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Abstract. We consider a one-dimensional version of a variational model for pattern formation in biological
membranes. The driving term in the energy is a coupling between the order parameter and the local curvature
of the membrane. We derive scaling laws for the minimal energy. As a main tool we present new nonlinear
interpolation inequalities that bound fractional Sobolev seminorms in terms of a Cahn-Hillard/Modica-Mortola
energy.
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1. Introduction
We consider a variational model for domain formation in biological membranes. We follow the hypothesis
that the existence of so-called lipid rafts is driven by a coupling between the local curvature of the membrane
and its local chemical composition. This ansatz forms the basis of a variational model from [29] (see also
[27, 39, 31, 38, 1, 35]) which builds on the classical Canham-Helfrich energy [7, 25]. We focus here on a
one-dimensional variant of that, namely

 (u, ℎ) ∶= ∫

1

0

(

W (u) + b
2
|u′|2 + �

2
|ℎ′|2 + �

2
|ℎ′′|2 + Λuℎ′′

)

d1. (1.1)
Let us briefly explain the different terms, for a more detailed explanation we refer to the above references or [23].
The function u ∈ W 1,2((0, 1); [−1, 1]) is the order parameter corresponding to the local chemical composition.
The values ±1 represent the pure variants, and we assume for simplicity of notation that u can only take values
in [−1, 1], corresponding to local mixtures of the components. All our results can easily be generalized to
functions with other L∞-bounds. To enforce some pattern formation, we assume that u has average 0 (see (1.2)
for the precise setting). The first two terms of (1.1) are a Modica-Mortola/Cahn-Hillard-type energy [33] with a
continuous double-well potentialW ∶ [−1, 1]→ [0,∞) that has minima at {±1} (see Assumption 1.1 below for
the precise conditions), and a term penalizing changes between regions of different composition. The parameter
b > 0 is related to the line tension. The function ℎ ∈ W 2,2(0, 1) is the height profile of the membrane, and the
parameters � and � > 0 are related to the surface tension and bending rigidity of the membrane. The term ℎ′′
stands for the curvature of the membrane, which in a small-slope approximation is given by the Laplacian of the
profile function. The last term is the coupling term between the local composition (given by the order parameter
u) and the local curvature of the membrane (given by the Laplacian of ℎ). Note that this term can be negative.
The parameter Λ > 0 weights the strength of the coupling. Related coupling terms between the curvature and
certain order parameters also occur in the study of surfactants at interfaces between fluids (see e.g. [30, 3]).
The functional (1.1) is analytically challenging due to its nonconvex and nonlocal components. Therefore,
establishing explicit minimizers analytically in general parameter regimes is a difficult task. There is plenty
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of evidence that the interplay of all terms lead to interesting microstructures in certain parameter regimes (see
e.g. [38, 29, 37, 19, 20, 21, 22]). Analytical studies of the functional (1.1), however, have so far mostly focused
on parameter regimes in which pattern formation is not expected (see [23, 5, 24, 36]). We note, however, that
for a related structurally simpler sharp-interface model, sub- and supercritical parameter regimes for the energy
have been identified explicitly in [4].
In this article, we follow the approach to study scaling laws for the infimal energy, that is, we determine the
scaling behaviour of the infimal energy in terms of the problem parameters. This in particular involves an ansatz-
free lower bound for the minimal energy and the construction of test functions. Roughly speaking, one would
expect that for large values of the coupling parameter Λ, fine-scale patterns are formed, while for small values
ofΛ, optimal structures are rather uniform. We make this expectation precise in Theorem 1.3 in terms of scaling
results, where it turns out that it is very subtle to make the statement quantitative in terms of the parameters.
A major difficulty in identifying scaling regimes comes from the fact that due to the coupling term the energy
can be negative. We focus here only on the scaling behaviour but not on the explicit constants, although they
could be tracked through the proofs. Some (non-optimal) choices of constants will be included in A. Pešić’
Ph.D. thesis (currently in preparation). We point out that in contrast to the sharp results from [4] for a simplified
model, we do not cover the full parameter range, and in particular, we leave it to future work to identify critical
values of the parameters where the qualitative behaviour of the energy changes.
We note that the functional (1.1) bears similarities to well-studied nonlocal functionals like the Ohta-Kawasaki
functional [34], where the nonlocality comes from a negative fractional Sobolev norm. It has turned out that a
useful tool in the proof of scaling laws for such models are interpolation inequalities (see e.g. [10, 12, 13, 11,
17, 15, 28, 6]). We follow a similar approach and present various new non-linear interpolation inequalities in
arbitrary space dimensions, bounding fractional Sobolev norms in terms of Modica-Mortola-type functionals
(see Section 3). Some of these inequalities are in the spirit of results from [9, 14], where higher order nonlinear
interpolation inequalities are derived for classical Sobolev seminorms, but the situation for fractional seminorms
turns out to be more delicate (see Section 1.1 for details). We believe that these inequalities are of independent
interest and might be useful also when considering high-dimensional versions of (1.1).
Additionally, we discuss existence and non-existence of minimizers, and show that in some cases where one
of the parameters vanishes, the infimum of the energy can be computed exactly (see Section 5). The results
underline that the qualitative behaviour of the functional comes from a subtle interplay of all terms.

The remainder of the paper is organized as follows. After setting some notation, we outline and discuss our
main results in Section 1.1 and state our scaling laws for (1.1) (Theorem 1.3) and the new nonlinear interpolation
inequalities (Theorem 1.4). We sketch in particular how the latter are used in the proof of the scaling law.
After collecting some auxiliary results in Section 2, we prove the interpolation inequalities involving fractional
Sobolev seminorms in Section 3. Subsequently, we prove the scaling law 1.3 in Section 4. Finally, in Section 5,
we discuss existence of minimizers.

Notation. Throughout the note, we use the following notation. For d ∈ ℕ, we denote the d-dimensional
Lebesgue measure by d . We sometimes write dx for dd(x), and similarly for other integration variables. For
k ∈ ℕ0 and p ∈ [1,∞), we set

W k,p
per ∶=

{

ℎ ∈ W k,p(0, 1) ∶ ∃ ℎ̃ ∈ W k,p
loc (ℝ) 1 − periodic such that ℎ = ℎ̃ ↾(0,1)

}

,

W k,p
per,vol ∶=

{

u ∈ W k,p
per ((0, 1); [−1, 1]) ∶ ∫

1

0
u d1 = 0

}

.

When considering elements in W k,p((0, 1)), we always refer to their continuous representatives. Note that for
simplicity we restrict ourselves to the case ∫ 10 u d1 = 0. Since the pure phases are represented by {u = ±1},
this setting can be seen as the case of equal volume fractions of the two phases. Note that the functional (1.1)
does not depend on ℎ itself but only on the derivative of ℎ. Hence, we can without loss of generality assume
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that ∫ 10 ℎ d1 = 0. Summarizing, we denote the set of admissible pairs (u, ℎ) for the functional (1.1) by

 ∶=

{

(u, ℎ) ∈ W 1,2
per,vol ×W

2,2
per ∶ ∫

1

0
ℎ d1 = 0

}

. (1.2)

We focus here on periodic boundary conditions for h but we point out that, following the proofs, similar results
for the functional (1.1) can be shown for example for Neumann boundary conditions ℎ′(0) = ℎ′(1) = 0. Finally,
we use various light assumptions on the double-well potential W , see their discussion in [10, Section 2] and
Remark 1.2 below.
Assumption 1.1. (H1) There holdsW ∈ C([−1, 1]; [0,∞)) withW −1(0) = {−1, 1}.
(H2) There is a constant cW > 0 such that for all x ∈ [−1, 1], we have cW min{|x ± 1|2} ≤ W (x).
(H3) There exists a constant c′W > 0 and a function � ∈ C1([−1, 1]) such that

�′(z) =
√

W (z), and |z1 − z2|2 ≤ c′W |�(z1) − �(z2)| for all z1, z2 ∈ [−1, 1].

Remark 1.2. Let us note that (H1) and (H2) hold for classical choices of double well-potentialsW such as
t ↦ 1 − t2, t↦ (1 − t2)2 and t ↦ −(1 − t) log(1 − t) − (1 + t) log(1 + t) + 2 log(2).

Moreover, note that (H1) and (H2) together imply (H3). Indeed, (H2) implies for −1 ≤ z1 ≤ z2 ≤ 1 that

|�(z1) − �(z2)| ≥
√

cW ∫

z2

z1
min{1 ± t} dt =

√

cW ∫

z2

z1
(1 − |t|) dt

=
√

cW
(

z2 − z1 −
1
2
(

z22 sign(z2) − z
2
1 sign(z1)

)

)

.

