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Abstract. We study the spectral properties of a Schrödinger operator, in presence of a confining

potential given by the distance squared from a fixed compact potential well. We prove continuity
estimates on both the eigenvalues and the eigenstates, lower bounds on the ground state energy,

regularity and integrability properties of eigenstates. We also get explicit decay estimates at

infinity, by means of elementary nonlinear methods.
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1. Introduction

The study reported in this paper was motivated by on-going studies of atomic Bose-Einstein
condensates, namely gases of atoms cooled to nano-Kelvin temperatures where quantum mechanics
dominates their motion and new states of matter occur with, e.g., superfluid behaviours [14, 17].
Of special interest in view of matter-wave optics applications are the so-called atomic waveguide
configurations, where atoms are subject to an external potential of magnetic and/or optical origin
that confines them in the two transverse directions, while leaving them free to move along the
third, axial direction [2]. Steps in the theoretical description of this configurations were reported
in the pioneering paper [11], whose physical insight triggered the need for a rigorous mathematical
formulation of the problem.

In specific, the general problem that one aims at considering is the following nonlinear Schrödinger
equation

(1.1) i ∂tΨ(t, x) = −∆Ψ(t, x) + ω2 VΣ(x) Ψ(t, x) + a |Ψ(t, x)|2 Ψ(t, x), for t > 0, x ∈ RN ,
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with VΣ a confining potential which may be thought as the square of the distance from a non-empty
compact set Σ ⊆ RN and ω ∈ R\{0}, a ∈ R are given constants. In the cited paper [11] the set Σ is
a one-dimensional curve with a small curvature, but more configurations with sharp bends are also
of experimental interest, as well as configurations where Σ can be a two-dimensional surface [6].
The general objective of our mathematical enterprise is to show how the geometry of Σ influences
the solution Ψ, at least close to Σ.

In this paper we start with the simpler case of the stationary version of (1.1), in absence of the
nonlinearity (i.e. we take a = 0). In other words, we will consider the elliptic operator

(1.2) Hω,Σ[Ψ] := −∆Ψ + ω2 VΣ Ψ,

where VΣ has the following peculiar form

VΣ(x) =
(

dist(x,Σ)
)2

, for every x ∈ RN ,

and Σ ⊆ RN is a compact non-empty set. In particular, VΣ is a confining potential, in the sense
that

(1.3) lim
|x|→+∞

VΣ(x) = +∞.

We point out that Hω,Σ is self-adjoint and non–negative in L2(RN ), so for its spectrum we have
that σ(Hω,Σ) ⊆ [0,+∞).

For every such a set Σ, also called potential well, we will associate the following geometric
parameters

(1.4) δΣ = min
x∈Σ
|x| and RΣ = max

x∈Σ
|x|.

If no confusion is possible, we shall write V = VΣ, δ = δΣ and R = RΣ for simplicity. We observe
that by definition we have that Σ ⊆ BR(0). This fact implies that we have the estimates

(1.5) V (x) ≤ |x− x|2, for every x ∈ RN and x ∈ Σ,

and

(1.6) V (x) ≥ (|x| −R)2
+, for every x ∈ RN .

We denoted by ( · )+ the positive part.
The case R = 0 is peculiar: indeed, in this case we have Σ = {0}. Accordingly, the confining

potential is given by V (x) = ω2 |x|2 and our Schrödinger operator boils down to the classical
quantum harmonic oscillator (see for example [5, Example 4.2.1] or [19, Chapter 8, Section 3] for
the spectrum of this operator).

Example 1.1. Apart for the case Σ = {0}, we will be interested in considering

(1.7) Σ = SR =
{
x = (x1, x2, x3) ∈ R3 : x2

1 + x2
2 = R2, x3 = 0

}
, R > 0,

for which we have δΣ = RΣ = R, or more generally the torus

(1.8) Σ = Tr,R =

{
x = (x1, x2, x3) ∈ R3 :

(√
x2

1 + x2
2 −R+ r

)2

+ x2
3 = r2

}
, 0 < 2r < R.

Observe that the latter reduces to the former, when r = 0.
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Remark 1.2 (Reduction to the case ω = 1). For simplicity, in this paper we will always normalize
the physical constant ω 6= 0 to be 1. Accordingly, we will write

HΣ[Ψ] := H1,Σ[Ψ] = −∆Ψ + VΣ Ψ.

Actually, this is not restrictive, since one can always reduce to this case by a scale change. Indeed,
observe at first that for every t > 0 and Σ ⊆ RN non-empty compact set, we have

dist(x,Σ) =
1

t
dist(t x, tΣ), for every x ∈ RN .

Thus, if for a smooth function Ψ we set Ψt(x) = Ψ(t x), we get

Hω,Σ[Ψt](x) = t2
[
−∆Ψ(t x) +

ω2

t2

(
dist(x,Σ)

)2

Ψ(t x)

]
= t2

[
−∆Ψ(t x) +

ω2

t4

(
dist(t x, tΣ)

)2

Ψ(t x)

]
= t2

[
−∆Ψ(t x) +

ω2

t4
VtΣ(t x) Ψ(t x)

]
= t2H ω

t2
,tΣ[Ψ](t x).

By making the choice t =
√
ω for the scale parameter, we get that

Ψ is an eigenstate of H1,
√
ωΣ ⇐⇒ Ψ√ω is an eigenstate of Hω,Σ.

Accordingly, we also get the following relation between the eigenvalues

λk(ω2 VΣ) = ω λk(V√ωΣ).

Remark 1.3. We point out the recent paper [4], which considers a quite general class of confining
potentials, comprising our class. In [4], a sharp lower bound on the ground state energy λ1(V ) is
given, together with a stability estimate.

We now wish to briefly summarize the main results of the paper:

• we give at first an explicit lower bound on the ground state energy, in terms of N and R
only, see Proposition 2.5;

• we give some stability estimates for the spectrum, by proving two-sided bounds on the
difference between λk(V1)−λk(V2). Here V1 = VΣ1 and V2 = VΣ2 are two different potentials
belonging to our class. We show, through an explicit estimate, that this difference can
controlled by the Hausdorff distance between the potential wells Σ1 and Σ2 (see Proposition
4.3);

• we prove some integrability estimates on the eigenstates, namely: a global L∞ estimate
(Proposition 5.1); weighted integrability against polynomial weights with arbitrary order of
growth (Proposition 5.3). We also prove higher regularity of eigenstates, up to the optimal
threshold (Proposition 6.3 and Remark 6.4);

• in Theorem 7.3 we prove the exponential decay of the eigenstates at infinity in the uniform
norm, with an explicit a priori estimate;

• finally, in Theorem 8.1 and Corollary 8.2 we discuss what happens when R is close to 0,
i.e. when the potential well Σ approaches the origin and consequently our operator should
collapse on the classical quantum harmonic oscillator. We show that this is actually the
case, by giving an explicit estimate of the distance between the spectra and the eigenspaces
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of the two relevant operators, only in terms of the dimension N , the order n of the eigenvalue
and the geometric parameter R.

1.1. Plan of the paper. In Section 2 we introduce the main notation and the basic properties
of our class of potentials. The basic Spectral Theory of our operator is recalled in Section 3. In
Section 4 we show that the spectrum depends continuously on the potential well Σ (with respect to
the Hausdorff distance). In other words, if Σ1 and Σ2 are close in the Hausdorff topology, then the
spectra must be close, as well. We then start to give some regularity estimates on the eigenstates:
we prove at first some integrability estimates in Section 5 and then discuss higher regularity in
Section 6. In Section 7 we prove the exponential decay of eigenstates, while in Section 8 we give a
quantitative estimate on the distance of eigenspaces from those of the quantum harmonic oscillator,
in terms of the geometric parameter R. An appendix, containing a uniform lower bound of the
ground state energy in a particular situation, concludes the paper.

Acknowledgments. The authors wish to thank Paolo Baroni and Iacopo Carusotto for some useful
discussions. C. A. has been financially supported by the joint Ph.D. program of the Universities of
Ferrara, Modena & Reggio Emilia and Parma. L. B. has been financially supported by the Fondo
di Ateneo per la Ricerca FAR 2022 and the Fondo per l’Incentivazione alla Ricerca Dipartimentale
FIRD 2022 of the University of Ferrara.

2. Preliminaries

2.1. Notation and basics. We will use the symbol N∗ = N \ {0}. In what follows, for h ∈ RN
and ϕ ∈ L1

loc(RN ), we will use the following notation

τhϕ(x) = ϕ(x+ h), δhϕ(x) = τhϕ(x)− ϕ(x).

For a non-negative continuous function µ defined on RN , we will denote

L2(RN ;µ) =

{
φ : RN → R measurable :

∫
RN

µ |φ|2dx < +∞
}
.

Here measurability will always be intended with respect to the N−dimensional Lebesgue measure.
In the sequel, we will need the following celebrated functional inequalities. They hold for functions
in C∞c (RN ) and thus, by density, for the whole space H1(RN ), as well:

• for N ≥ 3 the Sobolev inequality

(2.1) TN
(∫

RN
|φ|2

∗
dx

) 2
2∗

≤
∫
RN
|∇φ|2 dx;

where

2∗ =
2N

N − 2
and TN = N (N − 2)π

(
Γ(N/2)

Γ(N)

) 2
N

,

see for example [16, Chapter 2, Section 3.5];

• for N = 2 the Ladyzhenskaya inequality

(2.2) Lq
∫
R2

|φ|q dx ≤
(∫

R2

|∇φ|2 dx
) q−2

2
(∫

R2

|φ|2 dx
)
,

for every 2 < q < ∞. For the special case q = 4, which is actually the original Ladyzhen-
skaya inequality (see [10]), we know that we can take L4 = π (see [12, equation (1.11)]);
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• finally, for N = 1 the Morrey inequality

(2.3)
1

2
‖φ‖2L∞(R) ≤

(∫
R
|φ′|2 dx

) 1
2
(∫

R
|φ|2 dx

) 1
2

.

This can be easily obtained from the fundamental theorem of calculus.

2.2. Properties of the potentials. We start with the following two technical lemmas of general
character.

Lemma 2.1. The potential V is a locally Lipschitz function such that we have

(2.4) |x|2
(
σ − 1

σ

)2

≤ V (x), for every σ > 1, x ∈ RN \BσR(0),

and

(2.5) V (x) ≤ 4 |x|2, for every x ∈ RN \Bδ(0),

where δ,R are defined in (1.4). In particular, we have

(2.6)
1

V
∈ Lp(RN \BσR(0)), for every σ > 1 and p >

N

2
.

Proof. From (1.5), by arbitrariness of x ∈ Σ and recalling the definition of δ, for every x ∈ RN\Bδ(0)
we have

V (x) ≤ (|x|+ δ)2 ≤ 4 |x|2,
and the upper bound (2.5) follows. From (1.6), for every σ > 1 and every x ∈ RN \BσR(0) we have

V (x) ≥ (|x| −R)2 ≥
(
|x| − |x|

σ

)2

.

This gives the lower bound, as well. The claimed integrability of 1/V now easily follows from that
of 1/|x|2. �

Remark 2.2. For later use, we also record another couple of pointwise estimates on V . By (1.5)
and Young’s inequality, we get in particular

V (x) ≤ (1 + ε) |x|2 +

(
1 +

1

ε

)
|x|2, for every x ∈ RN and x ∈ Σ.

