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Abstract

We study the Wasserstein barycenter problem in the setting of infinite-
dimensional, non-proper, non-smooth extended metric measure spaces. We
introduce a couple of new concepts and study the existence, uniqueness, abso-
lute continuity of the barycenter, and prove Jensen’s inequality in an abstract
framework. This generalized several results on Euclidean space, Riemannian
manifolds and Alexandrov spaces to metric measure spaces satisfying Rieman-
nian Curvature-Dimension condition à la Lott–Sturm–Villani, some extended
metric measure spaces including abstract Wiener spaces.

We also introduce a relaxation of the CD condition, we call the Barycenter-
Curvature-Dimension condition BCD. We prove its stability under measured-
Gromov–Hausdorff convergence and prove the existence of the Wasserstein
barycenter under this new condition. In addition, we get some inequali-
ties including a multi-marginal Brunn–Minkowski inequality and a functional
Blaschke–Santaló type inequality.
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1 Introduction

This paper has two goals. The first one is to extend results about Wasserstein
barycenter problem from the setting of smooth Riemannian manifolds to the setting
of non-smooth extended metric measure spaces. The second one is to use Wasser-
stein barycenter to give a notion for a metric measure space to have Ricci curvature
bounded from below. We refer to [BBI01] and [Vil09] for basic material on metric
geometry, optimal transport and synthetic theory of curvature bounds. In the in-
troduction, we motivate the questions that we address and we summarize the main
results.

Wasserstein barycenter

Let Ω be a Borel probability measure on a complete metric space (Y, dY ), a barycen-
ter of Ω is defined as a minimizer of

x 7→
∫
Y

d2
Y (x, y) dΩ(y)
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and the variance of Ω is defined as

Var(Ω) := inf
x∈X

∫
Y

d2
Y (x, y) dΩ(y).

In general, existence or uniqueness is uncertain. In some cases, for example when
(Y, dY ) is NPC (metric spaces of non-positive curvature), we have existence and
uniqueness of the barycenter.

A bridge, called Jensen’s inequality, between convexity and probability theory
was firstly established by Jensen in the seminal paper [Jen06] and had been highly
concerned and extensively explored after that. The validity of Jensen’s inequality
in a general metric space can be formulated in the following way. Let Ω be a
probability measure on Y , K ∈ R. We say that a function F : Y → R ∪ {+∞} is
weakly (strongly) K-barycentrically convex (cf. Definition 2.7), if there is (for any)
barycenter x̄ of Ω, it holds

F (x̄) ≤
∫
Y

F (x) dΩ(x)− K

2
Var(Ω). (JI)

This inequality has been widely studied in the context of Riemannian manifolds
[ÉM06, Afs11], CAT spaces [Stu03, Ken90, Kuw97, Yok16], Alexandrov spaces and
convex metric spaces [Kuw14].

We say that (X, d) is an extended metric space if d : X × X → [0,+∞] is a
symmetric function satisfying the triangle inequality, with d(x, y) = 0 if and only if
x = y. Given a Hausdorff topology τ on X and the Borel σ-algebra B(τ). Denote
by P(X) the set of Radon probability measures on X, and by P2(X, d) the set of
probability measures with finite second order moment, i.e. µ ∈ P2(X, d) if and only
if µ ∈ P(X) and

∫
d2(x, x0) dµ(x) <∞ for some x0 ∈ X.

Consider the Wasserstein space W2 := (P(X),W2) equipped with the so-called
L2-transport distance or 2-Wasserstein distance W2, defined by

W 2
2 (µ, ν) := inf

Π

∫
d2(x, y) dΠ(x, y)

where the infimum is taken among all transport plans Π with marginals µ, ν.

It is known that W2 is an extended metric on P(X) (see [AES16, Proposition
5.3]), and W2 is a metric on P2(X, d) if (X, d) is a metric space (see [AG11, Theorem
2.2]). Therefore it makes sense to talk about barycenters in the Wasserstein space.
This problem, called Wasserstein barycenter problem, draws particular interests,
as it gives a natural but non-linear way to interpolate between a distribution of
measures.

Definition 1.1 (Wasserstein barycenter). Let (X, d) be an extended metric space
and let Ω ∈ P2(P(X),W2) be a probability measure on the Wasserstein space
(P(X),W2) with finite variance. We call ν̄ ∈ P(X) a Wasserstein barycenter of
Ω if ∫

P(X)

W 2
2 (µ, ν̄) dΩ(µ) = min

ν∈P(X)

∫
P(X)

W 2
2 (µ, ν) dΩ(µ).
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It is worth to mention that, if (X, d) is a geodesic space, any Wasserstein barycen-
ter of Ω = 1

2
δµ0 + 1

2
δµ1 is exactly a mid-point of µ0, µ1.

The study of the Wasserstein barycenter problem was initiated by Agueh and
Carlier [AC11] in 2011, and got a lot of attention from experts in various fields in
the last decade. In mathematical economic, Carlier–Ekeland [CE10] studied team
matching problems by considering the interpolation between multiple probability
measures, which can be seen as a generalization of Wasserstein barycenter with
square of Wasserstein distance replaced by the general cost. From the perspective of
statistic, Wasserstein barycenter can be understood as the mean, which is a central
topic when dealing with a large number of data, of a data sample composed of
probability measures and thus shows its application value in data science [ABA22],
image processing [RPDB12] and statistics [BK13].

In metric measure geometry, Agueh–Carlier [AC11] in the Euclidean setting,
Kim–Pass [KP17] and Ma [Ma23] in the Riemannian setting, Jiang [Jia17] in the
Alexandrov spaces, established the existence and the uniqueness of Wasserstein
barycenter, and the absolutely continuity of the Wasserstein barycenter with re-
spect to the canonical reference measures in these cases. As a corollary, they
prove the following Wasserstein Jensen’s inequality, which is a generalized convex-
ity, called barycenter convexity (cf. Definition 2.7): for any K-displacement convex
functional F : P2(X, d)→ R∪{+∞} in the sense of McCann [McC97], a probability
measure on P2(X, d) and its unique barycenter µ̄, it holds

F(µ̄) ≤
∫
P2(X,d)

F(µ) dΩ(µ)− K

2

∫
P2(X,d)

W 2
2 (µ̄, µ) dΩ(µ). (WJI)

The first goal of this paper is to extend results [AC11,KP17,Ma23,Jia17] about
Wasserstein barycenter, including the key properties existence, uniqueness, and
regularity, to the setting of metric measure spaces. The main difficulties to achieve
this aim, comparing with the previous results, lies in the fact that

• all the known existence results depend on local compactness, which is not
available for non-compact spaces such as infinite-dimensional RCD spaces or
abstract Wiener spaces;

• in the Euclidean setting, regularity relies on the special geometric and algebraic
structure of the space;

• in the case of Riemannian manifolds and Alexandrov spaces, sectional curva-
ture bounds play important roles.

Therefore the known methods are difficult to be realized, in the general metric
measure space. To overcome these difficulties, we will show that

regularity of the Wasserstein barycenter is a consequence, other
than a necessary condition of the Jensen’s inequality.

Furthermore, as one of our main innovations in this paper, we will show
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Jensen’s inequality plays the role of “a priori estimate” in the
theory of partial differential equations.

Our idea is to take advantage of gradient flow theory to study Jensen’s inequal-
ity (JI), and Wasserstein barycenter problem. Motivated by a work of Daneri and
Savaré [DS08], we realize that a special formulation of gradient flows, called Evolu-
tion Variational Inequality, implies the existence of the barycenter and Jensen’s
inequality. Consequently, we give a direct, simple proof of Wasserstein Jensen’s in-
equality using the theory of gradient flows on Wasserstein spaces. In particular, our
proof is synthetic, dimension-free and does not rely on the properness of (X, d).

More precisely, let F be a lower semi-continuous function on a general extended
metric space (X, d), such that any point x0 with finite distance to the domain of F
is the starting point of an EVIK-type gradient flow (xt) of F satisfying

lim
t→0

F (xt) ≥ F (x0), lim
t→0

d(xt, y)→ d(x0, y), ∀y ∈ D(F )

and
d+

dt

1

2
d2(xt, y) +

K

2
d2(xt, y) ≤ F (y)− F (xt), ∀t > 0

for all y ∈ D(F ) satisfying d(y, xt) <∞ for some (and then all) t ∈ (0,∞), where d+

dt

denotes the upper right derivative. Then for barycenter x̄ of Ω, by considering the
gradient flow from x̄, we can establish Jensen’s type inequality (JI) for this function
F .

Examples: The property that the gradient flow of a K-convex function E is EVIK
type, is valid on Euclidean spaces, Hilbert spaces, Alexandrov spaces, CAT spaces.
For the Wasserstien space (P(X),W2), this property is valid, when X is an Eu-
clidean space, a smooth Riemannian manifold with uniform Ricci lower bound, an
Alexandrov space with lower curvature bound, a Wiener spaces or an RCD space
(see §3.2). We refer the readers to [AGS05, MS20, AES16] for more discussions on
this topic.

In particular, for Wasserstein barycenter problem, we prove the following exis-
tence theorems without local compactness or any other fine local structure of the
underling space (X, d). Note that if (X, d) is an extended metric space, the definition
of P2(X, d) may depends on the choice of base point, which is less meaningful. Thus
we will write the hypothesis for metric space and extended metric space separately.

Theorem 1.2 (Existence of barycenter, Theorem 5.7). Let K ∈ R, (X, d,m) be an
extended metric measure space, Ω be a probability measure over P(X) with finite
variance. Then Ω has a barycenter if one of the following conditions holds.

A. (X, d,m) is an RCD(K,∞) metric measure space and Ω is concentrated on
P2(X, d);

B. m is a probability measure, any µ ∈ P(X) which has finite distance from
D(Entm) is the starting point of an EVIK gradient flow of Entm in the Wasser-
stein space.
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Furthermore, we prove Wasserstein Jensen’s inequality. As a corollary, we get
the absolute continuity of the Wasserstein barycenter.

Theorem 1.3 (Wasserstein Jensen’s inequality, Theorem 5.3). Assume (X, d,m)
and Ω satisfy the hypothesis in Theorem 1.2.

Let µ̄ be a barycenter of Ω. Then Wasserstein Jensen’s inequality follows:

Entm(µ̄) ≤
∫
P(X)

Entm(µ) dΩ(µ)− K

2

∫
P(X)

W 2
2 (µ̄, µ) dΩ(µ). (1.1)

Furthermore, if ∫
P(X)

Entm(µ) dΩ(µ) <∞,

then the entropy of the barycenter of Ω is finite. In particular, the barycenter is
absolutely continuous with respect to m.

Applying our theorem with Wasserstein spaces over RCD spaces, we get the
following existence, uniqueness and regularity theorem.

Theorem 1.4 (Theorem 5.8). Let (X, d,m) be an RCD(K,∞) space with K ∈ R.
Let Ω be a probability measure on P2(X, d) with finite variance and∫

P2(X,d)

Entm(µ) dΩ(µ) <∞.

Then Ω has a unique barycenter µ̄ and it holds the Wasserstein Jensen’s inequality

Entm(µ̄) ≤
∫
P2(X,d)

Entm(µ) dΩ(µ)− K

2
Var(Ω).

Similarly, using a finite dimensional formulation of the gradient flow called
EVIK,N gradient flow, we prove a finite dimensional version of Jensen’s inequality,
which seems new in the literature even on Rn.

Theorem 1.5 (Jensen’s inequality with dimension parameter, Theorem 5.10, Corol-
lary 5.11 and Corollary 5.12). Let N ∈ [1,∞). Let (X, d,m) be an RCD(K,N)
metric measure space and Ω be a Borel probability measure over P2(X, d). Then the
following dimensional Wasserstein Jensen’s inequality follows:∫

W2(µ̄, µ)

sK/N(W2(µ̄, µ))
UN(µ) dΩ(µ) ≤ UN(µ̄)

∫
W2(µ̄, µ)

tK/N(W2(µ̄, µ))
dΩ(µ), (1.2)

where µ̄ is the unique barycenter of Ω, sK/N and tK/N are distortion coefficients,

UN(µ) = e−
Entm(µ)

N .

In particular, if Ω gives mass to the set {µ,Entm(µ) <∞}. Then the entropy
of the barycenter of Ω is finite and the barycenter µ̄ is absolutely continuous with
respect to m.
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Barycenter-Curvature-Dimension condition

The second goal of this paper is to provide a new notion, in therms of Wasserstein
barycenters, for an extended metric measure spaces to have synthetic Ricci curvature
bounded below and dimension bounded above.

There are various approaches to extend notions of curvature from smooth Rie-
mannian manifolds to more general spaces. A good notion of a length space having
“sectional curvature bounded below” is Alexandrov space, which is defined in terms
of Toponogov’s comparison theorem concerning geodesic triangles. More recently, a
notion of a metric measure space (X, d,m) having “Ricci curvature bounded below”
was introduced by Sturm [Stu06a, Stu06b] and Lott–Villani [LV09] independently.
This new synthetic curvature-dimension condition is defined in terms of a notion of
geodesic convexity for functionals on the Wasserstein space (P2(X, d),W2), called
displacement convexity, introduced by McCann in his celebrated paper [McC97].
This theory, called Lott–Sturm–Villani theory today, has been widely used in the
study of Ricci limit spaces, geometric and functional inequalities and many areas in
applied mathematics.

From [KP17], we know that the Wasserstein Jensen’s inequality of certain func-
tional is equivalent to lower Ricci curvature bounds in the setting of Riemannian
manifolds. In Section 5 we find more examples satisfying the Wasserstein Jensen’s
inequality, including non-compact spaces such as RCD spaces and extended met-
ric spaces such as abstract Wiener spaces. Based on these results, it is natural to
provide a notion for general extended metric measure spaces to have Ricci curva-
ture bounded from below, via the Wasserstein Jensen’s inequality. This approach is
surely compatible with Lott–Sturm–Villani theory and has its own highlights and
interests.

Definition 1.6 (BCD(K,∞) condition, Definition 6.1). Let K ∈ R. We say that an
extended metric measure space (X, d,m) verifies BCD(K,∞) condition, if for any
probability measure Ω ∈ P2(P(X),W2), concentrated on finitely many measures,
there exists a barycenter µ̄ of Ω such that the following Jensen’s inequality holds:

Entm(µ̄) ≤
∫
P(X)

Entm(µ) dΩ(µ)− K

2
Var(Ω). (1.3)

The next theorem, says that the moduli space of compact metric measure spaces
satisfying barycenter curvature-dimension condition is closed in measured Gromov–
Hausdorff convergence.