Assume first that sign(z2) = sign(z1). Without loss of generality, we consider sign(z2) = 1. Then

|�(z1)−�(z2)| ≥
√

cW (z2−z1)
(

1 − 1
2
(z2 + z1)

)

=

√

cW
2

(z2−z1)
(

|1 − z2| + |1 − z1|
)

≥
√

cW
2

|z2−z1|2.

On the other hand, if sign(z2) = 1 = −sign(z1) then

|�(z1) − �(z2)| ≥
√

cW
(

z2 − z1 −
1
2
z22 −

1
2
z21
)

≥
√

cW
2

(z2 − z1) ≥
√

cW
2

|z2 − z1|2.

1.1. Overview and main results
In this section we explain our main results. Our first main result is the following scaling law for (1.1).
Theorem 1.3. Suppose thatW satisfies Assumption 1.1. Then there exist constants C ≥ c > 0 such that for all
Λ, �, �, b > 0 the following holds. If Λ2 ≥ C max

{

b�, b�, (b��)1∕2, b1∕2�
}

then

− Λ
2

2�
≤ inf


 ≤ −cΛ

2

�
. (1.3)

If Λ2 ≤ cmax
{

b�, b�, (b��)1∕2, b1∕2�
}

then

cmin{b1∕2, 1} ≤ inf


 ≤ C min{b1∕2, 1}. (1.4)
We point out that there are only three scalings of the infimal energy. While the regimes themselves depend

on all parameters, the scalings of the energy do not depend on �. Let us briefly outline the main ideas of the
proof of the scaling laws in Theorem 1.3. For the upper bounds, we use three different types of test functions. To
obtain the scalings min{1, b1∕2}, it suffices to consider flat height profiles ℎ ≡ 0 and rather uniform structures
for the order parameter u, namely u ≡ 0 for b ≥ 1 and a function u that has two transition layers of length ∼ b1∕2
between regions where u = 1 and ones where u = −1, see Figure 2a. Eventually, to obtain the scaling of the
form −Λ

2

� we make the ansatz that ℎ has a piecewise constant curvature ℎ′′ whose sign oscillates and a function
u which - up to a transition layer - is given by the negative of the sign of ℎ′′, see Figure 2b. In this way, the last
term of the energy is essentially given by Λ ∫ 10 ℎ

′′u d1 ∼ −Λ ∫ 10 |ℎ′′| d1. Optimizing this only versus the
term ∫ 10 �|ℎ

′′
|

2 d1 suggests to choose |ℎ′′| = Λ
2� to obtain ∫ 10 �|ℎ

′′
|

2 + Λℎ′′u d1 ∼ −Λ
2

2� . Incorporating the
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κ

Λ2

bσ

b1/2κ

bσ σ

(bσκ)1/2

κ

Λ2

(A) Case b < 1
κ

Λ2

bσ

bκ

κ

Λ2

(B) Case b > 1

FIGURE 1. Sketch of the scaling regimes; regions in orange indicate parameter regimes with
scaling −Λ2∕�, while the gray regions correspond to regimes with scaling min{b1∕2, 1}.

1

−1

1
2

h

u

(A) Sketch of the configuration with a flat ℎ
(red) and u (blue) with one transition that satisfies
 (u, ℎ) ∼ b1∕2 for 0 < b ≤ 1.

1

−1

u h

10

(B) Sketch of the regime where Λ2 is suffciciently
large. The function ℎ (red) has piecewise constant
curvature with changing sign. Up to a transition
layer the function u (blue) is the negative of the
sign of ℎ′′.

other terms of the energy makes this optimization more complex and includes a joint optimization in the number
of oscillations and the transition length for u. For example, increasing the number of oscillations decreases the
influence of the term ∫ 10 �|ℎ

′
|

2 d1 but will increase the energy coming from the terms in u as every transition
of u from −1 to +1 (and vice versa) induces a certain amount of energy (depending on b). This is made precise
in Section 4.1.

The proof of the lower bound turns out to bemore involved. The difficulty arises from the nonlocal coupling
term, which generally does not have a sign. The lower bound −Λ22� follows from Young’s inequality and the
assumption that |u| ≤ 1 (see Proposition 2.2). On the other hand, the lower bound min{b1∕2, 1} is the expected
scaling from the Modica Mortola energy,

∫

1

0

(

W (u) + b
2
|u′|2

)

d1 ≥ cMM min{1, b1∕2},

see Proposition 2.1. The main task therefore is to show that for small Λ > 0 (see the assumptions for (1.4)), the
coupling term is controlled by the other terms in the energy. Let us briefly remark here that these assumptions
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on the smallness of Λ are significantly weaker than simply assuming Λ2
2� ≲ min{1, b1∕2} which would ensure

the lower bound in (1.4) by the arguments above. In particular, the statements of Theorem 1.3 do not imply that
there are constants c1,… , c4 such that for all parameters b, �, �,Λ > 0

c1min{1, b1∕2} − c2
Λ2
2�

≤ inf


 ≤ c3min{1, b1∕2} − c4
Λ2
2�
.

In order to understand the argument for the lower bound, let us first optimize in ℎ to obtain the following
nonlocal functional for u (see e.g. [23, Appendix] and the proof of Corollary 3.4)

 (u, ℎ) ≥ ∫

1

0

(

W (u) + b
2
|u′|2

)

d1 − Λ
2

2�
∑

k∈ℤ

�k2

� + �k2
|ûk|

2. (1.5)

Here, ûk denotes the k-th Fourier coefficient of u. Hence, proving a lower bound corresponds to bounding the
third term by the first two terms. A first naive bound on the last term is given by

Λ2
2�

∑

k∈ℤ

�k2

� + �k2
|ûk|

2 ≤ Λ2
2�

∑

k∈ℤ
k2|ûk|

2 = Λ2
2� ∫

1

0
|u′|2 d1.

This yields the desired estimate if Λ2 ≲ b�. Similarly, one can bound
Λ2
2�

∑

k∈ℤ

�k2

� + �k2
|ûk|

2 ≤ Λ2
2�

∑

k∈ℤ
|ûk|

2 = Λ2
2� ∫

1

0
|u|2 d1 ≤ Λ2

2�
,

which is essentially the same bound as in Proposition 2.2 and implies the needed control if, for example, Λ2 ≳
min{b1∕2, 1}�. However, in other regimes these naive bounds are not sufficient. At first glance, it might appear
to be useful to underline the nonlocal nature of the third term in (1.5) by drawing a connection to a fractional
Sobolev norm by estimating

Λ2
2�

∑

k∈ℤ

�k2

� + �k2
|ûk|

2 ≲ Λ2
2�

∑

k∈ℤ

�1∕2

�1∕2
|k||ûk|

2 = Λ2

�1∕2�1∕2
[u]2

H1∕2 .

Then the needed control of the third term in (1.5) could be established through a nonlinear interpolation inequality
of the form

[u]2
H1∕2 ≤ C ∫

1

0

(1
�
W (u) + �|u′|2

)

d1. (1.6)
That such an inequality might hold could be suspected as the linear interpolation inequality, i.e., replacingW (u)
by |u|2, is immediate (see (3.2)). Moreover, if one replaces the fractional Sobolev spaceH1∕2 byH1 a similar
inequality was shown in [14, Lemma 3.1] and [9, Theorem 1.2]. Precisely, for any connected open domain
Ω ⊆ ℝd there are �0 > 0 and q > 0 such that for all 0 < � ≤ �0 and all u ∈ W 2,2

loc (Ω) there holds
q‖Du‖2L2(Ω) ≤ ∫Ω

(

1
�
W (u) + � ||

|

D2u||
|

2
)

dd . (1.7)
However, we prove that (1.6) holds only with an extra factor | ln(�)| on the right hand side. Precisely, we prove
(see Proposition 3.2) a nonlinear interpolation inequality of the form

cL|u|
2
H1∕2(Πd )

≤ | ln �|∫Πd

(1
�
W (u) + �|∇u|2

)

dd , (1.8)
where Πd denotes the d-dimensional torus. We also provide an example which shows that this estimate is sharp
in � (see Remark 3.1). Moreover, we establish the following similar nonlinear interpolation inequalities for
fractional Sobolev spaces also in the non-periodic setting which are of independent interest (see Section 3).
Theorem 1.4. LetW satisfy (H1) and (H2), d ∈ ℕ, and let Ω ⊆ ℝd be open, convex and bounded.

