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Abstract5

By using optimal transport theory, we prove a sharp dimension-free isoperi-6

metric inequality involving the volume entropy, in metric measure spaces with7

non-negative Ricci curvature in the sense of Lott–Sturm–Villani. We show8

that this isoperimetric inequality is attained by a non-trivial open set, if and9

only if the space satisfies a certain foliation property. For metric measure10

spaces with non-negative Riemannian Ricci curvature, we show that the sharp11

Cheeger constant is achieved by a non-trivial measurable set, if and only if a12

one-dimensional space is split off. Our isoperimetric inequality and the rigid-13

ity theorems are proved in non-smooth framework, totally dimension-free,14

new even in the smooth setting. In particular, our results provide some new15

understanding of logarithmically concave measures.16
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1 Introduction1

In the study of functional and geometric inequalities, such as isoperimetric inequal-2

ity, log-Sobolev and Talagrand inequality, strictly positive curvature in the sense of3

Ricci, Bakry–Émery, Alexandrov or Lott-Sturm-Villani, often play critical roles. In4

lots of situations, we only have non-negative curvature, and many problems are even5

dimension-free.6

The aim of this paper is to present a sharp, dimension-free isoperimetric in-7

equality, in metric measure spaces with non-negative Ricci curvature in the sense of8

Lott–Sturm–Villani, and prove its rigidity.9

Let (X, d,m) be a metric measure space, where (X, d) is a complete and separable10

metric space and m is a locally finite, non-negative Radon measure with full support.11

The Minkowski content of a Borel set Ω ⊂ X with m(Ω) < +∞ is defined by12

m+(Ω) := lim inf
ε→0+

m(Ωε)−m(Ω)

ε

where Ωε ⊂ X is the ε-neighbourhood of Ω defined as Ωε := {x : d(x,Ω) < ε}.13

An isoperimetric inequality relates the size of the boundary of a set to its measure.14

Precisely, let M be a family of metric measure spaces, there is a function IM(·),15

called isoperimetric profile, such that16

m+(Ω) ≥ IM(v)

for all (X, d,m) ∈M and any measurable set Ω ⊂ X with m(Ω) = v.17

Recently, isoperimetric inequalities in non-compact metric measure spaces with18

non-negative synthetic Ricci curvature, are studied in various settings, for exam-19

ple by Agostiniani–Fogagnolo–Mazzieri [AFM20], Brendle [Bre20], Balogh–Kristály20

[BK22], Antonelli–Pasqualetto–Pozzetta–Semola [APPS22a, APPS22b] and Caval-21

letti–Manini [CM22a,CM22b]. As discovered by E. Milman [Mil15], the isoperimet-22

ric profile for this family of spaces is trivial if there is no restriction on the diameter23

of the sets. In the above mentioned papers, a key component in the isoperimetric24

profile is a parameter called asymptotic volume ratio.25

However, the asymptotic volume ratio depends on the dimension parameter, so26

those isoperimetric inequalities are all dimension-dependent. So it is natural to27

ask for a dimension-free isoperimetric inequality in metric measure spaces with28

non-negative Ricci curvature, in the sense of Lott–Sturm–Villani [LV09,Stu06]. Ex-29

amples satisfying this condition includes weighted Riemannian manifolds with non-30

negative Bakry–Émery curvature, measured-Gromov Hausdorff limits of Riemannian31

manifolds with non-negative Ricci curvature, Alexandrov spaces with non-negative32

curvature, and reversible Finsler manifolds with non-negative Ricci curvature. See33

Ambrosio’s ICM-Proceeding [Amb18] for an overview of this fast-growing field and34

bibliography.35

Definition 1.1 (Lott–Sturm–Villani [LV09,Stu06]). We say that a metric measure
space (X, d,m) has Ricci curvature lower bound K ∈ R, or satisfies CD(K,∞)
condition, if the relative entropy Entm defined as

Entm(µ) :=

{ ∫
ln ρ dµ if µ = ρm

+∞ otherwise
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is K-displacement convex. This is to say, for any two probability measures µ0, µ1 in
the L2-Wasserstein space (P2(X),W2), there is a geodesic (µt)t∈[0,1] satisfying

Entm(µt) ≤ tEntm(µ1) + (1− t)Entm(µ0)− t(1− t)K
2

W 2
2 (µ0, µ1) ∀t ∈ [0, 1].

In order to evaluate the growth of the volume without the dimension parameter,1

we will use volume entropy. This is an important concept in both Riemannian2

geometry (cf. [BCG95]) and dynamical system (cf. [Man79]). For example, it is3

related with Gromov’s simplicial volume, the bottom of the spectrum of Laplacian,4

the Cheeger isoperimetric constant, the growth of fundamental groups, topological5

entropy of geodesic flows, etc.6

Definition 1.2 (Volume entropy). We say that a metric measure space (X, d,m)7

admits the volume entropy h(X,d,m), if there is x0 ∈ X so that the following limit8

exists9

h(X,d,m) := lim
r→+∞

lnm
(
Br(x0)

)
r

∈ [0,∞].