Theorem 1.7 (Stability in measured Gromov–Hausdorff topology, Theorem 6.6).
Let {(Xi, di, νi)}∞i=1 be a sequence of compact BCD(K,∞) metric measure spaces with
K ∈ R. If {(Xi, di, νi)} converges to (X, d, ν) in the measured Gromov–Hausdorff
sense as n→∞, then (X, d, ν) is also a BCD(K,∞) space.

Our theory has various applications, one of the most important and surprising
ones is the resolvability of the Wasserstein barycenter problem on BCD spaces. Note
that a BCD space does not necessarily have a Riemannian structure, the scope of
our theorem is far beyond Ricci-limit and RCD spaces.
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Theorem 1.8 (Existence of Wasserstein barycenter, Theorem 6.7). Let (X, d,m)
be an extended metric measure space satisfying BCD(K,∞) curvature-dimension
condition, Ω be a probability measure on P(X) satisfying

Var(Ω) <∞ and

∫
P(X)

Entm(µ) dΩ(µ) <∞.

Then Ω has a barycenter if one of the following conditions holds.

A. (X, d,m) satisfies the exponential volume growth condition and Ω is concen-
trated on P2(X, d);

B. m is a probability measure.

In the definition of BCD(K,∞) condition, there is no parameter for the dimen-
sion. This indicates that we need to specify a dimension parameter in order to define
a “finite dimensional” BCD space. Following Theorem 1.5, it is natural to define:

Definition 1.9 (BCD(K,N) condition, Definition 6.3). Let K ∈ R, N > 0. We
say that a metric measure space (X, d,m) verifies BCD(K,N) condition, if for any
probability measure Ω ∈ P2(P(X),W2), concentrated on finitely many measures,
there exists a barycenter µ̄ of Ω such that the following Jensen-type inequality holds:∫

W2(µ̄, µ)

sK/N(W2(µ̄, µ))
UN(µ) dΩ(µ) ≤ UN(µ̄)

∫
W2(µ̄, µ)

tK/N(W2(µ̄, µ))
dΩ(µ), (1.4)

where UN(µ) = e−
Entm(µ)

N .

We will see in § 6.4 that BCD condition implies several geometric and functional
inequalities. In addition, by letting one (or more) marginal measure be Dirac mass,
we can propose a variant of “Measure Contraction Property” (cf. [Oht07b,Stu06b])
in the setting of BCD(K,N). We will study the geometric and analysis consequence
of this property in a forthcoming paper.

Multi-marginal optimal transport problem

Given µ1, ..., µn ∈ P(X) and a lower semi-continuous cost function c : Xn → R. The
multi-marginal optimal transport problem of Monge type is to minimize

inf
T2,...,Tn

∫
X

c(x1, T2(x1), . . . , Tn(x1)) dµ1(x1), (MP)

among (n− 1)-tuples of map (T2, . . . , Tn), such that for each i = 2, . . . , n, the map
Ti : X → X pushes the measure µ1 forward to µi; that means, for any Borel A ⊆ X,
µ1(T−1

i (A)) = µi(A).

The multi-marginal optimal transport problem of Kantorovich type is to solve

inf
π∈Π

∫
Xn

c(x1, . . . , xn) dπ(x1, . . . , xn), (KP)
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where the infimum is taken over all probability measures π on Xn whose marginals
are µ1, . . . , µn, denote by π ∈ Π(µ1, . . . , µn).

When n = 2 and c(x1, x2) = d(x1, x2) or d2(x1, x2), (MP) and (KP) correspond to
the Monge and Kantorovich problems in classical optimal transport theory respec-
tively. This problem has been studied extensively over the past 25 years, which is one
of the fundamental problems in the study of spaces satisfying synthetic curvature-
dimension condition à la Lott–Sturm–Villani, see [Gig12a,RS14,CM17,GRS15]. In
particular,during the study of this problem, many important by-products have been
produced, including the notion of essentially non-branching.

We will prove uniqueness and resolvability of Monge problem (MP) for the multi-
marginal optimal transport problem in the setting of metric measure space, with cost
function

c(x1, . . . , xn) := inf
y∈X

n∑
i=1

1

2
d2(xi, y). (1.5)

Alternatively, we will show that (MP) = (KP). It is worth mentioning that this
problem was solved by Gangbo and Swiech [GŚ98] in the Euclidean setting, and
generalized by Kim and Pass [KP15] in the Riemannian setting and Jiang [Jia17] in
the Alexandrov spaces. The link between multi-marginal optimal transport with cost
function (1.5) and the Wasserstein barycenter problem associated with the measures
µ1, µ2, . . . , µn was discovered by Agueh and Carlier [AC11] in the Euclidean case.

Our theorem is the following.

Theorem 1.10 (Existence and uniqueness of multi-marginal optimal transport
map, Theorem 5.15). Let (X, d,m) be a metric measure space. Then the multi-
marginal optimal transport problem of Monge type, associated with the cost function
c(x1, . . . , xn), has a unique solution, if one of the following conditions holds:

(i) (X, d,m) is an RCD(K,N) space, and µ1 � m.

(ii) (X, d,m) is an RCD(K,∞) space, and µi � m, i = 1, . . . , n.

This theorem is, to the best of our knowledge, the first of this kind for multi-
marginal optimal transport problems without using any of the local structure of the
underling space; and the first result concerning infinite-dimensional spaces. Further-
more, we prove the existence, uniqueness and absolute continuity of the Wasserstein
barycenter of measure with finite support, without the finite entropy condition.
This generalized some results concerning Wasserstein geodesics, by T. Rajala and
his co-authors [Raj12,Raj13,RS14,GRS15], to Wasserstein barycenters.

Theorem 1.11 (Theorem 5.16). Let (X, d,m) be a metric measure space. Assume
µ1, . . . , µn ∈ P2(X, d), then there exists a unique Wasserstein barycenter µ̄ and it is
absolutely continuous with respect to m if one of the following conditions holds:

(i) (X, d,m) is an RCD(K,N) space, and µ1 � m.

(ii) (X, d,m) is an RCD(K,∞) space, and µi � m, i = 1, . . . , n.

9



Organization of the paper: In Section 3, we collect some preliminaries in the the-
ory of metric measure spaces, optimal transport and curvature-dimension condition.
In Section 4 we introduce some basic results, concerning existence and uniqueness
of the Wasserstein barycenter. Section 5 is devoted to proving the main theorems.
In Section 6, we introduce the concept of barycenter curvature-dimension condition,
and apply our theory to prove some geometric inequalities. More detailed descrip-
tions appear at the beginning of each section.
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2 Geodesic and barycenter

Let us summarize some definitions and basic results about (extended) metric spaces.
For proofs and further details we refer to the text books [AT04] and [BBI01].
Throughout this section, we denote by X = (X, τ) a Hausdorff topological space.

2.1 Geodesic spaces

Let d be a metric on X, this means d : X ×X → [0,+∞) is a symmetric function
satisfying the triangle inequality, with d(x, y) = 0 if and only if x = y. Let γ be a
curve in X, i.e. a continuous map from [0, 1] to X, its length is defined by

L(γ) := sup
J∈N

sup
0=t0≤t1≤...≤tJ=1

J∑
j=1

d(γtj−1
, γtj).

Clearly L(γ) ≥ d(γ0, γ1). We say that X is a length space, if the distance between
two points x, y ∈ X is the infimum of the lengths of curves from x to y. Such a
space is path connected.

We denote by

Geo(X) :=
{
γ ∈ C([0, 1],X) : d(γs, γt) = |s− t|d(γ0, γ1), for every s, t ∈ [0, 1]

}
the space of constant speed geodesics, equipped with the canonical supremum norm.
The metric space (X, d) is called a geodesic space if for each x, y ∈ X there exists
γ ∈ Geo(X) so that γ0 = x, γ1 = y. This curve is not required to be unique.

The following lemma is a characterization of geodesic space using midpoints.

Lemma 2.1. A complete metric space (X, d) is a geodesic space if and only if for
any x, y ∈ X, there is z ∈ X such that

d(x, z) = d(x, z) =
1

2
d(x, y).

Any point z ∈ X with the above properties will be called midpoint of x and y.
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In addition, we have the following characterization of the completeness of a length
space.

Lemma 2.2 (Hopf–Rinow). Let (X, d) be a complete length space, then:

(1) The closure of Br(x), the open ball of radius r around x ∈ X, is the closed ball
{y ∈ X : d(x, y) ≤ r};

(2) X is locally compact if and only if each closed ball is compact;

(3) If X is locally compact, then it is a geodesic space.

2.2 Extended metric spaces

In this subsection we introduce the notion of extended metric space. Abstract
Wiener spaces and configuration spaces over Riemannian manifolds are particular
examples of extended metric spaces.

It can be seen from [AES16] that most of the analytic tools in metric spaces can
be extend in a natural way to extended metric spaces.

Definition 2.3 (Extended metric spaces). We say that (X, d) is an extended met-
ric space if d : X × X → [0,+∞] is a symmetric function satisfying the triangle
inequality, with d(x, y) = 0 if and only if x = y.

Since an extended metric space can be seen as the disjoint union of the equiva-
lence classes induced by the equivalence relation

x v y ⇐⇒ d(x, y) < +∞.

and since any equivalence class is indeed a metric space, many results and definitions
extend with no effort to extended metric spaces. For example, we say that an
extended metric space (X, d) is complete (resp. geodesic, length,...) if all metric
spaces X[x] = {y : y v x} are complete (resp. geodesic, length,...).

2.3 Barycenter spaces

Let (X, d) be an extended metric space and τ be a Hausdorff topology on X. We
assume that τ and d are compatible, in the sense of [AES16, Definition 4.1]. In this
case, we say that (X, τ, d) is an extended metric-topological space.

Let B(τ) be the Borel σ-algebra of τ and let P(X) be the set of Radon probability
measures on X. Denote by P2(X, d) the set of µ ∈ P(X) such that∫

d2(x0, y) dµ(y) <∞ for some x0 ∈ X.

In general, the choice of such x0 is not arbitrary. If (X, d) is a metric space,∫
d2(x0, y) dµ(y) < ∞ for some x0 ∈ X if and only if

∫
d2(x, y) dµ(y) < ∞ for

any x ∈ X. For µ ∈ P(X), the value Var(µ) := infx∈X
∫
d2(x, y) dµ(y) ∈ [0,+∞] is

called the variance of µ. We can see that µ ∈ P2(X, d) if and only if Var(µ) <∞.

We also denote by P0(X) the set of all µ ∈ P(X) of the form µ = 1
n

∑n
i=1 δxi

with finite points xi ∈ X. Here and henceforth, δx denotes the Dirac measure on
the point x ∈ X.
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Definition 2.4 (Barycenter). Let (X, d) be an extended metric space and let µ ∈
P2(X, d) be a probability measure with finite variance. We call x̄ ∈ X a barycenter
of µ if ∫

X

d2(x̄, z) dµ(z) = min
x∈X

∫
d2(x, y) dµ(y) <∞.

Now we can introduce the notion of barycenter space. We remark that there
is a different notion of “barycenter metric space”, as a generalization of Hadamard
space, introduced by Lee and Naor in [LN05].

Definition 2.5 (Barycenter space). We say that an extended metric space is a
barycenter extended metric space, or barycenter space for simplicity, if any µ ∈ P0(X)
with finite variance has a barycenter.

Here we list a couple of examples which are barycenter spaces. More discussions
can be found in [Stu03], [NS11], [Kuw14] and [Oht12,Oht07a].

Example 2.6. The following spaces are barycenter spaces:

• proper spaces, or locally compact geodesic spaces;

• metric spaces with non-positive curvature (NPC spaces), this includes com-
plete, simply connected Riemannian manifold with non-positive (sectional) cur-
vature and Hilbert spaces;

• uniform convex metric spaces, introduced by James A. Clarkson [Cla36] in
1936, this includes uniformly convex Banach spaces such as Lp spaces with
p > 1;

• abstract Wiener space (X,H, µ) where X is a Banach space that contains
a Hilbert space H as a dense subspace, equipped with the Cameron–Martin
distance

dH(x, y) :=

{
‖x− y‖H if x− y ∈ H
+∞ otherwise.

• Wasserstein spaces over Riemannian manifolds [KP17] and Alexandrov spaces
[Jia17].

2.4 Convex functions

By definition, a subset Ω ⊂ X is convex if for any x, y ∈ Ω, there is a geodesic from
x to y that lies entirely in Ω. It is totally convex if for any x, y ∈ Ω, any geodesic in
X from x to y lies in Ω. Given K ∈ R, a function F : X → R∪ {+∞} is said to be
weakly (strongly) K-geodesically convex if there is (for any) geodesic (γt)t∈[0,1] and
any t ∈ [0, 1],

F (γt) ≤ tF (γ1) + (1− t)F (γ0)−Kt(1− t)d2(γ0, γ1).

In the case when (X, d) is the Euclidean space Rn equipped with the Euclidean
norm, and F ∈ C2(X), this is equivalent to say that HessF ≥ K.

12



With the notion of barycenter, we introduce a notion called barycenter convexity.
It can be seen that this convexity is equivalent to the geodesic convexity, if (X, d)
is the Euclidean space.

Definition 2.7 (Barycenter convexity). Let (X, d) be a barycenter space. Given
K ∈ R, a function F : X → R ∪ {+∞} is said to be weakly (strongly) K-
barycentrically convex if for any µ ∈ P(X) with finite variance, there is a (for
any) barycenter x̄ of µ, such that

F (x̄) ≤
∫
F (x) dµ(x)− K

2
Var(µ).

3 Geometry of the Wasserstein space

In this section, we add a reference measure in an extended metric-topological space
as follows.

Definition 3.1 (Extended metric measure space, cf. [AES16]). We say that (X, d,m)
is an extended metric measure space if:

(a) (X, τ, d) is an extended metric-topological space and (X, d) is complete;

(b) m is a non-negative Radon probability measure on (X,B(τ)) with full support.

3.1 Wasserstein barycenter and mult-marginal optimal trans-
port

The L2-Kantorovich-Wasserstein or L2-optimal transport distance W2(µ, ν) between
µ, ν ∈ P(X) is given by

W 2
2 (µ, ν) := inf

π∈Π(µ,ν)

∫
X×X

d2(x, y) dπ(x, y), (3.1)

where d is the extended metric and the infimum is taken over all probability Radon
measures π on X × X whose marginals are µ and ν. It is known that W2 is an
extended metric on P(X) (in fact, (P2(X, d),W2) is a metric space if (X, d) is a
metric space, (P2(X, d),W2) is geodesic if (X, d) is geodesic) and therefore it makes
sense to talk about barycenters in the Wasserstein space W2 := (P(X),W2).

