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1. Introduction

Since the pioneer works of Bourgain, Brezis, Mironescu [5], and Maz’ya, Shaposh-
nikova [22], the study of fractional seminorms got new interest. In [5,22], the authors
revealed that the fractional s-seminorms can be seen as intermediary functionals between
the LP-norm and the W1P-seminorms. Precisely, for any s € (0,1), N € N and p > 1,
the fractional Sobolev space W*P(RY) is defined as the union of f € LP(RY) with

%
P
fllwsr == (R/ |1:—y|N(+3P| dedy | < +oo.

The following well-known asymptotic formulas were proved in [5] and [22]:

lim (1= )|y = K|V, VF € WHRY), (BBM)
i sl ffyen = LIfIG Ve |J Wor®Y) (MS)
st 0<s<1

where K, L are constants depending only on p and N.

Both formulas (BBM) and (MS) have been widely studied in hundreds of papers in
the view of analysis, probability theory and geometry, and generalized to many different
settings such as Carnot groups [11], Riemannian manifolds [19], anisotropic spaces [20],
RCD metric measure spaces [16,17]), heat semi-group mollifiers [25], ball Banach function
spaces [12], and many new approaches to these formulas such as [9,13].

Until today, it is still an interesting and challenging problem to find more exam-
ples satisfying such asymptotic formulas. Motivated by a recent seminal work of Gérny
[15] about a Bourgain—Brezis—Mironescu type formula in metric spaces with Euclidean
tangents, we realized that (BBM) and (MS) hold in great generality.

In this paper, we will give a geometric understanding to the asymptotic formulas,
and focus on three basic models: Fuclidean space, finite-dimensional Banach space and
Carnot group. We will show that

the key of (BBM) is the infinitesimal structure (small scale),

the key of (MS) is the volume growth at infinity (large scale).

In our three models, the tangent cone at a point and the tangent cone at infinity are
isometric to the underlying spaces, so these properties and their differences are often
overlooked.

As an application, we get a unified proof to several already known results, including
[5] and [22] in R™, [20] in finite dimensional Banach spaces and [19] in weighted Rieman-
nian manifolds, and we give a full characterization of the constants K and L in (BBM)
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and (MS) respectively. We also show that the asymptotic formulas are valid for more
mollifiers.

Structure of the paper: In Section 2 we recall some preliminary notions, including
Sobolev spaces and Rademacher’s theorem, in the setting of metric measure spaces.
In Section 3, we start by posing the basic assumptions and then prove the main results
Theorem 3.9 and Theorem 3.11. In order to focus on the ‘geometric approach’, we will not
pose the most general assumptions, but the readers can find some weaker assumptions
without modifying our proof a lot. In Section 4, we provide several non-trivial and
relevant examples satisfying our assumptions.

Acknowledgment: The author is supported by the Ministry of Science and Tech-
nology (China), through the Young Scientist Programs No. 2021YFA1000900 and
2021YFA1002200, and the NSFC grant No. 12201596. He wants to thank Yuan Zhou
for helpful discussions on this project.

2. Preliminaries

Sobolev spaces

In this paper, a metric measure space (X, d, m) is a triple, where (X, d) is a complete
separable metric space, m is the N-dimensional Hausdorff measure w.r.t. d for some
N e N.

Given f: X — R, the local Lipschitz constant lip(f) : X — [0, o] is defined as

lip(f)(x) := E % if  is not isolated, 0 otherwise. (2.1)
The Lipschitz constant is defined as
. |f(y) — f(@)|
Lip(f) := sup ————=—
( ) T#y d(CE,y)

If Lip(f) < oo, we call f Lipschitz and write f € Lip(X,d). We denote by Lip,(X,d)
the collection of Lipschitz functions with bounded support.

Let 1 < p < oo. We say that a function f € LP(X,m) is in the Sobolev space
WhP(X,d,m) if there is a sequence of Lipschitz functions (f,),en converging to f in
LP(X,m), such that

n—00
X

lim inf/lip(fn)p dm < oo.

It is known (cf. [2]) that for any f € WP(X,d, m), there is a unique function |Df|, €
LP(X,m), called minimal p-weak upper gradient, such that
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/\Df|gdm - inf{l%nigf/lip(fn)pdm : fu € Lip,(X), fa — f in LP(X,m)}.

X X

If (X,d, m) is the Euclidean space, |Df|, coincides m-a.e. with the modulus of the dis-
tributional differential of f. In many situations, like PI spaces (i.e. it is doubling and
it satisfies a p-Poincaré inequality, cf. [10]) or RCD(K, c0) spaces (cf. [14]), |Df], is
independent on p. In this paper, we will neglect the parameter p and denote |Df|, by
DSl

The Sobolev space WP(X,d, m) endowed with the norm

11T 20 xamy = 1o my + DL ()

is a Banach space. For any f € W1P(X,d, m), by [2] there exists a sequence (fy,)nen C
Lip,(X,d) converging to f in LP?(X, m) such that

lim / [lip(f.) — [Df|” dm = 0.