It can be seen that a metric measure space with non-negative Ricci curvature in10

the sense of Definition 1.1, surely admits the volume entropy which is independent11

on the choice of x0 ∈ X (see Proposition 2.2).12

The first main result of this paper is the following sharp isoperimetric inequality13

involving volume entropy.14

Theorem 1.3 (Sharp isoperimetric inequality, Theorem 2.1 and Theorem 2.3). Let15

(X, d,m) be a metric measure space with non-negative synthetic Ricci curvature in16

the sense of Lott–Sturm–Villani. Then for any Ω ⊂ X with finite measure, we have17

18

m+(Ω) ≥ h(X,d,m)m(Ω). (1.1)

In other words, the Cheeger constant µ(X,d,m) := infΩ
m+(Ω)
m(Ω)

is no less than the volume19

entropy h(X,d,m).20

Moreover, the constant h(X,d,m) in (1.1) can not be improved.21

As a direct consequence of this theorem, we have the following corollary. Partic-22

ular examples fitting the hypothesis includes CD(0, N) spaces with N < +∞, and23

CD(K,∞) spaces with K > 0.24

Corollary 1.4. Let (X, d,m) be a metric measure space with non-negative Ricci25

curvature and h(X,d,m) = 0. Then there is no isoperimetric inequality in the form of26

m+(Ω) ≥ Cm(Ω), ∀Ω ⊂ X

from some C > 0.27

In [Bro81, Theorem 1], R. Brooks proved that the bottom of the essential spec-28

trum λess
0 is bounded from above by 1

4
h2

(X,d,m) if m(X) = +∞. Combining with29

Cheeger’s inequality [Che70] we get the following inequality (cf. [Bro81, Corollary30

2])31

1

4
h2

(X,d,m) ≥ λess
0 ≥

1

4
µ2

(X,d,m).

Then we obtain the following corollary.32
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Corollary 1.5. Let (X, d,m) be a metric measure space with non-negative synthetic1

Ricci curvature and infinite volume. It holds the equality2

1

4
h2

(X,d,m) = λess
0 =

1

4
µ2

(X,d,m).

It has been noticed by De Ponti–Mondino–Semola [DPMS21] (see also [DPM21])3

that the equality in Cheeger’s isoperimetric inequality can never be attained in the4

family of spaces with finite diameter or positive Ricci curvature (Corollary 1.4 pro-5

vides a different interpretation of this fact). In the next theorem we show that, in6

metric measure spaces with non-negative Riemannian Ricci curvature, the isoperi-7

metric inequality is rigid. Here ‘Riemannian’ means that (X, d,m) is infinitesimally8

Hilbertian (cf. [AGS14,Gig15])9

Theorem 1.6 (Rigidity theorem, Theorem 3.6). Let (X, d,m) be a metric mea-10

sure space with non-negative Riemannian Ricci curvature, and with positive volume11

entropy h(X,d,m).12

If there is a measurable set Ω ⊂ X with finite measure such that the equality in13

the isoperimetric inequality (1.1) is attained14

m+(Ω) = h(X,d,m)m(Ω)

or the Cheeger constant is achieved15

µ(X,d,m) =
m+(Ω)

m(Ω)
,

then
(X, d,m) ∼=

(
R, | · |, eh(X,d,m)tdt

)
× (Y, dY ,mY )

for some RCD(0,∞) metric measure space (Y, dY ,mY ) with mY (Y ) < +∞. In a16

suitable choice of coordinates, Ω can be identified as17

Ω = (−∞, c]× Y ⊂ R× Y

with c ∈ R satisfying mY (Y )ch(X,d,m)e = h(X,d,m)m(Ω).18

The rest of this paper is organized as follows. In Section 2 we prove the sharp19

isoperimetric inequality and in Section 3 we study its rigidity.20

Acknowledgement: The author thanks Nicolò De Ponti for bringing his attention21

to the paper of Robert Brooks, and thanks Giocchiano Antonelli, Sara Farinelli,22

Marco Pozzetta for their interest and suggestions on this paper. This work is sup-23

ported in part by the Ministry of Science and Technology of China, through the24

Young Scientist Programs (No. 2021YFA1000900 and 2021YFA1002200), and NSFC25

grant (No.12201596).26
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2 Sharp Isoperimetric Inequality1

In this section we will prove a sharp isoperimetric inequality in metric measure2

spaces with non-negative Ricci curvature.3

Theorem 2.1 (A dimension-free isoperimetric inequality). Let (X, d,m) be a met-4

ric measure space with non-negative Ricci curvature admitting the volume entropy5

h(X,d,m). Then for any measurable set Ω ⊂ X with finite measure, it holds the fol-6

lowing isoperimetric inequality7

m+(Ω) ≥ h(X,d,m)m(Ω). (2.1)

Proof. Step 1. Assume Ω to be bounded.8

Given x0 ∈ Ω. Let R > 0 be such that Ω ⊂ BR(x0) := {x : d(x, x0) < R}.9

Define µ0 = 1
m(Ω)

m|Ω and µ1 = 1
m(BR(x0))

m|BR(x0)
. According to Definition 1.1, there10

exists an L2-Wasserstein geodesic (µt)t∈[0,1] connecting µ0, µ1 such that11

Entm(µt) ≤ tEntm(µ1) + (1− t)Entm(µ0). (2.2)

Denote the set of t-intermediate points by

Zt :=

{
z : ∃ x ∈ Ω, y ∈ BR(x0), such that

d(z, x)

t
=

d(z, y)

1− t
= d(x, y)

}
.

It can be seen from the super-position theorem (cf. [AG11, Theorem 2.10]) that µt12

is concentrated on Zt. Then by (2.2), Jensen’s inequality and monotonicity of the13

function t→ ln(t) we have14

− ln
(
m(Zt)

)
≤ −t ln

(
m(BR(x0))

)
− (1− t) ln

(
m(Ω)

)
. (2.3)

Let ε := t
(

diam(Ω) +R
)
. For any z ∈ Zt, there is x ∈ Ω and y ∈ BR(x0) so that

d(z, x) = td(x, y). By triangle inequality,

d(x, y) ≤ d(x, x0) + d(y, x0) < diam(Ω) +R.

