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Abstract

Motivated by the study of the non-parametric area A of the graph of the vortex map u (a
two-codimensional singular surface in R4) over the disc Ω ⊂ R2 of radius l, we perform a careful
analysis of the singular part of the relaxation of A computed at u. The precise description is
given in terms of a area-minimizing surface in a vertical copy of R3 ⊂ R4, which is a sort of
“catenoid” containing a segment corresponding to a radius of Ω. The problem involves an area-
minimization with a free boundary part; several boundary regularity properties of the minimizer
are inspected.

Key words: Relaxation, non-parametric minimal surfaces, Plateau problem, area functional in
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1 Introduction

Let l > 0, and Ω = Bl(0) = {x = (x1, x2) ∈ R2 : 0 ≤ |x| < l} ⊂ R2. Consider the vortex map

u(x) :=
x

|x|
, x ∈ Ω \ {0} (1.1)

The recent results of [2, 3] provide a formula, obtained via a relaxation procedure, for the area of
the graph of u, a singular two-dimensional surface in R4. More specifically, consider the classical
expression

A(v,Ω) =

∫
Ω

√
1 + |∇v(x1, x2)|2 + |Jv(x1, x2)|2 dx1dx2 ∀v ∈ C1(Ω;R2),

where ∇v is the gradient of v, a 2× 2 matrix, |∇v|2 is the sum of the squares of all elements of ∇v,
and Jv is the Jacobian determinant of v, i.e., the determinant of ∇v. Namely, A(v,Ω) is the area
of the graph of the smooth map v. Now, denote by

A(v,Ω) := inf
{
lim inf
k→+∞

A(vk,Ω)
}

∀v ∈ L1(Ω,R2), (1.2)
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the sequential relaxation of A(·,Ω) in the L1-convergence. The infimum in (1.2) is computed over
all sequences of maps vk ∈ C1(Ω,R2) approaching v in L1(Ω,R2). Despite A(·,Ω) = A(·,Ω) on
C1(Ω,R2), the computation of A(v,Ω) for v /∈ C1(Ω,R2) appears to be at the moment out of reach,
due essentially to highly nonlocal phenomena created by the mutual interaction of the singularities
of the map v, and also by the interaction of such singularities with the boundary of Ω [?, 18, 19].
However, in the case the map v equals the vortex map u, the following is proven in [2, 3]:

A(u,Bl(0)) =

∫
Bl(0)

√
1 + |∇u|2dx+ 2 inf

(h,ψ)∈Xl

Fl(h, ψ), (1.3)

showing the presence of the interesting singular term

2 inf
(h,ψ)∈Xl

Fl(h, ψ), (1.4)

expressed as an infimum of an appropriate functional Fl(h, ψ), that we are going to describe, and
that will be the argument of the present paper. If we set Rl = (0, l)× (−1, 1), and

Xl :=
{
(h, ψ) : h ∈ L∞([0, l]; [−1, 1]), ψ ∈ BV(Rl; [0, 1]),

ψ = 0 in SGh := {(w1, w2) ∈ Rl : w2 < h(w1)}
}
,

(1.5)

the functional Fl : Xl → [0,+∞) in (1.3) is defined as

Fl(h, ψ) := A(ψ,Rl)−H2(Rl \ SGh) +
∫
∂DRl

|ψ − φ| dH1 +

∫
(0,l)×{1}

|ψ| dH1. (1.6)

Since the function ψ takes scalar values, the expression A(ψ,B) of the area of its graph in any Borel
set B ⊆ Rl (i.e., the L

1-relaxation of the localized area A(·, B) defined on C1(B) or on W 1,1(B))
has the well-known expression

A(ψ,B) =

∫
B

√
1 + |∇aψ|2 dx+ |Dsψ|(B), (1.7)

with ∇aψ the absolutely continuous and Dsψ the singular part of the measure Dψ (the distribu-
tional gradient of ψ). Also, the subgraph of ψ, and the trace of ψ on the boundary of Rl, are
well-defined by classical results on BV -functions, and so (1.6) is well-defined. Here the Dirichlet
part ∂DRl of ∂Rl is given by two of the four sides, ∂DRl = ({0} × [−1, 1]) ∪ ((0, l) × {−1}), and
the Dirichlet boundary condition φ : ∂DRl → [0, 1], dictated by the geometry of the vortex map,
is given by φ(t, s) :=

√
1− s2 if (t, s) ∈ {0} × [−1, 1] and φ(t, s) := 0 if (t, s) ∈ (0, l) × {−1}; see

Fig. 4. The multiplicative factor 2 in front of the infimum in (1.4) is due to the fact that we find
convenient to describe the singular term, as we shall see, using a non-parametric Plateau problem,
while the original relaxation for the vortex map takes into account also the area contribution of
the reflected surface over the horizontal plane.

The aim of this paper is a careful analysis of the functional Fl and of its domain Xl, and the
precise computation of (1.4) and of its minimizers; our results shed light on the geometric meaning
of the two-codimensional question posed by the computation of A(u,Ω), and on its nonlocality
with respect to Ω. As we shall see, a non-parametric Plateau problem with partial free boundary
pops-up; its solution turns out to be an area-minimizing surface of disc-type, having trace half
of a “catenoid” constrained to contain a segment (a radius of Ω). The intuitive reason for this
is the following: if we pick in the source domain Ω a generic circle surrounding the origin (the
singular point of u), and we look at the corresponding values over it of a minimizing sequence (vk)
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of smooth maps approximating u in L1(Ω,R2), we can reasonably expect that these values almost
fill a copy of S1 in the target plane. The question then becomes: how can vk approximate u in
such a way that the area (in R4) of their graphs is as small as possible? The answer given here
is that the best way is to construct, in a “vertical” copy of R3 obtained by dropping from R4 an
appropriate coordinate, half of a “catenoid” (together with its mirror reflection with respect to the
horizonal plane), hinged exactly on a radius of Ω; morally, this produce a sort of phantom optimal
“catenoidal” tube joining the singularity with the boundary of Ω. As we shall see, a technical
simplification in the formulation of the problem will consist in doubling the rectangle Rl, in order
to make the boundary of Ω disappear in some sense, creating instead another point singularity at
distance 2l from the origin (a sort of image charge), where assigning a boundary condition similar
to the one given above the origin.

To introduce the correct setting we need to fix some notation. Denote R2l := (0, 2l)× (−1, 1) the
doubled rectangle, and let ∂DR2l := ({0, 2l} × [−1, 1]) ∪ ((0, 2l) × {−1}), now consisting of three
sides of ∂R2l. We also introduce the map φ : R2 → [0, 1] as

φ(w1, w2) :=

{√
1− w2

2 if |w2| ≤ 1,

0 otherwise,
(1.8)

which we will employ as Dirichlet boundary datum. Let

S2l := {σ : (0, 1) → R2l Lipschitz and injective, σ(0+) = (0, 1), σ(1−) = (2l, 1)},
XD,φ := {ψ ∈W 1,1(R2l) : ψ = φ on ∂DR2l},

where we have noted σ(x±0 ) := limx→x±0
σ(x). For any σ ∈ S2l we denote by Aσ the open planar

region enclosed between σ((0, 1)) and ∂DR2l. Let us first consider the following minimum problem:

inf{A(ψ,Aσ) : (σ, ψ) ∈ S2l ×XD,φ, ψ = 0 on σ((0, 1))}. (1.9)

Since this problem in general has not a minimizer, we need a relaxed formulation. However we
prefer not to directly relax problem (1.9), but instead we reduce to a cartesian setting, where the
free-boundary curve σ becomes the graph of a function h defined on (0, 2l) and Aσ its subgraph
SGh: namely, we introduce

H̃2l := {h : [0, 2l] → [−1, 1] continuous, h(0) = h(2l) = 1},

and for any h ∈ H̃2l set Gh := {(t, s) ∈ R2l : s = h(t)} and SGh := {(t, s) ∈ R2l : s < h(t)} (see
Fig. 4). We then consider the minimum problem

inf{A(ψ, SGh) : (h, ψ) ∈ H̃2l ×XD,φ, ψ = 0 on Gh}. (1.10)

Focusing on this, we will show that it is sufficient to restric attention to convex functions h, and
thus we introduce a sort of relaxed functional, namely

F2l(h, ψ) := A(ψ;R2l)−H2(R2l \ SGh) +
∫
∂DR2l

|ψ − φ|dH1 +

∫
∂R2l\∂DR2l

|ψ| dH1, (1.11)

defined on
Xconv

2l := {(h, ψ) : h ∈ H2l, ψ ∈ BV (R2l, [0, 1]), ψ = 0 on Rl \ SGh} , (1.12)

where
H2l =

{
h : [0, 2l] → [−1, 1], h convex, h(w1) = h(2l − w1) ∀w1 ∈ [0, 2l]

}
. (1.13)

3



Notice that, with respect to H̃2l×XD,φ, the class Xconv
2l is obtained specializing the choice of h but

generalizing the choice of ψ.
Then we will prove (Theorem 1.1) that

inf
(h,ψ)∈Xconv

2l

F2l(h, ψ) = inf{A(ψ, SGh) : (h, ψ) ∈ H̃2l ×XD,φ, ψ = 0 on Gh}, (1.14)

and that, for l large enough, the infimum on the right-hand side is not attained in H̃2l ×XD,φ and

equals π. Instead a minimizer (h, ψ) ∈ H̃2l × XD,φ exists for l small, and ψ is real analytic in the
interior of SGh; furthermore, we show that h is smooth and convex, and ψ has vanishing trace on
Gh.

Thus, problem (1.10) and the minimization of the functional in (1.11) are related through (1.14);
now, let us see how they are related with (1.9). An equivalent formulation of (1.14) is the following:
for σ ∈ S2l, take the closed curve Γ ⊂ R3 defined by glueing the trace of σ with the graph of φ
over ∂DR2l. We can then consider an area-minimizing disc Σ+ spanning Γ, solution of the classical
parametric Plateau problem. If σ([0, 1]) is the graph of a function h ∈ H̃2l, then

inf{A(ψ, SGh) : (h, ψ) ∈ H̃2l ×XD,φ, ψ = 0 on Gh} = infH2(Σ+), (1.15)

where the infimum on the right-hand side is computed over the set of all such curves σ (see Corollary
4.14). In turn, we will prove that

infH2(Σ+) = inf{A(ψ,Aσ) : (σ, ψ) ∈ S2l ×XD,φ, ψ = 0 on σ((0, 1))}, (1.16)

so that the original problem (1.9) is equivalent to (1.10).
Indeed, for l sufficiently small, say l ∈ (0, l0), the infimum on the left-hand side of (1.16) is

attained by a disc-type surface Σ+, and σ([0, 1]) coincides with the graph of a smooth convex
function h ∈ H̃2l. Also, the surface Σ+ is cartesian, i.e. is the graph of a function ψ ∈ XD,φ. On
the contrary, for l ≥ l0, Σ

+ is degenerate, in the sense that if σn((0, 1)) ⊂ R2l is the free-boundary of
Σ+
n , where (Σ

+
n ) is a minimizing sequence of discs for the Plateau problem, then σn((0, 1)) converges

to ∂DR2l and Σ+
n converges to two distinct half-circles of radius 1, whose total area is π.

We do not know the explicit value of the threshold l0. However, it is clear that l0 >
1
2 (see

the discussion at the end of Section 2.2 and Remark 2.1). Furthermore, if we double the surface
Σ+ by considering its symmetric with respect to the plane containing R2l, and then taking the
union Σ of these two area-minimizing surfaces, it turns out that Σ solves a non-standard Plateau
problem, spanning a nonsimple curve which shows self-intersections (this is the union of Γ with
its symmetric with respect to R2l, the obtained curve is the union of two circles connected by a
segment, see Section 2.2 and Fig. 1). Again, the obtained area-minimizing surface is a sort of
catenoid forced to contain a segment (see Fig. 2, left) for l small, and two distinct discs spanning
the two circles for l large (Fig. 2, right).

A related analysis of a general geometric setting for constrained non-parametric Plateau problems
can be found in [4]. Notice however that in [4] it is assumed positiveness of the boundary datum,
while in our case it is crucial that φ = 0 on {−1} × (0, 2l); it must be observed that the vanishing
of φ a some points is source of a number of difficulties. Furthermore we need here to relate the
Plateau problem to the functional Fl in (1.6), analysis which is missing in [4]. Indeed, in the special
setting of the present paper, some more precise description of solutions is necessary. Specifically
(see Corollary 4.12) every solution will be continuous and null on its free boundary curve.