Furthermore, if (X,d, m) is a PI space, by [1, Corollary 7.5, Proposition 7.6], there is
(fa)nen C Lip,(X,d) converging to f strongly in W1P.

The Hajlasz—Sobolev space M'P(X,d,m) is the space consisting of all u €
WLP(X,d, m) satisfying

u(z) —u(y)l < d(@,y)(9(2) + 9(y)) ae zyeX (2.2)

for some g € LP(X,m) with ||g||zr(x,m) < M||ullw1.» for some universal constant M. If
(X,d,m) is a PI space (cf. [15, Lemma 2.3]), WP(X,d, m) coincides with M1?(X, d, m).

Rademacher’s theorem

Given f € Lip(X,d), z € X and r > 0. The rescaling function f , is defined as

fr,z(y) = y € X. (23)

It can be seen that f, . is Lipschitz on (X, r~'d), with Lipschitz constant bounded from
above by Lip(f).

Fix x € X, assume that the pointed metric spaces (X,r~1d,z) converge to a pointed
metric space (Y,dy,y) (e.g. in the Gromov-Hausdorff sense, see [4] for details). This
space (Y, dy,y) is called a tangent cone at x, and in general it depends on z and is not
unique.

In [10, §10, page 487], Cheeger introduced the following abstract characterization
of uniform convergence of rescaling functions f,,, along with the convergence of
(X,r~td, z).
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Definition 2.1. Given a family of maps {¢, },>0 from (X, d) to (Y, dy) satisfying ¢,(z) =
y € Y. We say that the rescaling functions {f, ,}r~0 converge to a function fy, on
(Y,dy) (associated with {¢,},~0) if there is a function «(r) satisfying a(r) | 0 as r — 0,
such that

1o 060 = Frallpo oy SO0 ¥ >0 (2.4)
where B,.(z) = {y € X : d(y,z) < r} is the geodesic ball.
3. Main results
3.1. Assumptions on the spaces

Model Spaces: the triple € := (C,d¢, m¢) denotes one of the following spaces:

N-dimensional Euclidean space (R, |-|,£Y = ’H|N|),
N-dimensional Banach space (R, |-, £ = Hﬁ\_[”),

Carnot group with homogeneous dimension N (R™,d¢¢, L™ = Hévcc).
This space € plays the role as the unique tangent space to X at m-a.e. point.

Assumption 3.1 (Small scale: infinitesimal structure). We assume that (X,d, m) is PI,
so properties about the Sobolev spaces stated in Section 2 are valid. In addition, given

a model space (C,d¢, me), we also assume:

A) (Unique tangent space:) For m-a.e. x € X, there is a family of maps {¢s}s>o from
X to C satisfying ¢s(z) =0 € C and

1d(y, 2)
de(9s(y), ds(2))

where 7 : (0,1) — (0,1) is an increasing function with limson(d) = 0.

B) (Rademacher’s theorem) For any u € Lip(X,d), for m-a.e. z € X, there is a function
U, on C, such that the rescaling functions {u, ;}r>0 converge to ug, associated
with the maps {¢s}s>0, in the sense of Definition 2.1.

— 1| <n(d), VYy,z¢€ Bs(x),d €(0,1) (3.1)

Remark 3.2. Here are some remarks on the Assumption 3.1.

(1) For any r > 0, there is a dilation map D,., which is an isometry between (C,d¢, m¢)
and (C,r~'de,r"Nm¢), such that D,.(0) = 0 and D, o D,» = D, for any r,7" > 0.
In particular,

(DT)ﬁmc = T_ch. (3.2)
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(2) For any r > 0 and any Borel set Q C S¢ := {y : de(y,0) = r}, we define the
‘boundary measure’ of € by

. mC( Us€[1,1+e] DS(Q))
masf(ﬂ) = lelﬁ)l er .

We can see that
masf = erl(Dr)ﬁ(man). (3.3)

(3) Since both m and mg are N-dimensional Hausdorff measures, the condition (3.1)
implies that

(¢§)ﬂ(m|36(z)) =(1+ 0(1))5ch|¢5(B5(x)) as 6 — 0. (3.4)

Equivalently, for any € > 0 there is §o > 0 such that

(1 - 6)6ch|¢a( < (¢5)ﬁ(m|36(1)) < (1 + 6)6ch‘¢5( Y § < dp.

Bs(x)) Bs(x))

It can be seen from our proofs, the assumption that m is the N-dimensional Hausdorff
measure can be replaced by (3.4).

Remark 3.3. In general, neither {¢s}s>0 nor ug , is unique. However, in many situations,
the value fslc o, (v)|P dmf (v) is independent on the choice of ¢;5 and ug ... For example,
by a deep result of Cheeger [10, Theorem 10.2], any limit function ug, is generalized
linear and

—lip(u)(x)by < g, <lip(u)(x)b_,

where b, denotes the Busemann function associated to a ray 7. Therefore, if € is an
N-dimensional Euclidean space (cf. [10, Theorem 8.11.]) or an N-dimensional Banach
space equipped with a smooth norm (cf. [18, §2.3]), then there is 7 so that —lip(u)(z)b, =
Uo,e = lip(u)(x)b_,, uo 5 is linear and unique.