1. If s ∈ (0, 1∕2) then there exists a constant c > 0 such that for all u ∈ W 1,2(Ω) and all � ∈ (0, 1∕2) there
holds

c ∫Ω ∫Ω
|u(x) − u(y)|2

|x − y|d+2s
dx dy ≤ ∫Ω

(1
�
W (u) + �|∇u|2

)

dd .
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2. If s = 1∕2 then there exists a constant c > 0 such that for all u ∈ W 1,2(Ω) and all � ∈ (0, 1∕2) there
holds

c ∫Ω ∫Ω
|u(x) − u(y)|2

|x − y|d+1
dx dy ≤ | ln �|∫Ω

(1
�
W (u) + �|∇u|2

)

dd .

3. If s ∈ (1∕2, 1) then there exists a constant c > 0 such that for all u ∈ W 1,2(Ω) and all � ∈ (0, 1∕2) there
holds

c ∫Ω ∫Ω
|u(x) − u(y)|2

|x − y|d+2s
dx dy ≤ �1−2s ∫Ω

(1
�
W (u) + �|∇u|2

)

dd .

We present the statements here only for functions in W 1,2(Ω) but following the lines of the proofs one
can also obtain analogous bounds on fractional W s,p-seminorms for functions u ∈ W 1,p(Ω) for more general
p ∈ (1,∞) for suitably adapted double-well potentials. We note that the interpolation results hold in arbitrary
space dimensions. We hope that they will be useful for the study of higher-dimensional variants of (1.1).
Returning to the lower bound in Theorem 1.3, let us remark that the logarithmic factor in the nonlinear fractional
interpolation inequality (1.8) implies that using this inequality can only provide the desired control under
stronger conditions on the smallness of Λ than assumed in (1.4). In order to overcome this problem we prove
for the specific expression of our problem the following sharper inequality without a logarithmic factor.
Proposition 1.5. Let d > 1, and suppose thatW satisfies Assumption 1.1. Then there exists a constant c > 0
such that for all L ∈ ℕ, allM, � > 0, and all u ∈ W 1,2

per (Πd) there holds

∑

k∈ℤd
min{1,

|k|2

M2
}|ûk|2 ≤ c

( 1
L
+ L
M2

)

∫Πd

(1
�
W (u) + �|∇u|2

)

dd .

We note that a similar term to the one on the left-hand side is also estimated in [17, Lemma 1] but by
different quantities on the right-hand side, and in particular not by a Modica-Mortola-type energy. Moreover,
the term∑

k∈ℤd |k|
2
|ûk|2 corresponds to the Laplacian of u. We therefore believe that this estimate can also be

useful to study higher-dimensional variants of (1.1) involving an approximated bending term �
2‖Δℎ‖

2
L2
.

2. Preliminaries
Throughout the proof of the scaling law, the following two lower bounds on parts of the energy (1.1) will be
frequently used. The first one is a well-known lower bound for the classical Modica-Mortola energy, which we
recall for the readers’ convenience.
Proposition 2.1. LetW satisfy (H1). There is a constant cMM > 0 such that for all " > 0 and all u ∈ W 1,2

per,vol

∫

1

0

(

W (u) + "2|u′|2
)

d1 ≥ cMM min{1, "}.

We can choose cMM ∶= max
{

min[−1∕2,1∕2]W ,
(

min[−1∕2,1∕2]W
)1∕2

}

.

Proof. Let " > 0 and u ∈ W 1,2
per,vol. If max |u| ≤ 1

2 then

∫

1

0

(

W (u) + "2|u′|2
)

d1 ≥ min
t∈[−1∕2,1∕2]

W (t).

Next, assume there exists t0 ∈ (0, 1)with u(t0) > 1∕2. Since ∫ 10 u dx = 0 and u is continuous, there is t1 ∈ (0, 1)such that u(t1) < 0. Without loss of generality, we may assume that that t0 < t1 (the case t1 < t0 can be treated



Nonlinear interpolation inequalities with fractional Sobolev norms and pattern formation in biomembranes 7

similarly). Then

∫

1

0

(

W (u) + "2|u′|2
)

d1 ≥ ∫

t1

t0

(

W (u) + "2|u′|2
)

d1 ≥ 2"∫

t1

t0

√

W (u)u′ d1

= 2"∫

u(t1)

u(t0)

√

W (t) dt ≥ 2"∫

1∕2

0

√

W (t) dt

≥ "
(

min
[0,1∕2]

W
)1∕2

.

Eventually, we argue analogously if there exists t0 ∈ (0, 1) with u(t0) < −1∕2. □

On the other hand, we have the following lower bound on the nonlocal coupling term. We note that the
constant −1∕2 in the lower bound in the following Proposition is optimal, see Remark 4.4 below.
Proposition 2.2. For all parameters Λ, �, �, b > 0 and all Borel measurable functionsW ∶ [−1, 1] → [0,∞)
it holds

−Λ
2

2�
≤ inf


 .

Proof. Let (u, ℎ) ∈  be arbitrary. Then by Young’s inequality it holds
|

|

|

|

|

∫

1

0
Λuℎ′′ d1

|

|

|

|

|

≤ ∫

1

0
Λ|u||ℎ′′| d1 ≤ ∫

1

0

(

Λ2u2
2�

+ �
2
|ℎ′′|2

)

d1 ≤ Λ2
�
+ �
2 ∫

1

0
|ℎ′′|2 d1,

where the last inequality follows from the boundedness assumption |u| ≤ 1. Therefore,

 (u, ℎ) ≥ ∫

1

0

(

W (u) + b
2
|u′|2 + �

2
|ℎ′|2 + �

2
|ℎ′′|2

)

d1 −
|

|

|

|

|

∫

1

0
Λuℎ′′d1

|

|

|

|

|

≥ ∫

1

0

(

W (u) + b
2
|u′|2 + �

2
|ℎ′|2

)

d1 − Λ
2

2�

≥ −Λ
2

2�
.

□

3. Interpolation inequalities
In this section, we present some new interpolation-type arguments involving fractional-order Sobolev semi-
norms. The results here hold in arbitrary space dimension, and are later applied in d = 1 in the proof of the
Theorem 1.3. We denote by Πd the d-dimensional torus, and by C generic positive constants that may change
from line to line. Sometimes, we specify dependences of the constant on certain parameters � by indices C� or
C(�).
3.1. Linear interpolation with fractional Sobolev seminorms
We first recall some basics on fractional-order Sobolev seminorms for periodic functions. A periodic function
u ∈ L2(Πd) can be represented as Fourier sum via

u(x) =
∑

k∈ℤd
ûke

2�ik⋅x with ûk ∶= ∫Πd
u(t)e−2�ik⋅t dt, (3.1)

where we denote by a ⋅ b the Euclidean scalar product of vectors a, b ∈ ℂd . Consider u ∈ W 1,2per (Πd) and
s ∈ (0, 1]. Then the (fractional) Sobolev semi-norm is defined as

|u|2Hs(Πd ) =
∑

k∈ℤd
|k|2s|ûk|

2.
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By Hölder’s inequality, we have the (linear) interpolation estimate

|u|2Hs(Πd ) =

(

∑

k∈ℤd
|ûk|

2(1−s) ⋅ |k|2s|ûk|
2s

)

≤

(

∑

k∈ℤd
|ûk|

2

)1−s(
∑

k∈ℤd
|k|2|ûk|

2

)s

= ‖u‖2(1−s)
L2(Πd )

|u|2s
H1(Πd )

= �−2(1−s)s‖u‖2(1−s)
L2(Πd )

�2(1−s)s|u|2s
H1(Πd )

≤ �−2s‖u‖2L2(Πd ) + �
2(1−s)

|u|2H1(Πd ). (3.2)
By [2, Proposition 1.3], there is an (equivalent) integral representation (cf. also, e.g., [26, 18] for similar
characterizations on full space)

cFl‖u‖2Hs(Πd ) ≤ ∫Πd ∫[−1∕2,1∕2)d
|u(x + y) − u(y)|2

|x|d+2s
dx dy ≤ cFu‖u‖

2
Hs(Πd ). (3.3)

Following the proof there, the constants can be chosen as

cFu ∶= ∫ℝd
sin2(�x1)
4|x|d+2s

dx and cFl ∶= 22s−3−dd−5(1 − s)−1
�(d−1)∕2

Γ
(

(d−1)
2 + 1

) .