By minimizing with respect to x ∈ Σ, this yields

(2.7) V (x) ≤ (1 + ε) |x|2 +

(
1 +

1

ε

)
δ2, for every x ∈ RN .

Moreover, for every ε > 0

|x|2 ≤ (1 + ε) (|x| −R)2
+ +

(
1 +

1

ε

)
R2.

By using (1.6), we thus obtain

(2.8) |x|2 ≤ (1 + ε)V (x) +

(
1 +

1

ε

)
R2, for every x ∈ RN , ε > 0.

Lemma 2.3. Let φ ∈ L2
loc(RN ) ∩ L2(RN ;V ). Then

φ ∈ Lq(RN ), for every
2N

N + 2
< q < 2.
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Proof. For every σ > 1 and every 2N/(N + 2) < q < 2 we have by Hölder’s inequality∫
BσR(0)

|φ|q dx ≤ |BσR(0)|1−
q
2

(∫
BσR(0)

|φ|2 dx

) q
2

.

On the other hand, again by Hölder’s inequality we get∫
RN\BσR(0)

|φ|q dx ≤

(∫
RN\BσR(0)

V |φ|2 dx

) q
2
(∫

RN\BσR(0)

1

V
q

2−q
dx

) 2−q
2

.

We now observe that

q >
2N

N + 2
⇐⇒ q

2− q
>
N

2
.

By Lemma 2.1, the last integral is finite. �

The weighted L2 space does not depend on the particular potential V , under our assumptions.
More precisely, we have the following

Lemma 2.4. We have

L2
loc(RN ) ∩ L2(RN ;V ) = L2

loc(RN ) ∩ L2(RN ; |x|2).

Moreover, we have:

• for every φ ∈ L2
loc(RN ) ∩ L2(RN ;V ) and every σ > 1

(2.9)

∫
RN
|x|2 |φ|2 dx ≤ σ2R2

∫
BσR(0)

|φ|2 dx+

(
σ

σ − 1

)2 ∫
RN\BσR(0)

V |φ|2 dx;

• for every φ ∈ L2
loc(RN ) ∩ L2(RN ; |x|2)∫

RN
V |φ|2 dx ≤

(
max
Bδ(0)

V

) ∫
Bδ(0)

|φ|2 dx+ 4

∫
RN\Bδ(0)

|x|2 |φ|2 dx.

Proof. The proof is straightforward, it is sufficient to decompose the integral for every σ > 1 as
follows ∫

RN
|x|2 |φ|2 dx =

∫
BσR(0)

|x|2 |φ|2 dx+

∫
RN\BσR(0)

|x|2 |φ|2 dx,

and then use (2.4). The second estimate can be proved similarly, by using (2.5): we leave the details
to the reader. �

Finally, the following simple Poincaré–type inequality will be useful.

Proposition 2.5. There exists CN,R > 0 such that for every φ ∈ C∞c (RN ) we have

(2.10)
1

CN,R

∫
RN
|φ|2 dx ≤

∫
RN
|∇φ|2 dx+

∫
RN

V |φ|2 dx.

Moreover, the constant CN,R has the following properties

lim
R→0+

CN,R ≥ 1 and 0 < lim
R→+∞

CN,R
R2

< +∞.



SCHRÖDINGER OPERATOR WITH CONFINING POTENTIAL 7

Proof. For every σ > 1 we get from (2.4)∫
RN
|φ|2 dx =

∫
BσR(0)

|φ|2 dx+

∫
RN\BσR(0)

|φ|2 dx

≤
∫
BσR(0)

|φ|2 dx+
1

(σ − 1)2R2

∫
RN

V |φ|2 dx.

For N ≥ 3, we can use Hölder and Sobolev inequalities (2.1) to estimate the L2 norm. We obtain∫
RN
|φ|2 dx ≤ |BσR(0)| 2N ‖φ‖2L2∗ (RN ) +

1

(σ − 1)2R2

∫
RN

V |φ|2 dx

≤
ω

2
N

N (σ R)2

TN
‖∇φ‖2L2(RN ) +

1

(σ − 1)2R2

∫
RN

V |φ|2 dx.

We choose

σ = 1 +
1

R
so that σ R = R+ 1.

In particular, we get ∫
RN
|φ|2 dx ≤

ω
2
N

N (R+ 1)2

TN
‖∇φ‖2L2(RN ) +

∫
RN

V |φ|2 dx.

By defining

CN,R := max

{
ω

2
N

N (R+ 1)2

TN
, 1

}
,

we get the claimed estimate.
For N = 2, we proceed similarly, by using this time (2.2) with q = 4, i.e∫

R2

|φ|2 dx ≤
∫
BσR(0)

|φ|2 dx+
1

(σ − 1)2R2

∫
R2

V |φ|2 dx

≤ |BσR(0)| 12 ‖φ‖2L4(R2) +
1

(σ − 1)2R2

∫
R2\BσR(0)

V |φ|2 dx

≤
√
π (σ R)2

√
π

‖∇φ‖L2(R2) ‖φ‖L2(R2) +
1

(σ − 1)2R2

∫
R2

V |φ|2 dx.

We can use Young’s inequality on the first term, in order to absorb the L2 norm, i.e.∫
R2

|φ|2 dx ≤ σ2R2

2
‖∇φ‖2L2(R2) +

1

2
‖φ‖2L2(R2) +

1

(σ − 1)2R2

∫
R2

V |φ|2 dx,

which leads again to the claimed estimate, upon choosing σ as above.
The case N = 1 can be treated similarly, by using (2.3) this time. The details are left to the

reader. �

Remark 2.6. In light of Lemma 4.1 and Remark 4.2 below, the behavior of the constant CN,R
with respect to R is optimal, in general.
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3. Spectral properties

We introduce the following inner product for any φ, ψ ∈ H1(RN ) ∩ L2(RN ;V )

QV [φ, ψ] :=

∫
RN
〈∇φ,∇ψ〉 dx+

∫
RN

V φψ dx.

Accordingly, we also set

‖φ‖V =
√
QV [φ, φ], for φ ∈ H1(RN ) ∩ L2(RN ;V ).

It is not difficult to see that the latter is actually a norm.

Definition 3.1. With the notation above, we define the normed vector space

H1(RN ;V ) := H1(RN ) ∩ L2(RN ;V ),

endowed with the norm ‖ · ‖V .

The following preliminary result will be important.

Lemma 3.2. The space H1(RN ;V ) is a Hilbert space, having C∞c (RN ) as a dense subspace. More-
over, H1(RN ;V ) is contained in L2(RN ), with continuous inclusion. Finally, we have

H1(RN ;V ) = H1(RN ; |x|2),

with equivalent norms.

Proof. The density of C∞c (RN ) follows by using standard approximation techniques. This in par-
ticular implies that the Poincaré inequality of Proposition 2.5 holds for functions in H1(RN ;V ),
by density. In turn, this gives the continuity of the inclusion H1(RN ;V ) ⊆ L2(RN ). Thus, the
norm ‖ · ‖V is equivalent to the norm ‖ · ‖H1(RN ) + ‖ · ‖L2(RN ;V ). By using that both H1(RN ) and

L2(RN ;V ) are Hilbert spaces, we conclude that H1(RN ;V ) has the same property.
Finally, we have

H1(RN ;V ) = H1(RN ) ∩ L2(RN ;V ) = H1(RN ) ∩ L2(RN ; |x|2) = H1(RN ; |x|2),

thanks to Lemma 2.4. As for the equivalence of the norms, this is a plain consequence of the
estimates of Lemma 2.4, together with the Poincaré inequality of Proposition 2.5. �

Let us now consider the self-adjoint Schrödinger operator HV : D(HV ) ⊆ L2(RN ) → L2(RN )
defined by

HV [φ] := −∆φ+ V φ,

with domain given by1

D(HV ) =
{
φ ∈ H1(RN ;V ) : −∆φ+ V φ ∈ L2(RN )

}
.

Then the quadratic form

QV [φ, φ] =

∫
RN
|∇φ|2 dx+

∫
RN

V |φ|2 dx, for φ ∈ H1(RN ;V ),

1The condition on the Laplacian has to be intended in distributional sense, i.e. there exists f ∈ L2(RN ) such

that

QV [φ, ϕ] =

∫
RN

f ϕ dx, for every ϕ ∈ C∞
c (RN ).

In Theorem 6.2 below, we will determine explicitly the domain D(HV ).
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is associated with the operator HV , in the sense that

D(HV ) ⊆ H1(RN ;V ),

and ∫
RN
HV [φ]ψ dx = QV [φ, ψ], for every φ ∈ D(HV ), ψ ∈ H1(RN ;V ),

see [3, Chapter 10].
In order to show that our operator has a discrete spectrum, it is now sufficient to establish the

compactness of the embedding of the form domain into L2(RN ), i.e.

H1(RN ;V ) ↪→ L2(RN ).

This is the content of the next result, which proves a slightly more general assertion.

Theorem 3.3. Let q be an exponent such that

2N

N + 2
< q < 2∗, if N ≥ 3,

1 < q < +∞, if N = 2,

1 ≤ q ≤ +∞, if N = 1.

Then the embedding

H1(RN ;V ) ↪→ Lq(RN ),

is compact.

Proof. We first prove the result for the pivotal case q = 2. Then, we will show how the remaining
cases can be deduced from this.

Case q = 2. We have to prove that bounded sets in H1(RN ;V ) are relatively compact sets in
L2(RN ). We just need to show that the unit ball in H1(RN ;V )

F =
{
φ ∈ H1(RN ;V ) : ‖φ‖V ≤ 1

}
,

is relatively compact in L2(RN ). We will appeal to the classical Riesz–Fréchet–Kolmogorov Theorem
and proceeds as in the proof of [3, Theorem 10.6.5], which concerns the one-dimensional case. We
thus have to verify the following three properties:

• the equi-boundeness in L2 norm

sup
φ∈F
‖φ‖L2(RN ) < +∞;

• the equi-continuity in L2 norm

lim
|h|→0

sup
φ∈F
‖τhφ− φ‖L2(RN ) = 0;

• the uniform mass concentration, i.e. that for every ε > 0 there exists Rε > 0 such that

sup
φ∈F

∫
RN\BRε (0)

|φ|2 dx < ε.
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The first condition is a plain consequence of Proposition 2.5, which also holds in H1(RN ;V ),
thanks to Lemma 3.2. The second condition follows because by definition and Lemma 3.2 we
get H1(RN ;V ) ⊆ H1(RN ), thus we can use the classical inequality for the translates of Sobolev
functions

‖τhφ− φ‖L2(RN ) ≤ |h| ‖∇φ‖L2(RN ) ≤ |h| ‖φ‖V ≤ |h|.

Finally, for the third condition, we only have to notice that for every % ≥ 2R, we have from (2.4)
with σ = 2∫

RN\B%(0)

|φ|2dx ≤ 4

∫
RN\B%(0)

V

|x|2
|φ|2dx ≤ 4

%2
‖φ‖2V ≤

4

%2
, for every φ ∈ F .

Thus, for every ε > 0, if we choose

% > max

{
2R,

2√
ε

}
,

we also get the third condition of the Riesz–Fréchet–Kolmogorov Theorem. This concludes the
proof for the case q = 2.

