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Abstract
We prove the rigidity of the Heisenberg–Pauli–Weyl uncertainty principle and the Caffarelli–
Kohn–Nirenberg interpolation inequality, on metric measure spaces satisfying measure
contraction property. Non-trivial examples fitting our setting include Finsler manifolds with
non-negative Ricci curvature and many ideal sub-Riemannian manifolds, such as Heisenberg
groups, the Grushin plane and Sasakian structures.
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1 Introduction

A fundamental concept in quantum mechanics, called Heisenberg uncertainty principle,
named after Heisenberg [9], states that the position and the momentum of particles cannot be
both determined explicitly but only in a probabilistic sense with a certain uncertainty. A few
years later, Pauli and Weyl [24] described it by rigorous mathematical formulation, which
states that a function itself and its Fourier transform cannot be well localized simultaneously.
The Heisenberg–Pauli–Weyl uncertainty principle on the Euclidean space is described by the
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following inequality: for any u ∈ C∞
0 (Rn),

(∫
Rn

|∇u(x) |2 dx

)(∫
Rn

|x |2u2(x) dx

)
≥ n2

4

(∫
Rn

u2(x) dx

)2

, (1.1)

where n2
4 is sharp and the extremals are uλ(x) = e−λ|x |2 , λ > 0.

The Heisenberg–Pauli–Weyl uncertainty principle only had sporadic developments in
the fifty years after the initial work in the 1930’s, followed by a steady stream of results
in the last forty years. We refer to a survey written by Folland and Sitaram [8], where
they gave an overview of the history and the relevance of (1.1) in the last century. At the
beginning of this century, Ciatti, Ricci and Sundari [5] extended this principle to positive
self-adjoint operators on measure spaces, and in the following years, Erb [6, 7], Kombe and
Özaydin [12, 13] proved a sharp uncertainty principle on Riemannian manifolds by operator
theoretic approach,Huang,Kristály andZhao [10] got a sharp uncertainty principle on Finsler
manifolds. In the context of metric measure spaces, Okoudjou, Saloff-Coste and Teplyaev
[21] proved aweak uncertainty principle,Martín andMilman [19] obtained an L1-uncertainty
principle with isoperimetric weights.

Inspired by a recent work of Kristály [15], where he revealed the rigidity of the
Heisenberg–Pauli–Weyl uncertainty principle on Riemannian manifolds with non-negative
Ricci curvature, we realize that similar rigidity results hold on a larger family of metric
measure spaces, called essentially non-branching MCP(0, N ) spaces. Examples satisfy-
ing MCP(0, N ) include Riemannian manifolds with non-negative Ricci curvature and their
Gromov–Hausdorff limits, Finsler manifolds with non-negative Ricci curvature, RCD(0, N )

spaces and many ideal sub-Riemannian manifolds including generalized H-type groups, the
Grushin plane and Sasakian structures.

We say that a metric measure space (X , d,m) admits the Heisenberg–Pauli–Weyl uncer-
tainty principle if there is x0 ∈ X , such that for any u ∈ Lipc(X , d),

(∫
X

| lip u |2 dm
) (∫

X
d2x0u2 dm

)
≥ N 2

4

(∫
X

u2 dm

)2

, (HPW)x0

where dx0(x) := d(x0, x) is the distance function from x0 and Lipc(X , d) denotes the space
of Lipschitz functions with compact support, and

lip u(x) := lim sup
y→x

|u(y) − u(x)|
d(x, y)

is the local Lipschitz constant of u at x ∈ X .
In our first theorem, we generalize Kristály’s result [15] to metric measure spaces.

Theorem 1.1 Let (X , d,m) be an essentially non-branching metric measure space satisfying
MCP(0, N ) for some N ∈ (1,∞). Then the following statements are equivalent:

(a) (HPW)x0 holds for some x0 ∈ X and the constant N2

4 is sharp.
(b) (X , d,m) is an N-volume cone.

In Theorem 1.1, the sharpness is understood in the sense that the (HPW)x0 holds on a

metric measure space (X , d,m) with the same constant N2

4 as in the Euclidean space RN .
The parameters N appearing in the MCP condition, (HPW)x0 and the volume cone are the
same. If we allow them to be different, we have the following non-rigid result.
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Theorem 1.2 Let (X , d,m) be a metric measure space satisfying the Generalized Bishop–
Gromov inequality

m(Br (x))

rn
≥ m(BR(x))

Rn
, ∀x ∈ X , 0 < r < R,

for some n > 1. Then the optimal constant in (HPW)x0 is at most n2
4 .