So d(z, x) < ε, z ∈ Ωε and Zt ⊂ Ωε.15

If m+(Ω) = +∞, there is nothing to prove. Otherwise, limε→0 m(Ωε) = m(Ω).16

So we have17

m+(Ω)

m(Ω)
= lim inf

ε→0

1

m(Ω)

m(Ωε)−m(Ω)

ε

By L’Hôpital’s rule = lim inf
ε→0

ln
(
m(Ωε)

)
− ln

(
m(Ω)

)
m(Ωε)−m(Ω)

m(Ωε)−m(Ω)

ε

≥ lim inf
t→0

ln
(
m(Zt)

)
− ln

(
m(Ω)

)
t(diam(Ω) +R)

By (2.3) ≥ lim inf
t→0

t ln
(
m(BR(x0))

)
+ (1− t) ln

(
m(Ω)

)
− ln

(
m(Ω)

)
t(diam(Ω) +R)

=
ln
(
m(BR(x0))

)
− ln

(
m(Ω)

)
diam(Ω) +R

.
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By Proposition 2.2, the volume entropy h(X,d,m) exists. Letting R→∞, we get1

m+(Ω)

m(Ω)
≥ h(X,d,m) (2.4)

which is the thesis.2

Step 2. Any Ω ⊂ X with finite measure.3

We adopt an argument used by Cavalletti–Manini [CM22a, Theorem 3.2], based4

on a relaxation principle investigated in [ADMG17, Theorem 3.6]. For any Ω ⊂ X5

with finite measure, we have6

Per(Ω) = inf

{
lim inf
n→∞

∫
lip(fn) dm : fn ∈ Lip(X, d), lim

n→∞

∫
|fn − χΩ| dm = 0

}
= inf

{
lim inf
n→∞

m+(Ωn) : m(Ω∆Ωn)→ 0
}

where we impose Ωn to be bounded. Applying (2.4) with Ωn and letting n→∞ we7

get8

Per(Ω) ≥ h(X,d,m)m(Ω). (2.5)

By [ADMG17, Theorem 3.6], Per(Ω) ≤ m+(Ω), we complete the proof.9

In the same spirit we can prove the existence of the volume entropy under non-10

negative curvature condition.11

Proposition 2.2. Let (X, d,m) be a metric measure space with non-negative Ricci12

curvature. Then h(X,d,m) ∈ [0,+∞] exists in the sense of Definition 1.2.13

Proof. If m(X) < +∞, we have h(X,d,m) = 0, otherwise there is ε > 0 such that14

m(Bε(x0)) > 1. Applying (2.3) with Ω = Br+δ(x0) and R = ε for some r > ε, δ,> 0,15

we get16

ln
(
m(Zt)

)
≥ t ln

(
m(Bε(x0))

)
+ (1− t) ln

(
m(Br+δ(x0))

)
∀t ∈ [0, 1]. (2.6)

For any z ∈ Zt, by triangle inequality

d(z, x0) < (1− t)[(r + δ) + ε] + ε.

So for t = δ+ε
r+δ

, we have Zt ⊂ Br+ε(x0). Thus (2.6) implies17

ln
(
m(Br+ε(x0))

)
≥ δ + ε

r + δ
ln
(
m(Bε(x0))

)
+
r − ε
r + δ

ln
(
m(Br+δ(x0))

)
. (2.7)

Dividing r on both sides of (2.7), we get18

ln
(
m(Br+ε(x0))

)
r

≥
(

1− ε

r

) ln
(
m(Br+δ(x0))

)
r + δ

∀r, δ > 0.

Then19

lim inf
r→+∞

ln
(
m(Br(x0))

)
r

≥ lim
r→+∞

(
1− ε

r

)
lim sup
δ→+∞

ln
(
m(Bδ(x0))

)
δ

which is the thesis.20
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Next we will show that the inequality (2.1) is sharp. This can be proved by1

combining [Bro81, Corollary 2] where Brooks showed that the Cheeger constant is2

no larger than the volume entropy, and our Theorem 2.1. We will give a different3

proof which has its own interest.4

Theorem 2.3 (Sharpness). The inequality (2.1) in Theorem 2.1 is sharp. This
means, for any (X, d,m) with non-negative curvature and any C > h(X,d,m), the
inequality

m+(Ω) ≥ Cm(Ω) for all bounded Ω

does not hold.5

Proof. We will prove the theorem by contradiction. Assume there is a constant6

C > h(X,d,m), such that7

m+(Ω) ≥ Cm(Ω) > 0 (2.8)

for any bounded set Ω ⊂ X.8

By (2.7) we have9

r − ε
r + δ

(
ln
(
m(Br+δ(x0))

)
− ln

(
m(Br(x0))

)
δ

)
≤ δ + ε

δ(r + δ)

(
ln
(
m(Br(x0))

)
− ln

(
m(Bε(x0))

))
.

Applying (2.8) with geodesic balls, we get

ln
(
m(Br+δ(x0))

)
− ln

(
m(Br(x0))

)
≥ δC,

so10

r − ε
r + δ

C ≤ δ + ε

δ(r + δ)

(
ln
(
m(Br(x0))

)
− ln

(
m(Bε(x0))

))
.

Letting r →∞, we get11

C ≤ δ + ε

δ
h(X,d,m).