Case q > 2. This is quite standard, let us give the details for the case N ≥ 3, the other cases being
similar. By interpolation in Lebesgue spaces and Sobolev inequality (2.1), we have

‖φ‖Lq(RN ) ≤ ‖φ‖θL2∗ (RN ) ‖φ‖
1−θ
L2(RN )

≤
(

1√
TN

)θ
‖∇φ‖θL2(RN ) ‖φ‖

1−θ
L2(RN )

, for every φ ∈ H1(RN ).

Here θ = θ(N, q) ∈ (0, 1) is the exponent dictated by scale invariance. This shows that any sequence
{φn}n∈N converging strongly in L2(RN ) and having bounded weak gradients in L2(RN ), strongly
converges in Lq(RN ), as well. In light of the first part of the proof, this is enough to conclude.

Case q < 2. Let {φn}n∈N ⊆ H1(RN ;V ) be a bounded sequence, i.e.

(3.1)
(
‖φn‖2L2(RN ;V ) + ‖∇φn‖2L2(RN )

) 1
2 ≤ C, for every n ∈ N.

From the first part of the proof, we know that it strongly converges in L2(RN ), up to a subsequence.
Let us call φ ∈ L2(RN ) this limit function. By the lower semicontinuity of the L2 norm with respect
to the weak convergence, we still have φ ∈ H1(RN ;V ), with the bound (3.1). In particular, by
Lemma 2.3 we have φ ∈ Lq(RN ), with q < 2 as in the statement. We then proceed as in the proof
of Lemma 2.3: we get for every σ > 1 and every n ∈ N∫

RN
|φn − φ|q dx =

∫
BσR(0)

|φn − φ|q dx+

∫
RN\BσR(0)

|φn − φ|q dx

≤ |BσR(0)|1−
q
2

(∫
BσR(0)

|φn − φ|2 dx

) q
2

+

(∫
RN\BσR(0)

V |φn − φ|2 dx

) q
2
(∫

RN\BσR(0)

1

V
q

2−q
dx

) 2−q
2

.
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In particular, by using (3.1) and the strong convergence in L2(RN ), we get for every σ > 1

lim sup
n→∞

∫
RN
|φn − φ|q dx ≤ (2C)q

(∫
RN\BσR(0)

1

V
q

2−q
dx

) 2−q
2

.

By letting σ go to +∞ and using Lemma 2.1, we get

lim
n→∞

∫
RN
|φn − φ|q dx = 0,

thanks to the fact that q/(2− q) > N/2. This concludes the proof. �

In what follows, we will use the following notation

S2(RN ) = {φ ∈ L2(RN ) : ‖φ‖L2(RN ) = 1}.

By classical results in Spectral Theory (see for example [3, Theorem 10.1.5]), we have the following2

Corollary 3.4. Under the standing assumptions, the spectrum of the operator HV is made of
a countable sequence of positive eigenvalues {λn(V )}n∈N∗ diverging to +∞, each one having an
associated eigenstate Ψn ∈ H1(RN ;V )∩S2(RN ). The set {Ψn}n∈N∗ forms an orthonormal basis of
L2(RN ). Finally, each eigenvalue has the following variational characterization

λn(V ) = inf

{
max

φ∈W∩S2(RN )

∫
RN
|∇φ|2 dx+

∫
RN

V |φ|2 dx :
W ⊆ H1(RN ;V )

subspace with dimW = n

}
,

and the infimum above is attained by the vector space generated by {Ψ1, . . . ,Ψn}.

Remark 3.5 (The ground state). In particular, we recall that for n = 1 the above formulation
reduces to

λ1(V ) = min
φ∈H1(RN ;V )∩S2(RN )

{∫
RN
|∇φ|2 dx+

∫
RN

V |φ|2 dx
}
.

Thus, as usual λ1(V ) coincides with the sharp constant in the Poincaré inequality of Proposition
2.5 and we have

(3.2) λ1(V ) ≥ 1

CN,R
.

We also recall a couple of classical facts: any minimizer of the previous minimization problem must
have constant sign, which is going to be strict by the minimum/maximum principle, and there
exists a unique positive minimizer Ψ1. This is also called the ground state of our operator. Thus,
the first eigenvalue λ1(V ) is simple, i.e. the corresponding eigenspace is one-dimensional. We refer
for example to [13, Theorem 11.8] for these facts.

In particular, by uniqueness the ground state Ψ1 must inherit all the possible symmetries of the
potential well Σ.

2As customary, we repeat each eigenvalue according to its multiplicity.
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4. Stability of the spectrum

The following spectral continuity estimate will be useful. It guarantees that, at least for potential
wells small enough, our operator has a spectrum quantitatively close to that of the model case
V (x) = |x|2.

Lemma 4.1. For every n ∈ N∗ we have√
λn −R ≤

√
λn(V ) ≤

√
λn,

where λn is the n−th eigenvalue of the quantum harmonic oscillator.

Proof. We pick a point x ∈ Σ, by (1.5) for every φ ∈ H1(RN ;V ) we have that

(4.1)

∫
RN
|∇φ|2 dx+

∫
RN

V |φ|2 dx ≤
∫
RN
|∇φ|2 dx+

∫
RN
|x− x|2 |φ|2 dx.

By Corollary 3.4, the eigenvalues have the following variational characterizations

λn(V ) = inf

{
max

φ∈W∩S2(RN )

∫
RN
|∇φ|2 dx+

∫
RN

V |φ|2 dx :
W ⊆ H1(RN ;V )

subspace with dimW = n

}
,

and

λn = inf

{
max

φ∈W∩S2(RN )

∫
RN
|∇φ|2 dx+

∫
RN
|x|2 |φ|2 dx :

W ⊆ H1(RN ; |x|2)
subspace with dimW = n

}
,

where we recall the notation

S2(RN ) = {φ ∈ L2(RN ) : ‖φ‖L2(RN ) = 1}.

Thanks to the estimate above between the quadratic forms (4.1), to the fact that H1(RN ;V ) =
H1(RN ; |x|2) (see Lemma 3.2) and the translation invariance of the spectrum, we then get

λn(V ) ≤ λn.

Thus, we verified the upper bound.
In order to get the lower bound, we proceed similarly: it is sufficient to use (2.8). This gives

an estimate between the relevant quadratic forms: more precisely, for every φ ∈ H1(RN ; |x|2) =
H1(RN ;V ) we get∫

RN
|∇φ|2 dx+

∫
RN
|x|2 |φ|2 dx ≤ (1 + ε)

[∫
RN
|∇φ|2 dx+

∫
RN

V |φ|2 dx
]

+

(
1 +

1

ε

)
R2

∫
RN
|φ|2 dx.

As before, this entails that

λn ≤ (1 + ε)λn(V ) +

(
1 +

1

ε

)
R2.

This is valid for every ε > 0: upon choosing ε = R/
√
λn(V ), we get

λn ≤
(√

λn(V ) +R
)2

.

This concludes the proof. �
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Remark 4.2. The previous estimate is quite useful for R close to 0. On the other hand, for R
very large, the estimate may be quite inaccurate, even in the case when the parameter δ defined in
(8.2) is large, as well. This depends on the geometry of the potential well Σ: for example, in the
case (here R > δ)

Σ = BR(0) \Bδ(0) for which V (x) = min
{

(|x| −R)2
+, (|x| − δ)2

+

}
,

we have

lim
(R−δ)↗+∞

λn(V ) = 0, for every n ∈ N∗.

This can be easily seen, by observing that3 H1
0 (BR(0) \Bδ(0)) ⊆ H1(RN ;V ) and that

QV [φ, φ] =

∫
BR(0)

|∇φ|2 dx, for every φ ∈ H1
0 (BR(0) \Bδ(0)),

since the potential V identically vanishes on BR(0) \Bδ(0). Thus, we obtain

λn(V ) ≤ λn,Dir

(
BR(0) \Bδ(0)

)
≤ λn,Dir

(
BR−δ

2
(0)
)

=

(
2

R− δ

)2

λn,Dir(B1(0)), for every n ∈ N∗.

Here, by λn,Dir we intend the n−th eigenvalue of the Dirichlet-Laplacian of an open set and we

used that the spherical shell BR(0) \Bδ(0) contains a ball with radius (R− δ)/2.
Observe that the previous example does not work, in the case the potential well Σ becomes “very

large” and at the same time “very thin”, i.e. R goes to +∞ and the difference R−δ stays bounded.
Indeed, in this case it may happen that the spectrum does not trivialize: we give an example in
Appendix A.

We also record the following continuity estimate, in terms of the distance between the potential
wells. In what follows we denote by

distH(Σ1,Σ2) = max

{
max
x∈Σ1

dist(x,Σ2), max
y∈Σ2

dist(y,Σ1)

}
,

the Hausdorff distance of the two compact sets Σ1,Σ2 ⊆ RN .

Proposition 4.3. Let Σ1,Σ2 ⊆ RN be two non-empty compact sets. We consider the corresponding
potentials

Vi(x) = (dist(x,Σi))
2
, for x ∈ RN .

Then, for every n ∈ N∗ we have

|λn(V1)− λn(V2)| ≤ distH(Σ1,Σ2) max
{

4 +
λn
2
, 2λn

}
,

where λn is the n−th eigenvalue of the quantum harmonic oscillator.

Proof. We first observe that if distH(Σ1,Σ2) > 1, the estimate trivially holds true. Indeed, by
Lemma 4.1 we have

|λn(V1)− λn(V2)| ≤ (λn(V1) + λn(V2)) ≤ 2λn ≤ 2λn distH(Σ1,Σ2).

3We intend that functions in H1
0 (BR(0) \Bδ(0)) are extended by zero, outside of the open set.
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We can thus assume that distH(Σ1,Σ2) ≤ 1. As in the previous proof, it is sufficient to estimate
the relevant quadratic forms. We observe that

|V1 − V2| =
∣∣∣√V1 −

√
V2

∣∣∣ (√V1 +
√
V2

)
≤ distH(Σ1,Σ2)

(√
V1 +

√
V2

)
,

thanks to the triangle inequality. Thus, for any φ ∈ H1(RN ;V1) we have that∫
RN
|∇φ|2 dx+

∫
RN

V1 |φ|2 dx ≤
(∫

RN
|∇φ|2 dx+

∫
RN

V2 |φ|2 dx
)

+ distH(Σ1,Σ2)

(∫
RN

√
V1 |φ|2 dx+

∫
RN

√
V2 |φ|2 dx

)
.(4.2)

Observe that if φ has unit L2 norm, we have by Hölder’s and Young’s inequalities

distH(Σ1,Σ2)

∫
RN

√
V1 |φ|2 dx ≤ distH(Σ1,Σ2)

(∫
RN

V1 |φ|2 dx
) 1

2

≤ ε

2

∫
RN

V1 |φ|2 dx+
1

2 ε
(distH(Σ1,Σ2))

2
.

Similarly, we get for 0 < ε < 1

distH(Σ1,Σ2)

∫
RN

√
V2 |φ|2 dx ≤

ε (1− ε)
2

∫
RN

V2 |φ|2 dx+
1

2 ε (1− ε)
(distH(Σ1,Σ2))

2
.

