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1. Introduction

In the last few years there have been a fairly large amount of work
dedicated to the study of intrinsic submanifolds - of various dimension
and codimension - inside the Heisenberg groups Hn or more general
Carnot groups. For example intrinsically C1 surfaces, rectifiable sets,
finite perimeter sets, various notions of convex surfaces have been stud-
ied. Here and in what follows, intrinsic will denote properties defined
only in terms of the group structure of Hn or, equivalently, of its Lie
algebra h.

We postpone complete definitions of Hn to the next section. Here
we remind that Hn, with group operation ·, is a (connected and simply
connected) Lie group identified through exponential coordinates with
R2n+1. If h denotes the Lie algebra of all left invariant vector fields on
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Hn, then h admits the stratification h = h1 ⊕ h2; h1 is called horizontal
layer. The horizontal layer defines, by left translation, the horizontal
fiber bundle HHn. Since HHn depends only on the stratification of h,
we call ‘intrinsic’ any notion depending only on HHn. The stratification
of h induces, through the exponential map, a family of anisotropic
dilations δλ for λ > 0. We refer to δλ as intrinsic dilations. A privileged
role in the geometry of Hn is played by horizontal curves, i.e. curves
tangent at any point to the fiber of HHn at that point.

We recall the notions of Carnot-Carathéodory distance and Haus-
dorff measures in Hn. Once a scalar product is defined in h, each
fiber of the horizontal bundle over a generic point p is consequently
endowed with a scalar product 〈·, ·〉p. We denote also by | · |p the as-
sociated norm. Thus, we can define the (sub-Riemannian) length of a

horizontal curve γ : [0, T ] → Hn as
∫ T

0 |γ′(t)|γ(t) dt. Given p, q ∈ Hn,
their Carnot-Carathéodory distance dc(p, q) is the minimal length of
horizontal curves connecting p and q.

Intrinsic s-dimensional Hausdorff measures Hs
c and Ss

c , s ≥ 0, are
obtained from dc, following Carathéodory construction as in Federer’s
book [6]. The intrinsic metric (or Hausdorff) dimension dimH(S) of a

set S is the number dimH(S)
def
= inf{s ≥ 0 : Hs(S) = 0}.

Heisenberg groups provide the simplest non-trivial examples of nilpo-
tent stratified, connected and simply connected Lie groups (Carnot
groups in most of the recent literature).

We begin to recall some of the main definitions of intrinsic sub-
manifolds: H-regular submanifolds, H-rectifiable submanifolds, finite
perimeter sets.

Intrinsic C1 surfaces - or H-regular surfaces - were first defined for
codimension one, in [8] and later, for general dimensions and codimen-
sions in [11]. The definition is the following one, if 1 ≤ k ≤ n,

k-dimensional H-regular surfaces of Hn are images of continuously
Pansu differentiable functions V → Hn, V open in Rk, with differentials
of maximal rank, hence injective;

k-codimensional H-regular surfaces of Hn are level sets of continuosly
Pansu differentiable functions U → Rk, U open in Hn, with Pansu
differential of maximal rank, hence surjective.

Notice that no nontrivial geometric object falls under the scope of
both definitions. Indeed, for k > n, there is no k-dimensional subgroup
of the horizontal fibre; hence surfaces having as a tangent space a
subgroup of the horizontal fibre are limited to have dimension ≤ n
and, dually, the ones with an horizontal normal space are limited to
have codimension ≤ n.

The two families of low dimensional and low codimensional H-regular
surfaces contain very different objects. We recall here some of their
properties as proved in [11].
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k-dimensional H-regular surfaces are Euclidean submanifolds of Hn ≡
R2n+1. For k = 1, they are horizontal curves and for k ≤ n they are
submanifolds of Legendrian manifolds. They have topological dimen-
sion = metric dimension = Euclidean dimension = k. Locally they
have finite Sk

c measure. Their intrinsic tangent k-planes coincide with
their Euclidean tangent k-planes (both are cosets of subgroups of Hn

contained in the horizontal fibre).
Low codimensional H-regular surfaces, on the contrary, can be very

irregular and in general these surfaces are not Euclidean C1 subman-
ifolds, not even locally (see [15]). Nevertheless it can be proved that
they have metric dimension = 2n + 2 − k, and topological dimension
= 2n + 1− k. Locally they have finite S2n+2−k

c measure. At each point
there is a, continuosly varying, intrinsic tangent (2n+1−k)-plane that
is a coset of a subgroup of Hn.

Intrinsic rectifiable sets are defined as countable unions of compact
subsets of H-regular surfaces (see [8] and [11]). Precisely, if 1 ≤ k ≤ n,
we say that M is a k-dimensional H-rectifiable set if Sk

c (M) < ∞ and
Sk

c almost all of M is contained in the countable union of k-dimensional
H-regular surfaces. Analogously, we say that M is a k-codimensional
H-rectifiable set - or a (2n + 2 − k)-dimensional H-rectifiable set - if
S2n+2−k

c (M) < ∞ and S2n+2−k
c almost all of M is contained in the

countable union of k-codimensional H-regular surfaces.
Sets with locally finite H-perimeter or - following De Giorgi - H-

Caccioppoli sets were first defined in [13]. Notice that there are several
ways of defining intrinsic bounded variation functions and finite perime-
ter sets in Hn or in much more general settings. These definitions have
been proposed independently by different authors (see [3], [13], [7]) and
are in fact equivalent, see [7]).

We say, following [13], that E ⊂ Hn has locally finite H-perimeter if
for any bounded open set Ω ⊆ Hn

|∂E|H(Ω) := sup

{

∫

E

n
∑

j=1

Xjφ(p) + Yjφ(p) dL2n+1
p

}

< ∞,

where the supremum is taken over all φ ∈ C1
0 (Ω, HH

n), such that
|φ(p)|p ≤ 1. In such a way, |∂E|H is a Radon measure in Hn.