Letting ε→ 0 we get the contradiction.12

3 Cheeger Constant, Volume Entropy and Rigid-13

ity14

In this section we will prove the rigidity of the isoperimetric inequality (2.1). As15

the needle decomposition theorem has not been established for CD(K,∞) spaces,16

we can not adopt the powerful localization method used by Cavalletti and Manini17

in [CM22a,CM22b]. We will use a more direct method to study the rigidity.18

We first deal with the rigidity for 1-dimensional spaces, in Subsection 3.1. The19

idea behind its proof is essential, which will be used directly or indirectly later.20

In Subsection 3.2 we will study the equality case of the isoperimetric inequality in21

general CD(0,∞) setting. Then in Subsection 3.3 we will prove the rigidity of the22

isoperimetric inequality in RCD(0,∞) setting.23
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Figure 1: A concave function

3.1 Rigidity for log-concave densities1

By a well-known result of Bobkov [Bob96], for any log-concave density on R, the in-
fimum in the corresponding isoperimetric problem is attained by a half line. Among
all log-concave densities, the log-linear densities eht play special roles. For example,
the isoperimetric profile is precisely given by E. Milman [Mil15, Corollary 1.4, Case
7]

inf
h≥0

I([0,D],ehtdt)(v) =
1

D
inf
w>0

(v + w) ln(1 + 1/w)

where v ∈ (0, 1
2
) is the volume and D is the upper bound of the diameter.2

Firstly we prove the rigidity of the isoperimetric inequality in 1-dimensional3

spaces.4

Proposition 3.1 (Rigidity for log-concave densities). Let (X, d,m) =
(
R, |·|, eVL1

)
5

be a 1-dimensional metric measure space, where V is concave and6

lim
t→+∞

V ′(t) = h > 0.

Then the volume entropy h(X,d,m) = h. If there is Ω ⊂ R such that7

µ(X,d,m) =
m+(Ω)

m(Ω)
= h,

then V ′ = h and Ω = (−∞, b) for some b ∈ R.8

Proof. Since V is concave, V ′ is well-defined almost everywhere, and the limits9

limt→−∞ V
′(t), limt→+∞ V

′(t) exist. Assume limt→+∞ V
′(t) = h > 0. In Figure 1,10

the graph of V is represented by a red curve f, line g is the tangent line of V at11

8



infinity whose slope is h. We can see that the volume entropy of (X, d,m) is the1

same as the volume entropy of
(
R, | · |, ehtdt

)
, which is exactly h. By Theorem 2.12

and Theorem 2.3 we know the Cheeger constant µ(X,d,m) is h.3

Assume there is Ω ⊂ R attaining µ(X,d,m), by Bobokov’s result [Bob96], Ω must
be a half-line (−∞, C). Assume by contradiction that V ′(C) > h. In Figure 1, draw
a blue line h, which is tangent to f at C. Now, we replace V by

Ṽ (t) :=

{
V (t) t ≤ C,
V (C) + V ′(C)(t− C) t > C.

Similarly, we can see that the volume entropy of
(
R, | · |, eṼ (t)dt

)
is V ′(C) and its4

corresponding Cheeger constant µeṼ (t) ≥ V ′(C) > h. However, by definition of5

Cheeger constant,6

µeṼ (t) ≤ eṼ (C)/

∫ C

−∞
eṼ (t) dt = eV (C)/

∫ C

−∞
eV (t) dt = µ(X,d,m) = h, (3.1)

which is a contradiction. Therefore V ′(C) = h and by concavity of V , V ′ = h on
[C,+∞). In Figure 1, the blue line and the curve f coincide on the right hand side
of C. Notice that the inequalities in (3.1) must be equalities. So∫ C

−∞
eṼ (t) dt =

∫ C

−∞
eV (C)+h(t−C)dt.

In other words, the blue line h coincides with f on the left hand side of C.7

8

3.2 Rigidity in CD setting9

Lemma 3.2. Let (X, d,m) be a CD(0,∞) metric measure space admitting positive
volume entropy h(X,d,m). Assume there is an open set Ω with positive volume, such
that m+(Ω) = h(X,d,m)m(Ω). Then for any σ > 0, the σ-neighbourhood Ωσ of Ω
satisfies

m(Ωσ) = m(Ω)eσh(X,d,m) , m+(Ωσ) = h(X,d,m)m(Ωσ).

Proof. Since m+(Ω) < +∞, we have m(Ωσ) < ∞ for some σ > 0. By CD(0,∞)10

condition, we can see that the function σ 7→ m(Ωσ) is log-concave (cf. (2.3) in the11

proof of Theorem 2.1), so m(Ωσ) <∞ for all σ > 0. Moreover, σ 7→ m(Ωσ) is almost12

everywhere differentiable, and for almost all σ > 0 we have m+(Ωσ) <∞ and13

m(Ωσ+ε) = m(Ωσ) + εm+(Ωσ) + o(ε) as ε→ 0. (3.2)

By log-concavity and (3.2), we have14 (
m(Ωσ)

)n ≥ m(Ω)
(
m(Ω

n
n−1

σ)
)n−1

= m(Ω)
(
m(Ωσ) +

σ

n− 1
m+(Ωσ) + o(1/n)

)n−1

.

9



Combining with the isoperimetric inequality (2.1) we get1 (
m(Ωσ)

)n ≥ m(Ω)
(
m(Ωσ)

)n−1
(

1 +
σ

n− 1
h(X,d,m) + o(1/n)

)n−1

Dividing
(
m(Ωσ)

)n−1
on both sides of the inequality and letting n→∞ we get2

m(Ωσ) ≥ m(Ω)eσh(X,d,m) . (3.3)

Similarly, by log-concavity and the hypothesis m+(Ω) = h(X,d,m)m(Ω), we have3

m(Ωσ)
(
m(Ω)

)n−1 ≤
(
m(Ω

σ
n )
)n

=
(
m(Ω) +

σ

n
m+(Ω) + o(

1

n
)
)n

=
(
m(Ω)

)n(
1 +

σ

n
h(X,d,m) + o(

1

n
)
)n
.