Assumption 3.4 (Large scale: volume growth condition). For any point o € X and R > 0,
the following generalized Bishop—Gromov volume growth inequality holds

m(BR(o)) E N ,
7]“(37.(0)) < <T> Vr € (0, R] (3.5)

where Bpg(0), Br(0) are geodesic balls. In this case, the limit lim, o m(B;(0))/rY

exists and it is independent on o, we will denote it by AVR(x d,m)-
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3.2. Assumptions on the mollifiers
Let (pn)nen be a sequence of mollifiers:
P {(:c,y) EXXxX: ax# y} — (0, 00) is measurable.

We assume that (pp)nen satisfies the following approzimation of the identity of radial
type. Examples of mollifiers fulfilling these assumptions can be found in [12, §2] and [8].

Assumption 3.5 (Approximation of the identity: small scale).

A) (Polynomial decay at infinity) There is a constant ¢; such that

/pn(x,y) dm(y) <c VYneN,zeX. (3.6)

X Lo (X,m)

For any 6 € (0,1) and = € X, denote Es(z) = {y € X : d(y,z) > ¢}. It holds

lim pn(z,y) dm(y) = 0.

n—oo
Eg(fL)

B) (Radial distribution) There is a sequence of non-increasing functions (p,)nen such
that

pul@,y) = pu(d(z,y) forallz,ye X, z#y.

C) (Approximation of the identity) For any ¢ > 0,

o
. + C N—-1~ —
nh_)H;OmC(Sl )/r pn(r)dr=1
0
where N € N is the same constant as before.
Assumption 3.6 (Approximation of the identity: large scale).

A) (Radial distribution) There are strictly decreasing functions (jy),en with

lim p,(r) =0, Vre (0,400), (3.7)

n—oo

such that

pu(,y) = pu(d(,)) forallz,y € X, x4y,
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B) For any n,m € N with n > m, it holds

pn(r)

(0,+00) 51 — = is non-decreasing.
P (r)

C) (Approximation of the identity) For any 6 > 0 and x € X,
“+o0
lim AVR(x 4 m) / NrV=15 (r) dr = 1 (3.8)
5

where AVR (x q,m) is well-defined under Assumption 3.4.
3.8. Bourgain—Brezis—Mironescu’s formula

Firstly we study Lipschitz functions with bounded support.

Proposition 3.7. Let (X,d, m) be a metric measure space satisfying Assumption 3.1. Let
p > 1, (pn)nen be mollifiers satisfying Assumption 3.5, and u € Lipy(X,d) be a Lipschitz
functions with bounded support. For any n € N, define

- @) —w@I” N da(e)dm
En(u) —// () Prl@y) dm(z)dm(y).

X X

It holds

ILm En(u) = ||Vu|\’;(p e S /|1ip(u)|p dm, Vu € Lip,(X,d) (3.9)
X

where

IVulfy = / f g« (0)|” dm (v) dm(z) (3.10)

X SIC
and the function ug 5 is given in Assumption 3.1-B).

Proof. Let € X be a point for which the statements A) and B) in Assumption 3.1 hold.
There exist maps {¢s}s>0 satisfying (3.1) and ¢s(x) = 0 € C, and there is a function
a(0) satisfying «(d) J 0 as § | 0, such that the rescaling functions us ,(y) = M

converge to ug , as 0 — 0:

|u07w(¢5(y)) - u(57w(y)| < a(d) for almost every y € Bs(z). (3.11)

By the Lagrange mean value theorem for ¢ — ¢, (3.11) and the fact that |us | < Lip(u)
on Bj(x), there is a constant K = K (u,z) > 0 such that
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’|u5,z(y)|p — |0, (05 ()| (6) as & — 0.

For any 6 > 0 and i € N, set §; := 27%J. It holds the identity

ppn(l‘,y) ( )

|u(z) — uly)[” /
—_— )d oP z —=d
| et Z 15s W Goga ) ™
B5($) - B5i($)\B5i+1($)

Denote B; s := Bs,(x) \ Bs,, (x). We have

I1(6,n)

Estimate of I(4,d,n): Given € > 0. By Assumption 3.1-A) and symmetry of mollifiers

P

in Assumption 3.5-B), for § > 0 small enough, it holds

pn(3dc(95(y),

)O+9) _ palay) _ Pn(0de(65(y).00(1 —6))
(6do(¢s(y),0)(1+ )" = dr(z, y) = . (3.12)

(6dc(¢s(y),0)(1 —€))”

By change of variable, for  small enough, we have
1(4,6,n)

<G 6P [ ug 2 (¢s, (1))
/

pPn(9ide(¢5,(9),0)(1 =€)
| (6idc (s, (1), 0)(1 = €))® )

_ o pPn(0idc(v,0)(1 - €))

= 61 / ‘u07z(v)’ (6idc(v, O)(l _ 6))[) d(¢5b)ﬁm<v)
¢s; (Bi,s)

<G (1 4e)sN TP / w02 (V)|

¢s,; (Bi,s)

pPn(9:dc(v,0)(1 —¢)) y
(5idC(U70)(1 - 6))p .