By inserting these estimates in (4.2), with simple algebraic manipulations we get(
1− ε

2

) (∫
RN
|∇φ|2 dx+

∫
RN

V1 |φ|2 dx
)
≤
(

1 +
ε (1− ε)

2

) (∫
RN
|∇φ|2 dx+

∫
RN

V2 |φ|2 dx
)

+
2− ε

2 ε (1− ε)
(distH(Σ1,Σ2))

2
.

Thanks to this and the fact that H1(RN ;V1) = H1(RN ;V2) (see again Lemma 3.2), we then get

λn(V1) ≤ 2 + ε− ε2

2− ε
λn(V2) +

1

ε (1− ε)
(distH(Σ1,Σ2))

2

= (1 + ε)λn(V2) +
1

ε (1− ε)
(distH(Σ1,Σ2))

2
.

By choosing

ε =
1

2
distH(Σ1,Σ2),

we get

λn(V1)− λn(V2) ≤ λn(V2)

2
distH(Σ1,Σ2) +

4

2− distH(Σ1,Σ2)
distH(Σ1,Σ2).

The eigenvalue λn(V2) can be bounded from above thanks to Lemma 4.1, so to get

λn(V1)− λn(V2) ≤ distH(Σ1,Σ2)

(
4 +

λn
2

)
.

By exchanging the role for V1 and V2, we conclude. �
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5. Summability of eigenstates

In this section we prove some integrability properties of the eigenstates Ψn. Of course, Lemma 2.3
applies in particular to any φ ∈ H1(RN ;V ). However, we will show that this integrability informa-
tion can be considerably improved. We give at first a classical global L∞ estimate for the eigenstates
of our operator.

Proposition 5.1. We have Ψn ∈ L∞(RN ) for every n ∈ N∗. More precisely, we have the following
estimate

‖Ψn‖L∞(RN ) ≤ MN

(
λn(V )

)N
4

,

where MN > 0 is an explicit constant depending on the dimension only.

Proof. We divide the proof in three cases, according to the value of the dimension N . For N ≥ 2,
we will use a standard iterative technique à la Moser.

Case N ≥ 3. For every β ≥ 1 and M > 0, we define the non-negative continuous function

fβ,M (t) =

{
βMβ−1, if |t| > M,
β |t|β−1, if |t| ≤M,

and take the function

Fβ,M (t) =

∫ t

0

fβ,M (τ) dτ.

Observe that

(5.1) 0 ≤ t Fβ,M (t) ≤ |t|β+1, for every t ∈ R.
Moreover, by construction, this is a C1 function with bounded derivative. In particular, we still
have

Fβ,M (Ψn) ∈ H1(RN ;V ).

We can thus use this function as a feasible test function in the weak formulation of the eigenvalue
equation. We get∫

RN
fβ,M (Ψn) |∇Ψn|2 dx+

∫
RN

V Ψn Fβ,M (Ψn) dx = λn(V )

∫
RN

Ψn Fβ,M (Ψn) dx.

In particular, since V is non-negative, we get∫
RN

fβ,M (Ψn) |∇Ψn|2 dx ≤ λn(V )

∫
RN

Ψn Fβ,M (Ψn) dx.

We now introduce the function

Gβ,M (t) =

∫ t

0

√
fβ,M (τ) dτ,

then the last estimate can be rewritten as

(5.2)

∫
RN
|∇(Gβ,M ◦Ψn)|2 dx ≤ λn(V )

∫
RN

Ψn Fβ,M (Ψn) dx.

Observe that by construction Gβ,M is again a C1 function, with bounded derivative. Thus (Gβ,M ◦
Ψn) ∈ H1(RN ) and we can apply the Sobolev inequality (2.1), so to obtain

(5.3) TN
(∫

RN
|Gβ,M (Ψn)|2

∗
dx

) 2
2∗

≤ λn(V )

∫
RN

Ψn Fβ,M (Ψn) dx.
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In order to get that Ψn ∈ Lq(RN ) for every 2 ≤ q < +∞, we define the sequence of exponents
{ϑi}i∈N as follows

ϑ0 = 1, ϑi+1 =
2∗

2
ϑi =

(
N

N − 2

)i+1

.

We then prove the following implication

(5.4) Ψn ∈ L2ϑi(RN ) =⇒ Ψn ∈ L2ϑi+1(RN ).

Indeed, let us suppose that Ψn ∈ L2ϑi(RN ). We use (5.3) with β = 2ϑi − 1, so to obtain

TN
(∫

RN
|Gβ,M (Ψn)|2

∗
dx

) 2
2∗

≤ λn(V )

∫
RN

Ψn Fβ,M (Ψn) dx ≤ λn(V )

∫
RN
|Ψn|2ϑi dx.

We also used (5.1), in the second inequality. We can now pass to the limit as M goes to +∞ on
the left-hand side: by observing that

|Gβ,M (t)| ≤ 2
√
β

β + 1
|t|

1+β
2 and lim

M→+∞
|Gβ,M (t)| = 2

√
β

β + 1
|t|

1+β
2 , for every t ∈ R,

an application of Fatou’s Lemma leads to

2ϑi − 1

ϑ2
i

TN
(∫

RN
|Ψn|2

∗ϑi dx

) 2
2∗

≤ λn(V )

∫
RN
|Ψn|2ϑi dx.

By using that 2∗ϑi = 2ϑi+1 and the fact that Ψn ∈ L2ϑi(RN ) we get Ψn ∈ L2ϑi+1(RN ), as desired.
By observing that ϑi is an increasing sequence diverging to +∞ and that Ψn ∈ L2ϑ0(RN ) by

assumption (observe that 2ϑ0 = 2), we can iterate (5.4) as many times as we wish, so to get

Ψn ∈ Lq(RN ), for every 2 ≤ q < +∞.
We are now ready to prove the claimed L∞ bound. We keep the same notation as in the previous
part. We have seen that

(5.5)

(∫
RN
|Ψn|2ϑi+1 dx

) 2
2∗

≤ λn(V )

TN
ϑi

∫
RN
|Ψn|2ϑi dx,

for every i ∈ N. Observe that we used

2ϑi − 1

ϑ2
i

≥ 1

ϑi
.

We take the power 1/(2ϑi) on both sides of (5.5), so to get

(5.6)

(∫
RN
|Ψn|2ϑi+1 dx

) 1
2ϑi+1

≤
(
λn(V )

TN

) 1
2ϑi

ϑ
1

2ϑi
i

(∫
RN
|Ψn|2ϑi dx

) 1
2ϑi

.

We now iterate k times (5.6), by starting from i = 0: this gives

(5.7)

(∫
RN
|Ψn|2ϑk+1 dx

) 1
2ϑk+1

≤
(
λn(V )

TN

) k∑
i=0

1
2ϑi

k∏
i=0

ϑ
1

2ϑi
i

(∫
RN
|Ψn|2 dx

) 1
2

.

Observe that

lim
k→∞

k∑
i=0

1

2ϑi
=

1

2

∞∑
i=0

(
N − 2

N

)i
=

1

2

1

1− N − 2

N

=
N

4
,



SCHRÖDINGER OPERATOR WITH CONFINING POTENTIAL 17

and that

lim
k→∞

k∏
i=0

ϑ
1

2ϑi
i =: CN < +∞.

This shows that we can take the limit as k goes to ∞ in (5.7). By further observing that

lim
k→∞

(∫
RN
|Ψn|2ϑk+1 dx

) 1
2ϑk+1

= ‖Ψn‖L∞(RN ),

we obtain

‖Ψn‖L∞(RN ) ≤ C
(
λn(V )

TN

)N
4

‖Ψn‖L2(RN ).

By recalling that Ψn has unit L2 norm, we conclude the proof in the case N ≥ 3.

Case N = 2. We already know that Ψn ∈ Lq(R2), for every 2 ≤ q < +∞, thanks to (2.2). By
keeping the same notation as before, we go back to (5.2) and multiply both sides by∫

R2

|Gβ,M (Ψn)|2 dx.

This yields(∫
R2

|∇(Gβ,M ◦Ψn)|2 dx
) (∫

R2

|Gβ,M (Ψn)|2 dx
)

≤ λn(V )

(∫
R2

|Ψn|β+1 dx

) (∫
R2

|Gβ,M (Ψn)|2 dx
)
,

where we also used (5.1). We apply (2.2) with q = 4 on the left hand-side, so to get

π

∫
R2

|Gβ,M (Ψn)|4 dx ≤ λn(V )

(∫
R2

|Ψn|β+1 dx

) (∫
R2

|Gβ,M (Ψn)|2 dx
)
.

We now take the limit as M goes to +∞ and get

π

(
2
√
β

β + 1

)2 ∫
R2

|Ψn|4
β+1
2 dx ≤ λn(V )

(∫
R2

|Ψn|β+1 dx

)2

.

This time, we define the sequence of exponents {ϑi}i∈N as follows

ϑ0 = 1, ϑi+1 = 2ϑi = 2i+1,

and use the above estimate with β = 2ϑi − 1, again. This gives

π
(2ϑi − 1)

ϑ2
i

∫
R2

|Ψn|2ϑi+1 dx ≤ λn(V )

(∫
R2

|Ψn|2ϑi dx
)2

.

We can now proceed as in the case N ≥ 3 and get the desired conclusion.

Case N = 1. This is the simplest case, the required result follows immediately from (2.3). �

Remark 5.2. By using the estimate of Lemma 4.1, we can also infer the following uniform estimate

‖Ψn‖L∞(RN ) ≤ MN λ
N
4
n , for every n ∈ N∗,

where λn is the n−th eigenvalue of the quantum harmonic oscillator. Observe that the upper bound
does not depend on the potential well Σ.
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We now record a weighted integrability result on eigenstates. Apart for being interesting in itself,
it will be useful in the sequel.

Proposition 5.3. For every n ∈ N∗ and k ∈ N, we have∫
RN
|∇Ψn|2 |x|2 k dx+

∫
RN
|Ψn|2 |x|2 k+2 dx ≤ CN,n,k,R.

Proof. We observe at first that the statement is true for k = 0, i.e. we have∫
RN
|∇Ψn|2 dx+

∫
RN
|Ψn|2 |x|2 dx ≤ CN,n,R.

Indeed, we have ∫
RN
|Ψn|2 |x|2 dx < +∞,

directly from Lemma 2.4. More precisely, from (2.9) with σ = 2 we have∫
RN
|x|2 |Ψn|2 dx ≤ 4R2

∫
B2R(0)

|Ψn|2 dx+ 4

∫
RN\B2R(0)

V |Ψn|2 dx

≤ 4R2 + 4λn(V ).

On account of Lemma 4.1, this gives

(5.8)

∫
RN
|Ψn|2 |x|2 dx ≤ 4R2 + 4λn.

In order to conclude, we will prove the following recursive gain of weighted integrability

(5.9)
if we have

∫
RN
|∇Ψn|2 |x|2 k dx+

∫
RN
|Ψn|2 |x|2 k+2 dx ≤ CN,n,k,R,

then we have

∫
RN
|∇Ψn|2 |x|2 k+2 dx+

∫
RN
|Ψn|2 |x|2 k+4 dx ≤ CN,n,k+1,R as well.

This will be sufficient to get the claimed result. Let us suppose that for a k ∈ N we have∫
RN
|∇Ψn|2 |x|2 k dx+

∫
RN
|Ψn|2 |x|2 k+2 dx ≤ CN,n,k,R.