Example. It was shown by Juillet [11] that the n-dimensional Heisenberg groupHn , equipped
with the Carnot–Carathéodory metric and the Lebesgue measure, is a metric measure space
satisfying MCP(0, 2n + 3), and 2n + 3 is optimal. However, it is a (2n + 2)-volume cone.

By Theorem 1.2 we know the optimal constant in (HPW)x0 is no bigger than
(2n+2)2

4 .
Next we investigate the Caffarelli–Kohn–Nirenberg interpolation inequality (CKN for

short) in the setting of non-smoothmetricmeasure spaces. The classicalCKN in theEuclidean
setting was first proposed in [1], then Lin [18] generalized it to include derivatives of any
order. It is known that the CKN contains the Sobolev inequality and the Hardy inequality as
special cases.

Let N , p, q ∈ R be such that

0 < q < 2 < p and 2 < N <
2(p − q)

p − 2
. (1.2)

Fix x0 ∈ X . We say that CKN holds if for all u ∈ Lipc(X , d),

(∫
X

| lip u |2 dm
) (∫

X

|u|2p−2

d2q−2
x0

dm

)
≥ (N − q)2

p2

(∫
X

|u|p

dq
x0

dm

)2

. (CKN)x0

An endpoint of (CKN)x0 is exactly (HPW)x0 as p → 2 and q → 0. In the Euclidean setting,

Xia [25] proved the sharpness of (N−q)2

p2
and the existence of a class of extremals

uλ(x) = (λ + |x − x0|2−q)
1

2−p , λ > 0. (1.3)

Similar to Theorem 1.1, we have the rigidity of (CKN)x0 .

Theorem 1.3 Let N , p, q be real numbers satisfying (1.2) and (X , d,m) be an essentially
non-branching metric measure space satisfying MCP(0, N ). Then the following statements
are equivalent:

(a) (CKN)x0 holds for some x0 ∈ X and (N−q)2

p2
is sharp.

(b) (X , d,m) is an N-volume cone.

Plan of the paper. In Sect. 2, we introduce some basic concepts and results aboutMCPmetric
measure spaces. In Sect. 3, we prove the rigidity of (HPW)x0 on metric measure spaces, with
the help of the needle decomposition and the Generalized Bishop–Gromov inequality. In
Sect. 4, we prove the rigidity of (CKN)x0 .

2 Preliminaries

In this paper, (X , d) is a Polish space (i.e. a complete and separable metric space), andm is a
Radon measure on X such that 0 < m(U ) < ∞ for any non-empty bounded open set U ∈ X
(i.e. supp m = X ). The triple (X , d,m) is said to be a metric measure space.
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Denote by

Geo(X) :=
{
γ ∈ C([0, 1], X) : d(γs, γt ) = |s − t |d(γ0, γ1), ∀s, t ∈ [0, 1]

}

the space of constant-speed geodesics.We assume that (X , d) is a geodesic space, this means,
for any x, y ∈ X there exists γ ∈ Geo(X) so that γ0 = x, γ1 = y.

Denote by P(X) the space of all Borel probability measures on X and by P2(X) the
space of probability measures with finite second moment. The L2-Kantorovich–Wasserstein
distance W2 is defined as follows: for any μ0, μ1 ∈ P2(X), set

W 2
2 (μ0, μ1) := inf

π

∫
X×X

d2(x, y) dπ(x, y), (2.1)

where the infimum is taken over all π ∈ P(X × X) with marginals μ0 and μ1.
For any geodesic (μt )t∈[0,1] in (P2(X), W2), there is ν ∈ P(Geo(X)), so that

(et )�ν = μt for all t ∈ [0, 1],
where et is the evaluation map

et : Geo(X) → X , et (γ ) := γt .

We denote by OptGeo(μ0, μ1) the space of all ν ∈ P(Geo(X)) for which (e0, e1)�ν realizes
the minimum in (2.1), such a ν will be called dynamical optimal plan. If (X , d) is geodesic,
OptGeo(μ0, μ1) is non-empty for any μ0, μ1 ∈ P2(X).

Recall the following notion of essentially non-branching [22].