3.2. Nonlinear interpolation with fractional Sobolev seminorms
As discussed in Section 1.1, we will need counterparts of interpolation inequalities of the form (3.2) where the
L2-norm is replaced by a term involvingW . This has been used in the study of ”local” approximations of (1.1)
(see [14, Lemma 3.1] and [9, Theorem 1.2]), see (1.7)) and its discussion in Section 1.1. However, for fractional
Sobolev seminorms, the situation turns out to be slightly more subtle, as the following example shows.
Remark 3.1. Suppose thatW satisfies (H1). We claim that there is no constant c > 0 such that for all u ∈ W 1,2

per
and all � > 0 there holds

c|u|2
H1∕2(0,1)

≤ ∫

1

0

(1
�
W (u) + �|u′|2

)

d1. (3.4)

Indeed, consider for 0 < � < 1∕8 the function u� ∈ W
1,2
per ((0, 1); [−1, 1]) given by

u�(x) ∶=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

− 2�x + 1 if x ∈ (0, �),
−1 if x ∈ (�, 12 −

�
2 ),

2
�x −

1
� if x ∈ ( 12 −

�
2 ,
1
2 +

�
2 ), and

1 if x ∈ ( 12 +
�
2 , 1).

Then the right-hand side of (3.4) is uniformly bounded above since

∫

1

0

(1
�
W (u) + �|u′|2

)

d1 ≤ 2�
�
maxW + � ⋅ 2�

(2
�

)2
= 2maxW + 8.

However, using (3.3) the left-hand side is estimated below via (see, e.g., [16] for a similar computation)

∫

1

0 ∫

1∕2

−1∕2

|u(x + y) − u(y)|2

|x|2
dx dy ≥ ∫

(1−�)∕2

1∕4 ∫

1∕2

(1+�)∕2−y

|u(x + y) − u(y)|2

|x|2
dx dy

= ∫

(1−�)∕2

1∕4 ∫

1∕2

(1+�)∕2−y

4
|x|2

dx dy = 4∫

(1−�)∕2

1∕4

⎛

⎜

⎜

⎝

−2 + 1
1+�
2 − y

⎞

⎟

⎟

⎠

dy

= −8
(1
4
− �
2

)

− 4 ln
⎛

⎜

⎜

⎝

�
1
4 +

�
2

⎞

⎟

⎟

⎠

⟶∞ as � → 0.
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While Remark 3.1 shows that there is no interpolation inequality of the form (3.4), we show below that a
corresponding estimate holds for all fractionalHs-Sobolev norms with s ∈ (0, 1∕2) (see Proposition 3.2), and
that the logarithmic correction observed in Remark 3.1 is the worst case in the interpolation inequality for the
H1∕2-seminorm.
Proposition 3.2. Suppose thatW satisfies (H1) and (H2), and let d ∈ ℕ.

1. If s ∈ (0, 1∕2) then there exists a constant cL,s > 0 such that for all u ∈ W 1,2
per (Πd) and all � ∈ (0, 1∕2)

there holds

cL,s|u|
2
Hs(Πd ) ≤ ∫Πd

(1
�
W (u) + �|∇u|2

)

dd .

2. For s = 1∕2, there exists a constant cL > 0 such that for all u ∈ W 1,2
per (Πd) and all � ∈ (0, 1∕2) there

holds

cL|u|
2
Hs(Πd ) ≤ | ln �|∫Πd

(1
�
W (u) + �|∇u|2

)

dd . (3.5)

3. If s ∈ (1∕2, 1) then there exists a constant cL,s > 0 such that for all u ∈ W 1,2
per (Πd) and all � ∈ (0, 1∕2)

there holds

cL,s|u|
2
Hs(Πd ) ≤ �1−2s ∫Πd

(1
�
W (u) + �|∇u|2

)

dd . (3.6)

Remark 3.3. We note that the scaling in � for s > 1
2 , c.f. (3.6), is the same as in the linear interpolation

inequality (3.2). We point out, however, that the same cannot be true for 0 < s < 1
2 . Indeed, for the function u�

in Remark 3.1 and 0 < � < 1∕5 it holds

|u�|
2
Hs ≥ cF l ∫

1

0 ∫

1∕2

−1∕2

|u�(x + y) − u�(y)|2

x1+2s
dxdy ≥ ∫

(1−�)∕2

1∕4 ∫

1∕2

(1+�)∕2−y

4
|x|1+2s

dxdy

≥ ∫

2∕5

1∕4 ∫

1∕2

1∕4+�∕2

4
|x|1+2s

dxdy ≥ 4(2∕5 − 1∕4) ⋅ (1∕2 − 1∕4 − 1∕10) ≥ 9
100

,

whereas it holds as in Remark 3.1

�1−2s ∫

1

0

(1
�
W (u�) + �|u′�|

2
)

d1 ≤ �1−2s (2maxW + 8)⟶ 0 as � → 0.

Proof of Proposition 3.2. Large parts of the proof agree for all three cases. We therefore consider them together
and comment on the differences. Let u ∈ W 1,2

per (Πd)∩C1(Πd), s ∈ (0, 1∕2], and � ∈ (0, 1∕2). By (3.3), it suffices
to estimate

cFl|u|2Hs(Πd ) ≤ ∫Πd ∫[−1∕2,1∕2)d
|u(x + y) − u(y)|2

|x|d+2s
dx dy

= ∫Ω1

|u(x + y) − u(y)|2

|x|d+2s
dx, dy + ∫Ω2

|u(x + y) − u(y)|2

|x|d+2s
dxdy + ∫Ω3

|u(x + y) − u(y)|2

|x|d+2s
dxdy

(3.7)

with
Ω1 ∶= (−�, �)d × Πd ,

Ω2 ∶=
{

(x, y) ∈ [−1
2
, 1
2
)d × Πd ∶ |x| ≥ � and |u(x + y) − u(y)| ≤ 1∕4 or |u(x + y) − u(y)| ≥ 4

}

, and
Ω3 ∶=

{

(x, y) ∈ [−1
2
, 1
2
)d × Πd ∶ |x| ≥ � and 4 > |u(x + y) − u(y)| > 1∕4

}

.
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We consider the three terms in (3.7) separately. The contribution from Ω1 is estimated by

∫Ω1

|u(x + y) − u(y)|2

|x|d+2s
dxdy = ∫Πd ∫(−�,�)d

1
|x|d+2s

(

∫

1

0
∇u(y + tx) ⋅ x dt

)2

dx dy

≤ ∫Πd ∫(−�,�)d
|x|2−d−2s ∫

1

0
|∇u(y + tx)|2 dt dx dy

≤ ∫(−�,�)d
|x|2−d−2s ∫

1

0 ∫tx+Πd
|∇u(w)|2 dwdt dx

≤ C(d)�2(1−s) ∫Πd
|∇u|2 dd ≤ C(d) max{1, �1−2s}� ∫Πd

|∇u|2 dd .

(3.8)

Consider now the contribution from Ω2. We show first that for all (x, y) ∈ Ω2,
|u(x + y) − u(y)|2 ≤ 18

(

min{|u(x + y) ± 1|2} + min{|u(y) ± 1|2}
)

. (3.9)
Assume first that |u(x + y) − u(y)| ≤ 1∕4. Let e ∈ {±1} be such that |u(x + y) − e| = min{|u(x + y) ± 1|}. It
follows that |u(y) − e| ≤ 2min{|u(y) ± 1|}. Consequently,

|u(x + y) − u(y)|2 ≤ 2
(

|u(x + y) − e|2 + |u(y) − e|2
)

≤ 8
(

min{|u(x + y) ± 1|2} + min{|u(y) ± 1|2}
)

.

Now assume that |u(x + y) − u(y)| ≥ 4. Then min{|u(y) ± 1|} ≥ 1 or min{|u(x + y) ± 1|} ≥ 1. Without loss
of generality, we assume that the latter is true. Let E ∈ {±1} be such that |u(x) − E| = min{|u(x) ± 1|}. Then
|u(x + y) − E| ≤ min{|u(x + y) ± 1|} + 2 ≤ 3min{|u(x + y) ± 1|}. Hence,
|u(x + y) − u(y)|2 ≤ 2

(

|u(x + y) − E|2 + |u(y) − E|2
)

≤ 18
(

min{|u(x + y) ± 1|2} + min{|u(y) ± 1|2}
)

.