Riesz’ representation theorem yields the existence of a |∂E|H-measur-
able section νE of HH

n, the generalized inward normal. Then, following
De Giorgi (see [5]), we define the H-reduced boundary ∂∗E saying that
p ∈ ∂∗E if |∂E|H(B(p, r)) > 0 for any metric ball B(p, r) and if

∣

∣

∣

∣

lim
r→0

1

|∂E|H(B(p, r))

∫

B(P,r)

νEd|∂E|H

∣

∣

∣

∣

= 1.

One of the main results in [8] (see also [10]) states that the reduced
boundary of finite perimeter sets is a 1-codimensional H-rectifiable
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set. This theorem, beyond extending the classical result to Heisen-
berg groups setting, is a strong support in favour of the previously
given definitions of H-regular surfaces and of H-rectifiable sets.

Finally we particularly want to stress two important features:
(i): all these classes of sets and surfaces are invariant with respect

to group translations or group dilations of Hn. Precisely , if S is - say -
the boundary of a finite perimeter set E, then also any left translated
surface τqS is again the boundary of a finite perimeter. The same
can be said if S is a H-regular surfaces and, consequently, if S is a
H-rectifiable sets .

(ii): the implicit function theorems proved in [8] and [11] yield that
H-regular surfaces are, locally, intrinsic graphs. By this we mean - see
Definition 2.4 - that there are subgroups V and W of Hn such that
V ∩ W = e, Hn = W · V - in short Hn is the semidirect product of
V and W - and there is ϕ : W → V such that S = graph(ϕ), that is
S = {w · ϕ(w) : w ∈ E ⊂ W}.

Then, it is a natural problem to try to understand the classes of func-
tions, acting between subgroups of a given Carnot group such that their
graphs are H-regular surfaces or H-rectifiable surfaces. This problem
has been addressed for the first time in [1] where the authors charac-
terize real valued functions on 1-codimensional subgroups of Hn such
that their intrinsic graphs are H-regular 1-codimensional surfaces.

Notice that, following from (i), the defining properties of these classes
of functions have to be invariant when the graphs of the functions are
group translated or dilated. This fact gives origin - quite naturally - to
apparently strange definitions of intrinsically Lipschitz functions or of
intrinsically differentiable functions, in our notation H-Lipschitz func-
tions or H-differentiable functions - see Definition 3.1 and Definition
4.4. These notions are different from the usual ones and can be seen
to reduce to the usual ones only in some very special situations.

We limit ourselves in this note to study H-Lipschitz functions acting
between subgroups of Hn. One of our aims is convincing the reader that
they are very natural objects inside Hn, enjoying a number of very nat-
ural properties: they can be defined equivalently by metric properties,
boundedness of intrinsic difference quotients or existence of parallel
cones non intersecting their graphs; their graphs have locally finite in-
trinsic Hausdorff measure and finally when they are 1-codimensional
they are boundary of sets with locally finite H-perimeter.

2. Notations and definitions

2.1. Heisenberg groups. For a general review on Heisenberg groups
and their properties we refer to [21], [14] and to [22]. We limit ourselves
to fix some notations.

Hn is the n-dimensional Heisenberg group, identified with R2n+1

through exponential coordinates. A point p ∈ Hn is denoted p =
4



(p1, . . . , p2n, p2n+1) = (p′, p2n+1), with p′ ∈ R2n and p2n+1 ∈ R. If p and
q ∈ Hn, the group operation is defined as

p · q = (p′ + q′, p2n+1 + q2n+1 −
1

2
〈Jp′, q′〉

R2n)

where J =

[

0 In

−In 0

]

is the 2n × 2n symplectic matrix. We denote as

p−1 := (−p′,−p2n+1) the inverse of p and as e the identity of Hn.
For any fixed q ∈ Hn and for any r > 0 left translations τq : Hn → Hn

and non isotropic dilations δr : Hn → Hn are automorphisms of the
group defined as

τq(p) := q · p and as δrp := (rp′, r2p2n+1).

We denote as h the Lie algebra of Hn. The standard basis of h is
given, for i = 1, . . . , n, by

Xi := ∂i −
1

2
(Jp′)i∂2n+1, Yi := ∂i+n +

1

2
(Jp′)i+n∂2n+1, T := ∂2n+1.

The horizontal subspace h1 is the subspace of h spanned by X1, . . . , Xn

and Y1, . . . , Yn. Denoting by h2 the linear span of T , the 2-step strati-
fication of h is expressed by

h = h1 ⊕ h2.

If p ∈ Hn we indicate

‖p‖ := d∞(p, e) := max{‖(p1, · · · , p2n)‖R2n , |p2n+1|
1/2}

and
d∞(p, q) = d∞(q−1 · p, e) =

∥

∥q−1 · p
∥

∥ .

It is well known that d∞ is equivalent with the Carnot-Caratheodory
distance of Hn, moreover

d∞(z · x, z · y) = d∞(x, y) d∞(δλx, δλy) = λd∞(x, y)

for x, y, z ∈ Hn and λ > 0. We denote by U(p, r) and by B(p, r) the
open and the closed ball associated with d∞.

Definition 2.1. Hn is the semidirect product of the homogeneous sub-
groups W and V and we wright

H
n = W · V

if W := exp w, V := exp v, w and v are homogeneous subalgebras of h
(see [21] 5.2.4) such that

(i): h = w ⊕ v;
(ii): w ⊃ h2 or, equivalently, w is an ideal in h;

Clearly W ∩ V = {e}, moreover (ii) is equivalent to saying that W

is a normal subgroup of Hn.
Notice also that v ⊂ h1, indeed T /∈ v because T ∈ w, moreover if

T + V ∈ v for some V ∈ v, then both λT + λV ∈ v and λV + λ2T ∈ v
5



yielding that T ∈ v. Because v is a subalgebra of h1 it follows that
the linear dimension of v is ≤ n, that v is a commutative algebra and
consequently that V 1 Rk if k = dim v.

Each element p ∈ Hn can be written in a (unique) way as p = pW ·pV,
with pW ∈ W and pV ∈ V.