Before stating our main results, it is worth to point out that the solution surface that we obtain
is related to the problem of relaxation of area functional in codimension > 1. Indeed, the restriction
of Σ to the set B1(0)× [0, l] is a suitable projection in R3 of the vertical part of an optimal cartesian
current with underlying map the vortex map (see the introduction of [3]).
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In Proposition 3.4 below, we first prove that the infimum of Fl on the class Xl can be equivalently
computed on pairs (h, ψ) ∈ Xconv

l , where the function h is assumed to be convex, nonincreasing
and continuous on [0, l]. Then, using a symmetry argument, it is easily seen that

2 inf
(h,ψ)∈Xconv

l

Fl(h, ψ) = inf
(h,ψ)∈Xconv

2l

F2l(h, ψ).

The main results of this paper are contained in the following two theorems.

Theorem 1.1. There exists a solution of

min
{
F2l(h, ψ) : (h, ψ) ∈ Xconv

2l

}
. (1.17)

Moreover, any minimizing pair (h, ψ) in (1.17) satisfies the following properties:

(1) ψ is symmetric with respect to {w1 = l} ∩R2l;

(2) If h is not identically −1, then

(2i) h ∈ C0([0, 2l]) and is analytic in (0, 2l), h(0) = 1 = h(2l), and h > −1 in (0, 2l);

(2ii) ψ is analytic and strictly positive in SGh;

(2iii) ψ is continuous up to the boundary of SGh, and attains the boundary condition, i.e., for
(w1, w2) ∈ ∂SGh,

ψ(w1, w2) =


0 if w2 = −1

0 if w2 = h(w1),√
1− w2

2 if w1 = 0 or w1 = 2l,

(1.18)

hence
F2l(h, ψ) = A(ψ, SGh); (1.19)

(2iv) ψ < φ in R2l.

Theorem 1.2. Problem (1.3) has a solution, and

2 inf
(h,ψ)∈Xl

Fl(h, ψ) = inf{A(ψ,Aσ) : (σ, ψ) ∈ S2l ×XD,φ, ψ = 0 on σ((0, 1))}

= inf{A(ψ, SGh) : (h, ψ) ∈ H̃2l ×XD,φ, ψ = 0 on Gh}
= inf

(h,ψ)∈Xconv
2l

F2l(h, ψ). (1.20)

Furthermore, there is a constant l0 > 0 such that the following holds:

(i) for l ∈ (0, l0) there is a minimizer (h⋆, ψ⋆) ∈ Xconv
2l of F2l satisfying conditions (1) and (2i)-

(2iv) of Theorem 1.1, which is also a minimizer of (1.10), (h⋆ [0, l], ψ⋆ Rl) is a minimizer
of Fl, and the pair (σ∗, ψ∗), with σ⋆(t) := (2lt, h⋆(t)), is a solution of (1.9);

(ii) For l ≥ l0 a common solution is h⋆ ≡ −1 and ψ ≡ 0.

The organization of the paper is as follows. Section 2 contains some notation used throughout
the paper. Section 3 contains some preliminary results on the functional Fl and its doubled, on
their domains and on relaxation. Section 4 contains the proofs of Theorems 1.1 and 1.2; the most
difficult part is contained in the regularity Theorem 4.11.
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2 Notation and preliminaries

Let O ⊂ Rn be an open set, and let v ∈ L1(O). We denote by R(v) the set of regular points of
v, i.e., the set consisting of all x ∈ O which are Lebesgue points for v and v(x) coincides with
the Lebesgue value of v at x. We denote by v a good representative of v ∈ L1(O), i.e. a function
such that v(x) coincides with the Lebesgue value of v at x, for all x ∈ R(v). If in addition v is a
function of bounded variation, we denote by Rv the set of regular points x ∈ R(v) such that v is
approximately differentiable at x. Notice that if v ∈ BV (O) the set R(v) \Rv is Ln-negligible.

For a function v ∈ L1(O) \BV (O) we also set

G′
v := {(x, v(x)) ∈ R(v)× R}, SG′

v := {(x, y) ∈ R(v)× R : y < v(x)}. (2.1)

If in addition v ∈ BV (O), the previous sets are classically defined as above with R(v) replaced by
Rv, namely

Gv := {(x, v(x)) ∈ Rv × R}, SGv := {(x, y) ∈ Rv × R : y < v(x)}.

Given a 2-dimensional rectifiable set S ⊂ U ⊂ R3, U open, and a tangent unit simple 2-vector τ to
it, we denote by 〚S〛 the current given by integration over S, namely

〚S〛(O) =

∫
S
<τ(x), ω(x)> dH2(x),

ω a smooth 2-form with compact support in U , see [14], [10], [9]. We often will identify SG′
v with

the integral 3-current 〚SG′
v〛 ∈ D3(O × R). If v is a function of bounded variation, O \ Rv has

zero Lebesgue measure, so that the current 〚SGv〛 coincides with the standard integration over the
subgraph of v. It is well-known that the perimeter of SGv in O × R coincides with A(v,O).

The support of the boundary of 〚SGv〛 includes the graph Gv, but in general consists also of
additional parts, called vertical. We denote by

Gv := ∂〚SGv〛 (O × R),

the generalized graph of v, which is a 2-integral current supported on ∂∗SGv, the reduced boundary
of SGv in O × R.

Let Ô ⊂ R2 be a bounded open set such that O ⊆ Ô, and suppose that L := Ô ∩ ∂O is a
rectifiable curve. Given ψ ∈ BV (O) and a W 1,1 function φ : Ô → R, we can consider

ψ :=

{
f on O,

φ on Ô \O.

Then (see [11], [1])

A(ψ, Ô) = A(ψ,O) +

∫
L
|ψ − φ|dH1 +A(φ, Ô \O).

2.1 Plateau problem in parametric form

We report here some results about the classical solution to the disc-type Plateau problem. Let
D denote the open disc of radius 1 centered at the origin of R2. If Γ ⊂ R3 is a closed rectifiable
Jordan curve, the Plateau problem consists into minimize the functional

PΓ(X) :=

∫
D
|∂x1X ∧ ∂x2X|dx1dx2, (2.2)
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on the class of all functions X ∈ C0(B1;R3) ∩H1(D;R3) with X ∂D being a weakly monotonic
parametrization of the curve Γ. The functional (2.2) measures the area (with multiplicity) of the
surface X(D).

A solution XΓ to the Plateau problem exists and satisfies the properties: it is harmonic (hence
analytic)

∆XΓ = 0 in D,

it is a conformal parametrization

|∂x1XΓ|2 = |∂x2XΓ|2, ∂x1XΓ · ∂x2XΓ = 0 in D,

and XΓ ∂D is a strictly monotonic parametrization of Γ. We will say that the surface XΓ(D) has
the topology of the disc.

Thanks to the properties above it is always possible, with the aid of a conformal change of
variables, to parametrize X(D) over any simply connected bounded domain. In other words, if U
is any such domain, and if Φ : U → D is any conformal homeomorphism, then X ◦ Φ is a solution
to the Plateau problem on U .

2.2 A Plateau problem for a self-intersecting boundary space curve

The classical disc-type Plateau problem is solved for boundary value a simple Jordan space curve,
in particular Γ does not have self-intersections. Here we will treat a specific Plateau problem where
the curve Γ has non-trivial intersections, and it overlaps itself on a segment which is parametrized
two times with opposite directions.

Specifically, we consider the cylinder (0, 2l)×D and two circles C1, C2 which are the boundaries
of its two circular bases, namely C1 := {0} × ∂D and C2 := {2l} × ∂D. Then we take the segment
(0, 2l)× {1} × {0}. If γ0 is a monotonic parametrization of this segment, starting from (0, 1, 0) up
to (2l, 1, 0), γ1 is a monotonic parametrization of C1 starting from the point (0, 1, 0) and ending at
the same point, and γ2 a parametrization of C2 with initial and final point (2l, 1, 0) with the same
orientation of C1, then we consider the parametrization

γ := γ1 ⋆ γ0 ⋆ (−γ2) ⋆ (−γ0), (2.3)

(read from left to right) which is a closed curve in R3 which travels two times across the segment
(0, 2l)×{1}×{0} with opposite directions (the orientation of this curve is depicted in Fig. 1). We
want to solve the Plateau problem with Γ to be the image of γ.

The existence of solutions to the Plateau problem spanning self-intersecting boundaries has been
addressed in [12], whose results have been recently improved in [7]. Without entering deeply into
the details, it is known that, depending on the geometry of γ (in this case, depending on the
distance between the two circles C1 and C2) two kind of solutions are expected:

(a) The solution consists of two discs filling C1 and C2, see Fig. 2, right. In this case, a
parametrization of it X : D → R3 can be chosen so that, if L1 and L2 are two parallel
chords in D dividing D in three sectors, then X restricted to the sector enclosed between L1

and L2 parametrizes the segment γ0 (and then its resulting area is null), X(L1) = P1 and
X(L2) = P2 are the two endpoints of γ0, and X restricted to the sectors between Li, i = 1, 2,
and ∂D parametrizes the disc filling Ci, i = 1, 2. Moreover the map X can be still taken
Sobolev regular (see [7] for details).
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Figure 1: The self-overlapping curve Γ with its orientation.

(b) There is a classical solution, i.e., there is a harmonic and conformal map X : D → R3,
continuous up to the boundary of D, such that X ∂D is a weakly monotonic parametrization
of Γ. In this case the resulting minimal surface is a sort of catenoid attached to the segment
(0, 2l)× {(1, 0)} (see Fig. 2 left).

Remark 2.1. We expect that there is a threshold l0 such that if l < l0 an area-minimizing disc
with boundary γ is of the form (b), and for values l > l0 the two discs have minimal area. We do
not find explicitly l0 but it is easy to see that if l ≤ 1

2 an area-minimizing disc with boundary γ has
always less area than the solution with two discs. Indeed, the area of the two discs is 2π, whereas
we can always compare the area of the surface Σ as in (b) with the area of the lateral surface of
the cylinder (0, 2l)×D, that is 4lπ. Hence H2(Σ) < 4lπ ≤ 2π for l ≤ 1

2 .

3 Preliminary results on the functional Fl and its doubled

For all ϱ > 0 we denote Rϱ := (0, ϱ) × (−1, 1). For any h ∈ L∞([0, ϱ]; [−1, 1]), we denote by G′
h

and SG′
h the sets in (2.1). We recall that φ has been defined in (1.8).

Definition 3.1 (The functional Fl). Let l > 0 be fixed. Given h ∈ L∞([0, l]; [−1, 1]) and
ψ ∈ BV(Rl; [0, 1]) we define

Fl(h, ψ) := A(ψ,Rl)−H2(Rl \ SG′
h) +

∫
∂DRl

|ψ − φ| dH1 +

∫
(0,l)×{1}

|ψ| dH1. (3.1)

We notice that if h is also a function of bounded variation, then we can also write

Fl(h, ψ) := A(ψ,Rl)−H2(Rl \ SGh) +
∫
∂DRl

|ψ − φ| dH1 +

∫
(0,l)×{1}

|ψ| dH1. (3.2)

We further remember from (1.5) the definition of Xl:

Xl := {(h, ψ) : h ∈ L∞([0, l]; [−1, 1]), ψ ∈ BV(Rl; [0, 1]), ψ = 0 in Rl \ SG′
h}. (3.3)
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Figure 2: on the left the shape of a possible solution to the Plateau problem with boundary Γ. On
the right another solution to the Plateau problem with boundary Γ. See Section 2.2

In this section our concern is the analysis of the minimum problem

inf
(h,ψ)∈Xl

Fl(h, ψ). (3.4)

Notice that in minimizing Fl we have a free boundary condition on the edge {l} × [−1, 1].

Remark 3.2. Let (h, ψ) ∈ Xl. If t0 ∈ (0, l) is a regular point for h (i.e. t0 ∈ R(h)) and if h(t0) < 1,
then the trace of ψ over the segment {w1 = t0, h(t0) ≤ w2 ≤ 1} vanishes. Indeed for any η > 0 we
can find δη > 0 such that

1

2δ

∫ t0+δ

t0−δ
|h(w1)− h(t0)| dw1 < η ∀δ ∈ (0, δη). (3.5)

Let now s0 ∈ (−1, 1) be such that h(t0) < s0 ≤ 1 (i.e., (t0, s0) ∈ {w1 = t0, w2 > h(t0)}), and set
2∆ := s0 − h(t0). By Chebyschev inequality and (3.5) it follows that

H1(B∆) ≤
2δη

∆
where B∆ := {w1 ∈ (t0 − δ, t0 + δ) : |h(w1)− h(t0)| > ∆}. (3.6)

Then, for any ξ ∈ (0,∆) we infer1

1

2δ

∫ t0+δ

t0−δ

∫ s0+ξ

s0−ξ
ψ(w1, w2) dw2dw1 ≤

1

2δ

∫ t0+δ

t0−δ

∫ s0+ξ

s0−ξ
χ{ψ>0}(w1, w2) dw2dw1

≤ 1

2δ

∫ t0+δ

t0−δ

∫ s0+ξ

s0−ξ
χSGh

(w1, w2) dw2dw1 ≤
ξ

δ

∫ t0+δ

t0−δ
χB∆

(w1)dw1 ≤
2ξη

∆
,

(3.7)

where the penultimate inequality follows from the inclusions

SG′
h ∩

(
[t0 − δ, t0 + δ]× [s0 − ξ, s0 + ξ]

)
⊆ SG′

h ∩
(
[t0 − δ, t0 + δ]× [s0 −∆, s0 +∆]

)
⊆ B∆ × [s0 −∆, s0 +∆],

1In the first inequality we have used that 0 ≤ ψ ≤ 1; in the second inequality that SG′
h is the subgraph of h in

(0, l)× (−1, 1); in the third inequality we have used that s0 − h(t0) = 2∆ and that ξ < ∆.
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and the last inequality follows from (3.6). Now (3.7) entails the claim by the arbitrariness of η > 0
and since ψ ≥ 0.