Let M > 0 and let ηM be a Lipschitz cut-off function such that

0 ≤ ηM ≤ 1, ηM ≡ 1 on BM (0), ηM ≡ 0 on RN \BM+1(0),

and

|∇ηM | ≤ 1.

We then take the test function

ϕ = Ψn |x|2 k+2 η2
M ,
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in the weak formulation. Observe that this is feasible, thanks to the properties of both Ψn and ηM .
We get ∫

RN
|∇Ψn|2 |x|2 k+2 η2

M dx+

∫
RN

V |Ψn|2 |x|2 k+2 η2
M dx

= λn(V )

∫
RN
|Ψn|2 |x|2 k+2 η2

M dx

− (2 k + 2)

∫
RN
〈∇Ψn, x〉Ψn |x|2 k η2

M dx

− 2

∫
RN
〈∇Ψn,∇ηM 〉Ψn |x|2 k+2 ηM dx.

By using Young’s inequality on the last two integrals, for every M > 0 and δ > 0 we get∫
RN
|∇Ψn|2 |x|2 k+2 η2

M dx+

∫
RN

V |Ψn|2 |x|2 k+2 η2
M dx ≤ λn(V )

∫
RN
|Ψn|2 |x|2 k+2 η2

M dx

+ δ

∫
RN
|∇Ψn|2 |x|2 k+2 η2

M dx

+
(k + 1)2

δ

∫
RN
|Ψn|2 |x|2 k η2

M dx

+ δ

∫
RN
|∇Ψn|2 |x|2 k+2 η2

M dx

+
1

δ

∫
RN
|∇ηM |2 |x|2 k+2 |Ψn|2 dx.

We can take δ = 1/4 so to absorb the two integrals in the right-hand side containing ∇Ψn. This
gives

1

2

∫
RN
|∇Ψn|2 |x|2 k+2 η2

M dx+

∫
RN

V |Ψn|2 |x|2 k+2 η2
M dx ≤ λn(V )

∫
RN
|Ψn|2 |x|2 k+2 η2

M dx

+ 4 (k + 1)2

∫
RN
|Ψn|2 |x|2 k η2

M dx

+ 4

∫
RN
|∇ηM |2 |x|2 k+2 |Ψn|2 dx.

Thanks to the properties of ηM , this implies that

1

2

∫
BM (0)

|∇Ψn|2 |x|2 k+2 dx+

∫
BM (0)

V |Ψn|2 |x|2 k+2 dx

≤ (λn + 4)

∫
RN
|Ψn|2 |x|2 k+2 dx

+ 4 (k + 1)2

∫
RN
|Ψn|2 |x|2 k dx.

(5.10)

We used again Lemma 4.1, to bound the eigenvalue. We observe that by Hölder’s inequality and
the fact that Ψn has unit L2 norm, we obtain∫

RN
|Ψn|2 |x|2 k dx ≤

(∫
RN
|Ψn|2 |x|2 k+2 dx

) k
k+1

≤ (CN,n,k,R)
k
k+1 .
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By letting M go to +∞ in (5.10) and using Lemma 2.4 for φ = Ψn |x|k+1, we prove (5.9). As
already explained, this concludes the proof. �

As a consequence of the previous result, we also get the following

Corollary 5.4. For every n ∈ N∗ and every 2 ≤ p <∞ we have

V Ψn ∈ Lp(RN ).

More precisely, there exists a constant C = C(N,n,R, p) > 0 such that∫
RN

V p |Ψn|p dx ≤ C, for every R ≥ 0.

Proof. For every 2 ≤ p < +∞, we have∫
RN

V p |Ψn|p dx ≤ ‖Ψn‖p−2
L∞(RN )

∫
RN
|V |p |Ψn|2 dx.

By using (1.5) and Remark 5.2, we obtain∫
RN

V p |Ψn|p dx ≤
(

MN λ
N
4
n

)p−2
∫
RN

(|x|+R)2 p |Ψn|2 dx.

The last term can be bounded from above, thanks to Proposition 5.3. �

6. Higher regularity of eigenstates

The following simple result will be needed in order to guarantee that a certain test function will
be admissible.

Lemma 6.1. For every h ∈ RN we have

L2
loc(RN ) ∩ L2(RN ;V ) = L2

loc(RN ) ∩ L2(RN ; τhV ),

and
H1(RN ;V ) = H1(RN ; τhV ).

Proof. It is sufficient to observe that

τhV (x) =
(

dist(x+ h,Σ)
)2

=
(

dist(x,Σ− h)
)2

.

Thus the potential τhV still belongs to the same class under consideration. In light of Lemma 2.4,
this is enough to get the first equality. The second one follows by using the same observation and
Lemma 3.2. �

Our eigenstates belong to a higher order Sobolev space. This is the content of the following
slightly more general result.

Theorem 6.2. For f ∈ L2(RN ), let Φ ∈ H1(RN ;V ) be the weak solution of

HV [Φ] = f.

Then we have

Φ ∈ H2(RN ) ∩
{
φ ∈ L2(RN ) : V φ ∈ L2(RN )

}
.

In particular, the domain of HV is given by

D(HV ) = H2(RN ) ∩
{
φ ∈ L2(RN ) : V φ ∈ L2(RN )

}
.
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Proof. We know that Φ ∈ H1(RN ;V ) ⊆ L2(RN ), thanks to Lemma 3.2. We first need to prove
that ∫

RN
V 2 |Φ|2 dx < +∞.

In light of Lemma 2.1, it is sufficient to prove that

(6.1)

∫
RN
|x|4 |Φ|2 dx < +∞.

This can be proved by repeating almost verbatim the argument of the proof of Proposition 5.3:
we only need to treat more carefully the right-hand side. As before, let M > 0 and let ηM be a
Lipschitz cut-off function such that

0 ≤ ηM ≤ 1, ηM ≡ 1 on BM (0), ηM ≡ 0 on RN \BM+1(0),

and

|∇ηM | ≤ 1.

Upon testing the equation with ϕ = Φ |x|2 η2
M , we get∫

RN
|∇Φ|2 |x|2 η2

M dx+

∫
RN

V |Φ|2 |x|2 η2
M dx =

∫
RN

f Φ |x|2 η2
M dx

− 2

∫
RN
〈∇Φ, x〉Φ η2

M dx

− 2

∫
RN
〈∇Φ,∇ηM 〉Φ |x|2 ηM dx.

By using Young’s inequality on the right-hand side and (2.8) with ε = 1 on the left-hand side, for
every M > 0 and δ > 0 we get∫

RN
|∇Φ|2 |x|2 η2

M dx+
1

2

∫
RN
|Φ|2 |x|4 η2

M dx ≤ R2

∫
RN
|x|2 |Φ|2 η2

M dx+
1

2 δ

∫
RN
|f |2 η2

M dx

+
δ

2

∫
RN
|Φ|2 |x|4 η2

M dx

+ δ

∫
RN
|∇Φ|2 |x|2 η2

M dx+
1

δ

∫
RN
|Φ|2 η2

M dx

+ δ

∫
RN
|∇Φ|2 |x|2 η2

M dx

+
1

δ

∫
RN
|∇ηM |2 |x|2 |Φ|2 dx.

If we now take δ = 1/4, we can absorb the two integrals in the right-hand side containing ∇Φ, as
well as the term |Φ|2 |x|4. This gives

1

2

∫
RN
|∇Φ|2 |x|2 η2

M dx+
3

8

∫
RN
|Φ|2 |x|4 η2

M dx ≤ R2

∫
RN
|x|2 |Φ|2 η2

M dx+ 2

∫
RN
|f |2 η2

M dx

+ 4

∫
RN
|Φ|2 η2

M dx

+ 4

∫
RN
|∇ηM |2 |x|2 |Φ|2 dx.
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Thanks to the properties of ηM , this implies that

1

2

∫
BM (0)

|∇Φ|2 |x|2 dx+
3

8

∫
BM (0)

|Φ|2 |x|4 dx ≤ (4 +R2)

∫
RN
|x|2 |Φ|2 dx+ 2

∫
RN
|f |2 dx

+ 4

∫
RN
|Φ|2 dx.

By letting M go to +∞ and recalling Lemma 2.4, we get (6.1).
In order to prove the H2 regularity, we use the classical Nirenberg-Stampacchia method, based

on differentiating in a discrete sense the equation. We set

F = f − V Φ,

thus the function Φ weakly solves the Poisson equation

−∆Φ = F ∈ L2(RN ),

i.e. ∫
RN
〈∇Φ,∇ϕ〉 dx =

∫
RN

F ϕdx, for every ϕ ∈ H1(RN ;V ).

By a simple change of variable, for every h ∈ RN \ {0} we have that τhΦ satisfies∫
RN
〈∇(τhΦ),∇ϕ〉 dx =

∫
RN

τhF ϕdx, for every ϕ ∈ H1(RN ;V ).

Observe that we also used Lemma 6.1, to ensure that H1(RN ; τhV ) = H1(RN ;V ). We subtract
from this equation the one satisfied by Φ and then take the test function ϕ = δhΦ. This yields

(6.2)

∫
RN
|δh∇Φ|2 dx =

∫
RN

δhF δhΦ dx.

We take h = h ek for h ∈ R \ {0} and k ∈ {1, . . . , N}, then we use the following semi-discrete
integration by parts formula∫

RN
δh ekF δh ekΦ dx = −h

∫
RN

∂

∂xk
δh ekΦ

(∫ 1

0

F (x+ t h ek) dt

)
dx,

see for example [15, Lemma 4.5]. Let us set for simplicity

W (x) =

∫ 1

0

F (x+ t h ek) dt,

by using that F ∈ L2(RN ) we get that W ∈ L2(RN ), as well. Moreover, by Jensen’s inequality and
the translation invariance of Lp norms, we have

‖W‖2L2(RN ) =

∫
RN

∣∣∣∣∫ 1

0

F (x+ t h ek) dt

∣∣∣∣2 dx
≤
∫
RN

∫ 1

0

|F (x+ t h ek)|2 dt dx =

∫ 1

0

(∫
RN
|F (x+ t h ek)|2 dx

)
dt = ‖F‖2L2(RN ).

From equation (6.2) with h = h ek, we thus get∫
RN
|δh ek∇Φ|2 dx = −h

∫
RN

W δh ek

(
∂Φ

∂xk

)
dx.
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By applying Hölder’s inequality, this in turn gives∫
RN
|δh ek∇Φ|2 dx ≤ |h| ‖W‖L2(RN )

∥∥∥∥δh ek

∂Φ

∂xk

∥∥∥∥
L2(RN )

.

The Hessian term on the right-hand side can now be absorbed in the left-hand side: indeed, by
Young’s inequality, we have

(6.3)

∫
RN
|δh ek∇Φ|2 dx ≤ |h|

2

2
‖W‖2L2(RN ) +

1

2

∥∥∥∥δh ek

∂Φ

∂xk

∥∥∥∥2

L2(RN )

,

and then we notice that∥∥∥∥δh ek

∂Φ

∂xk

∥∥∥∥2

L2(RN )

=

∫
RN

∣∣∣∣ ∂Φ

∂xk
(x+ h ek)− ∂Φ

∂xk
(x)

∣∣∣∣2 dx
≤
∫
RN
|∇Φ(x+ h ek)−∇Φ(x)|2 dx =

∫
RN
|δh ek∇Φ|2 dx.