Definition 3.2 (Wasserstein barycenter). Let (X, d) be an extended metric space
and let Ω ∈ P2(W2) = P2(P(X),W2) be a probability Radon measure on P(X)
with finite variance, compatible with the extended metric W2. We call ν̄ ∈ P(X) a
Wasserstein barycenter of Ω if∫

P(X)

W 2
2 (µ, ν̄) dΩ(µ) = min

ν∈P(X)

∫
P(X)

W 2
2 (µ, ν) dΩ(µ). (3.2)
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We will also study a multi-marginal version of optimal transport, which is a na-
ture generalization of two-marginal optimal transport. This theory has attracted
considerable attention, and has got wide applications in different subjects such
as economics and statistics. In particular, Gangbo and Swiech [GŚ98] studied
the multi-marginal optimal transport map in the Euclidean setting, Agueh–Carlier
[AC11] studied Wasserstein barycenter problem via multi-marginal optimal trans-
port, we refer to [Pas15] for a survey on this fast-developing topic.

Definition 3.3 (Multi-marginal optimal transport). Let µ1, ..., µn ∈ P(X) and let
c : Xn → R be a lower semi-continuous cost function. The multi-marginal optimal
transport problem of Monge type is to minimize

inf
T2,...,Tn

∫
X

c(x1, T2(x1), . . . , Tn(x1)) dµ1(x1), (3.3)

where for each i = 2, . . . , n, the map Ti : X → X pushes the measure µ1 forward to
µi, that means, for any Borel A ⊆ X, µ1(T−1

i (A)) = µi(A).

The multi-marginal optimal transport problem of Kantorovich type is to mini-
mize

inf
π∈Π

∫
Xn

c(x1, . . . , xn) dπ(x1, . . . , xn), (3.4)

where the infimum is taken over all probability measures π on Xn whose marginals
are µ1, . . . , µn, denoted by Π(µ1, . . . , µn).

From [Vil09, Theorem 4.1, Lemma 4.4], we can see that the set Π(µ1, . . . , µn)
is tight, so by Prohkhorov’s theorem, the multi-marginal optimal transport plan
always exists, this implies there exists θ ∈ Π(µ1, . . . , µn), such that∫

Xn

c(x1, . . . , xn) dθ = min
π

∫
Xn

c(x1, . . . , xn) dπ.

It is worth to mention that if we choose

c(x1, . . . , xn) = inf
y∈X

n∑
i=1

1

2
d2(xi, y),

there is an intimate link between multi-marginal optimal transport and Wasser-
stein barycenter problem. This connection was studied by Gangbo–Swiech [GŚ98],
Agueh–Carlier [AC11] in the Euclidean setting, by Kim–Pass [KP15,KP17] in Rie-
mannian manifolds and by Jiang [Jia17] in Alexandrov spaces.

3.2 Curvature-dimension condition of metric measure spaces

Throughout this subsection, (X, d,m) is a metric measure space, where (X, d) is a
separable complete geodesic space and m is a non-negative Borel measure with full
support.

For any t ∈ [0, 1], let et denote the evaluation map:

et : Geo(X)→ X, γ 7→ γt.
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By super-position theorem [AG11, Theorem 2.10], any geodesic (µt)t∈[0,1] in the
Wasserstein space (P2(X, d),W2) can be lifted to a measure ν ∈ P(Geo(X)), so that
(et)] ν = µt for all t ∈ [0, 1]. Given µ0, µ1 ∈ P2(X, d), we denote by OptGeo(µ0, µ1)
the space of all ν ∈ P(Geo(X)) for which (e0, e1)] ν realizes the minimum in the
Kantorovich problem (3.1). Such a ν will be called dynamical optimal plan. Since
(X, d) is geodesic, the set OptGeo(µ0, µ1) is non-empty for any µ0, µ1 ∈ P2(X, d).

Next we introduce the curvature-dimension condition of non-smooth metric mea-
sure space, which was introduced independently by Lott–Villani [LV09] and Sturm
[Stu06a,Stu06b]. Recall that the relative entropy of µ ∈ P2(X, d) with respect to m
is defined by

Entm(µ) :=

{ ∫
ρ ln ρ dm if µ = ρm

+∞ otherwise.

Definition 3.4 (CD(K,∞) condition). Let K ∈ R. A metric measure space
(X, d,m) verifies CD(K,∞), if for any two µ0, µ1 ∈ P2(X, d) there exists ν ∈
OptGeo(µ0, µ1), such that for all t ∈ (0, 1):

Entm(µt) ≤ (1− t)Entm(µ0) + tEntm(µ1)− K

2
(1− t)tW 2

2 (µ0, µ1), (3.5)

where µt := (et)]ν.

In order to formulate the curvature-dimension condition with finite dimensional
parameter, we recall the definition of the distortion coefficients. For κ ∈ R, define
the functions sκ, cκ : [0,+∞)→ R (on [0, π/

√
κ) if κ > 0) as:

sκ(θ) :=


(1/
√
κ) sin(

√
κθ), if κ > 0,

θ, if κ = 0,
(1/
√
−κ) sinh(

√
−κθ), if κ < 0

(3.6)

and

cκ(θ) :=


cos(
√
κθ), if κ > 0,

1, if κ = 0,
cosh(

√
−κθ), if κ < 0.

(3.7)

It can be seen that sκ is a solution to the following ordinary differential equation

s′′κ + κsκ = 0. (3.8)

For K ∈ R, N ∈ [1,∞), θ ∈ (0,∞), t ∈ [0, 1], set we define the distortion coeffi-

cients σ
(t)
K,N and τ

(t)
K,N(θ) as

σ
(t)
K,N(θ) :=


∞, if Kθ2 ≥ Nπ2,

t if Kθ2 = 0,
sK
N

(tθ)

sK
N

(θ)
otherwise

(3.9)

and
τ

(t)
K,N(θ) := t1/Nσ

(t)
K,N−1(θ)(N−1)/N . (3.10)

Recall that the Rényi Entropy functional EN : P2(X, d)→ [0,∞], if defined by

EN(µ) :=

{ ∫
ρ1−1/N dm if µ = ρm

+∞ otherwise.
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Definition 3.5 (CD(K,N) condition). Let K ∈ R and N ∈ [1,∞). A metric
measure space (X, d,m) verifies CD(K,N) if for any two µ0, µ1 ∈ P2(X, d) with
bounded support there exist ν ∈ OptGeo(µ0, µ1) and π := (e0, e1)] ν, such that
µt := (et)]ν � m and for any N ′ ≥ N, t ∈ [0, 1]:

EN ′(µt) ≥
∫
τ

(1−t)
K,N ′ (d(x, y))ρ

−1/N ′

0 + τ
(t)
K,N ′(d(x, y))ρ

−1/N ′

1 dπ(x, y). (3.11)

Remark 3.6. It is worth recalling that if (M, g) is a Riemannian manifold of dimen-
sion n and h ∈ C2(M) with h > 0, then the m.m.s. (M, dg, hVolg) (where dg and
Volg denote the Riemannian distance and volume induced by g) verifies CD(K,N)
with N ≥ n if and only if (see [Stu06b, Theorem 1.7])

Riccig,h,N ≥ Kg, Riccig,h,N := Riccig − (N − n)
∇2
gh

1
N−n

h
1

N−n
.

In particular if N = n the generalized Ricci tensor Riccig,h,N = Riccig makes sense
only if h is constant.

Riemannian curvature-dimension condition

In [AGS14], Ambrosio, Gigli and Savaré introduced a Riemannian version of the
curvature-dimension condition, called Riemannian curvature-dimension condition,
ruling out Finsler manifolds.

Let us first recall the definition of the Cheeger energy [Che99]. The Cheeger
energy is the functional defined in L2(X,m) by

Ch(f) :=
1

2
inf

{
lim inf
i→∞

∫
X

|lip(fi)|2 dm : fi ∈ Lip(X, d), ‖fi − f‖L2 → 0

}
,

where

|lip(h)| (x) := lim sup
y→x

|h(y)− h(x)|
d(x, y)

for h ∈ Lip(X, d). We define the Sobolev space W 1,2(X, d,m) by

W 1,2(X, d,m) :=
{
f ∈ L2(X,m) : Ch(f) <∞

}
.

Definition 3.7 (RCD(K,∞) condition). Let K ∈ R. A metric measure space
(X, d,m) verifies Riemannian curvature bounded from below by K (or (X, d,m)
is an RCD(K,∞) space) if it satisfies CD(K,∞) and the Cheeger energy Ch is a
quadratic form in the sense that

Ch(f + g) + Ch(f − g) = 2Ch(f) + 2Ch(g) for allf, g ∈ W 1,2(X). (3.12)

It is known that a smooth Riemannian manifold (Mn, g) equipped with a refer-
ence measure m := e−V Volg is an RCD(K,∞) if the modified Ricci tensor

RicciV := Riccig + HessgV
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is bounded from below by Kg.

For the finite dimensional case, there also holds a Riemannian version of the
curvature-dimension condition [AMS15,EKS15]. It is known that an n-dimensional
Riemannian manifold (Mn, g) equipped with a reference measure m := e−V Volg is
RCD(K,N) if the tensor Riccig + HessgV is bounded from below by Kg+ 1

N−n∇V ⊗
∇V [EKS15].

Definition 3.8 (RCD(K,N) condition). Let K ∈ R and N ∈ (0,∞). A metric
measure space (X, d,m) verifies Riemannian curvature bounded from below by K
and dimension bounded from above by N (or (X, d,m) is an RCD(K,N) if it satisfies
CD(K,N) and the Cheeger energy Ch is a quadratic form.

Remark 3.9. A variant of the CD(K,N) condition, called reduced curvature di-
mension condition and denoted by CD∗(K,N) [BS10], asks for the same inequality

(3.11) of CD(K,N) but the coefficients τ
(t)
K,N(d(γ0, γ1)) and τ

(1−t)
K,N (d(γ0, γ1)) are re-

placed by σ
(t)
K,N(d(γ0, γ1)) and σ

(1−t)
K,N (d(γ0, γ1)), respectively. For both definitions

there is a local version and it was recently proved in [CM21] that on an essentially
non-branching metric measure spaces with m(X) <∞ (and in [Li24] for general m),
the CD∗loc(K,N), CD∗(K,N), CDloc(K,N), CD(K,N) conditions are all equivalent,
for all K ∈ R, N ∈ (1,∞), via the needle decomposition method. In particular,
RCD∗(K,N) and RCD(K,N) are equivalent.

Example 3.10 (Notable examples of RCD spaces). The class of RCD(K,N) spaces
includes the following remarkable subclasses:

• Measured Gromov–Hausdorff limits of N-dimensional Riemannian manifolds
with Ricci ≥ K, see [AGS14, GMS15];

• N-dimensional Alexandrov spaces with curvature bounded from below by K,
see [ZZ10, Pet11];

• Cones, spherical suspensions, Warped products over RCD space, see [Ket13,
Ket12].

We refer the readers to Villani’s Bourbaki seminar [Vil16], Ambrosio’s ICM lecture
[Amb18] and Sturm’s ECM lecture [Stu23] for an overview of this fast-growing field
and bibliography.

3.3 Gradient Flows: EVI type

We recall some basic results about gradient flow theory on an extended metric space
(X, d), which play key roles in our proof of Jensen’s inequality. We refer the readers
to [AGS05,AES16] for comprehensive discussion and references about this topic.

Definition 3.11 (EVI formulation of gradient flows). Let (X, d) be an extended
metric space, K ∈ R, E : X → R ∪ {+∞} be a lower semi-continuous functional,
D(E) := {E < +∞}. For any y0 ∈ D(E), we say that (0,∞) 3 t → yt ∈ X is an
EVIK gradient flow of E, starting from y0, if it is a locally absolutely continuous
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curve, such that yt
d→ y0 as t → 0 and the following inequality is satisfied for any

z ∈ D(E) satisfying d(z, yt) <∞ for some (and then all) t ∈ (0,∞):

1

2

d

dt
d2(yt, z) +

K

2
d2(yt, z) ≤ E(z)− E(yt), for a.e. t ∈ (0,∞). (3.13)

If x0 /∈ D(E) we ask for

lim inf
t↓0

F (xt) ≥ F (x0), lim
t↓0

d(xt, y)→ d(x0, y), ∀y ∈ D(F ).

In brief, the fact that gradient flow of a functional E satisfies EVIK formula-
tion relies on the properties of both E and (X, d). The existence of EVIK gradient
flow of K-convex functionals has been studied in many cases, e.g. smooth Rieman-
nian manifolds, Hilbert spaces, CAT(k) spaces, Wasserstein spaces over Riemannian
manifolds. We refer to [MS20,Vil09,Stu03] for more discussions.

In particular, Ambrosio–Gigli–Savaré [AGS14] showed that Riemannian curvature-
dimension conditions RCD(K,∞) can be characterized via EVIK gradient flows of
the relative entropy.

Theorem 3.12 ( [AGS14], Theorem 5.1; [AGMR15], Theorem 6.1). Let (X, d,m)
be a metric measure space and K ∈ R. Then (X, d,m) satisfies RCD(K,∞) if only
and if (X, d,m) is a length space satisfying the exponential growth condition∫

X

e−cd(x0,x)2

dm(x) <∞, for all x0 ∈ X and c > 0,

and for all µ ∈ P2(X, d) there exists an EVIK gradient flow, in (P2(X, d),W2), of
Entm starting from µ.

Concerning abstract Wiener spaces, which are extended metric measure spaces,
Ambrosio–Erbar–Savaré [AES16] proved the following theorem.

Theorem 3.13 ( [AES16], Theorem 11.1, §11 and §13). Let (X,H, γ) be an abstract
Wiener space equipped with the canonical Cameron–Martin distance dH and the
Gaussian measure γ. Then for all µ ∈ P(X) with µ � γ, there exists an EVI1

gradient flow of Entγ starting from µ.

For the finite dimensional case, similarly, metric measure spaces with Riemannian
Ricci curvature bounded from below and with dimension bounded from above can
also be characterized via EVI-type gradient flows (see [EKS15]). Firstly, we recall
the definition of finite dimensional EVIK,N gradient flows.