Definition 2.1 A set G ∈ Geo(X) is called a set of non-branching geodesics if for any
γ 1, γ 2 ∈ G, it holds:

∃t ∈ (0, 1) s.t. ∀s ∈ [0, t] γ 1
s = γ 2

s ⇒ ∀s ∈ [0, 1] γ 1
s = γ 2

s .

Definition 2.2 A metric measure space (X , d,m) is called essentially non-branching if for
any μ0, μ1 ∈ P2(X) with μ0, μ1 
 m, any element of OptGeo(μ0, μ1) is concentrated on
a set of non-branching geodesics.

If (X , d) is a smooth Riemannian manifold, then any subset G ⊂ Geo(X) is a set of
non-branching geodesics. More generally, it is known that RCD spaces are essentially non-
branching.

Given K ∈ R and N ≥ 0, for (t, θ) ∈ [0, 1] × R+, we define the distortion coefficients
as

σ
(t)
K ,N (θ) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∞ if K θ2 ≥ Nπ2,
sin(tθ

√
K/N )

sin(θ
√

K/N )
if 0 < K θ2 < Nπ2,

t if K θ2 < 0 and N = 0, or if K θ2 = 0,
sinh(tθ

√−K/N )

sinh(θ
√−K/N )

if K θ2 ≤ 0 and N > 0.

We also set, for K ∈ R, N ∈ [1,∞) and (t, θ) ∈ [0, 1] × R+,

τ
(t)
K ,N (θ) := t

1
N σ

(t)
K ,N−1(θ)

N−1
N .

The notion of measure contraction property MCP(K , N ), was proposed independently
by Ohta and Sturm in [20] and [23], as a synthetic notion of lower Ricci curvature bounds.
Generally, these two definitions are slightly different, but on essentially non-branching spaces
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they coincide (see for instance Appendix A in [3] or Proposition 9.1 in [2]). We adopt the
one in [20].

Definition 2.3 Let K ∈ R and N ∈ [1,∞). We say that a metric measure space (X , d,m)

satisfies MCP(K , N ) if for any μ0 ∈ P2(X) of the form

μ0 = 1

m(A)
m�A, A ⊂ X is Borel, and m(A) ∈ (0,∞),

and any o ∈ X , there exists ν ∈ OptGeo(μ0, δo) such that:

1

m(A)
m ≥ (et )�

(
τ

(1−t)
K ,N (d(γ0, γ1))

N ν(γ )
)

∀t ∈ [0, 1].
From [2], we know that in the setting of essentially non-branching spaces, Definition 2.3

is equivalent to the following: for all μ0, μ1 ∈ P2(X) with μ0 
 m, there exists a unique
ν ∈ OptGeo(μ0, μ1) such that for all t ∈ [0, 1), μt = (et )�ν 
 m and

ρ
− 1

N
t (γt ) ≥ τ

(1−t)
K ,N (d(γ0, γ1))ρ

− 1
N

0 (γ0), for ν-a.e. γ ∈ Geo(X), (2.2)

where μt = ρtm.
In order to prove our main results, we need a corollary of the powerful needle decompo-

sition theorem. Here we only consider the case K = 0 and the simplest 1-Lipschitz function
dx0 := d(x, x0). We refer to Cavalletti–Mondino [4, Theorem 3.6] for more general cases.

Theorem 2.4 Let (X , d,m) be an essentially non-branching MCP(0, N ) metric measure
space for some N ∈ (1,∞). Then for any x0 ∈ X and R > 0, there exists an m-measurable
transport subset T ⊂ BR(x0) and a family {Xα}α∈Q of subsets of BR(x0), such that

1. there exists a disintegration of m

m�T =
∫

Q
mα dq(α), q(Q) = 1,

2. m(BR(x0) \ T ) = 0,
3. for q-a.e. α ∈ Q, Xα is a closed geodesic with an extremal point x0,
4. for q-a.e. α ∈ Q, mα is a Radon measure supported on Xα with mα = hαH1�Xα


H1�Xα ,
5. for q-a.e. α ∈ Q, the metric measure space (Xα, d,mα) verifies MCP(0, N ).

Here H1 denotes the one-dimensional Hausdorff measure, {Xα}α∈Q are called transport
rays and two distinct transport rays can only meet at x0.