It follows from (3.9) (with the notation for (x, y) as in (3.7)) that

∫Ω2

|u(x + y) − u(y)|2

|x|d+2s
dx dy ≤ 18∫Ω2

min{|u(x + y) ± 1|2} + min{|u(y) ± 1|2}
|x|d+2s

dx dy

≤ 36∫{|x|≥�} ∫Πd
min{|u(w) ± 1|2}

|x|d+2s
dwdx ≤ 36C(d)

( 1
2s

(

�−2s − 1
)

)

∫Πd
min{|u(w) ± 1|}2 dw

≤ �1−2s
C(d, s)
cW

1
� ∫Πd

W (u) dd ≤ C(d, s,W ) max{1, �1−2s}∫Πd
1
�
W (u) dd .

(3.10)

Finally, consider the contribution fromΩ3. Note that for all points (x, y) ∈ Ω3 we have 1∕4 ≤ |u(x+y)−u(y)| ≤ 4
which implies that |u(x + y) − u(y)|2 ≤ 4|u(x + y) − u(y)|. Moreover, note that it holds for all a, b ∈ ℝ with
|a − b| ≥ 1∕4 that

∫

b

a
min{|t ± 1|} dt ≥ ∫

9∕8

7∕8
|t − 1| dt = 2∫

1∕8

0
t dt = 1

64
.

Consequently,

|u(x + y) − u(y)| ≤ 4 ≤ 256∫

u(x+y)

u(y)
min{|t ± 1|} dt ≤ 256

√

cW ∫

u(x+y)

u(y)

√

W d1

≤ 256
√

cW
|x|∫

1

0

(1
�
W (u(y + �x)) + �|∇u(y + �x)|2

)

d�. (3.11)
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We now distinguish the cases s ≠ 1∕2 and s = 1∕2. If s ≠ 1∕2 we obtain with (3.11)

∫Ω3

|u(x + y) − u(y)|2

|x|d+2s
dy dx ≤ 4∫Ω3

|u(x + y) − u(y)|
|x|d+2s

dy dx

≤ 1024
√

cW ∫Πd ∫{|x|∈(�,
√

d∕2)}

|x|
|x|d+2s

(

∫

1

0

(1
�
W (u(y + �x)) + �|∇u|2(y + �x)

)

d�

)

dx dy

≤ C(d)
√

cW

(

∫
|x|∈(�,

√

d∕2)

1
|x|d+2s−1

dx
)

∫Πd

(1
�
W (u) + �|∇u|2

)

dd .

(3.12)

We use again that for � ≤ 1∕2,

∫√d∕2≥|x|≥�
1

|x|d+2s−1
dx ≤ C(d)

|1 − 2s|
max{1, �1−2s},

which is uniformly bounded in � if s ∈ (0, 1∕2). Hence, inserting (3.8), (3.10), and (3.12) into (3.7) yields the
first and third assertions. If s = 1∕2, the assertion follows similarly using d + 2s − 1 = d and

∫√d∕2≥|x|≥�
1

|x|d
dx ≤ C(d)| ln(�)|.

□

Wenote that following the lines of the proof of Proposition 3.2, one can also obtain the nonlinear interpolation
inequalities in the non-periodic setting stated in Theorem 1.4.
3.3. A nonlocal interpolation inequality
It turns out that the estimates obtained in Section 3.2 are sharp but not enough to prove the lower bound for the
energy functional (1.1). We note that for s = 1∕2, the estimates from the previous section would give us that
for arbitrary �, � > 0, we have for all u ∈ W 1,2per and � ∈ (0, 1∕2)

∑

k∈ℤ
min

{

� k
2

�
, 1

}

|ûk|
2 ≤

∑

k∈ℤ

(�
�

)1∕2
|k||ûk|

2 =
(�
�

)1∕2
|u|2

H1∕2

≤
(�
�

)1∕2
| ln �|∫

1

0

(1
�
W (u) + �|u′|2

)

d1.

In this section we prove Proposition 1.5 which, as explained in Section 1.1, improves the above estimate to avoid
the logarithmic term in � under mild assumptions on W , c.f. Assumption 1.1. Some of the techniques in the
proof are inspired by the works [12, 10], where the authors bound ‖u‖2

L2
by ∫Ω

(

1
�W (u) + �|∇u|2

)

dd with
a small prefactor and a nonlocal term which corresponds roughly to a negative Sobolev norm.
Proof of Proposition 1.5. Let L ∈ ℕ andM > 0. By density it suffices to consider u ∈ W 1,2per (Πd) ∩ C1(Πd).
We will use a continuous, piecewise affine approximation of u. For that, we decompose the cube Πd into Ld
cubes of side length L−1, and consider an associated regular triangulation of the cube Πd into d!Ld regular
simplices (see Figure 3). Note that for each simplex T of the triangulation it holds that

FIGURE 3. Example of a regular triangulation of Π2.
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diam(T ) =

√

d
L
, d(T ) = 1

d!Ld
.

By definition, each Ti contains d +1 vertices, more precisely, Ti is the convex hull of (d +1) vertices. Note thatthere are in total (L+1)d vertices in the triangulation, and we denote the (finite) set of vertices d,L, and the set
of simplices by d,L. We define a periodic piecewise affine approximation ũ(L) of u based on this triangulation,
inspired by a Clement-type approximation (see e.g. [8] and the references therein). For this, it suffices to define
the function values at each vertex. For each vertex v ∈ [0, 1)d of the triangulation, let Tv be an arbitrary simplex
of the triangulation that contains v, and let u(L)(v) be the average of u on the simplex Tv, i.e.,

u(L)(v) ∶= ⨍Tv
u dd .

If one of the coordinates of v is equal to one, the value u(L)(v) is determined by ℤd-periodicity of u(L). Using
barycentric coordinates on T ∈ d,L, we can represent every x ∈ T as convex combination x = ∑d+1

j=1 �
(T )
j (x)v(T )j

with �(T )j (x) ∈ [0, 1],∑d+1
j=1 �

(T )
j (x) = 1, and T = conv{v(T )j ∶ j = 1,… , d + 1} with v(T )j ∈ d,L. Then

u(L)(x) ∶=
d+1
∑

j=1
�(T )j (x) uL(v

(T )
j ). (3.13)

We denote the Fourier coefficients of u(L) by û(L)k , k ∈ ℤd , and observe

∑

k∈ℤd
min{1,

|k|2

M2
}|ûk|2 ≤ 2

∑

k∈ℤd
min{1,

|k|2

M2
}
(

|ûk − û
(L)
k |

2 + |ûk|
2
)

≤ 2

(

∑

k∈ℤd
|ûk − û

(L)
k |

2 +
∑

k∈ℤd

|k|2

M2
|û(L)k |

2

)

= 2
(

‖

‖

‖

u − u(L)‖‖
‖

2

L2(Πd )
+ 1
M2

‖

‖

‖

∇u(L)‖‖
‖

2

L2(Πd )

)

. (3.14)

We estimate the two terms on the right-hand side of (3.14) separately. First, using (3.13) and Jensen’s inequality,
we obtain

‖

‖

‖

u − u(L)‖‖
‖

2

L2(Πd )
=

∑

T∈d,L
∫T

|

|

|

u − u(L)||
|

2
dd ≤

∑

T∈d,L
∫T

|

|

|

|

|

|

d+1
∑

j=1
�(T )j (x)

(

u(x) − u(L)(v(T )j )
)

|

|

|

|

|

|

2

dx

=
∑

T∈d,L
∫T

|

|

|

|

|

|

|

d+1
∑

j=1
�(T )j (x)⨍T

v(T )j

(u(x) − u(y)) dy
|

|

|

|

|

|

|

2

dx

≤ (d + 1)
∑

T∈d,L
∫T

d+1
∑

j=1
⨍T

v(T )j

(u(x) − u(y))2 dy dx. (3.15)
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We now use Assumption 1.1, and let � be as in (H3). We set  ∶= �◦u. For vectors a, b ∈ ℝd , we denote by
[a, b] the line connecting a and b. Then

(d + 1)
∑

T∈d,L

d+1
∑

j=1
∫T ⨍T

v(T )j

(u(x) − u(y))2 dy dx ≤ (d + 1)c′W
∑

v∈d,L
∫Tv ⨍Tvj

| (x) −  (y)| dy dx

≤ (d + 1)c′W
∑

T∈d,L

d+1
∑

j=1
∫T ⨍T

v(T )j

(

|

|

|

 (x) −  (v(T )j )||
|

+ |

|

|

 (v(T )j ) −  (y)||
|

)

dy dx

≤ (d + 1)c′W
∑

T∈d,L

d+1
∑

j=1
∫T ⨍T

v(T )j

(

∫[x,v(T )j ]
|∇ (z)| dz + ∫[v(T )j ,y]

|∇ (z)| dz

)

dy dx

≤ (d + 1)c′W
∑

T∈d,L

d+1
∑

j=1
diam(T )

