version of (5.10) in the second Heisenberg group H2. Therefore, in the rest of this section we assume
unless otherwised specified that n = 2. The advantage of working in H2 consists in the fact that, as
in the umbilic case, we can provide an explicit expression of the term appearing in the left hand side
of (5.11). More precisely, the following holds.

Proposition 5.6. Assume that (H1) holds. Assume that H ≡ 0. Then

(5.13)
2n−1∑
j=1

h(Fj ,Fj)h(Kj ,Kj) = 3ℓ2 − |h̃|2.

Proof. Let F1,F2,F3 be as in (3.20). Since (H1) holds, we can assume that F2 = J(ν), so that
F1,F3 ∈ Γ(H′TS). But then either F3 = J(F1) or F3 = −J(F1). Therefore, without loss of generality,
we let

(5.14) F2 = J(ν) and F3 = J(F1).

Let us set λ1 = h(F1,F1) and λ3 = h(F3,F3). Exploiting (5.14), we infer that

2n−1∑
j=1

h(Fj ,Fj)h(Kj ,Kj) = ℓ2 + 2λ1λ3.

Moreover, as H ≡ 0, then λ1 + λ3 = −ℓ, so that

0 = H2 = (ℓ+ λ1 + λ3)
2 = |h̃|2 + 2ℓ(λ1 + λ3) + 2λ1λ3 = |h̃|2 − 2ℓ2 + 2λ1λ3,

whence (5.13) follows. □

Exploiting (5.13), we rely on (5.8) to infer that

1

2
∆̂H,S |h̃|2 = |∇H,S h̃|2 − q|h̃|2 + 6α2|h̃|2 + 4⟨∇α, J(ν)⟩|h̃|2 +

(
−6α2 − 4⟨∇α, J(ν)⟩

)
(3ℓ2 − |h̃|2)

= |∇H,S h̃|2 − q|h̃|2 +
(
6α2 + 4⟨∇α, J(ν)⟩

)
(2|h̃|2 − 3ℓ2).

(5.15)

We claim that the second factor in the last term of the previous line is non-negative. To this aim, let
us recall the following straightforward lemma.

Lemma 5.7. Let K ∈ N>0, and let α1, . . . , αK ∈ R. Then

(5.16)

 K∑
j=1

αj

2

⩽ K
K∑
j=1

α2
j .

Moreover, equality in (5.16) holds if and only if α1 = . . . = αK .

Minimal hypersurfaces share the following relation between ℓ and |h̃|.
Proposition 5.8. Let n ⩾ 2. Assume that (H1) holds. Assume that H ≡ 0. Then

(5.17) (2n− 1)ℓ2 ⩽ (2n− 2)|h̃|2.
Moreover, equality holds in (5.17) if and only if S is umbilic.

Proof. Fix β ∈ [0, 1]. Then

ℓ2 = βℓ2 + (1− β)ℓ2

H≡0
= β

2n−1∑
j=1
j ̸=n

h(Fj ,Fj)


2

+ (1− β)ℓ2

(5.16)

⩽ (2n− 2)β

2n−1∑
j=1
j ̸=n

h(Fj ,Fj)
2 + (1− β)ℓ2

⩽ max{(2n− 2)β, 1− β}|h̃|2.
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Noticing that

min
β∈[0,1]

{max{(2n− 2)β, 1− β}} =
2n− 2

2n− 1
,

(5.17) follows. If S is umbilic, we already know from (3.25) that equality holds in (5.17). Finally,
assume that equality holds in (5.17). Then

ℓ2 =
2n− 2

2n− 1
ℓ2 +

2n− 2

2n− 1

2n−1∑
j=1
j ̸=n

h(Fj ,Fj)
2,

so that

ℓ2 = (2n− 2)

2n−1∑
j=1
j ̸=n

h(Fj ,Fj)
2.

On the other hand, being S minimal, then

ℓ = −
2n−1∑
j=1
j ̸=n

h(Fj ,Fj),

so that 2n−1∑
j=1
j ̸=n

h(Fj ,Fj)


2

= (2n− 2)
2n−1∑
j=1
j ̸=n

h(Fj ,Fj)
2.

In light of Lemma 5.7, we conclude that S is umbilic. □

In view of (5.17), and recalling (5.9), it is clear that (5.15) implies (5.10). Therefore, to improve
our estimate, we refine (5.9) by requiring that

(H3) 4⟨∇α, J(ν)⟩ ⩾ −(4 + ω)α2

for a fixed constant ω ∈ [0, 2].

Remark 5.9. The constraint ω ∈ [0, 2] in (H3) is motivated by two reasons. On the one hand, since
ω ⩾ 0, in view of Proposition 3.7 every minimal umbilic hypersurface satisfies (H1), (H2) and (H3).
On the other hand, since ω ⩽ 2, (H3) implies (5.9), so that all our previous considerations still hold.

Nevertheless, coupling (5.15) with (5.17) and (H3), we can improve (5.10) to

1

2
∆̂H,S |h̃|2 (5.15)

= |∇H,S h̃|2 − q|h̃|2 +
(
6α2 + 4⟨∇α, J(ν)⟩

)
(2|h̃|2 − 3ℓ2)

(5.17),(H3)

⩾ |∇H,S h̃|2 − q|h̃|2 + (2− ω)α2(2|h̃|2 − 3ℓ2).

In the end, assuming (H1), (H2) and (H3), we conclude that

(5.18)
1

2
∆̂H,S |h̃|2 ⩾ |∇H,S h̃|2 − q|h̃|2 + (4− 2ω)α2|h̃|2 − (6− 3ω)α2ℓ2.

5.4. Kato inequalities. Our goal here is to provide a lower bound for |∇H,S h̃|2 in terms of |∇H,S |h̃|2|2,
basically under assumptions (H1) and (H2).

Theorem 5.10. Assume (H1). Then

(5.19) |∇H,S |h̃|2|2 ⩽ 4|h̃|2|∇H,S h̃|2.

If in addition H is constant and (H2) holds, then

(5.20)

(
1 +

k

2n− 1

)
|∇H,S |h̃|2|2 ⩽ 4|h̃|2|∇H,S h̃|2 + 4α2|h̃|2

(
(4k − 2)|h̃|2 + (2 + 2kn− 2k − 4n)ℓ2

)
for any k ∈ [0, 2].
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Proof. Let F1, . . . ,F2n−1 be as in (3.20). Since we are assuming (H1), we can choose Fn = J(ν).
Notice that

Fi|h̃|2 =
2n−1∑
j,k=1

Fi(h̃(Fj ,Fk)
2)

= 2

2n−1∑
j,k=1

h̃(Fj ,Fk)Fi(h̃(Fj ,Fk))

(3.20)
= 2

2n−1∑
j=1

h̃(Fj ,Fj)Fi(h̃(Fj ,Fj))

= 2

2n−1∑
j=1

h̃(Fj ,Fj)∇S
Fi
h̃(Fj ,Fj) + 4

2n−1∑
j=1

h̃(Fj ,Fj)h̃(∇S
Fi
Fj ,Fj)

(4.3)
= 2

2n−1∑
j=1

h̃(Fj ,Fj)∇S
Fi
h̃(Fj ,Fj)

(5.21)

for any i = 1, . . . , 2n− 1, so that

|∇H,S |h̃|2|2 =
2n−1∑
i=1

(Fi|h̃|2)2

(5.21)
= 4

2n−1∑
i=1

2n−1∑
j=1

h̃(Fj ,Fj)∇S
Fi
h̃(Fj ,Fj)

2

⩽ 4|h̃|2
2n−1∑
i,j=1

∇S
Fi
h̃(Fj ,Fj)

2,

where in the last passage we used the Cauchy-Schwarz inequality. Therefore

(5.22) |∇H,S |h̃|2|2 ⩽ 4|h̃|2
2n−1∑
i,j=1

∇S
Fi
h̃(Fj ,Fj)

2.