It is worth recalling that, if hα is an MCP(0, N ) density on I ⊂ R, then for all x0, x1 ∈ I
and t ∈ [0, 1],

hα(t x1 + (1 − t)x0) ≥ (1 − t)N−1h(x0). (2.3)

At the end of this part,we recall theGeneralized Bishop–Gromov volume growth inequality
(cf. [23, Remark 5.3]) and the definition of the volume cone.

Theorem 2.5 (Generalized Bishop–Gromov inequality) Assume that (X , d,m) satisfies
MCP(0, N ) for some N > 1. Then for any x ∈ X,

m(Br (x))

r N
≥ m(BR(x))

RN
, ∀0 < r < R, (GBGI)

where Br (x) := {y ∈ X : d(y, x) < r}.
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Definition 2.6 Given N ∈ [1,∞), we say that a metric measure space is an N -volume cone
if there exists O ∈ X , such that

m(BR(O))

m(Br (O))
=

(
R

r

)N

, ∀0 < r < R.

3 Heisenberg–Pauli–Weyl uncertainty principle

In this section, wewill prove theHeisenberg–Pauli–Weyl uncertainty principle on the volume
cones using needle decomposition, which reduces the problem into one-dimensional metric
measure spaces. Conversely, we deduce the rigidity from the Generalized Bishop–Gromov
inequality.

Proof of Theorem 1.1 Part1 : (b) ⇒ (a).
Step 1. Assume that the vertex of the N -volume cone is O and denote dO(x) := d(x, O).

By Theorem 2.4, for any R > 0 we have a measure disintegration:

1.

m�T =
∫

Q
mα dq(α), q(Q) = 1,

2. m(BR(O) \ T ) = 0,
3. for q-a.e. α ∈ Q, Xα is a closed geodesic with an extremal point O ,
4. for q-a.e. α ∈ Q, mα 
 H1�Xα ,
5. for q-a.e. α ∈ Q, the metric measure space (Xα, d,mα) verifies MCP(0, N ).

Consider the optimal transport problem between the probability measures

μ0 = 1

m(BR(O))
m�BR(O), and μ1 = δO .

By Definition 2.3, there exists a unique geodesic (μt )t∈[0,1] in (P2(X), W2) connecting μ0

andμ1, and there is a measure ν ∈ P(Geo(X)), so that (et )�ν = μt for all t ∈ [0, 1]. We can
see that μt is concentrated on a subset t ⊂ B(1−t)R(O). By measure contraction property
(2.2), we havem(t ) ≥ (1− t)Nm(BR(O)). Since (X , d,m) is an N -volume cone, we know
m(B(1−t)R(O) \ t ) = 0 so that almost every point in B(1−t)R(O) is a t-intermediate point
of some Xα . Combining (GBGI) and (2.3), we can also see that for q-a.e.α ∈ Q, (Xα, d,mα)

can be identified with ([0, R], | · |, cαx N−1dx) for some positive constant cα .
Since R is arbitrary and transport rays can only meet at O , we can rewrite the measure

disintegration as

m =
∫

Q
mα dq(α), (Xα, d,mα) ∼= ([0,+∞), | · |, cαx N−1dx), (3.1)

where for q-a.e.α ∈ Q, Xα has O as an extremal point.
Step 2. Fix α ∈ Q, denote by �̃α the weighted Laplacian

�̃α := � − 〈∇Vα,∇·〉,
where Vα(x) is given by e−Vα(x) = cαx N−1, and �,∇ are understood as directional deriva-
tives on [0,+∞) in the usual sense.
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Fix u ∈ Lipc(X , d) \ {0}. On one hand, by (3.1) we have �̃α(d2O) = 2N and

(∫
Xα

�̃α(d2O)u2 dmα

)2

= 4N 2
(∫

Xα

u2 dmα

)2

. (3.2)

On the other hand, by integration by parts

(∫
Xα

�̃α(d2O)u2 dmα

)2

=
(

−
∫ ∞

0

〈∇(u2),∇(d2O )
〉
dmα

)2

=
(

−
∫ ∞

0
4udO 〈∇u,∇dO 〉 dmα

)2

Cauchy–Schwarz ≤ 16

(∫
Xα

d2O u2 dmα

) (∫
Xα

|∇u|2 dmα

)
.