⎛

⎜

⎜

⎝

∫T
|∇ (z)| dz + ∫T

v(T )j

|∇ (z)| dz
⎞

⎟

⎟

⎠

, (3.16)

where we used that all simplices T ∈ d,L have the same diameter. Hence, combining (3.15) and (3.16), we
obtain

‖

‖

‖

u − u(L)‖‖
‖

2

L2(Πd )
≤ (d + 1)c′W

d1∕2

L
∑

T∈d,L

⎛

⎜

⎜

⎝

∫T
|∇ (z)| dz + ∫T

v(T )j

|∇ (z)| dz
⎞

⎟

⎟

⎠

≤ 2(d + 1)2c′W
d1∕2

L ∫Πd
|∇ (z)| dz. (3.17)

We now turn to the second term of the right-hand side of (3.14). We observe that for all T = conv{v(T )j ∶ j =
1,… , d + 1} ∈ d,L and all x ∈ int(T ), there holds

|∇uL(x)| ≤
d+1
∑

j,k=1

|uL(v
(T )
k ) − uL(v

(T )
j )|

|v(T )k − v(T )j |

≤ L
d+1
∑

j,k=1
|uL(v

(T )
k ) − uL(v

(T )
j )|.

Furthermore, for any T , T ′ ∈ d,L there is an isometry RT ,T ′ ∶ T → T ′, and hence

‖

‖

‖

∇u(L)‖‖
‖

2

L2(Πd )
=

∑

T∈d,L
∫T

|

|

|

∇u(L)||
|

2
dd ≤ L2

∑

T∈d,L
∫T

( d+1
∑

j,k=1
|uL(v

(T )
k ) − uL(v

(T )
j )|

)2

dd

= (d + 1)L2
∑

T∈d,L

d+1
∑

j,k=1

⎛

⎜

⎜

⎝

⨍T
v(T )j

(

u − u◦RT
v(T )j

,T
v(T )k

)

)

dd
⎞

⎟

⎟

⎠

2

≤ (d + 1)L2
∑

T∈d,L

d+1
∑

j,k=1
⨍T

v(T )j

(

u − u◦RT
v(T )j

,T
v(T )k

)

)2

dd

≤ (d + 1)c′W L
2

∑

T∈d,L

d+1
∑

j,k=1
⨍T

v(T )j

|

|

|

|

|

 −  ◦RT
v(T )j

,T
v(T )k

)

|

|

|

|

|

dd

≤ 2(d + 1)3c′W L
2

∑

T∈d,L

4 diam(T )∫Πd
|∇ | dd , (3.18)
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where the last step follows similarly to (3.16). Therefore, combining (3.14), (3.17) and (3.18), we conclude
∑

k∈ℤd
min{1, |k|2∕M2}|ûk|2 ≤ c

( 1
L
+ L
M2

)

∫Πd
|∇ | dd = c

( 1
L
+ L
M2

)

∫Πd
√

W (u)|∇u| dd

≤ c
( 1
L
+ L
M2

)

∫Πd

(1
�
W (u) + �|∇u|2

)

dd .

□

We state the following consequence of Proposition 1.5, which will be used in the proof of the lower bound.
Corollary 3.4. There is a constant cint > 0 such that for all b, �, �,Λ > 0 with � ≥ � and all (u, ℎ) ∈
W 1,2

per ×W
2,2
per and all � > 0 there holds

∫

1

0

(�
2
|ℎ′′|2 + �

2
|ℎ′|2 + Λuℎ′′

)

d1 ≥ −cint
Λ2

(��)1∕2 ∫

1

0

(1
�
W (u) + �|u′|2

)

d1.

Proof. Let (u, ℎ) ∈ W 1,2per × W 2,2per , and denote by ûk and ℎ̂k the Fourier coefficients of u and ℎ, respectively.
Then, optimizing in ℎ̂k, we obtain

∫

1

0

(�
2
|ℎ′′|2 + �

2
|ℎ′|2 + Λuℎ′′

)

d1 =
∑

k∈ℤ

((�
2
k4 + �

2
k2
)

|ℎ̂k|
2 + Λk2ûkℎ̂k

)

≥ −
∑

k∈ℤ

Λ2k2

2(�k2 + �)
|ûk|

2 ≥ −Λ
2

2�
∑

k∈ℤ
min{1, �

�
k2}|ûk|2.

We now apply Proposition 1.5 withM ∶= (�∕�)1∕2 ≥ 1 and L ∶= ⌊M⌋ to conclude

∫

1

0

(�
2
|ℎ′′|2 + �

2
|ℎ′|2 + Λuℎ′′

)

d1 ≥ −cint
Λ2

(��)1∕2 ∫

1

0

(1
�
W (u) + �|u′|2

)

d1.

□

4. Proof of the scaling law
In this section, we prove the scaling law stated in Theorem 1.3. The structure is as follows: We prove the upper
and lower bounds separately in Subsections 4.1 and 4.2, respectively. Precisely, the upper bound in (1.3) is
proven in Proposition 4.5, the lower bound follows directly from Proposition 2.2. Furthermore, we show in
Proposition 4.1 that there is a constant C > 0 (depending on W ) such that for all parameters Λ, �, �, b > 0,
we have admissible test functions (u, ℎ) with  (u, ℎ) ≤ C min{b1∕2, 1}, which in particular implies the upper
bound in (1.4). The lower bound in (1.4) is proven in Proposition 4.6.

4.1. Upper bound
We start with the upper bounds in Theorem 1.3.
Proposition 4.1. For all parameters Λ, �, �, b > 0 and allW satisfying (H1) there exists (u, ℎ) ∈  such that

 (u, ℎ) ≤
(

8 + max
[−1,1]

W
)

min{1, b1∕2}.

Proof. If b ≥ 1, we use u = ℎ = 0, and obtain
inf


 ≤  (0, 0) = W (0). (4.1)
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If b < 1, we set ℎ ≡ 0 and u as (see Figure 2a)

u(x) ∶=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

4
b1∕2 x − 1, if x ∈

(

0, b
1∕2

2

)

;

1, if x ∈
[

b1∕2

2 , 12
)

;

− 4
b1∕2 x + 1 +

2
b1∕2 , if x ∈

[

1
2 ,
1
2 +

b1∕2

2

)

−1, if x ∈
[

1
2 +

b1∕2

2 , 1
)

.

Then (u, ℎ) ∈  and

 (u, ℎ) = ∫

1

0

(

W (u) + b
2
|u′|2

)

d1 ≤ b1∕2 max
[−1,1]

W + b∫

b1∕2∕2

0

(

4
b1∕2

)2
d1

= b1∕2 max
[−1,1]

W + 8b1∕2 = (8 + max
[−1,1]

W )b1∕2.
(4.2)

Combining (4.1) and (4.2) shows the assertion. □

To obtain the upper bound ∼ −Λ2∕�, we use more complex structures. We proceed in two steps, and first
present the construction with two parameters which subsequently are chosen in various parameter regimes.
Proposition 4.2. For every n ∈ ℕ, every " ∈ (0, 1], allW satisfying (H1) and all parameters Λ, �, �, b > 0,
there exists an admissible pair (un,", ℎn) ∈  such that

 (un,", ℎn) ≤ max
[−1,1]

W " + 8bn
2

"
−
24Λ2(1 − "∕2)2n2

� + 48�n2
. (4.3)

Remark 4.3. We note that the simultaneous explicit optimization in n and " in (4.3) is generally not trivial.
However, the last term ∼ 24Λ2n2

�+48�n2 can exhibit essentially two behaviors. For n2 = 1, one obtains ∼ Λ2
�+� ,

whereas for n2 ∼ �
� one obtains for the this term ∼ Λ2

� . After choosing n2 one can then optimize explicitly
in ". We show later that in terms of matching lower bounds these choices lead to the optimal energy up to a
multiplicative constant.