Definition 3.14 (EVIK,N formulation of gradient flows). Let (X, d) be a metric

space, E : X → R ∪ {+∞} be a lower semi-continuous functional, y0 ∈ {E <∞},
and K ∈ R, N ∈ (0,∞). We say that (0,∞) 3 t → yt ∈ X is an EVIK,N gradient
flow of E, starting from y0, if it is a locally absolutely continuous curve, such that

yt
d→ y0 as t→ 0 and the following inequality is satisfied for any z ∈ X

d

dt
s2
K/N

(
1

2
d(yt, z)

)
+Ks2

K/N

(
1

2
d(yt, z)

)
≤ N

2

(
1− UN(z)

UN(yt)

)
, (3.14)

for a.e. t ∈ (0,∞), where UN(x) := e−E(x)/N .
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Theorem 3.15 ( [EKS15], Theorem 3.17). Let (X, d,m) be a metric measure space.
Let K ∈ R and N ∈ (0,∞). Then (X, d,m) is an RCD(K,N) space if only and if
(X, d,m) is a length space satisfying the exponential growth condition∫

X

e−cd(x0,x)2

dm(x) <∞, for all x0 ∈ X and c > 0,

and for all µ ∈ P2(X, d) there exists an EVIK,N gradient flow, in (P2(X, d),W2), of
Entm starting from µ.

4 Wasserstein barycenter: general setting

4.1 Existence

The study of the Wasserstein barycenter problem was initiated by Agueh and Carlier
[AC11], who established the existence and uniqueness results for finitely supported
measure Ω ∈ P2(P2(Rn, | · |),W2) when the underlying space is Euclidean. Later on,
there are lots of works about the existence, uniqueness and absolute continuity, such
as Kim–Pass [KP17] in the Riemannian setting and Jiang [Jia17] in the Alexandrov
spaces.

For the existence of the Wasserstein barycenter, we have the following existence
result proved by Le Gouic and Loubes [LGL17]. Note that, in general, the Wasser-
stein space is neither locally compact nor NPC, even if the underling space is locally
compact and NPC, so we can not deduce the existence directly with the known
examples (cf. Example 2.6).

Proposition 4.1 ( [LGL17],Theorem 2). Let (X, d) be a separable locally compact
geodesic space, then any Ω ∈ P2(P2(X, d),W2) has a Wasserstein barycenter.

Up to our knowledge, the proposition above is the best known result concerning
the existence of the Wasserstein barycenter. However, the local compactness condi-
tion is not valid in infinite-dimensional spaces, such as infinite-dimensional Hilbert
space and many other RCD(K,∞) spaces. By adapting the proof of [AC11, Proposi-
tion 4.2] (or [LGL17, Theorem 8]) we can prove an existence theorem for barycenter
extended metric spaces, without any compactness condition.

We begin with a lemma concerning the existence of measurable barycenter-
selection map.

Lemma 4.2. Let (X, d) be a barycenter space. Given an integer n ≥ 1 , let λi >
0, 1 ≤ i ≤ n, be n positive real numbers such that

∑n
i=1 λi = 1, then there exists

a measurable barycenter selection map T : Xn → X, such that T (x1, . . . , xn) is a
barycenter of

∑n
i=1 λiδxi ∈ P0(X) ∩ P2(X, d).

Proof. The proof is similar to the geodesic case, see [AG11, Theorem 2.10 and
Lemma 2.11]. Since (X, d) is a barycenter space, the barycenters of

∑n
i=1 λiδxi exist

if
∑n

i=1 λiδxi ∈ P2(X, d) . So we can define a multivalued map from G : Xn → X,
which associates to each pair (x1, . . . , xn) the set G(x1, . . . , xn) of all barycenters
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of
∑n

i=1 λiδxi if
∑n

i=1 λiδxi ∈ P2(X, d); otherwise, we define G(x1, . . . , xn) = y for a
fixed point y ∈ X. We can see that G has closed graph. Then using Kuratowski–
Ryll–Nardzewski measurable selection theorem [BR07, Theorem 6.9.3], we obtain
the existence of measurable barycenter selection map T.

Next we prove an existence theorem concerning the Wasserstein barycenter prob-
lem in barycenter spaces. From this theorem, we know the Wasserstein spaces over
abstract Wiener spaces are barycentric.

Theorem 4.3 (Wasserstein space over a barycenter space is barycentric). Let (X, d)
be a barycenter space, then W2 = (P(X),W2) is barycentric as well.

Proof. Note that (X, d) is a barycenter space, by Lemma 4.2, there exists a mea-
surable barycenter selection map T : Xn → X, for any x1, . . . , xn ∈ X, x :=
(x1, . . . , xn), T (x) = T (x1, . . . , xn) ∈ X, such that

c(x1, . . . , xn) := inf
y∈X

n∑
i=1

λid
2(xi, y) =

n∑
i=1

λid
2(xi, T (x)) ∈ [0,+∞]. (4.1)

Let µ1, . . . , µn ∈ P(X), λi, i = 1, ..., n be positive real numbers with
∑n

i=1 λi = 1.
Assume Ω :=

∑n
i=1 λiδµi ∈ P2(P(X),W2). We claim ν = T]π is a Wasserstein

barycenter of Ω, where π ∈ Π(µ1, . . . , µn) is an optimal plan of the multi-marginal
optimal transport problem of Kantorovich type (3.4).

On one hand: by the disintegration theorem [AGS05, Theorem 5.3.1], for ηi ∈
Π(µi, µ), i = 1, . . . , n, we can write ηi = ηyi ⊗ µ for a Borel family of probability
measures {ηyi }y∈X ⊆ P(X). This means, for any Borel-measurable function f :

X2 → [0,+∞), ∫
X×X

f dηi =

∫
X

∫
X

f dηyi dµ(y).

Denote ηy = ηy1 . . . η
y
n and η := ηyµ ∈ P(Xn+1). It can be seen that η ∈ Π(µ1, . . . , µn, µ)

and for any Borel-measurable function f : Xn+1 → [0,+∞), we have∫
Xn+1

f(x1, ..., xn, y) dη(x1, ..., xn, y) =

∫
X

∫
Xn

f(x1, ..., xn, y) dηy(x1, ..., xn)dµ(y).

(4.2)

As
∑
λiδµi has finite variance, there is µ ∈ P(X) so that

n∑
i=1

λiW
2
2 (µi, µ) < +∞.
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Therefore,

+∞ >

n∑
i=1

λiW
2
2 (µi, µ)

=
n∑
i=1

λi

∫
X×X

d2(xi, y) dηi =

∫
Xn+1

n∑
i=1

λid
2(xi, y) dη

(4.1)

≥
∫
Xn+1

n∑
i=1

λid
2(xi, T (x)) dη

(4.2)
=

∫
X

∫
Xn

n∑
i=1

λid
2(xi, T (x)) dηy(x) dµ(y)

Fubini
=

∫
Xn

n∑
i=1

λid
2(xi, T (x)) dη̃

≥
∫
Xn

n∑
i=1

λid
2(xi, T (x)) dπ

(4.1)
=

∫
Xn

c(x1, . . . , xn) dπ,

(4.3)

where we have used the facts ηi ∈ Π(µi, µ), i = 1, . . . , n, η ∈ Π(µ1, . . . , µn, µ), and
η̃ :=

∫
X
ηy dµ(y) ∈ Π(µ1, . . . , µn).

On the other hand: for every i = 1, . . . , n, denote by θi the i-th canonical
projection from Xn to X, and denote ηi = (θi, T )]π. By construction, ηi ∈ Π(µi, ν).
Then by definition of L2-Kantorovich–Wasserstein distance, we have

W 2
2 (µi, ν) ≤

∫
X×X

d2(xi, y) dηi =

∫
Xn

d2(xi, T (x)) dπ. (4.4)

Combining with (4.1) and (4.3) we get

n∑
i=1

λiW
2
2 (µi, ν) ≤

n∑
i=1

λi

∫
Xn

d2(xi, T (x)) dπ =

∫
Xn

c(x1, . . . , xn) dπ < +∞. (4.5)

Applying (4.3) with µ = ν and combining with (4.5), we have

inf
ν

n∑
i=1

λiW
2
2 (µi, ν) =

∫
Xn

c(x1, . . . , xn) dπ =

∫
Xn

n∑
i=1

λid
2(xi, T (x)) dπ. (4.6)

Therefore, ν = T]π is a Wasserstein barycenter of Ω and we prove the claim.

4.2 Uniqueness

By [KP17, Theorem3.1] and [Pas13, Lemma3.2.1], the uniqueness of Wasserstein
barycenter can be deduced from the strict convexity of L2-Kantorovich-Wasserstein
distance with respect to the linear interpolation. It is worth to note that this
strict convexity can be obtained from the existence of optimal transport map. Thus
Wasserstein barycenter’s uniqueness can be obtained in more general spaces, such as
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non-branching CD(K,N) spaces [Gig12b, Theorem 3.3], essentially non-branching
MCP(K,N) spaces [CM17, Theorem 1.1] and abstract Wiener spaces [FU04, Theo-
rem 6.1]. In this section, to make our paper complete and self-contained, we give a
sketched proof to the uniqueness of the Wasserstein barycenter, under the existence
of optimal transport map.

Given an extended metric measure space (X, d,m). For Ω ∈ P2(W2), we always
assume that the set of m-absolutely continuous probability measures Pac(X, d,m) ⊂
P(X) is Ω measurable.

Proposition 4.4. Let (X, d,m) be an extended metric measure space, such that the
optimal transport problem of Monge type is solvable if one of the marginal measures is
in Pac(X, d,m) (in this case we call (X, d,m) a Monge Space, see E. Milman’s paper
[Mil20, §3.3] for more discussions). Let Ω ∈ P2(W2) be such that Ω(Pac(X, d,m)) >
0, then the barycenter of Ω is unique.

Proof. Note that by the definition of L2-Kantorovich–Wasserstein distance, we know
that P(X) 3 ν 7→ W 2

2 (µ, ν) is convex (w.r.t. linear interpolation) for any µ ∈ P(X),
i.e.

W 2
2 (µ, λν1 + (1− λ)ν2) ≤ λW 2

2 (µ, ν1) + (1− λ)W 2
2 (µ, ν2). (4.7)

We claim that this inequality is strict if µ ∈ Pac(X, d,m).

In order to prove this claim, it is sufficiently to show that for any ν1, ν2 ∈ P(X),
ν1 6= ν2, 0 < λ < 1, it holds

W 2
2 (µ, λν1 + (1− λ)ν2) < λW 2

2 (µ, ν1) + (1− λ)W 2
2 (µ, ν2)

for any µ ∈ Pac(X, d,m) with W 2
2 (µ, ν1),W 2

2 (µ, ν2) <∞.

Indeed, if (4.7) is an equality for some 0 < λ < 1, denote by ν = λν1 + (1 −
λ)ν2 ∈ P(X). Since µ ∈ Pac(X, d,m), by assumption, there exists a unique optimal
transport map, push forward µ to ν1, ν2, ν, i.e. Ti : supp(µ) → supp(νi), i = 1, 2,
T : supp(µ)→ supp(ν). Let γ = λT1 + (1− λ)T2, and note that (4.7) is an equality
implies γ is an optimal plan between µ and ν, then γ must induced by a map T ,
this contradicts with ν1 6= ν2.

Therefore, integrating ν → W 2
2 (µ, ν) with respect to Ω yields the strict convexity

of the functional ν →
∫
W2
W 2

2 (µ, ν) dΩ(µ) under the assumption Ω(Pac(X, d,m)) >
0. This then implies the uniqueness of its minimizer, the Wasserstein barycenter of
Ω.

5 Functionals on the Wasserstein space

5.1 EVIK gradient flows

5.1.1 EVI implies Jensen’s inequality

Motivated by a result of Daneri–Savaré [DS08, Theorem 3.2], which states that a
functional E isK-convex along any geodesic contained in {E <∞} if EVIK gradient
flow of E exists for any starting point, we realize that the existence of EVIK gradient
flows of E is closely related to Jensen’s inequality .
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The following proposition, proved in [DS08, Proposition 3.1] (see also [AES16]),
provides an integral version of EVI type gradient flows. We will use this formulation
to prove Jensen’s inequality.

Proposition 5.1 (Integral version of EVI). Let E, K and (yt)t>0 be as in Definition
3.11, then (yt)t>0 is an EVIK gradient flow if and only if it satisfies

eK(t−s)

2
d2(yt, z)−

1

2
d2(ys, z) ≤ IK(t− s)

(
E(z)− E(yt)

)
, ∀0 ≤ s ≤ t, (5.1)

where IK(t):=
∫ t

0
eKr dr.

Theorem 5.2 (EVI implies Jensen’s inequality). Let (X, d) be an extended metric
space, K ∈ R, E be as in Definition 3.11 and µ be a probability measure over X
with finite variance. Let ε ≥ 0. Assume that EVIK gradient flow of E exists for
some initial data y ∈ X satisfying∫

X

d2(y, z) dµ(z) ≤ Var(µ) + ε. (5.2)

Then the following inequality holds:

E(yt) ≤
∫
X

E(z) dµ(z)− K

2
Var(µ) +

ε

2IK(t)
, (5.3)

where yt is the EVIK gradient flow of E starting from y. In particular, if µ has a
barycenter ȳ and there is an EVIK gradient flow of E starting from ȳ, then we have
Jensen’s inequality:

E(ȳ) ≤
∫
X

E(z) dµ(z)− K

2

∫
X

d2(ȳ, z) dµ(z). (5.4)

Proof. Integrating (5.1) in z with µ and choosing s = 0, we get

eKt

2

∫
X

d2(yt, z) dµ(z)− 1

2

∫
X

d2(y, z) dµ(z) ≤ IK(t)

(∫
X

E(z) dµ(z)− E(yt)

)
.

(5.5)
By Definition 3.2, we know

∫
X
d2(yt, z) dµ(z) ≥ Var(µ). Combining with (5.2) and

(5.5), we get

eKt − 1

2
Var(µ)− ε

2
≤ IK(t)

(∫
X

E(z) dµ(z)− E(yt)

)
. (5.6)

Dividing both sides of (5.6) by IK(t), we get (5.3). In particular, if y is a barycenter
of µ, we can take ε = 0 in (5.3), so that

E(yt) ≤
∫
X

E(z) dµ(z)− K

2
Var(µ).

Letting t → 0, and recalling the lower semicontinuity of E and yt
d→ y0, we get

Jensen’s inequality (5.4).
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5.1.2 Existence and uniqueness

Using Theorem 5.2, we can extend Wasserstein Jensen’s inequality (for the Wasser-
stein barycenter) on Riemannian manifolds (cf. [KP17] ) to non-smooth extended
metric measure spaces, including RCD(K,∞) spaces and abstract Wiener spaces.
Unlike the known approaches, this approach (using EVI gradient flow) does not
rely on absolute continuity of the barycenter or local compactness of the space. In
fact, we can deduce the absolute continuity of barycenter(s), as a corollary of this
Wasserstein Jensen’s inequality.

Theorem 5.3 (Wasserstein Jensen’s inequality). Let K ∈ R and let (X, d,m) be
an extended metric measure space, Ω be a probability measure over P(X) with finite
variance.