Proposition 2.2. If Hn = W·V, each q ∈ Hn has unique ‘components’
qW ∈ W, qV ∈ V, such that q = qW · qV. The maps

q → qV and q → qW

are continuous and there is a constant c = c(V, W) > 0 such that

(1) c (‖qV‖ + ‖qW‖) ≤ ‖q‖ ≤ (‖qV‖ + ‖qW‖) .

Moreover,

(q−1)V = (qV)−1 and (q−1)W = q−1
V

· (qW)−1 · qV

(p · q)V = pV · qV and (p · q)W = pW · pV · qW · p−1
V

.
(2)

The norm and distance in W or in V are the restrictions to W and
to V of ‖·‖ and d∞.

Remark 2.3. The component map

H
n → W : p 2→ pW

is not a Lipschitz map with respect to the previously indicated norms.

If Hn = W · V, we denote system of coordinate planes the double
family LV and LW of cosets of V and W, that is

LV(p) := p · V, ∀p ∈ W and LW(q) := q · W, ∀q ∈ V.

Each p ∈ Hn belongs exactly to one leaf in LV and to one in LW;
the leaves in LV (or in LW) are invariant by translations, that is x ∈
LV(p) =⇒ τxLV(p) = LV(p).

For a nonnegative integer k, Lk denotes the k-dimensional Lebesgue
measure. L2n+1 is the bi-invariant Haar measure of Hn, hence, if E ⊂
R2n+1 is measurable, then L2n+1(τp(E)) = L2n+1(E) for all p ∈ Hn.
Moreover, if λ > 0 then L2n+1(δλ(E)) = λ2n+2L2n+1(E). We explicitly
observe that, ∀p ∈ Hn and ∀r > 0,

L2n+1(B(p, r)) = r2n+2L2n+1(B(p, 1)) = r2n+2L2n+1(B(0, 1)).

Notice also that, if ωk is the Lk measure of the unit Euclidean ball in
Rk, then L2n+1 (B(e, r)) = 2ω2nr2n+2 and, if k := dim v ≤ n,

Lk (B(e, r) ∩ V) = ωkr
k;

L2n+1−k (B(e, r) ∩ W) = 2ω2n−kr
2n+2−k.

(3)

Related with the distance d∞, Hausdorff measures are obtained fol-
lowing Carathédory’s construction as in [6] Section 2.10.2. For m ≥ 0,
we denote by Hm the m-dimensional Hausdorff measures in Hn, ob-
tained from the distances d∞. Analogously, Sm denotes the spherical

6



Hausdorff measure. We have to be more precise about the constants
appearing in the definitions. Since explicit computations will be car-
ried out only for m a positive integer, we limit ourselves to this case.
For each A ⊂ Hn and δ > 0, Hm(A) := limδ→0 Hm

δ (A), where

Hm
δ (A) = inf

{

∑

i

ζ(Ci) : A ⊂
⋃

i

Ci, Ci closed, diam(Ci) ≤ δ

}

and the evaluation function ζ is

(4) ζ(C) :=







ωm2−mdiam(C)m if 1 ≤ m ≤ n,
ωm−12−m+1diam(C)m if m = n + 1,
ωm−22−m+1diam(C)m if n + 2 ≤ m.

We notice that, due to the lack of an optimal isodiametric inequality
in Hn, it is not known if, in general, Hm(E) = Sm(E) even for ‘nice’
subsets of Hn and for m = Q. Related to this point see the recent
paper [19] by Severine Rigot.

Translation invariance and homogeneity under dilations of Hausdorff
measures follow as usual from (2.1) and we have

(5) Hm(τpA) = Hm(A) and Hm(δrA) = rmHm(A),

for A ⊆ Hn, p ∈ Hn and m,r ∈ [0,∞).
Because the topologies induced by d∞ and by the Euclidean distance

coincide, the topological dimension of Hn is 2n + 1. On the contrary
the metric dimension (or Hausdorff dimension) of Hn, with respect to
d∞ is 2n + 2.

If Hn = W ·V as in Definition 2.1, then if k, 1 ≤ k ≤ n, is the linear
dimension of v then the metric dimension of V is k while the metric
dimension of W is 2n + 2 − k. Hence

dim H
n = dim V + dim W.

2.2. Graphs. We assume that Hn = W · V is the semidirect product
of W and V.

Definition 2.4. We say that a set S ⊂ Hn is a graph over W along V

if, for each ξ ∈ W, S ∩LV(ξ) contains at most one point. Equivalently
if there is a function ϕ : E ⊂ W → V such that

S = {w · ϕ(w) : w ∈ E}

and we say that S is the graph of ϕ, S = graph(ϕ). Graphs over V along
W are defined symmetrically, S = graph(ψ), with ψ : F ⊂ V → W, if

S = {v · ψ(v) : v ∈ F}.

Observe that the notions of intrinsic graph and of euclidean graph
are different ones.
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Example 2.5. Let H1 = W · V, with V = {x = (x1, 0, 0)} and W =
{w = (0, w2, w3)}. For 1/2 < α < 1 let ϕ : W → V be defined as

ϕ(0, w2, w3) = (|w3|
α, 0, 0).

Then

graph(ϕ) = {w · ϕ(w) : w ∈ W} =

{(

|w3|
α, w2, w3 −

1

2
w2|w3|

α

)}

.

It is easy to convince oneself, looking at the sections of graph(ϕ) in
Figure 2, that graph(ϕ) is not an Euclidean graph in any neighborhood
of the origin.
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Figure 1. The surface graph(ϕ) ⊂ H1 of Example 2.5
when α = 2/3
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Figure 2. Sections of graph(ϕ) for x = −.2, x = 0 and
x = .2

Notice that the bounds on α yield that graph(ϕ) is a H-regular sur-
face of H1. For a proof of this fact see Corollary 5.11 of [1].

8



On the other side, no relatively open neighborhood of the origin
in S := {(x, y, 0) : x, y ∈ R} ⊂ H1 is an intrinsic graph while it is
an Euclidean graph. More generally no C2 Euclidean hypersurface of
R2n+1 ≡ Hn is an intrinsic graph in any relatively open neighborhood
of a characteristic point of the hypersurface.