In particular, (5.19) follows from (5.22). Assume now that H is constant. Then

|∇H,S |h̃|2|2
(5.22)

⩽ 4|h̃|2
2n−1∑
i,j=1

∇S
Fi
h̃(Fj ,Fj)

2

= 4|h̃|2
2n−1∑
i,j=1
i ̸=j

∇S
Fi
h̃(Fj ,Fj)

2 + 4|h̃|2
2n−1∑
i=1

∇S
Fi
h̃(Fi,Fi)

2

(4.8)
= 4|h̃|2

2n−1∑
i,j=1
i ̸=j

∇S
Fi
h̃(Fj ,Fj)

2 + 4|h̃|2
2n−1∑
i=1

2n−1∑
j=1
j ̸=i

∇S
Fi
h̃(Fj ,Fj)


2

(5.16)

⩽ 4|h̃|2
2n−1∑
i,j=1
i ̸=j

∇S
Fi
h̃(Fj ,Fj)

2 + 4(2n− 2)|h̃|2
2n−1∑
i,j=1
i ̸=j

∇S
Fi
h̃(Fj ,Fj)

2

= 4(2n− 1)|h̃|2
2n−1∑
i,j=1
i ̸=j

∇S
Fi
h̃(Fj ,Fj)

2,
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whence

(5.23) |∇H,S |h̃|2|2 ⩽ 4(2n− 1)|h̃|2
2n−1∑
i,j=1
i ̸=j

∇S
Fi
h̃(Fj ,Fj)

2.

Exploiting (5.23), we see that

(
1 +

k

2n− 1

)
|∇H,S |h̃|2|2 = |∇H,S |h̃|2|2 + k

2n− 1
|∇H,S |h̃|2|2

(5.22),(5.23)

⩽ 4|h̃|2
2n−1∑
i,j=1

∇S
Fi
h̃(Fj ,Fj)

2 + 4k|h̃|2
2n−1∑
i,j=1
i ̸=j

∇S
Fi
h̃(Fj ,Fj)

2

= 4|h̃|2
2n−1∑
i,j=1
i ̸=j

∇S
Fi
h̃(Fj ,Fj)

2 + 4|h̃|2
2n−1∑
i=1

∇S
Fi
h̃(Fi,Fi)

2 + 4k|h̃|2
2n−1∑
i,j=1
i ̸=j

∇S
Fi
h̃(Fj ,Fj)

2

= 4|h̃|2
2n−1∑
i,j=1
i ̸=j

∇S
Fi
h̃(Fj ,Fj)

2 + 4|h̃|2
2n−1∑
i=1

∇S
Fi
h̃(Fi,Fi)

2

+ 4|h̃|2


k
2n−1∑
j=1
j ̸=n

∇S
J(ν)h̃(Fj ,Fj)

2

︸ ︷︷ ︸
I

+ k
2n−1∑
i=1
i ̸=n

∇S
Fi
h̃(J(ν), J(ν))2

︸ ︷︷ ︸
II

+ k
2n−1∑
i,j=1
i ̸=j
i,j ̸=n

∇S
Fi
h̃(Fj ,Fj)

2

︸ ︷︷ ︸
III


.

At this stage we need to apply the Codazzi equation (3.36) to the terms I, II and III. First, notice
that

I
(3.36)
= k

2n−1∑
j=1
j ̸=n

(
∇S

Fj
h̃(J(ν),Fj)− αh(Fj ,Fj)

)2

= k

2n−1∑
j=1
j ̸=n

∇S
Fj
h̃(J(ν),Fj)

2 − 2kα

2n−1∑
j=1
j ̸=n

h(Fj ,Fj)∇S
Fj
h̃(J(ν),Fj) + kα2|h̃|2 − kα2ℓ2.

(5.24)
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Moreover,

−2kα

2n−1∑
j=1
j ̸=n

h(Fj ,Fj)∇S
Fj
h̃(J(ν),Fj)

(H1)
= 2kα

2n−1∑
j=1
j ̸=n

h(Fj ,Fj)h̃(∇S
Fj
J(ν),Fj) + 2kα

2n−1∑
j=1
j ̸=n

h(Fj ,Fj)h̃(J(ν),∇S
Fj
Fj)

(3.20)
= 2kα

2n−1∑
j=1
j ̸=n

h(Fj ,Fj)
2⟨∇S

Fj
J(ν),Fj⟩+ 2kαℓ

2n−1∑
j=1
j ̸=n

h(Fj ,Fj)⟨∇S
Fj
Fj , J(ν)⟩

= 2kα
2n−1∑
j=1
j ̸=n

h(Fj ,Fj)
2⟨∇FjJ(ν),Fj⟩+ 2kαℓ

2n−1∑
j=1
j ̸=n

h(Fj ,Fj)⟨∇FjFj , J(ν)⟩

= −2kα
2n−1∑
j=1
j ̸=n

h(Fj ,Fj)
2h(Fj , J(Fj)) + 2kαℓ

2n−1∑
j=1
j ̸=n

h(Fj ,Fj)h(Fj , J(Fj))

(4.2)
= 2kα2

2n−1∑
j=1
j ̸=n

h(Fj ,Fj)
2 − 2kα2ℓ

2n−1∑
j=1
j ̸=n

h(Fj ,Fj)

H≡0
= 2kα2

2n−1∑
j=1
j ̸=n

h(Fj ,Fj)
2 + 2kα2ℓ2

= 2kα2|h̃|2.

(5.25)

Finally,

2n−1∑
j=1
j ̸=n

∇S
Fj
h̃(J(ν),Fj)

2 =
2n−1∑
j=1
j ̸=n

(
Fj

(
h̃(J(ν),Fj)

)
− h̃(∇S

Fj
J(ν),Fj)− h̃(J(ν),∇S

Fj
Fj)
)2

(H1)
=

2n−1∑
j=1
j ̸=n

(
h̃(∇S

Fj
J(ν),Fj) + h̃(J(ν),∇S

Fj
Fj)
)2

(3.20)
=

2n−1∑
j=1
j ̸=n

(
⟨∇S

Fj
J(ν),Fj⟩h̃(Fj ,Fj) + ⟨∇S

Fj
Fj , J(ν)⟩ℓ

)2

=
2n−1∑
j=1
j ̸=n

(
−h(Fj , J(Fj))h̃(Fj ,Fj) + h(Fj , J(Fj))ℓ

)2
(4.2)
=

2n−1∑
j=1
j ̸=n

(
αh̃(Fj ,Fj)− αℓ

)2

= α2
2n−1∑
j=1
j ̸=n

h̃(Fj ,Fj)
2 − 2α2ℓ

2n−1∑
j=1
j ̸=n

h̃(Fj ,Fj) + (2n− 2)α2ℓ2

H≡0
= α2|h̃|2 − α2ℓ2 + 2α2ℓ2 + (2n− 2)α2ℓ2

= α2|h̃|2 + (2n− 1)α2ℓ2.