(3.3)

Combining (3.2) and (3.3), we obtain

(∫
Xα

|∇u|2 dmα

) (∫
Xα

d2O u2 dmα

)
≥ N 2

4

(∫
Xα

u2 dmα

)2

. (3.4)

Step 3. Denote Cα := ∫
Xα

d2O u2 dmα > 0, m̃α := mα

Cα
, q̃ := Cαq. We can see that

{m̃α}α∈Q is also a disintegration of m since

∫
Q
m̃α d̃q(α) =

∫
Q

mα

Cα

· Cαdq(α) =
∫

Q
mα dq(α) = m.

Fix α ∈ Q, multiplying 1/C2
α on both sides of (3.4), then we have

(∫
Xα

|∇u|2 dm̃α

) (∫
Xα

d2O u2 dm̃α

)
≥ N 2

4

(∫
Xα

u2 dm̃α

)2

. (3.5)

Note that

∫
Xα

d2O u2 dm̃α ≡ 1, ∀α ∈ Q,

∫
X
d2O u2dm =

∫
Q

∫
Xα

d2O u2 dm̃α d̃q = q̃(Q).

(3.6)

Combining the above identities and integrating α on both sides of (3.5), we conclude that

∫
Q

(∫
Xα

|∇u|2 dm̃α

)
d̃q(α) ≥ N 2

4

∫
Q

(∫
Xα

u2 dm̃α

)2

d̃q(α). (3.7)

Multiplying q̃(Q) on both sides of (3.7) and combining

|∇u(x)| ≤ |lip u(x)| a.e. x ∈ Xα, ∀α ∈ Q,
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  104 Page 8 of 16 B. Han, Z. Xu

by Cauchy–Schwarz inequality, we get(∫
X

| lip u |2 dm
) (∫

X
d2O u2 dm

)

≥ N 2

4

(∫
Q

(∫
Xα

u2 dm̃α

)2

d̃q(α)

) (∫
Q
12 d̃q(α)

)

≥ N 2

4

(∫
Q

∫
Xα

u2 dm̃α d̃q

)2

= N 2

4

(∫
X

u2 dm

)2

,

(3.8)

which is (HPW)x0 with x0 = O .

Step 4. Following Kristály and Ohta [14–16] we can prove the sharpness of N2

4 . Since
(X , d,m) is an N -volume cone with vertex O , we have

m(BR(O))

m(Br (O))
=

(
R

r

)N

, ∀0 < r < R.

Without loss of generality, we can assume that

m(Bρ(O)) = AωN ρN , ∀ρ > 0, (3.9)

where A is a positive constant and ωN := π
N
2 /�( N

2 + 1) is the volume of the unit ball in
R

N (cf. [17]).
For each λ > 0, consider the sequence of functions uλ,k : X → R, k ∈ N defined as

uλ,k(x) := max
{
0,min{0, k − dO(x)} + 1

}
e−λd2O (x).

Notice that supp uλ,k={x ∈ X : dO (x) ≤ k + 1} and MCP spaces are locally compact. For
any λ > 0 and k ∈ N, we have uλ,k ∈ Lipc(X , d) so it satisfies (3.8). Set

uλ(x) := lim
k→∞ uλ,k(x) = e−λd2O (x).

A simple approximation procedure based on (3.9) shows that uλ verifies (3.8) as well. Next,
we will prove that uλ attains the equalities in (3.8).

Define a function T : (0,∞) → R by

T (λ) :=
∫

X
u2

λ dm =
∫

X
e−2λd2O dm.

It is well-defined and differentiable, and we have

T ′(λ) =
∫

X
(−2d2O)e−2λd2O dm.

Note that

|lip uλ|2 = | − 2λdO lip(dO) e−λd2O |2 ≤ 4λ2d2O e−2λd2O .

To prove (3.8), it is sufficient to check the following equation:

− λT ′(λ) = N

2
T (λ), ∀λ > 0, (3.10)
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equivalently,

T (λ) = Cλ− N
2 for some C > 0. (3.11)

In fact, by the layer cake representation (or Cavalieri’s formula) and changing a variable, we
have

T (λ) =
∫ ∞

0
m({x ∈ X : e−2λd2O > t}) dt

= 4λ
∫ ∞

0
m

(
Bρ(O)

)
ρe−2λρ2

dρ

= 4λAωN

∫ ∞

0
ρN+1e−2λρ2

dρ

set 2λρ2 = y = 1

(2λ)
N
2

AωN

∫ ∞

0
y

N
2 e−y dy

= 1

(2λ)
N
2

AωN �(
N

2
+ 1),

which is the thesis.
Part2 : (a) ⇒ (b).

