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Abstract

We prove a lower bound for the value of the L1-relaxed area of the graph of the map
u : Bl(0) \ {0} ⊂ R2 → R2, u(x) := x/|x|, x ̸= 0, for all values of the radius l > 0. In the
computation of the singular part of the relaxed area, for l in a certain range, in particular l not
too large, a nonparametric Plateau-type problem with partial free boundary, has to be solved.
Our lower bound turns out to be optimal, in view of an upper bound proven in a companion
paper.
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1 Introduction

Given a bounded open set Ω ⊂ Rn and a map v : Ω → RN of class C1, the area of the graph of v
over Ω is given by the classical formula

A(v,Ω) =

∫
Ω
|M(∇v)| dx, (1.1)

where M(∇v) is the vector whose entries are the determinants of the minors of the gradient ∇v
of v of all orders k, 0 ≤ k ≤ min{n,N} (conventionally, the determinant of order 0 is 1). Classical
methods of relaxation suggest to consider the functional defined, for any v ∈ L1(Ω,RN ), as

A(v,Ω) := inf
{
lim inf
k→+∞

A(vk,Ω)
}
, (1.2)

and called (sequential) relaxed area functional. The infimum is computed over all sequences of maps
vk ∈ C1(Ω,RN ) approaching v in L1(Ω,RN ). Following [1], it follows that A(·,Ω) extends A(·,Ω)
and is L1-lower semicontinuous. When the codimension N = 1, it is well-known both the domain
of A(·,Ω) and its expression [22]: A(v,Ω) is finite if and only if v ∈ BV (Ω), in which case

A(v,Ω) =

∫
Ω

√
1 + |∇v|2dx+ |Dsv|(Ω), (1.3)
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∇v and Dsv representing the absolutely continuous and singular parts of the distributional gradient
Dv of v. Formula (1.3) is a basic example of non-parametric variational integral that is a measure
when considered as a function of Ω [30], and is crucial, among others, in the study of capillarity
problems [26], and in the analysis of the Cartesian Plateau problem [29]. The case N > 1 (referred
here to as the case of codimension greater than 1) is much more involved, and only a few results
are available about the behaviour of A. Again, one of its main motivations is the study of the
Cartesian Plateau problem in higher codimension; in addition, from the point of view of Calculus
of Variations, it is of interest in those vector minimum problems involving nonconvex integrands
with nonstandard growth [3], [21], [28].

In this paper we restrict attention to the case n = 2 = N , and compute a lower bound for the
relaxed area of the graph of the vortex map u : Bl(0) ⊂ R2 → R2 given by

u(x) :=
x

|x|
, x ∈ Bl(0) \ {0}. (1.4)

which turns out to be optimal. Our sharp estimate, together with the upper bound provided in [8,9],
gives the explicit value of A(u,Bl(0)). Before stating the main result, observe that u belongs to
W 1,p(Ω,R2) for all p ∈ [1, 2), and that the image of u is the one-dimensional unit circle S1 ⊂ R2, so
that Ju(x) = det(∇u(x)) = 0 for all x ∈ Ω \ {0}. On the other hand, the distributional Jacobian
of u is nonzero, and precisely equals the measure πδ0. In [1, Lemma 5.2], the authors show1 that,
for l large enough,

A(u,Bl(0)) = |〚Gu〛|+ π =

∫
Bl(0)

√
1 + |∇u|2dx+ π. (1.5)

Here 〚Gu〛 represents the current given by integration on the graph of u (see Section 2.2). With
the aid of an example, they also show that A(u,Bl(0)) must be strictly smaller than the right-hand
side of (1.5), since there is a sequence of C1-maps approximating u and having, asymptotically, a
lower value of A(·,Ω). We anticipate here that, when l is small, the above mentioned sequence is
not optimal, and the construction of a recovery sequence for A(u,Bl) is much more involved and
requires to solve a sort of Plateau-type problem in R3 with singular boundary (i.e., with partial
overlapping). Equivalently, with a reflection argument with respect to a plane, it can be seen as
a non-parametric Plateau-type problem with a partial free boundary; in [9] valid for any l > 0,
we have analysed this problem, and in particular we show that, excluding a singular configuration,
there is a non-parametric solution attaining a zero boundary condition on the free part.

We emphasize that, for l small, the fact that the above mentioned sequence is not optimal is
strongly related with the choice of the L1-convergence in the definition (1.2) of A. Even if this is
the most natural notion of convergence for the approximating maps vk of u, one can also opts to
choose stronger topologies. Some results are known when one chooses, instead of the convergence
in L1, the strict convergence in BV (Ω;R2) (see [5,6,16,17,37]). With this convergence, it has been
shown in [5] that the relaxed area of the vortex map u always equals the right-hand side of (1.5).

In order to construct a recovery sequence for A(u,Ω), the necessity of solving a 1-codimensional
Plateau problem with partial free boundary in nonparametric form, is not a surprise. A similar
construction is done in [11], to show an upper bound for the relaxed graph area of the triple
junction map uT ; in [39] it is shown that this sequence is optimal. Together with uT , the relaxation
of the area of the vortex map are the only non-trivial examples in which it is possible to compute
explicitly A. In other cases, it is only possible to show some specific upper and lower bounds, see
for instance [14, 40]. To state our main result we need to fix some notation. For l > 0 we denote
R2l := (0, 2l) × (−1, 1) and let ∂DR2l := ({0, 2l} × [−1, 1]) ∪ ((0, 2l) × {−1}) be what we call the

1In [1] the proof of (1.5) is given also for N = n ≥ 2, where now π in (1.5) is replaced by ωn.
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Dirichlet boundary of R2l. Define φ : ∂DR2l → [0, 1] as φ(t, s) :=
√
1− s2 if (t, s) ∈ {0, 2l}× [−1, 1]

and φ(t, s) := 0 if (t, s) ∈ (0, 2l) × {−1}. We introduce the functional Fl in the following way:
Given h ∈ L∞([0, l], [−1, 1]) and ψ ∈ BV(Rl; [0, 1]) we define

Fl(h, ψ) := A(ψ,Rl)−H2(Rl \ SGh) +
∫
∂DRl

|ψ − φ| dH1 +

∫
(0,l)×{1}

|ψ| dH1, (1.6)

where we have noted, for any h, its subgraph SGh := {(t, s) ∈ R2l : s ≤ h(t)}.
We further define

Xl := {(h, ψ) : h ∈ L∞([0, l], [−1, 1]), ψ ∈ BV(Rl, [0, 1]), ψ = 0 in Rl \ SGh}. (1.7)

The main result of the present paper is the following:

Theorem 1.1 (Lower bound for the area of the vortex map). Let l > 0 and u : Bl(0)\{0} →
R2 be the vortex map defined in (1.4). Then

A(u,Bl(0)) ≥
∫
Bl(0)

√
1 + |∇u|2dx+ 2 inf

(h,ψ)∈Xl

Fl(h, ψ). (1.8)

In [8] it is proved that this estimate is sharp, and as a consequence equality holds in (1.8); it
is also proved that for l large enough the infimum is not attained in H̃2l × XD,φ, and it equals π.
Instead a minimizer exists for l small, hence ψ is real analytic in the interior of SGh; furthermore,
we show that h is smooth and convex, and ψ has vanishing trace on the graph of h (see [9, Theorems
1.1, 1.2]).

The proof of Theorem 1.1 is extremely involved: we assume (uk) to be a recovery sequence
converging to u, so that A(uk,Bl(0)) → A(u,Bl(0)), and we analyse the behaviour of the graphs
Guk over two distinct subsets of Bl(0), respectively one on which uk converges uniformly to u, and
one where concentration phenomena are allowed (let us call this the “bad set”, denoted Dk in the
sequel). In the former, studied in Section 4, we see that, up to small errors, the contribution of the
areas of Guk gives the first term on the right-hand side of (1.8). In the set Dk, the graphs Guk might
behave very badly. In order to detect their behaviour we introduce suitable projections in R3 (the
maps Ψk in Definition 5.1 and the maps πλk in Definition 5.3) and use them to reduce the currents
carried by the graphs Guk to integral 2-currents supported in the cylinder [0, l] × B1(0) ⊂ R3. To
this aim, it is necessary to use a cylindrical Steiner-type symmetrization technique for these integral
currents, described in Section 3. Afterwards, an additional partition of the domain is needed, and
we focus on what happens far from the origin and in a neighbourhood Bε(0) of it. The first analysis
is carried on in Sections 5, 6, and 7. The analysis around 0 is instead done in Section 8. Roughly
speaking, we construct a cylindrically symmetric integral 2-current in [0, l]×B1(0) whose area, up
to small errors, is equal to the area of Guk over Dk. In order to relate the area of this current with
the second term on the right-hand side of (1.8), we have to artificially add some rectifiable sets to
this current (see Section 9), in such a way to force the new integral current to be a candidate for
the minimum of Fl. Some additional rearrangements are needed here, and are described in Section
10. The passage to the limit as k → +∞, and the conclusion of the proof, are then performed
in Section 11, where we also show that all the errors in the estimates of the previous sections are
negligible.

2 Preliminaries

2.1 Notation and conventions

For a map v ∈ C1(Ω,R2) and Ω ⊂⊂ R2, A(v,Ω) coincides with the area of the graph Gv :=
{(x, y) ∈ Ω × R2 : y = v(x)} of v seen as a Cartesian surface of codimension 2 in Ω × R2, and is
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given by

A(v,Ω) =

∫
Ω

√
1 + |∇v(x1, x2)|2 + |Jv(x1, x2)|2 dx1dx2.

Here ∇v is the gradient of v, a 2× 2 matrix, |∇v|2 is the sum of the squares of all elements of ∇v,
and Jv is the Jacobian determinant of v, i.e., the determinant of ∇v. The relaxed area functional
(with respect to the L1-convergence) is denoted by A(v,Ω) and is defined in (1.2). We first remark
that the infimum in (1.2) can be considered as taken over the class of sequences vk ∈ Lip(Ω;R2).
This does not change the value of A(·,Ω), as observed in [11].

Recall that in formula (1.1) the symbol M(∇v) denotes the vector whose entries are all de-
terminants of the minors of ∇v. Precisely, let α and β be subsets of {1, 2}, let ᾱ denote the
complementary set of α, namely ᾱ = {1, 2} \ α, let | · | denote the cardinality, and let A ∈ R2×2 be
a matrix. Then, if |α|+ |β| = 2, we denote by

Mβ
ᾱ (A) (2.1)

the determinant of the submatrix of A whose lines are those with index in β, and columns with
index in ᾱ. By convention MØ

Ø (A) = 1 and moreover

M i
j = aij , i, j ∈ {1, 2}, M

{1,2}
{1,2} (A) = detA,

and the vector M(A) will take the form

M(A) = (Mβ
ᾱ )(A)) = (1, a11, a12, a21, a22,detA),

where α and β run over all the subsets of {1, 2} with the constraint |α|+ |β| = 2. We will identify
α and β as multi-indeces in {1, 2}.

2.1.1 Area in cylindrical coordinates

Polar coordinates in R2
source are denoted by (r, α). Polar coordinates in the target space R2

target are
denoted by (ρ, θ).

Assume that B = {(r, α) ∈ R2 : r ∈ (r0, r1), α ∈ (α0, α1)}; then the area of the graph of
v = (v1, v2) in polar coordinates in B is given by

A(v,B) =

∫ r1

r0

∫ α1

α0

|M(∇v)|(r, α) rdrdα.

For i ∈ {1, 2}, we have

∂x1vi = cosα∂rvi −
1

r
sinα∂αvi, ∂x2vi = sinα∂rvi +

1

r
cosα∂αvi.

Hence

|∇vi|2 = (∂rvi)
2 +

1

r2
(∂αvi)

2, i ∈ {1, 2}, (2.2)

∂x1v1∂x2v2 − ∂x2v1∂x1v2 =
1

r

(
∂rv1∂αv2 − ∂αv1∂rv2

)
.

Thus the area of the graph of v on B is given by

A(v,B)

=

∫ r1

r0

∫ α1

α0

√
1 + (∂rv1)2 + (∂rv2)2 +

1

r2

{
(∂αv1)2 + (∂αv2)2 +

(
∂rv1∂αv2 − ∂αv1∂rv2

)2
}
rdrdα.

(2.3)
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We denote by Br = Br(0) ⊂ R2 = R2
source the open disc centered at 0 with radius r > 0 in the

source space. Our reference domain is Ω = Bl ⊂ R2
source = R2

(x1,x2)
where l > 0 is fixed once for

all. The symbol u will be used to note the vortex map in (1.4), which we assume to be defined on
Bl \ {0}.

For any ϱ > 0, it is convenient to introduce the (portion of) cylinder Cl(ϱ), as

Cl(ϱ) := (−1, l)×Bϱ = {(t, ρ, θ) ∈ (−1, l)× R+ × (−π, π] : ρ < ϱ} ⊂ R3 = Rt × R2
target, (2.4)

where (t, ρ, θ) are cylindrical coordinates in R3, with the cylinder axis the t-axis. For ϱ = 1 we
simply write

Cl(1) = Cl. (2.5)

For a fixed parameter ε ∈ (0, l), we also set

Cεl (ϱ) := (ε, l)×Bϱ = {(t, ρ, θ) ∈ (0, l)× R+ × (−π, π] : ε < ρ < ϱ} ⊂ Rt × R2
target. (2.6)

Also in this case we use the notation
Cεl (1) = Cεl . (2.7)

The closure of Cl(ρ) (resp. C
ε
l (ρ)) is denoted by C l(ρ) (resp. C

ε
l (ρ)), and the lateral boundary of

Cl(ρ) (resp. C
ε
l (ρ)) is denoted by ∂latCl(ρ) (resp. ∂latC

ε
l (ρ)).

Remark 2.1. We will often deal with integral currents supported in

[0, l]×B1 ⊂ C l.

The choice of Cl = (−1, l) × B1 covering also certain negative values of the first coordinate t is
useful to control and detect the behaviour of these currents on the plane {t = 0}.

2.1.2 Area formula

Let f : U ⊂ Rk → Rn be Lipschitz continuous, with k ≤ n. The area of the image f(U) of U by f
is given by ∫

U
Jf(x)dx,

with the Jacobian matrix of f given by

Jf =
√
det

(
(∇f)T∇f

)
=

√∑
(detA)2 a.e. in U,

where, for almost every x ∈ U , the sum is made on all submatrices A(x) of ∇f(x) of dimension
k × k.

2.2 Currents

For the reader convenience we recall some basic notion on currents. We refer to [25], [33] and [28]
for an exhaustive discussion.

Given an open set U ⊂ Rn we denote by Dk(U) the space of smooth k-forms compactly supported
in U and by Dk(U) the space of k-dimensional currents, for 0 ≤ k ≤ n. If T ∈ Dk(Rn), the symbol
|T | denotes the mass of the current T , and if U ⊂ Rn is an open set, the symbol |T |U will denote
the mass of T in U , namely

|T |U := supT (ω),
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the supremum being over all ω ∈ Dk(U) with ∥ω∥ ≤ 1.
For k ≥ 1 it is defined the boundary ∂T ∈ Dk−1(U) of a current T ∈ Dk(U) by the formula

∂T (ω) := T (dω) for all ω ∈ Dk−1(U),

where dω is the external differential of ω. For T ∈ D0(U) one sets ∂T := 0.
If F : U → V a Lipschitz map between open sets, and T ∈ Dk(U), we denote by F♯T ∈ Dk(V )

the push-forward of T by F (see [33, Section 7.4.2]).
Given a k-dimensional rectifiable set S ⊂ U and a tangent unit simple k-vector τ to it, we denote

by 〚S〛 the current given by integration over S, namely

〚S〛(ω) =
∫
S
<τ(x), ω(x)> dHk(x), ω ∈ Dk(U).

We will often omit specifying which is the vector τ if it is clear from the context. We will often
deal with the case k = 2, and U ⊂ R3 where there are only two possible orientations. Moreover in
the case k = 3 and U ⊂ R3 the current 〚S〛 reduces to the integration over the 3-dimensional set
S ⊂ R3, and τ = e1 ∧ e2 ∧ e3.

We call T ∈ Dk(U) an integral current if it is rectifiable with integer multiplicity and if both
|T |U and |∂T |U are finite. The Federer-Fleming theorem for integral currents then states that
a sequence of integral currents Ti ∈ Dk(U) with supi(Ti| + |∂Ti|) < +∞ admits a subsequence
converging weakly in the sense of currents to an integral current T .

A finite perimeter set is a subset E ⊂ Rn such that the current 〚E〛 ∈ Dn(U) is integral. The
symbol ∂∗E denotes the reduced boundary of E. E is unique up to negligible sets, so that we always
choose a representative of E for which the closure of the reduced boundary equals the topological
boundary [34].

An integral current T ∈ Dk(U) is called indecomposable if there is no integral current R ∈ Dk(U)
such that R ̸= 0 ̸= T −R with

|T |U + |∂T |U = |R|U + |∂R|U + |T −R|U + |∂(T −R)|U .

We will often use the following decomposition theorem for integer multiplicity currents: For every
integral current T ∈ Dk(U) there is a sequence of indecomposable integral currents Ti ∈ Dk(U)
with T =

∑
i Ti and |T | + |∂T | =

∑
i |Ti| +

∑
i |∂Ti| (see [25, Section 4.2.25]). In the case that

T ∈ Dn(U), U ⊆ Rn, the previous decomposition theorem can be stated as follows: There is
a sequence of finite perimeter sets with {Ei}i∈Z such that T =

∑
i≥0 〚Ei ∩ U〛 −

∑
i<0 〚Ei ∩ U〛

with
∑

i |Ei ∩ U | +
∑

iHn−1(U ∩ ∂∗Ei) = |T | + |∂T | (see [33, Theorem 7.5.5] and its proof).
Moreover, the decomposition theorem applied to Ei allows us to assume that the sequence (〚Ei〛)
consists of indecomposable currents. In the case of 1-dimensional currents, it is possible also to
characterize indecomposable currents, namely T ∈ D1(Rn) is indecomposable if T = γ♯〚[0, |T |]〛
with γ : [0, |T |] → Rn a 1-Lipschitz simple curve, i.e., injective on [0, |T |). If moreover ∂T = 0 then
γ(0) = γ(|T |).

We will exploit the property that any boudaryless current T ∈ Dn−1(Rn) is the boundary of a
sum of currents given by integration over locally finite perimeter sets Ei, i.e., T =

∑
i ∂〚Ei〛. This

is a consequence of the cone construction, and for integral currents can be obtained also from the
isoperimetric inequality (see [33, Formula (7.26)] and [33, Theorem 7.9.1]).

We need also the concept of slice of an integral current with respect to a Lipschitz function f
(see [33, Section 7.6]). Since we only employ it for slices with respect to parallel planes, the function
f will be f(x) = xh where xh is the coordinate in Rn whose axis is orthogonal to the considered
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planes. We denote by Tt ∈ Dk−1(Rn) the slices of T ∈ Dk(Rn) on the plane {xh = t}, which will
be supported on this plane. We will also use that, if T is boundaryless, then

∂(T {xh < t}) = Tt for a.e. t ∈ R.

For a map v ∈ C1(Ω;R2) the symbol Gv := {(x, v(x)) ∈ Ω× R2} represents the graph of v, which
is a 2-dimensional oriented submanifold which is naturally identified with an integral boundaryless
current given by integration over it, denoted by 〚Gu〛. Its mass, which coincides with the H2-
measure of Gu, is given by

|〚Gv〛| = A(v,Ω) =

∫
Ω
|M(∇v)| dx.

If v ∈ BV (Ω;R2) we denote by Rv ⊆ Ω the set of regular points of v, i.e., the set consisting of
points x which are Lebesgue points for v, v(x) coincides with the Lebesgue value of v at x, and v
is approximately differentiable at x. We also set

GRv := {(x, v(x)) ∈ Rv × R2}.

The set GRv is H2-rectifiable and is identified with an integral current given by integration over it,
denoted by 〚GRv 〛. Also,

|〚GRv 〛| = A(v,Ω) =

∫
Ω
|M(∇v)| dx,

where now ∇v is the approximate gradient of v. In this case, in general, 〚Gv〛 is not a boundaryless
current.