(5.26)
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In this way we can conclude that

I
(5.24)
= k

2n−1∑
j=1
j ̸=n

∇S
Fj
h̃(J(ν),Fj)

2 − 2kα
2n−1∑
j=1
j ̸=n

h(Fj ,Fj)∇S
Fj
h̃(J(ν),Fj) + kα2|h̃|2 − kα2ℓ2

(5.25)
= k

2n−1∑
j=1
j ̸=n

∇S
Fj
h̃(J(ν),Fj)

2 + 3kα2|h̃|2 − kα2ℓ2

= 2
2n−1∑
j=1
j ̸=n

∇S
Fj
h̃(J(ν),Fj)

2 − (2− k)
2n−1∑
j=1
j ̸=n

∇S
Fj
h̃(J(ν),Fj)

2 + 3kα2|h̃|2 − kα2ℓ2

(5.26)
=

2n−1∑
j=1
j ̸=n

∇S
Fj
h̃(J(ν),Fj)

2 +
2n−1∑
j=1
j ̸=n

∇S
Fj
h̃(Fj , J(ν))

2 − (2− k)α2|h̃|2 − (2− k)(2n− 1)α2ℓ2

+ 3kα2|h̃|2 − kα2ℓ2

=

2n−1∑
j=1
j ̸=n

∇S
Fj
h̃(J(ν),Fj)

2 +

2n−1∑
j=1
j ̸=n

∇S
Fj
h̃(Fj , J(ν))

2 + (4k − 2)α2|h̃|2 + 2(1 + kn− k − 2n)α2ℓ2.

On the other hand,

II
(3.36)
= k

2n−1∑
i=1
i ̸=n

∇S
J(ν)h̃(Fi, J(ν))

2 ⩽
2n−1∑
i=1
i ̸=n

∇S
J(ν)h̃(Fi, J(ν))

2 +

2n−1∑
i=1
i ̸=n

∇S
J(ν)h̃(J(ν),Fi)

2.

Finally,

III
(3.36)
= k

2n−1∑
i,j=1
i ̸=j
i,j ̸=n

(
∇S

Fj
h̃(Fi,Fj) + 3FjαC(Fj ,Fi)

)2

= k
2n−1∑
i,j=1
i ̸=j
i,j ̸=n

∇S
Fj
h̃(Fi,Fj)

2 + 6k
2n−1∑
i,j=1
i ̸=j
i,j ̸=n

Fjα∇S
Fj
h̃(Fi,Fj)C(Fj ,Fi) + 9k

2n−1∑
i,j=1
i ̸=j
i,j ̸=n

(Fjα)
2C(Fj ,Fi)

2

=
k

2

2n−1∑
i,j=1
i ̸=j
i,j ̸=n

∇S
Fj
h̃(Fi,Fj)

2 +
k

2

2n−1∑
i,j=1
i ̸=j
i,j ̸=n

∇S
Fj
h̃(Fj ,Fi)

2 + 6k
2n−1∑
j=1
j ̸=n

Fjα∇S
Fj
h̃(J(Fj),Fj) + 9k

2n−1∑
j=1
j ̸=n

(Fjα)
2

=
k

2

2n−1∑
i,j=1
i ̸=j
i,j ̸=n

∇S
Fj
h̃(Fi,Fj)

2 +
k

2

2n−1∑
i,j=1
i ̸=j
i,j ̸=n

∇S
Fj
h̃(Fj ,Fi)

2 + 6k

2n−1∑
j=1
j ̸=n

Fjα∇S
Fj
h̃(J(Fj),Fj)

+ 9k|∇H,Sα|2 − 9k⟨∇Sα, J(ν)⟩2.

In this way, exploiting (H2), we conclude that

III ⩽
2n−1∑
i,j=1
i ̸=j
i,j ̸=n

∇S
Fj
h̃(Fi,Fj)

2 +

2n−1∑
i,j=1
i ̸=j
i,j ̸=n

∇S
Fj
h̃(Fj ,Fi)

2,

so that (5.20) follows. □
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5.5. Simons-Kato inequalities. Combining the estimates of Section 5.2, Section 5.3 and Section 5.4,
we can derive several consequences. For future convenience, we focus on the case n = 2, since the
higher dimensional estimate, owing to (5.10), follows in the same way. To this aim, we fix a minimal
hypersurface S ⊆ H2 such that (H1), (H2) and (H3) hold. Moreover, for any δ ⩾ 0 we define the
function A(δ) by

(5.27) A(δ)(p) =

√
|h̃p|2 + δ

for any p ∈ S. Notice that the function A(δ) belongs to C∞(S), for any δ > 0. This desingularization

will be crucial in the forthcoming Section 6. Observe that Aδ ⩾ |h̃| and that Aδ → |h̃| uniformly on
S as δ → 0+. Since A(δ) ⩾ 0, we can multiply (5.18) by 4A(δ)2, so that

(5.28) 2A(δ)2∆̂H,S |h̃|2 ⩾ 4A(δ)2|∇H,S h̃|2 − 4qA(δ)2|h̃|2 + 4α2A(δ)2
(
(4− 2ω)|h̃|2 − (6− 3ω)ℓ2

)
for any δ ⩾ 0 and any ω ∈ [0, 2]. In particular, since ω ⩽ 2, then 6 − 3ω ⩾ 0, so that we can apply
Proposition 5.8 to infer that

(4− 2ω)|h̃|2 − (6− 3ω)ℓ2
(5.17)

⩾ (4− 2ω)|h̃|2 − 2

3
(6− 3ω)|h̃|2 = 0.

Therefore, we deduce from (5.28) that

(5.29) 2A(δ)2∆̂H,S |h̃|2 ⩾ 4A(δ)2|∇H,S h̃|2 − 4qA(δ)2|h̃|2 + 4α2|h̃|2
(
(4− 2ω)|h̃|2 − (6− 3ω)ℓ2

)
for any δ ⩾ 0 and any ω ∈ [0, 2]. Moreover, (5.20) implies that

(5.30)

(
1 +

k

2n− 1

)
|∇S |h̃|2|2 ⩽ 4A(δ)2|∇H,S h̃|2 + 4α2|h̃|2

(
(4k − 2)|h̃|2 + (2 + 2kn− 2k − 4n)ℓ2

)
for any δ ⩾ 0 and any k ∈ [0, 2]. Therefore, combining (5.29) and (5.30) and recalling (5.12), we
conclude that

(5.31) 2A(δ)2∆̂H,S |h̃|2 ⩾
(
1 +

k

2n− 1

)
|∇S |h̃|2|2 − 4qA(δ)4 + 4α2|h̃|2gS,k,ω

for any δ ⩾ 0 and any k, ω ∈ [0, 2], where

(5.32) gS,k,ω(p) := (6− 2ω − 4k)|h̃p|2 + (3ω − 2k) ℓ(p)2

for any p ∈ S. On the other hand, when n ⩾ 2 the very same argument allows to combine (5.10) with
(5.20) to deduce that

(5.33) 2A(δ)2∆̂H,S |h̃|2 ⩾
(
1 +

k

2n− 1

)
|∇S |h̃|2|2 − 4qA(δ)4 + 4α2|h̃|2g̃S,n,k

for any δ ⩾ 0 and any k ∈ [0, 2], where

g̃S,n,k(p) = (2− 4k)α2|h̃p|2 − (2 + 2kn− 2k − 4n)α2ℓ(p)2

for any p ∈ S.

6. The improved stability inequality

In this section we prove the sub-Riemannian analogue of [63, Theorem 1] in the Heisenberg group.
We aim to rely on the Simons-Kato inequalities which we achieved in Section 5.5. For future purposes,
we specialize our exposition in H2, but the reader will not encounter difficulties in adapting the same
strategy to higher dimensional statements (cf. Remark 6.2).