Now, we refine the choice of the class of pairs (h, ψ) appearing in the infimum in (3.4).

Definition 3.3 (The classes Hl and Xconv
l ). We set

Hl := {h ∈ L∞([0, l]; [−1, 1]) : h convex and nonincreasing in [0, l], h(0) = 1},
Xconv
l := {(h, ψ) ∈ Xl : h ∈ Hl}.

Proposition 3.4 (Convexifying h). We have

inf
(h,ψ)∈Xl

Fl(h, ψ) = inf
(h,ψ)∈Xconv

l

Fl(h, ψ). (3.8)

Proof. It is enough to show the inequality “≥”. By extending ψ outside the open rectangle Rl as
ψ := 0 in ((0, l)× R) \Rl, we see that

Fl(h, ψ) = A
(
ψ,Rl \

(
{w1 = 0} ∪ {w1 = l}

))
−H2(Rl \ SG′

h) +

∫
{0}×[−1,1]

|ψ− − φ| dH1, (3.9)

where (see (1.7))

A
(
ζ,Rl \

(
{w1 = 0} ∪ {w1 = l}

))
= A(ζ,Rl) +

∫
(0,l)×{1,−1}

|ζ−| dH1,

ζ− being the trace of ζ ∈ BV (Rl) on (0, l)× {1,−1}.
The thesis of the proposition will follow from the next three observations:

(1) If h ∈ Hl is such that h(t0) = −1 for some regular point t0 ∈ (0, l), then the subgraph
SGh of h splits in two mutually disjoint components: (SG′

h)
− = SG′

h ∩ {w1 < t0} and
(SG′

h)
+ = SG′

h ∩ {w1 > t0}. Let ψ ∈ BV (Rl, [0, 1]) be such that

ψ = 0 a.e. in Rl \ SG′
h.

The trace of ψ over the segment {w1 = t0, h(t0) ≤ w2 ≤ 1} is 0, as a consequence of Remark
3.2. Then the function ψ⋆ : Rl → [0, 1] defined as

ψ⋆(w1, w2) :=

{
ψ(w1, w2) if w1 < t0,

0 otherwise,

still satisfies (h, ψ⋆) ∈ Xl, and

Fl(h, ψ⋆) ≤ Fl(h, ψ).

Being ψ⋆ identically zero in {w1 > t0}, in particular in SG′
h ∩ {w1 > t0}, we can introduce

h⋆(w1) :=

{
h(w1) if w1 < t0,

−1 otherwise,

so that (h⋆, ψ⋆) ∈ Xl and we easily see that Fl(h⋆, ψ⋆) ≤ Fl(h, ψ⋆); hence

Fl(h⋆, ψ⋆) ≤ Fl(h, ψ).
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(2) More generally, let (h, ψ) ∈ Xl and let t0 ∈ (0, l) be any regular point of h; we can also
suppose that h(t0) < 1. Consider

h⋆(w1) :=

{
h(w1) if w1 < t0,

h(w1) ∧ h(t0) otherwise,
(3.10)

ψ⋆(w1, w2) :=


ψ(w1, w2) if w1 < t0,

ψ(w1, w2) if w1 ≥ t0, w2 ≤ h(t0),

0 otherwise.

We claim that Fl(h⋆, ψ⋆) ≤ Fl(h, ψ). Define

U := {(w1, w2) ∈ (0, l)× (−1, 1) : w1 > t0, h(t0) < w2 < h(w1)},

that is the set where we have replaced ψ by 0. To prove the claim, using (3.9) and the
equalities ∫

{0}×[−1,1]
|ψ− − φ| dH1 =

∫
{0}×[−1,1]

|ψ⋆− − φ| dH1,

H2(Rl \ SG′
h⋆) = H2(U ∪ (Rl \ SG′

h)) = H2(U) +H2(Rl \ SG′
h),

we have to show that

A
(
ψ⋆, Rl \

(
{w1 = 0} ∪ {w1 = l}

))
≤ A

(
ψ,Rl \

(
{w1 = 0} ∪ {w1 = l}

))
+H2(U). (3.11)

Assume that U is non-empty and that H2(U) > 0. It is convenient to introduce

V := {(w1, w2) ∈ Rl : t0 < w1 < l, h(w1) ∨ h(t0) ≤ w2 < 1},

so that U ∪ V = {(w1, w2) : w1 > t0, h(t0) < w2 < 1} is an open rectangle. Since we have
modified ψ only in U , inequality (3.11) is equivalent to

A(ψ⋆, U ∪ V ) +

∫
(t0,l)×{h(t0)}

|ψ⋆+ − ψ⋆−|dH1 +

∫
(t0,l)×{1}

|ψ⋆−|dH1

≤A(ψ,U ∪ V ) +

∫
(t0,l)×{h(t0)}

|ψ+ − ψ−|dH1 +

∫
(t0,l)×{1}

|ψ−|dH1 +H2(U),

(3.12)

with ψ± (resp. ψ⋆±) the external and internal traces of ψ (resp. ψ⋆) on ∂(U∪V ); here we have
used from Remark 3.2 that the trace of ψ on {t0}×(h(t0), 1) is zero (hence

∫
{t0}×(h(t0),1)

|ψ+−
ψ−|dH1 =

∫
{t0}×(h(t0),1)

|ψ⋆+ − ψ⋆−|dH1 = 0) and that the external traces ψ+, ψ⋆+ on

(t0, l)× {1} vanish as well. Hence, exploiting that ψ⋆ = 0 on U ∪ V , so that A(ψ⋆, U ∪ V ) =
H2(U) +H2(V ), and that ψ⋆ = ψ on Rl \ (U ∪ V ), inequality (3.12) is equivalent to

H2(V ) +

∫
(t0,l)×{h(t0)}

|ψ+|dH1

≤A(ψ,U ∪ V ) +

∫
(t0,l)×{h(t0)}

|ψ+ − ψ−|dH1 +

∫
(t0,l)×{1}

|ψ−|dH1.

(3.13)

We split
(t0, l) = H1 ∪H2 ∪H3,
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with H1 := {w1 ∈ (t0, l) : h(w1) = 1}, H2 := {w1 ∈ (t0, l) : h(t0) ≤ h(w1) < 1}, and
H3 := {w1 ∈ (t0, l) : h(w1) < h(t0)}. Since A(ψ;U ∪ V ) = H2(Gψ ∩ ((U ∪ V )×R)), by slicing
and looking at Gψ as an integral current [14], [10], [9], we have2

A(ψ,U ∪ V ) ≥
∫
(t0,l)

H1
(
(Gψ)t∩((t0, l)× (h(t0), 1)× R)

)
dt

≥
∫
(t0,l)

∫
(h(t0),1)

|Dw2ψ(t, s)| dt+H2(V )

=

∫
H1∪H2

∫
(h(t0),1)

|Dw2ψ(t, s)| dt+H2(V )

≥
∫
H2

|ψ−(t, h(t0))| dt+
∫
H1

|ψ−(t, h(t0))− ψ−(t, 1)| dt+H2(V )

≥
∫
H1∪H2

|ψ−(t, h(t0))| dt−
∫
H1

|ψ−(t, 1)| dt+H2(V )

=

∫
(t0,l)

|ψ−(t, h(t0))| dt−
∫
H1

|ψ−(t, 1)| dt+H2(V )

=

∫
(t0,l)

|ψ−(t, h(t0))| dt−
∫
(t0,l)

|ψ−(t, 1)| dt+H2(V ),

where (Gψ)t is the slice of Gψ on the plane {w1 = t}, that is the generalized graph of the
function ψ {w2 = t}. From the above expression, the triangular inequality implies (3.13).

(3) Let (h, ψ) ∈ Xl. Let t1, t2 ∈ (ε, l) be regular points for h with t1 < t2, and let r12(t) :=

h(t1) +
h(t2)−h(t1)

t2−t1 (t− t1). We consider the following modifications of h and ψ:

h#(w1) :=

{
h(w1) if 0 < w1 < t1 or l > w1 > t2,

h(w1) ∧ r12(w1) otherwise,

and

ψ#(w1, w2) :=


ψ(w1, w2) if 0 < w1 < t1 or l > w1 > t2,

ψ(w1, w2) if w1 ∈ [t1, t2] and w2 ≤ r12(w1),

0 otherwise.

In other words we set ψ equal to 0 above the segment L12 connecting (t1, h(t1)) to (t2, h(t2)).
Also in this case we have

Fl(h#, ψ#) ≤ Fl(h, ψ). (3.14)

Indeed, if h(t1) = h(t2) the proof is identical to the case (2). Otherwise, it can be obtained
by slicing as well, parametrizing L12 by an arc length parameter, then slicing the region
{(w1, w2) : w1 ∈ (t1, t2), w2 ∈ (ℓ12(w1), 1)}3 by lines perpendicular to L12, and exploiting the
fact that ψ equals zero on the segments {ti} × (h(ti), 1).

Let (h, ψ) ∈ Xl be given; from (3) we can always replace h by its convex envelope and modifying
accordingly ψ, we get two functions h# and ψ# such that (3.14) holds. Moreover, by (2), if
t0 ∈ (0, l) is a regular point for h#, we can always replace h# by h⋆ in (3.10), so that h⋆ turns out
to be nonincreasing. The assertion of the proposition follows.

2Here we use that Dw2ψ = 0 in V .
3ℓ12 represents the affine function whose graph is L12.
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Figure 3: the graph of a convex symmetric function h ∈ H2l; Lh, defined in (3.16), consists of the
two vertical segments over the boundary of (0, 2l), from h(0) = h(2l) to 1.

Let us rewrite the functional Fl in a convenient way. Let (h, ψ) ∈ Xconv
l , and let Gh =

{(w1, h(w1)) : w1 ∈ (0, l)} ⊂ Rl be the graph of h. We have, using (3.2),

Fl(h, ψ) = A(ψ, SGh) +

∫
Gh\{h=−1}

|ψ| dH1 +

∫
∂DRl

|ψ − φ| dH1, (3.15)

where, in the integral over Gh, we consider the trace of ψ SGh on Gh.

3.1 Doubling

Now we analyse the minimum problem on the right-hand side of (3.8). To this aim, as explained
in the introduction, it is convenient to write the analogue of Fl in a doubled rectangle, see (1.11).

Remember that R2l denotes the open doubled rectangle, R2l := (0, 2l) × (−1, 1); we define its
Dirichlet boundary 4 ∂DR2l ⊂ ∂R2l as

∂DR2l :=
(
{0, 2l} × [−1, 1]

)
∪
(
(0, 2l)× {−1}

)
,

so that ∂R2l \ ∂DR2l = (0, 2l)× {1}.
We recall that H2l has been defined in (1.13), and that for each h ∈ H2l,

Gh := {(w1, h(w1)) : w1 ∈ (0, 2l)}, SGh := {(w1, w2) ∈ R2l : w2 < h(w1)},

where SGh := Ø in the case h ≡ −1. Notice that for h ∈ H2l, SGh is an open set. We set

Lh :=
(
{0} × (h(0), 1)

)
∪
(
{2l} × (h(2l), 1)

)
, (3.16)

which is either empty, or the union of two equal intervals, see Fig. 3.
Clearly, the restriction of φ, defined in (1.8), on ∂DR2l reads as:

φ(w1, w2) :=

{√
1− w2

2 if (w1, w2) ∈ {0, 2l} × [−1, 1],

0 if (w1, w2) ∈ (0, 2l)× {−1}.
(3.17)

The graph of φ on {0, 2l} × [−1, 1] consists of two half-circles of radius 1 centered at (0, 0) and
(2l, 0) respectively, see Fig. 4.

4It is worth noticing once more that ∂DR2l consists of three edges of ∂R2l, while ∂DRl (see (??)) consists of two
edges of ∂Rl.