By Theorem 2.5 we know ρ �→ m(Bρ(x0))
ρN is non-increasing on (0,∞). Without loss of

generality, we assume

lim
ρ→0+

m(Bρ(x0))

ωN ρN
= A, A > 0 is a finite constant, (3.12)

so that

m(Bρ(x0)) ≤ AωN ρN , ∀ρ > 0. (3.13)

Consider the function

T (λ) = 4λωN

∫ ∞

0
ρN+1e−2λρ2

dρ = 1

(2λ)
N
2

ωN �(
N

2
+ 1), (3.14)

which certainly satisfies (3.10).
Fix x0 ∈ X , we consider the class of functions

ũλ(x) = e−λd2x0 (x)
, λ > 0. (3.15)

Similarly, we can approximate ũλ by elements in Lipc(X , d). Inserting ũλ into (HPW)x0 , we
obtain

2λ
∫

X
d2x0e−2λd2x0 dm ≥ N

2

∫
X

e−2λd2x0 dm, λ > 0. (3.16)

We introduce a function P : (0,∞) → R defined by

P(λ) =
∫

X
e−2λd2x0 dm.

It is well-defined and differentiable. By the layer cake representation, the function can be
equivalently rewritten as

P(λ) =
∫ ∞

0
m

({x ∈ X : e−2λd2x0 > t}) dt = 4λ
∫ ∞

0
m(Bρ(x0))ρe−2λρ2

dρ.
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Thus relation (3.16) is equivalent to

− λP ′(λ) ≥ N

2
P(λ), λ > 0. (3.17)

By (3.10) and (3.17), it turns out that

P ′(λ)

P(λ)
≤ T ′(λ)

T (λ)
, λ > 0.

Integrating this inequality, it yields that the functionλ �→ P(λ)
T (λ)

is non-increasing; in particular,
for every λ > 0,

P(λ)

T (λ)
≥ lim inf

λ→∞
P(λ)

T (λ)
.

We claim that

P(λ) ≥ AT (λ), ∀λ > 0.

To prove the claim, we only need to show

lim inf
λ→∞

P(λ)

T (λ)
≥ A. (3.18)

Due to (3.12), for any ε > 0 small enough, we can find ρε > 0 such that

m(Bρ(x0)) ≥ (A − ε)ωN ρN , ∀ρ ∈ [0, ρε].
Consequently, we have

P(λ) = 4λ
∫ ∞

0
m(Bρ(x0))ρe−2λρ2

dρ

≥ 4λ(A − ε)ωN

∫ ρε

0
ρN+1e−2λρ2

dρ

set 2λρ2 = y = 1

(2λ)
N
2

(A − ε)ωN

∫ 2λρ2
ε

0
y

N
2 e−y dy.

Combining (3.14) we get

lim inf
λ→∞

P(λ)

T (λ)
≥ A − ε.

Since ε > 0 is arbitrary, relation (3.18) holds and we complete the proof of the claim.
From the claim we know

4λ
∫ ∞

0

[
m(Bρ(x0)) − AωN ρN

]
ρe−2λρ2

dρ ≥ 0, ∀λ > 0.

By (3.13) we have

m(Bρ(x0)) = AωN ρN , ∀ρ > 0,

so (X , d,m) is an N -volume cone. ��
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Proof of Theorem 1.2 Without loss of generality, we can assume

0 < lim
ρ→0+

m(Bρ(x0))

ωnρn
= A < +∞ (3.19)

and

m(Bρ(x0)) ≤ Aωnρn, ∀ρ > 0. (3.20)

Consider the function

Tn(λ) = 4λωn

∫ ∞

0
ρn+1e−2λρ2

dρ = 1

(2λ)
n
2
ωn�(

n

2
+ 1). (3.21)

By (3.17) we have

P ′(λ)

P(λ)
≤ N

n

T ′
n(λ)

Tn(λ)
, λ > 0.

Integrating this inequality, it yields that the function λ �→ P(λ)

[Tn(λ)]N/n is non-increasing. Using
the same arguments as in the proof of Theorem 1.1 and combining (3.20), we can prove
limλ→∞ P(λ)

Tn(λ)
= A. Since Tn(λ) ↓ 0 as λ → ∞, it holds the inequality N/n ≤ 1 which is

the thesis. ��

4 Caffarelli–Kohn–Nirenberg inequality

In this section, we will prove the rigidity of (CKN)x0 . Its proof is similar to Theorem 1.1, so
we adopt the same notations as in the proof of Theorem 1.1 and omit some details.