A trivial but key feature of so defined graphs is their invariance with
respect to dilations and translations. That is, if S is a graph (say from
W to V) then also δλS and τpS are graphs from W to V - obviously of
different functions - and it is possible to write explicitly the analytic
form of these new functions.

Proposition 2.6. Let S = {ξ · ϕ(ξ)} with ϕ : E ⊂ W → V. Then the
dilated set δλS is the graph of ϕλ : δλE ⊂ W → V, precisely

δλS = graph(ϕλ) with ϕλ := δλ ◦ ϕ ◦ δ1/λ : δλE → V.

The same statement holds interchanging V and W.

Proof. Trivial: δλS = δλ(ξ · ϕ(ξ)) = δλξ · δλ(ϕ(ξ)) = δλξ · ϕλ(δλξ). !

Notice that in the preceding proposition, there is no assumption on
W and V. On the contrary, for translations of graphs, we have to
distinguish between graphs on W and graphs on V. Precisely we have

Proposition 2.7. Let S = {ξ·ϕ(ξ)} be a graph and let q = qW·qV ∈ Hn.
Then the translated set τqS is again a graph. Precisely

(i) If S is a graph over W, that is ϕ : E ⊂ W → V, then τqS =
{η · ϕq(η) : η ∈ E ′ := q · E · (qV)−1 ⊂ W}, where

ϕq(η) = qV · ϕ(q−1
V

· q−1
W

· η · qV), ϕq : E ′ → V;

(ii) If S is a graph over V, that is ϕ : F ⊂ V → W, then τqS =
{η · ϕq(η) : η ∈ F ′ := qV · F ⊂ V}, where

ϕq(η) = η−1 · qW · η · ϕ(q−1
V

· η), ϕq : F ′ → W.

Proof. First case: because W is a normal subgroup of G then E ′ =
qW · qV · E · q−1

V
⊂ W. Then τqS = {q · ξ · ϕ(ξ) : ξ ∈ W} and

q · ξ · ϕ(ξ) = qW · qV · ξ · ϕ(ξ) = qW · qV · ξ · q−1
V

· qV · ϕ(ξ).

Observe that qW · qV · ξ · q−1
V

∈ W then set η := qW · qV · ξ · q−1
V

that is
ξ = q−1

V
· q−1

W
· η · qV and the first part of the proposition follows.

Second case: τqS = {q · ξ · ϕ(ξ) : ξ ∈ V}, then, recalling Proposition
2.2,

q · ξ · ϕ(ξ) = qV ·W q · ξ · ϕ(ξ) = qV · ξ · ξ−1 ·W q · ξ · ϕ(ξ);

here qV · ξ ∈ V and ξ−1 ·W q · ξ · ϕ(ξ) ∈ W, then setting η := qV · ξ and
observing that ξ−1 ·W q · ξ = η−1 · qV ·W q · q−1

V
· η = η−1 · qW · qV · q

−1
V

· η =
η−1 · qW · η, we get also the second part of the Proposition.

!
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Notice that if q ∈ W then the formula in (i) of Proposition 2.7
becomes completely similar to euclidean ones

ϕq(η) = ϕ(q−1 · η), ϕq : τqE → V.

Analogously if q ∈ V the formula in (ii) becomes

ϕq(η) = ϕ(q−1 · η), ϕq : τqF → W.

Given that V and W are metric spaces, continuous functions W → V

or V → W are defined as usual. It is then easy to see that if g : E ⊂
W → V is a continuous function then also any translated function
gq : W → V is continuous. The same statement holds for a function
g : V → W.

3. Lipschitz functions and graphs

3.1. Lipschitz graphs. As we recalled in the introduction, the im-
plicit function theorem proved in [11] states that if S is a low codimen-
sional H-regular surface, that is if S is a non critical level set of a Pansu
differentiable function f : Hn → Rk, 1 ≤ k ≤ n, then, given any p ∈ S,
there are r > 0, a couple of subgroups V, W such that Hn = W ·V and
a function ϕ : W → V such that S ∩ B(p, r) ⊂ graph(ϕ). Moreover if
p ≡ e ∈ S then there is L > 0 such that, ∀η in a bounded neighborhood
of e,

(6) ‖ϕ(η)‖ ≤ L ‖η‖ .

Notice that L depends only on the norm of the Pansu differential of f ,
on the radius r and on the choice of the subgroups V and W.

Let p = w̄ · ϕ(w̄) be a point of an H-regular surface S, then, locally
near p, S = graph(ϕ) and the H-regular translated surface τp−1S, near
e, is the graph of

ϕp−1(η) := ϕ(w̄)−1 · ϕ(w̄ · ϕ(w̄) · η · ϕ(w̄)−1)

Hence (6) holds for ϕp−1 and, for any η in a neighborhood of e in W,
we have

‖ϕp−1(η)‖ ≡
∥

∥ϕ(w̄)−1 · ϕ(w̄ · ϕ(w̄) · η · ϕ(w̄)−1)
∥

∥ ≤ L ‖η‖ .

Changing variables, setting w = w̄ · ϕ(w̄) · η · ϕ(w̄)−1, that is η =
ϕ(w̄)−1 · w̄−1 · w · ϕ(w̄), it follows that, ∀w, w̄ ∈ W,

∥

∥ϕ(w̄)−1 · ϕ(w)
∥

∥ ≤ L
∥

∥ϕ(w̄)−1 · (w̄−1 · w) · ϕ(w̄)
∥

∥ .

This we use as a definition of intrinsically Lipschitz function:

Definition 3.1. We say that ϕ : W → V (or ϕ : V → W) is Hn-
Lipschitz, if there is L > 0 such that, ∀p ∈ graph(ϕ),

(7) ‖ϕp−1(x)‖ ≤ L ‖x‖ , ∀x ∈ domain of ϕ.