) Vir (e (0,0)(1 — )
= A+9s™ / [o(®) o001 =) et

BE\BC

1/2

Lo (4,6,n)
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pn (8idc(v,0)(1 — €))
+(1+e€)sNHP / g . (v)[° dme (v).
( )0 [uo(v)] (6;dc(v,0)(1 —€))” ot
5, (Bi,s)\(BE\BS),)
Iy (4,6,n)
We can see that
L.(i,0,n)
1 ﬁn(dC(UaO))
(1—eN c [0 (Ds; -+ ()] (de(v,0))?
B(l—s)rsi\B(l—‘)‘sH»l
(1—e)
_5PQT / /\um 51 ( )Ppn (v)dr
(1—€)d;41 SE

where mf, is the boundary measure and D, is the dilation on € (see Remark 3.2).
By linearity of ug, and homogeneity of €

[

Uo (Déi_l(l_e)_1 (v)) ‘ )p dmf,(v)

5¢
_ ((1_6)—17~)P/ oo (Dy—1 () | dim (v)
5¢
= ((176)71T)p7’N71/|U (V)] dmg(v)
s¢
Hence
(1—€)d;

(1—€)é;

—-97 |} / N () /\uw P dm(v)
=0(1-6)5ip1

(1—€)é

= (1 —pe+o(e)) /rN " on /\uoz ? dmf;(v)

0

In conclusion
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(1—€)é

S L, 6,m) < (14 0(0)) / PN15 ) dr / o (W) dmb() | . (3.13)
=0 0 1C
Estimate of 1;(i,d,n): As § — 0, by (3.1) we have
¢5.(Bis) C BYy o) \ By (3.14)
So
me (65, (Bis) \ (B \ Bfj2) ) = O(n(#:)). (3.15)

Assume (1 —n(8))(1 —€) > 1. Note that Lip(uo,;) = lip(u)(z), we have

Ib(i, (57 n)
pPn(0ide(v,0)(1 —¢))

_ sN+p
= 5l |u0,a:(71)| (5ldC(U7O)(1 — 6));0

b5, (Bi,s)\(BY\BY),)

dme(v)

Jon (G2 (1=0(9) (1= )

<o [(1+n(8))lip(u) ()] 4 dmc(v)
5, (Bi,s)\(BE\BE,) (5"“ (1=n(@)( - 6))
N
S 77(51')5;\7151%5;\;2 ((5511 - 5ﬁ2)ﬁn(5i+2))
1+ 1+

< 0(6) / Pl y) dm(y)

(B5i+1 (I)\B5i+2 (z))

so that by Assumption 3.5-A)
oo
D L(i,6,m) S (o) (3.16)
=0

Estimate of II(d, n): By monotonicity of «(J),

I1(5, n)
< Ca(0)Y 07 / P "6(5’ 9 dm(y)
=0 o\Be, (@)

= 27Ca(6) / pn(,y) dm(y)
B;s(x)
< afd).
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Conclusion: By Assumption 3.5-A),

: |u(z) — u(y)l” . B
o Ty @) dmly) < lim [Lip(u) pn(@,y) dm(y) = 0.
B¢ (x) B§(z)

Combining the estimates obtained above

v [ |u(z) —u(y)P
lim / an(w‘,y)dm(y)

n—oo

I — P
L [ ) ()
n—o00 dp(x’ y)

Bs(x)

Tim (1(5, n) + 11(6, n))

n—oo

pn(z,y) dm(y)

IA

IA

YL—H)O

)
lim (14 O(e /TN Lo (r) dr /|u0z )P dmg (v )) + O(n(6) + a(6))
0 s¢

(14 0@) (w55 @) ([ luoa@” dmg()) + O(6) + a(6))

8¢ (wo)

where in the last equality we use Assumption 3.5-C).
Letting § — 0 and € — 0 we get

lim /an(x,y)dm(y) < ][ 1o, (v)|7 dmg (v) .

n—oo
SF (wo)

|Vu\;(py€

Note that ug , is |lip(u)(z)|-Lipschitz, we have

i / %pm,y) dm(y) < [Vul, .

n—oo

IN

][ lip () () [P denh (v) = [lip(u) () .

8¢ (wo)

Similarly, from the first inequality in (3.12) we can deduce

i H i > f o s

n—oo

Integrating the inequalities above and using Fatou’s lemma, we get
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190l el < lin &) < T €(0) < [Vl el < [ lip(u)? dm
which is the thesis. 0O
Definition 3.8. For any u € WHP(X,d, m), [[Vul} . is defined as
IVull, . = Jim [Vuilly, ,
where (uy)ren is a sequence of Lipschitz functions converging to u in W1P(X,d, m).