2.3 Generalized graphs in codimension 1

Let v ∈ L1(Ω). Also in this case we denote by Rv ⊆ Ω the set of regular points of v, as above. We
introduce

GRv := {(x, v(x)) ∈ Rv × R},
SGRv := {(x, y) ∈ Rv × R : y < v(x)}.

We often will identify SGRv with the integral 3-current 〚SGv〛 ∈ D3(Ω × R). If v is a function of
bounded variation, Ω \ Rv has zero Lebesgue measure, so that the current 〚SGv〛 coincides with
the integration over the subgraph

SGv := {(x, y) ∈ Ω× R : y < v(x)}.

For this reason we often identify SGv = SGRv . It is well-known that the perimeter of SGv in Ω×R
coincides with A(v,Ω).

The support of the boundary of 〚SGv〛 includes the graph GRv , but in general consists also of
additional parts, called vertical. We denote by

Gv := ∂〚SGv〛 (Ω× R),

the generalized graph of u, which is a 2-integral current supported on ∂∗SGv, the reduced boundary
of SGv in Ω× R.

Let Ω̂ ⊂ R2 be a bounded open set such that Ω ⊆ Ω̂, and suppose that L := Ω̂∩∂Ω is a rectifiable
curve. Given ψ ∈ BV (Ω) and a W 1,1 function φ : Ω̂ → R, we can consider

ψ :=

{
f on Ω,

φ on Ω̂ \ Ω.
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Then (see [29], [2])

A(ψ, Ω̂) = A(ψ,Ω) +

∫
L
|ψ − φ|dH1 +A(φ, Ω̂ \ Ω).

2.4 Polar graphs and subgraphs in a cylinder

Consider the (portion of) cylinder Cl = (−1, l) × B1 defined in (2.5), endowed with cylindrical
coordinates (t, ρ, θ) ∈ (−1, l) × [0, 1) × (−π, π]. Take the rectangle H = {(t, ρ, θ) ∈ Cl : θ = 0},
which is endowed with Cartesian coordinates (t, ρ) ∈ (−1, l)× (0, 1). If Θ : H → [0, π] is a function
defined on H, we can associate to it the map id ▷◁ Θ : H → Cl defined as

(t, ρ) → (t, ρ,Θ(t, ρ)), (t, ρ) ∈ H.

The polar graph of Θ is defined as

Gpol
Θ := {(t, ρ,Θ(t, ρ)) : t ∈ (−1, l), ρ ∈ (0, 1)} = id ▷◁ Θ(H),

where again we have used cylindrical coordinates.
We define a sort of polar subgraph of Θ as

SGpol
Θ := {(t, ρ, θ) : t ∈ (−1, l), ρ ∈ [0, 1), θ ∈ (−η,Θ(t, ρ))}.

Here η > 0 is a small number introduced for convenience, and it will suffice to take η < 1. If the
set SGpol

Θ has finite perimeter, its reduced boundary in {−η < θ < π + η} ∩ Cl coincides with the
generalized polar graph GΘ of Θ,

GΘ = (∂∗SGpol
Θ ) ∩ ({−η < θ < π + η} ∩ Cl). (2.8)

This set includes, up to H2-negligible sets, the polar graph Gpol
Θ . When SGpol

Θ has finite perimeter,

the current 〚SGpol
Θ 〛 ∈ D3(Cl) is integral and its boundary in {−η < θ < π+η}∩Cl is the integration

over the generalized polar graph of Θ, i.e.,

∂〚SGpol
Θ 〛 ({−η < θ < π + η} ∩ Cl) = 〚GΘ〛,

where GΘ is naturally oriented by the outer normal to ∂∗SGpol
Θ .

Notice also that since Θ ∈ [0, π] the current 〚GΘ〛 carried by the generalized polar graph GΘ is
supported in {0 ≤ θ ≤ π} ∩ Cl.

3 Cylindrical Steiner symmetrization

In this section we introduce the cylindrical Steiner symmetrization of a finite perimeter2 set U ⊆
Cl = (−1, l)×B1(0). This rearrangement is obtained slice by slice by spherical (two dimensional)
symmetrization, a technique introduced first by Pòlya. We refer to [15] and references therein for
an exhaustive description of the subject. Here we collect the main properties used in the sequel of
the paper. Furthermore we will introduce a generalization of this symmetrization in order to apply
it to integral 2-currents.

Let us recall that Cl is endowed with cylindrical coordinates (t, ρ, θ) ∈ (−1, l)× [0, 1)× (−π, π].
If x1, x2, x3 are cartesian coordinates, we have x1 = t, x2 = ρ cos θ, x3 = ρ sin θ. Sometimes it will
be convenient to extend 2π-periodically the values of θ on the whole of R.

2Recall that we choose a representative of U such that the closure of its reduced boundary ∂∗U equals the
topological boundary.
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For every t ∈ (−1, l) let Ut := U ∩ ({t} × R2) the slice of U on the plane with first coordinate t,
and for every ρ ∈ (0, 1) let Ut(ρ) := Ut ∩ ({t} × {ρ} × (−π, π]) be the slice of Ut with the circle of
radius ρ.

Definition 3.1 (Cylindrical Symmetrization of solid sets in Cl). Let U ⊆ Cl be a finite
perimeter set. For every t ∈ (−1, l) and ρ ∈ (0, 1) we let

Θ(t, ρ) = ΘU (t, ρ) :=
1

ρ
H1(Ut(ρ)), (3.1)

and we define the cylindrically symmetrized set S(U) ⊆ Cl as

S(U) :=
{
(t, ρ, θ) : t ∈ (−1, l), ρ ∈ (0, 1), θ ∈

(
−Θ(t, ρ)/2,Θ(t, ρ)/2

)}
. (3.2)

Notice that ΘU = ΘS(U). The set S(U) enjoys the following properties:

(1) H2(S(U)t) = H2(Ut) and H1(∂∗(S(U)t)) ≤ H1(∂∗(Ut)) for every t ∈ (−1, l);

(2) |S(U)| = |U | and H2(∂∗S(U)) ≤ H2(∂∗U).

A proof of these properties is contained in [15, Theorem 1.4]. In particular, since U has finite
perimeter, so is S(U) and its perimeter cannot increase after symmetrization. We will need to apply
symmetrization to integral 3-currents in Cl. That is, (possibly infinite) sums of finite perimeter sets
with integer coefficients. For this reason we introduce the following generalization of cylindrical
symmetrization.

Let E ∈ D3(Cl) be an integral 3-current. By Federer decomposition theorem [25, Section 4.2.25,
p. 420] (see also [25, Section 4.5.9] and [33, Theorem 7.5.5]) it follows that there is a sequence
(Ei)i∈N of finite perimeter sets such that

E =
∑
i

(−1)σi〚Ei〛, (3.3)

for suitable σi ∈ {0, 1}. We can also assume the decomposition is done in undecomposable compo-
nents, so that

|E| =
∑
i

|Ei| and |∂E| =
∑
i

H2(∂∗Ei). (3.4)

According to Definition 3.1 , we can symmetrize each set Ei into S(Ei).

Definition 3.2 (Cylindrical symmetrization of an integer 3-current). Let E := supp(E)
denote the support of the current E∈ D3(Cl). We let

S(E) :=
⋃
i

S(Ei),

which will be referred to as the symmetrized support of E. The symmetrized current S(E)∈ D3(Cl)
is defined as

S(E) := 〚S(E)〛. (3.5)

Notice that the multiplicity of 〚S(E)〛 is one, hence 〚S(E)〛 is the integration over a finite perimeter
set.
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3.1 Cylindrical symmetrization of a two-current. Slicings

Let us focus on a slice Et of the current E with respect to a plane {t} × R2
target. Suppose for the

moment that E is the integration over a finite perimeter set (that we identify with E) in Cl; Et
is the integration over the slice Et of E, and suppose that the boundary of Et is the trace σ of a
rectifiable Jordan curve. Applying Definition 3.2 to the set E we see that Et is transformed into the
symmetrized set S(Et) whose boundary is again3 the trace σs of a Jordan curve. By the properties
of the symmetrization we infer H1(σ) ≥ H1(σs).

However, if the boundary of Et is the trace σ of a nonsimple curve, then the procedure is more
involved. More generally, from Definition 3.2, we see that for a.e. t ∈ (−1, l) the slice Et of E is an
integral 2-current, and it can be represented by integration over finite perimeter sets (Ei)t (with
suitable signs) which are exactly the slices of the sets Ei in (3.3). Moreover for a.e. t ∈ (−1, l)
the boundary of Et is a 1-dimensional integral current with finite mass, and it coincides with the
integration (with suitable signs) over the boundaries of (Ei)t, namely

∂Et =
∑
i

(−1)σi∂〚(Ei)t〛.

Let us call this boundary σ (which, with a little abuse of notation, we identify with an integral
1-current, an at most countable sum of simple curves), and set σs := ∂〚S(E)t〛. By Definition 3.2
it then follows that S(E)t = 〚S(E)t〛. Now, by the properties of the symmetrization, we see that
H1(supp(σ)) ≥ H1( spt (σs)). Also in this case it turns out that σs is the integration over countable
many simple curves (with suitable orientation).

We have described so far how the boundary of E is trasformed slice by slice. In general if E is a
3-integral current in Cl, then the current S := ∂E has the property that

|S| ≥ H2(∂∗S(E)).

There is also a viceversa. Precisely assume that S is any boundaryless integral 2-current in Cl. Then
there is an integral 3-current E whose boundary is S. So that we can define the symmetrization of
S by symmetrizing E .

Definition 3.3 (Cylindrical symmetrization of the boundary of a three-current). The
symmetrization of S = ∂E is defined as

S(S) := ∂S(E).

The next lemma will be useful in Section 8.

Lemma 3.4. Let S be a boundaryless integral 2-current in Cl. Let t ∈ (−1, l) be such that S ({t}×
R2) = 0. Then

S(S) ({t} × R2) = 0. (3.6)

Proof. We know that S = ∂E . By the properties of the cylindrical symmetrization (see item (2)
above) for each set Ei we have

H2
(
({t} × R2) ∩ ∂∗Ei

)
≥ H2

(
({t} × R2) ∩ ∂∗S(Ei)

)
.

From our assumption it follows4 that for all i we have H2(({t} × R2) ∩ ∂∗Ei) = 0, and thus

H2(({t} × R2) ∩ ∂∗S(Ei)) = 0, i ∈ N.
3S(Et) is simply connected. Indeed the support of ρ 7→ Θ(t, ρ) is a connected subset of (0, 1).
4This follows since the decomposition is done in undecomposable components: if there is some boundary of some

Ei then it cannot cancel with some other boundary (oppositely oriented) of some Ej .
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To conclude the proof we have to show that

H2
(
({t} × R2) ∩ ∂∗S(E)

)
= H2

(
({t} × R2) ∩ ∂∗(∪iS(Ei))

)
= 0. (3.7)

The conclusion easily follows if the family {Ei} is finite, since in this case ∂(∪iS(Ei)) ⊆ ∪i∂S(Ei).
If this family is not finite we argue as follows: fix ε > 0 and Nε ∈ N so that (see (3.4))

+∞∑
i=Nε+1

H2(∂∗Ei) ≤ ε. (3.8)

We have
S(E) = ∪iS(Ei) =

(
∪Nε
i=1 S(Ei)

)
∪
(
∪+∞
i=Nε+1 S(Ei)

)
=: A ∪B,

thus
({t} × R2) ∩ ∂S(E) ⊆

(
({t} × R2) ∩ ∂∗A

)
∪
(
({t} × R2) ∩ ∂∗B

)
.

By the previous observations H2(({t} × R2) ∩ ∂∗A) = 0; we will prove that

H2(({t} × R2) ∩ ∂∗B) = H2
(
({t} × R2) ∩ ∂∗(∪+∞

i=Nε+1S(Ei))
)
≤ ε,

so that (3.7) follows by arbitrariness of ε > 0. To do so, it suffices to write

H2
(
({t} × R2) ∩ ∂∗(∪+∞

i=Nε+1S(Ei))
)
≤ H2

(
∂∗(∪+∞

i=Nε+1S(Ei))
)
≤

+∞∑
i=Nε+1

H2(∂∗S(Ei)) ≤ ε.

The last inequality follows from (3.8) and from the fact that symmetrization does not increase the
perimeter. As for the second inequality, it follows from the lower semicontinuity of the perimeter.
Indeed, setting Fk := ∪ki=Nε+1S(Ei) for k ≥ Nε + 1, we see that Fk → F∞ := ∪∞

i=Nε+1S(Ei) in
L1(Cl), and since Fk has finite perimeter we infer

H2(∂∗F∞) ≤ lim inf
k→+∞

H2(∂∗Fk) ≤ lim inf
k→+∞

k∑
i=Nε+1

H2(∂∗S(Ei)).

As before, we can look at what happens to the current S slice by slice. If ∂E = S, then
St = −∂(Et) for a.e. t ∈ (−1, l). Assume that E decomposes as in (3.3), then

Et =
∑
i

(−1)σi〚(Ei)t〛 for a.e. t ∈ (−1, l). (3.9)

Now the sets (Ei)t are symmetrized as before, and their union, denoted S(Et) (so that S(E)t =
〚S(Et)〛) satisfies

∂〚S(Et)〛 = −S(S)t

and

|St| ≥ H1(∂∗S(E)t).

Let us go back to (3.9). In general

|Et| ≤
∑
i

H2((Ei)t); (3.10)
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Figure 1: The symmetrization of a subset of B1 bounded by a Jordan curve, with the respect to
the radius {θ = 0}; see formula (3.1).

however, since the decomposition is made of undecomposable components, (3.4) holds and hence

|Et| =
∑
i

H2((Ei)t) for a.e. t ∈ (−1, l). (3.11)

This can be seen integrating in t formula (3.10), so that if strict inequality holds for a positive
measured set of t ∈ (−1, l) we would get the strict inequality in the first equation of (3.4), which
is a contradiction.

Moreover, by construction, H2((Ei)t) = H2(S(Ei)t) for all i, and since S(E)t = ∪iS(Ei)t it also
follows

|Et| =
∑
i

H2((Ei)t) =
∑
i

H2(S(Ei)t) ≥ H2(S(E)t).

Now we fix t such that (3.11) holds and set Fi := (Ei)t, F := Et, F := spt (F), S(F ) = S(E)t.
The set Fi ∈ B1 can be sliced with respect to the radial coordinate ρ ∈ (0, 1), so that exploiting
that

(Et)ρ =
∑
i

(−1)σi〚((Ei)t)ρ〛

holds for a.e. ρ, we can repeat the same argument as before to obtain

|Fρ| =
∑
i

H1((Fi)ρ) for a.e. ρ ∈ (0, 1).

Again we have
∑

iH1((Fi)ρ) ≥ H1(S(F )ρ). Recalling that S(F )ρ = S(E)t ∩ ∂Bρ, we conclude that,
for a.e. t ∈ (−1, l) and for a.e. ρ ∈ (0, 1) the slice (Et)ρ satisfies

|(Et)ρ| ≥ H1(S(E)t ∩ ∂Bρ) = ρΘ(t, ρ), (3.12)

where we have defined Θ(t, ρ) := ρ−1H1(S(E)t∩∂Bρ) the measure in radiants of the arc S(E)t∩∂Bρ.

Remark 3.5. In the sequel we are going to apply the cylindrical symmetrization to a current
supported in the portion of the cylinder (0, l) × B1 ⊂ Cl. The fact that we symmetrize in Cl =
(−1, l)×B1 is useful to avoid possible creation of boundary on the disc {0} ×B1.
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4 Lower bound: first reductions on a recovery sequence

Let u(x) = x/|x|, x ̸= 0, be the vortex map and Ω = Bl. In the aim of proving (1.8), consider a
recovery (uk) ⊂ C1(Ω,R2) for the area of the graph of u, i.e., uk → u in L1(Ω,R2) and

lim inf
k→+∞

A(uk,Ω) = A(u,Ω);

with no loss of generality we can suppose that uk → u almost everywhere in Ω and

lim inf
k→+∞

A(uk,Ω) = lim
k→+∞

A(uk,Ω) < +∞. (4.1)

If

Π : R2
target → B1 ⊂ R2

target, Π(x) :=

{
x
|x| if |x| > 1

x if |x| ≤ 1,
(4.2)

is the projection map onto B1, then

A(v,Ω) ≥ A(Π ◦ v,Ω) ∀v ∈ C1(Ω,R2).

Notice that in general Π◦v /∈ C1(Ω,R2); however Π◦v is of class C1 on the set {x ∈ Ω : |v(x)| < 1}
and Lipschitz continuous in Ω. Therefore, possibly replacing uk by Π ◦ uk, we may assume that

uk takes values in B1 for all k ∈ N. (4.3)

We start by dividing the source disc Ω in several suitable subsets. First we observe that from (4.1)
there exists a constant C > 0 such that

C ≥
∫
Ω
|∇uk| dx =

∫ l

0

∫
∂Br

|∇uk(r, α)| dH1(α)dr ∀k ∈ N. (4.4)

By Fatou’s lemma, we then infer ∫ l

0
L(r) dr ≤ C,

where

L(r) := lim inf
k→+∞

∫
∂Br

|∇uk(r, α)| dH1(α) for a.e. r ∈ (0, l).

In particular, L(r) is finite for almost every r ∈ (0, l). Since uk → u almost everywhere in Ω, we
have that for almost every r ∈ (0, l)

uk(r, α) → u(r, α) for H1 − a.e. α ∈ ∂Br.

Thus we can choose ε ∈ (0, 1) arbitrarily small such that the two following properties are satisfied:

L(ε) ≤ Cε for a constant Cε > 0 depending on ε; (4.5)

lim
k→+∞

uk(ε, α) = u(ε, α) for H1 − a.e. α ∈ ∂Bε. (4.6)
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4.1 The functions dk, the subdomains An and Dδ
k, and selection of (λk)

By Egorov lemma, there exists a sequence (An) of measurable subsets of Ω such that, for any n ∈ N,
An+1 ⊆ An,

|An| <
1

n
, (4.7)

and

uk → u in L∞(Ω \An,R2) as k → +∞. (4.8)

Definition 4.1 (The function dk and the set Dδ
k). We indicate by dk : Ω \ {0} → [0, 2] the

function
dk :=

∣∣uk − u
∣∣, (4.9)

and for any δ > 0 we introduce

Dδ
k := {x ∈ Ω \ {0} : dk(x) > δ} =: {dk > δ}. (4.10)

Notice that
∂Dδ

k ⊆ {x ∈ Ω \ {0} : dk(x) = δ} =: {dk = δ}. (4.11)

For ε ∈ (0, 1) satisfying (4.5) and (4.6), we have dk ∈ Lip(Ω \ Bε;R2) ∩W 1,1(Ω;R2). Given n ∈ N,
from (4.8) it follows that for any δ > 0 there exists kδ,n ∈ N such that dk <

δ
2 in Ω \ An for any

k ≥ kδ,n, and thus

Ω \An ⊆
{
dk <

δ

2

}
⊆ Ω \Dδ

k ∀k > kδ,n.

Passing to the complement, from (4.11) and the inclusion {dk = δ} ⊆ {dk ≥ δ/2}, we get

Dδ
k ⊆ An and ∂Dδ

k ⊆ An ∀k > kδ,n. (4.12)

Lemma 4.2 (Choice of λk and estimates on Dλk
k ). Let ε ∈ (0, 1) satisfy (4.5) and (4.6). Let

n > 0 and An ⊂ Ω be a measurable set satisfying (4.7) and (4.8). Then there are a (not relabelled)
subsequence of (uk) and a decreasing infinitesimal sequence (λk) of positive numbers, both depending
on n and ε, such that the following properties hold:

(i) for all k ∈ N we have λk ̸= 1− |uk(0)| and the boundary of the set Dλk
k = {dk > λk} consists

of an at most countable number of continuous curves which are either closed or with endpoints
on ∂Ω, and whose total length is finite;

(ii) Dλk
k ∪ ∂Dλk

k ⊆ An for all k ∈ N;

(iii) lim
k→+∞

∫
∂D

λk
k

dk dH1 = 0 = lim
k→+∞

(
λkH1(∂Dλk

k )
)
;

(iv) ∂Dλk
k ∩ ∂Bε consists of a finite set of points. Hence5, also the relative boundary of Dλk

k ∩ ∂Bε
in ∂Bε consists of a finite set {xi}i∈Ik of points which are the endpoints of the corresponding

finite number of arcs forming Dλk
k ∩ ∂Bε, and

lim
k→+∞

∑
i∈Ik

dk(xi) = 0; (4.13)

5The relative boundary of D
λk
k ∩ ∂Bε is contained in ∂D

λk
k ∩ ∂Bε.
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(v) H1(Dλk
k ∩ ∂Bε) ≤ 1

n for all k ∈ N.