Assume any µ ∈ P(X) which has finite distance from D(Entm) is the starting
point of an EVIK gradient flow of Entm in the Wasserstein space. Then the following
Wasserstein Jensen’s inequality is valid for any barycenter µ̄ of Ω:

Entm(µ̄) ≤
∫
P(X)

Entm(µ) dΩ(µ)− K

2

∫
P(X)

W 2
2 (µ̄, µ) dΩ(µ). (5.7)

As a corollary , if ∫
P(X)

Entm(µ) dΩ(µ) <∞,

then the entropy of the barycenter of Ω is finite. In particular, the barycenter is
absolutely continuous with respect to m.

Proof. If
∫
P(X)

Entm(µ) dΩ(µ) = +∞, there is nothing to prove. Otherwise, Ω is

concentrated on D(Entm). Since Ω has finite variance,
∫
P(X)

W 2
2 (µ̄, µ) dΩ(µ) < +∞,

we can see that µ̄ has finite distance from D(Entm). By hypothesis, µ̄ is the starting
point of an EVIK gradient flow of Entm. Then (5.7) follows from Theorem 5.2.

Remark 5.4. Note that the condition
∫
P(X)

Entm(µ) dΩ(µ) < ∞ implies that Ω is

concentrated on the absolutely continuous measures. If (X, d,m) is RCD, Ω is
concentrated on finitely many absolutely continuous measures, in Theorem 5.16
we will prove the absolute continuity of the Wasserstein barycenter, without the
condition

∫
P(X)

Entm(µ) dΩ(µ) <∞.

Corollary 5.5. Let (X,H, γ) be an abstract Wiener space equipped with the Cameron–
Martin distance dH and the Gaussian measure γ. Let Ω be a probability measure
over P(X) with finite variance.

Then for any barycenter µ̄ of Ω it holds

Entγ(µ̄) ≤
∫

Entγ(µ) dΩ(µ)− 1

2

∫
W 2

2 (µ̄, µ) dΩ(µ). (5.8)

Proof. Assume µ has finite distance from D(Entγ), then by [FU04, Theorem 6.1]
(and its proof), we know there is a unique geodesic (µt) connecting µ and a measure
in D(Entγ), satisfying µt � γ for any t ∈ (0, 1). By [AES16, §11 and §13], any
measure in Pac(X, dH , γ) is the starting point of an EVI1 gradient flow of Entγ.
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Therefore for any t ∈ (0, 1), µt is the starting point of an EVI1 gradient flow.
By completeness of the Wasserstein space (cf. [FU04, Proposition 5.4]) and the
Wasserstein contraction of EVI1 gradient flows, we know µ is the starting point of
an EVI1 gradient flow. Then by Theorem 5.3 we get (5.8).

Corollary 5.6. Let (X, d,m) be an RCD(K,∞) space. Let Ω be a probability mea-
sure over P2(X, d) with finite variance. Then for any barycenter µ̄ of Ω it holds

Entm(µ̄) ≤
∫

Entm(µ) dΩ(µ)− K

2

∫
W 2

2 (µ̄, µ) dΩ(µ). (5.9)

Proof. By [AGS14, Theorem 5.1], any µ ∈ P2(X, d) is the starting point of an EVIK
gradient flow. Then the assertion follows from Theorem 5.3.

Similar to [AGS14, Lemma 5.2], we can use (5.3) to show the existence of Wasser-
stein barycenter, without local compactness of the underlying space.

Theorem 5.7 (Existence of barycenter). Let K ∈ R and let (X, d,m) be an extended
metric measure space, Ω be a probability measure over P(X) with finite variance and∫

P(X)

Entm(µ) dΩ(µ) <∞.

Assume that one of the following conditions holds:

A. (X, d,m) is an RCD(K,∞) metric measure space and Ω is concentrated on
P2(X, d);

B. m is a probability measure, any µ ∈ P(X) which has finite distance from
D(Entm) is the starting point of an EVIK gradient flow of Entm in the Wasser-
stein space.

Then Ω has a barycenter.

Proof. Without loss of generality, we assume that Ω is concentrated on D(Entm).
Let 0 < ε < 1. By the definition of the variance, there exists µ̄ε ∈ P(X) such that∫

P(X)

W 2
2 (µ, µ̄ε) dΩ(µ) ≤ Var(Ω) + ε. (5.10)

By hypothesis and Theorem 5.2, (5.3), we get

Entm(µ̄εt) ≤
∫
P(X)

Entm(µ) dΩ(µ)− K

2
Var(Ω) +

ε

2IK(t)
, (5.11)

where µ̄εt is the EVIK gradient flow of Entm starting from µ̄ε . Set ν̄ε := µ̄εε. It can
be checked that ε/IK(ε) is bounded for 0 < ε < 1. Combining this with (5.11),
we know that the family {ν̄ε} has uniformly bounded entropy. Thus, it is tight
(cf. [AGMR15, Lemma 4.4] and [FSS10, Theorem 1.2]). Without loss of generality,
we assume that ν̄ε converges to ν̄ ∈ P(X) in the weak sense as ε→ 0.
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We claim that ν̄ is a barycenter of Ω. It is known that (cf. [AGS08, Chapter
4], [AGS14, Proposition 2.22] and [AES16, §10])

W2(xt, yt) ≤ e−KtW2(x0, y0) ∀t > 0 (5.12)

for any EVIK gradient flows of Entm starting from x0, y0. Thus

W2(µ, ν̄ε)−W2(µε, µ) ≤ W2(µε, ν̄ε) ≤ e−KεW2(µ, µ̄ε), (5.13)

where µε is the EVIK gradient flow of Entm starting from µ.

Integrating (5.13) in µ with respect to Ω, we get∫
P(X)

W 2
2 (µ, ν̄ε) dΩ(µ) ≤

∫
P(X)

(
e−KεW2(µ, µ̄ε) +W2(µε, µ)

)2
dΩ(µ). (5.14)

Note that W2(µ, µε) converges to 0 as ε→ 0 and

W2(ν̄, µ) ≤ lim
ε→0

W2(ν̄ε, µ), for any µ ∈ P2(X),

we deduce from (5.14) that

Var(Ω) ≤
∫
P2(X,d)

W 2
2 (µ, ν̄) dΩ(µ)

≤
∫
P2(X,d)

lim
ε→0

W 2
2 (µ, ν̄ε) dΩ(µ)

≤ lim
ε→0

∫
P2(X,d)

W 2
2 (µ, µ̄ε) dΩ(µ)

≤ lim
ε→0

∫
P2(X,d)

(
e−KεW2(µ, µ̄ε) +W2(µε, µ)

)2
dΩ(µ)

≤ lim
ε→0

∫
P2(X,d)

(e−2Kε + C)W 2
2 (µ, µ̄ε) + (1 +

1

C
)W 2

2 (µε, µ) dΩ(µ)

≤ lim
ε→0

∫
P2(X,d)

(1 + C)W 2
2 (µ, µ̄ε) dΩ(µ),

for any C > 0. Combining this with (5.10), we prove the claim.

Using similar argument as Proposition 4.4 in Subsection 4.2, we can prove the
uniqueness of Wasserstein barycenter, under a slightly weaker resolvability of the
Monge’s problem. Important examples satisfying our assumption includes RCD(K,∞)
spaces [GRS16] and abstract Wiener spaces [FSS10,AES16].

Theorem 5.8. Let (X, d,m) be a metric measure space satisfying one of the two
conditions in Theorem 5.7 and satisfying the weak Monge property: for any µ, ν ∈
Pac(X, d,m) with W2(µ, ν) <∞, there exists a unique optimal transport map between
µ and ν.

Then for any Ω ∈ P2(P(X),W2) with∫
P(X)

Entm(µ) dΩ(µ) <∞,

there exists a unique Wasserstein barycenter of Ω.
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Proof. By Theorem 5.7, we know Ω has a Wasserstein barycenter, denote by µ̄, then
by Jensen’s inequality in Theorem 5.3,

Entm(µ̄) ≤
∫
P(X)

Entm(µ) dΩ(µ)− K

2

∫
P(X)

W 2
2 (µ̄, µ) dΩ(µ) <∞. (5.15)

This implies that the Wasserstein barycenter µ̄ is absolutely continuous with respect
to m. By assumption, for any µ, ν ∈ P(X) with W2(µ, ν) <∞ and µ, ν � m, there
exists a unique optimal transport map from µ to ν. Now, assume there exist two
different Wasserstein barycenters µ̄1, µ̄2 of Ω, so that∫

P(X)

W 2
2 (µ, µ̄i) dΩ(µ) = min

ν∈P(X)

∫
P(X)

W 2
2 (µ, ν) dΩ(µ) i = 1, 2. (5.16)

However, by the same argument as in the proof of Proposition 4.4, we know

W 2
2 (µ, (µ̄1 + µ̄2)/2) <

1

2

(
W 2

2 (µ, µ̄1) +W 2
2 (µ, µ̄2)

)
. (5.17)

Thus, denote by µ̄ = (µ̄1 + µ̄2)/2 ∈ P(X), integrating (5.17) with respect to Ω,
noticing that

∫
P(X)

Entm(µ) dΩ(µ) <∞ implies Ω(Pac(X, d,m)) = 1, we obtain∫
P(X)

W 2
2 (µ, µ̄) dΩ(µ) <

1

2

∫
P(X)

W 2
2 (µ, µ̄1) dΩ(µ) +

1

2

∫
P(X)

W 2
2 (µ, µ̄2) dΩ(µ)

= min
ν∈P(X)

∫
P(X)

W 2
2 (µ, ν) dΩ(µ),

(5.18)

which contradict to (5.16). Thus the Wasserstein barycenter of Ω is unique.

5.2 EVIK,N gradient flows

Similar to Theorem 5.2, we exploit a finite dimensional formulation of the gradient
flow, EVIK,N gradient flow, to prove a finite dimensional version of Jensen’s inequal-
ity, which is new even on Rn. For simplicity, throughout this subsection, (X, d) is a
metric space.

Firstly, we have the following estimates.

Lemma 5.9. Let (X, d) be a metric space. Let K ∈ R,N ∈ (0,∞) and let UN , (yt)

be as in Definition 3.14. Then for L = π
√

N
|K| ∨ 2, there exists C1 = C1(K,N) > 0,

such that for t sufficiently small, it holds

(i) for z ∈ X with d(y, z) ≤ L, d(yt, z) ≤ C1.

(ii) for z ∈ X with d(y, z) > L, d(yt, z) ≤ Ld(y, z).

Proof. For K > 0, by Definition 3.14 we can see that (X, d) is bounded, so there is
nothing to prove. Then we may assume K < 0.
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We recall that the formulation of EVIK,N gradient flow is

d

dt
s2
K/N

(
1

2
d(yt, z)

)
+Ks2

K/N

(
1

2
d(yt, z)

)
≤ N

2

(
1− UN(z)

UN(yt)

)
(5.19)

holds for a.e. t > 0. And its integral version [EKS15, Proposition 2.18] (see also
Proposition 5.1) is

eKts2
K/N

(
1

2
d(yt, z)

)
− s2

K/N

(
1

2
d(y, z)

)
≤ IK(t)

N

2

(
1− UN(z)

UN(yt)

)
. (5.20)

Notice that UN ≥ 0, from (5.20), we get

cK/N(d(yt, z)) ≤ e−KtcK/N(d(y, z)) +

√
−N
K

(
1− e−Kt −Ke−KtIK(t)

)
, (5.21)

where we use the identity that −K
N
s2
K/N(x

2
) =

√
−K/NcK/N (x)−1

2
. Then the first state-

ment of lemma follows.

Next, we prove the second statement of the lemma by contradiction. We assume
that d(yt, z) ≥ Ld(y, z). By monotonicity of x 7→ sinhx and 7→ coshx on [0,∞), we
have

cK/N(d(yt, z)) ≥ cK/N(2d(y, z)) =

√
−K
N

(
c2
K/N(d(y, z)) + s2

K/N(d(y, z))
)

≥ cosh(π)cK/N(d(y, z)) +

√
−N
K

sinh2(π),

(5.22)

When t is sufficiently small, such that

e−Kt < cosh(π)

and

1− e−Kt −Ke−KtIK(t) <

√
−N
K

sinh2(π),

we can see (5.22) contradicts to (5.21).

Then we can prove a Jensen-type inequality with dimension parameter in the
next theorem.

Theorem 5.10 (Jensen-type inequality with dimension parameter). Let (X, d) be
a metric space. Let N,K, UN and (yt) be as in Lemma 5.9. Let µ be a probability
measure over X with finite variance. Assume that EVIK,N gradient flow of E exists
for any initial data y0 ∈ X, then for any barycenter ȳ of µ, the following Jensen-type
inequality holds:

1

UN(ȳ)

∫
X

d(ȳ, z)

sK/N(d(ȳ, z))
UN(z) dµ(z) ≤

∫
X

d(ȳ, z)

tK/N(d(ȳ, z))
dµ(z) < +∞. (5.23)

where tK/N := sK/N/cK/N .
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Proof. Recall that the EVIK,N gradient flow (yt) from y satisfies

d

dt
s2
K/N

(
1

2
d(yt, z)

)
+Ks2

K/N

(
1

2
d(yt, z)

)
≤ N

2

(
1− UN(z)

UN(yt)

)
(5.24)

holds for a.e. t > 0. It can be seen that (5.24) is equivalent to the following
inequality (cf. [EKS15, Lemma 2.15, (2.20)]):

1

2

d

dt
d2(yt, z) ≤

Nd(yt, z)

sK/N(d(yt, z))

[
cK/N(d(yt, z))−

UN(z)

UN(yt)

]
. (5.25)

And its integral version is

1

2
d2(yt, z)−

1

2
d2(y, z) ≤ N

[∫ t

0

d(ys, z)

tK/N(d(ys, z))
ds− UN(z)

UN(yt)

∫ t

0

d(ys, z)

sK/N(d(ys, z))
ds

]
.

(5.26)

Integrating (5.26) in z with given probability measure µ ∈ P(X, d), choosing
y = ȳ and (yt) as the EVIK,N gradient flow of UN starting from the barycenter ȳ,
we get

1

2

∫
X

d2(yt, z) dµ(z)− 1

2

∫
X

d2(ȳ, z) dµ(z)

≤N
[∫

X

∫ t

0

d(ys, z)

tK/N(d(ys, z))
ds dµ(z)−

∫
X

UN(z)

UN(yt)

∫ t

0

d(ys, z)

sK/N(d(ys, z))
ds dµ(z)

]
.

(5.27)
By Definition 3.2, we know that

∫
X
d(yt, z)

2 dµ(z) ≥
∫
X
d(ȳ, z)2 dµ(z). Combining

this with (5.27), we get

0 ≤ N

[∫
X

∫ t

0

d(ys, z)

tK/N(d(ys, z))
ds dµ(z)−

∫
X

UN(z)

UN(yt)

∫ t

0

d(ys, z)

sK/N(d(ys, z))
ds dµ(z)

]
.