Theorem 6.1. Let S ⊆ H2 be a smooth, connected, two-sided, embedded, non-characteristic hyper-
surface. Assume that S is stable. Assume that (H1), (H2) and (H3) hold for some ω ∈ [0, 2]. Assume
that

(6.1) gS,k,ω(p) ⩾ 0
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for a given k ∈ [0, 2] and for any p ∈ S. Let β ∈
[
2n−1−k
2n−1 , 1 +

√
k

2n−1

)
. There exists a constant

C = C(β, k) > 0, thus independent on S, such that

(6.2)

∫
S
|h̃|2β+2φ2β+2 dσH ⩽ C

∫
S
|∇H,Sφ|2β+2 dσH

for any φ ∈ C1
c (S).

Proof. Let us recall (cf. [24, Lemma 11.6]) that

(6.3) ∆̂H,S (F ◦ u) =
(
F̈ ◦ u

)
|∇H,Su|2 +

(
Ḟ ◦ u

)
∆̂H,Su

for any F ∈ C2(R) and any u ∈ C2(S). Fix β, δ > 0, k ∈ [0, 2] and a test function φ ∈ C1
c (S).

Choosing ξ = A(δ)βφ in the stability inequality (3.41), where A(δ) is as in (5.27), we infer that∫
S
q
(
A(δ)βφ

)2
dσH

(3.41)

⩽
∫
S

∣∣∣∇H,S
(
A(δ)βφ

)∣∣∣2 dσH

=

∫
S

∣∣∣∣β2φA(δ)β−2∇H,S |h̃|2 +A(δ)β∇H,Sφ

∣∣∣∣2 dσH
=

∫
S

β2

4
φ2A(δ)2β−4|∇H,S |h̃|2|2 + βφA(δ)2β−2⟨∇H,S |h̃|2,∇H,Sφ⟩+A(δ)2β|∇H,Sφ|2 dσH

=

∫
S

β2

4
φ2A(δ)2β−4|∇H,S |h̃|2|2 + 1

2
⟨∇H,SA(δ)2β,∇H,Sφ2⟩+A(δ)2β|∇H,Sφ|2 dσH

(3.30)
=

∫
S

β2

4
φ2A(δ)2β−4|∇H,S |h̃|2|2 − 1

2
φ2∆̂H,SA(δ)2β +A(δ)2β|∇H,Sφ|2 dσH

(6.3)
=

∫
S

β

2

(
1− β

2

)
φ2A(δ)2β−4|∇H,S |h̃|2|2 − β

4
φ2A(δ)2β−4

(
2A(δ)2∆̂H,S |h̃|2

)
+A(δ)2β|∇H,Sφ|2 dσH

(5.31)

⩽
∫
S

β

2

(
1− β

2

)
φ2A(δ)2β−4|∇H,S |h̃|2|2 +A(δ)2β|∇H,Sφ|2 − βφ2α2|h̃|2A(δ)2β−4gS,k,ω dσH

+

∫
S
−β
4

(
1 +

k

2n− 1

)
φ2A(δ)2β−4|∇H,S |h̃|2|2 + βq

(
A(δ)βφ

)2
dσH

(6.1)

⩽
∫
S

β

4

(
1− β − k

2n− 1

)
φ2A(δ)2β−4|∇H,S |h̃|2|2 + βq

(
A(δ)βφ

)2
+A(δ)2β|∇H,Sφ|2 dσH.

Therefore, factoring out, we deduce that
(6.4)
β

4

(
k

2n− 1
+ β − 1

)∫
S
φ2A(δ)2β−4|∇H,S |h̃|2|2 dσH ⩽

∫
S
(β − 1)q

(
A(δ)βφ

)2
+A(δ)2β|∇H,Sφ|2 dσH.

Assume first that β ∈
[
1, 1 +

√
k

2n−1

)
. In particular, β − 1 ⩾ 0. Therefore, exploiting again (3.41)

and combining Cauchy-Schwarz and Young inequalities,∫
S
q
(
A(δ)βφ

)2
dσH

(3.41)

⩽
∫
S

∣∣∣∇H,S
(
A(δ)βφ

)∣∣∣2 dσH

=

∫
S

β2

4
φ2A(δ)2β−4|∇H,S |h̃|2|2 + βφA(δ)2β−2⟨∇H,S |h̃|2,∇H,Sφ⟩+A(δ)2β|∇H,Sφ|2 dσH

⩽
∫
S

β2

4
φ2A(δ)2β−4|∇H,S |h̃|2|2 + β

(
φA(δ)β−2

∣∣∣∇H,S |h̃|2
∣∣∣) (A(δ)β ∣∣∇H,Sφ

∣∣)+A(δ)2β|∇H,Sφ|2 dσH

⩽
∫
S

β2

4
φ2A(δ)2β−4|∇H,S |h̃|2|2 +A(δ)2β|∇H,Sφ|2 dσH

+

∫
S

εβ

4
φ2A(δ)2β−4

∣∣∣∇H,S |h̃|2
∣∣∣2 + β

ε
A(δ)2β

∣∣∇H,Sφ
∣∣2 dσH

=

∫
S

β

4
(β + ε)φ2A(δ)2β−4

∣∣∣∇H,S |h̃|2
∣∣∣2 + (1 + β

ε

)
A(δ)2β

∣∣∇H,Sφ
∣∣2 dσH
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for any given ε > 0, so that

(β − 1)

∫
S
q
(
A(δ)βφ

)2
dσH ⩽

β

4
(β − 1)(β + ε)

∫
S
φ2A(δ)2β−4

∣∣∣∇H,S |h̃|2
∣∣∣2 dσH

+ (β − 1)

(
1 +

β

ε

)∫
S
A(δ)2β

∣∣∇H,Sφ
∣∣2 dσH.(6.5)

Combining (6.4) and (6.5),

β

4

(
k

2n− 1
+ β − 1

)∫
S
φ2A(δ)2β−4|∇H,S |h̃|2|2 dσH ⩽

β

4
(β − 1)(β + ε)

∫
S
φ2A(δ)2β−4

∣∣∣∇H,S |h̃|2
∣∣∣2 dσH

+ (β − 1)

(
1 +

β

ε

)∫
S
A(δ)2β

∣∣∇H,Sφ
∣∣2 dσH +

∫
S
A(δ)2β|∇H,Sφ|2 dσH,

so that, factoring out and dividing by β
4 ,

(6.6) P (ε, β, k)

∫
S
φ2A(δ)2β−4|∇H,S |h̃|2|2 dσH ⩽ Q(ε, β)

∫
S
A(δ)2β

∣∣∇H,Sφ
∣∣2 dσH,

where

P (ε, β, k) = −β2 + (2− ε)β +
k

2n− 1
− 1 + ε and Q(ε, β) = 4 +

4β − 4

ε
.

Notice that

Q(ε, β) ⩾ 4

for any ε > 0 and any β ⩾ 1. Moreover,

P (0, β, k)


> 0 if β ∈

[
1, 1 +

√
k

2n−1

)
= 0 if β = 1 +

√
k

2n−1

< 0 if β > 1 +
√

k
2n−1 .

Since the map ε 7→ P (ε, β, k) is continuous and β < 1 +
√

k
2n−1 , there exists ε̂ = ε̂(k, β) such that

(6.7) P (ε̂, β, k) > 0.

Choosing ε = ε̂ in (6.6), we exploit (6.7) to infer that

(6.8)

∫
S
φ2A(δ)2β−4|∇H,S |h̃|2|2 dσH ⩽

Q(ε̂, β)

P (ε̂, β, k)

∫
S
A(δ)2β

∣∣∇H,Sφ
∣∣2 dσH.