Proof. Let

I := (0, 2) \
⋃
k∈N

{1− |uk(0)|},

which is of full measure in (0, 2).
We have, for an absolute positive constant α, recalling the definition of dk in (4.9),∫

Ω
|∇uk −∇u| dx ≥ α

∫
Ω
|∇dk| dx = α

∫ 2

0
H1({dk = λ}) dλ, (4.14)

where the last equality follows from the coarea formula, recalling also that uk takes values in
B1. The left-hand side is uniformly bounded with respect to k, thanks to (4.4) and the fact that
∇u ∈ L1(Ω,R2). Thus, denoting

φk(·) := H1({dk = ·}), φ := lim inf
k→+∞

φk, (4.15)

we get, from Fatou’s lemma, ∫ 2

0
φ(λ) dλ =

∫
I
φ(λ) dλ ≤ C1, (4.16)

for some constant C1 > 0.
Let us now focus attention on the set ∂Bε. We apply the tangential coarea formula to ∂Bε (see

for instance [34, Theorems 11.4, 18.8]) so that, if ∂tg stands for the tangential derivative along ∂Bε,
we have ∫

∂Bε

∣∣∂tgdk∣∣ dH1 =

∫ 2

0
H0({dk = λ} ∩ ∂Bε) dλ.

Arguing in a similar manner as before, denoting

ψk(·) := H0({dk = ·} ∩ ∂Bε), ψ := lim inf
k→+∞

ψk, (4.17)

it follows that, exploiting condition (4.5), there exists a constant C ′
ε > 0 such that∫

I
ψ(λ) dλ ≤ C ′

ε. (4.18)

We now claim that

∃(λm) ⊂ I : lim
m→+∞

λm = 0, lim
m→+∞

(φ(λm)λm) = 0 = lim
m→+∞

(ψ(λm)λm). (4.19)

Recalling that I is of full measure, assume (4.19) is false, so that either there are c0 > 0 and δ0 > 0
such that

φ(λ) >
c0
λ

∀λ ∈ (0, δ0) ∩ I, (4.20)

or there are c′0 > 0 and δ′0 > 0 such that

ψ(λ) >
c′0
λ

∀λ ∈ (0, δ′0) ∩ I. (4.21)
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Suppose for instance we are in case (4.20): since I has full measure, this contradicts (4.16); the
same argument applied to (4.21) leads to contradict (4.18). Hence claim (4.19) is proven, and
therefore, upon passing to a (not relabelled) subsequence we might assume that (λm) is decreasing,
and

φ(λm)λm <
1

m
, ψ(λm)λm <

1

m
∀m ∈ N.

Thus, recalling (4.15) and (4.17), for any m ∈ N there are infinitely many l ∈ N such that

φl(λm)λm <
2

m
, ψl(λm)λm <

2

m
. (4.22)

Moreover, for any n ∈ N and m ∈ N there exists k(n, λm) ∈ N such that

Dλm
h ∪ ∂Dλm

h ⊆ An and H1(Dλm
h ∩ ∂Bε) ≤

1

n
∀h ≥ k(n, λm), (4.23)

where the inclusion follows from (4.12) and the inequality being a consequence of (4.6). For any
m ∈ N we can choose hm ∈ N (depending also on n) such that hm < hm+1, hm ≥ k(n, λm), and
(4.22) is verified for l = hm. Therefore

lim
m→+∞

(φhm(λm)λm) = 0, (4.24)

Dλm
hm

∪ ∂Dλm
hm

⊆ An for all n,m ∈ N, (4.25)

lim
m→+∞

(ψhm(λm)λm) = 0, (4.26)

H1(Dλm
hm

∩ ∂Bε) ≤
1

n
for all n,m ∈ N. (4.27)

Notice also that from (4.22) we have ψhm(λm) < +∞, so that {dhm = λm} ∩ ∂Bε is a finite
set {x̃i} of points. The relative boundary ∂(Dλm

hm
∩ ∂Bε) of Dλm

hm
∩ ∂Bε in ∂Bε must belong to

∂Dλm
hm

∩ ∂Bε ⊆ {dhm = λm} ∩ ∂Bε = {x̃i}. Hence, let {xi} ⊆ {x̃i} be the set of boundary points of

Dλm
hm

∩ ∂Bε in ∂Bε.
Since Dλm

hm
∩ ∂Bε is open in ∂Bε, we have that (whenever it is nonempty) it consists either of the

union of arcs with endpoints {xi} or is the whole of ∂Bε, and statements (ii) and (v) follow. Notice
also that ∑

x∈∂(Dλm
hm

∩∂Bε)

dhm(x) = λmH0(∂(Dλm
hm

∩ ∂Bε)) ≤ λmψhm(λm),

and (4.13) follows from (4.26).
To prove (iii) we see that, by definition of φk in (4.15) and recalling (4.24), we obtain

lim
m→+∞

∫
{dhm=λm}

dhm dH1 = lim
m→+∞

(
λmH1({dhm = λm})

)
= lim

m→+∞
(λmφhm(λm)) = 0.

A similar argument holds for ψk using (4.26), and also (v) follows.
It remains to prove (i). The first assertion follows since λm ∈ I from (4.19). As for the second

assertion, we see that Dλm
hm

is a subset of Ω\{0} whose perimeter is finite: indeed, by definition the

reduced boundary of Dλm
hm

is a subset of {dhm = λm}, which has finite H1 measure by (4.22). Thus

∂Dλm
hm

is a closed 1-integral current in Ω \ {0} and by the decomposition theorem for 1-dimensional
currents it is the sum of integration on simple curves [25, pag. 420, 421], either closed or with
endopoints on the boundary of Ω \ {0}, i.e., {0} ∪ ∂Ω. The finiteness of the total length of these
curves follows, since Dλm

hm
is a set of finite perimeter. This concludes the proof of (i), and of the

lemma.
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Corollary 4.3. Let ε, n and (λk) be as in Lemma 4.2. Then

lim
k→+∞

(
λkH1({dk = λk})

)
= 0, lim

k→+∞

(
λkH0

(
{dk = λk} ∩ ∂Bε(0)

))
= 0.

Proof. It follows from the proof of Lemma 4.2.

Once for all we fix the sequence (λk) as in Lemma 4.2 and, in order to shorten the notation, we
give the following:

Definition 4.4 (Definite choice of Dk). We set

Dk := Dλk
k . (4.28)

Let us recall that

∂Dk ⊆ {dk = λk}. (4.29)

Also, observe that, upon extracting a further (not relabelled) subsequence, we might assume that
the characteristic functions χDk

converge weakly∗ in L∞(Ω) to some ζn ∈ L∞(Ω; [0, 1]) (the sequence

(Dk) depends on n, and so ζn depends on n). Since the limit holds also weakly in L1(Ω) we see
that

∥ζn∥L1(Ω) ≤ lim inf
k→+∞

∥χDk
∥L1(Ω) ≤

1

n
. (4.30)

Recalling the definition of Mβ
ᾱ (A) in (2.1), we prove the following statement.

Lemma 4.5 (The currents Tk and the limit current Tn). Let n ∈ N be fixed and let An ⊂ Ω
satisfy (4.7) and (4.8). For any k ∈ N define the current Tk ∈ D2(Ω× R2) as

Tk(ω) :=


∫
Ω\Dk

φ(x, uk(x))M
β
ᾱ (∇uk(x)) dx if |β| ≤ 1,

0 if |β| = 2,

where ω ∈ D2(Ω× R2) is a 2-form that writes as

ω(x, y) = φ(x, y)dxα ∧ dyβ, φ ∈ C∞
c (Ω× R2), |α|+ |β| = 2. (4.31)

Then
lim

k→+∞
Tk = Tn ∈ D2(Ω× R2) weakly in the sense of currents,

where

Tn(ω) :=
∫
Ω
φ(x, u(x))Mβ

ᾱ (∇u(x))(1− ζn(x)) dx ∀ω as in (4.31).

Proof. Since the Jacobian of u vanishes almost everywhere it follows that Tn(φdy1 ∧ dy2) = 0 for
all φ as in (4.31). Then for 2-forms ω = φdy1 ∧ dy2 the convergence Tk(ω) → Tn(ω) is achieved.
We are then left to prove that for all 2-forms ω with ω(x, y) = φ(x, y)dxα ∧ dyβ, φ ∈ C∞

c (Ω×R2),
|α|+ |β| = 2, and |β| ≤ 1, it holds

lim
k→+∞

∫
Ω\Dk

φ(x, uk(x))M
β
ᾱ (∇uk(x)) dx =

∫
Ω
φ(x, u(x))Mβ

ᾱ (∇u)(1− ζn(x)) dx. (4.32)
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To simplify the argument we treat separately the cases ω = φ(x, y)dx1∧dx2 and ω = φ(x, y)dxi∧dyj
for some i, j ∈ {1, 2}. In the former case we simply have∫

Ω\Dk

φ(x, uk(x)) dx =

∫
Ω
φ(x, uk(x))χΩ\Dk

(x) dx.

Then, using that uk → u uniformly in Ω \Dk (see (4.8), Lemma 4.2(ii) and (4.28)) and χΩ\Dk
→

χΩ − ζn weakly∗ in L∞(Ω), it follows

lim
k→+∞

∫
Ω\Dk

φ(x, uk(x)) dx =

∫
Ω
φ(x, u(x))(1− ζn(x)) dx = Tn(ω).

Assume now ω = φ(x, y)dxi ∧ dyj , i, j ∈ {1, 2}, i ̸= j. In this case (4.32) reads as

lim
k→+∞

(∫
Ω\Dk

φ(x, uk(x))Dī[(uk(x))j ] dx−
∫
Ω
φ(x, u(x))Dīuj(x)(1− ζn(x)) dx

)
= 0,

with ī = {1, 2} \ {i}. Since χDk
→ ζn weakly∗ in L∞(Ω), this is equivalent to proving

lim
k→+∞

(∫
Ω\Dk

φ(x, uk(x))Dī[(uk(x))j ] dx−
∫
Ω\Dk

φ(x, u(x))Dīuj(x) dx
)
= 0.

The quantity between parentheses on the left-hand side can be written as∫
Ω\Dk

(
φ(x, uk(x))− φ(x, u(x))

)
Dī[(uk(x))j ] dx+

∫
Ω\Dk

φ(x, u(x))
(
Dī[(uk(x))j ]−Dīuj(x)

)
dx,

and we see that the first integral tends to zero as k → +∞, since uk → u uniformly in Ω \Dk, φ
is Lipschitz continuous, and the L1(Ω)-norm of Dī[(uk)j ] is uniformly bounded with respect to k.
The second integral can be instead integrated by parts6, obtaining∫

Ω\Dk

φ(x, u(x))(Dī[(uk(x))j ]−Dīuj(x)) dx

=

∫
∂Dk

φ(x, u(x))((uk(x))j − uj(x))νī(x) dH1(x)−
∫
Ω\Dk

Dī(φ(x, u(x)))((uk(x))j − uj(x)) dx

=: Ik + IIk.

Thanks to the fact that φ is bounded and that |(uk)j(x)−uj(x)| ≤ dk(x) = λk on ∂Dk, we conclude
by Corollary 4.3 that limk→+∞ Ik = 0. Moreover

IIk =−
∫
Ω\Dk

∂xīφ(x, u(x))((uk(x))j − uj(x))dx

−
2∑
l=1

∫
Ω\Dk

∂ylφ(x, u(x))Dīul(x)((uk)j(x)− uj(x))dx =: IIk,1 + IIk,2.

Then limk→+∞ IIk,1 = limk→+∞ IIk,2 = 0, since the partial derivatives of φ are bounded, Dīu ∈
L1(Ω \Dk,R2), |(uk)j − uj | ≤ dk ≤ λk on Ω \Dk, and limk→+∞ λk = 0.

6From Lemma 4.2(i), Dk has rectifiable boundary; moreover, φ(·, uk(·)) is Lipschitz. We can then apply a version
of the Gauss-Green theorem, see for instance [34, pag. 124, exercise 12.12].
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Remark 4.6. The mass of the current Tk is given by

|Tk| =
∫
Ω\Dk

√
1 + |∇uk|2dx. (4.33)

To see (4.33) we choose a 2-form ω ∈ D2(Ω× R2) as

ω :=
∑

|α|+|β|=2

φᾱβdx
α ∧ dyβ, ∥ω∥ ≤ 1,

set7 ω̂(x, y) =: (φᾱβ(x, y)) ∈ R6, and

M̃(∇uk(x)) := (1, D1[(uk(x))1], D2[(uk(x))1], D1[(uk(x))2], D2[(uk(x))2], 0) ∈ R6 = R× R4 × R,

so that

Tk(ω) =

∫
Ω\Dk

⟨ω̂(x, uk(x)),M̃(∇uk(x))⟩dx

≤ ∥ω̂∥
∫
Ω\Dk

|M̃(∇uk(x))|dx ≤
∫
Ω\Dk

√
1 + |∇uk|2dx.

(4.34)

To prove the converse inequality, choosing ω̂(x, y) = M̃(∇uk(x))
|M̃(∇uk(x))|

would give the equality in (4.34).

However, M̃(∇uk)
|M̃(∇uk)|

is not necessarily of class C∞
c , so we need to use the density of C∞

c (Ω× R2) in

L1(Ω× R2) (here we use that M̃(∇uk) ∈ L∞(Ω,R6) since uk is Lipschitz continuous).
With a similar argument, setting

M̃(∇u(x)) := (1− ζn(x))M(∇u(x)) ∈ R6, x ∈ Ω \ Bε

we can show that the total mass of Tn in (Ω \ Bε)× R2 is given by

|Tn|(Ω\Bε)×R2 =

∫
Ω\Bε

|M(∇u)||1− ζn| dx. (4.35)

4.2 Estimate of the mass of 〚Guk〛 over Ω \Dk

We denote by Φk = Φuk = Id ▷◁ uk : Ω → Ω× R2 the map

Φk(x) = (x, uk(x)), (4.36)

in such a way that Φk(Ω) = Guk , with Guk = {(x, y) ∈ Ω× R2 : y = uk(x)} the graph of uk.
We denote as usual by

〚Guk〛 ∈ D2(Ω× R2) (4.37)

the integral current supported by the graph of uk.
We now want to estimate the area of the graph of uk over the set (Ω \ Bε) \Dk.

Proposition 4.7. Let ε ∈ (0, l) satisfy (4.5) and (4.6), n ∈ N, (λk) be as in Lemma 4.2, and let
Dk be as in (4.28). Then

lim inf
k→+∞

∫
Ω\Dk

|M(∇uk)| dx ≥
∫
Ω\Bε

|M(∇u)| dx− 1

n
− 2

εn
. (4.38)

7Here α and β run over all the multi-indeces in {1, 2} with the constraint |α|+ |β| = 2.
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Proof. Set Ωε := Ω \ Bε. Since, by definition, Tk vanishes on smooth 2-forms supported in (Dk ∩
Ωε)× R2, we employ (4.33) to obtain

lim inf
k→+∞

∫
Ω\Dk

|M(∇uk)| dx ≥ lim inf
k→+∞

∫
Ω\Dk

√
1 + |∇uk|2 dx ≥ lim inf

k→+∞
|Tk|(Ωε\Dk)×R2

= lim inf
k→+∞

|Tk|Ωε×R2 ≥ |Tn|Ωε×R2 ,
(4.39)

where we use that (Tk) weakly converges to Tn (Lemma 4.5), and the weak lower semicontinuity of
the mass. In turn, from (4.35) and (4.30),

|Tn|Ωε×R2 =

∫
Ωε

|M(∇u)||1− ζn| dx ≥
∫
Ωε

|M(∇u)| dx−
∫
Ωε

|M(∇u)||ζn| dx

≥
∫
Ωε

|M(∇u)| dx− ∥M(∇u)∥L∞(Ωε)∥ζn∥L1(Ωε) (4.40)

≥
∫
Ωε

|M(∇u)| dx− 1

n
∥M(∇u)∥L∞(Ωε).

Next, using
√
1 + z2 ≤ 1 + |z| and8 |∇u(x)| ≤ 2

|x| which, on Ωε, is bounded by 2/ε, we also get

∥M(∇u)∥L∞(Ωε) = ∥
√

1 + |∇u|2∥L∞(Ωε) ≤ 1 +
2

ε
.

We deduce

|Tn|Ωε×R2 ≥
∫
Ωε

|M(∇u)| dx− 1

n
− 2

εn
.

From (4.40) and (4.39) inequality (4.38) follows.

5 The maps Ψk, πλk, and the currents Dk, D̂k, Ek
Recalling that Dk is defined in (4.28) and (4.10), in Section 4.2 we have estimated the area of
the graph of uk over Ω \ Dk. The next step, which is considerably more difficult, is to estimate
the area over Dk, and this will be splitted in several parts (Sections 6-9). After introducing some
preliminaries in Section 5.1, the first step is to reduce the graph of uk (a surface of codimension 2
in R4) to a suitable rectifiable set (Ψk(Dk) and its projections) of codimension 1 sitting in C l ⊂ R3,
with Cl defined in (2.5). In this section we introduce all various objects needed to prove the lower
bound.

Definition 5.1 (The map Ψk). For all k ∈ N, we define the map Ψk = Ψuk : Ω → R3 =
R|x| × R2

target as

Ψk(x) :=(|x|, uk(x)) ∀x ∈ Ω. (5.1)

Notice that Ψk takes values in Cl, and is Lipschitz continuous. Moreover Ψk = R ◦ Φk, where
Φk = Id ▷◁ uk : Ω → R4 is defined in (4.36), and R : R4 ∋ (x, y) 7→ (|x|, y) ∈ R3. By the area
formula and since Lip(R) = 1 we have

|〚Guk〛|B×R2 =

∫
B
|M(∇uk)| dx =

∫
B
(∇ΦTk∇Φk)

1
2 dx ≥

∫
B
(∇ΨT

k∇Ψk)
1
2 dx,

for any Borel set B ⊆ Ω.

8Diuj(x) =
δij
|x| −

xixj

|x|3 , hence
∑

ij(Diuj(x))
2 = 2

|x|2 + 2
x2
1x

2
2

|x|6 ≤ 4
|x|2 .
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5.1 The sets Ψk(Dk) and the currents (Ψk)♯〚Dk〛

We start noticing that
Ψk(Ω \Dk) ⊂ C l \ Cl(1− λk), k ∈ N, (5.2)

where we recall that Cl(1−λk) is defined in (2.4). Indeed, since Ω \Dk ⊆ {dk ≤ λk} for any k ∈ N
we have

λk ≥ |uk(x)−
x

|x|
| ≥ dist(uk(x), S1) = 1− |uk(x)|, x ∈ Ω \Dk, (5.3)

so that |uk(x)| ≥ 1− λk (and |uk(x)| ≤ 1 by (4.3)). In particular

Ψk(∂Dk) ⊂ C l \ Cl(1− λk), k ∈ N. (5.4)

As a consequence, since the map Ψk is Lipschitz continuous, we have:

Corollary 5.2. For all k ∈ N the integral 2-current (Ψk)♯〚Dk〛 is boundaryless in Cl(1− λk).

Observe that the set Ψk(Dk) is rectifiable and contains9 the support of (Ψk)♯〚Dk〛; also Ψk(Dk)
is contained in [0, l) × B1. Specifically, the fact that Cl has axial coordinate in (−1, l) and not in
(0, l) will be convenient in order to control the behaviour of (Ψk)♯〚Dk〛 on {0} × R2.