Thus, from (6.3) we get∫
RN
|δh ek∇Φ|2 dx ≤ |h|2 ‖W‖2L2(RN ) ≤ |h|

2 ‖F‖2L2(RN ) = |h|2 ‖f − V Φ‖L2(RN ).

By dividing everything by |h|2 and appealing to the characterization of Sobolev spaces in terms of
finite differences (see for example [8, Chapter 8]), we get the desired regularity for Φ.

As for the domain of HV , the first part of the proof and Lemma 3.2 give

D(HV ) =
{
φ ∈ H1(RN ;V ) : −∆φ+V φ ∈ L2(RN )

}
⊆ H2(RN )∩

{
φ ∈ L2(RN ) : V φ ∈ L2(RN )

}
.

In order to prove the reverse inclusion, it is sufficient to prove that{
φ ∈ L2(RN ) : V φ ∈ L2(RN )

}
⊆ L2(RN ;V ).

This easily follows from Hölder’s inequality∫
RN

V |φ|2 dx ≤
(∫

RN
|φ|2 dx

) 1
2
(∫

RN
V 2 |φ|2 dx

) 1
2

,

thus concluding the proof. �

As for classical regularity of eigenstates, we have the following result.

Proposition 6.3. We have Ψn ∈ C2,α
loc (RN ) for every 0 < α < 1. In particular, Ψn solves the

eigenvalue equation
−∆Ψn + V Ψn = λn(V ) Ψn, in RN ,

in classical sense.

Proof. Let us set
F = λn(V ) Ψn − V Ψn.

Thanks to Proposition 5.1 and Corollary 5.4, we have F ∈ Lq(RN ) for every 2 ≤ q < +∞. Thus
we have

−∆Ψn = F ∈ Lq(RN ), for every 2 ≤ q < +∞.
By the classical Calderón-Zygmund estimates (see for example [7, Theorem 9.9]), this implies that

Ψn ∈ W 2,p
loc (RN ), for every 1 < p < +∞. By the Sobolev Embedding Theorem, this in turn implies
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that Ψn ∈ C1,α
loc (RN ), for every 0 < α < 1. By using this regularity gain and recalling that V is

locally Lipschitz, we can then infer that

−∆Ψn = F ∈ C0,α
loc (RN ),

for every 0 < α < 1. An application of Schauder’s estimates (see for example [7, Corollary 6.3])
now gives the claimed regularity. �

Remark 6.4 (Maximal regularity). In general, we can not expect the eigenstates Ψn to belong to
C3. Indeed, let us consider the positive ground state Ψ1 and let us suppose that the potential V
is not C1 at the origin: this happens for example when the potential well Σ is given by the torus
(1.8).

We argue by contradiction and assume that Ψ1 ∈ C3
loc(RN ). In particular, the Laplacian ∆Ψ1

would be differentiable at x = 0. Since Ψ1 is a classical solution of the equation, we get the pointwise
identity

V = λ1(V ) +
∆Ψ1

Ψ1
,

where we also used that Ψ1 > 0, by the minimum principle, as already observed. The previous
identity would imply that V is differentiable at the origin, while this is not the case. We thus obtain
a contradiction.

7. Exponential decay at infinity

We will show exponential decay for the eigenstates, in the sup norm. This is quite a classical
result (see for example [1, 9, 18]). Our proof is elementary and relies only on the weak form of the
equation, in conjunction with suitable test function arguments. The result will follow by applying
iterative arguments à la De Giorgi and Moser, thus the proof is genuinely nonlinear in nature.

As a preliminary result, we start with an exponential decay in the L2 norm. We pay due attention
to the constants involved in the estimate.

Lemma 7.1 (Exponential decay in L2). There exist an exponent α = α(N) > 1 and a constant
C1 = C1(N,n,R) > 0 such that∫

RN\B%(0)

|Ψn|2 dx ≤ C1 e
−% logα, for every % ≥ 0.

Proof. We first observe that it is sufficient to prove that there exist α = α(N) > 1, R0 =
R0(N,n,R) > 0 and C = C(N,n,R) > 0 such that

(7.1)

∫
RN\B%(0)

|Ψn|2 dx ≤ C e−% logα, for every % ≥ R0.

Indeed, for 0 ≤ % < R0 we would trivially have∫
RN\B%(0)

|Ψn|2 dx ≤ 1 ≤ e−% logα

e−R0 logα
,

and thus the claimed estimate would follow by taking

C1 = max
{
C, eR0 logα

}
.

For every % > 0, we take the Lipschitz cuf-off function η% such that

η% ≡ 0 in B%(0), η% ≡ 1 in RN \B%+1(0), 0 ≤ η% ≤ 1,
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and

|∇η%| = 1 on B%+1(0) \B%(0).

We then insert in the weak formulation the test function ϕ = Ψn η
2
%. We get∫

RN
|∇Ψn|2 η2

% +

∫
RN

V |Ψn|2 η2
% dx = λn(V )

∫
RN
|Ψn|2 η2

% dx− 2

∫
RN
〈∇Ψn,∇η%〉 η% Ψn dx.

On the last integral, we apply the Cauchy-Schwarz and Young inequalities, so to get

−2

∫
RN
〈∇Ψn,∇η%〉 η% Ψn dx ≤

∫
RN
|∇Ψn|2 η2

% dx+

∫
RN
|∇η%|2 |Ψn|2 dx.

By inserting this estimate in the identity above and canceling out the common factor, we get∫
RN

V |Ψn|2 η2
% dx ≤ λn(V )

∫
RN
|Ψn|2 η2

% dx+

∫
RN
|∇η%|2 |Ψn|2 dx.

In particular, by using the properties of η%, this entails that

(7.2)

∫
RN\B%+1(0)

V |Ψn|2 dx ≤ λn(V )

∫
RN\B%(0)

|Ψn|2 dx+

∫
B%+1(0)\B%(0)

|Ψn|2 dx.

On account of the confining property (1.3), we have that there exists R0 > 0 such that

inf
RN\B%+1(0)

V ≥ 2λn, for every % ≥ R0.

More precisely, by recalling (1.6), we easily see that we can take

(7.3) R0 = R0(N,n,R) :=
√

2λn +R.

Thus, for every % ≥ R0, from (7.2) and Lemma 4.1 we get

2λn

∫
RN\B%+1(0)

|Ψn|2 dx ≤ λn
∫
RN\B%(0)

|Ψn|2 dx+

∫
B%+1(0)\B%(0)

|Ψn|2 dx.

By decomposing∫
RN\B%(0)

|Ψn|2 dx =

∫
RN\B%+1(0)

|Ψn|2 dx+

∫
B%+1(0)\B%(0)

|Ψn|2 dx,

this can be recast into

(7.4)

∫
RN\B%+1(0)

|Ψn|2 dx ≤
(

1

λn
+ 1

) ∫
B%+1(0)\B%(0)

|Ψn|2 dx.

We set for brevity

m(%) =

∫
RN\B%(0)

|Ψn|2 dx and Θ =
1

λn
+ 1.

Accordingly, the estimate (7.4) can be rewritten as

m(%+ 1) ≤ Θ
(
m(%)−m(%+ 1)

)
, for every % ≥ R0.

In turn, we rewrite this as follows

(7.5) m(%+ 1) ≤ Θ

1 + Θ
m(%), for every % ≥ R0.
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By iterating this estimate, we get the claimed exponential decay of m(%). Indeed, it is sufficient to
observe that % 7→ m(%) is non-increasing and thus for every % ≥ R0 + 1 we have

m(%) ≤ m(R0 +
⌊
%−R0

⌋
) ≤

(
Θ

1 + Θ

)⌊%−R0

⌋
m(R0) ≤

(
Θ

1 + Θ

)%−R0−1

m(R0).

Here, for every t ∈ R, we denoted its integer part by⌊
t
⌋

= max
{
n ∈ Z : t ≥ n

}
.

This has been obtained by applying a suitable number of times (7.5). By recalling that m(R0) ≤
m(0) = 1, we then get∫

RN\B%(0)

|Ψn|2 dx ≤
(

Θ

1 + Θ

)% (
1 + Θ

Θ

)R0+1

, for every % ≥ R0 + 1.

We now observe that by definition

1

2
≤ Θ

1 + Θ
≤ λ1 + 1

2λ1 + 1
=:

1

α
.

Observe that α depends on the dimension N only, through the first eigenvalue λ1 of the quantum
harmonic oscillator. Thus, we obtain in particular∫

RN\B%(0)

|Ψn|2 dx ≤ α−% 2R0+1, for every % ≥ R0 + 1.

By choosing
C = 2R0+1,

we get (7.1), as desired. �

Remark 7.2. Observe that the costant C1 is given by

C1 = max
{

2R0+1, eR0 logα
}

= 2R0+1,

with R0 defined by (7.3). In particular, we see that C1 ↗ +∞ as

R↗ +∞ or n→∞,
while C1 stays uniformly bounded, as R goes to 0.

We can now prove the pointwise exponential decay: this is the main result of this section.

Theorem 7.3 (Exponential decay in L∞). There exists a constant C2 = C2(N,n,R) > 0 such that

0 ≤ |Ψn(x)| ≤ C2 e
− |x|2 logα, for every x ∈ RN ,

where α = α(N) > 1 is the same exponent as in Lemma 7.1.

Proof. It is enough to prove a L∞ − L2 estimate, localized “at infinity”, i.e. an estimate like

(7.6) ‖Ψn‖L∞(RN\B%+1(0)) ≤ C ‖Ψn‖L2(RN\B%(0)), for every % ≥ 0,

for C = C(N,n) > 0. Then, by recalling that Ψn ∈ L∞(RN ), we would eventually get the conclusion
by joining this estimate and Lemma 7.1.

Indeed, if |x| ≤ 1, we would get from Remark 5.2

|Ψn(x)| ≤ MN λ
N
4
n ≤

MN λ
N
4
n

e−
logα

2

e−
|x|
2 logα.
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On the other hand, if |x| > 1, then %+ 1 ≤ |x| ≤ %+ 2 for some % ≥ 0. Accordingly, we would get

|Ψn(x)| ≤ ‖Ψn‖L∞(RN\B%+1(0)) ≤ C ‖Ψn‖L2(RN\B%(0))

≤ C
√
C1 e

−% logα
2

≤ C
√
C1

e−%
logα

2

e−(%+2) logα
2

e−|x|
logα

2 = C α
√
C1 e

−|x| logα2 ,

where C1 is the same constant as in Lemma 7.1. In conclusion, we would get the claimed estimate
with constant

C2 = max
{√

αMN λ
N
4
n , C α

√
C1

}
.

The estimate (7.6) can be obtained by appealing once again to a suitable Moser–type iteration. For
every pair of radii 0 < r < R and every exponent β ≥ 1, we insert in the weak formulation the test
function

ϕ = |Ψn|β−1 Ψn η
2
r,R,

where ηr,R is a Lipschitz cut-off function such that

ηr,R ≡ 0 in Br(0), ηr,R ≡ 1 in RN \BR(0), 0 ≤ ηR ≤ 1,

and

|∇ηr,R| =
1

R− r
, in BR(0) \Br(0).