Dividing
(
m(Ω)

)n−1
on both sides of the inequality and letting n→∞ we get4

m(Ωσ) ≤ m(Ω)eσh(X,d,m) .

Combining with (3.3) we get

m(Ωσ) = m(Ω)eσh(X,d,m)

for almost all σ > 0. Hence m(Ωσ) = m(Ω)eσh(X,d,m) and m+(Ωσ) = h(X,d,m)m(Ωσ)5

for all σ ≥ 0.6

Proposition 3.3 (Rigidity in CD setting). Denote Rad := {σ ∈ R : m(Ωσ) > 0}7

where Ωσ := {x ∈ Ω : d(x,Ωc) > −σ} for σ < 0. Under the same assumption as8

Lemma 3.3, we have Rad = R and9

m(Ωσ) = eσh(X,d,m)m(Ω) ∀σ ∈ R.

Proof. By log-concavity, for any negative −σ ∈ Rad we have10 (
m(Ω)

)2 ≥ m(Ω−σ)m(Ωσ) = m(Ω−σ)m(Ω)eσh(X,d,m) .

So11

m(Ω−σ) ≤ m(Ω)e−σh(X,d,m) ∀σ ∈ Rad ∩ (−∞, 0).

Since the function Rad 3 σ 7→ m(Ωσ) is log-concave. For the same reason as12

Proposition 3.1, we know (−∞, 0) ⊂ Rad and σ 7→ ln
(
m(Ωσ)

)
is linear on (−∞, 0).13

Combining with Lemma 3.2, we have m(Ωσ) = m(Ω)eσh(X,d,m) for all σ ∈ R.14

Corollary 3.4. Given σ ∈ R and r > 0. Let µ0, µ1 ∈ P(X) be uniform distributions15

on Ωσ and Ωσ+r respectively. Under the same assumption as Lemma 3.3, we have16

that the t-intermediate point between µ0, µ1 is unique and is the uniform distribution17

on Ωσ+tr.18

10



Proof. By displacement convexity of Entm, there is a t-intermediate point µ of µ0, µ11

so that2

Entm(µ) ≤ −(1− t) ln(Ωσ)− t ln(Ωσ+r)
Proposition 3.3

= −(σ + tr)h(X,d,m) − ln
(
m(Ω)

)
.

Note that µ is concentrated on Ωσ+tr, by Jensen’s inequality we have3

Entm(µ) ≥ − ln(Ωσ+tr) = −(σ + tr)h(X,d,m) − ln
(
m(Ω)

)
.

So µ is the uniform distribution on Ωσ+tr.4

3.3 Rigidity in RCD setting5

In this part we will prove the rigidity of the isoperimetric inequality in RCD(0,∞)
spaces. Recall that the Sobolev space W 1,2(X, d,m) is a Hilbert space, as a part
of the definition of RCD condition (cf. [AGS14, AGMR15]). In this case, for u, v ∈
W 1,2(X, d,m), we define

∇u · ∇v := inf
ε>0

|D(v + εu)|2 − |Dv|2

2ε
,

and we have ∇u · ∇v = ∇v · ∇u. Here |Du| denotes the weak upper gradient of u6

satisfying7 ∫
|Du|2 dm = inf

{
lim inf
n→∞

∫
lip(un)2dm : un ∈ Lipc(X, d), un → u in L2

}
where

lip(f)(x) := lim sup
y→x

|f(y)− f(x)|
d(x, y)

if x is not isolated, lip(f)(x) = 0 otherwise.

Definition 3.5 (Measure valued Laplacian, cf. [Gig15]). Let Ω ⊂ X be an open8

subset and let u ∈ W 1,2
loc (X, d,m). We say that u is in the domain of the Laplacian,9

and write u ∈ D(∆,Ω), provided there exists a signed measure µ on Ω such that for10

any f ∈ Lipc(Ω) it holds11 ∫
∇f · ∇u dm = −

∫
f dµ. (3.4)

If µ is unique, we denote it by ∆u. If ∆u � m, we write u ∈ D(∆,Ω) and denote12

its density by ∆u.13

Theorem 3.6 (Rigidity theorem). Let (X, d,m) be an RCD(0,∞) metric measure14

space with positive volume entropy h(X,d,m).15

If there is a measurable set Ω ⊂ X with positive volume such that16

m+(Ω) = h(X,d,m)m(Ω). (3.5)

Then
(X, d,m) ∼=

(
R, | · |, eh(X,d,m)tdt

)
× (Y, dY ,mY )

11



for some RCD(0,∞) space (Y, dY ,mY ) with mY (Y ) < +∞, where the product space1

on the right hand side is a metric measure space with the canonical L2-product metric2

and the product measure. In a suitable choice of coordinates, Ω can be identified as3

Ω = (−∞, c]× Y ⊂ R× Y

with c ∈ R satisfying mY (Y )
∫ c
−∞ e

h(X,d,m)t dt = m(Ω).4

Proof. The proof is divided into six steps.5

Step 1. We can assume that Ω is open:6

By Bakry–Émery’s gradient estimate for the heat flow ft := Ht(χΩ), we can see7

(cf. [GH16, Remark 3.5])8 ∫
|Dft| dm ≤ Per(Ω) ≤ m+(Ω) = h(X,d,m)

∫
ft dm.