Proof of Theorem 1.3 Part1 : (b) ⇒ (a).
Step 1. Assume that the vertex of the N -volume cone is O and denote dO(x) := d(x, O).

Similarly, for q-a.e.α ∈ Q, (Xα, d,mα) can be identified with the 1-dimensional space
([0,∞), | · |, cαx N−1dx) and dO�̃αdO = N − 1 on (Xα, d,mα).

Fix u ∈ Lipc(X , d) \ {0}. We have
∫

Xα

|u|p

dq
O

dmα = 1

N − 1

∫
Xα

|u|p

dq−1
O

�̃αdO dmα

= − p

N − 1

∫
Xα

|u|p−1

dq−1
O

〈∇|u|,∇dO 〉 dmα

+ q − 1

N − 1

∫
Xα

|u|p

dq
O

|∇dO |2 dmα.

(4.1)

Note that |∇dO | = 1 mα-a.e. on Xα , a reorganization of the above estimate implies that

N − q

p

∫
Xα

|u|p

dq
O

dmα ≤
∫

Xα

|u|p−1

dq−1
O

|∇u| dmα

Cauchy–Schwarz ≤
(∫

Xα

|∇u |2 dmα

) 1
2
(∫

Xα

|u|2p−2

d2q−2
O

dmα

) 1
2

.

(4.2)
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Similar to the proof of Theorem 1.1, we can adjust the decomposition and obtain

(∫
X

| lip u |2 dm
) (∫

X

|u|2p−2

d2q−2
O

dm

)
≥ (N − q)2

p2

(∫
X

|u|p

dq
O

dm

)2

(4.3)

which is the thesis.
Step 2. Similarly, to prove the sharpness of (N−q)2

p2
, we consider functions

uλ,k(x) := max
{
0,min{0, k − dO(x)} + 1

} (
λ + max

{
dO(x),

1

k

}2−q
) 1

2−p

.

Define

uλ(x) := lim
k→∞ uλ,k(x) = (λ + d2−q

O )
1

2−p .

By an approximation argument we can prove that uλ verifies (4.3) as well. Next we will show
that uλ attains the equality in (4.3).

Consider a function T : (0,∞) → R defined by

T (λ) = p − 2

p

∫
X

(λ + d2−q
O )

p
2−p

dq
O

dm.

It is well-defined and differentiable, and we have

T ′(λ) = −
∫

X

(λ + d2−q
O )

2p−2
2−p

dq
O

dm.

Notice that

|lip uλ|2 ≤
(
2 − q

2 − p

)2

(λ + d2−q
O )

2p−2
2−p d2−2q

O

and

p

p − 2
T (λ) + λT ′(λ) =

∫
X

(λ + d2−q
O )

2p−2
2−p

d2q−2
O

dm.

It is sufficient to prove

λT ′(λ) =
(

N − q

2 − q
− p

p − 2

)
T (λ), ∀λ > 0. (4.4)

Note that α := N−q
2−q − p

p−2 < 0. It is equivalent to prove

T (λ) = Cλα, ∀λ > 0 and for some C > 0. (4.5)
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By the layer cake representation and changing a variable, we have

T (λ) = p − 2

p

∫
X

(λ + d2−q
O )

p
2−p

dq
O

dm

= p − 2

p

∫ ∞

0
m

({x ∈ X : (λ + d2−q
O )

p
2−p

dq
O

> t}) dt

= p − 2

p
AωN

∫ ∞

0

(λ + ρ2−q)
2p−2
2−p

ρ2q−1−N

(
(2 − q)p

p − 2
+ q(λρq−2 + 1)

)
dρ

set ρ = λ
1

2−q y = p − 2

p
AωN

∫ ∞

0

(λ + λy2−q)
2p−2
2−p

λ
2q−1−N

2−q y2q−1−N

(
(2 − q)p

p − 2
+ q(yq−2 + 1)

)
λ

1
2−q dy

= λα p − 2

p
AωN

∫ ∞

0

(1 + y2−q)
2p−2
2−p

y2q−1−N

(
(2 − q)p

p − 2
+ q(yq−2 + 1)

)
dy,

which is (4.5) and we complete the proof of (b) ⇒ (a).
Part2 : (a) ⇒ (b).