This is a feasible test function, thanks to the Chain Rule in Sobolev spaces (recall that Ψn ∈
L∞(RN ) by Proposition 5.1). We then get

4β

(β + 1)2

∫
RN

∣∣∣∇|Ψn|
β+1
2

∣∣∣2 η2
r,R dx+

∫
RN

V |Ψn|β+1 η2
r,R dx

= λn(V )

∫
RN
|Ψn|β+1 η2

r,R dx

− 2

∫
RN
〈∇Ψn,∇ηr,R〉 ηr,R |Ψn|β−1 Ψn dx.

On the last term, we use as usual the Cauchy-Schwarz and Young inequalities, so to get

−2

∫
RN
〈∇Ψn,∇ηr,R〉 ηr,R |Ψn|β−1 Ψn dx ≤ δ

∫
RN
|∇Ψn|2 |Ψn|β−1 η2

r,R dx

+
1

δ

∫
RN
|∇ηr,R|2 |Ψn|β+1 dx

= δ
4

(β + 1)2

∫
RN

∣∣∣∇|Ψn|
β+1
2

∣∣∣2 η2
r,R dx

+
1

δ

∫
RN
|∇ηr,R|2 |Ψn|β+1 dx,

which holds for every δ > 0. In particular, by taking δ = β/2 we can absorb the gradient term on
the right-hand side and obtain

2β

(β + 1)2

∫
RN

∣∣∣∇|Ψn|
β+1
2

∣∣∣2 η2
r,R dx+

∫
RN

V |Ψn|β+1 η2
r,R dx ≤ λn(V )

∫
RN
|Ψn|β+1 η2

r,R dx

+
2

β

∫
RN
|∇ηr,R|2 |Ψn|β+1 dx.
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We now set for brevity ϑ = (β + 1)/2, drop the (non-negative) term containing V and use some
elementary manipulations, so to get∫

RN

∣∣∇|Ψn|ϑ
∣∣2 η2

r,R dx ≤ 2ϑλn(V )

∫
RN
|Ψn|2ϑ η2

r,R dx+ 4

∫
RN
|∇ηr,R|2 |Ψn|2ϑ dx.

We add on both sides the term ∫
RN
|∇ηr,R|2 |Ψn|2ϑ dx,

and use that∫
RN
|∇ηr,R|2 |Ψn|2ϑ dx+

∫
RN

∣∣∇|Ψn|ϑ
∣∣2 η2

r,R dx ≥
1

2

∫
RN

∣∣∇ (|Ψn|ϑ ηr,R
)∣∣2 dx.

This gives∫
RN

∣∣∇ (|Ψn|ϑ ηr,R
)∣∣2 dx ≤ 4ϑλn(V )

∫
RN
|Ψn|2ϑ η2

r,R dx+ 10

∫
RN
|∇ηr,R|2 |Ψn|2ϑ dx.

For simplicity, we now confine ourselves to the case N ≥ 3: the cases N = 2 and N = 1 can be
treated with minor modifications, as in the proof of Proposition 5.1.

Thus, we can bound the left-hand side from below, again thanks to the Sobolev inequality. We
obtain

TN
(∫

RN

(
|Ψn|ϑ ηr,R

)2∗
dx

) 2
2∗

≤ 4ϑλn(V )

∫
RN
|Ψn|2ϑ η2

r,R dx+ 10

∫
RN
|∇ηr,R|2 |Ψn|2ϑ dx.

Thanks to the properties of ηr,R, this in turn implies that

TN

(∫
RN\BR(0)

|Ψn|2
∗ϑ

) 2
2∗

≤ 4ϑλn(V )

∫
RN\Br(0)

|Ψn|2ϑ dx+
10

(R− r)2

∫
RN\Br(0)

|Ψn|2ϑ dx.

With some manipulations more, we can also obtain

(7.7)

(∫
RN\BR(0)

|Ψn|2
∗ϑ

) 1
2∗ϑ

≤
(

10ϑ

TN

(
λn(V ) +

1

(R− r)2

)) 1
2ϑ

(∫
RN\Br(0)

|Ψn|2ϑ dx

) 1
2ϑ

.

We now introduce the sequence of exponents

ϑ0 = 1, ϑi+1 =
2∗

2
ϑi =

(
N

N − 2

)i+1

, for i ∈ N.

together with the sequence of radii

Ri = %+ 1− 1

2i
, for i ∈ N,

where % ≥ 0 is fixed. Observe that R0 = %, R∞ = % + 1 and Ri+1 − Ri = 1/2i+1. By using (7.7)
with ϑ = ϑi, r = Ri and R = Ri+1, we obtain(∫

RN\BRi+1
(0)

|Ψn|2ϑi+1

) 1
2ϑi+1

≤
(

10ϑi
TN

(
λn + 4i+1

)) 1
2ϑi

(∫
RN\BRi (0)

|Ψn|2ϑi dx

) 1
2ϑi

.

Observe that we also used Lemma 4.1, in order to estimate λn(V ). Starting from i = 0 and iterating
this estimate infinitely many times, we get the desired conclusion (7.6). �
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8. Stability of eigenspaces

We already know from Lemma 4.1 that√
λn −R ≤

√
λn(V ) ≤

√
λn, for every n ∈ N∗.

In particular, we get that the spectrum of our operator collapses to the spectrum of the quantum
harmonic oscillator, as R goes to 0.

In this section we want to prove a similar kind of quantitative result, for the relevant eigenspaces.

Theorem 8.1. For n ∈ N∗, we set

Wn =
{
φ ∈ H1(RN ; |x|2) : φ is an eigenstate relative to λn

}
.

Then there exists an explicit constant C3 = C3(N,n) > 0 such that

distL2(RN )(Ψn;Wn) ≤ C3

√
R, for every R > 0.

Proof. We divide the proof in various steps, for ease of readability.

Step 1: set-up. We need to fix at first some notation. We call

κ(n) = dimWn − 1,

then there exists an index jn ∈ {0, . . . , n− 1} such that4

(8.1) λn−jn = · · · = λn = · · · = λn−jn+κ(n).

By construction, we thus have

(8.2) δn := λn−jn+κ(n)+1 − λn > 0.

We then set

R1 =

√
λn −

√
λn−jn−1

2
,

with the notation λ0 := 0. According to Lemma 4.1, we have for every 0 < R ≤ R1

(8.3)
√
λn(V ) ≥

√
λn −R ≥

√
λn +

√
λn−jn−1

2
>
√
λn−jn−1.

Let us indicate by {Φn}n∈N∗ an orthonormal basis of eigenstates for the quantum harmonic oscil-
lator. For every k ∈ N∗, we define

Ψ̂n(k) =

∫
RN

Ψn Φk dx,

i.e. the k−th Fourier coefficient of Ψn. We then have

(8.4) 1 = ‖Ψn‖2L2(RN ) =

∞∑
k=1

|Ψ̂n(k)|2.

4For n = 1, we have already observed in Remark 3.5 that κ(1) = 0. Accordingly, in this case we have j1 = 0.
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Finally, we observe that by orthonormality

(
distL2(RN )(Ψn;Wn)

)2
=

∥∥∥∥∥∥Ψn −
n−jn+κ(n)∑
k=n−jn

Ψ̂n(k) Φk

∥∥∥∥∥∥
2

L2(RN )

=

n−jn−1∑
k=1

|Ψ̂n(k)|2 +

∞∑
k=n−jn+κ(n)+1

|Ψ̂n(k)|2 := J1 + J2.

(8.5)

It is intended that the first term J1 is void in the case jn = n−1. Thus, in order to get the claimed
estimate, it is sufficient to suitably estimate the last two sums. Before going further, we observe
that it is sufficient to get the claimed estimate for R ≤ R1: indeed, for every R > R1 we would
simply get (

distL2(RN )(Ψn;Wn)
)2

= J1 + J2 ≤
∞∑
k=1

|Ψ̂n(k)|2 = 1 ≤ 1

R1
R,

i.e. we have the desired estimate with C3 = 1/R1, the latter depending only on N and n, by
definition.

Step 2: high frequencies estimate. We show how the estimate of J2 can reduced to the estimate of
J1. By using that Ψn is an eigenstate corresponding to λn(V ), we have

λn(V ) =

∫
RN
|∇Ψn|2 dx+

∫
RN

V |Ψn|2 dx

≥
∞∑
k=1

|Ψ̂n(k)|2 λk +
1

1 + ε

∫
RN
|x|2 |Ψn|2 dx−

R2

ε

≥
∞∑
k=1

|Ψ̂n(k)|2 λk −
R2

ε
,

for every ε > 0. In the first inequality we used (2.8). We estimate the series as follows

∞∑
k=1

|Ψ̂n(k)|2 λk =

∞∑
k=n−jn+κ(n)+1

|Ψ̂n(k)|2 λk + λn

n−jn+κ(n)∑
k=n−jn

|Ψ̂n(k)|2 +

n−jn−1∑
k=1

|Ψ̂n(k)|2 λk

≥ λn−jn+κ(n)+1 J2 + λn

n−jn+κ(n)∑
k=n−jn

|Ψ̂n(k)|2 + λ1 J1.

Observe that we used the monotonicity of eigenvalues with respect to n and the multiplicity as-
sumption (8.1). By further choosing ε = R and subtracting λn, up to now we have obtained

(
λn(V )− λn

)
+R ≥ λn−jn+κ(n)+1 J2 + λn

n−jn+κ(n)∑
k=n−jn

|Ψ̂n(k)|2 − 1

+ λ1 J1.(8.6)

Thanks to (8.4), we can write

n−jn+κ(n)∑
k=n−jn

|Ψ̂n(k)|2 − 1 = −J1 − J2.
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By injecting this identity in (8.6), we get

R+
(
λn(V )− λn

)
+ (λn − λ1)J1 ≥ (λn−jn+κ(n)+1 − λn)J2.

Finally, by recalling (8.2) and Lemma 4.1, we arrive at the estimate

R

δn
+
λn − λ1

δn
J1 ≥ J2,(8.7)

which concludes this step. The previous estimate holds for every R > 0.

Step 3: low frequencies estimate. We now estimate the finite sum J1. We will derive some “almost
orthogonality” relations. Indeed, by using first the equation for Φk and then that for Ψn, we get

Ψ̂n(k) =

∫
RN

Ψn Φk dx =
1

λk

[∫
RN
〈∇Φk,∇Ψn〉 dx+

∫
RN
|x|2 Φk Ψn dx

]
=

1

λk

[∫
RN
〈∇Φk,∇Ψn〉 dx+

∫
RN

V Φk Ψn dx

]
+

1

λk

∫
RN

(
|x|2 − V

)
Φk Ψn dx

=
λn(V )

λk

∫
RN

Ψn Φk dx+
1

λk

∫
RN

(
|x|2 − V

)
Φk Ψn dx

=
λn(V )

λk
Ψ̂n(k) +

1

λk

∫
RN

(
|x|2 − V

)
Φk Ψn dx.

We thus have the following estimate∣∣λk − λn(V )
∣∣ |Ψ̂n(k)| ≤

∫
RN

∣∣|x|2 − V ∣∣ |Φk| |Ψn| dx.