Equivalently, recalling Proposition 2.7, we have
10



(i) ϕ : W → V is Hn-Lipschitz, if ∃L > 0 such that ∀w, w′ ∈ W,
∥

∥ϕ(w)−1 · ϕ(w′)
∥

∥ ≤ L
∥

∥ϕ(w)−1 · w−1 · w′ · ϕ(w)
∥

∥ ;

(ii) ϕ : V → W is Hn-Lipschitz, if ∃L > 0 such that ∀v, v′ ∈ V,
∥

∥v′−1 · v · ϕ(v)−1 · v−1 · v′ · ϕ(v′)
∥

∥ ≤ L
∥

∥v−1 · v′
∥

∥ .

As usual the Lipschitz constant of ϕ is the infimum of the numbers L
such that (7) holds. As usual the definitions can be localized to subsets
of V or of W.

Notice that there are plenty of non trivial Hn-Lipschitz functions in
Hn. Indeed, as explained at the beginning of this section, it follows
from the implicit function theorem of [11] and the very definition of
Hn-Lipschitz functions that all H-regular surfaces, of low codimension,
are locally graphs of Hn-Lipschitz functions.

Remark 3.2. Given that V and W are metric spaces, also the usual,
seemingly more natural, definition of Lipschitz function between metric
spaces is available: we say that f : W → V (or f : V → W) is Lipschitz
if there is L > 0 such that

(8)
∥

∥f(η)−1 · f(η′)
∥

∥ ≤ L
∥

∥η−1 · η′
∥

∥ , ∀η, η′ ∈ W(or V).

The following example shows firstly that the two properties of being
Lipschitz or of being Hn-Lipschitz are independent from each other and
secondly that (8) is not invariant with respect to group translation of
the graph of the function.

Example 3.3. Consider the subgroups V and W of H1 ≡ R3 defined
as

V = {x = (x1, 0, 0)}, W = {x = (0, x2, x3)}.

Observe that W is a normal subgroup and that H1 = W · V as in
Definition 2.1. Moreover, ∀w = (0, w2, w3) ∈ W and ∀v = (v1, 0, 0) ∈
V, ‖w‖ = max{|w2|, |w3|1/2} and ‖v‖ = |v1|.

Let f : W → V be defined as

f(0, w2, w3) =
(

1 + |w3|
1/2, 0, 0

)

.

It is easy to check that (8) holds with L = 1. Indeed

f(w)−1 · f(w′) =
(

|w′

3|
1/2 − |w3|

1/2, 0, 0
)

and
∥

∥f(w)−1 · f(w′)
∥

∥ =
∣

∣|w′

3|
1/2 − |w3|

1/2
∣

∣

≤ |w′

3 − w3|
1/2 =

∥

∥w−1 · w′
∥

∥ .

On the contrary, f is not Hn-Lipschitz. To see this we translate the
graph of f moving p := (1, 0, 0) ∈ graph(f) to the origin e. Following

11



the argument in Proposition 2.7 we see that the translated set is the
graph of fp−1 : W → V and from (i) of Proposition 2.7 we have

fp−1(w) =
(

|w2 + w3|
1/2, 0, 0

)

.

Now observe that (7) should be equivalent to the inequality |w2 +
w3|1/2 ≤ L max{|w2|, |w3|1/2} that is, in general, false. This shows also
that (8) is not invariant under graph translations.

On the contrary, the function ψ : W → V defined as

ψ(w) :=
(

1 + |w3 − w2|
1/2, 0, 0

)

is H-Lipschitz but it is not Lipschitz in the sense of (8).

We will indicate in this note that Hn-Lipschitz functions enjoy many
nice properties, i.e. properties that are typical of Lipschitz functions in
Euclidean spaces. Most of these properties cannot be stated in terms
of usual regularity properties as the previous example suggests. We
only state the following mild regularity theorem

Proposition 3.4. Hn-Lipschitz functions are 1
2-Holder continuous with

respect to the Carnot Caratheodory or the d∞ distance.

Hence, in particular, Hn-Lipschitz functions are continuous func-
tions.

We give now a very natural equivalent definition of Hn-Lipschitz
functions. As it is true for functions between Euclidean spaces, Hn-
Lipschitz functions can be characterized in terms of existence of parallel
cones non intersecting their graphs. First we give a notion of closed
cone.

Definition 3.5. Assume that Hn = B · A is the product of two sub-
groups B and A, with B ∩ A = {e}. For q ∈ Hn, α > 0 we define the
closed cones CB,A(q, α) with axis A, base B, vertex q as

CB,A(q, α) := q · CB,A(e, α)

where
CB,A(e, α) := {p : ‖pB‖ ≤ α ‖pA‖} .

Clearly, CB,A(e, 0) = A. Moreover

∪α>0CB,A(e, α) = H
n \ B ∪ {e}.

If S = {x · ϕ(x)} is the graph of ϕ : W → V and ϕ(e) = e then it is
trivial to observe that ‖ϕ(x)‖ < L ‖x‖ if and only if CW,V(e, α) ∩ S =
{e} for all α, 0 ≤ α < 1/L. In general we have

Proposition 3.6. A function ϕ : W → V is Hn-Lipschitz, with Lips-
chitz constant ≤ L, if and only if ∀q ∈ graph(ϕ) and ∀α : 0 ≤ α < 1/L,

CW,V(q, α) ∩ graph(ϕ) = {q}.
12



Proof. Indeed, if q ∈ graph(ϕ), CW,V(e, α) ∩ graph(ϕq−1) = {e}, hence
{q} = τq(CW,V(e, α) ∩ graph(ϕq−1)) = τq(CW,V(e, α) ∩ τq−1graph(ϕ)) =
CW,V(q, α) ∩ graph(ϕ). !

See the following picture.

Figure 3. The graph of a H1-Lipschitz function W → V

and a cone CW,V(e, α)

3.2. Difference quotients and directional derivatives. Another
characterization of Hn-Lipschitz functions can be given in terms of
boundedness of their difference quotients. Let us begin defining a no-
tion of translation invariant difference quotient.

Definition 3.7. Let Hn = W · V. If f : W → V, w ∈ W, p :=
w · f(w) ∈ graph(f), the Hn-difference quotient of f , at w along the
direction Y ∈ w, is

∆Y f(w; t) = ∆Y fp−1(e; t) = δ1/t (fp−1(exp tY )) .