Assume that

lim
ρ→0+

m(Bρ(x0))

ωN ρN
= A, A > 0 is a finite constant, (4.6)

and

m(Bρ(x0)) ≤ AωN ρN , ∀ρ > 0. (4.7)

Similarly, we consider the function

T (λ) = p − 2

p
ωN

∫ ∞

0

(λ + ρ2−q)
2p−2
2−p

ρ2q−1−N

(
(2 − q)p

p − 2
+ q(λρq−2 + 1)

)
dρ

= λα p − 2

p
ωN

∫ ∞

0

(1 + y2−q)
2p−2
2−p

y2q−1−N

(
(2 − q)p

p − 2
+ q(yq−2 + 1)

)
dy,

(4.8)

and the class of functions

ũλ = (λ + d2−q
x0 )

1
2−p , λ > 0. (4.9)

Similarly, the functions ũλ can be approximated by elements in Lipc(X , d) for every λ > 0.
By inserting ũλ into (CKN)x0 , we obtain that

2 − q

p − 2

∫
X

(λ + d2−q
x0 )

2p−2
2−p

d2q−2
x0

dm ≥ N − q

p

∫
X

(λ + d2−q
x0 )

p
2−p

dq
x0

dm. (4.10)

Define a function P : (0,∞) → R by

P(λ) = p − 2

p

∫
X

(λ + d2−q
x0 )

p
2−p

dq
x0

dm.

It is well-defined and differentiable. Through similar arguments, (4.10) is equivalent to

λP ′(λ) ≥
(

N − q

2 − q
− p

p − 2

)
P(λ), ∀λ > 0. (4.11)
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Due to (4.6), for any ε > 0 small enough, we can find ρε > 0 such that

m(Bρ(x0)) ≥ (A − ε)ωN ρN , ∀ρ ∈ [0, ρε].
Therefore, by layer cake representation and changing the variable ρ = λ

1
2−q y, it turns out

that

P(λ) = p − 2

p

∫ ∞

0
m({x ∈ X : (λ + d2−q

x0 )
p

2−p

dq
x0

> t}) dt

= p − 2

p

∫ ∞

0
m(Bρ(x0))

(λ + ρ2−q)
2p−2
2−p

ρ2q−1

(
(2 − q)p

p − 2
+ q(λρq−2 + 1)

)
dρ

≥ p − 2

p
(A − ε)ωN

∫ ρε

0

(λ + ρ2−q)
2p−2
2−p

ρ2q−1−N

(
(2 − q)p

p − 2
+ q(λρq−2 + 1)

)
dρ

= λα p − 2

p
(A − ε)ωN

∫ λ
1

q−2 ρε

0

(1 + y2−q)
2p−2
2−p

y2q−1−N

(
(2 − q)p

p − 2
+ q(yq−2 + 1)

)
dy.

Combining (4.8) and the fact that 1
q−2 < 0, we have

lim inf
λ→0+

P(λ)

T (λ)
≥ A − ε.

Letting ε → 0, we obtain

lim inf
λ→0+

P(λ)

T (λ)
≥ A. (4.12)

By (4.4) and (4.11), we have

P ′(λ)

P(λ)
≥ T ′(λ)

T (λ)
, ∀λ > 0. (4.13)

Integrating this inequality, it yields that the function λ �→ P(λ)
T (λ)

is non-decreasing. Combining
(4.12) we get

P(λ)

T (λ)
≥ A, ∀λ > 0,

which means, for any λ > 0,

p − 2

p

∫ ∞

0

(
m(Bρ(x0)) − AωN ρN

) (λ + ρ2−q)
2p−2
2−p

ρ2q−1

(
(2 − q)p

p − 2
+ q(λρq−2 + 1)

)
dρ

≥ 0.

By (4.7), we have

m(Bρ(x0)) = AωN ρN , ∀ρ > 0,

so (X , d,m) is an N -volume cone and we complete the proof of Theorem 1.3. ��
Remark 4.1 By the samemethods,we can prove the rigidity ofmore general CKN inequalities
in [25]. To achieve this, we just need to replace Cauchy–Schwarz inequality by Hölder
inequality in (4.2).

Concerning the dimension parameter N and the optimal constant in (CKN)x0 , we can
prove a similar result in the same way as Theorem 1.2, we leave the proof to the readers.
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