By recalling (8.3), for k = 1, . . . , n− jn − 1 and R ≤ R1 we have

∣∣λk − λn(V )
∣∣ = λn(V )− λk ≥

(√
λn +

√
λn−jn−1

2

)2

− λn−jn−1 =: αN,n > 0.

We thus obtain for k = 1, . . . , n− jn − 1 and R ≤ R1

|Ψ̂n(k)| ≤ 1

αN,n

(∫
RN

∣∣|x|2 − V ∣∣ |Φk|2 dx) 1
2
(∫

RN

∣∣|x|2 − V ∣∣ |Ψn|2 dx
) 1

2

.

We show that the last two terms can be controlled in terms of R. Indeed, from (2.7) and (2.8), we
have

− ε

1 + ε
|x|2 − R2

ε
≤ V (x)− |x|2 ≤ ε |x|2 +

(
1 +

1

ε

)
δ2,

for every ε > 0. Thus, we get in particular∣∣V (x)− |x|2
∣∣ ≤ max

{
ε

1 + ε
|x|2 +

R2

ε
, ε |x|2 +

(
1 +

1

ε

)
δ2

}
.

We choose again ε = R, so that

(8.8)
∣∣V (x)− |x|2

∣∣ ≤ R max

{
|x|2

R+ 1
+ 1, |x|2 + (R+ 1)

(
δ

R

)2
}
≤ R (|x|2 +R+ 1).
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Finally, we get for k = 1, . . . , n− jn − 1 and R ≤ R1

|Ψ̂n(k)| ≤ R

αN,n

(∫
RN
|x|2 |Φk|2 dx+ (R+ 1)

) 1
2
(∫

RN
|x|2 |Ψn|2 dx+ (R+ 1)

) 1
2

.

In conclusion, we get

(8.9) J1 ≤
R2

α2
N,n

(∫
RN
|x|2 |Ψn|2 dx+ (R+ 1)

) n−jn−1∑
k=1

(∫
RN
|x|2 |Φk|2 dx+ (R+ 1)

)
,

for every R ≤ R1.

Step 4: conclusion. By joining (8.5), (8.7) and (8.9) we get for every R ≤ R1(
distL2(RN )(Ψn;Wn)

)2
= J1 + J2

≤ R

δn
+

(
1 +

λn − λ1

δn

)
J1

≤ R

δn
+

R2

α2
N,n

(
1 +

λn − λ1

δn

) (∫
RN
|x|2 |Ψn|2 dx+ (R1 + 1)

)

×
n−jn−1∑
k=1

(∫
RN
|x|2 |Φk|2 dx+ (R1 + 1)

)
.

In order to conclude, we only need to observe that for R ≤ R1∫
RN
|x|2 |Ψn|2 dx ≤ 4R2

1 + 4λn,

thanks to (5.8). Thus, we eventually get the desired estimate. �

With a little extra work, we can improve the metric of the previous stability estimate.

Corollary 8.2. For n ∈ N∗, we still set

Wn =
{
φ ∈ H1(RN ; |x|2) : φ is an eigenstate relative to λn

}
.

Then there exists an explicit constant C4 = C4(N,n) > 0 such that

distH1(RN ;|x|2)(Ψn;Wn) ≤ C4

√
R, for every R > 0.

Proof. With the previous notation, let us set

Φ =

n−jn+κ(n)∑
k=n−jn

Ψ̂n(k) Φk ∈ Wn.

We thus have(
distH1(RN ;|x|2)(Ψn;Wn)

)2 ≤ ∫
RN
|∇Ψn −∇Φ|2 dx+

∫
RN
|x|2 |Ψn − Φ|2 dx.

As above, on account of the uniform estimates at our disposal, it is sufficient to bound the last two
terms for R ≤ R1. Here, the radius R1 = R1(N,n) is the same as in the previous proof.

By using the equations for both Φ and Ψn, we get∫
RN
〈∇Φ,∇(Φ−Ψn)〉 dx+

∫
RN
|x|2 Φ (Φ−Ψn) dx = λn

∫
RN

Φ (Φ−Ψn) dx,
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and ∫
RN
〈∇Ψn,∇(Φ−Ψn)〉 dx+

∫
RN

V Ψn (Φ−Ψn) dx = λn(V )

∫
RN

Ψn (Φ−Ψn) dx.

By subtracting them, we get∫
RN
|∇Ψn −∇Φ|2 dx+

∫
RN
|x|2 |Ψn − Φ|2 dx ≤

∫
RN

∣∣V − |x|2∣∣ |Ψn| |Ψn − Φ| dx

+
∣∣λn(V )− λn

∣∣ ∫
RN
|Ψn| |Ψn − Φ| dx

+ λn

∫
RN
|Ψn − Φ|2 dx

≤
(∫

RN

∣∣V − |x|2∣∣2 |Ψn|2 dx
) 1

2

‖Ψn − Φ‖L2(RN )

+
∣∣λn(V )− λn

∣∣ ‖Ψn − Φ‖L2(RN )

+ λn

∫
RN
|Ψn − Φ|2 dx.

The L2 norm of Ψn−Φ can be estimated by Theorem 8.1, while for the difference of the eigenvalues
we can apply

|λn(V )− λn| =
(√

λn −
√
λn(V )

)(√
λn +

√
λn(V )

)
≤ 2R

√
λn,

which follows from Lemma 4.1. For every 0 < R ≤ R1, these yield∫
RN
|∇Ψn −∇Φ|2 dx+

∫
RN
|x|2 |Ψn − Φ|2 dx ≤ C3

√
R1

(∫
RN

∣∣V − |x|2∣∣2 |Ψn|2 dx
) 1

2

+ 2
√
λn C3

√
R1R+ C2

3 λnR.

We only need to estimate the integral containing the difference of the potentials. By (8.8), we get∫
RN

∣∣V − |x|2∣∣2 |Ψn|2 dx ≤ R2

∫
RN

(|x|2 +R+ 1)2 |Ψn|2 dx

≤ 2R2

(∫
RN
|x|4 |Ψn|2 dx+ (R1 + 1)2

)
.

By using Proposition 5.3 with k = 1 to bound uniformly the first term on the right-hand side, we
conclude. �

Appendix A. The case of S1 in R3

In this final part, we want to briefly comment on the case of the S1−type potential well (1.7),
in the case R becoming larger and larger. Observe that the explicit universal lower bound (3.2)
trivializes in the limit as R goes to +∞. We will show that this behavior is not optimal, in this
peculiar case: the ground state energy must stay uniformly bounded from below, even when R goes
to +∞.

To this aim, we are going to exploit the ideas of [16, Chapter 16].

Proposition A.1. Let Σ ⊆ R3 be given by (1.7). There exists a universal constant β > 0 such
that

λ1(V ) ≥ β, for every R > 0.
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Proof. In view of the lower bound from Proposition 2.5, it is not restrictive to assume that R ≥ 2.
It is sufficient to prove the following Poincaré inequality

β

∫
R3

|φ|2 dx ≤
∫
R3

|∇φ|2 dx+

∫
R3

V |φ|2 dx, for every φ ∈ C∞c (R3),

with a constant β > 0 not depending on R. We proceed as in the proof of [16, Theorem 16.2.1].
We first tile the whole space R3 with the family of cubes

Qn := n +

(
−1

2
,

1

2

)3

, with n ∈ Z3.

Observe that each Qn has edges of length d = 1, parallel to the coordinate axes. Accordingly, for
every φ ∈ C∞c (R3) we can write ∫

R3

|φ|2 dx =
∑
n∈Z3

∫
Qn

|φ|2 dx.

On each cube Qn, we apply the following weighted Poincaré inequality of [16, Lemma 16.1.1]

(A.1)

∫
Qn

|φ|2 dx ≤ C

λ

∫
Qn

|∇φ|2 dx+
C

inf
e∈Nλ(Qn)

∫
Qn\e

V dx

∫
Qn

V |φ|2 dx,

where:

• C > 0 is a universal constant;

• λ > 0 is an arbitrary positive number;

• Nλ(Qn) is the collection of all compact sets e ⊆ Qn such that

cap(e; 2Qn) ≤ λ,
where 2Qn denotes the cube having the same center as Qn, dilated by a factor 2, and

cap(e; Ω) = inf
φ∈C∞c (Ω)

{∫
Ω

|∇φ|2 dx : φ ≥ 1 on e

}
,

is the capacity of a compact set e relative to the open set Ω containing it.

In light of this inequality, it is sufficient to assure that we can choose λ > 0 small enough such that

(A.2) inf
e∈Nλ(Qn)

∫
Qn\e

V dx ≥ c0,

for a constant c0 > 0, independent of R. By summing up (A.1) and using the tiling property of the
cubes, we will eventually get the conclusion.

In order to choose λ such that (A.2) holds, we first observe that if Bn is the ball having the same

center as Qn and radius
√

3, then 2Qn ⊆ Bn. Thus, for every e ∈ Nλ(Qn) we have

cap(e;Bn) ≤ cap(e; 2Qn) ≤ λ.
By [16, equation (2.2.10)] we have

cap(e;Bn) ≥ (4π)
2
3

3
√

3
|Bn|

1
3 |e| 13

|Bn|
1
3 − |e| 13

.

By observing that

0 < |Bn|
1
3 − |e| 13 ≤ |Bn|

1
3 ,
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we get in particular

λ ≥ (4π)
2
3

3
√

3 |e| 13 =: γ |e| 13 .
Observe that both λ and γ are universal constant and do not depend on anything. We choose λ as
follows

λ

γ
=

(
1

4

) 1
3

that is λ = γ

(
1

4

) 1
3

.

This discussion guarantees that for such a choice of λ, we have

(A.3) |e| ≤ 1

4
=
|Qn|

4
, for every e ∈ Nλ(Qn).

By using this property and the fact that V (x) = (dist(x,Σ))2, with Σ given by (1.7), we can now
easily get (A.2). Indeed, for every n = (n1, n2, n3) ∈ Z3 with |n3| ≥ 1, we have

dist(x,Σ) ≥ 1

2
, for every x ∈ Qn,

which implies that

V (x) ≥ 1

4
, for every x ∈ Qn.

Accordingly, for every such n ∈ Z3 we get

inf
e∈Nλ(Qn)

∫
Qn\e

V dx ≥ 1

4
inf

e∈Nλ(Qn)
|Qn \ e| ≥

3

16
,

thanks to (A.3). We now take n ∈ Z3 such that n3 = 0. Accordingly, it may happen that the cube
Qn intersects the potential well Σ, where V vanishes. However, for every such a cube, we observe
that

V (x) ≥ 9

256
, for every x ∈ Qn such that |x3| ≥

3

16
,

thanks to the fact that Σ lies in the hyperplane {x ∈ R3 : x3 = 0}. In particular, we get in this
case

inf
e∈Nλ(Qn)

∫
Qn\e

V dx ≥ inf
e∈Nλ(Qn)

∫
{x∈Qn : |x3|≥3/16}\e

V dx

≥ 9

256
inf

e∈Nλ(Qn)
|{x ∈ Qn : |x3| ≥ 3/16} \ e|

≥ 9

256

(
2

(
1

2
− 3

16

)
− 1

4

)
=

9

256
· 3

8
,

where we used again (A.3). This finally gives the claimed fact (A.2), with c0 = 27/2048. �
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