Definition 5.3 (The projection πλk). We let

πλk = πλk : R3 = R|x| × R2
target → C l(1− λk) (5.5)

be the orthogonal projection onto the compact convex set C l(1− λk).

In Section 5.2 we project Ψk(Dk) on C l(1−λk) in order to get a rectifiable set (and its associated
current) whose area, counted with multiplicity, is less than or equal to the area of the original
set; the area of the projected set, in turn, gives a lower bound for the mass of 〚Guk〛 over Dk

(see formulas (5.7) and (5.11)). Then, as a second step, we symmetrize πλk ◦ Ψk(Dk) using the
cylindrical rearrangement introduced in Section 3 to get a still smaller (in area) object. The
estimate of the area of the symmetrized object is divided in two parts: the first one (Section 7)
deals with πλk ◦Ψk(Dk ∩ (Ω\Bε)) whose symmetrized set can be seen as the generalized graph of a
suitable polar function. In Section 8 we deal with the second part, where we estimate the area of the
symmetrization obtained from πλk ◦Ψk(Dk∩Bε). In Sections 9 and 10, we collect our estimates and
we utilize the symmetrized object as a competitor for a suitable non-parametric Plateau problem.
To do this we need to glue to the obtained rectifiable set some artificial surfaces, whose areas are
controlled and are infinitesimal in the limit as k → +∞. This limit is taken only at the end of
Section 10, allowing us to analyse a non-parametric Plateau problem whose boundary condition
does not depend on k, so that also its solution does not depend on k. The area of such a solution
will be the lower bound for the area of the rectifiable set πλk ◦Ψk(Dk∩(Ω\Bε))∪πλk ◦Ψk(Dk∩Bε),
and then finally for the area of the graph of uk on Dk.

5.2 Construction of the current D̂k via the currents Dk and Wk

We are interested in the part of the set Ψk(Dk) included in C l(1−λk); we need an explicit description
of the boundary of Ψk(Dk), and to this aim we compose Ψk with the projection πλk in (5.5).

Definition 5.4 (Projection of Ψk(Dk): the current Dk). We define the current Dk∈ D2(Cl)
as

Dk := (πλk ◦Ψk)♯〚Dk〛. (5.6)
9Ψk(Dk) could properly contain the support of (Ψk)♯〚Dk〛, due to possible cancellations.
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Remark 5.5. In general Ψk(Dk) ⊆ Cl(1− λk) ∪ (Cl \ Cl(1− λk)), while spt (Dk) ⊆ Cl(1− λk).

Since Lip(πλk) = 1, the map πλk does not increase the area, and therefore

|〚Guk〛|Dk×R2 ≥
∫
Dk

|J(Ψk)| dx ≥
∫
Dk

|J(πλk ◦Ψk)| dx, (5.7)

|〚Guk〛|(Dk∩(Ω\Bε))×R2 ≥
∫
Dk∩(Ω\Bε)

|J(Ψk)| dx ≥
∫
Dk∩(Ω\Bε)

|J(πλk ◦Ψk)| dx. (5.8)

The same holds for the mass of the current Dk, i.e.,

|(Ψk)♯〚Dk〛| ≥ |Dk|

and, recalling also the definition of Cεl in (2.7),

|〚Guk〛|(Dk∩(Ω\Bε))×R2 ≥ |(Ψk)♯〚Dk〛|Cε
l
≥ |Dk|Cε

l
. (5.9)

Remark 5.6. The area, counted with multiplicity, of the 2-rectifiable set πλk ◦Ψk(Dk) is greater
than or equal to the mass of the current Dk, more specifically∫

Dk

|J(πλk ◦Ψk)| dx ≥ |Dk|Cl(1−λk) and

∫
Dk∩(Ω\Bε)

|J(πλk ◦Ψk)| dx ≥ |Dk|Cε
l (1−λk)

.

(5.10)
This is due to the fact that πλk ◦ Ψk(Dk) might overlap with opposite orientations so that the
multiplicity of Dk vanishes, and the overlappings do not contribute to its mass. In particular,
spt (Dk) ⊆ πλk ◦Ψk(Dk).

From (5.7) and (5.10) it follows

|〚Guk〛|Dk×R2 ≥ |Dk|Cl(1−λk), |〚Guk〛|(Dk∩(Ω\Bε))×R2 ≥ |Dk|Cε
l (1−λk)

. (5.11)

We now analyse the boundary of Dk. Up to small modifications, we will prove that Dk is
boundaryless in Cl(1 − λ′k) (see (5.20) and (5.23), where λ′k are suitable small numbers in (0, λk)
chosen below in Definition 5.12) and so Dk can be symmetrized according to Definition 3.3. Before
proceeding to the symmetrization we need some preliminaries. We build suitable currents Wk,
with their support sets denoted by Wk (see (5.17) and (5.16)), with ∂Wk coinciding with ∂Dk (see
(5.21), (5.22), and (5.23)).

Remark 5.7. By (5.4), πλk ◦ Ψk(∂Dk) is contained in ∂latCl(1 − λk). By Lemma 4.2(i), πλk ◦
Ψk(∂Dk) is the union of the image of at most countably many curves, and this union, counted with
multiplicities, has finite H1 measure: specifically, if we define

M(πλk ◦Ψk(∂Dk)) :=

∫
∂Dk

∣∣∣∂tg (πλk ◦Ψk)
∣∣∣ dH1,

where ∂tg stands for the tangential derivative along ∂Dk, then M(πλk ◦ Ψk(∂Dk)) < +∞ since
H1(∂Dk) < +∞ (still by Lemma 4.2(i)) and uk is Lipschitz continuous.

Moreover
∂Dk = (πλk ◦Ψk)♯∂〚Dk〛∈ D1(Cl) in Cl. (5.12)

It is convenient to introduce a suitable map τ parametrizing the region C l \Cl(1−λk) in between
the two concentric cylinders; this map can then be pulled back by πλk ◦Ψk, but only in Ω \Dk, to
get the map τ̃ .
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Definition 5.8 (The maps τ , τ̃). We set

τ = τλk : [1− λk, 1]× ∂Cl(1− λk) → C l \ Cl(1− λk) ⊂ R3,

τ(ρ, t, y) :=
(
t,
y

|y|
ρ
)
, ρ ∈ [1− λk, 1], (t, y) ∈ ∂Cl(1− λk) = [−1, l]× ∂B1−λk .

(5.13)

By (5.2) it follows πλk ◦Ψk(Ω \Dk) ⊂ ∂Cl(1− λk), hence we can also set

τ̃(ρ, x) = τ̃uk,λk(ρ, x) := τ(ρ, πλk ◦Ψk(x)), ρ ∈ [1− λk, 1], x ∈ Ω \Dk. (5.14)

Notice that τ(ρ, ·, ·) takes values in ∂Cl(ρ) for any ρ ∈ [1− λk, 1], that τ(·, t, y) moves along the
normal to the lateral boundary of ∂Cl(1− λk) at the point (t, y), and τ(1− λk, ·, ·) is the identity.
We also observe that, due to the fact that πλk ◦Ψk takes values in [0, l)×B1, the same holds for τ̃ .

Remark 5.9. If λk > 0 is small enough (which is true for k large enough), the Jacobian of τ is
close to 1 so that the H1-measure, counted with multiplicities, of the set τ(ρ, πλk ◦Ψk(∂Dk)) is, for
fixed ρ, bounded by two times the H1-measure of πλk ◦Ψk(∂Dk), still counted with multiplicities.
More precisely,

2

∫
∂Dk

∣∣∣∂tg (πλk ◦Ψk)
∣∣∣ dH1 ≥

∫
∂Dk

∣∣∣∂tg τ(ρ, πλk ◦Ψk)
∣∣∣ dH1, ρ ∈ [1− λk, 1], (5.15)

2

∫
(Ω\Bε)∩∂Dk

∣∣∣∂tg (πλk ◦Ψk)
∣∣∣ dH1 ≥

∫
(Ω\Bε)∩∂Dk

∣∣∣∂tg τ(ρ, πλk ◦Ψk)
∣∣∣ dH1,

for all ρ ∈ [1 − λk, 1] and k ∈ N large enough, where we recall that, from Lemma 4.2(i), ∂Dk is
rectifiable.

Now we take a sequence10 of numbers λ′k ∈ (0, λk), which will be fixed in the sequel (see Definition
5.13).

Definition 5.10 (The set Wk and the current Wk). We define the 2-rectifiable set11

Wk := τ
(
[1− λk, 1− λ′k]× πλk ◦Ψk(∂Dk)

)
= τ̃

(
[1− λk, 1− λ′k]× ∂Dk

)
, (5.16)

and the 2-current

Wk := τ̃♯〚[1− λk, 1− λ′k]× ∂Dk〛 ∈ D2(Cl). (5.17)

Clearly spt (Wk) ⊆ Wk; Again, although Wk is defined as a current in Cl, it is supported in
[0, l]×B1.

Remark 5.11 (Use of 〚·〛 for not top-dimensional currents). ∂Dk is endowed with a natural
orientation, inherited from the fact that it is the boundary of the set Dk; consistently, we sometimes
use the identification 〚∂Dk〛 = ∂〚Dk〛. With a little abuse of notation we have noted the current
integration over [1−λk, 1−λ′k]×∂Dk, meaning that ∂Dk is endowed with this natural orientation.
Finally, recalling that τ̃(ρ, ·) takes values in ∂Cl(ρ), we can do the following identification:

τ̃♯〚[1− λk, 1− λ′k]× ∂Dk〛 = τ̃♯∂〚[1− λk, 1− λ′k]×Dk〛
(
Cl(1− λ′k) \ C l(1− λk)

)
.

10The sequence (λ′
k) depends on ε and n.

11The set Wk consists of “vertical” walls, normal to ∂Cl(1−λk), build on πλk ◦Ψk(∂Dk), with height λ′
k −λk: see

Fig. 9.
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We denote

M(Wk) :=

∫
[1−λk,1−λ′k]×∂Dk

|J(τ̃(ρ, x))| dρ dH1(x) (5.18)

the area of Wk counted with multiplicities. By the area formula and using (5.15) we infer

|Wk| ≤M(Wk) ≤ 2(λk − λ′k)

∫
∂Dk

∣∣∣∂tg (πλk ◦Ψk)
∣∣∣ dH1 = 2(λk − λ′k)M(πλk ◦Ψk(∂Dk)). (5.19)

Then we are led to the following

Definition 5.12 (The sequence (λ′k)). We select λ′k ∈ (0, λk) so that

2(λk − λ′k)M(πλk ◦Ψk(∂Dk)) ≤
1

n
∀k ∈ N. (5.20)

Finally we observe that

∂Wk = τ(1− λ′k, ·, ·)♯
(
(πλk ◦Ψk)♯∂〚Dk〛

)
− (πλk ◦Ψk)♯∂〚Dk〛. (5.21)

Definition 5.13 (The current D̂k). We define

D̂k := Dk +Wk∈ D2(Cl). (5.22)

The next result will be useful to select a primitive of D̂k.

Corollary 5.14. The current D̂k is supported in [0, l]×B1−λ′k and

D̂k is boundaryless in the open cylinder Cl(1− λ′k). (5.23)

In particular ∂D̂k = 0 in D1((−∞, l)×B1−λ′k).

Proof. The statement follows by construction, and noticing that, since τ(1−λ′k, ·, ·)♯
(
(πλk◦Ψk)♯∂〚Dk〛

)
has support in ∂latCl(1− λ′k), one can use (5.12) to deduce (5.23).

5.3 The 3-current Ek and the symmetrization of D̂k

Since we want to symmetrize D̂k according to Definition 3.3, we need to identify a unique primitive
3-current Ek such that ∂Ek = D̂k.

The restriction of the map πλk ◦Ψk to Ω \Dk takes Ω \Dk into ∂Cl(1− λk) (see (5.2)), and can
also be written as

πλk ◦Ψk(x) =
(
|x|, uk(x)

|uk(x)|
(1− λk)

)
, x ∈ Ω \Dk. (5.24)

The current (πλk ◦Ψk)♯〚Ω \Dk〛 has boundary

∂(πλk ◦Ψk)♯〚Ω \Dk〛 = −(πλk ◦Ψk)♯∂〚Dk〛. (5.25)

Definition 5.15 (The currents Yk and Xk). Recalling the definition of τ (see (5.14), (5.13)) we
set

Yk :=τ̃♯〚[1− λk, 1− λ′k]× (Ω \Dk)〛 ∈ D3(Cl), (5.26)

Xk :=〚Cl(1− λ′k) \ Cl(1− λk)〛 − Yk ∈ D3(Cl). (5.27)
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Notice that Xk cannot be directly defined as a push-forward via the map τ̃ , for part of Ψk(Dk)
could be contained in Cl(1− λk), and for this reason we are led to define it as a difference.

The current Yk could have multiplicity different from 0 and 1, and in particular could not be the
integration over a finite perimeter set. This depends on the fact that the map Ψk could generate
overlappings and self-intersections of the set πλk ◦ Ψk(Ω \Dk). If the multiplicity of Yk is only 1
or 0 then the same holds for Xk. Also, Yk might be null, and in this case Xk coincides with the
integration over the region Cl(1 − λ′k) \ C l(1 − λk). A finer description of these two currents will
be necessary later, and this will be done by a slicing argument in Lemma 6.4 below.

Recalling (5.17),

∂Yk = −Wk = −∂Xk in Cl(1− λ′k) \ Cl(1− λk),

as it can be seen by considering the push-forward by τ of (5.25). We proceed to the symmetrization
in Cl(1−λ′k) of the current D̂k in (5.22). By (5.23) it follows the existence of an integer multiplicity
3-current Ek ∈ D3(Cl(1− λ′k)) such that

∂Ek = D̂k in Cl(1− λ′k). (5.28)

The current Ek is unique up to a constant, that we might assume to be integer, since Ek has integer
multiplicity. Hence we choose such a constant12 so that

Ek
(
Cl(1− λ′k) \ Cl(1− λk)

)
= Xk. (5.29)

Let Ek denote the support of Ek; by decomposition,

Ek =
∑
i

(−1)σi〚Ek,i〛 in Cl(1− λ′k), (5.30)

with Ek,i ⊂ Cl(1− λ′k) finite perimeter sets, the decomposition done with undecomposable compo-
nents, see (3.3), (3.4). We denote

S(Ek) := ∪iS(Ek,i)

the union of the cylindrical symmetrizations of the sets Ek,i, see (3.2). Recalling (5.28), Definition

3.3 and (3.5), the symmetrization of the current D̂k is

S(D̂k) = ∂S(Ek) = ∂〚S(Ek)〛 Cl(1− λ′k). (5.31)

Formula (5.31) contains the needed information about the symmetrization of Ψk(Dk), since by
construction Dk = D̂k Cl(1− λk) (recall (5.6)).

We have

D̂k =
∑
i

(−1)σi〚∂∗Ek,i〛 in Cl(1− λ′k), (5.32)

and since the decomposition in (5.30) is done by undecomposable components, by (3.4) it follows,
in Cl(1− λ′k),

|D̂k| =
∑
i

H2(∂∗Ek,i) and ∂∗Ek,i ⊆ spt (D̂k).

12The fact that this choice is possible is a consequence of the constancy theorem (see for instance [33, Proposition

7.3.1]). Indeed, let Êk have the same boundary (i.e., Wk) of Xk in Cl(1 − λ′
k) \ Cl(1 − λk). Thus Êk − Xk is

boundaryless, and must be an integer multiple of the integration over Cl(1 − λ′
k) \ Cl(1 − λk), i.e., Êk − Xk =

h〚Cl(1− λ′
k) \ Cl(1− λk)〛. We then set Ek := Êk − h〚Cl(1− λ′

k)〛 so that Ek = Xk in Cl(1− λ′
k) \ Cl(1− λk).
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Remark 5.16 (Nonuniqueness of the decomposition). Once the decomposition (5.30) is fixed,
the symmetrization is uniquely determined. However, the decomposition might not be unique, and
the resulting symmetrized current in general depends on the choice of the decomposition. This will
not be an issue, since our procedure leads to a minimization problem independent of this step.

Since

H2(∂∗S(Ek,i)) ≤ H2(∂∗Ek,i) for all i ∈ N,

and S(Ek) = ∪iS(Ek,i), we also have

H2(∂∗S(Ek)) ≤
∑
i

H2(∂∗Ek,i) = |D̂k|. (5.33)

The same inequalities hold if we restrict the mass to the set Cεl , namely

|S(D̂k)|Cε
l
≤ |D̂k|Cε

l
. (5.34)

Now we want to understand whether S(D̂k) has some boundary on {0}×R2. We have already ob-
served (Corollary 5.14) that D̂k has no boundary in Cl(1−λ′k). The same holds for the symmetrized
current:

Corollary 5.17 (Closedness of S(D̂k) in (−∞, l)× B1−λ′k). The current S(D̂k) is supported in

[0, l]×B1−λ′k and ∂S(D̂k) = 0 in D1((−∞, l)×B1−λ′k).

Proof. By definition, S(D̂k) is the boundary of the current carried by the integration over the finite
perimeter set S(Ek) in Cl(1 − λ′k). Hence ∂S(D̂k) = 0 in D1(Cl(1 − λ′k)). The conclusion then

follows from the fact that S(D̂k) is supported in [0, l)×B1−λ′k ⊂ Cl(1− λ′k).

6 Towards an estimate of |S(D̂k)|: two useful lemmas

Now that the symmetrization S(D̂k) of the current D̂k in Cl(1 − λ′k) is obtained (see (5.31)), we
need to estimate its mass. This will be done separately in C

ε
l (1 − λk) = [ε, l] × B1−λk and in

Cε(1− λk) = [−1, ε]×B1−λk . In formula (7.4) of Section 7 we express the restriction of S(D̂k) to
Cεl as generalized graph of suitable functions ϑk,ε and −ϑk,ε and estimate the area of these graphs
(see Proposition 7.9, below). In addition, we need a fine description of the trace of the symmetrized
set boundary ∂S(Ek) on the lateral part of ∂Cl(1− λ′k); this will be done in Section 8.

We start by collecting in Lemma 6.3 and Lemma 6.4 two important preliminary estimates; we
need to introduce the functions |uk|−, |uk|+.

For any r ∈ (ε, l) we consider the closed curve13 α ∈ (0, 2π] 7→ Ψk(r, α) ∈ {r}×B1; the image of
Ψk(r, ·) is the slice of Ψk(Ω \ Bε) with the plane {t = r}.

Definition 6.1 (The functions |uk|±). For all r ∈ (ε, l) we define

|uk|−(r) := min
α∈(0,2π]

|uk(r, α)|, |uk|+(r) := max
α∈(0,2π]

|uk(r, α)|, (6.1)

Thus the map Ψk(r, ·) defined in (5.1) takes values in

{r} × (B|uk|+(r) \B|uk|−(r)).

13We use here polar coordinates (r, α).
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Let us remark that |uk|−(r) might be equal to 0, that |uk|+(r) ≤ 1, and that it might happen that
|uk|+(r) = |uk|−(r), see Fig. 2. Moreover, from (5.4),

|uk| ≥ 1− λk in Ω \Dk, (6.2)

so that

|uk|+(r) ≥ 1− λk if r is such that (Ω \Dk) ∩ ∂Br ̸= Ø,

whereas it might happen that

|uk|+(r) < 1− λk if r is such that (Ω \Dk) ∩ ∂Br = Ø. (6.3)

In such a case, since Dk ⊆ An (Lemma 4.2 (ii)), this can happen only if ∂Br ⊆ An.

Definition 6.2 (The set Qk,ε). We define

Qk,ε := {r ∈ (ε, l) : |uk|+(r) < 1− λk}. (6.4)

Then
Qk,ε ⊆ {r ∈ (ε, l) : ∂Br ⊆ An}. (6.5)

The next lemma, that will be used in Section 9, shows that the measure of Qk,ε is small (see Fig.
2).

Lemma 6.3 (Estimate of Qk,ε). We have

H1(Qk,ε) <
1

2πεn
.