(5.28)

Rearrange (5.28) and divide both sides of it by Nt:∫
X

UN(z)

UN(yt)

[
1

t

∫ t

0

d(ys, z)

sK/N(d(ys, z))
ds

]
dµ(z) ≤

∫
X

[
1

t

∫ t

0

d(ys, z)

tK/N(d(ys, z))
ds

]
dµ(z).

(5.29)
Note that lims→0 d(ys, z) = d(ȳ, z) and x/sK/N(x) is continuous and bounded. We
have

lim
t→0

1

t

∫ t

0

d(ys, z)

sK/N(d(ys, z))
ds =

d(ȳ, z)

sK/N(d(ȳ, z))
.

By Fatou’s lemma and upper semicontinuity of the non-negative functional UN , we
get

1

UN(ȳ)

∫
X

d(ȳ, z)

sK/N(d(ȳ, z))
UN(z) dµ(z)

≤ lim inf
t→0

1

UN(yt)

∫
X

UN(z)

[
1

t

∫ t

0

d(ys, z)

sK/N(d(ys, z))
ds

]
dµ(z).

(5.30)

Next, we consider separately the following two cases: K > 0 and K < 0.
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Case 1: K > 0. By definition, the diameter of (X, d) is bounded from above by

π
√

N
K

. Thus, we can see that d(y,z)
tK/N (d(y,z))

is bounded. Notice that µ is a probability

measure. By using Fatou’s lemma with respect to the non-positive function, we get

lim sup
t→0

∫
X

[
1

t

∫ t

0

d(ys, z)

tK/N(d(ys, z))
ds

]
dµ(z) ≤

∫
X

lim sup
t→0

[
1

t

∫ t

0

d(ys, z)

tK/N(d(ys, z))
ds

]
dµ(z)

=

∫
X

d(ȳ, z)

tK/N(d(ȳ, z))
dµ(z) < +∞.

(5.31)
Combining (5.29), (5.30) and (5.31), we get the desired inequality.

Case 2: K < 0. We estimate the right side of (5.29) when t is sufficiently small.
To achieve this aim, we exploit two estimates given in Lemma 5.9:∫

X

1

t

∫ t

0

d(ys, z)

tK/N(d(ys, z))
ds dµ(z)

=

∫
{z∈X,d(ȳ,z)≤L}

1

t

∫ t

0

d(ys, z)

tK/N(d(ys, z))
ds dµ(z)︸ ︷︷ ︸

A(t)

+

∫
{z∈X,d(ȳ,z)>L}

1

t

∫ t

0

d(ys, z)

tK/N(d(ys, z))
ds dµ(z)︸ ︷︷ ︸

B(t)

.

By Lemma 5.9-(i) and the monotonicity of x 7→ x
tanhx

, we know

d(ys, z)

tK/N(d(ys, z))
≤ C1

tK/N(C1)

on {z ∈ X, d(ȳ, z) ≤ L}. So by dominated convergence theorem, we get

lim
t→0

A(t) =

∫
{z∈X,d(ȳ,z)≤L}

d(ȳ, z)

tK/N(d(ȳ, z))
dµ(z). (5.32)

By Lemma 5.9-(ii) and the inequality tK/N(x) ≥ L2

x
for x > L, we have

1

t

∫ t

0

d(ys, z)

tK/N(d(ys, z))
≤ 1

L2
d(ȳ, z)2, ∀z ∈ X, d(ȳ, z) > 2.

Note that z 7→ d(ȳ, z)2 is µ-integrable, so by dominated convergence theorem we get

lim
t→0

B(t) =

∫
{z∈X,d(ȳ,z)>L}

d(ȳ, z)

tK/N(d(ȳ, z))
dµ(z). (5.33)

Combining (5.28), (5.29), (5.32) and (5.33), we get

1

UN(ȳ)

∫
X

d(ȳ, z)

sinh(d(ȳ, z))
UN(z) dµ(z) ≤

∫
X

d(ȳ, z)

tanh(d(ȳ, z))
dµ(z) ≤ 1

L2
Var(µ)+

C1

tanh(C1)

which is the thesis.

Combining Theorem 3.15, 5.7 and 5.10 we obtain the following corollaries.
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Corollary 5.11. Let N ∈ [1,∞). Let (X, d,m) be an RCD(K,N) space and Ω be
a Borel probability measure over P2(X, d). Then Wasserstein Jensen’s inequality
follows:∫

W2(µ̄, µ)

sK/N(W2(µ̄, µ))
UN(µ) dΩ(µ) ≤ UN(µ̄)

∫
W2(µ̄, µ)

tK/N(W2(µ̄, µ))
dΩ(µ), (5.34)

where µ̄ is a barycenter of Ω, UN(µ) = e−
Entm(µ)

N .

Corollary 5.12. Let N ∈ [1,∞) and (X, d,m) be an RCD(K,N) space. Let Ω be
a Borel probability measure over P2(X, d), which gives mass to the set D(Entm) =
{µ : Entm(µ) <∞}. Then the entropy of the barycenter of Ω is finite. In particular,
the barycenter is absolutely continuous with respect to m.

Proof. Denote a barycenter of Ω by µ̄. Since Ω(D(Entm)) > 0, we have∫
P2(X,d)

W2(µ̄, µ)

sK/N(W2(µ̄, µ))
UN(µ) dΩ(µ) > 0,

where UN(µ) = e−
Entm(µ)

N . By (5.34), we know that UN(µ̄) = e−
Entm(µ̄)

N > 0. This
implies Ent(µ̄) <∞.

5.3 Multi-marginal optimal transport

Our goal in this subsection is to study multi-marginal optimal transport problem of
Monge type in RCD spaces. This extends Gangbo and Swiech’s result in Euclidean
spaces [GŚ98], Kim and Pass’s results in Riemannian manifolds [KP15] and Jiang’s
result [Jia17] in Alexandrov spaces. It is worth to emphasize the relationship between
multi-marginal optimal transport problem and Wasserstein barycenter problem, was
observed and investigated by Carlier and Ekeland [CE10], then studied by Agueh–
Carlier [AC11], Kim–Pass [KP15] in different settings. In the following discussion,
we focus on the cost function

c(x1, . . . , xn) = inf
y∈X

n∑
i=1

1

2
d2(xi, y).

Before stating our main theorem, we collect some results we have proved in the
previous sections.

Proposition 5.13. Let (X, d,m) be a metric measure space. Assume µ1, . . . , µn ∈
P2(X, d), then there exists a unique Wasserstein barycenter µ̄ of the measure

∑n
i=1 δµi ∈

P0(P2(X, d)) and it is absolutely continuous with respect to m if one of the following
conditions holds:

(i) (X, d,m) is an RCD(K,N) space, and µ1 � m with Entm(µ1) <∞.

(ii) (X, d,m) is an RCD(K,∞) space, and µi � m with Entm(µi) < ∞, i =
1, . . . , n.
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Proof. We give a sketched proof. For existence and uniqueness, by Proposition 4.1
and Theorem 5.7, we obtain the existence of Wasserstein barycenter for RCD(K,N)
and RCD(K,∞) spaces respectively. Then by Proposition 4.4 and Theorem 5.8, we
have the uniqueness of Wasserstein barycenter, and denote it by µ̄.

The absolute continuity of µ̄ follows from Corollary 5.12 and Theorem 5.3 re-
spectively.

Using Proposition 5.13, we can prove the existence and uniqueness of multi-
marginal optimal transport map, in case the marginal measures have finite entropy.

Proposition 5.14. Let (X, d,m) be a metric measure space. Then the multi-
marginal optimal transport problem of Monge type, associated with the cost function
c(x1, . . . , xn), has a unique solution, if one of the following conditions holds:

(i) (X, d,m) is an RCD(K,N) space, and µ1 � m with Entm(µ1) <∞.

(ii) (X, d,m) is an RCD(K,∞) space, and µi � m with Entm(µi) < ∞, i =
1, . . . , n.

In particular, any multi-marginal optimal transport plan π is concentrated on the
graph of a Xn−1-valued map, and for π-a.e. (x1, . . . , xn) ∈ Xn, there is a unique
barycenter of

∑
i δxi.

Proof. First of all, we claim:

inf
ν∈P(X,d)

n∑
i=1

1

2
W 2

2 (µi, ν) ≤ inf
π∈Π

∫
Xn

c(x1, . . . , xn) dπ. (5.35)

Given ε > 0, by measurable selection theorem, there exists a measurable map
Tε : Xn → X, such that for any x := (x1, . . . , xn), it holds

c(x) = inf
y∈X

n∑
i=1

1

2
d2(xi, y) >

n∑
i=1

1

2
d2(xi, Tε(x))− ε.

On one hand, similar to the proof of Theorem 4.3, for the i-th canonical projection
θi from Xn to X, and π ∈ Π(µ1, . . . , µn), we set νε := (Tε)]π and ηi := (θi, Tε)]π ∈
Π(µi, ν). Then

W 2
2 (µi, ν) ≤

∫
X×X

d2(xi, y) dηi =

∫
Xn

d2(xi, T (x)) dπ.

Thus,

1

2

n∑
i=1

W 2
2 (µi, ν) ≤

n∑
i=1

∫
Xn

1

2
d2(xi, T (x)) dπ =

∫
Xn

c(x1, . . . , xn) dπ + ε. (5.36)

Letting ε→ 0, we prove the claim.

By Proposition 5.13, we know the unique Wasserstein barycenter µ̄ is absolutely
continuous with respect to m. For i ∈ {1, . . . , n}, by [CM17] and [GRS16] respec-
tively, there exists a unique optimal transport map from µ̄ to µi, denote by Ti, and
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there is a unique optimal transport map from µ1 to µ̄, this map is the inverse map
of T1, denote it by T−1

1 . This implies

W 2
2 (µi, µ̄) =

∫
X

d2(x, Ti(x)) dµ̄, i = 1, . . . , n,

W 2
2 (µ1, µ̄) =

∫
X

d2(x1, T
−1
1 (x1)) dµ1.

We claim (T2 ◦ T−1
1 , . . . , Tn ◦ T−1

1 ) is a multi-marginal optimal transport map.
Note that it is surely a multi-marginal transport map, and

inf
π∈Π

∫
Xn

c(x1, . . . , xn) dπ ≤
∫
X

c
(
x1, T2 ◦ T−1

1 (x1), . . . , Tn ◦ T−1
1 (x1)

)
dµ1

=

∫
X

inf
y∈X

n∑
i=1

1

2
d2(Ti ◦ T−1

1 (x1), y) dµ1

≤
∫
X

n∑
i=1

1

2
d2(Ti ◦ T−1

1 (x1), T−1
1 (x1)) dµ1

=

∫
X

n∑
i=1

1

2
d2(Ti(z), z) d(T−1

1 )]µ1(z)

=

∫
X

n∑
i=1

1

2
d2(Ti(z), z) dµ̄(z)

∗
= min

ν∈P(X,d)

n∑
i=1

1

2
W 2

2 (µi, ν)
(5.35)

≤ inf
π

∫
Xn

c(x1, . . . , xn) dπ,

(5.37)
where (∗) holds since∫

X

n∑
i=1

1

2
d2(Ti(z), z)dµ̄(z) =

n∑
i=1

1

2
W 2

2 (µi, µ̄).

Therefore, the inequalities are all equalities. In particular,

inf
π∈Π

∫
Xn

c(x1, . . . , xn)dπ =

∫
X

c(x1, T2 ◦ T−1
1 (x1), . . . , Tn ◦ T−1

1 (x1))dµ1. (5.38)

This then implies (T2 ◦ T−1
1 , . . . , Tn ◦ T−1

1 ) is a multi-marginal optimal transport
map. Furthermore, from the second inequality in (5.37), we can see that T−1

1 (x1) is
a barycenter of

∑
i δTi◦T−1

1 (x1).

Finally, we show the uniqueness of multi-marginal optimal transport map. This
consequence follows from the uniqueness of T−1

1 and Ti, i = 1, . . . , n. Note that from
(5.37),

inf
π∈Π

∫
Xn

c(x1, . . . , xn) dπ =

∫
X

n∑
i=1

1

2
d2(Ti(z), z) dµ̄(z). (5.39)

Assume, for sake of contradiction, there exists (F2, . . . , Fn), which is distinct with
(T2 ◦ T−1

1 , . . . , Tn ◦ T−1
1 ), also a multi-marginal optimal transport map. This means
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there exists a subset A ⊆ X, µ1(A) > 0, and exists i, 1 ≤ i ≤ n, such that
Fi(x1) 6= Ti ◦ T−1

1 (x1),∀x1 ∈ A.

Now, defineH : X → X, such that Fi(x1) = H(T−1
1 (x1)),∀x1 ∈ A, by uniqueness

of Ti, ∫
T−1

1 (A)

1

2
d2(Ti(z), z) dµ̄(z) <

∫
T−1

1 (A)

1

2
d2(H(z), z) dµ̄(z). (5.40)

This implies∫
X

c(x1, F2(x1), . . . , Fn(x1)) dµ1

=

∫
X

n∑
i=1

1

2
d2(Ti(z), z) dµ̄(z)

≥
∫
X

∑
j 6=i

1

2
d2(Tj(z), z) dµ̄(z) +

∫
T−1

1 (A)

1

2
d2(H(z), z) dµ̄(z) +

∫
X\T−1

1 (A)

1

2
d2(H(z), z) dµ̄(z)

>

∫
X

∑
j 6=i

1

2
d2(Tj(z), z) dµ̄(z) +

∫
X

1

2
d2(Ti(z), z) dµ̄(z)

= inf
π∈Π

∫
Xn

c(x1, . . . , xn) dπ,

(5.41)
which contradicts to the optimality of (F2, . . . , Fn), we complete the proof.

Next, we will prove our main theorem concerning the unique resolvability of the
multi-marginal optimal transport problem of Monge type, for absolute continuous
marginals, in full generality.

Theorem 5.15 (Existence and uniqueness of multi-marginal optimal transport
map). Let (X, d,m) be a metric measure space. Then the multi-marginal optimal
transport problem of Monge type, associated with the cost function c(x1, . . . , xn), has
a unique solution, if one of the following conditions holds:

(i) (X, d,m) is an RCD(K,N) space, and µ1 � m.

(ii) (X, d,m) is an RCD(K,∞) space, and µi � m, i = 1, . . . , n.