By density of Lipschitz functions (with bounded support) in W1, we know ||Vu||];(%C
is well-defined. In other words, the value of limy_, oo Hvuk||]lg(p,¢ is independent of the
choice of (ug)ren- In general, such value can not be written as K ||Dul|P for some universal
constant K, since the space can be anisotropic and the function ug , is not linear (See
Example 4.1 and [20]).

Theorem 3.9 (Generalized Bourgain—Brezis—Mironescu’s formula). Let (X,d,m) be a
metric measure space satisfying Assumption 5.1, let (pn)nen be mollifiers satisfying As-
sumption 3.5 and 1 < p < co. Then for any u € WHP(X, d, m)

[ f me dm(z)dm(y) = [ Vall .. (3.17)
X X

=&, (u)

Proof. Let (u;) C Lip.(X,d) be such that u; — u strongly in W?(X,d, m). For any
€ € (0,1), there is kyp € N such that

s — iy lwrnceam <& Vil ~ [Vull, o] <e (3.18)

By (2.2) and Assumption 3.5-A), there exists g € LP with [|g|rr(x.m) < M| ulwrr
such that

P Minkowski inequality
< gn (uko - u)

Ex (ur,) — & (u)

<) / / (9(2) + 9(9))” Pl y) dm(z)dm(y)
X X

<O 2P ey M|l — o[y x g,y < 21 M.

By Proposition 3.7 and (3.18), there is ng € N such that for any n > ng, it holds

57? (uko) - Hvuk()”Kp,o: < €. (319)
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Combining the estimates above, we obtain

& (u) = IVullx,. e

1

&7 (u) = &7 (un,)

1
< + &7 (uko) - ||vu’€0||Kp,¢ + HlvukOHKp,e‘ - HquKp,Lr

< 2P MPeP + 2¢
for any n > ng, which is the thesis. O

Remark 3.10. The value ||Vu||7;<nLr depends on the choice of ¢s. So our results depend
on a given family of maps ¢5. So Theorem 3.9 should be understood in this way: if there
are ¢s and ug , fulfils our assumption, then the limit on the left hand side of (3.17) exists
and it is HVUH’I’(%G. This is irrelevant to the uniqueness of ¢5 nor ug 4.

In case € is an N-dimensional Euclidean space (cf. [10, Theorem 8.11.]), or an N-
dimensional Banach space equipped with a smooth norm (cf. [18, §2.3]), or an Heisenberg
group (cf. [15, §4.2]), the limit function ug, is unique up to composing a rotation. In
these cases, the value \|Vu||’1’<M is independent on the choice of ¢s.

3.4. Maz’ya—Shaposhnikova’s formula

Next we will prove Maz’ya—Shaposhnikova’s formula in a geometric way. In the formula
(3.20), the constant on the right-hand side is equal to 2 by the assumption on the
mollifiers, and up to rescaling the mollifiers and the measure we could recover the original
constant in the Maz’ya—Shaposhnikova’s formula (MS).

Theorem 3.11 (Generalized Maz’ya—Shaposhnikova’s formula). Let (X,d,m) be a non-
compact metric measure space satisfying Assumption 3.4, (pn)nen be mollifiers satisfying
Assumption 5.6. For any u € LP with &,,(u) < +0o for some ng € N, we have

n—oo

lim / / () — u(y) Pn (. y) dm(z)dm(y) = 2[ullZ,. (3.20)
X X

=&, (u)

Proof. For zy € X, § > 0, we have a decomposition of X x X

QT =
i ..
A e

(z,y) : d(z,y) < 6}
z,y) 1 d(z,y) > 6} N {(z,y) : d
(@,y) : d(z,y) > 6} N {(z,9) : 3

(y,x0) > 2d(x, x0) or d(y, zo) < $d(x,x0)}
d(z, zo) < d(y,z0) < 2d(1:,a:0)}

and we divide &, (u) into the following three parts
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Enlu) = / () — u(y) Ppn (2, y) dm(z) dm(y)
A

I1(6,n)

+ / () — u(y)Ppu(x, y) dm(z) dm(y)
B

I1(6,n)

+ / () — u(y) P pu () dm(z) dm(y)

c

T11(8,m)

Estimate of I(d, n): For any n > ng, by Assumption 3.6-B), it holds

60 = [ [ 1) = utPpus0.) 245 i) | )
X \Biw) e
<[/ |u<x>—u(y)Ppm(x,y);”—(g))dm(x) dm(y)
X \Biy) "
)
<&z Gy
By (3.7) in Assumption 3.6 we get
lim I(4,n)=0. (3.21)

n——4oo

Estimate of I1(4,n): For § > 0, y € X and
T € {x cd(z,y) > 0, d(y, zo) > 2d(3:,x0)},

by triangle inequality,

A(e,) 2 d(y, 20) — (o, 2) > d(y, 20) — 5y, 20) = 3(3, 70)

and
3
d(z,y) < d(=o,2) +d(y, z0) < 5d(y, zo)-

Therefore

{o:d(@,y) >, d(y,z0) > 2d(z,20) } < {a §d<y,xo> > d(z,y) > %d(y,xw Vol
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so that