By Cavalieri’s formula (cf. [AT04, Chapter 6]) and the inequality (2.5) in Theorem9

2.110

h(X,d,m)

∫
ft dm = h(X,d,m)

∫ 1

0

m
(
{ft ≥ t}

)
dt ≤

∫ 1

0

Per
(
{ft ≥ t}

)
dt.

By coarea formula of Fleming–Rishel (see [Mir03] and [ADMG17, §4])11 ∫
|Dft| dm =

∫ 1

0

Per
(
{ft ≥ t}

)
dt.

Combining the inequalities above, for L1-a.e. t ∈ [0, 1], we have12

h(X,d,m)m
(
{ft ≥ t}

)
= m+

(
{ft ≥ t}

)
By regularization of the heat flow, ft is Lipschitz (cf. [AGS14, THEOREM 6.5]), so13

{ft ≥ t} has non-empty interior for some t. Since the isoperimetric profile is linear,14

without loss of generality, we may assume that Ω is a connected open set.15

Step 2. Potential function φ and optimal transport map ∇φ:16

Given σ ∈ R, R > 0. Let µ0, µ1 ∈ P(X) be uniform distributions on Ωσ and17

Ωσ+R respectively. Consider the optimal transport from µ0 to µ1. By [RS14], up18

to an additive constant, there is a unique Kantorovich potential φ, and the Monge19

problem has a unique solution ∇φ : Ωσ → Ωσ+R, so that µ1 = (∇φ)]µ0.20

Step 3. |Dφ|(x) = R and d(∇φ(x), x) = R m-a.e. on Ωσ:21

For ε > 0, denote E0 = Ωσ,σ−ε := Ωσ \ Ωσ−ε, E1 = Ωσ+R,σ+R−ε and F0 =
Ωσ−ε, F1 = Ωσ+R−ε. Let µ0, ν0, µ1, ν1 be uniform distributions on E0, F0, E1, F1 re-
spectively. Let (µt)t∈[0,1] and (νt)t∈[0,1] be geodesics in the Wasserstein space. By
Corollary 3.4, for any t ∈ [0, 1], µt is the uniform distribution on Et := Ωσ+tR,σ+tR−ε

and νt is the uniform distribution on Ft := Ωσ+tR−ε. By Lemma 3.7, φ is a Kan-
torovich potential relative to both (µ0, µ1) and (ν0, ν1). In particular, the opti-
mal transport map ∇φ transport mass from E0 to E1. By metric Brenier’s theo-
rem [AGS14, PROPOSITION 3.5],

R− ε ≤ |Dφ| ≤ R + ε on Ωσ,σ−ε.

12



Similarly, by induction, we can prove that

R− ε ≤ |Dφ| ≤ R + ε on Ωσ,σ−mε, ∀m ∈ N.

Letting ε→ 0 we have1

|Dφ| = R on Ωσ.

Then by [AGS14, PROPOSITION 3.5] again, we know d(∇φ(x), x) = R for all2

x ∈ Ωσ.3

Step 4. φ ∈ D(∆,Ωσ) and ∆φ = h(X,d,m).4

Let ρ be a Lipschitz probability density with compact support in Ωσ. For any5

ε > 0, denote ρε := cε(ρ+ ε)χΩσ where cε is the normalizing constant. Let τ be the6

density of (∇φ)](ρm) and τε be the density of (∇φ)](ρεm). By the derivative of the7

entropy formula [AGS14, THEOREM 4.8-(b)] (see also [Gig15, Proposition 5.10]),8

we have9

Entm(τε)− Entm(ρε) ≥ −
∫

Ωσ
∇φ · ∇ρε dm.

Letting ε ↓ 0, by monotone convergence theorem and the locality of the weak upper10

gradient, we get11

Entm(τ)− Entm(ρ) ≥ −
∫

Ωσ
∇φ · ∇ρ dm.

By Step 3 and Proposition 3.3, we can see that Entm(τ)−Entm(ρ) = −h(X,d,m)R. So12

−h(X,d,m)R ≥ −
∫

Ωσ
∇φ · ∇ρ dm.

Similarly, by considering the optimal transport induced by −φ (cf. [GH15, Proposi-13

tion 5.3]), we can prove14

h(X,d,m)R ≥
∫

Ωσ
∇φ · ∇ρ dm.

Then by Riesz–Markov–Kakutani representation theorem we know φ ∈ D(∆,Ωσ)15

and16

∆φ = h(X,d,m) on Ωσ.

Step 5. The gradient flow of φ induces an isometric splitting.17

The existence of the isometric splitting map has been well-studied in the frame-18

work of non-smooth metric measure spaces. This argument was used by Gigli and19

his co-authors in [Gig13,GKKO20]. For convenience, we will omit some details here.20

Indeed, note that |∇φ| = R, we have
∫
|∇φ|2∆ϕ dm =

∫
∆ϕ dm = 0 for any21

ϕ ∈ Lipc(Ω
σ) ∩ D(∆,Ωσ). By Step 4, ∆φ = h, so ∇φ · ∇∆φ = 0, by Bochner22

formula [Gig18, Theorem 3.3.8] we know φ is an affine function (in the sense of23

[GKKO20, Proposition 3.2], Dsym(∇φ) = 0 and |Dφ| is constant). In particular,24

since the choice of σ > 0 is arbitrary, by [GKKO20, Theorem 4.4], there is a globally25

defined map F : R × X → X, called the Regular Lagrangian Flow, studied by26

Ambrosio–Trevisan [AT14] in the metric measure setting, such that27

13



(i) Ft(·) := F (t, ·) is an isometry on X for each t ∈ R;1

(ii) (F (t, x))t∈R is a geodesic (line) in X for every x ∈ X.2

Following the same argument as [Gig13, Section 6] and [GKKO20, Section 5], F3

induces an isometry between (X, d) and the product space (Y, dY )×
(
R, |·|

)
equipped4

with the L2-product distance, where Y can be identified as φ−1(0). Precisely, there5

are isometries Φ,Ψ defined by6

Φ : X 3 x 7→ (y, t) ∈ Y × R s.t. Ft(y) = x

and7

Ψ : Y × R 3 (y, t) 7→ x = Ft(y) ∈ X.