Proof. We claim that in order to obtain those consequences, it is sufficiently to
prove that any multi-marginal optimal transport plan is actually induced by a multi-
marginal optimal transport map. Indeed, if this is not true, then there exists two
distinct multi-marginal optimal transport plans, denoted by π1 and π2, all induced
by a map. Now, by linearity of the Kantorovich functional, the mean 1

2
(π1 + π2) is

also optimal. However, it is not induced by a map, a contradiction.

Now assume by contradiction that there exists a multi-marginal optimal plan,
denoted by π, is not induced by a multi-marginal optimal map. This means, there
is a set E ⊂ Xn with positive π-measure, such that any subset E ′ ⊂ E with positive
measure is not included in the graph of a map from X to Xn−1.

For RCD(K,N) case, since µ1 = ρ1m � m, the union
⋃
C>0{x1 ∈ X : C−1 ≤

ρ1(x1) ≤ C} has full µ1-measure. Therefore, there exists some C > 0, such that the
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set Ẽ := {(x1, . . . , xn) ∈ E : C−1 ≤ ρ1(x1) ≤ C} has positive measure. Consider the
plan π̃ := 1

π(Ẽ)
πxẼ. By optimality of π and the linearity of the Kantorovich problem,

we can see that π̃ is also a multi-marginal optimal transport plan. By Proposition
5.14 (i), we know that π̃ is concentrated on the graph of a Xn−1-valued map, which
contradicts to the choice of E.

For condition RCD(K,∞) case, by the same contradiction argument, we can
reduce the problem to the multi-marginal optimal transport problem for marginal
measures with finite entropy, then by Proposition 5.14 (ii) we get the contradiction.

With the help of Theorem 5.15, we can also improve Proposition 5.13 by removing
the finite entropy condition from the assumption.

Theorem 5.16. Let (X, d,m) be a metric measure space. Assume µ1, . . . , µn ∈
P2(X, d), then there exists a unique Wasserstein barycenter µ̄ and it is absolutely
continuous with respect to m if one of the following conditions holds:

(i) (X, d,m) is an RCD(K,N) space, and µ1 � m.

(ii) (X, d,m) is an RCD(K,∞) space, and µi � m, i = 1, . . . , n.

Proof. Consider the multi-marginal optimal transport problem associated with the
given measures (µ1, . . . , µn). We give the existence of Wasserstein barycenter first.
For RCD(K,N) spaces, by Proposition 4.1, we can see the existence of Wasserstein
barycenter. For RCD(K,∞) spaces, by Theorem 5.15 (ii), there exists a unique
multi-marginal optimal transport map starting from µ1, denoted by (T2, . . . , Tn). As-
sume the Wasserstein barycenter of (µ1, . . . , µn) is non-existent, since µ1 = ρ1m �
m, the union

⋃
C>0{x1 ∈ X : C−1 ≤ ρ1(x1) ≤ C} has full µ1-measure. There-

fore, there exists some C > 0, such that the Wasserstein barycenter of µ̃1 =
1

µ1(E)
µ1xE, µ̃i = Ti]µ̃1, i = 2, . . . , n, is non-existent, where E := {x1 ∈ X : C−1 ≤

ρ1(x1) ≤ C}. Note that µ1, . . . , µn have the equal status, by the same idea from
Theorem 5.15, we can reduce the problem to µ1, . . . , µn with finite entropy, and
the Wasserstein barycenter is still non-existent. However, by Theorem 5.7, we will
obtain the existence of Wasserstein barycenter, a contradiction. Now, denote by µ̄
the Wasserstein barycenter. It is sufficient to prove µ̄� m, then by strict convexity
of the Wasserstein distance with respect to the linear interpolation (cf. Proposition
4.4 and Theorem 5.8), we can prove the uniqueness of the Wasserstein barycenter.

For RCD(K,N) spaces, by Theorem 5.15 (i), there exists a unique multi-marginal
optimal transport map, denoted by (F2, . . . , Fn). Since µ1 = ρ1m� m, there exists
bounded partitions supp(µk) =

⋃
j∈NE

k
j , k = 1, 2 . . . , n, such that

• Ek
j , k = 1, . . . , n are bounded;

• E1
i ∩ E1

j = ∅, ∀i 6= j ∈ N;

• µ1(E1
j ) > 0 and ‖ρ1‖L∞(E1

j ,m) <∞, ∀j ∈ N;

• for every j ∈ N, there exists jk ∈ N, such that Fk(E
1
j ) ⊆ Ek

jk
.
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Let F ⊆ X be such that m(F ) = 0. Assume by contradiction that µ̄(F ) > 0.
Denoted by S the unique optimal transport map from µ1 to µ̄. Let E = S−1(F ), by
measure preserving property of S, µ1(E) > 0. Since

µ1(E) = µ1(E ∩
⋃
j∈N

E1
j ) =

∑
j∈N

µ1(E ∩ E1
j ) > 0, (5.42)

then there exists j0, such that µ1(E ∩ E1
j0

) > 0.

We construct ν1 = 1
µ1(E∩E1

j0
)
µ1xE∩E1

j0
, νk = Fk]ν1, k = 2, . . . , n. By construction,

ν1, . . . , νn ∈ P(X, d), νk is concentrated on some F ∩ Ek
jk
, k = 2, . . . , n and ν1 � m

with Entm(ν1) <∞. Consider the Wasserstein barycenter of ν1, . . . , νn, there exists
a unique Wasserstein barycenter ν̄ ∈ P(X, d) of ν1, . . . , νn. In particular, ν̄(F ) = 1.
However, since ν1 � m with Ent(ν1) <∞, by Lemma 5.13 (i), ν̄ � m, which implies
ν̄(F ) = 0, which is the contradiction. Thus µ̄(F ) = 0, and by arbitrariness of F , we
have µ� m.

For RCD(K,∞) spaces, the argument is a bit different from the RCD(K,N)
case, we will illustrate it briefly. Note that in this case, µ1, . . . , µn have the equal
status. By Theorem 5.15 (ii), for any i = 1, . . . , n, there exists a unique multi-
marginal optimal transport map Ti which maps µi to (µ1, . . . , µn). Denote by Ti
the i-th component of the map Ti−1, which maps µi−1 to µi, denotes its inverse map
by T−1

i , i = 2, . . . , n.

Denote µi = ρim � m, i = 1, . . . , n. Let F ⊆ X be such that m(F ) = 0, and
µ̄(F ) > 0. Consider the optimal transport associated with (µ1, µ̄). There exists
an optimal transport plan π, such that F is transported to E1 ⊆ X by π and
µ1(E1) > 0. Similarly, there still exists E1

j1
⊂ E1 with ‖ρ1‖L∞(E1

j1
,m) < ∞, and

µ1(E1
j1

) > 0. Denote by E2 = T2(E1
j1

). Then µ2(E2) > 0, and similarly, there
exists E2

j2
⊂ E2 such that µ2(E2

j2
) > 0 and ‖ρ2‖L∞(E2

j2
,m) < ∞. Continuing this

construction, for i = 3, . . . , n, Ei := Ti(E
i−1
ji−1

), we have µi(Ei) > 0, and there exists

Ei
ji
⊂ Ej such that µi(Ei ∩ Ei

ji
) > 0 and ‖ρi‖L∞(Eiji

,m) <∞.

Finally, we construct νn = µn(En
jn)−1µnxEnjn , νk = (T−1

k+1)]νk+1, k = n − 1, . . . , 1.

By construction, ν1, . . . , νn ∈ P(X, d), νi is concentrated on Ei ∩ Ei
ji

and νi � m,
Entm(νi) < ∞ for any i = 1, . . . , n. Consider the Wasserstein barycenter problem
associate with ν1, . . . , νn. By Lemma 5.13(ii), there exists a unique ν̄ ∈ P(X) and
ν̄ is the Wasserstein barycenter of ν1, . . . , νn with ν̄ � m. This implies ν̄(F ) = 0.
However, by construction and the uniqueness of ν̄, we known ν̄ is concentrated on
F , i.e. ν̄(F ) = 1 which is a contradiction. Thus we have µ̄(F ) = 0, by arbitrariness
of F , we have µ̄� m.

6 BCD condition

6.1 Definition and examples

There is no doubt that curvature is one of the most important concepts in geometry.
In particular, in the study of general metric measure spaces, it has been a long history
to give a synthetic notion of upper and lower curvature bounds. Metric spaces with
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sectional curvature lower bound, referring to Alexandrov spaces, has been widely
studied and greatly achieved from the last century. In recent years, Sturm and
Lott–Villani introduce a synthetic notion of lower Ricci curvature bounds, called
Lott–Sturm–Villani curvature–dimension condition today, in the general framework
of metric measure spaces. This Lott–Sturm–Villani curvature-dimension condi-
tion is defined in terms of the displacement convexity, of certain functionals on
the Wasserstein space. In his celebrated paper [McC97], McCann introduced the
notion of displacement convexity, on the Wasserstein space over Rn. Later, Cordero-
Erausquin, McCann and Schmuckenschläger [CEMS01] extended this result to Rie-
mannian manifolds with Ricci curvature lower bound. Conversely, von Renesse and
Sturm [vRS05] proved that the displacement convexity actually implies lower Ricci
curvature bounds. Thus, in the setting of Riemannian manifolds, lower Ricci curva-
ture bounds can be identified with the displacement convexity of certain functionals.
This can be seen as one of the starting points of Lott–Sturm–Villani theory on non-
smooth metric measure spaces.

In this section, based on the barycenter convexity of certain functionals on the
Wasserstein space, which was proved in the Section 5, we introduce a new curvature-
dimension condition, called barycenter curvature-dimension condition.

Definition 6.1 (BCD(K,∞) condition). Let K ∈ R. We say that an extended
metric measure space (X, d,m) verifies BCD(K,∞) condition, if for any prob-
ability measure Ω ∈ P2(P(X),W2), concentrated on finitely many measures, there
exists a barycenter µ̄ of Ω such that the following Jensen’s inequality holds:

Entm(µ̄) ≤
∫
P(X)

Entm(µ) dΩ(µ)− K

2
Var(Ω). (6.1)

Remark 6.2. If we take Ω = (1 − t)δµ0 + tδµ1 and (X, d) is a length space, (6.1)
implies the Lott–Sturm–Villani curvature-dimension condition.

In general, this condition can be weaker than Lott–Sturm–Villani’s condition,
even if (X, d) is a metric space and Ω = (1− t)δµ0 + tδµ1 .

Definition 6.3 (BCD(K,N) condition). Let K ∈ R, N > 0. We say that a met-
ric measure space (X, d,m) verifies BCD(K,N) condition, if for any probability
measure Ω ∈ P2(P(X, d),W2), concentrated on finitely many measures, there exists
a barycenter µ̄ of Ω such that the following Jensen-type inequality holds:∫

W2(µ̄, µ)

sK/N(W2(µ̄, µ))
UN(µ) dΩ(µ) ≤ UN(µ̄)

∫
W2(µ̄, µ)

tK/N(W2(µ̄, µ))
dΩ(µ), (6.2)

where UN(µ) = e−
Entm(µ)

N .

6.2 Stability under measured Gromov–Hausdorff convergence

Similar to [LV09, Theorem 4.15], we can prove that the BCD condition is stable
under the measured Gromov–Hausdorff convergence. For simplicity, in this paper
we focus on compact BCD(K,∞) metric measure spaces, general BCD spaces will
be studied in near future.
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We will adopt the following definition of measured Gromov–Hausdorff conver-
gence of compact metric measure spaces (see [BBI01], [GMS15] and [Vil09] for equiv-
alent ways to define this convergence). Note that in order to study the convergence
of possibly non-compact (extended) metric measure spaces in the future, one needs
to consider pointed (extended) metric measure spaces, see [GMS15] and Gromov’s
book [Gro99] for more discussion about other topologies on the class of metric-
measure spaces.

Definition 6.4. Given ε ∈ (0, 1). A map ϕ : (X1, d1) → (X2, d2) between two
metric spaces is called an ε-approximation if

(i)
∣∣∣d2

(
ϕ(x), ϕ(y)

)
− d1(x, y)

∣∣∣ ≤ ε ∀x, y ∈ X1

(ii) For all x2 ∈ X2, there is an x1 ∈ X1 so that d2

(
ϕ(x1), x2

)
≤ ε.

where Br(x) denotes the open geodesic ball with radius r and center x, and Nε(A)
denotes the open ε-neighbourhood of a subset A.

Now we can introduce a notion of convergence for metric measure spaces.

Definition 6.5 (Measured Gromov–Hausdorff convergence). A sequence of metric
spaces (Xn, dn), n ∈ N converges in Gromov–Hausdorff sense to (X, d) if there exists
a sequence of εn-approximations ϕn : Xn → X with εn ↓ 0.

Moreover, we say that a sequence of metric measure spaces (Xn, dn,mn) converges
in measured Gromov–Hausdorff sense (mGH for short) to a metric measure space
(X, d,m), if additionally (ϕn)]mn → m weakly as measures, i.e.

lim
n→∞

∫
X

g d
(
(ϕn)]mn

)
=

∫
X

g dm ∀g ∈ Cb(X),

where Cb(X) denotes the set of real valued bounded continuous functions with
bounded support in X and (ϕn)]mn(A) = mn(ϕ−1

n (A)) for any A ⊂ X Borel.

It is known that this measured Gromov–Hausdorff convergence comes from a
metrizable topology on the space of all compact metric spaces modulo isometries
(i.e. a metric on the isomorphism classes of metric measure spaces).

Moreover, if Xn is a sequence of barycenter spaces that converges to X in the
Gromov–Hausdorff topology, it is not hard to prove that X is also a barycenter
space (cf. [BBI01, Theorem 7.5.1]).

Theorem 6.6. Let {(Xi, di, νi)}∞i=1 be a sequence of compact BCD(K,∞) spaces and
K ∈ R. If {(Xi, di, νi)} converges to (X, d, ν) in the measured Gromov–Hausdorff
sense as n→∞, then (X, d, ν) is also a BCD(K,∞) space.

Proof. It is well known that compactness and length property is stable under the
Gromov–Hausdorff limit. Thus, (X, d) is a geodesic and barycenter space. Given
Ω ∈ P0(P2(X, d)) with finite support and let µ̄ be a barycenter of Ω. We write

38



Ω =
∑m

k=1 λkδµk . By [LV09, Lemma 3.24], we may assume that the support of Ω is
in {

γ ∈ P2(X, d) : Entν(γ) <∞, γ has continuous density with respect to ν
}
.