Proof. If t ∈ Qk,ε then ∂Bt ⊆ An. Then

H1(Qk,ε) =

∫
Qk,ε

1dt ≤ 1

2πε

∫
Qk,ε

2πt dt =
1

2πε

∫
Qk,ε

H1(∂Bt)dt ≤
1

2πε
|An|,

where the last inequality is a consequence of the coarea formula and (6.5). The thesis then follows
recalling that |An| < 1

n , see (4.7).

By slicing and from (5.29), (5.30), we have for almost every t ∈ (0, l) and almost every ρ ∈
(1− λk, 1− λ′k),

(Xk)t,ρ =
∑
i

(−1)σi〚Ek,i ∩ ({t} × ∂Bρ)〛,

and

H1(S(Ek) ∩ ({t} × ∂Bρ)) ≤
∑
i

H1(Ek,i ∩ ({t} × ∂Bρ)) = |(Xk)t,ρ|, (6.6)

since the decomposition is done in undecomposable components (see (3.12)).
Recalling the definition of Θ in (3.1) we have, for fixed t ∈ (0, l) and for any ρ ∈ (0, 1− λ′k],

Θk(t, ρ) := ΘS(Ek)(t, ρ) =
1

ρ
H1(S(Ek) ∩ ({t} × ∂Bρ)) (6.7)

27



Figure 2: The graphs of the functions |uk|+ and |uk|− defined in (6.1), and the set Qk,ε in (6.4).

denotes the measure (in radiants) of the slice S(Ek) ∩ ({t} × ∂Bρ). By construction,

Θk(t, ρ) = Θk(t, ϱ) for any ρ, ϱ ∈ (1− λk, 1− λ′k),

since the slices of Xk, and hence of the sets Ek,i, are radially symmetric14 in Cl(1−λ′k)\Cl(1−λk).
We now look for an estimate of Θk(t, ρ), for t ∈ (ε, l) and ρ ∈ (1− λk, 1− λ′k): the next lemma

will be used in Section 9.

Lemma 6.4 (L1-estimate of the angular slices). We have∫ l

ε
Θk(t, ρ) dt ≤

1

εn
+ ok(1) ∀ρ ∈ (1− λk, 1− λ′k), (6.8)

where ok(1) is a nonnegative function, depending on ε and n, and infinitesimal as k → +∞.

Proof. It is convenient to set

Hk,t := Dk ∩ ∂Bt, Hc
k,t := (Ω \Dk) ∩ ∂Bt ∀t ∈ (ε, l). (6.9)

Observe that the relative boundary of Hk,t, i.e., the boundary of Hk,t when considered as a subset
of ∂Bt, is contained in ∂Dk ∩ ∂Bt.

We fix t ∈ (ε, l) such that the relative boundary of Hk,t is a finite set of points (this happens for
H1-a.e. t, since H1(∂Dk) < +∞ from Lemma 4.2(i)) and fix any ρ ∈ (1−λk, 1−λ′k). By inequality
(6.6) we have

Θk(t, ρ) ≤
1

ρ
|(Xk)t,ρ|, (6.10)

so it is sufficient to estimate the mass of a (slice of a) slice of the 3-current Xk defined in (5.27).
We recall that by (5.27) we have15

(Xk)t,ρ = 〚{t} × ∂Bρ〛 − (Yk)t,ρ, (6.11)

14Each radial section is (suitably rescaled) the same since, by definition, function τ in (5.13) is radial.
15The orientation of ∂Bρ is taken counterclockwise.

28



where 〚{t} × ∂Bρ〛 has a natural orientation16 inherited by the fact that it is the boundary of
〚{t} ×Bρ〛 in {t} × R2, which in turn is a slice of 〚Cl(ρ)〛. By (5.26)

(Yk)t,ρ = τ̃♯〚{ρ} × ((Ω \Dk) ∩ ∂Bt)〛 = τ(ρ, πλk ◦Ψk(·))♯〚Hc
k,t〛, (6.12)

see (5.13), (5.14), (5.24), and Remark 5.11 for the orientation of 〚{ρ} × ((Ω \Dk) ∩ ∂Bt)〛. As for
〚Hc

k,t〛 we endow the setHc
k,t ⊂ ∂Bt with the orientation inherited by ∂Bt, i.e., by a counterclockwise

tangent unit vector. Now, since the restriction of τ(ρ, πλk ◦Ψk(·)) to ∂Bt takes values in {t}×∂Bρ,
the current (Yk)t,ρ is the integration over arcs17 in {t}× ∂Bρ. To identify these arcs we distinguish
the following three cases (A), (B), (C):

(A) Hc
k,t = Ø. From (6.12) it follows (Yk)t,ρ = 0 and (Xk)t,ρ = 〚{t} × ∂Bρ〛 from (6.11). Thus

Θk(t, ρ) = 2π ≤ 2π
t

ε
=

1

ε
H1(Hk,t). (6.13)

(B) Hc
k,t = ∂Bt ⊂ Ω \Dk, hence (Yk)t,ρ = τ(ρ, πλk ◦Ψk(·))♯〚∂Bt〛 from (6.12). Then

(Yk)t,ρ = 〚{t} × ∂Bρ〛. (6.14)

Indeed, fix three points x1, x2, x3 ∈ ∂Bt in counterclockwise order such that | xi|xi| −
xj
|xj | | > 4λk for

i ̸= j. Since dk(x) = | x|x| − uk(x)| < λk for x ∈ Ω \Dk, x ̸= 0, the points zi := πλk ◦Ψk(xi) are still

in counterclockwise order in {t}× ∂B1−λk (the image of the arc x1x2 covers the arc z1z2 that does
not contain z3). Therefore (πλk ◦ Ψk(·))♯〚xixi+1〛 = 〚zizi+1〛 for i = 1, 2, 318 (with the convention
x4 = x1, z4 = z1), and hence

(πλk ◦Ψk(·))♯〚∂Bt〛 =
3∑
i=1

(πλk ◦Ψk(·))♯〚xixi+1〛 =
3∑
i=1

〚zizi+1〛 = 〚{t} × ∂B1−λk〛.

Taking the push-forward by τ we get (6.14). From this and (6.11) we deduce (Xk)t,ρ = 0, and
Θk(t, ρ) = 0.

Before passing to case (C), we anticipate an observation which will be useful to deal with it.
Let x1x2 ⊂ (Ω \Dk) ∩ ∂Bt be an arc oriented counterclockwise. We want to identify the current
(πλk ◦Ψk)♯〚x1x2〛; to do that we consider three different cases for x1x2. Case 1: | x1|x1| −

x2
|x2| | > 2λk.

Hence z1 := πλk ◦ Ψk(x1) and z2 := πλk ◦ Ψk(x2) must have the same order on ∂B1−λk of x1 and
x2, moreover (πλk ◦ Ψk)♯〚x1x2〛 = 〚z1z2〛, where z1z2 is the arc connecting z1, z2, starting from
z1 and oriented counterclockwise. Case 2: | x1|x1| −

x2
|x2| | ≤ 2λk (that implies |z1 − z2| ≤ 4λk, and

z1, z2 could have reversed order of x1 and x2). Let z1, z2 have the same order of x1, x2, then
(πλk ◦ Ψk)♯〚x1x2〛 = 〚z1z2〛 where z1z2 is the arc connecting z1, z2, starting from z1 and oriented
counterclockwise. Now let z1, z2 have the reversed order of x1, x2. If x1x2 is the short path arc
connecting x1, x2, then (πλk ◦Ψk)♯〚x1x2〛 = 〚z1z2〛, where z1z2 is the (short path) arc connecting z1,
z2, starting from z1, and oriented clockwise. If x1x2 is instead the long path arc joining x1, x2, then
(πλk ◦ Ψk)♯〚x1x2〛 = 〚{t} × ∂B1−λk〛 + 〚z1z2〛, where 〚{t} × ∂B1−λk〛 is oriented counterclockwise,
and z1z2 is the (short path) arc starting from z1 and oriented counterclockwise. Notice also that
in case 2 we always have H1(z1z2) < 8λk.

Now, we analyse the third case.

16The orientation of the 3-current 〚Cl(ρ)〛 induces an orientation of its slice 〚{t} ×Bρ〛. This orientation induces
an orientation of 〚{t} × ∂Bρ〛, which coincides with the orientation of 〚{t} × R2〛ρ induced by the slicing by ρ.

17Such arcs could overlap, since in general the multiplicity of Yk might be different from 1.
18The boundary of (πλk ◦ Ψk(·))♯〚xixi+1〛 is δzi+1 − δzi , hence (πλk ◦ Ψk(·))♯〚xixi+1〛 is an arc connecting zi and

zi+1. Since this arc cannot contain the third point, it must be 〚zizi+1〛, counterclockwise oriented.
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(C) Hc
k,t is union of finitely many arcs. Let us denote by

{
xi1x

i
2

}
i
these distinct arcs with

endpoints19 xij = (t, αij) ∈ ∂Bt, with the index i ∈ {1, . . . , h = hk,t} varying in a finite set, so that

〚Hc
k,t〛 =

h∑
i=1

〚xi1xi2〛 and 〚Hk,t〛 =
h∑
i=1

〚xi2x
i+1
1 〛,

where again the orientation of xi1x
i
2 is the one inherited by the counterclockwise orientation of ∂Bt

and, by convention, h+1 = 1. Being Hc
k,t relatively closed set in ∂Bt, it might happen that xi1 = xi2

for some i. Notice that xij belongs to the relative boundary of Hk,t which, in turn, is a subset of
∂Dk ∩ ∂Bt.

We denote
zij := πλk ◦Ψk(x

i
j) ∈ {t} × ∂B1−λk .

After applying πλk ◦Ψk(·), the points xij might also reverse their order, i.e., the orientation of the

arc πλk ◦Ψk

(
xi1x

i
2

)
could be the opposite of the orientation of xi1x

i
2.

In order to describe the current (Xk)t,ρ we need first to extend τ(ρ, πλk ◦ Ψk(·)) to Hk,t: note
carefully that πλk ◦Ψk(·) is well-defined in Hc

k,t, but not necessarily in Hk,t, since πλk ◦Ψk(Hk,t) ∩
Cl(1− λk) may not be empty, and in such a case it is not in the domain of τ(ρ, ·). The extension
we get (see (6.16)) will allow to write a specific double slice of Xk as push-forward, see (6.25).
We stress that this extension is done for a fixed slice {t} × R2 and in general it cannot be done
globally20 for all t ∈ (ε, l).

For t fixed such that case (C) holds, we extend the function πλk ◦ Ψk(·) to Hk,t as follows. Let

xi2x
i+1
1 be an arc of Hk,t; we want to map this arc on an arc in {t}× ∂B1−λk joining the two image

points zi2, z
i+1
1 , with the orientation from zi2 to zi+1

1 . However there are infinitely many21 choices
of an arc connecting zi2 to zi+1

1 . To specify which arc we choose we distinguish two possibilities:
|zi2− zi+1

1 | ≤ 2λk, and |zi2− zi+1
1 | > 2λk. Notice that |zi2− zi+1

1 | ≤ 2λk is the only case in which the
points xi2 and xi+1

1 could have images zi2 and zi+1
1 with a reversed order on {t} × ∂B1−λk . Indeed,

since xi2, x
i+1
1 ∈ ∂Bt ∩ ∂Dk, we have dk(x

i
j) = | x

i
j

|xij |
− uk(x

i
j)| = λk. In particular, if the distance

between zi2 and zi+1
1 is larger than 2λk, it means that the distance between uk(x

i
2) and uk(x

i+1
1 )

were larger than 2λk (πλk does not increase the distance), so that zi2 and zi+1
1 must have the same

order of
xi2
|xi2|

and
xi+1
1

|xi+1
1 |

on ∂B1, which is the same order of xi2 and xi+1
1 on ∂Bt.

We are now in a position to specify the arc: when |zi2 − zi+1
1 | > 2λk we define zi2z

i+1
1 to be

the counterclockwise oriented arc22 from zi2 to zi+1
1 . When |zi2 − zi+1

1 | ≤ 2λk we argue as follows:

Let βi be the angular amplitude of the arc xi2x
i+1
1 . We define zi2z

i+1
1 as the unique oriented arc

from zi2 to zi+1
1 satisfying the following property: If β̂i is its oriented angular amplitude (positive

if counterclockwise oriented, negative otherwise), then

|β̂i − βi| ≤ 2λ̂k, (6.15)

where λ̂k is the angular amplitude of a chord on ∂B1−λk of length λk (see Fig. 3). It is easy to

check that there is a unique arc zi2z
i+1
1 satisfying this property. Moreover the same property holds

19In polar coordinates.
20We do not need a global extension since we aim to obtain an estimate which holds for a fixed t.
21We can for instance join zi2 to zi+1

1 travelling along an oriented arc connecting them, and then travelling along
the whole circle an arbitrary number of times (thus considering a self-overlapping arc).

22Likewise the orientation from xi
2 to xi+1

1 .
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Figure 3: The choice of the arc between zi2 and zi+1
1 . The correct arc is the one in bold on the

dashed circle {t}×∂B1−λk . On top left the case |zi2−z
i+1
1 | ≤ 2λk and the arc is clockwise oriented;

on top center again case |zi2 − zi+1
1 | ≤ 2λk and the arc counterclockwise oriented; on top right the

case |zi2− z
i+1
1 | > 2λk; on bottom left again the case |zi2− z

i+1
1 | ≤ 2λk when the oriented arc zi2z

i+1
1

is the long one. Finally on bottom right it is depicted again the case |zi2 − zi+1
1 | ≤ 2λk but the

counterclockwise arc between zi2 and zi+1
1 has reversed order with respect to αi2 and αi+i1 , so that

βi is the long arc; in this case the correct arc such that |β̂i − βi| ≤ 2λ̂k is the short one connecting
zi2 and zi+1

1 (double bold) together with a complete turn around the circle.

for βi and β̂i in the case that |zi2 − zi+1
1 | > 2λk, since πλk ◦ Ψk(·) does not change the angular

coordinate of a point xij of a quantity larger than λ̂k.

Once we have specified the image arc, we can define P̂k,i : x
i
2x
i+1
1 → zi2z

i+1
1 to be the affine (with

respect to the angular coordinate) function mapping xi2 to zi2 and xi+1
1 to zi+1

1 . We then introduce
Pk = Pk,t : ∂Bt → {t} × ∂B1−λk as follows:

Pk(x) :=


πλk ◦Ψk(x) if x ∈ Hc

k,t,

P̂k,i(x) if x ∈ xi2x
i+1
1 for some i.

(6.16)

We claim that

τ(ρ, Pk(·))♯〚∂Bt〛 = 〚{t} × ∂Bρ〛. (6.17)

Since the map τ(ρ, ·) is an orientation preserving homeomorphism between ∂B1−λk and ∂Bρ, it is
sufficient to show that

Pk(·)♯〚∂Bt〛 = 〚{t} × ∂B1−λk〛. (6.18)

Equivalently, we will prove that

h∑
i=1

(〚zi1zi2〛 + 〚zi2z
i+1
1 〛) = 〚{t} × ∂B1−λk〛. (6.19)
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Let ωi (resp. βi) be the angular amplitude, in counterclockwise order, of the arc xi1x
i
2 (resp.

xi2x
i+1
1 ). Trivially we have

∑h
i=1(ωi + βi) = 2π. If ω̂i (resp. β̂i) is the angular amplitude of zi1z

i
2

(resp. zi2z
i+1
1 ), taken with sign ±1 according to their orientation, we see that to prove (6.19) it

suffices to show

h∑
i=1

(ω̂i + β̂i) = 2π. (6.20)

To do this we use (6.15); notice first that the counterpart of (6.15) holds for the arc between xi1
and xi2: Namely the map πλk ◦Ψk transforms the arc xi1x

i
2 of angular amplitude ωi, in the arc zi1z

i
2

of amplitude ω̂i in such a way that

|ω̂i − ωi| ≤ 2λ̂k. (6.21)

Now, if θij is the angular coordinate of zij , and α
i
j is the angular coordinate of xij , we know that

θij = αij + rij , with |rij | ≤ λ̂k. (6.22)

Here again λ̂k is the angle of a chord of length λk on ∂B1−λk . To prove (6.20) we reduce ourselves
to show that

ω̂i = ωi + ri2 − ri1, (6.23)

β̂i = βi + ri+1
1 − ri2, (6.24)

for all i. Fix i; we can assume αi2 = αi1 + ωi, and by (6.22) we get

ω̂i = ωi + ri2 − ri1 + 2kiπ,

with ki ∈ Z accordingly to the number of oriented complete turns around the circle ∂B1−λk . From
(6.21) we have ki = 0 for all i, and (6.23) follows. A similar argument, using (6.15), leads to (6.24),
hence (6.20) is proved, and (6.17) follows at once. Define

yij := τ(ρ, zij) ∈ {t} × ∂Bρ.

From (6.17), (6.11), and (6.12) it follows that

(Xk)t,ρ = τ(ρ, Pk(·))♯〚∂Bt〛 − τ(ρ, πλk ◦Ψk(·))♯〚Hc
k,t〛 = τ(ρ, Pk(·))♯〚Hk,t〛, (6.25)

so that, since the maps τ(ρ, ·) send the arcs zi2z
i+1
1 onto yi2y

i+1
1 , we have

(Xk)t,ρ =
h∑
i=1

〚yi2y
i+1
1 〛, (6.26)

hence

|(Xk)t,ρ| ≤
h∑
i=1

H1(yi2y
i+1
1 ). (6.27)

We now estimate the length of the arcs yi2y
i+1
1 . For simplicity we fix i and set Y1 := yi2, Y2 := yi+1

1 ,
X1 := xi2 and X2 := xi+1

1 . Let d(·, ·) denote the distance between points of {t} × ∂Bρ (i.e., the
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length of the minimal arc connecting the two points), let πρ be the orthogonal projection of R2
target

onto the convex set Bρ, and write Yi = (t, Ỹi) with Ỹi ∈ Bρ, for i = 1, 2. Then, setting X̂i :=
Xi
|Xi|

and denoting X̂1X̂2 the arc between X̂1 and X̂2 on {t} × ∂B1, we have

H1(Y1Y2) ≤ H1
(
πρ(X1)πρ(X2)

)
+ d(πρ(X1), Ỹ1) + d(πρ(X2), Ỹ2)

= ρH1
(
X̂1X̂2

)
+ d(πρ(X1), Ỹ1) + d(πρ(X2), Ỹ2)

≤ ρH1
(
X̂1X̂2

)
+
π

2
|πρ(X1)− Ỹ1|+

π

2
|πρ(X2)− Ỹ2|

≤ ρH1
(
X̂1X̂2

)
+
π

2
|πρ(X1)− πρ ◦ uk(X1)|+

π

2
|πρ ◦ uk(X1)− Ỹ1|

+
π

2
|πρ(X2)− πρ ◦ uk(X2)|+

π

2
|πρ ◦ uk(X2)− Ỹ2|

≤ ρ

ε
H1

(
X1X2

)
+
π

2

(
dk(X1) + dk(X2)

)
+ π(λk − λ′k),

(6.28)

where we use that, for x ̸= 0,

dk(x) = | x
|x|

− uk(x)| = |u(x)− uk(x)| ≥ |πρ ◦ u(x)− πρ ◦ uk(x)|,

because Lip(πρ) = 1, |πρ ◦ uk(Xi) − Ỹi| ≤ λk − λ′k for i = 1, 2, and Xi ∈ ∂Bt, t > ε. By (6.10)
(6.27) and (6.28), we infer

Θk(t, ρ) ≤
1

ε
H1(Hk,t) +

π

2ρ

∑
x∈∂Hk,t

(dk(x) + λk). (6.29)

Estimate (6.29) holds for H1-almost every t ∈ (ε, l) such that neither case (A) nor (B) happens.
Moreover, by (6.13) it holds also in case (A). Case (B) does not contribute to the L1 norm of
Θk(·, ρ), and therefore (6.29) holds for H1-almost every t ∈ (ε, l).