By disintegration of measure, m has a decomposition8

m =

∫
Y

my dq(y), my ∈ Meas(Xy), Xy =
{
Ft(y) : t ∈ R

}
. (3.6)

Following Cavalletti–Mondino [CM20, 4b], with the help of (3.6), we can represent9

the measure-valued Laplacian in the following way10

∆φ =

∫
Y

h(X,d,m)φ dmydq(y)

By integration by parts formula on R (cf. [CM20, Theorem 4.8]), this implies11

that my = eVy dt with V ′y = h(X,d,m) on Xy. In particular,12

(Ft)]m = eh(X,d,m)tm ∀t ∈ R.

Then we have13

mY (A) := lim
ε→0

m
(
Ψ(A× [0, ε])

)
ε

= q(A), ∀A ⊂ Y is measurable,

and14

Φ]m = mY × eh(X,d,m)tdt.

Following the same argument as [Gig13, Section 6] and [GKKO20, Section 5], we
can prove that (Y, dY ,mY ) is RCD(0,∞) and

(X, d,m) ∼=
Φ,Ψ

(Y, dY ,mY )×
(
R, | · |, eh(X,d,m)t dt

)
.

Step 6. Characterization of Ω.15

By decomposition (3.6) and Theorem 2.1, it holds

m+(Ω)
Fatou

≥
∫
Y

m+
y (Ω) dq(y) ≥ h(X,d,m)

∫
Y

my(Ω) dq(y) = h(X,d,m)m(Ω).

Thus
m+
y (Ω) = h(X,d,m)my(Ω) q-a.e. y ∈ Y.

14



By 1-dimensional rigidity in Proposition 3.1, for almost every y ∈ Y , Ω ∩ Xy is a
half line, and we denote it by (−∞, e(y)]. So we can identify Ω as

Ω ∼=
{

(y, r) : r ∈
(
−∞, e(y)

)
, y ∈ Y, e(y) ∈ R

}
and ∂Ω is the graph of a measurable function e(·) on Y .1

Next we will show that e is a constant function. By Step 2 in the proof of
Theorem 2.1, there is a sequence of Lipschitz functions (fn)n∈N such that fn → χΩ

in L1 and

Per(Ω) = m+(Ω) = lim
n→+∞

∫
|Dfn| dm.

For simplicity, we write fn = fn(y, r) as a function on Y ×R, and dm = dmY ×dmR2

where dmR = eh(X,d,m)tdt. Denote f rn = fn(·, r), f yn = fn(y, ·) and χyΩ = χΩy =3

χΩ∩{(y,r):r∈R}. By Fubini’s theorem, fn → χΩ in L1 implies that4 ∫
Y

(∫
R
|f yn(t)− χyΩ| dmR

)
dmY → 0 as n→∞.

So there is a subsequence of (fn), still denoted by (fn), such that5

lim
n→∞

∫
R
|f yn(t)− χyΩ| dmR = 0, mY -a.e. y ∈ Y,

and6

lim
n→∞

∫
R
f yn(t) dmR =

∫
R
χyΩ dmR =

1

h(X,d,m)

eh(X,d,m)e(y), mY -a.e. y ∈ Y. (3.7)

So by lower semi-continuity,7

lim
n→∞

∫
R
|Df yn(t)| dmR ≥ m+

R(Ωy) = eh(X,d,m)e(y). (3.8)

By [AGS15, Theorem 5.2] (see also [Gig13, Theorem 6.1]), |Dfn|2 = |Df rn|2 +8

|Df yn |2, where |Df rn| = |Df rn|Y is the weak gradient of f rn in Y , and |Df yn | = |Df yn |R9

is the weak gradient of f yn in R which can be see as the norm of partial derivatives10

in smooth setting. So for any ε > 0 we have11 ∫
|Dfn| dm

=

∫ √
|Df rn|2 + |Df yn |2 dmRdmY

=

∫
{|Dfrn|>ε|Df

y
n |}

(
|Df rn|2√

|Df rn|2 + |Df yn |2 + |Df yn |
+ |Df yn |

)
dmRdmY

+

∫
|Dfrn|≤ε|Df

y
n |

√
|Df rn|2 + |Df yn |2 dmRdmY

≥
∫
{|Dfrn|>ε|Df

y
n |}

(
|Df rn|

2
√

1 + ε−2
+ |Df yn |

)
dmRdmY

+

∫
|Dfrn|≤ε|Df

y
n |
|Df yn | dmRdmY .
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Then1 ∫
|Dfn| dm ≥

∫
{|Dfrn|>ε|Df

y
n |}

|Df rn|
2
√

1 + ε−2
dm +

∫
|Df yn | dm

≥
∫

|Df rn|
2
√

1 + ε−2
dm +

(
1− ε

2
√

1 + ε−2

)∫
|Df yn | dm.