Simmetrically, if g : V → W and V ∈ v, q := v · g(v) the Hn-difference
quotient is

∆V g(v; t) = ∆V gq−1(e; t) = δ1/t (gq−1(exp tV )) .

More explicitly, from Proposition 2.7 we obtain that, for f : W → V,

(9) ∆Y f(w; t) = δ1/t

(

f(w)−1 · f(w · f(w) · exp tY · f(w)−1)
)

,

and for g : V → W

(10) ∆V g(v; t) = δ1/t

(

exp tV −1 · g(v)−1 · exp tV · g(v · exp tV )
)

.

Definition 3.8. Let Hn = W · V. The directional derivative DY f(x)
is defined as

(11) DY f(x) := lim
t→0

∆Y f(x; t).

13



Notice that f(x) = e implies ∆Y f(x; t) := δ1/t (f(x · exp tY )) . Ob-
serve that if DY f(x) exists then, ∀λ > 0,

DλY f(x) = lim
t→0

δ1/t∆λY f(x; t)

= δλ lim
t→0

δ1/λt∆Y f(x;λt) = δλDY f(x).

Clearly, directional derivatives are translation invariant; that is if p =
x · f(x),

(12) DY f(x) = DY fp−1(e).

Next Proposition gives a characterization of Hn-Lipschitz functions in
terms of the boundedness of their difference quotients along horizontal
directions. We would like to stress that, notwithstanding the similarity
of this statement with, e.g. the one characterizing Lipschitz functions
Hn → R in terms of the Lipschitzianity along horizontal directions of
Hn, this statement is a quite different one. Indeed in general W is
not a Carnot group because its Lie algebra is not generated by the
horizontal layer. Think, once more to the example of H1 = W · V,
with W = {(0, x2, x3)} and V = {(x1, 0, 0)}. Then w ∩ h1 - i.e. the
horizontal subspace of the Lie algebra w of W - is 1-dimensional and
it is generated by the vector field Y1 = ∂x2

+ 1
2∂x3

only. We state
that, for f : W → V, the boundedness just of ∆Y1

f ensures that f is
H-Lipschitz. For a proof see [12].

Proposition 3.9. Let Hn = W · V.

(i) If f : W → V is Hn-Lipschitz with Lipschitz constant L then,

‖∆Y f(x; t)‖ ≤ L ‖exp Y ‖ , ∀Y ∈ w.

The analogous statement holds if f : V → W, with Y ∈ v.
(ii) If f : W → V and

‖∆Y f(x; t)‖ ≤ L ‖exp Y ‖ , ∀Y ∈ h1 ∩ w,

then f is Hn-Lipschitz with Lipschitz constant C = C(L, V, W).

3.3. Surface measure of Lipschitz graphs. In this section we prove
that the graph of a Hn-Lipschitz function f has the same metric di-
mension as the domain of f and that, if s is this metric dimension,
Hs (graph(f) ∩ U) < ∞, for any bounded U ⊂ Hn.

An interesting, non trivial, corollary of the previous estimate is that
1-codimensional Hn-Lipschitz graphs are boundaries of sets of locally
finite Hn-perimeter.

Remember that upper and lower bounds on the Hausdorff measure
of a Lipschitz graph are trivially true in Euclidean spaces. Indeed
if f : Rk → Rn−k is Lipschitz then the map Φ : Rk → Rn defined as
Φ(x) := (x, f(x)) is a Lipschitz parametrization of the Euclidean graph
of f and this gives the upper bound; on the other side the projection
Rn ≡ Rk × Rn−k → Rk is 1 Lipschitz yielding the lower bound.

14



Such a proof cannot work here because, from one side, projections
Hn → W, sending p 2→ pW, are not Lipschitz continuous; on the other
side, even if f : W → V is very regular – see Example 3.10 – the
‘natural’ parametrization of graph(f) given by

Φ : W → graph(f) ⊂ H
n, Φ(w) = w · f(w)

is not a Lipschitz map between metric spaces..

Example 3.10. Consider once more the subgroups V and W of H1 ≡
R3 defined as

V = {x = (x1, 0, 0)}, W = {x = (0, x2, x3)}

and let f : W → V be the constant map f(w) = (1, 0, 0) ∈ V. Then
graph(f) is a vertical plane in R3 parallel to W. The parametrization
Φ acts as

Φ(w) = (1, w2, w3 +
1

2
w2).

Then Φ(e) = (1, 0, 0) and, if w̄ = (0, ε, 0) ∈ W, Φ(w̄) = (1, ε, ε
2). It is

easy to check that ‖Φ(e)−1 · Φ(w̄)‖ is comparable with ε1/2 while ‖w̄‖
is comparable with ε.

Remark 3.11. The situation is completely different for maps V → W.
Indeed, when f : V → W is Hn-Lipschitz, the map

Φ : V → H
n, v 2→ Φ(v) := v · f(v),

is a Lipschitz map between the metric spaces V and Hn. Indeed, if
v, v̄ ∈ V, using (ii) of Definition 3.1, we have

∥

∥f(v)−1 · v−1 · v̄ · f(v̄)
∥

∥ =
∥

∥v−1 · v̄ · v̄−1 · v · f(v)−1 · v−1 · v̄ · f(v̄)
∥

∥

≤
∥

∥v−1 · v̄
∥

∥ +
∥

∥v̄−1 · v · f(v)−1 · v−1 · v̄ · f(v̄)
∥

∥

≤ (1 + L)
∥

∥v−1 · v̄
∥

∥ .

Remark 3.12. It is a, certainly non trivial, open problem to understand
if a different Lipschitz continuous parameterization exists. About this,
in [18] it has been proved that, if the surface S is somehow more reg-
ular than just Lipschitz, then such a parametrization exists. On the
contrary, D.Vittone has provided us an example (see [2]) showing that
in general bilipschitz parametrizations may not exist.