Proof. Let n ∈ ℕ and " ∈ (0, 1]. We use the construction sketched in Figure 2b. Precisely, consider

ℎ(x) ∶=

{

1
2x(x −

1
2 ) if x ∈ (0, 1∕2),

− 12 (x − 1)(x −
1
2 ) if x ∈ [1∕2, 1),

and extend it periodically toℝ. Let � > 0 to be chosen below, and define ℎn(x) ∶= �ℎ(nx) and un," ∶ [0, 1]→ ℝ
as

un,"(x) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1 if x ∈
(

k
2n +

"
4n ,

k+1
2n −

"
4n

)

for k odd,
−1 if x ∈

(

k
2n +

"
4n ,

k+1
2n −

"
4n

)

for k even,
4n
" x −

2k
" if x ∈

(

k
2n −

"
4n ,

k
2n +

"
4n

)

for k odd,
− 4n" x +

2k
" if x ∈

(

k
2n −

"
4n ,

k
2n +

"
4n

)

for k even.
Then (ℎn, un) is admissible. Note that outside the ”transition layers”, we have u′ = 0, and in the transition layers
|u′| = 4n

" . As there are 2n such layers, each of length "
2n , we have

∫

1

0

(

W (un,") +
b
2
|u′n,"|

2
)

d1 ≤ " max
[−1,1]

W + b
2
"
(4n
"

)2
= " max

[−1,1]
W + 8bn

2

"
and

−∫

1

0
ℎ′′n un," d

1 = (1 − ")�n2 + 4n∫

"
4n

0
�n2 4n

"
x dx = (1 − ")�n2 + �"n

2

2
.
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Hence, we obtain
 (un,", ℎn) ≤ " max

[−1,1]
W + 8bn

2

"
+
��2n2

96
+ �
2
�2n4 − Λ(1 − "∕2)�n2.

We now optimize in �, i.e., we choose � ∶= Λ(1−"∕2)
�n2+(�∕48) , and conclude

 (u, ℎ) ≤ max
[−1,1]

W " + 8bn
2

"
−
24Λ2(1 − "∕2)2n2

� + 48�n2
.

□

Remark 4.4. We note that Proposition 4.5 implies that the lower bound obtained in Proposition 2.2 is optimal.
Precisely, we claim that for all �, �,Λ > 0 andW satisfying (H1) there holds

lim
b→0

inf


 = −Λ
2

2�
.

Indeed, this follows from Proposition 4.5 for b → 0 by choosing " ∶= b1∕2 and n ∶= ⌊b−1∕8⌋ in Proposition
4.6.

We now prove the upper bound in Theorem 1.3, part 2.
Proposition 4.5. Let W satisfy (H1). Then there exists C > 0 such that for all b, �, �,Λ > 0 satisfying
Λ2 ≥ C max{�b, b�, (b��)1∕2, b1∕2�} there exists an admissible pair (u, ℎ) such that

 (u, ℎ) ≤ − 1
20
Λ2
�
.

Proof. Write K ∶= max[−1,1]W . Then it follows from Proposition 4.2 that for all n ∈ ℕ and " ∈ (0, 1] there
exist admissible pairs (un,", ℎn) ∈  such that

 (un,", ℎn) ≤ K" + 8bn
2

"
− 1
8
Λ2n2

� + �n2
.

Now assume that Λ2 ≥ C̄ max
{

b�, b�, (b��)1∕2, b1∕2�
}, where C̄ = max{2048, 256

√

2K}. In the following
we will distinguish several cases in which we choose " and n appropriately to obtain the assertion.
First, we assume that � ≤ �. In this case, we set n = 1. This means that we obtain for all " ∈ (0, 1] an admissible
pair (u1,", ℎ1) ∈  such that

 (u1,", ℎ1) ≤ K" + 8b
"
− 1
8
Λ2
� + �

≤ K" + 8b
"
− 1
16
Λ2
�
.

If K ≤ 8b then set " = 1 to obtain
 (u1,1, ℎ1) ≤ K + 8b − 1

16
Λ2
�

≤ 16b − 1
16
Λ2
�

≤ − 1
32
Λ2
�

since Λ2 ≥ 512b�. If on the other hand 8b ≤ K then set "∗ = b1∕281∕2
K1∕2 to obtain

 (u1,"∗ , ℎ1) ≤ 2
√

8Kb1∕2 − 1
16
Λ2
�

≤ − 1
32
Λ2
�

since Λ2 ≥ 256
√

2Kb1∕2�. Secondly, we assume that � ≤ �. In this case we set n∗ = ⌈

�1∕2

�1∕2 ⌉. In particular, it
holds �

� ≤ n2∗ ≤ 4
�
� . Hence, for every " ∈ (0, 1] there exists an admissible pair (un∗,", ℎn∗ ) ∈  satisfying

 (un∗,", ℎn∗ ) ≤ K" + 32b�
"�

− 1
16
Λ2
�
.

If K ≤ 32b�
� then we set " = 1 to obtain

 (un∗,1, ℎn∗ ) ≤
64b�
�

− 1
16
Λ2
�

≤ − 1
32
Λ2
�
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since Λ2 ≥ 2048b�. Eventually, if K ≥ 32b�
� then set "∗ =

√

32b�
K� ∈ (0, 1] to obtain

 (un∗,"∗ , ℎn∗ ) ≤ 2
√

32Kb�
�

− 1
16
Λ2
�

≤ − 1
32
Λ2
�

since Λ2 ≥ 256√2K(b��)1∕2. □

4.2. Lower Bound
We now prove the lower bounds in Theorem 1.3. Note that the lower bound in (1.3) follows directly from
Proposition 2.2, and it remains to prove (1.4).
Proposition 4.6. LetW satisfy (H1) and (H2). Then there exists c > 0 such that for all b, �, �,Λ > 0 satisfying
Λ2 ≤ cmax{b�, b�, (b��)1∕2, b1∕2�} it holds

cmin{1, b1∕2} ≤ inf


 .

Proof. Let (u, ℎ) ∈ . First, as in the proof of Corollary 3.4 it holds

∫

1

0

(�
2
|ℎ′′|2 + �

2
|ℎ′|2 + Λuℎ′′

)

d1 ≥ −Λ
2

2�
∑

k∈ℤ
min{1, �

�
k2}|ûk|2. (4.4)

In particular, we obtain that

∫

1

0

(�
2
|ℎ′′|2 + �

2
|ℎ′|2 + Λuℎ′′

)

d1 ≥ −Λ
2

2�
‖u‖2L2 . (4.5)

Let us now assume thatΛ2 ≤ c̄max{b�, b�, (b��)1∕2, b1∕2�} for c̄ = min
{

1∕2, 1∕(cint
√

8), cMM∕
√

2
}

, where
cint and cMM are the constants fromCorollary 3.4 and Proposition 2.1, respectively.We distinguish the following
cases.

1. If max{b�, b�, (b��)1∕2, b1∕2�} = b� then we estimate using (4.4) and Proposition 2.1
 (u, ℎ) ≥ ∫

1

0

(

W (u) + b
2
|u′|2 − Λ

2

2�
|u′|2

)

d1

≥ ∫

1

0

(

W (u) + b
4
|u′|2

)

d1 ≥
cMM
2

min{1, b1∕2}.

2. Ifmax{b�, b�, (b��)1∕2, b1∕2�} = b� then we estimate using (4.5), Poincaré’s inequality and Proposition
2.1

 (u, ℎ) ≥ ∫

1

0

(

W (u) + b
2
|u′|2 − Λ

2

2�
|u′|2

)

d1

≥ ∫

1

0

(

W (u) + b
4
|u′|2

)

d1 ≥
cMM
2

min{1, b1∕2}.

3. Ifmax{b�, b�, (b��)1∕2, b1∕2�} = (b��)1∕2 then we estimate using Corollary 3.4 with � = 2cintΛ2

(��)1∕2 , where
cint > 0 is the constant from Corollary 3.4,

∫

1

0

(�
2
|ℎ′′|2 + �

2
|ℎ′|2 + Λuℎ′′

)

d1 ≥ −∫

1

0

(

1
2
W (u) + 2c2int

Λ4
��

|u′|2
)

d1

≥ −1
2 ∫

1

0

(

W (u) + b
2
|u′|2

)

d1.

Hence, by Proposition 2.1
 (u, ℎ) ≥ 1

2 ∫

1

0

(

W (u) + b
2

)

d1 ≥
cMM

2
√

2
min{1, b1∕2}.
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4. If max{b�, b�, (b��)1∕2, b1∕2�} = b1∕2� then we estimate using Proposition 2.1 and Proposition 2.2
 (u, ℎ) ≥

cMM
√

2
min{1, b1∕2} − Λ

2

2�
≥
cMM

2
√

2
min{1, b1∕2}.