[ 1000 . 5) () m(y)

:/|u(y)\p / pn(z,y)dm(z) | dm(y)

X \{z: d(z,y)>3, d(y,x0)>2d(z,z0)}

< /|u(y)\p K{ / pn(z,y)dm(z) | dm(y)

¢ 2d(y,@o)>d(z,y)>Sd(y,x0)V4}

= [wp( / pu(x, ) dm(x)

X {z: d(z,y)>%d(y»10)\/5}

- / P (2, Y) dm(%)) dm(y).

{z: d(z,y)>2d(y,0)V4}

By Lemma 3.12, Fatou’s lemma and monotone convergence theorem, we have

lim lim / uy) / pu(2,y) dm(x) ) dm(y)
X

§—00 N—00
{a: d(z,y)>3d(y,x0)V}

= lim lim /\u(y)|p( / pn(T,Y) dm(:c)) dm(y)
X

d—00 N—>00
{x: d(z,y)> %d(y,mo)\/ts}

= llullZ,-

Hence

d—00 Nn—00

lim lim /|u(y)\ppn(:c,y) dm(z)dm(y) = 0.
B
For x, 29 € X, by triangle inequality we can also prove
E4d(z,:vo)<x) - {y e X: d(y,l‘o) > Qd(l‘,xo)} C Ed(l“,ﬂ?g)(x)7
where E,(z) denotes the set {y: d(y,z) >r}. So

2 [lu@r | [ suepant) | ane)

ﬁ(x,mo)va(x)

(3.22)
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> / ()P pu (, y) dm(z) dm(y)

:2/|u(x)\? / pn(@,y)dm(y) [ dm(z)
o\

y: d(y,x)>8, d(y,m0)>2d(x,z0)}

22 [l | [ puedn) | )

Fiad(z,zq)vs

By Lemma 3.12, Fatou’s lemma and monotone convergence theorem, we obtain

d—00 N—+00

lim lim /|u(x)|ppn(x,y) dm(z) dm(y) = 2||ul|},. (3.23)
B

Combining with (3.22), we get

lim lim II(6,n) = 2[ul/?,. (3.24)

d—00 N—00

Estimate of I111(d, n): By triangle inequality we can also prove

Wl >

CC {(az,y) s d(z,y) > 9, dy,z0) > =, d(z,x9) > g} (3.25)

Thus

(5. 1) = [ Jule) ~ u(y)pu (. ) din(z) din(y)
C

< o1 / ()P (i, ) dm(z) dm(y) + / () (2, ) dm(z) dm(y)
C C

< gr-1 / |u(:c)|p( / pn(%y)dm(y))dm(:ﬂ)

d(z,20)> 2 d(z.y)>6

vt [ ([ o) dng) dug)

d(y,w0)>g d(z,y)>d

< [ u@r( [ ) dn) ).

d(z,x0)>$ d(z,y)>4

By Fatou’s lemma
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T TT1(6,n) < 27 / u(2)]? T ( / pule.y) dm(y) ) dm(a)
n—roo n—roo
d(z,20)>3 d(z,y)>4
Fix R > 0. By monotone convergence theorem
lim lim III(6,n) < 27 / lu(z)|P lim lim ( / pn(2,9) dm(y)) dm(x).
§—00 N—00 d—00 Nn—+00
d(l’yzo)>§ d(z,y)>8

Then by Lemma 3.12 below, we get

lim lim III(6,n) < 27 / |u(x)|” dm(x) R2o0q).

§—00 N—00
d(z,z0)>%

Combining with (3.21) and (3.24) we get the conclusion. O

Lemma 3.12. Let (X,d, m) be a space satisfying Assumption 3.4 and (pn)nen be mollifiers
satisfying Assumption 3.6. Then for any x € X,

Es(x)

Proof. For 6 > 0 and n € N, by Cavalieri’s formula (cf. [3, Chapter 6])

pn(8)
/ poten)dn) = [ w({yir<pulen) < pa®))dr
s (x)

(e}

E

o\m

(2) \ Bs(a)) dr = / (B s (@) dr — m(By(2)) 5 0).

By assumption, m(Bs(z)) = AVR(x,q,m) (1 + 0(1))6" as § — +oc. So

/ AVR (x (14 0(1)) (5 (r) ¥ dr
0
)

(1+0(1))AVR(x,d,m) / tNpl (1) dt
+oo

let t = p, (r)
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+oo
by integration by parts = (1+ 0(1))AVR(x,a,m) | An(6)6™ + / NtN=15, (1) dt
s

Then by (3.7) and (3.8) in Assumption 3.6 we get

lim  lim pn(z,y)dm(y) =1, Vo € X. O

d—+o0 n—+00
Es(x)

4. Applications and examples

We present several applications of Theorem 3.9 and Theorem 3.11.
Bourgain—Brezis—Mironescu type formula

The first application extends a result of M. Ludwig [20] concerning finite dimen-
sional Banach spaces with general mollifiers. We remark that the proof in [20] relies on
Blaschke—Petkantschin formula, which works only for a very specific class of mollifiers.