Theorem 3.13. Assume that Hn = W · V as in Definition 2.1, and
let k, 1 ≤ k ≤ n, be the dimension of V. If f : W → V is a Hn-
Lipschitz function with Lipschitz constant L, then graph(f) has metric
dimension 2n+2−k and there is a geometric constant c = c(V, W) > 0
such that

(13) H2n+2−k (graph(f) ∩ B(p, R)) ≤ c(1 + L)2n+2−kR2n+2−k.
15



Simmetrically, if f : V → W then graph(f) has metric dimension k
and

(14) Hk (graph(f) ∩ B(p, R)) ≤ c(1 + L)kRk.

Proof. The proof follows the same pattern as the Euclidean one when
dealing with functions f : V → W. Indeed, as observed in Example
3.10 in this case the natural parametrization Φ of graph(f) is Lipschitz
and also the projection Hn → V is a Lipschitz map.

We consider now the only interesting case, that of functions W → V.
The lower bound for H2n+2−k (graph(f)) is a consequence of the fol-

lowing Lemma proved in [20]

Lemma 3.14. There is C = C(V, W) > 0 such that, ∀A ⊂ Hn

L2n+1−k(Π(A)) = H2n+2−k(Π(A)) ≤ S2n+2−k(A),

where Π : Hn → W is the ‘projection on the first component’ i.e. if
p = pW · pV then Πp := pW.

To get the upper bound, fix p ∈ graph(f) and R > 0, it is enough
to prove that it is possible to cover graph(f) ∩ B(p, R) with less than

N := c
(

1
ε

)2n+2−k
metric balls of radius less than ε. Here c will depend

on R, W, V and L.
Without loss of generality, we can assume that p = e. Let E := {w ∈

W : w · f(w) ∈ B(e, R)}. From (1), it follows E ⊂ {w : ‖w‖ ≤ R/c}.
Fix ε, 0 < ε < 1. Using a Vitali covering argument choose a covering

of graph(f) ∩ B(e, R) with metric balls B(pi, 5ε), pi = w̄i · f(w̄i) ∈
graph(f), such that the concentric smaller balls Bi := B(pi, ε) are
pairwise disjointed. We estimate the number N of balls Bi in this
Vitali covering.

Define Ei ⊂ E as Ei := {w ∈ W : w ·f(w) ∈ graph(f)∩Bi}. Clearly
the sets Ei are pairwise disjointed. To get the necessary estimate of N
we get an estimate from below of L2n+1−k(Ei).

For each Ei consider the group translation τp−1

i

that moves the point

pi to the origin e. Let Ẽi := {w : w·fp−1

i

(w) ∈ B(e, ε)}. Remember that

fp−1

i

is Hn-Lipschitz with the same constant L of f , that fp−1

i

(e) = e

hence
∥

∥

∥
fp−1

i

(w)
∥

∥

∥
≤ L ‖w‖ and

∥

∥

∥
w · fp−1

i

(w)
∥

∥

∥
≤ (1 + L) ‖w‖. Hence

W ∩ B

(

e,
ε

1 + L

)

⊂ Ẽi,

and, from (3) , it follows

L2n+1−k(Ẽi)

≥ L2n+1−k

(

W ∩ B

(

e,
ε

1 + L

))

= 2ω2n−k

(

ε

1 + L

)2n+2−k

.
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Recalling (i) of Proposition 2.7, we have that Ẽi = p−1
i ·Ei ·f(w̄i), that

is
Ẽi = {f(w̄i)

−1 · w̄−1
i · w · f(w̄i) : w ∈ Ei}.

It is easy to check, by a straightforward computation, that any map
χ : W ≡ R2n+1−k → W ≡ R2n+1−k, given by

w 2→ χ(w) := v̄−1 · w̄−1 · w · v̄,

has Jacobian determinant equal to 1. Hence

L2n+1−k(Ei) = L2n+1−k(Ẽi) ≥ 2ω2n−k

(

ε

1 + L

)2n+2−k

.

Since all the Ei are disjointed and contained in B(e, (R + 1)/c) we get

N ≤

(

(1 + L)
R

c

)2n+2−k (

1

ε

)2n+2−k

.

When dealing with f : V → W the thesis follows from well known
results on the scaling of Hausdorff measures under Lipschitz maps (see
e.g.([6]) or ([16])). !

Assume now that Hn = W ·V with dimV = 1. Notice that it follows
the existence of Y ∈ h1 such that V = {exp tY : t ∈ R}. Hence it is
defined a real valued function t : Hn → R such that

p = pW · exp (t(p)Y ) , ∀p ∈ H
n.

Then, given f : W → V it is possible to define the subgraph of f as
the set E(f) such that

E(f) := {p ∈ H
n : t(p) ≤ t(f(pW))} .

Then the following theorem holds

Theorem 3.15. Assume Hn = W ·V with dimV = 1. If f : W → V is
Hn-Lipschitz and E(f) ⊂ Hn is the subgraph of f then E(f) is a set
with locally finite perimeter.

Proof. The graph of f is the essential boundary of the subgraph. The
result then follows from Theorem 3.13 and the characterization of finite
perimeter sets proved in [20]. !

3.4. Rectifiable sets. We recall the definition of H-rectifiable sets
given in [11].

Definition 3.16. Let 1 ≤ k ≤ n and assume that M ⊂ Hn is such
that

M ⊂ M0 ∪

(

+∞

∪
j=1

Sj

)

.

We say that M is
k-dimensional H-rectifiable if Sk(M ∩ U) < ∞ for any bounded

U ⊂ Hn, Sk(M0) = 0 and Sj are k-dimensional H-regular surfaces;
17



k-codimensional H-rectifiable if S2n+2−k(M∩U) < ∞ for any bounded
U ⊂ Hn, S2n+2−k(M0) = 0, Sj are k-codimensional H-regular surfaces.

We can give a, possibly, more general definition using the notion of
H-Lipschitz graphs.

Definition 3.17. Let 1 ≤ k ≤ n and assume that E ⊂ Hn is such that

E ⊂ E0 ∪
(

∞

∪
i=1

graph(fi)
)

.