Finally, recalling (H3), we combine (6.5) and (6.6) to conclude that∫
S
φ2|h̃|2β+2 dσH

(5.12)

⩽
∫
S
q
(
A(δ)βφ

)2
dσH

(6.5)

⩽
β

4
(β + ε̂)

∫
S
φ2A(δ)2β−4

∣∣∣∇H,S |h̃|2
∣∣∣2 dσH +

(
1 +

β

ε̂

)∫
S
A(δ)2β

∣∣∇H,Sφ
∣∣2 dσH

(6.8)

⩽

(
β(β + ε̂)Q(ε̂, β)

4P (ε̂, β, k)
+ 1 +

β

ε̂

)∫
S
A(δ)2β

∣∣∇H,Sφ
∣∣2 dσH.

Since the constant

C(β, k) =

(
β(β + ε̂)Q(ε̂, β)

4P (ε̂, β, k)
+ 1 +

β

ε̂

)
is independent on δ > 0, the dominated convergence theorem allows to let δ → 0+ in the previous
inequality to deduce that

(6.9)

∫
S
φ2|h̃|2β+2 dσH ⩽ C(β, k)

∫
S
|h̃|2β|∇H,Sφ|2 dσH.
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In order to conclude, we exploit (6.9) replacing φ with φβ+1. In this way Hölder’s inequality implies
that∫

S
|h̃|2β+2φ2β+2 dσH =

∫
S
|h̃|2β+2

(
φβ+1

)2
dσH

(6.9)

⩽ C(β, k)

∫
S
|h̃|2β|∇H,S(φβ+1)|2 dσH

= (β + 1)2C(β, k)

∫
S

(
|h̃|φ

)2β
|∇H,Sφ|2 dσH

⩽ (β + 1)2C(β, k)

(∫
S
|h̃|2β+2φ2β+2 dσH

) β
β+1
(∫

S
|∇H,Sφ|2β+2 dσH

) 1
β+1

,

whence ∫
S
|h̃|2β+2φ2β+2 dσH ⩽ (β + 1)2β+2C(β, k)β+1

∫
S
|∇H,Sφ|2β+2 dσH.

The thesis follows when β ⩾ 1. Finally, assume that β ∈
[
2n−1−k
2n−1 , 1

)
. In this case, (6.4) implies that∫

S
|h̃|2β+2φ2 dσH ⩽

∫
S
q
(
A(δ)βφ

)2
dσH ⩽

1

1− β

∫
S
A(δ)2β|∇Sφ|2 dS,

and the thesis follows as in the previous case. □

Remark 6.2. As already pointed out, the vary same proof of Theorem 6.1 applies for an arbitrary
n ⩾ 2. In this case, it suffices to assume (5.9) instead of (H3), and to rely on (5.33) rather than on
(5.31). Accordingly, (6.1) has to be replaced by requiring that g̃S,n,k(p) ⩾ 0 for any p ∈ S.

7. The Bernstein problem

We are ready to solve the Bernstein problem in the class of hypersurfaces S ⊆ H2 which satisfy
(H1), (H2) and (H3), providing the sub-Riemannian analogue of [63, Theorem 2]. To this aim, we are
going to assume the validity of suitable sub-Riemannian volume growth conditions, inspired by the
behavior of perimeter minimizers in the Heisenberg group (cf. [54, Theorem 2.2]).

Proposition 7.1. Let E ⊆ Hn be a global perimeter minimizer with smooth, non-characteristic bound-
ary. Then there exists a constant c > 0 such that

PH(E,Br(p)) ⩽ cr2n+1

for any r > 0 and any p ∈ ∂E.

Remark 7.2. With regard to the above volume growth condition, notice that 2n+1 = Q− 1, where
Q := 2n+ 2 is both the homogeneous and the metric dimension of Hn (cf. [64]).

Since we wish to apply Theorem 6.1, we need to ensure the validity of (6.1) for suitable values of
k. Let us describe our approach as follows. Let mℓ ∈ [0, 23 ] be such that

(7.1) ℓ(p)2 ⩾ mℓ|h̃p|2

for any p ∈ S. Notice that the upper bound for mℓ follows from (5.17), while mℓ = 0 can be chosen
whether no further information is available.

Proposition 7.3. Assume that

(7.2) mℓ ⩽
2

9
=⇒ ω < u(mℓ) :=

3mℓ − 6

6mℓ − 4
.

Then there exists k ∈ (34 , 2] such that (6.1) is satisfied.

Remark 7.4. The relevance of having k > 3
4 in Proposition 7.3 will be evident in a few lines. Notice

that the function s 7→ u(s) is continuous and increasing on
[
0, 29
]
, and moreover u(0) = 3

2 and

u
(
2
9

)
= 2. In particular, (7.2) holds for any ω < 3

2 without any further information on mℓ, while the

best choice ω = 2 can be made as soon as mℓ >
2
9 .
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Proof of Proposition 7.3. Let k ∈ (34 , 2], and assume first that 0 ⩽ ω ⩽ 1
2 . In this way 3ω− 2k < 0, so

that

gS,k,ω(p) = (6− 2ω − 4k)|h̃p|2 + (3ω − 2k) ℓ(p)2
(5.17)

⩾

(
6− 16

3
k

)
|h̃p|2

for any p ∈ S, whence (6.1) holds for any k ∈
(
3
4 ,

9
8

]
. On the other hand, assume that ω > 1

2 . Since

ω > 1
2 , we can chose k > 3

4 small enough to ensure that 3ω − 2k > 0. Assume first that mℓ ∈
[
0, 29
]
.

In this way, by (7.2), ω < u(mℓ), so that

gS,k,ω(p) = (6− 2ω − 4k)|h̃p|2 + (3ω − 2k) ℓ(p)2

(7.1)

⩾ (6− ω(2− 3mℓ)− 4k − 2kmℓ)|h̃p|2

(7.2)
>

(
4

(
3

4
− k

)
+ 2mℓ

(
3

4
− k

))
|h̃p|2

for any p ∈ S. As the last term in the above inequality vanishes when k = 3
4 , and due to the last strict

inequality, the thesis follows when mℓ ∈
[
0, 29
]
. Finally, assume that mℓ >

2
9 . In this case, recalling

that w ⩽ 2,

gS,k,ω(p) = (6− 2ω − 4k)|h̃p|2 + (3ω − 2k) ℓ(p)2

(7.1)

⩾ (6− 2ω − 4k +mℓ(3ω − 2k)) |h̃p|2

>

(
6− 4

3
ω − 40

9
k

)
|h̃p|2

⩾
40

9

(
3

4
− k

)
|h̃p|2

for any p ∈ S, whence the thesis follows as in the previous case. □

Before stating our main result, we point out that, in view of [3], when n ⩾ 2 the notion of com-
pleteness for an embedded hypersurface S ⊆ Hn can be equivalently given by the restriction of the
ambient metric on S or by the intrinsic metric of S, provided that the latter are induced by the
Euclidean, Riemannian or sub-Riemannian structure of Hn. Therefore, in the following we will talk
without ambiguity of complete hypersurfaces.

Theorem 7.5. Let S ⊆ H2 be a smooth, complete, connected, embedded, two sided non-characteristic
hypersurface. Assume that S is stable. Assume that S verifies (H1), (H2) and (H3), where ω is as in
(7.2). Assume in addition that there exists p ∈ S and a constant c > 0 such that

(7.3) lim
r→+∞

σH(S ∩Br(p))

r2n+1
⩽ c.

Then S is a vertical hyperplane.