Example 4.1 (Anisotropic spaces). Let € = (RY |- ||, £Y) be an N-dimensional Banach
space equipped with the Lebesgue measure £V, and let (p,),en be mollifiers satisfying
Assumption 3.5. Then

|p

: |f(z) — fy) P ayN-
lim /?y”gpn(x,y)dxdy: /][|va| d’HIJ‘\_fl‘l(v)dm (4.1)

n—»00 |
RN RN EN ge

where BY is the unit ball in € centred at 0 and S is its boundary, le‘\‘r |\71 is the boundary

measure.

Proof. Let {¢,},~0 be a family of dilations with respect to a fixed point z, i.e. . (y) =
x4+ r(y — x). Obviously {¢,},>0 satisfy Assumption 3.1-A) with n = 0.

Let f be a Lipschitz function and 2 € RY be a differentiable point of f with respect to
the Euclidean norm |-|. By Rademacher’s theorem on Euclidean spaces and [10, Theorem
10.2], the union of such points has full measure, and {f; ;}r>o converge uniformly to a
linear function fy ;(v) = Vf-v as r — 0. Since the norm || - || and the Euclidean norm are
equivalent, { f, » }r>0 also converge to fy , in || - [|. So Assumption 3.1-B) is fulfilled. O

Remark 4.2. In [20], the author studies

im (- [ [ LD,

51 [l — y[[NHp
RN RN

for f € WEHP(RYN || ||). Note that the mollifiers Hz—yhﬁ are not globally integrable,
which do not satisfy Assumption 3.5-A). However, the limit



20 B.-X. Han / Journal of Functional Analysis 287 (2024) 110608

lim (1—5)/ dedy

s—1— ||='17 - y||N+sp
RN RN

exists for f € LP(RY) if and only if the limit

: [f(z) = fy)IP
lim (1 —s) v dedy
[

a1 Jo — g ¥+

exists for any f € LP(§2) and any bounded open set 2 containing the origin. In the
latter case, mollifiers M% are uniformly integrable on 2 so that we can apply
our theorem.

In this case, we obtain

lim (l—s)/ dedy

=1 [l — y[[V+ep
RN RN

—Co [ [1V-op a0 da

RN S(’:
where by definition the constant Cj is given by
P 1
Co= lim (1—s /TN Lp=N=sptp qp = =

s—)l_ p.
0

Note that

/ Vf - oP deN ()

//IVf ol AHY T (0) dr

0 s¢

By change ofvanable-//Wf rol? dHH I Y(rv)dr
0S¢

1
N 1 Vf ol a1y () ) d
O/’" / R ] ) "

SL

+N/|Vf v|? d?—lH I Lw).
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Then we reprove the formula obtained in [20]

lim (1—3)/ dedy
N RN

il lo— g N+
N
-7 //IVf oP LN (v) da
RN K

where K := BY is a convex body.

Example 4.3 (Euclidean spaces). Let € = (RY |-|, LV) be the N-dimensional Euclidean
space equipped with the Euclidean distance and the Lebesgue measure, and (p,,), be a

family of mollifiers satisfying Assumption 3.5. Then
n—oo
RN RN
where

Ky = £Y(BY) ool ¥ (0

sy

is a constant independent of the choice of w in an N-dimensional unit sphere SV, an

N
LN(BN) = F(ﬂﬂiz-u) is the volume of the N-dimensional unit ball BY.
2

Proof. Notice that

P N— 1 p
][|Vf v|P dH =|Vf] ][‘lvﬂ v

sy

p

By isotropicity of the Euclidean space, we know

]['Ivf

Then the assertion follows from Example 4.1. O

sy

Example 4.4 (Riemannian manifolds, cf. [19]). Let (M, dg, Volg) be an N-dimensional
compact Riemannian manifold, and (p,,),, be mollifiers satisfying Assumption 3.5. Then

n—oo

lim / / %Pn(ﬂf, y) dx dy = Kp,NvaHip

dHN 7 (v).

dHN " (v) = ]l|w P dHN T (v)  Yw e SY.

— P
i [ [T (0,0 avVol, 0aVol, (1) = Ko 197 v
M

21

(4.2)

d

(4.3)
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where

Ky = £Y(BY) oo iV (0

St
is the same constant as the constant appeared in (4.2).