13



Figure 4: the graph of the boundary condition function φ in (3.17) on the Dirichlet boundary of
R2l. We also draw the graph of a function h ∈ H2l, and the two segments Lh.

We further recall that Xconv
2l has been defined in (1.12) and that, and for any (h, ψ) ∈ Xconv

2l ,
F2l(h, ψ) has been defined in (1.11).

Remark 3.5. (i) The only case in which the last addendum on the right-hand side of (1.11)
may be positive is when h is identically 1 on ∂R2l \ ∂DR2l;

(ii) We claim that

F2l(h, ψ) = A(ψ, SGh) +

∫
∂DSGh

|ψ − φ| dH1 +

∫
Gh\{w2=−1}

|ψ−| dH1 +

∫
Lh

φ dH1, (3.18)

where
∂DSGh := (∂DR2l) ∩ ∂SGh, (3.19)

and ψ− denotes the trace of ψ from the side of SGh.

To show (3.18), we start to observe that, using that ψ = 0 onR2l\SGh, it follows
∫
∂R2l\∂DR2l

|ψ| dH1 =∫
Gh∩{w2=1} |ψ| dH

1. This last term is nonzero only if h ≡ 1, in which case Lh is empty, and

the equivalence between (1.11) and (3.18) easily follows. If instead h is not identically 1,
then, using again that ψ = 0 on R2l \ SGh, we see that the last term on the right-hand side
of (1.11) is null, and from (1.7),

A(ψ, SGh) = A(ψ,R2l)−H2(R2l \ SGh)−
∫
Gh∩R2l

|ψ−|dH1; (3.20)

hence, inserting (3.20) into (1.11), we obtain, splitting ∂DR2l = (∂DSGh)∪Lh ∪ (Gh ∩{w2 =
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−1}), and using that φ = 0 on (0, 2l)× {−1},

F2l(h, ψ) =A(ψ,R2l)−H2(R2l \ SGh) +
∫
∂DR2l

|ψ − φ|dH1

=A(ψ, SGh) +

∫
∂DR2l

|ψ − φ|dH1 +

∫
Gh∩R2l

|ψ−|dH1

=A(ψ, SGh) +

∫
∂DSGh

|ψ − φ|dH1 +

∫
Lh

|φ|dH1 +

∫
Gh∩{w2=−1}

|φ|dH1

+

∫
Gh∩R2l

|ψ−|dH1

=A(ψ, SGh) +

∫
∂DSGh

|ψ − φ|dH1 +

∫
Gh\{w2=−1}

|ψ−|dH1 +

∫
Lh

φdH1.

(iii) We have

inf
(h,ψ)∈Xconv

2l

F2l(h, ψ)

= inf
{
A(ψ, SGh) +

∫
∂DSGh

|ψ − φ| dH1 +

∫
Gh\{w2=−1}

|ψ−| dH1 +

∫
Lh

φ dH1

: h ∈ H2l \ {h ≡ −1}, ψ ∈ BV(SGh, [0, 1])
}
.

(3.21)

(iv) If h > −1 everywhere, then SGh is connected, ∂DSGh = ∂DR2l \Lh, and the sum of the first
three terms on the right-hand side of (3.18) gives the area of the graph of ψ on SGh, with
the boundary condition φ set to be 0 on Gh.

(v) Our aim is to have a surface in R2l ×R ⊂ R3 = R2
(w1,w2)

×R of graph type, whose boundary
consists of the union of the graph of φ and the graph of a convex function h ∈ H2l. The last
three terms in (3.18) are an area penalization to force the solution to attain these boundary
conditions by filling, with vertical walls, the gap between the boundary of any competitor
surface (the generalized graph of ψ) and the required boundary conditions. In particular the
presence of the last term of (3.18) is explained as follows: when h(0) < 1, i.e., Lh ̸= Ø,
the graph of any ψ ∈ BV(SGh, [0, 1]) does not reach the graph of φ|Lh

(simply because
Lh ∩ SGh = Ø). To overcome this, the graph of ψ is glued to the wall consisting of the
subgraph of φ|Lh

(inside R2l).

(vi) Take hn := −1+ 1
n , and ψn := c > 0 on SGhn , then lim

n→+∞
A(ψn, SGhn) = 0, lim

n→+∞

∫
∂DSGhn

|ψn−

φ| dH1 = 2cl, and lim
n→+∞

∫
Ghn\{hn=−1}

|ψ| dH1 = 2cl, lim
n→+∞

∫
Lhn

φ dH1 = π, hence

F2l(−1, 0) = π < lim
n→+∞

F2l(hn, ψn) = 4cl + π,

that is the functional F2l in some sense forces a minimizing sequence to attain the boundary
conditions as much as possible.

By symmetry, we easily infer

2 inf
(h,ψ)∈Xconv

l

Fl(h, ψ) = inf
(h,ψ)∈Xconv

2l

F2l(h, ψ), (3.22)
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therefore, by (3.8),

inf
(h,ψ)∈Xl

Fl(h, ψ) =
1

2
inf

(h,ψ)∈Xconv
2l

F2l(h, ψ). (3.23)

Next we analyse the latter minimization problem.

Remark 3.6 (Two explicit estimates from above). Let h ≡ 1 and ψ(w1, w2) :=
√
1− w2

2 =
φ(w1, w2), for any (w1, w2) ∈ R2l. Then (h, ψ) is one of the competitors in (3.22) and therefore

inf
(h,ψ)∈Xconv

2l

F2l(h, ψ) ≤ F2l(1, ψ) = 2πl ∀l > 0,

which is the lateral area of the cylinder (0, 2l)× D. Also, F2l is well-defined for h ≡ −1, in which
case SGh = Ø, ψ ≡ 0 in R2l, and therefore

F2l(−1, 0) =

∫
{0,2l}×(−1,1)

φ dH1 = π, (3.24)

which is the area of the two half-discs joined by the segment (0, 2l)×{−1}, see Fig. 4. In particular

inf
(h,ψ)∈Xconv

2l

F(h, ψ) ≤ π ∀l > 0. (3.25)

In the next section we shall prove the existence and regularity of minimizers for the minimum
problem on the right-hand side of (3.23).

4 Proof of Theorems 1.1 and 1.2

This section is devoted to the proof of our main results, Theorems 1.1 and 1.2, and it is splitted
into various subsections for clarity of the presentation.

4.1 Existence of a minimizer of F2l in Xconv
2l

We start by analysing the features of the space H2l defined in (1.12). Clearly the graph of h ∈ H2l

is symmetric with respect to {w1 = l}; also, the convexity of h implies h ∈ Liploc((0, 2l)), and h
has a continuous extension on [0, 2l].

Definition 4.1 (Convergence in Xconv
2l ). We say that a sequence ((hn, ψn)) ⊂ Xconv

2l converges
to (h, ψ) ∈ Xconv

2l , if

- (hn) converges to h uniformly on compact subsets of (0, 2l);

- (ψn) converges to ψ in L1(R2l).

Lemma 4.2 (Compactness of H2l). Every sequence (hk) ⊂ H2l has a subsequence converging
uniformly on compact subsets of (0, 2l) to some element of H2l.

Proof. See for instance [13, Sec. 1.1].

Lemma 4.3 (Closedness of Xconv
2l ). Let ((hn, ψn)) ⊂ Xconv

2l be a sequence such that (hn) converges
to h ∈ H2l uniformly on compact subsets of (0, 2l), and (ψn) converges to ψ ∈ BV(R2l) in L

1(R2l).
Then (h, ψ) ∈ Xconv

2l .
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Proof. Possibly passing to a (not relabelled) subsequence, we can assume that (ψn) converges to ψ
pointwise in A ⊆ R2l, with H2(R2l \A) = 0, and ψn = 0 in A∩ (R2l \SGhn) for all n ∈ N. We only
have to show that ψ = 0 in A ∩ (R2l \ SGh). We may assume that A does not intersect the graph
of h. If (w1, w2) ∈ A ∩ (R2l \ SGh), then w2 > h(w1). From the local uniform convergence of (hn)
to h in (0, 2l) it follows that w2 > hn(w1) for n large enough, i.e., (w1, w2) ∈ A∩ (R2l \SGhn), and
the assertion follows.

Lemma 4.4 (Lower semicontinuity of F2l). Let ((hn, ψn)) ⊂ Xconv
2l be a sequence converging

to (h, ψ) ∈ Xconv
2l in the sense of Definition 4.1. Then

F2l(h, ψ) ≤ lim inf
n→+∞

F2l(hn, ψn). (4.1)

Proof. It is standard5 to show that the functional

ψ ∈ BV (R2l, [0, 1]) → A(ψ,R2l) +

∫
∂DR2l

|ψ − φ| dH1 +

∫
∂R2l\∂DR2l

|ψ| dH1 (4.2)

is L1(R2l)-lower semicontinuous. Since (hn) converges to h pointwise in (0, 2l), we also have
limn→+∞H2(R2l \ SGhn) = H2(R2l \ SGh). The assertion follows.

The existence statement of Theorem 1.1 is given by the following

Proposition 4.5 (Existence of a minimizer of (1.17)). The minimum problem (1.17) has a
solution.

Proof. The pair (h0, ψ0) given by

h0(w1) := −1, ψ0(w1, w2) := 0, (w1, w2) ∈ R2l,

is a competitor in (1.17). Hence, for a minimizing sequence ((hn, ψn)) ⊂ Xconv
2l , recalling (3.24) we

have
lim

n→+∞
F2l(hn, ψn) = inf

{
F2l(h, ψ) : (h, ψ) ∈ Xconv

2l

}
≤ π. (4.3)

Thus supn∈N |Dψn|(R2l) < +∞, and there exists ψ ∈ BV (R2l, [0, 1]) such that, up to a (not
relabelled) subsequence, (ψn) converges to ψ in L1(Ω).

Using Lemmas 4.2 and 4.3, we may assume that (hn) converges locally uniformly to some h ∈ H2l,
and ψ = 0 in R2l \ SGh. The assertion then follows from Lemma 4.4.

Now, we turn to the regularity and qualitative properties of minimizers.

5Indeed, let φ̃ : ∂R2l → [0, 1] be defined as φ̃ := φ on ∂DR2l, and φ̃ := 0 on ∂R2l \ ∂DR2l. Let B ⊂ R2 be an open
disc containing R2l. We extend φ̃ to a W 1,1 function in B \ R2l, [11, Thm. 2.16], and we still denote by φ̃ such an

extension. For every ψ ∈ BV (R2l), define ψ̂ := ψ in R2l and ψ̂ := φ̃ in B \R2l. We have

A(ψ,R2l) +

∫
∂DR2l

|ψ − φ|dH1 +

∫
∂R2l\∂DR2l

|ψ|dH1 = A(ψ,R2l) +

∫
∂R2l

|ψ − φ̃|dH1 = A(ψ̂, B)−A(φ̃, B \R2l),

where the last equality follows from [11, (2.15)]. Thus the lower semicontinuity of the functional in (4.2) follows from
the L1(B)-lower semicontinuity of the area functional.
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4.2 Regularity of minimizers of F2l in Xconv
2l

The next proposition shows (2ii) in Theorem 1.1.

Proposition 4.6 (Analyticity and positivity of a minimizer). Suppose that (h, ψ) is a min-
imizer of (1.17), and that h is not identically −1. Then ψ is analytic in SGh, and

div
( ∇ψ√

1 + |∇ψ|2
)
= 0 in SGh. (4.4)

Moreover
ψ > 0 in SGh. (4.5)

Proof. Since by assumption h is not identically −1, we have that SGh is nonempty. Moreover
minimality ensures ∫

SGh

√
1 + |Dψ|2 ≤

∫
SGh

√
1 + |Dψ1|2

for any ψ1 ∈ BV (SGh) with spt(ψ − ψ1) ⊂⊂ SGh. Thus, by [11, Thm 14.13], ψ is locally
Lipschitz, and hence analytic, in SGh, and (4.4) follows. Now, let z ∈ SGh and take an open
disc Bη(z) ⊂⊂ SGh. Since ψ ≥ 0 on ∂Bη(z) we find, by the strong maximum principle [11, Thm.
C.4], that either ψ is identically zero in Bη(z), or ψ > 0 in Bη(z). Hence from the analyticity of
ψ and the arbitrariness of z, we have that either ψ is identically zero in SGh or ψ > 0 in SGh.
Now F2l(h, 0) = |SGh| + π > F2l(−1, 0) = π, see (3.24). Thus (h, 0) is not a minimizer, and the
positivity of ψ in SGh is achieved.

Now, we show (1) of Theorem 1.1; moreover, we prove in particular that the (symmetric) convex
function h cannot touch and detouch the value −1.

Lemma 4.7. Suppose that (h, ψ) is a minimizer of (1.17) such that:

(i) h is not identically −1;

(ii) ψ is symmetric with respect to {w1 = l} ∩R2l.