For the last estimate note that in this case it holds b1∕2� ≥ b� which implies that min{1, b1∕2} = b1∕2 ≥
c̄ Λ

2

� ≥ cMM
√

2
Λ2
� .

This concludes the proof of Proposition 4.6. □

5. Existence of Minimizers
In this section, we discuss the existence of minimizers for  depending on the parameters b, �, � and Λ.
Proposition 5.1. 1. Let b, � > 0 and �,Λ ≥ 0. Then

inf


 = min


 .

2. Let � = 0, and b,Λ, � ≥ 0. If Λ
2

� ≥ b then there are no minimizers and

inf


 =

{

−∞ if b < Λ2
� ,

0 if b = Λ2
� .

If b > Λ2
� , then there exists a minimizer if and only if there is a minimizer u of

inf
u∈W 1,2

per
∫

1

0

(

W (u) +
(

b − Λ
2

�

)

|u′|2
)

d1

that satisfies the regularity property u ∈ W 2,2
per (0, 1). For any C1-double well potentialW satisfying (H1)

there is a constant K > 0 such that this holds if b > K Λ2
� .

3. Let b = 0 and �, �,Λ ≥ 0. Then

inf


 = −Λ
2

2�
and no minimizers exist if Λ > 0. Here −Λ

2

2� has to be understood as −∞ for Λ > 0, � = 0 and as 0 for
Λ = 0, � = 0.

Proof. First, note that by the compact embeddingW 1,2((0, 1)) ↪ L2(0, 1) it follows for uk ⇀ u inW 1,2
per,vol and

ℎk ⇀ ℎ inW 2,2
per that

lim inf
k→∞

 (uk, ℎk) ≥  (u, ℎ),

i.e.,  is lower semicontinuous with respect to weak convergence. Hence, 1. follows from the direct method of
the Calculus of Variations if  is coercive on . Set f (s, �) ∶= �

2 |�|
2 + Λs�. Then for |s| ≤ 1 there holds

|f (s, �)| ≥ �
2
|�|2 − Λ|�| ≥ �

4
|�|2 − Λ

2

�
,

and hence,
 (u, ℎ) ≥ ∫

1

0

(b
2
|u′|2 + �

4
|ℎ′′|2

)

d1 − Λ
2

�
.

Since by periodicity ofℎwe have ∫ 10 ℎ′ dx = 0, Poincaré’s inequality yields ‖ℎ′‖L2 ≤ ‖ℎ′′‖L2 . Since additionally
∫ 10 ℎ(x) dx = 0, we obtain ‖ℎ‖L2 ≤ ‖ℎ′′‖L2 . This means that for allC > 0 and (u, ℎ) ∈  such that (u, ℎ) ≤ C
it holds

‖u‖W 1,2 ≤ 1 + 2Cb
+ Λ

2

�b
and ‖ℎ‖W 2,2 ≤ 6

�

(

C + Λ
2

�

)

.
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Hence, for all C > 0 the set {(u, ℎ) ∈  ∶  (u, ℎ) ≤ C} is weakly precompact, i.e.,  is coercive on . This
concludes the proof of 1.
In order to show 2., let � = 0 and Λ, �, b ≥ 0. Note that using integration by parts and Young’s inequality we
find that

 (u, ℎ) = ∫

1

0

(

W (u) + b
2
|u′|2 + �

2
|ℎ′|2 + Λuℎ′′

)

d1

= ∫

1

0

(

W (u) + b
2
|u′|2 + �

2
|ℎ′|2 − Λu′ℎ′

)

d1

≥ ∫

1

0

(

W (u) + 1
2

(

b − Λ
2

�

)

|u′|2
)

d1. (5.1)

In the last inequality equality holds if and only if ℎ′(x) = Λ
� u

′(x) for almost every x ∈ (0, 1). Now, consider
u(x) = �(0,1∕4)∪(3∕4,1) − �(1∕4,3∕4), where � denotes the indicator function taking only values 0 and 1, and
u" = u ∗ �" for a symmetric standard mollifier �". Then for 0 < " < 1∕8 it holds u" ∈ W 1,2

per,vol with |u"| ≤ 1. If
b ≤ Λ2

� we obtain for ℎ" = Λ
� u" by (5.1)

 (u", ℎ") = ∫

1

0

(

W (u") +
1
2

(

b − Λ
2

�

)

|u′"|
2
)

d1
"→0
⟶

{

−∞ if b < Λ2
� ,

0 if b = Λ2
� .

(5.2)

Hence, inf  = −∞ for b < Λ2
� and clearly there are no minimizers. Now, consider b = Λ2

� . Note that for
u ∈ W 1,2

per,vol by the embedding W 1,2 ↪ C0 and ∫ 10 u dx = 0 there exists x ∈ (0, 1) such that u(x) = 0. Then
the continuity of u implies that ∫ 10 W (u) dx > 0. Together with (5.1) and (5.2) this yields that inf  = 0 but
there are no minimizers. Eventually, consider the case b > Λ2

� . Then (5.1) shows that

inf


 = inf
u∈W 1,2

per,vol
∫

1

0

(

W (u) + 1
2

(

b − Λ
2

�

)

|u′|2
)

d1.

By the direct method of the Calculus of Variations it is straight forward to show existence of minimizers u∗ ∈
W 1,2
per,vol for the right hand side. Recall that for any minimizer u∗ ∈ W 1,2

per,vol of the right hand side above there
exists ℎ ∈ W 2,2

per such that

 (u∗, ℎ) = ∫

1

0

(

W (u) + 1
2

(

b − Λ
2

�

)

|u′|2
)

d1

if and only if ℎ′ = Λ
� u

′. Consequently, a minimizer of  exists if and only if there exists a minimizer u∗ ∈ W 2,2
per

of ∫ 10
(

W (u) + 1
2

(

b − Λ2
�

)

|u′|2
)

d1. By the volume constraint there exists for every u ∈ W 1,2
per,vol a point

x ∈ (0, 1) such that u(x) = 0. Now, assume that 12
(

b − Λ2
�

)

> W (0). Then it follows for a minimizer u of
∫ 10

(

W (u) + 1
2

(

b − Λ2
�

)

|u′|2
)

d1 that ∫ 10 |u′|2 d1 < 1 which implies for all y ∈ (0, 1)

|u(y)| = |u(y) − u(x)| ≤

(

∫

1

0
|u′|2 d1

)1∕2

< 1.

Hence, u satisfies the Euler Lagrange equation
(

b − Λ
2

�

)

u′′ = W ′(u) + �,

where � ∈ ℝ is a Lagrange multiplier for the volume constraint ∫ 10 u d1 = 0. In particular, u ∈ W 2,2. By the
argument before this implies that a minimizer for  exists. This shows 2.
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Eventually we prove 3. The inequality inf  ≥ −Λ
2

2� follows from Proposition 2.2 and the inequality
inf  ≤ −Λ

2

2� from Remark 4.4 since the energy is monotone in b. To show non-existence of minimizers, let us
assume that there exists a minimizing pair (u, ℎ) ∈ . Then

−Λ
2

2�
= b(u, ℎ) ≥ ∫

1

0

(�
2
|ℎ′′|2 + Λuℎ′′

)

d1 ≥ ∫

1

0

(�
2
|ℎ′′|2 − Λ|ℎ′′|

)

d1 ≥ −Λ
2

2�
,

where the last inequality follows from the fact that miny∈ℝ
(

�
2 y
2 − Λy

)

= −Λ
2

2� . In particular, we have

W (u(t)) + �
2
|ℎ′(t)|2 = 0 and �

2
|ℎ′′(t)|2 + Λu(t)ℎ′′(t) = −Λ

2

2�
for a.e. t ∈ (0, 1),

which implies
|ℎ′(t)| = 0 and |ℎ′′(t)| = Λ

�
for a.e. t ∈ (0, 1),

which yields a contradiction. □

Remark 5.2. Let us note that some difficulties in the proof of item 2. of Proposition 5.1 arise from our assumption
that u takes values only in [−1, 1], i.e., between the wells ofW . If we allowed for a larger L∞-bound on u, we
could (for small values of b − Λ2∕�) use directly that minimizers of the (unconstraint) Modica-Mortola-type
functional onW 1,2 satisfy the L∞-constraint (see [32, Theorem 4.10]), which would then imply that minimizers
of the constraint problem are smooth enough.
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