Letting n→∞ and combining with (3.8), we get2

m+(Ω) = lim
n→∞

∫
|Dfn| dm

≥ lim
n→∞

∫
|Df rn|

2
√

1 + ε−2
dm + (1− ε

2
√

1 + ε−2
)

∫
m+

R(Ωy) dmY

≥ lim
n→∞

∫
|Df rn|

2
√

1 + ε−2
dm + (1− ε

2
√

1 + ε−2
)h(X,d,m)

∫
mR(Ωy) dmY

= lim
n→∞

∫
|Df rn|

2
√

1 + ε−2
dm + (1− ε

2
√

1 + ε−2
)h(X,d,m)m(Ω).

Combining with m+(Ω) = h(X,d,m)m(Ω) we get3

εm+(Ω) ≥ lim
n→∞

∫
|Df rn| dm.

Letting ε→ 0 we obtain4

lim
n→∞

∫
|Df rn| dm = 0. (3.9)

Define a Lipschitz function gn on Y by gn(y) =
∫
R f

y
n dmR =

∫
R fn(r, y) dmR(r).

We can approximate gn in L1 with functions in the form of
∑

k∈I,|I|<∞ ckf
rk
n (y),

and approximate
∫
R |Df

r
n| dmR(r) with

∑
k∈I,|I|<∞ ck|Df rkn |(y). Then by a diago-

nal argument we can approximate gn in L1 with Lipschitz functions in the form of∑
k∈I,|I|<∞ ckhk(y), and approximate

∫
R |Df

r
n| dmR(r) with

∑
k∈I,|I|<∞ ck|Dhk|. Com-

bining with the lower semi-continuity (or the pointwise minimality of the weak upper
gradients), one can prove

|Dgn| ≤
∫
R
|Df rn| dmR(r).

Combining with (3.9) we get5

lim
n→∞

∫
|Dgn| dmY ≤ lim

n→∞

∫
|Df rn| dm = 0.

By (3.7) and the lower semi-continuity again, we know
∫
|Deh(X,d,m)e(y)| dmY (y) = 06

and e(·) is constant.7
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Lemma 3.7. Let (X, d,m) be an RCD(0,∞) metric measure space. Let (µt)t∈[0,1]1

and (νt)t∈[0,1] be two geodesics in the Wasserstein space (P2(X),W2), with µt, νt �2

m. Assume that (λµt + (1− λ)νt))t∈[0,1] is also a geodesic for some λ ∈ (0, 1), then3

(µt)t∈[0,1], (νt)t∈[0,1] are induced by the same Kantorovich potential, i.e. there is a4

globally defined function φ which is a Kantorovich potential from µ0 to µ1, as well5

as a Kantorovich potential from ν0 to ν1.6

Proof. For the convenience of writing, we assume that λ = 1
2
. General cases can be7

proved in the same way. By [RS14], up to an additive constant, there is a unique8

Kantorovich potential φt from 1
2
(µ0 + ν0) to 1

2
(µt + νt), and there is a measurable9

map ∇φt : X → X so that10

µt + νt
2

= (∇φt)]
(
µ0 + ν0

2

)
. (3.10)

In particular,
(

1
2
(µt + νt)

)
t∈[0,1]

is the unique geodesic from 1
2
(µ0 + ν0) to 1

2
(µ1 + ν1).11

Let µ̃t := (∇φt)]µ0, ν̃t := (∇φt)]ν0 be probability measures so that φt is the12

Kantorovich potential from µ0 to µ̃t, and ν0 to ν̃t respectively. By (3.10), we have13

1
2
(µt + νt) = 1

2
(µ̃t + ν̃t). In addition,14

W 2
2

(
(µ̃t + ν̃t)/2, (µ0 + ν0)/2

)
=

∫
d2(x,∇φt(x)) d(µ0 + ν0)/2

=
1

2

(
W 2

2 (µ̃t, µ0) +W 2
2 (ν̃t, ν0)

)
and15

W 2
2

(
(µ̃t + ν̃t)/2, (µ1 + ν1)/2

)
=

1

2

(
W 2

2 (µ̃t, µ1) +W 2
2 (ν̃t, ν1)

)
.

However, by Kantorovich duality formula, we have16

1

2

(
W 2

2 (µ1, µ0) +W 2
2 (ν1, ν0)

)
≥ W 2

2

(
(µ1 + ν1)/2, (µ0 + ν0)/2)

)
,

so that17

W 2
2

(
(µ1 + ν1)/2, (µ0 + ν0)/2

)
= W 2

2

(
(µ̃1 + ν̃1)/2, (µ0 + ν0)/2

)
=

W 2
2

(
(µ̃t + ν̃t)/2, (µ0 + ν0)/2

)
t

+
W 2

2

(
(µ̃t + ν̃t)/2, (µ1 + ν1)/2

)
1− t

=
1

2

(
W 2

2 (µ̃t, µ0)

t
+
W 2

2 (µ̃t, µ1)

1− t

)
+

1

2

(
W 2

2 (ν̃t, ν0)

t
+
W 2

2 (ν̃t, ν1)

1− t

)
≥ 1

2

(
W 2

2 (µ1, µ0) +W 2
2 (ν1, ν0)

)
≥ W 2

2

(
(µ1 + ν1)/2, (µ0 + ν0)/2)

)
where in the first inequality we use the inequality x2/t+ y2/(1− t) ≥ (x+ y)2.18

In conclusion, (µ̃t)t∈[0,1] is also a geodesic from µ0 to µ1, and (ν̃t)t∈[0,1] is also a19

geodesic from ν0 to ν1. By uniqueness of the geodesic, we know µ̃t = µt and ν̃t = νt20

and φ1 is the Kantorovich potential from µ0 to µ1 and ν0 to ν1.21
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