Then
h(w1) > −1 ∀w1 ∈ [0, 2l].

Proof. Since h ∈ H2l, it is symmetric with respect to {w1 = l} ∩R2l; hence, by assumption (ii), we
may restrict our argument to [0, l]. Assume by contradiction that there exists w1 ∈ (0, l] such that
h(w1) = −1. Recall that h is convex, nonincreasing in [0, l] and continuous at l. Let

w0
1 := min{w1 ∈ (0, l] : h(w1) = −1}.

By assumption (i) we have w0
1 > 0 and, by convexity, h is strictly decreasing in (0, w0

1). We have,
using (3.18) and (3.19),

1

2
F2l(h, ψ) =

1

2

[
A(ψ, SGh) +

∫
∂DSGh

|ψ − φ| dH1 +

∫
Gh\{w2=−1}

|ψ−| dH1 +

∫
Lh

φ dH1

]

=
1

2
A(ψ, SGh) +

∫
(−1,h(0))

|ψ(0, w2)− φ(0, w2)| dw2 +

∫
(0,w0

1)
|ψ(w1,−1)− φ(w1,−1)| dw1

+

∫
G

h⌞(0,w0
1)

|ψ−|dH1 +

∫
(h(0),1)

φ(0, w2)dw2.

(4.6)
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Recalling Proposition 4.6, we have

1

2
F2l(h, ψ) =

∫ w0
1

0

∫ h(w1)

−1

√
1 + |∇ψ|2 dw2dw1.

Now, we argue by slicing the rectangle Rl = (0, l)×(−1, 1) with lines {w1 = τ}, τ ∈ (0, l). Recalling
the expression of SGh (which is non empty by assumption (i)), and neglecting the third addendum
in (4.6),

1

2
F2l(h, ψ) =

∫ w0
1

0

∫ h(w1)

−1

√
1 + |∇ψ|2 dw2dw1

+

∫
(−1,h(0))

|ψ(0, w2)− φ(0, w2)|dw2 +

∫
(0,w0

1)
|ψ(w1,−1)− φ(w1,−1)| dw1

+

∫
G

h⌞(0,w0
1)

|ψ−|dH1 +

∫
(h(0),1)

φ(0, w2)dw2

≥
∫ w0

1

0

∫ h(w1)

−1

√
1 + |∇ψ|2dw2dw1 +

∫
(−1,h(0))

|ψ(0, w2)− φ(0, w2)|dw2

+

∫
G

h⌞(0,w0
1)

|ψ−|dH1 +

∫
(h(0),1)

φ(0, w2)dw2

>

∫ w0
1

0

∫ h(w1)

−1
|∇w1ψ(w1, w2)|dw2dw1 +

∫
(−1,h(0))

|ψ(0, w2)− φ(0, w2)|dw2

+

∫
G

h⌞(0,w0
1)

|ψ−|dH1 +

∫
(h(0),1)

φ(0, w2)dw2,

(4.7)

where ∇w1 stands for the partial derivative with respect to w1.
Now, let

h−1 : [−1, h(0)] → [0, w0
1]

be the inverse of h⌞[0, w0
1]. Neglecting

√
1 + ( d

dw2
h−1)2 in the third addendum on the right-hand

side of (4.7), using also that φ ≥ 0 and ψ ≥ 0 (Proposition 4.6), we deduce

1

2
F2l(h, ψ) >

∫ h(0)

−1

∫ h−1(w2)

0
|∇w1ψ(w1, w2)| dw1dw2 +

∫
(−1,h(0))

|ψ(0, w2)− φ(0, w2)|dw2

+

∫
(−1,h(0))

ψ−(h−1(w2), w2)dw2 +

∫
(h(0),1)

φ(0, w2)dw2

≥
∫ h(0)

−1

∣∣∣ ∫ h−1(w2)

0
∇w1ψ(w1, w2)dw1

∣∣∣dw2 −
∫
(−1,h(0))

ψ(0, w2)dw2

+

∫
(−1,h(0))

ψ−(h−1(w2), w2)dw2 +

∫
(−1,1)

φ(0, w2)dw2

≥
∫
(−1,h(0))

|ψ(h−1(w2), w2)− ψ(0, w2)|dw2 −
∫
(−1,h(0))

ψ(0, w2)dw2

+

∫
(−1,h(0))

ψ−(h−1(w2), w2)dw2 +

∫
(−1,1)

φ(0, w2)dw2

≥
∫
(−1,1)

φ(0, w2)dw2 =
1

2
F2l(−1, 0).
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Hence the value of F2l on the pair (h ≡ −1, ψ ≡ 0) is smaller than F2l(h, ψ), thus contradicting
the minimality of (h, ψ).

The next lemma concludes, in particular, the proof of the first statement in Theorem 1.1.

Lemma 4.8 (Symmetry of minimizers). Every minimizer (h, ψ) of (1.17) is such that ψ is
symmetric with respect to {w1 = l} ∩R2l.

Proof. Let I ⊂ (0, 2l) be an open interval; consistently with (1.11), and since ψ is continuous in
SGh, we set

F2l(h, ψ; I) :=A(ψ, I × (−1, 1))−H2
(
I × (−1, 1) \ SGh

)
+

∫
(∂DR2l)∩(I×[−1,1))

|ψ − φ| dH1

+

∫
(∂R2l\∂DR2l)∩(I×(−1,1])

|ψ| dH1.

Recall that h ∈ H2l, hence its graph is symmetric with respect to {w1 = l} ∩ R2l. Define ψ̃ := ψ
on (0, l)× (−1, 1) and ψ̃(w1, w2) := ψ(2l−w1, w2) for (w1, w2) ∈ (l, 2l)× (−1, 1), in particular the
graph of ψ̃ is symmetric with respect to {w1 = l} ∩ R2l. Since F2l(h, ψ; (0, l)) = F2l(h, ψ; (l, 2l)),
it follows F2l(h, ψ̃) = F2l(h, ψ) for, if F2l(h, ψ; (0, l)) < F2l(h, ψ; (l, 2l)), then F2l(h, ψ̃) < F2l(h, ψ)
which contradicts the minimality of (h, ψ).

Now, if h ≡ −1 then the minimizer ψ = 0 is symmetric. On the other hand, if h is not identically
−1, due to Lemma 4.7, we have that h(l) > −1 so that SGh is open and connected, and thus the
two analytic functions ψ and ψ̃, coinciding on SGh ∩ Rl, must coincide. Hence, ψ = ψ̃ and ψ is
symmetric.

Now, we prove items (2i) and (2iii) of Theorem 1.1: the proof will be a consequence of the next
lemma and Theorem 4.11. Recall the definition of ∂DSGh in (3.19).

Lemma 4.9. Let (h, ψ) be a minimizer of (1.17) with h not identically −1. Then ψ attains the
boundary condition on ∂DSGh.

Proof. The result follows from [11, Theorem 15.9], since ∂DSGh is union of three segments.

Remark 4.10. In the hypotheses of Lemma 4.7, if h ≡ 1 then the graph of h is a segment and, as
in Lemma 4.9, ψ = 0 on Gh.

The conclusion of the proof of Theorem 1.1 (2iii) is given by the following delicate result.

Theorem 4.11 (Boundary regularity). Assume there is a minimizer (h, ψ) ∈ Xconv
2l of (1.17)

with h not identically −1. Then there exists another minimizer (h̃, ψ̃) ∈ Xconv
2l of (1.17) having the

following properties:

(i) h̃(0) = 1 = h̃(1),

(ii) ψ̃ is continuous up to the boundary of SG
h̃
,

(iii) ψ̃ = 0 on G
h̃
.

Proof. By Remark 4.10, we can assume that h is not identically 1 and, by Lemma 4.7, also that
h(w1) ≥ h(l) > −1 for any w1 ∈ [0, 2l]. We start to fix a number s̄ ∈ (−1, h(l)) and to set

K := (0, 2l)× (s̄, 1) ⊂ R2l.
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The usefulness of s stands on the fact that, by (4.5) and Lemma 4.9, the graph of the restriction of
ψ over ∂K \ {w2 = 1} is strictly positive (in particular, excluding the two points (0, 1) and (2l, 1)).
We shall see at the end of the arguments, that the proof will be independent of the choice of s.

Let us extend ψ in R2 \R2l as follows: we define ψ̂ : R2 → [0, 1], ψ̂ := ψ in R2l, and

ψ̂(w1, w2) :=

{
φ(w1, w2) if w1 < 0 or w1 > 2l, and |w2| ≤ 1,

0 if |w2| > 1,
(4.8)

(see (1.8)). In this way ψ̂ is continuous in R2 \R2l.
Now, we divide the proof into eight steps. In step 1 we start by regularizing ψ̂ in order that the

regularized functions have smooth graphs over the sets Kn defined in (4.9), and so these graphs are
of disc-type. We expect the graph of ψ̂ over the sets Kn, considering also a possible vertical part
over the graph of h, to be a surface of disc-type; however, we miss the proof of this fact, mainly
due to possible irregularity of the trace of ψ̂ over Gh. The information on the topological type of
these graphs will be crucial in our proof.

Also, an appropriate approximation of h will be needed; this latter approximation depends on
the approximation of ψ̂. Next (step 2), we will compare these graphs with the solution of a suitable
disc-type Plateau problem.

Step 1, part 1: Approximation of ψ̂.
Let n > 0 be a natural number (that will be sent to +∞ later) such that s̄ + 1

n < h(l), and
consider the enlarged rectangle

Kn :=

(
− 1

n
, 2l +

1

n

)
×
(
s̄, 1 +

1

n

)
, (4.9)

see Fig. 5. Note that
ψ̂ is continuous on ∂Kn. (4.10)

Given n ∈ N, we claim that we can build a sequence (ψnk )k∈N depending on n, which satisfies the
following properties:

ψnk ∈ C∞(Kn, [0, 1]) ∩ C(Kn, [0, 1]) ∀k ∈ N, k > 0,

ψnk = ψ̂ on ∂Kn ∀k ∈ N, k > 0,

ψnk ⇀ ψ̂ weakly⋆ in BV (Kn) as k → +∞,∫
Kn

|∇ψnk | dw → |Dψ̂|(Kn) as k → +∞.

(4.11)

In order to obtain (4.11) we use standard arguments (details can be found in [1, Thm. 3.9] or [10,
Thm. 1, Section 4.1.1]). To the aim of our discussion, we just recall that we proceed by constructing
an increasing sequence (Ui,n)i≥1 of open subsets of Kn, Ui,n ⊂⊂ Ui+1,n ⊂⊂ Kn, ∪iUi,n = Kn (for
i ≥ 1 we take Ui,n := {x ∈ R2 : dist(x,R2 \Kn) >

1
i+n} for definitiveness) and with the aid of a

partition of unity (ηi,n) associated to V1,n := U2,n, Vi,n := Ui+1,n \ U i−1,n for i ≥ 2, we mollify ψ̂
accordingly in Vi,n. For our purpose we choose6 ηi,n in such a way that

supp (ηi,n) = V i,n. (4.12)

Since ψnk is obtained by mollification we have ψnk ∈ C∞(Kn) and moreover ψnk ∈ C(Kn) because

it attains the continuous boundary datum ψ̂ on ∂Kn. Here we use the same standard mollifier

6We need the full set V i,n as support in order that the argument to detect the behaviour of hn (defined in (4.22))
in [− 1

n
, 0] applies.
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ρ ∈ C∞
c (D) in each Vi,n, choosing, for w = (w1, w2), ρi,n,k(w) := ρ(w/ri,n,k) with ri,n,k := ri,n/k > 0,

ri,n decreasing with respect to i ≥ 1, with ri,n → 0+ as i→ +∞; we take

ri,n =
1

i+ 2 + n
(4.13)

for definiteness. Finally, [0, 2l] × [s̄ + 1
n , 1] ⊂ U1,n ⊂ V1,n, and Vi,n ∩

(
[0, 2l]× [s̄+ 1

n , 1]
)
= Ø for

i ≥ 2. It follows

ψnk = ψ̂ ⋆ ρ1,n,k in [0, 2l]×
[
s̄+

1

n
, 1
]

∀n ∈ N. (4.14)

Using [10, Prop. 3 Sec. 4.2.4 pag. 408, and Th. 1 Sec. 4.1.5 pag. 331] we infer

A(ψnk ,Kn) → A(ψ̂,Kn) as k → +∞. (4.15)

Now that properties (4.11) are achieved, by a diagonal argument we select functions

ψn := ψnkn ∈ (ψnk ) ∀n ∈ N, (4.16)

such that
ψn = ψ̂ on ∂Kn ∀n ∈ N,

ψn ⇀ ψ̂ weakly∗ in BV (K) as n→ +∞,∫
Kn

|∇ψn| dw → |Dψ̂|(K) as n→ +∞,

(4.17)

where K is the closed rectangle K := ∩nKn. On the basis of (4.15) and (4.17), we can also ensure7

that

A(ψn,Kn) → A(ψ̂,K) as n→ +∞. (4.18)

Here, by A(ψ̂,K) we mean the area of the graph of ψ̂ relative to K which, recalling also Proposition
4.6, reads as

A(ψ̂,K) = A(ψ̂,K) +

∫
{0}×(s̄,1)

|ψ̂− − φ| dH1 +

∫
{2l}×(s̄,1)

|ψ̂− − φ| dH1, (4.19)

where ψ̂− denotes the trace of ψ̂ on ∂K. This concludes the proof of the first part of step 1.
Before passing to the second part, for any n ∈ N we define

ĥ(w1) := sup

{
w2 ∈

(
s̄, 1 +

1

n

)
: ψ̂(w1, w2) > 0

}
∀w1 ∈

(
− 1

n
, 2l +

1

n

)
.