Proof. Fix p ∈ S as in the statement. Let (Rj)j be a sequence of positive numbers such that
limj→∞Rj = +∞. In this way, up to a subsequence, we deduce from (7.3) that

(7.4) σH(S ∩B2Rj (p)) ⩽ ĉR2n+1
j

for any j ∈ N and a suitable constant ĉ > 0. In view of [20, Lemma 3.6], it is possible to find a positive

constant C̃ > 0 and a sequence of non-negative functions (φj)j ⊆ C1
c (H2) such that

(7.5) φj ≡ 1 in BRj (p), φj ≡ 0 in H2 \B2Rj (p) and |∇Hφj | ⩽
C̃

Rj
.

We wish to apply Theorem 6.1 to the sequence (φj)j . To this aim, since S is complete, then S∩suppφj

is compact in S for any j ∈ N, whence (φj)j ⊆ C1
c (S). Since ω satisfies (7.2), Proposition 7.3 implies

the existence of k ∈
(
3
4 , 2
]
such that (6.1) holds. Therefore, for any fixed j ∈ N, we can apply (6.2),
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so that

∫
S∩BRj

(p)
|h̃|2β+2 dσH

(7.5)

⩽
∫
S∩B2Rj

(p)
|h̃|2β+2φ2β+2 dσH

(6.2)

⩽
∫
S∩B2Rj

(p)
|∇H,Sφ|2β+2 dσH

⩽
∫
S∩B2Rj

(p)
|∇Hφ|2β+2 dσH

(7.5)

⩽

(
C̃

Rj

)2β+2

σH(S ∩B2Rj (p))

(7.4)

⩽ c̃R3−2β
j

for a suitable positive constant c̃ independent of j ∈ N. Observe that, if we could choose β > 3
2 in the

previous inequality, we could pass to the limit as j → ∞ to infer that

∫
S
|h̃|2β+2 dσH = 0,

whence h̃ ≡ 0. To this aim, it suffices to notice that

3

2
< 1 +

√
k

3
⇐⇒ k >

3

4
.

Therefore, we can conclude that h̃ ≡ 0. Finally, being S non-characteristic, we can apply [55, Theorem
1.1] to conclude that S is a vertical hyperplane. □

As a consequence of Theorem 7.5 and Proposition 7.1, we get the following corollary.

Corollary 7.6. Let E ⊆ H2 be a global perimeter minimizer. Assume that ∂E is smooth, connected
and non-characteristic. Assume in addition that ∂E verifies (H1), (H2) and (H3). Then ∂E is a
vertical hyperplane.

Remark 7.7. When S is a minimal umbilic hypersurface, then S satisfies (H1), (H2) and (H3) with
ω = 0. In particular, umbilic hypersurfaces automatically satisfy (7.2).

8. Proof of Theorem 5.1

In this final section we provide the proof of the full Simons identity presented in Theorem 5.1.

Proof of Theorem 5.1. Let E1, . . . ,E2n−1 be a local orthonormal frame of HTS. In order to avoid am-
biguities when computing derivatives, we let hS and Cν be the (1, 0)-tensor fields defined respectively
by

hS(Z) = h(S, Z) and Cν(Z) = C(Z, ν)
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for any Z ∈ Γ(HTS). Then

∆H,Sh(X,Y ) =
2n−1∑
i=1

HessH,S h(Ei,Ei, X, Y )

=
2n−1∑
i=1

∇S
Ei
(∇S

Ei
h(X,Y ))

(3.35)
=

2n−1∑
i=1

∇S
Ei
(∇S

Xh(Ei, Y ) + 2C(X,Ei)hS(Y ))

=

2n−1∑
i=1

HessH,S h(Ei, X,Ei, Y ) +

2n−1∑
i=1

∇S
Ei
(2C(X,Ei)hS(Y ))︸ ︷︷ ︸

I

(3.15)
=

2n−1∑
i=1

HessH,S h(X,Ei,Ei, Y ) +

2n−1∑
i=1

h(RS(X,Ei)Ei, Y ) +

2n−1∑
i=1

h(Ei, R
S(X,Ei)Y )︸ ︷︷ ︸

II

+

2n−1∑
i=1

2C(X,Ei)∇S
Sh(Ei, Y )︸ ︷︷ ︸

III

+I

=
2n−1∑
i=1

∇S
X(∇S

Ei
h(Ei, Y )) + I + II + III

(3.33)
=

2n−1∑
i=1

∇S
X(∇S

Ei
h(Y,Ei)) +

2n−1∑
i=1

∇S
X(2EiαC(Y,Ei))︸ ︷︷ ︸

IV

+
2n−1∑
i=1

∇S
X(2αCν(Ei)h(Ei, Y ))︸ ︷︷ ︸

V

−
2n−1∑
i=1

∇S
X(2αCν(Y )h(Ei,Ei))︸ ︷︷ ︸

VI

+I + II + III

(3.35)
=

2n−1∑
i=1

∇S
X(∇S

Y h(Ei,Ei))︸ ︷︷ ︸
VII

+

2n−1∑
i=1

∇S
X(2C(Y,Ei)hS(Ei))︸ ︷︷ ︸

VIII

+I + II + III + IV + V+VI

= I + II + III + IV + V+VI + VII + VIII.

We need to compute separately the terms I, . . . ,VIII. To this aim, we denote by G1, . . . ,G2n−1 a local
orthonormal frame of HTS such that

(8.1) Gn = J(ν) and J(Gi) = Gn+i
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for any i = 1, . . . , n− 1 (cf. [16]). Computation of I.

I = trace∇S
· (2C(X, ·)hS(Y ))

=

2n−1∑
i=1

∇S
Gi
(2C(X,Gi)hS(Y ))

(3.14)
=

2n−1∑
i=1

2h(S, Y )∇S
Gi
C(X,Gi) +

2n−1∑
i=1

2C(X,Gi)∇S
Gi
hS(Y )

(3.32),(3.6)
=

2n−1∑
i=1

2h(S, Y )C(Gi, ν)h(Gi, X)−
2n−1∑
i=1

2h(S, Y )C(X, ν)h(Gi,Gi) + 2∇S
π(J(X))hS(Y )

H≡0
=

2n−1∑
i=1

2h(S, Y )C(Gi, ν)h(Gi, X) + 2∇S
π(J(X))hS(Y )

(8.1)
= −2h(S, Y )h(J(ν), X) + 2∇S

π(J(X))hS(Y ).

Notice that

−2h(S, Y )h(J(ν), X)
(3.17)
= −2h(S, Y )h(X, J(ν))

(3.9)
= −2Y αh(X, J(ν))− 4α2h(X, J(ν))⟨Y, J(ν)⟩.

On the other hand,

2∇S
π(J(X))hS(Y ) = 2π(J(X))(h(S, Y ))− 2h(S,∇S

π(J(X))Y )

(3.9)
= 2π(J(X))(Y α+ 2α2⟨Y, J(ν)⟩ − 2∇S

π(J(X))Y α− 4α2⟨∇S
π(J(X))Y, J(ν)⟩

= 2HessH,S α(π(J(X)), Y ) + 8απ(J(X))α⟨Y, J(ν)⟩
+ 4α2π(J(X))⟨Y, J(ν)⟩ − 4α2⟨∇π(J(X))Y, J(ν)⟩

= 2HessH,S α(π(J(X)), Y ) + 8απ(J(X))α⟨Y, J(ν)⟩+ 4α2⟨Y,∇π(J(X))J(ν)⟩
(2.4)
= 2HessH,S α(π(J(X)), Y ) + 8απ(J(X))α⟨Y, J(ν)⟩ − 4α2

〈
J(Y ),∇π(J(X))ν

〉
= 2HessH,S α(π(J(X)), Y ) + 8απ(J(X))α⟨Y, J(ν)⟩ − 4α2h(π(J(X)), π(J(Y ))).