Denoting by m(x) = |x|, so that |∇m| = 1 out of the origin, the coarea formula allows us to
write∫

∂Dk

dk(σ)dH1(σ) ≥
∫
∂Dk

|∂m
∂σ

|dk(σ)dH1(σ) =

∫ l

ε

∑
x∈m−1(t)∩∂Dk

dk(x)dt =

∫ l

ε

∑
x∈∂Hk,t

dk(x)dt.

Similarly ∫
∂Dk

λk dH1(σ) ≥
∫ l

ε
λkH0({x ∈ ∂Hk,t}) dt.

Recalling (4.7), from (6.29) we finally get∫ l

ε
Θk(t, ρ)dt ≤

1

ε
|Dk|+

π

2(1− λk)

∫
∂Dk

(dk(σ) + 2λk) dH1(σ) ≤ 1

εn
+ ok(1),

where ok(1) depends on ε and n (since λk does) and vanishes as k → +∞, thanks to Lemma 4.2
(iii).
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7 Estimate from below of the mass of 〚Guk〛 over Dk ∩ (Ω \ Bε)

Now we want to identify the current S(D̂k) in (5.31) as sum of polar graphs (Section 2.4), and to
do this we need some preliminaries.

Definition 7.1 (The function ϑk,ε). Recalling the definition of Θk = ΘS(Ek) in (6.7), we set

ϑk,ε : (ε, l)× (0, 1− λ′k]× {0} → [0, π], ϑk,ε(t, ρ, 0) :=
Θk(t, ρ)

2
. (7.1)

Note that dom(ϑk,ε) ⊊ dom(Θk). The polar graph of ϑk,ε is the set Gpol
ϑk,ε

= {(t, ρ, ϑk,ε(t, ρ, 0)) :
(t, ρ, 0) ∈ (ε, l)× (0, 1− λ′k]× {0}}. By construction S(Ek) is the polar subgraph of ϑk,ε restricted
to the half-cylinder {(t, ρ, θ) : t ∈ (ε, l), θ ∈ (0, π)}. More precisely, let η be any number23 with
0 < η < π

4 ; then the polar subgraph

SGpol
ϑk,ε

:= {(t, ρ, θ) ∈ (ε, l)× (0, 1− λ′k]× (−π/4, π) : θ ∈ (−η, ϑk,ε(t, ρ, 0))}

satisfies

SGpol
ϑk,ε

∩ {θ ∈ (0, π)} = S(Ek) ∩ {θ ∈ (0, π)}, (7.2)

and similarly (for the polar epigraph), setting

UGpol
−ϑk,ε := {(t, ρ, θ) ∈ (ε, l)× (0, 1− λ′k]× (−π, π/4) : θ ∈ (−ϑk,ε(t, ρ, 0), η)},

we have

UGpol
−ϑk,ε ∩ {θ ∈ (−π, 0)} = S(Ek) ∩ {θ ∈ (−π, 0)}. (7.3)

Remark 7.2 (The sets ϑk,ε = 0, ϑk,ε = π). Careful attention must be paid to the sets {ϑk,ε = 0}
and {ϑk,ε = π}. Indeed on such sets the two graphs of ϑk,ε and −ϑk,ε overlap and then, when
considered as integral currents, they cancel each other. Moreover the set ∂∗S(Ek) includes the two
graphs of ϑk,ε and −ϑk,ε with the exception of these two sets. In other words, from (7.2) and (7.3)
we have

S(Ek) ∩ Cεl =
(
SGpol

ϑk,ε
∩ {θ ∈ (0, π)}

)
∪
(
UGpol

−ϑk,ε ∩ {θ ∈ (−π, 0)}
)

(7.4)

up to H3-negligible sets. From this formula it is evident that the graphs of ϑk,ε and −ϑk,ε over
{Θk = 0} ∪ {Θk = 2π} cancel each other, and thus they do not belong to the reduced boundary
of S(Ek). Moreover, the polar subgraph and the polar epigraph are sets of finite perimeter, as is
their union in (7.4).

Definition 7.3 (The polar projection map πpol0 ). We let πpol0 = πpol
0,λ′k,ε

: C
ε
l (1− λ′k) → C

ε
l (1−

λ′k) ∩ {θ = 0} be the polar projection defined by

πpol0 (t, ρ, θ) := (t, ρ, 0). (7.5)

23η = 0 is not allowed, since in this case the boundary of the subgraph (as a current) does not include the set
where θ = 0.
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Figure 4: The graphs of the functions |uk|+ and |uk|− and the set S
(2)
k,ε in Definition 7.4. See also

Fig. 2.

We now introduce various subsets of (0, l) × (0, 1) × {0} in cylindrical coordinates, namely

πpol0 (πλk ◦ Ψk(Ω \ Bε)) ⊆ S
(2)
k,ε ⊆ S

(2)
k,ε ∪ JQk,ε

⊆ S
(4)
k,ε . We start with S

(2)
k,ε (see also formulas (7.16)

and (9.4) below), and note preliminarly that

πpol0 (πλk ◦Ψk(Ω \ Bε)) (7.6)

coincides with{
(t, ρ, 0) ∈ Cl : t ∈ (ε, l), ρ ∈ [|uk|−(t) ∧ (1− λk), |uk|+(t) ∧ (1− λk)]

}
,

|uk|−, |uk|+ being the functions introduced in (6.1).

Definition 7.4 (The set S
(2)
k,ε). Recalling the expression of Qk,ε in (6.4), we define

S
(2)
k,ε := πpol0 (πλk ◦Ψk(Ω \ Bε)) ∪

(
((ε, l) \Qk,ε)× [1− λk, 1− λ′k]× {0}

)
, (7.7)

see Fig. 4.

We have S
(2)
k,ε = πpol0

(
πλk ◦ Ψk(Ω \ Bε) ∪ τ

(
[1 − λk, 1 − λ′k] × A

))
, where τ is defined in (5.13),

and A := {(t, y) ∈ πλk ◦ Ψk(Ω \ Bε) : t ∈ (ε, l), y ∈ ∂B1−λk}, since (t, y) ∈ πλk ◦ Ψk(Ω \ Bε) and
y ∈ ∂B1−λk implies that t ∈ (ε, l) \Qk,ε, see Fig. 2 and (5.5).

Remark 7.5. (i) It might happen that πλk ◦Ψk(Dk \ Bε) = Ø. By construction we have

πpol0 (πλk ◦Ψk(Ω\Bε))∩
(
((ε, l)\Qk,ε)× [1−λk, 1−λ′k]×{0}

)
= ((ε, l)\Qk,ε)×{1−λk}×{0}.

The two functions |uk|− and |uk|+ could coincide in large portions of (ε, l) (and even every-

where), so that πpol0 (πλk ◦Ψk(Ω\Bε)) could collapse to a curve (for instance if Ψk(Ω) ⊂ ∂Cl).

On the other hand, H2(S
(2)
k,ε) > 0 (see Lemma 6.3).

35



(ii) Notice that A ⊇ πλk ◦ Ψk(∂Dk \ Bε) ∪ πλk ◦ Ψk((Ω \ Bε) \Dk). Moreover A ∩ πλk ◦ Ψk(Dk)
may not be empty.

(iii) Inside the cylinder Cεl (1−λk), S
(2)
k,ε is exactly the πpol0 -projection of πλk◦Ψk(Dk\Bε); remember

also that (πλk ◦Ψk)♯(〚Dk \ Bε〛) = (∂Ek) Cεl (1− λk), by (5.6), (5.22) and (5.28).

(iv) Recalling the definition of Wk in (5.16),

πpol0

(
πλk ◦Ψk(Dk \ Bε) ∪Wk

)
⊆ S

(2)
k,ε , (7.8)

and the above inclusion might be strict.

(v) If ϑk,ε(t, ρ, 0) ∈ (0, π) then (t, ρ, 0) ∈ S
(2)
k,ε , by (7.8). Indeed in this case the circle (πpol0 )−1(t, ρ, 0)

intersects both some sets in {Ek,i} (see (5.30)) and their complement, so in particular

(πpol0 )−1(t, ρ, 0) must intersect the reduced boundary of some of the sets in {Ek,i}, namely

πλk ◦Ψk(Dk \ Bε) ∪Wk, for H2-a.e. (t, ρ, 0) ∈ S
(2)
k,ε . Furthermore

{(t, ρ, 0) : ϑk,ε(t, ρ, 0) ∈ (0, π)} = πpol0

(
spt (S(D̂k))

)
,

up to H2− negligible sets24

Remark 7.6. (i) Θk = 2π on {(t, ρ, 0) : t ∈ Qk,ε, ρ ∈ (|uk|+(t), 1 − λ′k)}. Notice that the part
of the cylinder {(t, ρ, θ) : t ∈ Qk,ε, ρ ∈ (|uk|+(t), 1 − λ′k), θ ∈ (−π, π]} does not intersect
πλk ◦ Ψk(Dk), and neither Wk, by construction. As a consequence it does not intersect

spt (S(D̂k)).

(ii) We write {(t, ρ, 0) ∈ S
(2)
k,ε : either Θk(t, ρ) = 0 or Θk(t, ρ) = 2π} = S

(2)
k,ε ∩ {Θk ∈ {0, 2π}}.

Then S
(2)
k,ε ∩ {Θk ∈ {0, 2π}} corresponds to the values of t and ρ for which (t, ρ, 0) ∈ S

(2)
k,ε and

the slice S(Ek)(t,ρ) = S(Ek)∩ ({t}×∂Bρ) is either empty or the whole circle {t}×∂Bρ (up to

H1-negligible sets). Notice also that the intersection πpol0

(
πλk ◦Ψk(Dk \ Bε) ∪Wk

)
∩ S(2)

k,ε ∩
{Θk ∈ {0, 2π}} may not be empty on a set of positive H2−measure. Indeed in the proof of

Proposition 7.9, we show that the πpol0 -projection of25
(
πλk ◦Ψk(Dk)

)
\ spt (D̂k) is contained

in S
(2)
k,ε ∩ {Θk ∈ {0, 2π}}.

7.1 The current S(D̂k) as sum of a polar subgraph and a polar epigraph

Let Gpol

±ϑk,ε
(
S
(2)
k,ε∩{Θk∈{0,2π}}

) be the polar graph of ±ϑk,ε
(
S
(2)
k,ε ∩ {Θk ∈ {0, 2π}}

)
; these two sets,

by symmetry, overlap, and

〚Gpol

−ϑk,ε
(
S
(2)
k,ε∩{Θk∈{0,2π}}

)〛 + 〚Gpol

ϑk,ε

(
S
(2)
k,ε∩{Θk∈{0,2π}}

)〛 = 0,

due to the fact that 〚Gpol

ϑk,ε

(
S
(2)
k,ε∩{Θk∈{0,2π}}

)〛 and 〚Gpol

−ϑk,ε
(
S
(2)
k,ε∩{Θk∈{0,2π}}

)〛 are oriented in op-

posite way. Indeed we endow 〚Gpol

ϑk,ε

(
S
(2)
k,ε∩{Θk∈{0,2π}}

)〛 with the orientation inherited by looking

24There could be (t, ρ, 0) ∈ πpol
0

(
spt (S(D̂k))

)
such that ϑk,ε(t, ρ, 0) /∈ (0, π). Indeed take t ∈ (ε, l) such that

∂Bt ⊂ Dk and assume that Ψk(∂Bt) = {t}×∂Bρ, ρ < 1−λk. Then ϑk,ε(t, ρ) = π and {t}×∂Bρ ⊂ ∂∗S(Ek); however
this can only happen for (t, ρ) in a negligible H2-set.

25This is the set where πλk ◦ Ψk(Dk) overlaps itself with opposite orientation; this set might have positive area,
see Fig. 8.
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at it as the boundary of the polar subgraph of ϑk,ε, and we endow 〚Gpol

−ϑk,ε
(
S
(2)
k,ε∩{Θk∈{0,2π}}

)〛 with

the opposite orientation, since we look at it as boundary of an epigraph.

Definition 7.7 (The currents G±
k,ε). We set

G+
k,ε := (∂〚SGpol

ϑk,ε
〛)

(
{θ ∈ (0, π)} ∩ Cεl (1− λ′k)

)
+ 〚Gpol

ϑk,ε

(
S
(2)
k,ε∩{Θk∈{0,2π}}

)〛,

G−
k,ε := (∂〚UGpol

−ϑk,ε〛)
(
{θ ∈ (−π, 0)} ∩ Cεl (1− λ′k)

)
+ 〚Gpol

−ϑk,ε
(
S
(2)
k,ε∩{Θk∈{0,2π}}

)〛.
(7.9)

The non standard orientation of G−
k,ε is chosen in such a way that condition (7.10) in Proposition

7.9 below takes place. In this proposition we will also see that, being S(Ek) a finite perimeter set
in Cεl , its reduced boundary, seen as a current, has finite mass. In turn, the integration on its
boundary is exactly G+

k,ε + G−
k,ε (see also (7.4)).

Remark 7.8. The generalized polar graph of ϑk,ε might have large parts on which ϑk,ε ∈ {0, π};
for this reason we neglected this part in the currents introduced in (7.9) by restricting the boundary
of the subgraph in {θ ∈ (0, π)} ∩ Cεl (1 − λ′k) (and similarly for the epigraph). However we want

to consider the graph above the set ϑk,ε ∈ {0, π} on the strip S
(2)
k,ε , in particular the projection of

the set where πλk ◦Ψk(Dk) overlaps itself (which may have positive area), for this reason we have

to add the term 〚Gpol

ϑk,ε

(
S
(2)
k,ε∩{Θk∈{0,2π}}

)〛 in formulas (7.9). The reason why we have to get rid of

the graph of ϑk,ε on {ϑk,ε ∈ {0, π}} outside S
(2)
k,ε is that this term is not controlled by the area of

(πλk ◦Ψk(Ω \ Bε)) (see also Remark 7.6 (iv)).

Proposition 7.9 (Estimate of the mass of G±
k,ε ). Let ε be fixed as in (4.5) and (4.6), and

recall the definition (5.31) of S(D̂k). Then the following properties hold:

G+
k,ε + G−

k,ε = S(D̂k) Cεl (1− λ′k), (7.10)

|G+
k,ε|+ |G−

k,ε| = |S(D̂k)|Cε
l (1−λ

′
k)
+ 2H2

(
S
(2)
k,ε ∩ {Θk ∈ {0, 2π}}

)
, (7.11)

|G+
k,ε|+ |G−

k,ε| ≤
∫
Dk∩(Ω\Bε)

|J(πλk ◦Ψk)| dx+
1

n
+ ok(1), (7.12)

where ok(1) is a nonnegative infinitesimal sequence as k → +∞, depending on n and ε.

Proof. Identity (7.10) follows by definition and from (7.4). Concerning (7.11), setting for simplicity

J0,2π
k,ε := S

(2)
k,ε ∩ {Θk ∈ {0, 2π}}, (7.13)

it is sufficient to observe that spt (〚G+
k,ε〛) and spt (〚G−

k,ε〛) coincide on the set ϑk,ε(J
0,2π
k,ε ) (whose

measure is equal26 to the measure of J0,2π
k,ε ). Thus, the currents G+

k,ε and G−
k,ε cancel each other on

this set, since they are endowed with opposite orientation. Hence

|G+
k,ε|+ |G−

k,ε| = |G+
k,ε + G−

k,ε|+ 2H2(J0,2π
k,ε ), (7.14)

and (7.11) follows from (7.10).

26Indeed ϑk,ε restricted to J0,2π
k,ε ∩ {Θk = 0} is the identity map and ϑk,ε restricted to J0,2π

k,ε ∩ {Θk = 2π} is a
π-rotation.
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Let us prove (7.12). We recall that the rectifiable set πλk ◦ Ψk(Dk) ∪Wk includes the support

of the current D̂k. There might be parts of πλk ◦ Ψk(Dk) ∪Wk where the multiplicity of D̂k is
zero, and this happens for instance where two pieces of πλk ◦ Ψk(Dk) ∪Wk overlap with opposite
orientations. We decompose πλk ◦Ψk(Dk) ∪Wk as follows:

πλk ◦Ψk(Dk) ∪Wk = Z0
k ∪ spt (D̂k) = Z0

k ∪ spt (Dk) ∪ spt (Wk), (7.15)

where
Z0
k :=

(
πλk ◦Ψk(Dk) \ spt (Dk)

)
∪
(
Wk \ spt (Wk)

)
is the set where D̂k has vanishing multiplicity. It is convenient to introduce the following notation
for the set in (7.6):

S
(1)
k,ε := πpol0 (πλk ◦Ψk(Ω \ Bε)). (7.16)

We claim that
S
(1)
k,ε ∩ J

0,2π
k,ε ⊆ πpol0

(
Z0
k

)
, (7.17)

where πpol0 is the projection introduced in (7.5) (again, here the inclusion is intended up to H2-
negligible sets). To prove this we argue by slicing: for t ∈ (ε, l) set

(S
(1)
k,ε ∩ J

0,2π
k,ε )t := (S

(1)
k,ε ∩ J

0,2π
k,ε ) ∩ ({t} × R2).

It is sufficient to show that

(S
(1)
k,ε ∩ J

0,2π
k,ε )t ⊆ πpol0

(
Z0
k

)
for H1 − a.e. t ∈ (ε, l). (7.18)

In turn, denoting (Z0
k)t := Z0

k ∩ ({t} × R2) we will prove27

(S
(1)
k,ε ∩ J

0,2π
k,ε )t ⊆ πpol0

(
(Z0

k)t
)

for H1 − a.e. t ∈ (ε, l). (7.19)

Now, (Z0
k)t is, for H1-a.e. t ∈ (ε, l), the set where the coefficient of the integral current (D̂k)t is zero.

Recalling (7.13), we have that28 Θk(t, ρ) ∈ {0, 2π} for ρ ∈ [|uk|−(t) ∧ (1− λk), |uk|+(t) ∧ (1− λk)]
such that (t, ρ, 0) ∈ J0,2π

k,ε . This means that either

• for all i the intersection between Ek,i (see (5.30)) and {t}×∂Bρ is empty (up to H1-negligible
sets), or

• for at least one i, it happens Ek,i ∩ ({t} × ∂Bρ) = {t} × ∂Bρ (up to H1-negligible sets).

In both cases, for H1-a.e. ρ ∈ (S
(1)
k,ε ∩ J

0,2π
k,ε )t, the current (S(D̂k))t is null on the set

{(t, ρ, θ) : θ ∈ (−π, π), ρ ∈ (S
(1)
k,ε ∩ J

0,2π
k,ε )t}.

Indeed, recalling that S(D̂k) = ∂〚S(Ek)〛, in the first case this is obvious, in the second one it is
sufficient to remember that Ek = ∪iEk,i. In other words, the set (πλk ◦Ψk(Dk))t must overlap itself

with opposite directions in this set, because the multiplicity of (D̂k)t is null there. Hence we have
proved (7.19), and claim (7.17) follows.