Notice that
ĥ = h in [0, 2l],

ĥ = 1 in (−1/n, 0) ∪ (2l, 2l + 1/n).

7To prove claim (4.18), fix m ∈ N, and set ψ̃n := ψ̂ outside Kn and ψ̃n = ψn in Kn, so that

ψ̃n ⇀ ψ̂ weakly∗ in BV (Km) as n→ +∞,

|∇ψ̃n|(Km) → |Dψ̂|(Km) = |Dψ̂|(K) + |Dψ̂|(Km \K) as n→ +∞.

Then lim supn→+∞ A(ψn,Kn) ≤ lim supn→+∞ A(ψ̃n,Km) = A(ψ̂,Km) = A(ψ̂,K)+A(ψ̂,Km \K), the first equality

following from the strict convergence of ψ̃n to ψ̂ [10, Prop. 3 Sec. 4.2.4 pag. 408 and Thm. 1 Sec. 4.1.5 pag. 371].

Taking the limit as m → +∞, since ψ̂ ∈ W 1,1(Km \ K) we conclude lim supn→+∞ A(ψn,Kn) ≤ A(ψ,K). Then
(4.18) follows by lower semicontinuity.
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Step 1, part 2: Approximation of h. We construct functions hn : (− 1
n , 2l +

1
n) → (s̄, 1 + 1

n) such
that

hn(·) = hn(2l − ·),
ψn = 0 in Kn \ SGhn ,

hn ∈ BV
((

− 1

n
, l
))
,

(4.20)

and, setting

SGhn,s :=

{
(w1, w2) : w1 ∈

(
− 1

n
, 2l +

1

n

)
, w2 ∈ (s̄, hn(w1))

}
, (4.21)

also such that
lim

n→+∞
H2(SGhn,s) = H2(K ∩ SGh),

lim
n→+∞

A(ψn, SGhn,s) = F2l(h, ψ)−A(ψ,R2l \K).

To this aim, for any n ∈ N we define

hn(w1) := sup

{
w2 ∈

(
s̄, 1 +

1

n

)
: ψn(w1, w2) > 0

}
∀w1 ∈

(
− 1

n
, 2l +

1

n

)
, (4.22)

Since (see (4.5) of Proposition 4.6 and (4.8)) ψ̂ is positive in SGh ∪ ((− 1
n , 0) × (s̄, 1)) ∪ ((2l, 2l +

1
n) × (s̄, 1)) it turns out, recalling also that the function ψn in (4.16) is obtained by mollification,
that

− 1 < h(w1) < hn(w1) < 1 +
1

n
∀w1 ∈ (0, 2l),

1 < hn(w1) < 1 +
1

n
∀w1 ∈

(
− 1

n
, 0
]
∪
[
2l, 2l +

1

n

)
.

(4.23)

The validity of (4.23) is due to the fact that ψ is positive in the subgraph of ĥ and vanishes on the
epigraph of ĥ. Therefore, when mollifying ψ, the positivity set must increase (and the mollified
function must vanish at points at distance from the subgraph of ĥ of the order of the mollification
radius. Thus hn > h; also hn < h + 1

n due to our choice of ri,n in (4.13), since the mollification
radius is smaller than 1

n .

Moreover, again the positivity of ψ̂ implies that

ψn > 0 in SGhn,s ⊂ Kn, (4.24)

whereas

ψn(w1, w2) = 0 if w1 ∈
(
− 1

n
, 2l +

1

n

)
, w2 ∈

[
hn(w1), 1 +

1

n

)
, (4.25)

because ψ̂(w1, w2) = 0 if w1 ∈ [0, 2l], w2 > h(w1) and if w2 > 1. Exploiting (4.14), and the fact
that h is nonincreasing (resp. nondecreasing) in [0, l] (resp. in [l, 2l]), one checks8 that also hn is
nonincreasing in [0, l] (resp. nondecreasing in [l, 2l]). Concerning the behaviour of hn in (− 1

n , 0]

8Let us show for instance that hn is decreasing in [0, l]. Recall that the function ψ̂ vanishes above the graph of h,
which is decreasing in [0, l]. Now, take a point (w1, w2) ∈ Kn, w1 ∈ [0, l), w2 > h(w1); suppose first that w1 ≥ r1,n.

If dist((w1, w2), graph(h)) > r1,n, then ψn(w1, w2) = ψ̂ ⋆ρ1,n(w1, w2) = 0, and if dist((w1, w2), graph(h)) < r1,n, then

ψn(w1, w2) = ψ̂ ⋆ ρ1,n(w1, w2) > 0. Hence, if ψ̂ ⋆ ρ1,n(w1, w2) = 0 then also ψ̂ ⋆ ρ1,n(w1 + ε, w2) = 0 for ε > 0 small
enough, because dist((w1 + ε, w2), graph(h)) > dist((w1, w2), graph(h)), being h decreasing in [0, l]. This argument
applies also when w1 ∈ [0, r1,n) by (4.14), since h is nonincreasing also in (−1/n, l).
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(and similarly in [2l, 2l+ 1
n)), we see that in Vi,n (i > 1), we are mollifying with ρi,n,kn whose radius

of mollification is ri,n/kn, so that ψ̂ ⋆ ρi,n,kn equals 0 on the line {w2 = 1+
ri,n
kn

}, and nonzero below

inside Kn: this follows from the fact that ψ̂ is 0 on the line {w2 = 1} ∩K and nonzero below. We
have defined the radii ri,n to be decreasing with respect to i, so that, ψn being the sum of ψ̂ ⋆ρi,n,kn
(whose support is V i,n by (4.12)), it turns out that ψn is 0 on {w2 = 1+

ri,n
kn

} and nonzero below9

in Vi,n \ Vi−1,n. As a consequence, hn is nondecreasing10 in (− 1
n , 0). In particular

hn ∈ BV
(
(− 1

n
, 2l +

1

n
)
)
. (4.26)

Finally, it is not difficult to see that the functions hn converge to h in L1((0, 2l)) as n→ ∞, and

lim
n→+∞

H2(SGhn,s) = H2(K ∩ SGh). (4.27)

From this, (4.18), Lemma 4.9, (4.19) and (1.11) we deduce

A(ψn, SGhn,s) = A(ψn,Kn)−H2(Kn \ SGhn,s) → F2l(h, ψ)−A(ψ,R2l \K). (4.28)

Step 2: The curves Γn, and the surfaces Σn and Gψn. Comparison with a Plateau problem.
In this step we compare the graph of ψn overKn with the solution of a disc-type Plateau problem.

In particular we will obtain a disc-type surface Σ+
n whose area is smaller than or equal to the area

of the graph of ψn, see (4.29). In step 3 (see (4.32)) we will compare this surface with the graph of
ψ on K.

We recall that ψn is continuous in Kn, it is positive on the bottom edge [− 1
n , 2l+

1
n ]×{s̄} of Kn

(see (4.17)), it is zero on the top edge [− 1
n , 2l+

1
n ]× {1 + 1

n} by (4.23), and on the lateral edges of

Kn it coincides with ψ̂; more specifically

ψn

(
− 1

n
,w2

)
= ψn

(
2l +

1

n
,w2

)
= φ(0, w2) > 0 for w2 ∈ [s̄, 1),

ψn

(
− 1

n
,w2

)
= ψn

(
2l +

1

n
,w2

)
= 0 for w2 ∈

[
1, 1 +

1

n

)
.

Define

∂DKn :=
([

− 1

n
, 2l +

1

n

]
× {s̄}

)
∪
({

− 1

n
, 2l +

1

n

}
× [s̄, 1]

)
.

From (4.17), we see that ψn coincides with ψ̂ over ∂DKn, and its graph over this set is a curve,
that we denote by Γ+

n . This curve, excluding its endpoints Pn = (− 1
n , 1, 0) and Qn = (2l+ 1

n , 1, 0),
is contained in the half-space {w3 > 0}, while Pn, Qn ∈ {w3 = 0}. We further denote by Γ−

n the
symmetric of Γ+

n with respect to the plane {w3 = 0}, so that

Γn := Γ+
n ∪ Γ−

n

is a Jordan curve in R3, see Fig. 5. Thus we can solve the disc-type Plateau problem with boundary
Γn [8] and call Σn ⊂ R3 one of its solutions11. In addition, we may assume that Σn is symmetric
with respect to the plane {w3 = 0} and that

H2(Σ+
n ) = H2(Σ−

n ),

with Σ±
n := Σn ∩ {w3 ≷ 0}, respectively (see Fig. 5).

9Notice that in Vi,n \ Vi−1,n only ψ̂ ⋆ ρi,n,kn and ψ̂ ⋆ ρi+1,n,kn , are nonzero (from this it follows that hn = 1+
ri,n
kn

in (− 1
n
+ 1

i+n+1
,− 1

n
+ 1

i+n
]).

10Precisely, hn is piecewise constant and nondecreasing in (− 1
n
, 0], but these two properties are not needed in the

proof.
11Σn is the image of an area-minimizing map from the unit disc into R3.
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Figure 5: The rectangle Kn in (4.9) in dark, and the rectangle K inside. Γ is the curve passing
through Q and P , the curves Γn (which pass through Qn and Pn) approach Γ (Γ and Γn coincide
and overlap on the graph of ψ over the bold segment {w2 = s̄} ∩K).

Now, we want to compare the area of the graph of ψn in SGhn,s with H2(Σ+
n ). To this aim we

start by observing that ψn, being smooth in Kn and continuous in Kn (see (4.11)), is such that its
graph over SGhn,s has the topology of SGhn,s, that is the topology of the disc. Indeed, SGhn,s is
bounded by construction, and it is open from (4.24), (4.25). In addition, it is connected and simply
connected. Indeed, take any continuous curve γ : S1 → SGhn,s. Using (4.23), let ŝ ∈ (s̄, 1) be such
that {w2 = ŝ} ∩Kn ⊂ SGhn,s; hence we can (vertically) contract γ continuously to its projection
on the line {w2 = ŝ}, and then contract it continuously to the middle point of {w2 = ŝ} ∩ Kn,
showing that γ is homotopic to the constant curve. Hence, by the Riemann mapping theorem,
SGhn,s is biholomorphic to the open unit disc, and SGhn,s is homeomorphic to the closure of the
disc, thanks to the fact that ∂SGhn,s is a Jordan curve, due to the BV-regularity of hn (see (4.26)).

Denoting by G+
ψn

the graph of ψn over SGhn,s, we consider the graph G−
ψn

of −ψn over SGhn,s,

and observe that the closure of G+
ψn

∪ G−
ψn

is a disc-type surface with boundary Γn. Therefore, by
minimality,

A(ψn, SGhn,s) = H2(G+
ψn

) ≥ H2(Σ+
n ). (4.29)

Step 3: Passing to the limit as n→ +∞: the curve Γ and the surface Σ.
The graph of ψ over the segment [0, 2l]×{s̄} and the graph of φ over the two segments {0, 2l}×

[s̄, 1] form a simple continuous curve Γ+ which, excluding the two endpoints

P = (0, 1, 0), Q = (2l, 1, 0), (4.30)

is contained in the half-space {w3 > 0}, while P,Q ∈ {w3 = 0} (see Fig. 5). If we consider

Γ := Γ+ ∪ Γ−,
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with Γ− the symmetric of Γ+ with respect to the plane {w3 = 0}, a direct check shows that the
curves Γn converge to the curve Γ in the sense of Frechet [17], as n → +∞. As a consequence,
the area-minimizing disc-type surfaces Σn defined in step 2 satisfy H2(Σn) → H2(Σ) (see [17,
Paragraphs 301, 305]), with Σ a disc-type area-minimizing surface spanned by Γ. It follows

H2(Σ+
n ) → H2(Σ+) as n→ +∞, (4.31)

where Σ+ := Σ ∩ {w3 > 0}. From (4.31), (4.29), (4.28) we deduce

H2(Σ+) = lim
n→+∞

H2(Σ+
n ) ≤ lim

n→+∞
A(ψn, SGhn,s)

= lim
n→+∞

(
A(ψn,Kn)−H2(Kn \ SGhn,s)

)
= F2l(h, ψ)−A(ψ,R2l \K).