Write µk = ρkν∞. Let fi : Xi → X be an εi-approximation and f
′
i : X → Xi

be an inverse εi-approximation, with limi→∞ εi = 0 and limi→∞(fi)]νi = ν∞. For i

sufficiently large, we know
∫
X
ρk d(fi)#νi > 0. For such i, put µi,k =

(f]i ρk)νi∫
X ρk d(fi)]νi

and

Ωi =
∑m

k=1 λkδµi,k , where f ]i ρk := ρk ◦ fi denotes the pull-back of the function ρk.
Let ω̄i is a barycenter of Ωi. Here, we list some basic properties, whose proof can
be found in [LV09, Corollary 4.3 and Theorem 4.15]:

1. for any γ ∈ P2(X, d), limi→∞W2(µi,k, (f
′
i )]γ) = W2(µk, γ);

2. limi→∞ Entνi(µi,k) = Entν(µk);

3. Ent(fi)]νi((fi)]ω̄i) ≤ Entνi(ω̄i);

4. the functional Entν(µ) is lower semi-continuous with respect to (ν, µ).

Now, we claim that (fi)]ω̄i converges to a barycenter ω̄ of Ω after passing to a
subsequence. In fact, by the properties above, we know that for any γ ∈ P2(X, d),

m∑
k=1

λkW
2
2 (µk, γ) = lim

i→∞

m∑
k=1

λkW
2
2 (µk,i, (f

′

i )]γ) ≥ lim sup
i→∞

Var(Ωi).

This implies that Var(Ω) ≥ lim supi→∞Var(Ωi). Note that

lim
i→∞

∣∣∣∣∣
m∑
k=1

λkW
2
2 (µk, (fi)]ω̄i)−

m∑
k=1

λkW
2
2 (µk,i, ω̄i)

∣∣∣∣∣ = 0.

Thus, after passing to a subsequence, (fi)](ω̄i) converge to a barycenter of Ω, denoted
by ω̄, and

Var(Ω) ≥ lim sup
i→∞

Var(Ωi) = lim
i→∞

m∑
k=1

λkW
2
2 (µk, (fi)]ω̄i)

=
m∑
k=1

λkW
2
2 (µk, ω̄)

≥ Var(Ω).

In conclusion, we get

Entν∞(ω̄)
4.

≤ lim inf
i→∞

Ent(fi)]νi(fi)](ω̄i)
3.

≤ lim inf
i→∞

Entνi(ω̄i)

(6.1)

≤ lim inf
i→∞

∫
P2(Xi,di)

Entνi(µi) dΩi(µi)−
K

2
Var(Ωi)

2.
=

∫
P2(X)

Entν(µ) dΩ(µ)− K

2
Var(Ω).

(6.3)

This concludes the proof.
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6.3 Wasserstein barycenter in BCD(K,∞) spaces

In this section, we continue studying the existence of Wasserstein barycenter in
BCD(K,∞) spaces under mild assumptions.

Theorem 6.7. Let (X, d,m) be an extended metric measure space satisfying BCD(K,∞)
curvature-dimension condition, and the exponential growth condition∫

X

e−cd(x0,x)2

dm(x) <∞, for all x0 ∈ X and c > 0,

then any probability measure Ω ∈ P2(P2(X, d),W2) satisfying∫
P2(X,d)

Entm(µ) dΩ(µ) <∞

has a Wasserstein barycenter.

Proof. By [Vil09, Theorem 6.18], for any Ω ∈ P2(P2(X, d),W2), there exists a se-
quence of finitely supported probability measures Ωj, such that Ωj → Ω in the
Wasserstein space over (P2(X, d),W2) as j → ∞. By Definition 6.1, Ωj admits
a Wasserstein barycenter µj ∈ P2(X, d). By stability of the Wasserstein barycen-
ters (cf. [LGL17, Theorem 3]), it is sufficient to prove that (µj)j∈N has a narrow
convergent subsequence. We divide the proof into three steps.

Step 1: We claim there exists a sequence of finitely supported probabilities Ωj,
such that Ωj → Ω and limj→∞

∫
P2(X,d)

Entm(µ) dΩj(µ) ≤
∫
P2(X,d)

Entm(µ) dΩ(µ).

This was inspired by [Vil09, Theorem6.18].

To prove this, for any j ≥ 1, set ε = 1/j, and let µ0 ∈ P2(X, d) be such
that Entm(µ0) ≤ 1. Then there exists a compact set K ⊆ P2(X, d), such that
Ω(P2(X, d)\K) < ε and ∫

P2(X,d)\K
W 2

2 (µ0, µ) dΩ(µ) < ε.

Cover K by finite balls B(µk,
ε
2
), 1 ≤ k ≤ N , with centers µk ∈ P2(X, d) (this means,

µ ∈ B(µk,
ε
2
)if and only if W2(µk, µ) ≤ ε

2
). Then define

B′k = B(µk, ε)\
⋃
j<k

B(µj, ε).

By construction, all B′k are disjoint and still cover K. Without loss of generality,
we assume that Ω(B′k ∩K) > 0 for any k. Note that for any B′k ∩K, there exists
µ′k ∈ B′k ∩K, such that

Entm(µ′k) ≤
1

Ω(B′k ∩K)

∫
B′k∩K

Entm(µ) dΩ(µ). (6.4)

Define a map f : P2(X, d)→ P2(X, d) so that

f(B′k ∩K) = {µ′k}, f(P2(X, d)\K) = {µ0}. (6.5)
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Then, for any µ ∈ K, we have W2(µ, f(µ)) ≤ W2(µ, µk) +W2(µk, f(µ)) ≤ 2ε. So∫
P2(X)

W 2
2 (µ, f(µ)) dΩ(µ) =

∫
K

W 2
2 (µ, f(µ)) dΩ(µ) +

∫
P2(X,d)\K

W 2
2 (µ, f(µ)) dΩ(µ)

≤ (2ε)2

∫
K

dΩ(µ) +

∫
P2(X,d)\K

W 2
2 (µ, µ0) dΩ(µ)

≤ 4ε2 + ε.
(6.6)

This implies W2(Ω, f]Ω) ≤ 4ε2 + ε, where f]Ω ∈ P0(P2(X, d)). Moreover, note that∫
P2(X,d)

Entm(µ) df]Ω(µ) =

∫
K

Entm(f(µ)) dΩ(µ) +

∫
P2(X,d)\K

Entm(f(µ)) dΩ(µ)

=
N∑
k=1

∫
B′k∩K

Entm(f(µ)) dΩ(µ) +

∫
P2(X,d)\K

Entm(f(µ)) dΩ(µ)

=
N∑
k=1

∫
B′k∩K

Entm(µ′k) dΩ(µ) +

∫
P2(X,d)\K

Entm(µ0) dΩ(µ)

≤
N∑
k=1

∫
B′k∩K

Entm(µ) dΩ(µ) +

∫
P2(X,d)\K

Entm(µ0) dΩ(µ)

≤
∫
P2(X,d)

Entm(µ) dΩ(µ) + ε.

(6.7)
Therefore, we can construct Ωj = f]Ω. As j → ∞, we have W2(Ωj,Ω) → 0 and
limj→∞

∫
P2(X,d)

Entm(µ) dΩj(µ) ≤
∫
P2(X,d)

Entm(µ) dΩ(µ).

Step 2: Since Ωj is concentrated on finite number of probability measures, by
Definition 6.1, any Ωj admits a Wasserstein barycenter µj, such that∫

P2(X,d)

W 2
2 (µ, µj) dΩj(µ) = min

ν∈P2(X,d)

∫
P2(X,d)

W 2
2 (µ, ν) dΩj(µ).

Let µ0 ∈ P(X, d), we claim that

lim
j→∞

∫
P2(X,d)

W 2
2 (µ, µj) dΩj(µ) ≤ 2

∫
P2(X,d)

W 2
2 (µ0, µ) dΩ(µ) < +∞. (6.8)

Note that by triangle inequality, for any µ ∈ P2(X, d),

W 2
2 (µ0, f(µ)) ≤ 2(W 2

2 (µ0, µ) +W 2
2 (µ, f(µ))). (6.9)
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Integrating (6.9) with respect to Ω, we obtain∫
P2(X,d)

W 2
2 (µj, µ) dΩj(µ)

≤
∫
P2(X,d)

W 2
2 (µ0, µ) dΩj(µ) =

∫
P2(X,d)

W 2
2 (µ0, f(µ)) dΩ(µ)

≤ 2

(∫
P2(X,d)

W 2
2 (µ0, µ) dΩ(µ) +

∫
P2(X,d)

W 2
2 (µ, f(µ)) dΩ(µ)

)
(6.6)

≤ 2

(∫
P2(X,d)

W 2
2 (µ0, µ) dΩ(µ) + 4ε2 + ε

)
.

(6.10)

Notice that Ω ∈ P2(P2(X, d),W2), so∫
P2(X,d)

W 2
2 (µ0, µ) dΩ(µ) < +∞.

Letting j →∞ and ε→ 0+ in (6.10), we prove this claim.

Step 3: By the exponential growth condition∫
X

e−cd(x0,x)2

dm(x) <∞, for all x0 ∈ X and c > 0,

define z =
∫
X
e−cd

2(x0,x) dm and m̃ = 1
z
e−cd

2(x0,x)m ∈ P(X, d). By using the well-
known formula for the change of the reference measure,

Entm(µ) = Entm̃(µ)− c
∫
X

d2(x0, x) dµ− ln z. (6.11)

Note that by Jensen’s inequality (6.1), for every j ∈ N,

Entm(µj) ≤
∫
P2(X,d)

Entm(µ) dΩj(µ)− K

2

∫
P2(X,d)

W 2
2 (µj, µ) dΩj(µ),

and by Step 2,

lim
j→∞

∫
P2(X,d)

W 2
2 (µj, µ) dΩj(µ) ≤ 2

∫
P2(X,d)

W 2
2 (µ0, µ) dΩ(µ) < +∞.

Therefore, for K ≥ 0 we have

Entm(µj) ≤
∫
P2(X,d)

Entm(µ) dΩj(µ),

and for K < 0 we have

Entm(µj) ≤
∫
P2(X,d)

Entm(µ) dΩj(µ)−K
∫
P2(X,d)

W 2
2 (µ0, µ) dΩ(µ).

Combining with Step 1 and Step 2, we then obtain, there is C = C(c,K, µ0) > 0,
so that

Entm̃(µj) ≤ C <∞, (6.12)

for every j ∈ N. This surely implies (µj) is tight. By Prokhorov’s theorem, there
exists a narrow convergent subsequence of (µj)j≥1. Then by [LGL17, Theorem 3],
the limit of the narrow convergent subsequence is a Wasserstein barycenter of Ω.
We complete the proof.
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6.4 Applications

In the last part of this paper, we provide some new geometric inequalities, as simple
but interesting applications of our BCD theory. For simplicity, we will only deal
with BCD metric measure spaces. More functional and geometric inequalities on
BCD extended metric measure spaces, will be studied in a forthcoming paper.

Proposition 6.8 (Multi-marginal Brunn–Minkowski inequality). Let (X, d,m) be a
BCD(0, N) metric measure space, E1, ..., En be bounded measurable sets with positive
measure and λ1, . . . , λn ∈ (0, 1) with

∑
i λi = 1. Then

m(E) ≥

(
n∑
i=1

λi
(
m(Ei)

) 1
N

)N

where

E :=

{
x is the barycenter of

n∑
i=1

λiδxi : xi ∈ Ei, i = 1, . . . , n

}
.

Proof. Set µi := 1
m(Ei)

mxEi , i = 1, . . . , n and Ω :=
∑n

i=1 λiδµi ∈ P0(P2(X, d)). By

Definition 6.3, (6.2) we get ∫
UN(µ) dΩ(µ) ≤ UN(µ̄), (6.13)

where µ̄ is the barycenter of Ω. This implies

n∑
i=1

λi(m(Ei))
1
N ≤ UN(µ̄).

Note that µ̄ is concentrated on E, by Jensen’s inequality, we have

Entm(µ̄) ≥ − ln(m(E))

and
UN(µ̄) ≤ (m(E))

1
N .

In conclusion, we obtain

n∑
i=1

λi(m(Ei))
1
N ≤ (m(E))

1
N .

which is the thesis.

Proposition 6.9 (Multi-marginal logarithmic Brunn–Minkowski inequality). Let
(X, d,m) be a BCD(0,∞) metric measure space, E1, ..., En be bounded measurable
sets with positive measure and λ1, . . . , λn ∈ (0, 1) with

∑
i λi = 1. Then

m(E) ≥ m(E1)λ1 ...m(En)λn

where

E :=

{
x is the barycenter of

n∑
i=1

λiδxi : xi ∈ Ei, i = 1, . . . , n

}
.
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Proof. Set µi := 1
m(Ei)

mxEi , i = 1, . . . , n and Ω :=
∑n

i=1 λiδµi ∈ P0(P2(X, d)). By

Definition 6.1, (6.1) we get

Entm(µ̄) ≤ −
n∑
i=1

λi ln(m(Ei)).

where µ̄ is the barycenter of Ω. Note that µ̄ is concentrated on E, by Jensen’s
inequality, we have

Entm(µ̄) ≥ − ln(m(E)).

In conclusion, we obtain

− ln(m(E)) ≤ −
n∑
i=1

λi ln(m(Ei))

which is the thesis.

Proposition 6.10 (A functional Blaschke–Santaló type inequality). Let (X, d,m)
be a BCD(1,∞) metric measure space. Then we have

k∏
i=1

∫
X

efi dm ≤ 1

for any measurable functions fi on X such that efi∫
efi dm

∈ P2(X, d) and

k∑
i=1

fi(xi) ≤
1

2
inf
x∈X

k∑
i=1

d(x, xi)
2 ∀xi ∈ X, i = 1, 2, ..., k.

Proof. Let µi := efi∫
efi dm

, i = 1, 2, ..., k be probability measures on X. Let µ be

the Wasserstein barycenter of the probability measure
∑n

i=1
1
k
δµi on P(X, d). By

Definition 6.1, the relative entropy Entm satisfies the following Wasserstein Jensen’s
inequality

Entm(µ) ≤
k∑
i=1

1

k
Entm(µi)−

1

2k

k∑
i=1

W 2
2 (µ, µi).

Therefore
k∑
i=1

∫
fi(xi) dµi(xi) ≤

1

2
inf

π∈Π(µ1,...,µk)

∫
inf
x∈X

k∑
i=1

d(x, xi)
2 dπ

=
1

2

k∑
i=1

W 2
2 (µ, µi) ≤

k∑
i=1

Entm(µi)− kEntm(µ)

≤
k∑
i=1

(∫ efi∫
efi

ln
efi∫
efi

dm
)

=
k∑
i=1

(∫
fi(xi) dµi(xi)− ln

∫
efi
)
.

So
∑k

i=1 ln
∫
efi ≤ 0 which is the thesis.
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[ÉM06] Michel Émery and Gabriel Mokobodzki, Sur le barycentre d’une proba-
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