We say that E is
k-dimensional H-rectifiable if Hk(E ∩U) < ∞ for any bounded U ⊂

Hn, Hk(E0) = 0, fi : Ai ⊂ Vi → Wi are H-Lipschitz and dim(Vi) = k;
k-codimensional H-rectifiable if H2n+2−k(E∩U) < ∞ for any bounded

U ⊂ Hn, H2n+2−k(E0) = 0, fi : Ai ⊂ Wi → Vi are H-Lipschitz,
dim(Vi) = k.

Since H-regular surfaces are locally graphs of H-Lipschitz functions
it follows that the scope of the second definition is larger than the
first one. The equivalence of the two definitions should depend on a
Rademacher type theorem in the context of H-Lipschitz functions.

4. Intrinsic Differentiable Functions

Assume that Hn = W · V as in Definition 2.1. We suggest here a
possible definition of intrinsic differentiability for functions f : W → V

(or f : V → W). We look for a definition that is invariant with
respect to translations and dilations of graph(f) in Hn, that is strictly
related with the notion of H-Lipschitz functions and that mimics Pansu
definition of P-differentiability for functions between Carnot groups.

We recall the definition of P-differentiability: let f : G1 → G2, with
G1 and G2 Carnot groups. We say that f is P-differentiable in g ∈ G1

if there is an H-linear map L : G1 → G2, such that, ∀g′ ∈ G1,
∥

∥L(g−1 · g′)−1 · f(g)−1 · f(g′)
∥

∥

G2

= o(
∥

∥g−1 · g′
∥

∥

G1

),

where o(t)/t → 0 as t → 0+.
We first need a substitute notion for H-linear maps: these will be

maps such that their graph is a homogeneous subgroup of Hn and such
that the map from the domain to the graph is an homomorphism in an
appropriate sense.

Definition 4.1. We say that

(i): L : V → W is a Hn-linear map when, ∀v, v′ ∈ V and ∀λ > 0,

L(δλv) = δλ(Lv)

L(v · v′) = (v′)−1 · Lv · v′ · Lv′.
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(ii): L : W → V is a Hn-linear map when ∀w, w′ ∈ W and ∀λ > 0,

L(δλw) = δλ(Lw)

L(w · w′) = L(w) · L(w′).

Notice that Hn-linear maps W → V are precisely H-linear maps
W → V. On the contrary the two notions are different for maps V →
W.

Example 4.2. Consider the subgroups of H1: V = {(x1, 0, 0)} and
W = {(0, x2, x3)}; the map

L : V → W defined as: L(x, 0, 0) := (0, x, 0)

is an H-linear map V → W but it is not Hn-linear because graph(L) =
{(x, x, x2/2)} is not a subgroup. Conversely, the map

L : V → W defined as: L(x, 0, 0) := (0, x,−x2/2)

is Hn-linear but it is not H-linear.

Proposition 4.3. Assume Hn = W · V as in Definition 2.1.
(i): If L : V → W is Hn-linear then graph(L) is a homogeneous

subgroup of Hn and the map ΦL defined as ΦL(v) := v · L(v) is a
homogeneous homomorphism (i.e. a H-linear map) V → graph(L).

(ii): If L : W → V is Hn-linear then graph(L) is a homogeneous
subgroup of Hn and the map ΦL : W → graph(L) defined as ΦL(w) :=
w · L(w) satisfies

ΦL(δλw) = δλ(ΦL(w))

ΦL(w · w′) = ΦL(w) · ΦL((Lw)−1 · w′ · Lw).

Now if f acts between subgroups of Hn, we define differentiability
of f in the usual way in the points where f vanishes and we extend
the definition everywhere making it invariant by graph translation.
Precisely, if f : W → V (or f : V → W) is such that f(e) = e
we say that f is Hn-differentiable in e when there is a Hn-linear map
dfe : W → V, such that

∥

∥dfe(ξ)
−1 · f(ξ)

∥

∥ = o(‖ξ‖) as ‖ξ‖ → 0,

and, setting p := w · f(w), we say that f is Hn-differentiable in w ∈ W

if fp−1 is Hn-differentiable in e, that is, if there is a Hn-linear map
dfw : W → V, such that

∥

∥dfw(ξ)−1 · fp−1(ξ)
∥

∥ = o(‖ξ‖) as ‖ξ‖ → 0.

Finally, writing explicitly the expression of fp−1, we give the definition
as follows

Definition 4.4. Assume Hn = W · V as in definition 2.1.
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(i): let f : W → V; we say that f is H-differentiable in w ∈ W if
there is a H-linear map dfw : W → V such that

∥

∥dfw(ξ)−1 · f(w)−1 · f(w · f(w) · ξ · f(w)−1)
∥

∥ = o(‖ξ‖)(15)

as ‖ξ‖ → 0.
(ii): let f : V → W; we say that f is H-differentiable in v ∈ V if

there is a H-linear map dfv : V → W such that
∥

∥dfv(η)
−1 · η−1 · f(v)−1 · η · f(v · η)

∥

∥ = o(‖η‖)(16)

as ‖η‖ → 0.

We limit ourselves now in quoting a couple of elementary properties
of H-differentials.

Definition 4.5. Assume that S := {x · f(x) : x ∈ A}, where A is an
open neighborhood of e in W. We say that a subgroup T of Hn is the
regular tangent group of S at e if there is another subgroup N, such
that T ∩ N = {e} and Hn = T · N, and if, for all α > 0, there is λ > 0
such that

CT,N(e, α) ∩ δλS ∩ B(e, 1) = {e}.

More generally we say that T is the regular tangent group of S at p ∈ S
if T is the regular tangent plane of τp−1S at e.

Proposition 4.6. If f : W → V is Hn-differentiable in x with differ-
ential dfx, then T := graph(dfx) is the regular tangent group of S at
p = x · f(x).

Proposition 4.7. Let f : W → V. Assume that f is Hn-differentiable
and Y ∈ w ∩ h1, then the directional derivative DY f(x) exists and

(17) DY f(x) = dfx(exp Y ).
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