Since ψn = ψ on R2l \K, we get

lim
n→+∞

(
A(ψn, SGhn,s) +A(ψ,R2l \K)

)
= F2l(h, ψ) ≥ H2(Σ+) +A(ψ,R2l \K). (4.32)

Let Φ = (Φ1,Φ2,Φ3) : D ⊂ R2 → Σ ⊂ R3 be an analytic and conformal parametrization of Σ
in the open unit disc D, continuous up to ∂D, with Φ(∂D) = Γ. Exploiting the results in [16] (see
also [8, pag. 343]) we know that

Φ is an embedding, (4.33)

since Γ is a simple curve on the boundary of the convex set K × R.

Now, we need to prove several qualitative properties of Σ: this will be achieved in steps 4,5 and
6.

Step 4: Σ ∩ {w3 = 0} is a simple curve Γ0 connecting the two points P and Q in (4.30).
This can be seen as follows: Assume Φ(p0) = P and Φ(q0) = Q for two distinct points p0, q0 ∈

∂D. By standard arguments12, the open unit disc D is splitted into two connected components
{x ∈ D : Φ3(x) ≥ 0} and {x ∈ D : Φ3(x) < 0} and the set {Φ3 = 0} must be a simple curve in
D connecting p0 and q0 (here we use that the points p0 and q0 are, by the definition of Γ and the
properties of Φ, the unique points on ∂D where Φ3 = 0 and that the two relatively open arcs on
∂D with extreme points p0 and q0 are mapped in {w3 > 0} and {w3 < 0} respectively). By the
injectivity of Φ (property (4.33)) we conclude that

Γ0 := Φ({Φ3 = 0}) (4.34)

is a simple curve connecting P and Q on the plane {w3 = 0}, and more specifically Γ0 ⊂ K.

In the next two steps 5 and 6 we define the functions h̃ and ψ̃ which appear in the statement
of the theorem. In step 5 we show that, due to the particular shape of Γ, the surface Σ admits
a semicartesian parametrization [6], namely that if we slice Σ with a plane orthogonal to the first
coordinate w1 ∈ (0, 2l) then the intersection is a curve connecting the two corresponding points on
Γ; in addition, in this present case, this curve turns out to be simple. We will also show that the
free part Γ0 of Σ leaves a trace on R2l which is the graph of a convex function h̃ (of one variable).

Step 5: The projection π3(Σ) of Σ on the plane {w3 = 0} is the subgraph of a function h̃ ∈ H2l,
where we recall that H2l is defined in (1.13). In particular, h is convex.

We first show that π3(Σ) is the subgraph of a function h̃, and then we prove that h̃ ∈ H2l. Take
a point W = (W1,W2,W3) ∈ Σ \ Γ, W1 ∈ (0, 2l); by the strong maximum principle, π3(W ) /∈ ∂K:

12See also step 5 where a similar statement is proved.
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this follows since points in Σ \ Γ are in the interior of the convex envelope of Γ, see [8]. Consider
the unique point x ∈ D such that Φ(x) =W . Due to the particular structure of Γ, one checks that
∂D = Φ−1(Γ) splits into two connected components, Φ−1

1 ((W1, 2l]) ∩ ∂D and Φ−1
1 ([0,W1]) ∩ ∂D,

since Φ−1
1 ({W1}) ∩ ∂D consists of two distinct points q1, q2 in ∂D. In particular, the continuous

function Φ1(·)−W1 changes sign only twice on ∂D, namely in correspondence of q1 and q2. From
Rado’s lemma [8, Lemma 2, pag. 295] it follows that there are no points on Σ ∩ {w1 =W1} where
the two area-minimizing surfaces Σ and the plane {w1 =W1} are tangent to each other13. It follows
that, if P ∈ (Σ \Γ)∩{w1 =W1}, then the set (Σ \Γ)∩{w1 =W1} is, in a neighbourhood of P, an
analytic curve, see again [8, Lemma 2, pag. 295]. Hence, {Φ1 =W1} ∩D is, in a neighbourhood of
Φ−1(P), an analytic curve. If γI : I → D is a parametrization of this curve, I = (a, b) a bounded
open interval, we see that the limits as t → a+ and t → b− of γI(t) exist14 and belong to D. If
limt→a+ γI(t) belongs to ∂D, it must be either q1 or q2; if instead it is in D, then we can always
extend γI in a neighbourhood of a and find a larger interval J ⊃ I on which γI can be extended. A
similar argument applies for limt→b− γI(t). Let now Im = (am, bm) be a maximal interval on which
γI is defined, so that, by maximality, the limits as t→ a+m and t→ b−m are q1 and q2, respectively.
We can then consider the closure Im of Im and we have that γIm(Im) is a curve in D joining q1
and q2. Thus we have proved that σW := Σ∩{w1 =W1} equals Φ(γIm(Im)). In particular σW is a

curve in R3 contained in the plane {w1 =W1} and connecting the points Φ(q1) ∈ Γ and Φ(q2) ∈ Γ.
But we know that π3(Φ(q1)) = π3(Φ(q2)) = (W1, s̄, 0), so π3(σW ) is a segment in R2l with endpoints
(W1, s̄, 0) and (W1, s

+, 0) for some s+ > s̄, and s+ ≥W2. In particular the whole segment “below”
π3(W ), namely the one with endpoints (W1, s̄, 0) and (W1,W2, 0), belongs to π3(Σ), and π3(Σ) is
then the subgraph of some function h̃. As a remark, due to the symmetry of the curve Γ, we can
assume h̃ is symmetric with respect to {w1 = l}, namely h̃(·) = h̃(2l − ·).

Now we show that h̃ is convex. Assume it is not, and take two points (t1, h̃(t1), 0), (t2, h̃(t2), 0) ∈
R2l, t1 < t2, and a third point (t∗, h̃(t∗), 0), with t1 < t∗ < t2, which is strictly above the segment
l12 in R2l joining (t1, h̃(t1), 0) and (t2, h̃(t2), 0). Let f : R3 → R be a nonzero affine function15

vanishing on the plane passing through l12 and orthogonal to {w3 = 0}, and assume that f is
positive at (t∗, h̃(t∗), 0). Let Q ∈ Σ be such that π3(Q) = (t∗, h̃(t∗), 0). Then f ◦ Φ : D → R is
harmonic, and by the maximum principle there is a continuous curve16 γQ in D joining Φ−1(Q)
to ∂D such that f ◦ Φ is always positive on γQ. But now, the continuous curve π3 ◦ Φ(γQ) joins
(t∗, h̃(t∗), 0) to π3(Γ) and remains, in R2l, strictly above the segment l12. This is a contradiction,
because π3 ◦ Φ(γQ) must be in the interior of the subgraph of h̃.

Before passing to step 6, recall the definition of Γ0 in (4.34), and observe that the Jordan curve
Γ+ ∪ Γ0 is the boundary of the disc-type surface Σ+.

Let us denote by U ⊂ K the connected component of K \ Γ0 with boundary Γ0 ∪ ({0}× [s̄, 1])∪
([0, 2l]× {s̄}) ∪ ({2l} × [s̄, 1]).

13If P is a tangency point, then the differential of Φ1 must vanish at Φ−1(P) ∈ D.
14D is compact, hence γI(t) has some accumulation point as t → a+. Notice that I and γI(I) are homeomorphic

by contruction; in turn γI(I) is homeomorphic to the analytic curve Φ ◦ γI(I). Assume x is an accumulation point
for γI(t) as t→ a+. If x ∈ D, there is a neighborhood U of x such that σ := Φ(U)∩ {w1 =W1} is an analytic curve.
Then γI , in a right neighbourhood J of a, is homeomorphic to the analytic curve Φ ◦ γI(J) ∈ R3 emanating from
Φ(x), which in turn is the restriction of σ. In particular γI(I) is a curve emanating from x and the limit as t → a+

of γI(t) is x. If instead x ∈ ∂D then x must be the unique accumulation point. Indeed, limt→a+ Φ1 ◦ γI(t) = W1,
and then x = q1 or x = q2, say x = q1. Assume there is another accumulation point y as t → a+; then y /∈ D,
otherwise we fall in the previous case, and therefore necessarily y = q2. But in this case, we see that there must be
another accumulation point z ∈ D (as t→ a+, we move between a neighbourhood U of x and a neighbourhood V of
y frequently, so that there should be some other accumulation point in D \ (U ∪ V )) leading us to the previous case
again.

15Take the signed distance from the plane.
16The set (f ◦ Φ)−1((0,∞)) is open, and cannot have connected components not intersecting ∂D, by harmonicity.
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We are now in a position to show that Σ+ admits a non-parametric description over the plane
{w3 = 0}.

Step 6: The disc-type surface Σ+ can be written as a graph over the plane {w3 = 0} of a W 1,1

function ψ̃ : U → [0,+∞).
At first we observe that if Σ+ is not Cartesian with respect to {w3 = 0}, then there is some

point P ∈ Σ+ \ ∂Σ+ where the tangent plane to Σ+ is vertical, that is, it contains the line
{P+(0, 0, w3) : w3 ∈ R}. This can be seen as follows: as shown in step 5, the intersection between
Σ+ and any plane {w1 = cost}, cost ∈ (0, 2l), is a simple curve with endpoints in ∂Σ+. If Σ+ is
not Cartesian, one of these curves γ is not Cartesian, and then there is a point where the tangent
vector to γ is vertical. At such a point the tangent plane to Σ+ is vertical.

Claim: If Π is a vertical plane tangent to Σ, then there is at most one point where Π and Σ are
tangent.

We use an argument similar to the one needed to prove Rado’s Lemma [8, Lemma 2, pag. 295].
Assume Π intersects the relative interior of Σ. It is easy to see that the intersection between Π and
the Jordan curve Γ consists at most of four points17 pi, i = 1, 2, 3, 4. Let f be a linear function
on R3 vanishing on Π. Then f ◦ Φ is harmonic in D and continuous in D; in addition, it vanishes
at {pi, i = 1, 2, 3, 4}, and alternates its sign on the relatively open four arcs pipi+1 on ∂D with
endpoints pi. With no loss of generality, we may assume f ◦Φ > 0 on p1p2 and p3p4. By harmonicity
of f ◦ Φ, any connected component of the region {x ∈ D : f ◦ Φ(x) > 0} must contain part of p1p2
or p3p4, so that we deduce that these connected components are at most two.

Assume now by contradiction that there are two distinct points P and Q of Σ such that Π is
tangent to Σ at P andQ. Since f◦Φ has null differential at Φ−1(P) and Φ−1(Q), the set {f◦Φ = 0},
in a neighbourhood of Φ−1(P), consists of 2mp analytic curves crossing at Φ−1(P), whereas in a
neighbourhood of Φ−1(Q), it consists of 2mq analytic curves crossing at Φ−1(Q). Therefore, in a
neighbourhood of Φ−1(P), the set {f ◦ Φ > 0} counts at least 2 open regions (and similarly at
Φ−1(Q)). Let us call A1 and A2 two of these regions around Φ−1(P), and B1, B2 two of these
regions around Φ−1(Q). By harmonicity each Ai and Bi must be connected to one of the arcs p1p2
or p3p4. Hence some of these regions must belong to the same connected component of {f ◦Φ > 0}.
Then we are reduced to two following cases (see Fig. (6)):

(Case A) A1 and A2 belong to the same connected component, say the one containing p1p2. Hence
we can construct two disjoint curves in {f ◦ Φ > 0}, both joining Φ−1(P) to a point in
p1p2, emanating from Φ−1(P), one in region A1 and one in region A2. This contradicts the
maximum principle, because these two curves would enclose a region where f ◦ Φ takes also
negative values, whereas its boundary is in {f ◦ Φ > 0}.

(Case B) A1 and B1 are joined to p1p2 and A2 and B2 are joined to p3p4. In this case we can construct
four curves in {f ◦ Φ > 0}: σ1 and σ2 emanating from Φ−1(P) in regions A1 and A2 and
reaching p1p2 and p3p4, respectively; β1 and β2 emanating from Φ−1(Q) in regions B1 and
B2 and reaching p1p2 and p3p4, respectively. The region enclosed between these 4 curves has
boundary contained in {f ◦ Φ > 0} and, inside it, necessarily the function f ◦ Φ takes also
negative values, again in contrast with the maximum principle.