In conclusion,

I = 2HessH,S α(π(J(X)), Y ) + 8απ(J(X))α⟨Y, J(ν)⟩ − 4α2h(π(J(X)), π(J(Y )))

− 2Y αh(X, J(ν))− 4α2h(X, J(ν))⟨Y, J(ν)⟩.

Computation of VI.

VI = −
2n−1∑
i=1

∇S
X(2αCν(Y )h(Ei,Ei))

= −
2n−1∑
i=1

∇S
X(2αCν(Y ))h(Ei,Ei)− 2αC(Y, ν)

2n−1∑
i=1

∇S
Xh(Ei,Ei)

= −∇S
X(2αCν(Y ))H − 2αC(Y, ν) trace∇S

Xh(·, ·)
(4.8)
= −∇S

X(2αCν(Y ))H − 2αC(Y, ν)XH

H≡0
= 0.

Computation of VII. Thanks to Proposition 4.2, we infer that

VII = traceHessH,S h(X,Y, ·, ·) = HessH,S H(X,Y )
H≡0
= 0.
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Computation of VIII.

VIII = trace∇S
X(2C(Y, ·)hS(·))

=

2n−1∑
i=1

∇S
X(2C(Y,Gi)hS(Gi))

(3.14)
=

2n−1∑
i=1

2h(S,Gi)∇S
XC(Y,Gi) +

2n−1∑
i=1

2C(Y,Gi)∇S
XhS(Gi)

(3.32)
=

2n−1∑
i=1

2h(S,Gi)C(Gi, ν)h(X,Y )−
2n−1∑
i=1

2h(S,Gi)C(Y, ν)h(X,Gi) +
2n−1∑
i=1

2C(Y,Gi)∇S
XhS(Gi)

(8.1),(3.6)
= −2h(S, J(ν))h(X,Y )− 2h(S,∇Xν)C(Y, ν) + 2∇S

XhS(π(J(Y ))).

Notice that

−2h(S, J(ν))h(X,Y )
(3.9)
=
(
−2⟨∇α, J(ν)⟩ − 4α2

)
h(X,Y ).

On the other hand,

−2h(S,∇Xν)C(Y, ν) = 2 (∇Xν)α⟨Y, J(ν)⟩+ 4α2h(X, J(ν))⟨Y, J(ν)⟩.

Finally,

2∇S
XhS(π(J(Y ))) = 2X (h(S, π(J(Y ))))− 2h(S,∇S

Xπ(J(Y )))

(3.9),(3.7)
= 2HessH,S α(X,π(J(Y ))) + 4α2⟨π(J(Y )),∇XJ(ν)⟩

= 2HessH,S α(X,π(J(Y )))− 4α2h(X,J(π(J(Y ))))

(3.7)
= 2HessH,S α(X,π(J(Y ))) + 4α2h(X,Y )− 4α2h(X, J(ν))⟨Y, J(ν)⟩.

Putting the previous equations together, we conclude that

VIII = −2⟨∇α, J(ν)⟩h(X,Y ) + 2 (∇Xν)α⟨Y, J(ν)⟩+ 2HessH,S α(X,π(J(Y ))).

Computation of II.

II =
2n−1∑
i,j=1

RS(X,Gi,Gi,Gj)h(Gj , Y ) +
2n−1∑
i,j=1

RS(X,Gi, Y,Gj)h(Gi,Gj)

(3.34)
=

2n−1∑
i,j=1

h(Gi,Gi)h(X,Gj)h(Gj , Y )−
2n−1∑
i,j=1

h(X,Gi)h(Gi,Gj)h(Gj , Y )

+
2n−1∑
i,j=1

h(Gi, Y )h(X,Gj)h(Gi,Gj)−
2n−1∑
i,j=1

h(X,Y )h(Gi,Gj)
2

H≡0
=

2n−1∑
i,j=1

h(Gi, Y )h(X,Gj)(h(Gi,Gj)− h(Gj ,Gi))− |h|2h(X,Y )

(3.17)
= 2α

2n−1∑
i,j=1

h(Gi, Y )h(X,Gj)C(Gj ,Gi)− |h|2h(X,Y )

(3.17)
= 2α

2n−1∑
i,j=1

h(Y,Gi)h(X,Gj)C(Gj ,Gi) + 4α2
2n−1∑
i,j=1

h(X,Gj)C(Y,Gi)C(Gj ,Gi)− |h|2h(X,Y ).
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Notice that

2n−1∑
i,j=1

h(Y,Gi)h(X,Gj)C(Gj ,Gi) =
2n−1∑
j=1

h(X,Gj)

〈
∇Y ν,

2n−1∑
i=1

⟨J(Gj),Gi⟩Gi

〉

(3.10)
=

2n−1∑
j=1

h(X,Gj)⟨∇Y ν, J(Gj)⟩

= −

〈
∇Xν,

2n−1∑
j=1

⟨J(∇Y ν),Gj⟩Gj

〉
= −⟨∇Xν, J(∇Y ν)⟩+ ⟨∇Xν, ν⟩⟨J(∇Y ν), ν⟩
(3.10)
= −⟨∇Xν, J(∇Y ν)⟩.

On the other hand,

2n−1∑
i,j=1

h(X,Gj)C(Y,Gi)C(Gj ,Gi) =
2n−1∑
j=1

h(X,Gj)

〈
J(Y ),

2n−1∑
i=1

⟨J(Gj),Gi⟩Gi

〉

=
2n−1∑
j=1

h(X,Gj) ⟨J(Y ), J(Gj)⟩ −
2n−1∑
j=1

h(X,Gj) ⟨J(Y ), ν⟩ ⟨J(Gj), ν⟩

=

2n−1∑
j=1

h(X,Gj) ⟨Y,Gj⟩+ h(X, J(ν)) ⟨J(Y ), ν⟩

= h(X,Y )− h(X, J(ν)) ⟨Y, J(ν)⟩ .

Therefore we conclude that

II =
(
−|h|2 + 4α2

)
h(X,Y )− 4α2h(X, J(ν)) ⟨Y, J(ν)⟩ − 2α⟨∇Xν, J(∇Y ν)⟩.

Computation of IV.

IV =
2n−1∑
i=1

2∇S
X(Giα)C(Y,Gi) +

2n−1∑
i=1

2Giα∇S
XC(Y,Gi)

(3.32)
= 2∇S

X (π(J(Y ))α) +
2n−1∑
i=1

2GiαC(Gi, ν)h(X,Y )−
2n−1∑
i=1

2GiαC(Y, ν)h(X,Gi)

= 2HessH,S α(X,π(J(Y )))− 2⟨∇α, J(ν)⟩h(X,Y ) + 2⟨Y, J(ν)⟩ (∇Xν)α.
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Computation of V

V =
2n−1∑
i=1

2XαC(Gi, ν)h(Gi, Y ) +
2n−1∑
i=1

2αX(C(Gi, ν)h(Gi, Y ))

−
2n−1∑
i=1

2αC(∇S
XGi, ν)h(Gi, Y )−

2n−1∑
i=1

2αC(Gi, ν)h(∇S
XGi, Y )−

2n−1∑
i=1

2αC(Gi, ν)h(Gi,∇S
XY )

(3.17)
= −2Xαh(Y, J(ν))− 2αXh(J(ν), Y ) +

2n−1∑
i=1

2α⟨∇S
XGi, J(ν)⟩h(Gi, Y )

+ 2αh(∇S
XJ(ν), Y ) + 2αh(J(ν),∇S

XY )

= −2Xαh(Y, J(ν))− 2αX⟨∇J(ν)ν, Y ⟩ −
2n−1∑
i=1

2α⟨Gi,∇S
XJ(ν)⟩h(Gi, Y )

+ 2αh(∇S
XJ(ν), Y ) + 2αh(J(ν),∇S

XY )

= −2Xαh(Y, J(ν))− 2αX⟨∇J(ν)ν, Y ⟩+ 2αh(J(ν),∇S
XY )

= −2Xαh(Y, J(ν))− 2α⟨∇S
X∇J(ν)ν, Y ⟩

= −2Xαh(Y, J(ν))− 2α⟨∇X∇J(ν)ν, Y ⟩.
Computation of III.