27The only fact we will use is that the πpol
0 -projection of the set πλk ◦Ψk(Dk) is surjective on S

(2)
k,ε (essentially by

definition) and then the inverse image of a point where S(D̂k) is null is covered at least two times.
28See Fig. 8, the two bold segments: on one Θk = 0 and on the other one Θk = 2π
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As a consequence of (7.17) and of its proof, we have

2H2(J0,2π
k,ε ) ≤ 2H2

(
πpol0 (Z0

k ∩ Cεl (1− λk))
)
+ 2(λk − λ′k)l

≤
∫
Dk∩(Ω\Bε)

|J(πλk ◦Ψk)|dx+M(Wk ∩ Cεl (1− λ′k))− |D̂k|Cε
l (1−λ

′
k)
+ ok(1), (7.20)

see (5.18). Indeed, the first inequality is easy to see, recalling that J0,2π
k,ε is the union of S

(1)
k,ε ∩J

0,2π
k,ε

and J0,2π
k,ε \ S(1)

k,ε , and the latter has measure less than (λk − λ′k)l that is infinitesimal as k → +∞
(we denote it by ok(1)). To see the second inequality we use decomposition (7.15). Since Z0

k is
covered at least two times (with opposite directions), the areaM((πλk ◦Ψk(Dk)∪Wk)∩Cεl (1−λ′k))
of πλk ◦Ψk(Dk) ∪Wk in Cεl (1− λ′k) counted with multiplicity, i.e.,

M((πλk ◦Ψk(Dk) ∪Wk) ∩ Cεl (1− λ′k)) :=

∫
Dk∩(Ω\Bε)

|J(πλk ◦Ψk)|dx+M(Wk ∩ Cεl (1− λ′k)),

satisfies

M((πλk ◦Ψk(Dk) ∪Wk) ∩ Cεl (1− λ′k)) ≥2H2(Z0
k ∩ Cεl (1− λ′k)) + |D̂k|Cε

l (1−λ
′
k)

≥2H2
(
πpol0 (Z0

k ∩ Cεl (1− λ′k))
)
+ |D̂k|Cε

l (1−λ
′
k)
,

≥2H2
(
πpol0 (Z0

k ∩ Cεl (1− λk))
)
+ |D̂k|Cε

l (1−λ
′
k)
,

and (7.20) follows.
In order to prove (7.12) it is now sufficient to observe that

|G+
k,ε|+ |G−

k,ε| = |S(D̂k)|Cε
l (1−λ

′
k)
+ 2H2(J0,2π

k,ε )

≤|S(D̂k)|Cε
l (1−λ

′
k)
+

∫
Dk∩(Ω\Bε)

|J(πλk ◦Ψk)|dx+M(Wk ∩ Cεl (1− λ′k))− |D̂k|Cε
l (1−λ

′
k)
+ ok(1)

≤
∫
Dk∩(Ω\Bε)

|J(πλk ◦Ψk)|dx+
1

n
+ ok(1),

where we have used (5.20) and (5.34) localized in the cylinder Cεl (1− λ′k).

Corollary 7.10. We have

|〚Guk〛|Dk∩(Ω\Bε))×R2 ≥ |G+
k,ε|+ |G−

k,ε| −
1

n
− ok(1).

Proof. It follows from (7.12) and (5.8).

Now we restrict our attention to the rectifiable sets spt (G±
k,ε), the supports of the currents in

(7.9). We recall that the function ϑk,ε might take values in (0, π) only in the “strip” S
(2)
k,ε , see

Remark 7.5 (v), and

S
(2)
k,ε ⊂ (ε, l)× [0, 1]× {0} ⊂ Cl.

Now we add to G+
k,ε a graph on some additional set outside S

(2)
k,ε , see Fig.6.

Definition 7.11. We let

JQk,ε
:= {(t, ρ, 0) ∈ Cl : t ∈ Qk,ε, ρ ∈ [|uk|+(t), 1− λ′k]}. (7.21)
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Figure 5: Intersection of the cylinder Cl(1 − λk) with {t = t} × R2. The symmetrization of a
closed current in B1−λ′k , which on the left is emphasized in grey, and with dark grey the region in
which the multiplicity of the current is 2. The set is bounded by a generic curve with endpoints
on ∂B1−λk , in turn these endpoints have been joined with ∂B1−λ′k by radial segments Li. The
area emphasized has been symmetrized with the respect to the radius {θ = 0} in the right picture,
where we have indicated the angles ±Θk(t, 1− λ′k)/2.

Figure 6: The graphs of the functions |uk|+ and |uk|− and the set JQk,ε
in (7.21). See also Fig. 2.
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By definition of Qk,ε in (6.4), we have that for H2-a.e. (t, ρ, 0) ∈ JQk,ε
it holds (πpol0 )−1((t, ρ, 0))∩

spt (S(D̂k)) = Ø, so that ϑk,ε ∈ {0, π} on JQk,ε
. Recalling (5.29) and (5.27), it is not difficult to

see that (πpol0 )−1(JQk,ε
) ⊆ S(Ek). Hence

ϑk,ε = π in JQk,ε

(see also Remark 7.6).
Now, we want to add to the currents G±

k,ε in (7.7) a new part above a region that becomes, in
Section 10, the subgraph of the function hk,ε.

Definition 7.12 (The currents G(3)
ϑk,ε

and G(3)
−ϑk,ε). We define

G(3)
ϑk,ε

:=G+
k,ε + 〚Gpol

ϑk,ε JQk,ε

〛 ∈ D2(C
ε
l (1− λ′k)),

G(3)
−ϑk,ε :=G−

k,ε + 〚Gpol

−ϑk,ε JQk,ε

〛 ∈ D2(C
ε
l (1− λ′k)).

Lemma 7.13. The following holds:

|G(3)
ϑk,ε

| = |G+
k,ε|+H2(JQk,ε

); (7.22)

H2(JQk,ε
) ≤ |Qk,ε| ≤

1

2πεn
; (7.23)

G(3)
ϑk,ε

+ G(3)
−ϑk,ε = ∂〚S(Ek)〛 Cεl (1− λ′k). (7.24)

Proof. Formula (7.22) follows from the fact that G+
k,ε and 〚Gϑk,ε JQk,ε

〛 have disjoint supports, and

|〚Gϑk,ε JQk,ε
〛| = H2(JQk,ε

). Inequality (7.23) follows from

H2(JQk,ε
) =

∫
Qk,ε

(1− λ′k − |uk|+(t)) dt ≤ |Qk,ε| ≤
1

2πεn
,

where the last inequality is a consequence of Lemma 6.3. Formula (7.24) follows as in Proposition
7.9, using the fact that 〚Gϑk,ε JQk,ε

〛 and 〚G−ϑk,ε JQk,ε
〛 have opposite orientation.

Current G(3)
ϑk,ε

+ G(3)
−ϑk,ε is closed in Cεl (1 − λ′k). We can look at its boundary as a current in

D2((ε, l)×R2), which has support on the lateral boundary of the cylinder Cεl (1− λ′k). To this aim
we study the trace of ϑk,ε (that is Θk(t, ρ)/2) on the segment

(ε, l)× {1− λ′k} × {0}. (7.25)

Observe that by definition

ϑk,ε = π on Qk,ε × {1− λ′k} × {0} ⊆ (ε, l)× {1− λ′k} × {0},

whereas on ((ε, l) \Qk,ε)× {1− λ′k} × {0} we have

ϑk,ε(t, 1− λ′k, 0) = Θk(t, 1− λ′k)/2 = Θk(t, ρ)/2, t ∈ (ε, l) \Qk,ε,

for all ρ ∈ (1− λk, 1− λ′k).

Definition 7.14 (The 2-rectifiable set Σk,ε). We let

Σk,ε :=
{
(t, ρ, θ) : t ∈ (ε, l), ρ = 1− λ′k, θ ∈ (−Θk(t, 1− λ′k)/2,Θk(t, 1− λ′k)/2)

}
. (7.26)
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Referring to the right picture in Figure 5, the section of Σk,ε is the short arc connecting the
points (t, 1− λ′k,−Θk(t, 1− λ′k)/2) and (t, 1− λ′k,Θk(t, 1− λ′k)/2); see also Fig. 9.

If we denote by 〚Σk,ε〛 the current given by integration over Σk,ε (suitably oriented), its boundary

coincides with the boundary of G(3)
ϑk,ε

+ G(3)
−ϑk,ε on ∂latC

ε
l (1− λ′k).

Lemma 7.15 (Properties of Σk,ε). Σk,ε, oriented by the outward unit normal to the lateral
boundary of Cl(1− λ′k), is such that

G(3)
ϑk,ε

+ G(3)
−ϑk,ε + 〚Σk,ε〛 ∈ D2((ε, l)× R2) is boundaryless.

Moreover

H2(Σk,ε) ≤
1

εn
+ ok(1), (7.27)

where the sequence ok(1) ≥ 0 depends on n and ε, and is infinitesimal as k → +∞. Finally

(∂〚Σk,ε〛) ({ε} × R2) = 〚{ε} × {1− λ′k} ×
[
−Θk(ε, 1− λ′k)

2
,
Θk(ε, 1− λ′k)

2

]
〛, (7.28)

oriented counterclockwise29.

Proof. The fact that the current G(3)
ϑk,ε

+ G(3)
−ϑk,ε + 〚Σk,ε〛 is boundaryless in D2((ε, l) × R2) is a

consequence of the fact that Σk,ε is a subset of the polar subgraph of the trace of ϑk,ε on (ε, l) ×
{1− λ′k} × {0}. Concerning (7.27) we have

H2(Σk,ε) =

∫ l

ε

∫ Θk(t,1−λ′k)/2

−Θk(t,1−λ′k)/2
(1− λ′k)dθdt ≤

1

εn
+ ok(1), (7.29)

where the last inequality follows from Lemma 6.4. As for the last assertion, we have to understand

which is the orientation of 〚Σk,ε〛, which has been chosen in such a way that G(3)
ϑk,ε

+G(3)
−ϑk,ε+〚Σk,ε〛 =

(∂〚S(Ek)〛) ((ε, l)× [0, 1− λ′k]×{θ ∈ (−π, π]}). Hence, since S(Ek) is contained in Cl(1− λ′k), the
orientation of 〚Σk,ε〛 is the one inherited by the external normal to ∂〚S(Ek)〛, namely the outward
unit normal to the lateral boundary of Cl(1− λ′k).

8 Estimate from below of the mass of 〚Guk〛 over Dk ∩ Bε

We now analyse the image of Dk ∩ Bε through Ψk. We want to reduce this set to a current
Vk ∈ D2({ε} × R2) (defined in (8.12)), in order that it contains the necessary information on the
area of Ψk(Dk ∩Bε). To this aim we need first to describe the boundary of Vk and then show that
its mass gives a lower bound for the area of the graph of uk (see formula (8.13)).

Borrowing the notation from the proof of Lemma 6.4, the set ∂Bε is splitted as:

∂Bε = (Dk ∩ ∂Bε) ∪ ((Ω \Dk) ∩ ∂Bε) =: Hk,ε ∪Hc
k,ε. (8.1)

We denote by

{xi}Iki=1 ⊆ {x̂i}Jki=1 := ∂Bε ∩ ∂Dk, (8.2)

the finite family of points (see Lemma 4.2 (v)) which represents the relative boundary of Hk,ε in

∂Bε. Recall that {x̂i}Jki=1 is finite as well by Lemma 4.2 (iv). For notational simplicity, we skip the
dependence on ϵ.

Recalling the definition of Wk in (5.16), the following crucial lemma states that (πλk ◦Ψk(Dk))∪
Wk does not intersect the plane {ε} × R2 in a set of positive H2-measure.

29Looking at the plane {ε} × R2 from the side t > ε.
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Lemma 8.1. The rectifiable set (πλk ◦Ψk(Dk)) ∪Wk satisfies

H2
((
πλk ◦Ψk(Dk) ∪Wk

)
∩ {t = ε}

)
= 0.

Proof. It is sufficient to show that H2((πλk ◦ Ψk(Dk)) ∩ {t = ε}) = 0 and H2(Wk ∩ {t = ε}) = 0.
To show the first equality, suppose H2(πλk ◦ Ψk(Dk) ∩ {t = ε}) > 0. Since Lip(πλk) = 1 and πλk
takes the plane {t = ε} into itself, we have H2(Ψk(Dk) ∩ {t = ε}) > 0. Again, being Ψk Lipschitz
continuous, we deduce that Ψ−1

k (Ψk(Dk)∩ {t = ε}) has positive measure. But Ψ−1
k (Ψk(Dk)∩ {t =

ε}) ⊂ Ψ−1
k ({t = ε}) = ∂Bε which has obviously H2 null measure.

Let us prove that H2(Wk ∩{t = ε}) = 0. Recalling (see (5.16)) that Wk = τ([1−λk, 1−λ′k]×γk)
with γk := πλk ◦Ψk(∂Dk), and since τ(·, z) in (5.13) does not change the axial coordinate of z, we
see30 that τ([1−λk, 1−λ′k]×γk)∩{t = ε} has positive H2 measure only if γk ∩{t = ε} has positive
H1 measure. Again, since also πλk does not change the axial coordinate, as before this happens
only if Ψ−1

k (γ̂k∩{t = ε}) has positive H1-measure, where γ̂k := Ψk(∂Dk); by Lemma 4.2, this is not
possible, since we know that γ̂k∩{t = ε} = {Ψk(x̂i)} (see (8.2)), and then Ψ−1

k (γ̂k∩{t = ε}) = {x̂i}
which is a finite set.

We recall from (5.6) and (5.22) that

D̂k = (πλk ◦Ψk)♯〚Dk〛 +Wk. (8.3)

An immediate consequence of Lemma 8.1, formula (8.3), and the fact that D̂k is boundaryless in
Cl(1− λ′k), is the following:

Corollary 8.2. We have D̂k {t = ε} = 0. In particular

∂(D̂k {ε < t < l}) ({t = ε}) = −∂(D̂k {−1 < t < ε}) ({t = ε}) in Cl(1− λ′k).

If {Ek,i}i∈N, Ek,i ∈ Cl are the sets which we have symmetrized (see (5.30)), S(Ek) is the sym-

metrized set, and S(D̂k) is the symmetrized current, we have to understand the behaviour of S(D̂k)
on {ε}×R2. We have observed that D̂k ({ε}×R2) = 0 becauseH2

(
(πλk ◦Ψk(Dk) ∪Wk) ∩ {ε} × R2

)
=

0. The same holds for the symmetrized current, as a particular consequence of Lemma 3.4:

S(D̂k) ({ε} × R2) = 0.

8.1 Description of the boundary of the current S(D̂k) ((−1, ε)×B1−λ′k)

Our first aim is to describe the boundary of S(D̂k) on {ε} × R2 (Corollary 8.5). To do so, let us
recall that πλk is given in Definition 5.3 and that the points xi are defined in (8.2).

Definition 8.3 (The current Hk,ε). Recalling (8.1), we set

Hk,ε := (πλk ◦Ψk)♯〚Hk,ε〛 ∈ D1({ε} ×B1), (8.4)

where Hk,ε is oriented counterclockwise.

Let us denote by {x̃i} ⊆ {xi} the points which represent the support of the current ∂〚Hk,ε〛. We
can consider the orthogonal projection31 onto the lateral boundary of Cl(1 − λ′k), and we denote

30For instance, using the coarea formula.
31Defined at least in the region Cl(1− λ′

k) \ Cl(1− λk).
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by Lk,i the segment connecting πλk(Ψk(x̃i)) (which belongs to the lateral boundary of Cl(1− λk))
to the image point of Ψk(x̃i) through this projection.

We consider the 1-integral current in {ε} ×B1−λ′k given by

Hk,ε +
∑
i

〚Lk,i〛 ∈ D1({ε} ×B1−λ′k), (8.5)

where 〚Lk,i〛 are the integrations over the segments Lk,i taken with suitable orientation in order
that

∂
(
Hk,ε +

∑
i

〚Lk,i〛
)
= 0 in {ε} ×B1−λ′k . (8.6)

Before stating the following crucial lemma, we recall that the current D̂k is defined in Cl but is
supported in [0, l]×B1−λ′k .

Lemma 8.4 (Boundary of D̂k ((−1, ε)× R2) in {ε} ×B1−λ′k). We have

∂
(
D̂k ((−1, ε)× R2)

)
= Hk,ε +

∑
i

〚Lk,i〛 in D1({ε} ×B1−λ′k). (8.7)

Proof. We recall that
D̂k = Dk +Wk,

where Dk is defined in (5.6) and, by (5.17), Wk = τ̃♯〚[1− λk, 1− λ′k]× ∂Dk〛. Observe that

∂
(
Wk ((−1, ε)× R2)

)
=

∑
i

〚Lk,i〛 in the annulus {ε} × (B1−λ′k \B1−λk).

Indeed, this follows from the definition of Lk,i, the equality32

Wk ((−1, ε)× R2) =τ̃♯〚[1− λk, 1− λ′k]× (Bε ∩ ∂Dk)〛
=τ̃♯〚[1− λk, 1− λ′k]× ∂(Dk ∩ Bε)〛 − τ̃♯〚[1− λk, 1− λ′k]×Hk,ε〛,

and (8.6). Moreover, from (5.6),

∂
(
Dk ((−1, ε)× R2)

)
({ε} ×B1) = ∂

(
((πλk ◦Ψk)♯〚Dk〛) ((−1, ε)× R2)

)
({ε} ×B1)

= ∂
(
(πλk ◦Ψk)♯〚Dk ∩ Bε〛

)
({ε} ×B1)

=
(
(πλk ◦Ψk)♯∂〚Dk ∩ Bε〛

)
({ε} ×B1)

= Hk,ε on {ε} ×B1,

where in the last equality we use33 〚∂(Dk ∩ Bε)〛 = 〚Dk ∩ ∂Bε〛 = 〚Hk,ε〛 on ∂Bε.

Thanks to Corollary 5.17, both D̂k and S(D̂k) have no boundary in (−∞, l) × B1−λ′k . Now, we

need to describe the boundary of the symmetrized current S(D̂k) restricted to (−1, ε) × B1−λ′k ,
see (8.11). We recall the definitions of Xk and Yk in (5.27) and (5.26), and for t ∈ (−1, ε] and
ρ ∈ (1− λk, 1− λ′k) the function Θk(t, ρ) defined in (6.10). Also in this case

Θk(t, ρ) = Θk(t, ϱ) for all ρ, ϱ ∈ (1− λk, 1− λ′k).

32Notice that ∂(Dk ∩Bε) = (∂Dk ∩Bε)∪ (∂Dk ∩∂Bε)∪ (Dk ∩∂Bε); recall also that, by Lemma 4.2 (iv), ∂Dk ∩∂Bε

consists of a finite set of points.
33Here we take the boundary of Dk in ∂Bε in the sense of currents, so that isolated points are neglected.
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In cylindrical coordinates, if

X1 := (ε, 1− λk,Θk(ε, 1− λk)/2), X2 := (ε, 1− λk,−Θk(ε, 1− λk)/2),

we denote the two 1-currents

S(L)1 := τ(·, X1)♯〚(1− λk, 1− λ′k)〛 and S(L)2 := τ(·, X2)♯〚(1− λk, 1− λ′k)〛, (8.8)

see Fig. 7. Set
Y1 = τ(1− λ′k, X1), Y2 = τ(1− λ′k, X2). (8.9)

We know, by construction and definition of Θk, that

∂
(
S(D̂k) ((−1, ε)× (B1−λ′k \B1−λk))

)
({ε} × R2) = S(L)1 − S(L)2

in D1({ε} × (B1−λ′k \B1−λk)). We define

S(Hk,ε) := ∂
(
S(D̂k) ((−1, ε)×B1−λ′k)

)
({ε} × R2)− S(L)1 + S(L)2 (8.10)

in D1({ε} ×B1−λk), see again Fig. 7. With these definitions at our disposal we can now write

∂
(
S(D̂k) ((−1, ε)×B1−λ′k)

)
=S(Hk,ε) + S(L)1 − S(L)2 + ∂

(
S(D̂k) {t ∈ (−1, ε)}

)
({−1} ×B1−λ′k)

=S(Hk,ε) + S(L)1 − S(L)2.

(8.11)

Here we have used once again that S(D̂k) is supported in [0, l] × B1, and then its boundary on
{t = −1} is always null.

We can clarify the meaning of the last term in formula (8.11).

Corollary 8.5. We have

S(Hk,ε) + S(L)1 − S(L)2 = −∂
(
S(D̂k) ((ε, l)×B1−λ′k)

)
({ε} × R2).

Proof. It follows from (8.11), Corollary 8.2, and Lemma 3.4.

8.2 Construction of the current Vk,ε
Let Πε : R3 → {ε} × R2 be the orthogonal projection on {ε} × R2.

Definition 8.6. We set

Vk,ε := (Πε)♯

(
S(D̂k) ((−1, ε)×B1−λ′k)

)
∈ D2(Cl). (8.12)

Lemma 8.7. We have
|〚Guk〛|(Dk∩Bε)×R2 ≥ |Vk,ε| − 2π(λk − λ′k).