Proof. On an N-dimensional Riemannian manifold, the tangent space is unique and
isometric to RY. We can construct {¢s}s>o by exponential maps. Then the assertion
follows from Theorem 3.9 and the constant K,  is the same as the asymptotic formula
for Euclidean space. O

Example 4.5 (Carnot groups). Let (X,d,m) be an m-dimensional equi-regular sub-
Riemannian manifold with homogeneous dimension N > m, equipped with the Carnot—
Carathéodory metric d and the associated Hausdorff measure m = HY. Let (p,), be
mollifiers satisfying Assumption 3.5. We have

n— o0 d

i [ [ W%{#pn(m,y) dm(z)dm(y) = [V/I% (1.4)
X X

where

V51, = £7(B5) [ [ IDusr e @ dm

X s¢

where BY is the unit ball in the tangent cone € = (R™,dcc, L™ = HY ) centred at
0, S¢ denotes its boundary and Hévc_cl is the boundary measure, and D, f is Pansu’s
derivative of f in the direction v.

Proof. Let us check Assumption 3.1.

A) Tt was proved by Mitchell in [21, Theorem 1] (see also [24]) that the tangent
space of a sub-Riemannian manifold equipped with a equi-regular (or called generic)
distribution, is isometric to a nilpotent Lie group (Carnot group) with a left-invariant
Carnot—Carathéodory metric dgc.

Similar to Riemannian manifolds, at any point x on a sub-Riemannian manifold,
there are almost isometries ¢5 induced by exponential maps. More precisely, there exist
positive constants ¢ and r, such that (see [6, Theorem 6.4]) ¢s(x) = 0 and

1

—ed(z,y) (8doc (0,05(1)) ) < (@) — ddec (0, é5(y)) < cd(z,y)(8dec (0, 65()) )
(4.5)

5=

for some ¢ > 0. Denote ddcc (0, ¢s(y)) by |w|. By iteration use of (4.5) we get
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d(z,y) < |w| + cd(x7y)|w|% < |w] —|—c(|w| +cd(x,y)|w|%)|w|% <.
< Jw[(1 + O(Jwl)).

Similarly, we can prove
d(z, y) > [w|(1 + O(|wl)).
Thus

d(z,y)

ddec (zo, ps(y)) =1+00).

B) By Pansu’s theorem [24, Théorém 2] concerning Rademacher—Stepanov theorem on
sub-Riemannian manifolds, we know Lipschitz functions are almost everywhere differen-
tiable and the limit of the rescaling functions can be written as a linear function D, f(x)
in the sense of Pansu (cf. [24, A. Différentiabilité]). In particular, this limit function is
unique with respect to the almost isometries ¢g, in the sense of Definition 2.1.

Then the formula (4.4) follows from Theorem 3.9. O

Maz’ya—Shaposhnikova type formula

We list some spaces satisfying the volume growth condition in Assumption 3.4. More
mollifiers other than p,(z,y) = Iz~ and more discussions concerning asymptotic
volume ratio, curvature-dimension conditions and rigidity, will be discussed in [17].

SN
where

Example 4.6 (Euclidean spaces). It is known that AVR g~ |.| cv) = Wy =
N

T2
“N = FE
surface area. By Theorem 3.11 and a direct computation

denotes the volume of an N-dimensional unit ball and |SY~!| denotes its

“+oo
N

/ sNyN=1/pNTsp qp — 5P
p

s

we get Maz’ya—Shaposhnikova’s formula [22, Theorem 3|:

. lu(z) —w@)” | .~ N 21N
lyn s / Mo =yt ALY @) ALY () = Tl ey
RN R¥
Example 4.7 (Finite dimensional Banach spaces). Let (RN || - |,£Y) be an N-

dimensional Banach space. Denote by |K| the volume of a unit ball K. Applying
Theorem 3.11, we get Ludwig’s result [20, Theorem 2] for anisotropic fractional Sobolev

norms:
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: lu(z) —u@)” .~ Ny 2N p
inys | Wdﬁ ()AL w) = = Kl ey

Example 4.8 (MCP spaces). Let (X,d,m) be a metric measure space satisfying the
so-called Measure Contraction Property MCP(0, N), a synthetic curvature-dimension
condition of metric measure spaces introduced independently by Ohta [23] and Sturm
[26], as a generalization of N-dimensional Riemannian manifolds with non-negative Ricci
curvature. By [26, Theorem 2.3], the generalized Bishop—Gromov volume growth inequal-
ity holds.

In this case, for the mollifiers ps(z,y) = T § > 1, we have

: |u(@) = u(y)P IN
lim / / (g "o dm(z) dm(y) = 7AVR(X7d7m)||uHip,

Example 4.9 (Sub-Riemannian manifolds). Let G = (R dcc, £L?) be a Carnot group
endowed with the Carnot-Carathéodory distance dcc and the Lebesgue measure £
It is well known that £4(B(x,r)) = rNL£4(B(0,1)) where N € N is the homogeneous
dimension. It can be seen that AVR (g qp¢,ca) = £ (BE(0)).

Recently, as a consequence of interpolation inequalities proved by Barilari and Rizzi
[7] on some ideal sub-Riemannian manifolds, more examples of spaces verifying MCP
have been found, such as generalized H-type groups, the Grushin plane and Sasakian
structures.
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