III = 2∇S
Sh(π(J(X)), Y )

= 2S⟨∇π(J(X))ν, Y ⟩ − 2⟨∇∇S
Sπ(J(X))ν, Y ⟩ − 2⟨∇π(J(X))ν,∇S

SY )

= 2⟨∇S
S∇π(J(X))ν, Y ⟩+ 2⟨∇π(J(X))ν,∇S

SY ⟩ − 2⟨∇∇S
Sπ(J(X))ν, Y ⟩ − 2⟨∇π(J(X))ν,∇S

SY )

= 2⟨∇S∇π(J(X))ν, Y ⟩ − 2⟨∇∇Sπ(J(X))ν, Y ⟩+ 2⟨∇Sπ(J(X)), ν⟩⟨∇νν, Y ⟩
= 2⟨R(S, π(J(X)))ν, Y ⟩+ 2⟨∇π(J(X))∇Sν, Y ⟩+ 2⟨∇[S,π(J(X))]ν, Y ⟩
− 2⟨∇∇Sπ(J(X))ν, Y ⟩+ 2⟨∇Sπ(J(X)), ν⟩⟨∇νν, Y ⟩

R≡0
= 2⟨∇π(J(X))∇Sν, Y ⟩+ 2⟨∇[S,π(J(X))]−∇Sπ(J(X))ν, Y ⟩+ 2⟨∇Sπ(J(X)), ν⟩⟨∇νν, Y ⟩

(3.8),(3.4)
= 2⟨∇π(J(X))∇Hα, Y ⟩+ 4⟨∇π(J(X))α

2J(ν), Y ⟩+ 2⟨∇Tor∇(π(J(X)),S)ν, Y ⟩
− 2⟨∇∇π(J(X))Sν, Y ⟩+ 4α⟨Y, J(ν)⟩h(S, π(J(X))).

Notice that

2⟨∇π(J(X))∇Hα, Y ⟩ = 2⟨∇S
π(J(X))∇

Hα, Y ⟩ = 2HessH,S α(π(J(X)), Y ).

Moreover,

4⟨∇π(J(X))α
2J(ν), Y ⟩ = 8α⟨Y, J(ν)⟩π(J(X))α+ 4α2⟨∇π(J(X))J(ν), Y ⟩

= 8α⟨Y, J(ν)⟩π(J(X))α− 4α2h(π(J(X)), π(J(Y ))).

In addition,

2⟨∇Tor∇(π(J(X)),S)ν, Y ⟩ (2.2)
= −4⟨π(J(X)), J(S)⟩⟨∇T ν, Y ⟩
= −4⟨π(J(X)), J(T )⟩⟨∇T ν, Y ⟩+ 4α⟨π(J(X)), J(ν)⟩⟨∇T ν, Y ⟩
(3.7)
= 0.

Observe that

−2⟨∇∇π(J(X))Sν, Y ⟩ (2.3)
= 2⟨∇∇π(J(X))ανν, Y ⟩
= 2π(J(X))α⟨∇νν, Y ⟩+ 2α⟨∇∇π(J(X))νν, Y ⟩
(3.4)
= −4απ(J(X))α⟨Y, J(ν)⟩+ 2αh(∇π(J(X))ν, Y )

(3.17)
= −4απ(J(X))α⟨Y, J(ν)⟩+ 2αh(Y,∇π(J(X))ν) + 4α2h(π(J(X)), π(J(Y ))).
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Finally,

4α⟨Y, J(ν)⟩h(S, π(J(X)))
(3.9),(3.7)

= 4απ(J(X))α⟨Y, J(ν)⟩.
In conclusion, we infer that

III = 2HessH,S α(π(J(X)), Y ) + 8απ(J(X))α⟨Y, J(ν)⟩+ 2αh(Y,∇π(J(X))ν).

The thesis follows from adding the terms that we have just computed. □
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[21] G. Citti, G. Giovannardi, and M. Ritoré. Variational formulas for submanifolds of fixed degree. Calc. Var. Partial

Differential Equations, 60(6):Paper No. 233, 44, 2021.
[22] G. Colombo, M. Magliaro, L. Mari, and M. Rigoli. Bernstein and half-space properties for minimal graphs under

Ricci lower bounds. Int. Math. Res. Not. IMRN, (23):18256–18290, 2022.
[23] D. Danielli, N. Garofalo, and D. M. Nhieu. Sub-Riemannian calculus on hypersurfaces in Carnot groups. Adv. Math.,

215(1):292–378, 2007.
[24] D. Danielli, N. Garofalo, and D. M. Nhieu. Sub-Riemannian calculus and monotonicity of the perimeter for graphical

strips. Math. Z., 265(3):617–637, 2010.
[25] D. Danielli, N. Garofalo, D. M. Nhieu, and S. D. Pauls. Instability of graphical strips and a positive answer to the

Bernstein problem in the Heisenberg group H1. J. Differential Geom., 81(2):251–295, 2009.
[26] D. Danielli, N. Garofalo, D.-M. Nhieu, and S. D. Pauls. The Bernstein problem for embedded surfaces in the

Heisenberg group H1. Indiana Univ. Math. J., 59(2):563–594, 2010.
[27] E. De Giorgi. Una estensione del teorema di Bernstein. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 19:79–85, 1965.
[28] M. do Carmo and C. K. Peng. Stable complete minimal surfaces in R3 are planes. Bull. Amer. Math. Soc. (N.S.),

1(6):903–906, 1979.

https://arxiv.org/abs/2310.01340
https://arxiv.org/abs/2401.01492
https://arxiv.org/abs/2401.01492


46 G. GIOVANNARDI, A. PINAMONTI, AND S. VERZELLESI

[29] M. P. do Carmo. Riemannian geometry. Mathematics: Theory & Applications. Birkhäuser Boston, Inc., Boston,
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Verlag, Basel, 1984.
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[61] M. Ritoré and C. Rosales. Area-stationary surfaces in the Heisenberg group H1. Adv. Math., 219(2):633–671, 2008.
[62] M. Santos and J. Veloso. Second variation of sub-riemannian surface measure of non-horizontal submanifolds in

sub-riemannian stratified lie groups. J Dyn Control Syst, 29:721–756, 2023.
[63] R. Schoen, L. Simon, and S. T. Yau. Curvature estimates for minimal hypersurfaces. Acta Math., 134(3-4):275–288,

1975.
[64] F. Serra Cassano. Some topics of geometric measure theory in Carnot groups. In Geometry, analysis and dynamics

on sub-Riemannian manifolds. Vol. 1, EMS Ser. Lect. Math., pages 1–121. Eur. Math. Soc., Zürich, 2016.
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