17A vertical plane Π intersects K on a straight segment. In turn, this segment intersects ∂K in two points. If Π
intersects Γ in a point (W1,W2,W3), then (W1,W2, 0) ∈ ∂K. Moreover, Π intersects Γ also at (W1,W2,−W3). Thus,
the points of intersection are at most four. The degenerate cases in which Π contains a full H1-measured part of Γ
are excluded by this analysis, because in these cases Π does not intersect the interior of Σ. Instead, the cases in which
the intersection consists of 2 or 3 points are easier to treat, and we detail only the 4-points case (notice that by the
geometry of Γ, the case of 3 points occurs when this plane is tangent to Γ at one of the points (0, 1, 0) or (2l, 1, 0)).
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Figure 6: On the left it is represented case A in step 6 of the proof of Theorem 4.11. The point
Φ−1(P) is in the cross where the two emphasized paths start from. These curves stand in the region
{f ◦ Φ > 0} and join Φ−1(P) with the arc p1p2 ⊂ ∂D. The picture on the right represents instead
case B. The two cross points are Φ−1(P) and Φ−1(Q) and the paths σ1, σ2, β1, β2 are depicted.

From the above discussion our claim follows.
We are now ready to conclude the proof of step 6: suppose by contradiction that Σ+ is not

Cartesian with respect to {w3 = 0}, and take a point P+ ∈ Σ+ \ Γ where the tangent plane Π
to Σ+ at P+ is vertical. By symmetry of Σ, the point P−, defined as the symmetric of P+ with
respect to the rectangle R2l, belongs to Σ−, and the tangent plane to Σ− at P− is the same plane
Π. This contradicts the claim. We eventually observe that ψ̃ is analytic on the subgraph of h̃, since
its graph is Σ+. We conclude that ψ̃ belongs to W 1,1(SG

h̃
), since its total variation is bounded by

the area of its graph, which is finite.

Step 7: the pair (h̃, ψ̃) ∈ Xconv
2l .

We recall that in step 5 we proved that h̃ is convex and h̃(·) = h̃(2l−·), i.e. h̃ ∈ H2l. Furthermore
Σ+ is the graph of ψ̃, and its projection on the plane {w3 = 0} is the subgraph of h̃. It follows
that the area of the graph of ψ̃ is exactly the area of Σ+ upon SG

h̃
. Let us also recall the W 1,1

regularity of ψ̃ proved in step 6. Setting

ψ̃ := ψ in R2l \K,

we infer (h̃, ψ̃) ∈ Xconv
2l . Since ψ is analytic, this construction turns out to be independent of the

choice of s.

Step 8: Conclusion of the proof.
From (4.32) we deduce

F2l(h, ψ) ≥ H2(Σ+) +A(ψ,R2l \K) = F2l(h̃, ψ̃), (4.35)

where the last equality follows from the fact that ψ̃ is continuous on ∂DR2l. Hence, also (h̃, ψ̃) is
a minimizer for F2l. Now, we show (ii) and (iii), namely that ψ̃ is continuous and equals 0 on G

h̃
.

Indeed Σ = Σ+ ∪Σ− is analytic, hence the graph of h̃ coincide with the intersection of the analytic
surface Σ with the plane {w3 = 0} (which is not tangent to Σ); it follows that h̃ is continuous.
Moreover we know that ψ̃ is smooth in SG

h̃
. If its trace ψ̃+ on the boundary of SG

h̃
is strictly

positive somewhere, say at Z ∈ G
h̃
× {0}, we infer that the vertical segment defined as

{(Z1, Z2, w3) : |w3| ∈ (0, ψ̃+(w1, w2))},
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is contained in Σ∩{w1 = Z1}, which is an analytic curve. This would imply that Σ∩{w1 = Z1} is
contained in the straight line (Z1, Z2)×R, which is a contradiction, because (Z1,−1, 0) ∈ Σ∩{w1 =
Z1}, and Z2 > −1. We conclude ψ̃+ = 0 on G

h̃
.

Finally, let us prove (i), i.e., that L
h̃
= Ø. For, if not, the vertical part of Σ+ obtained on L

h̃
is

flat and then, by analyticity, also Σ+ is, a contradiction. This completes the proof.

A direct consequence of Theorem 4.11 is the following which, coupled with Corollary 4.13 and
its subsequent discussion, concludes the proof of Theorem 1.1.

Corollary 4.12. Let (h, ψ) ∈ Xconv
2l be a solution of (1.17). Then, either (h, ψ) is degenerate, i.e.

h ≡ −1, or:

(i) h(0) = 1 = h(2l),

(ii) ψ is continuous up to the boundary of SGh,

(iii) ψ = 0 on Gh.

Proof. As in the proof of Theorem 4.11, if (h, ψ) is not degenerate, then (h, ψ) is a solution as
in Lemma 4.7 and we can choose s ∈ (−1, h(l)). In step 7 of that proof we found that (h̃, ψ̃) is
another minimizer, with ψ̃ coinciding with ψ on R2l \K. Now, we claim that h = h̃ and ψ = ψ̃.
By analyticity of both ψ and ψ̃ in their domain SGh and SG

h̃
of definition respectively, they

must coincide on SGh ∩ SGh̃. Hence, if w1 ∈ (0, 2l) is such that h̃(w1) < h(w1), we deduce that

ψ(w1, h̃(w1)) = ψ̃(w1, h̃(w1)) contradicting the maximum principle because (w1, h̃(w1)) ∈ SGh.
Therefore, necessarily h ≤ h̃. This implies that the trace of ψ on Gh coincides with the restriction
of ψ̃ on Gh, and thus this trace is continuous. If, by contradiction h(w1) < h̃(w1) for some
w1 ∈ (0, 2l), we find a contradiction as follows: Let (a, b) be a maximal interval containing w1

where h < h̃ on it. Suppose for simplicity that (a, b) = (0, 2l) (otherwise a similar argument
applies).

We consider the curve Γ+ obtained by glueing the graph of ψ = ψ̃ over Gh with the graph of φ
on the two segments Lh, and we consider also Γ−, the symmetric of Γ+ with respect to the plane
{w3 = 0}. Since both ψ and φ are strictly positive on these domains, the curve Γ := Γ+ ∪ Γ− is a
Jordan curve. The surface

S := {w ∈ R3 : (w1, w2) ∈ Gh, |w3| ≤ ψ(w1, w2)} ∪ {w ∈ R3 : (w1, w2) ∈ Lh, |w3| ≤ φ(w1, w2)}

is a disc-type surface spanning Γ, and thus H2(S) ≥ H2(ΣΓ) where ΣΓ is a disc-type solution of
the Plateau problem spanning Γ. By definition of ψ̃, its graph G

ψ̃
over SG

h̃
\ SGh enjoys the

property that, denoting by G−
ψ̃

its symmetric with respect to the plane {w3 = 0}, the surface

Σ̃ := G
ψ̃
∪ G−

ψ̃
is a solution to the Plateau problem for discs spanning Γ. Hence we deduce that

H2(S) ≥ H2(Σ̃). Since however (h, ψ) and (h̃, ψ̃) are both minimizers of F2l, the same argument
in Step 8 of Theorem 4.11 implies H2(S) = H2(Σ̃), and S is a solution to the Plateau problem for
discs spanning Γ. However, unless h ≡ 1, this contradicts the strong maximum principle, because
Γ is a non-planar curve contained in the boundary of the convex set

C := {w ∈ R3 : w2 > h(w1)},

and so the interior of S cannot lie on ∂C. This contradiction leads us to our claim, namely h = h̃,
and ψ = ψ̃.

Now, we discuss the smoothness of h:
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Corollary 4.13. If a solution (h, ψ) of (1.17) is not degenerate (i.e. h is not constantly −1), then
h ∈ C([0, 2l]) and it is analytic in (0, 2l).

Proof. The continuity of h at 0 and 2l is clear since Lh = ∅. Going back to Step 4 of the proof of
Theorem 4.11, we have seen that the graph Gh of h coincides with the curve Γ0 = Σ ∩ {w3 = 0}
(see (4.34)). Let t0 ∈ (0, 2l), and let Z = (t0, h(t0), 0) ∈ Σ ∩ {w3 = 0}. Let γ0 ⊂ D be defined as
γ0 := Φ−1(Σ ∩ {w3 = 0}) = {x ∈ D : Φ3(x) = 0}, which is a simple curve in D connecting two
points on ∂D, and let z := Φ−1(Z) ∈ γ0. Setting ∂i =

∂
∂wi

, we have that ∂1Φ(z) and ∂2Φ(z) are
distinct vectors generating the tangent plane to Σ at Z, which is a vertical plane; hence ∂1Φ3(z)
and ∂2Φ3(z) cannot be both 0 (say, ∂2Φ3(z) ̸= 0). Therefore, by the implicit function theorem,
in a neighborhood of z, γ0 can be parametrized by a function σ : (−δ, δ) → γ0, σ(s) = (s, f(s))

with f ′(s) = −∂1Φ3(s,f(s))
∂2Φ3(s,f(s))

; as Φ is analytic in D, we deduce that f , and therefore σ, are analytic

in a neighborhood of 0. Now s 7→ Φ(σ(s)) parametrizes Γ0 in a neighborhood of Z. As we know
that Γ0 is the graph of h, we see that d

dsΦ1(σ(s)) is non-zero in a neighborhood of 0. Defining the
parameter

t(s) := t0 +

∫ s

0
|∇Φ1(σ(s))σ

′(s)|ds,

if s(t) denotes its inverse, we have

d

dt
s(t) =

1

|∇Φ1(σ(s(t)))σ′(s(t))|
,

and s(·) is analytic in a neighborhood of t0. Then we have h(t) = Φ2(σ(s(t))), which is the
composition of analytic maps, hence analytic in a neighborhood of t0. As this holds for all t0 ∈
(0, 2l), the assertion follows.

To conclude the proof of Theorem 1.1, it remains to show (2iv). The pair (h ≡ 1, φ) , where the
function φ is as in (1.8), is one of the competitors for problem (1.17) (notice that φ attains the
boundary condition); in addition, its subgraph is strictly convex (see Fig. 4), hence18 necessarily
ψ ≤ φ̂ in R2l, where we have taken ψ = ψ̃, the solution given by Theorem 4.11.

Eventually, the strict inequality in Theorem 1.1 (2iv) is a consequence of the strong maximum
principle: indeed, points in Σ \ ∂Σ are always strictly inside the convex hull of ∂Σ, with the only
exception when ∂Σ is planar (see [17, pag 63, section 70]); so that points of Σ+ \ ∂Σ are strictly
inside the graph Gφ of φ (that is half of the lateral boundary of a cylinder).

Now, we point out another consequence of Theorem 4.11, which gives the proof of Theorem 1.2.
Let Gw be the graph in R2l of a function w ∈ C([0, 2l], (−1, 1]) such that w(0) = w(2l) = 1, and
consider the curve Γw obtained by concatenation of Gw with the graph of φ over ∂DR2l.

Corollary 4.14. We have

F2l(h, ψ) = inf PΓw(Xmin), (4.36)

where (h, ψ) ∈ Xconv
2l is a minimizer of F2l, Xmin is a parametrization of a disc-type area-mininizing

solution of the Plateau problem spanning Γw (see (2.2)), and the infimum is computed over all
functions w as above.

The proof of this corollary can be achieved by adapting the proof of Theorem 4.11, which shows
that the solution to the Plateau problem in (4.36) is Cartesian and the optimal w is convex.

18As already observed, the minimal surface Σ+ is the graph of ψ = ψ̃, and it must be contained in the convex
envelope of Γ, i.e., inside the subgraph of φ.
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Inc., Boston, MA, 2008.

32



[15] F. Maggi, “Sets of Finite Perimeter and Geometric Variational Problems. An Introduction to
Geometric Measure Theory”, Cambridge Univ. Press, Cambridge, 2012.

[16] W. H. Meeks and S. T. Yau, The classical Plateau problem and the topology of three-dimensional
manifolds, Topology 21 (1982), 409-440.

[17] J. C. C. Nitsche, “Lectures on Minimal Surfaces”, Vol. I, Cambridge University Press, Cam-
bridge, 1989.

[18] R. Scala, Optimal estimates for the triple junction function and other surprising aspects of the
area functional, Ann. Sc. Norm. Super. Pisa Cl. Sci. XX (2020), 491-564.

[19] R. Scala, G. Scianna, On the L1-relaxed area of graphs of BV piecewise constant maps taking
three values, Adv. Calc. Var., to appear.

33


	Introduction
	Notation and preliminaries
	Plateau problem in parametric form
	A Plateau problem for a self-intersecting boundary space curve

	Preliminary results on the functional Fl and its doubled
	Doubling

	Proof of Theorems 1.1 and 1.2
	Existence of a minimizer of F2l in X2lconv
	Regularity of minimizers of F2l in X2lconv

	References