Proof. By (8.12), since Lip(Πε) = 1, we have, using (8.3), (5.17),

|Vk,ε| =|Vk,ε|(−1,ε)×(B1−λ′
k
\B1−λk

) + |Vk,ε|(−1,ε)×B1−λk

≤|Vk,ε|(−1,ε)×(B1−λ′
k
\B1−λk

) + |D̂k|(−1,ε)×B1−λk

=|Vk,ε|(−1,ε)×(B1−λ′
k
\B1−λk

) + |Dk|(−1,ε)×B1−λk

≤2π(λk − λ′k) + |〚Guk〛|(Dk∩Bε)×R2 ,

(8.13)

where we have also used a localized version of (5.34) in (−1, ε)×B1−λk .
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Figure 7: The current S(D̂k) ((ε, l) × B1−λ′k) is depicted. At t = ε we emphasized the various
objects composing its boundary, taken with their orientation.

By Corollary 8.5 it holds34

∂Vk,ε = S(Hk,ε) + S(L)1 − S(L)2 in {ε} ×B1−λ′k . (8.14)

Clearly the above current is boundaryless in {ε} × B1−λ′k ; more precisely it is an oriented curve

connecting Y2 to Y1 (defined in (8.9)) as soon as Y2 ̸= Y1, with S(Hk,ε) clockwise oriented35. If we
extend Vk,ε to 0 on the whole plane {ε} × R2 (keeping the same notation) we have

∂Vk,ε = Lk + S(Hk,ε) + S(L)1 − S(L)2 on {ε} × R2, (8.15)

for some current Lk supported on {ε} × ∂B1−λ′k and whose boundary is two deltas, with suitable
signs, on Y1 and Y2. In particular Lk is the integration between Y1 to Y2 on the circle {ε}×∂B1−λ′k .

However there are two arcs which connect these two points, namely (in cylindrical coordinates)

{ε} × {1− λ′k} ×
[
−Θk(ε, 1− λ′k)

2
,
Θk(ε, 1− λ′k)

2

]
(8.16)

oriented clockwise and(
{ε} × ∂B1−λ′k

)
\
{
{ε} × {1− λ′k} ×

[
−Θk(ε, 1− λ′k)

2
,
Θk(ε, 1− λ′k)

2

]}
(8.17)

oriented counterclockwise. We have to identify Lk with the integration over one of these two arcs.

34Recall that ∂(Πε)♯
(
S(D̂k) {t < ε}

)
= (Πε)♯∂

(
S(D̂k) {t < ε}

)
and that the map Πε does not move the plane

where ∂(S(D̂k) {t < ε}) is supported.
35When looking at the plane {ε} × R2 from t > ε.

46



Proposition 8.8. Lk is the counterclockwise integration over the arc connecting Y1 and Y2 given
by (8.17).

Before proving this proposition we anticipate a useful observation.

Remark 8.9. We set
S(Ek)ε := S(Ek) ∩ {t = ε}.

Since S(D̂k) is the boundary of the integration over S(Ek), the current S(D̂k) ((−1, ε)×B1−λ′k) +
〚S(Ek)ε〛 is boundaryless in D2(Cl(1 − λ′k)) (with S(Ek)ε suitably oriented). It follows, invoking
Corollary 8.5, that

∂〚S(Ek)ε〛 = −S(Hk,ε)− S(L)1 + S(L)2 in {ε} ×B1−λ′k .

The fact that

∂Vk,ε = Lk + S(Hk,ε) + S(L)1 − S(L)2 in {ε} × R2, (8.18)

(where Lk is as in Proposition 8.8) means that Vk,ε is the integration over the set

B1−λ′k \ S(Ek)ε.

In particular Vk,ε has coefficient 1 in B1−λ′k \ S(Ek)ε and zero in S(Ek)ε. On the other hand, if Lk
were the integration over (8.16) oriented clockwise, then we would have that Vk,ε had coefficient
−1 in S(Ek)ε and 0 in B1−λ′k \ S(Ek)ε.

We can now prove Proposition 8.8.

Proof. Appealing to Remark 8.9, it is sufficient to show that the coefficient of Vk,ε is 1 in B1−λ′k \
S(Ek)ε. Equivalently we can show that this coefficient is zero in B1−λ′k ∩ S(Ek)ε.

Let us recall, by definitions (5.26) and (5.27),

(Yk)t = τ̃♯〚[1− λk, 1− λ′k]× ((Ω \Dk) ∩ ∂Bt)〛 for a.e. t ∈ (0, ε], (8.19)

(Xk)t = 〚{t} × (B1−λ′k \B1−λk)〛 − (Yk)t for a.e. t ∈ (0, ε]. (8.20)

Recalling Lemma 4.2(i), we now divide our analysis in two cases:

(1) |uk(0)| < 1− λk.

(2) |uk(0)| > 1− λk.

We notice that, in both cases, by continuity of uk, for all δ ∈ (0, 1) there is tδk > 0 such that

uk(Bt) ⊂ Bδ(uk(0)) ∀t ∈ (0, tδk]. (8.21)

Case (1): If δ is sufficiently small, we can also assume that

Bδ(uk(0)) ⊂ B1−λk(0), (8.22)

and therefore

uk(Bt) ⊂ B1−λk(0) ∀t ∈ (0, tδk]. (8.23)
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In this case it turns out that if t ≤ tδk then the current (Yk)t in (8.19) is null, because |uk|+(t) <
1− λk, hence (Ω \Dk) ∩ ∂Bt = Ø by (6.2). In particular, by (8.20),

(Xk)t = 〚{t} × (B1−λ′k \B1−λk)〛 for a.e. t ≤ tδk.

Eventually, since Bt ⊂ Dk for any t ∈ [0, tδk], from (8.21), we also deduce uk(Btδk
∩Dk) = uk(Btδk

) ⊂
Bδ(uk(0)), so that

Ψk(Dk) ∩ ([0, tδk]×B1) = πλk ◦Ψk(Dk) ∩ ([0, tδk]×B1) ⊂ [0, tδk]×Bδ(uk(0)). (8.24)

Now, consider the decomposition (5.30) of Ek. By the crucial identification (5.29) and (8.22) we
infer that there must be a set Ek,h ∈ {Ek,i}i∈N with36

Xk ((−1, tδk)×B1−λ′k) = 〚(−1, tδk)× (B1−λ′k \B1−λk)〛

= 〚Ek,h ∩
(
(−1, tδk)× (B1−λ′k \B1−λk)

)
〛.

Therefore

Ek,h ∩
(
(−1, tδk)× (B1−λ′k \B1−λk)

)
= (−1, tδk)× (B1−λ′k \B1−λk).

This has the following consequence: denoting as usual S(Ek,h) the cylindrical symmetrization of
Ek,h we infer

S(Ek,h) ∩
(
(−1, tδk)× (B1−λ′k \B1−λk)

)
= (−1, tδk)× (B1−λ′k \B1−λk),

and since S(Ek,h) ⊂ S(Ek) we also have

S(Ek) ∩
(
(−1, tδk)× (B1−λ′k \B1−λk)

)
= (−1, tδk)× (B1−λ′k \B1−λk). (8.25)

We now consider two subcases.

(1A) H2
((

{ε}× (B1−λ′k \B1−λk)
)
\S(Ek)ε

)
> 0. To conclude the proof it is sufficient to show that

the multiplicity of Vk,ε on
(
{ε} × (B1−λ′k \B1−λk)

)
\ S(Ek)ε is 1, (8.26)

because ({ε} ×B1−λ′k) \ S(Ek)ε is, by definition, outside the finite perimeter set S(Ek).

We argue by slicing, and consider the lines lρ,θ in R3 given by lρ,θ = R × {ρ} × {θ}, with ρ
and θ fixed. Consider any point p0 of coordinates ρ ∈ (1 − λk, 1 − λ′k) and θ ∈ (−π, π] such
that

p0 ∈ ({ε} ×B1−λ′k) \ S(Ek)ε. (8.27)

For a.e. such ρ ∈ (1 − λk, 1 − λ′k) and θ ∈ (−π, π] the slice of D̂k ((−1, ε) × B1−λ′k) with
respect to this line is the sum of some Dirac deltas with suitable signs, according to the
orientation of D̂k. Indeed D̂k is the integration over the boundary of the finite perimeter set
S(Ek), so it turns out that, for a.e. ρ ∈ (1− λk, 1− λ′k) and θ ∈ (−π, π] the slice of 〚S(Ek)〛
with respect to the line lρ,θ is exactly

〚S(Ek)ρ,θ〛 = 〚S(Ek) ∩ lρ,θ〛, (8.28)

36Since the decomposition in (5.30) is done in undecomposable components, such a set is unique.
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that is the integration over some disjoint intervals. If p1, p2, . . . pm are the intervals endpoints
(written in order37 on lρ,θ) and if we assume that the last interval between the points p1 and
p0 = (ε, ρ, θ) is outside S(Ek), then it results

∂〚S(Ek)ρ,θ〛 = −
∑
i>0
i even

δpi +
∑
i>0
i odd

δpi . (8.29)

If instead the last interval [p1, p0] is inside S(Ek) we have

∂〚S(Ek)ρ,θ〛 =
∑
i>0
i even

δpi −
∑
i>0
i odd

δpi . (8.30)

Let us now prove claim (8.26). We have obtained that, for a.e. ρ ∈ (1 − λk, 1 − λ′k) and
any θ ∈ (−π, π] such that (8.27) holds, the slice ∂〚S(Ek)ρ,θ〛 is the sum in (8.29), and thanks
to (8.25) we deduce that the total number of points involved in (8.29) must be odd. As a
consequence, the push-forward by Πε of ∂〚S(Ek)ρ,θ〛 is a Dirac delta with coefficient −1. Since
this holds for a.e. ρ ∈ (1− λk, 1− λ′k) and any θ ∈ (−π, π], the conclusion follows.

(1B) SupposeH2
((

{ε}×(B1−λ′k \B1−λk)
)
\S(Ek)ε

)
= 0. In this case we pass to the complementary

set; namely, if {ε}× (B1−λ′k \B1−λk) = S(Ek)ε∩
(
{ε}× (B1−λ′k \B1−λk)

)
, up to H2-negligible

sets, we show that the multiplicity of Vk,ε on this set is null. To do so it is sufficient to repeat
the slicing argument above for a.e. (ρ, θ) such that p0 = (ε, ρ, θ) ∈ {ε} × (B1−λ′k \ B1−λk).
For these points (8.30) takes place, since by (8.25) the number of points involved in the sum
is even. The conclusion follows.

Case (2): Choosing δ ∈ (0, 1) small enough,

Ψk(Btδk
) ⊂ [0, tδk]×Bδ(uk(0)), (8.31)

and, using |uk(0)| > 1− λk,

πλk ◦Ψk(Dk ∩ Btδk
) ⊂ [0, tδk]× (B1−λ′k \B1−λk).

Recalling the definition of D̂k, it is not difficult to see that the current D̂k ((−1, tδk) × B1−λ′k) is

supported in [0, tδk] × (B1−λ′k \ B1−λk). By the properties of cylindrical symmetrization, we have

also that S(D̂k) ((−1, tδk)×B1−λ′k) is supported in [0, tδk]× (B1−λ′k \B1−λk).
Obviously, being Yk null on (−1, 0)×B1−λ′k , we have

Xk
(
(−1, 0)× (B1−λ′k \B1−λk)

)
= 〚(−1, 0)× (B1−λ′k \B1−λk)〛,

and we find a set Ek,h, such that

Xk
(
(−1, 0)× (B1−λ′k \B1−λk)

)
= 〚Ek,h ∩ ((−1, 0)× (B1−λ′k \B1−λk))〛.

If we pass to the symmetrized set, arguing as in case (1A), we infer

S(Ek) ∩
(
(−1, 0)× (B1−λ′k \B1−λk)

)
= (−1, 0)× (B1−λ′k \B1−λk).

37p1 is the point closer to {ε} × R2
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Figure 8: We represent the symmetrization of a general closed current in B1. On the left it is visible
that on two parts the curve overlaps itself in such a way that the multiplicity of the associated
current is zero. In the symmetrized set, on the right picture, we have emphasized in bold the
corresponding set J0,2π

k,ε in (7.13).

In other words, (−1, 0)× (B1−λ′k \B1−λk) is contained in S(Ek), and since the support of ∂∗S(Ek)
does not intersect the set (−1, 0)×B1−λ′k , we infer that also

(−1, 0)×B1−λ′k ⊂ S(Ek). (8.32)

We now decompose {ε} ×B1−λk as

{ε} ×B1−λk =
(
({ε} ×B1−λk) ∩ S(Ek)ε

)
∪
(
({ε} ×B1−λk) \ S(Ek)ε

)
,

and one of these two sets on the right-hand side must have positive H2-measure. Assume that
H2(({ε} × B1−λk) \ S(Ek)ε) > 0. Then we will prove that the multiplicity of Vk,ε on this set is 1
(if instead ({ε} ×B1−λk) \ S(Ek)ε has zero measure then it is sufficient to prove that Vk,ε has zero
multiplicity on ({ε} ×B1−λk) ∩ S(Ek)ε; we drop this case being completely similar to the former).

Therefore we now proceed as in case (1), slicing with respect to lines lρ,θ with (ε, ρ, θ) ∈ {ε} ×
({ε} × B1−λk) \ S(Ek)ε. Since the last point p0 = (ε, ρ, θ) does not belong to S(Ek)ε, we are
concerned with the sum in (8.29), and by (8.32) we infer that the number of {pi} involved in the
sum is odd. The conclusion follows as in case (1).

9 Gluing rectifiable sets

In this section we show that, up to adding to ∂S(Ek) a rectifiable set with smallH2-measure, ∂S(Ek)
can be described as a polar graph of a suitable modification of the function ϑk,ε over a subset38 of
the rectangle39 (0, l) × [0, 1] × {0} ⊂ R3, and with Dirichlet boundary conditions independent of
k. In Section 10 we will reduce the estimate of the area of the graph of uk to an estimate for a
non-parametric Plateau problem which in turn will be independent of k.

First we remark that S(Ek) ⊆ Cl(1 − λ′k) and S(D̂k) = ∂S(Ek) in Cl(1 − λ′k), see (5.31). If we

look at S(Ek) as a subset of Cl, we cannot conclude ∂∗S(Ek) = S(D̂k) in Cl, and S(D̂k) is not a
closed current in Cl. For this reason we have to identify the boundary of S(D̂k) in Cl.

38called S
(4)
k,ε, see (9.4).

39In cartesian coordinates.
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Figure 9: The largest (resp. smaller) basis circle has radius 1 (resp. 1 − λ′k). The smallest top

circle has radius 1 − λk. The symbol Wk,ε denotes the restriction of Wk to C
l
ε(1 − λ′k), after

symmetrization. Note that G(3)
ϑk,ε

+ G(3)
−ϑk,ε does not include Σk,ε and Vk,ε; see (7.24).

Recalling Corollary 8.5 and Definition 7.14,

∂
((

G(3)
ϑk,ε

+ G(3)
−ϑk,ε + 〚Σk,ε〛

)
((ε, l)× R2)

)
({ε} × R2)

=∂
(
S(D̂k) ((ε, l)× R2)

)
({ε} × R2) = −S(Hk,ε)− S(L)1 + S(L)2 − 〚Y1Y2〛,

in D2((−∞, l) × R2), where 〚Y1Y2〛 is the integration on Y1Y2 (see (8.16)) oriented from Y1 to Y2.
As a consequence, from (8.18), we obtain

∂
(
G(3)
ϑk,ε

+ G(3)
−ϑk,ε + 〚Σk,ε〛 + Vk,ε

)
({ε} × R2) = 〚{ε} × ∂B1−λ′k〛 in D2((−∞, l)× R2),

where ∂B1−λ′k is counterclockwisely oriented.

9.1 Enforcing boundary conditions at {0} × R2; a modification ϑ̂k,ε of ϑk,ε

Let ak,ε denote the integration over the annulus {ε} × (B1 \B1−λ′k), in such a way that

∂ak,ε = 〚{ε} × ∂B1〛 − 〚{ε} × ∂B1−λ′k〛,

see Fig. 9. Then

|ak,ε| = π(1− (1− λ′k)
2) ≤ 2πλ′k, (9.1)
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and

∂
(
G(3)
ϑk,ε

+ G(3)
−ϑk,ε + 〚Σk,ε〛 + Vk,ε + ak,ε

)
= 〚{ε} × ∂B1〛 in D2((−∞, l)× R2).

Finally, we add to the current G(3)
ϑk,ε

+ G(3)
−ϑk,ε + 〚Σk,ε〛 + Vk,ε + ak,ε the integration over the lateral

boundary of the cylinder (0, ε)×B1, so that the resulting current

G(3)
ϑk,ε

+ G(3)
−ϑk,ε + 〚Σk,ε〛 + Vk,ε + ak,ε + 〚(0, ε)× ∂B1〛 ∈ D2((0, l)× R2), (9.2)

satisfies

∂
(
G(3)
ϑk,ε

+ G(3)
−ϑk,ε + 〚Σk,ε〛 + Vk,ε + ak,ε + 〚(0, ε)× ∂B1〛

)
= 〚{0} × ∂B1〛 in D2((−∞, l)× R2);

in particular it is boundaryless in D2((0, l)× R2).
Now, we want to identify the solid region that we may call the “inside” of the current in (9.2).

Definition 9.1 (The sets Ok,ε). We let

Ok,ε :=
(
S(Ek) ∩ ((ε, l)× R2)

)
∪ ((0, ε]×B1) ⊂ [0, l]× R2. (9.3)

A direct check shows that the current built in (9.2) is the integration over the boundary of 〚Ok,ε〛.
Indeed, by (7.24) and Definition 7.14 we see that the integration over S(Ek) ∩ ((ε, l) × R2) has as

boundary G(3)
ϑk,ε

+G(3)
−ϑk,ε +〚Σk,ε〛 in (ε, l)×R2, whereas (0, ε]×B1 trivially has boundary (0, ε)×∂B1

in (0, ε)×R2. The current Vk,ε + ak,ε represents the boundary of 〚Ok,ε〛 concentrated on the plane
{ε} × R2. In turn we will see (formulas (9.6), (9.7)) that Ok,ε is the polar subgraph of a suitable
modification of ϑk,ε. Thus we are going to introduce the new extra “strip” (recalling the definition

of S
(2)
k,ε in (7.7) and of JQk,ε

in (7.21)):

S
(4)
k,ε : = S

(2)
k,ε ∪ JQk,ε

∪ ((ε, l)× [1− λ′k, 1]× {0})
= {(t, ρ, θ) : t ∈ (ε, l), ρ ∈ [|uk|−(t) ∧ (1− λk), 1], θ = 0},

(9.4)

see Fig. 10 (and also Figs. 2, 6).

Definition 9.2 (The function ϑ̂k,ε). We define ϑ̂k,ε : (0, l)× [0, 1]× {0} → R as

ϑ̂k,ε :=


ϑk,ε in (ε, l)× [0, 1− λ′k]× {0}
0 in (ε, l)× [1− λ′k, 1]× {0}
π in (0, ε]× [0, 1]× {0}.

(9.5)

Accordingly, we extend the currents G(3)
ϑk,ε

and G(3)
−ϑk,ε as follows: As in (7.2) we fix η ∈ (0, π4 ),

and set

SGpol

ϑ̂k,ε
:= {(t, ρ, θ) ∈ (0, l)× [0, 1]× {0} : θ ∈ (−η, ϑ̂k,ε(t, ρ, 0))},

UGpol

−ϑ̂k,ε
:= {(t, ρ, θ) ∈ (0, l)× [0, 1]× {0} : θ ∈ (−ϑ̂k,ε(t, ρ, 0), η)}.

Remark 9.3. By construction,

SGpol

ϑ̂k,ε
∩ {θ ∈ (0, π)} = Ok,ε ∩ {θ ∈ (0, π)}, (9.6)

UGpol

−ϑ̂k,ε
∩ {θ ∈ (−π, 0)} = Ok,ε ∩ {θ ∈ (−π, 0)}, (9.7)

where the set Ok,ε is defined in (9.3).
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Figure 10: The graphs of the functions |uk|+ and |uk|− and the set S
(4)
k,ε in (9.4). See also Fig. 2.

The next currents are constructed to reach the segment (0, l)× {1} × {0}.

Definition 9.4 (The currents G(4)

±ϑ̂k,ε
). We define the currents

G(4)

ϑ̂k,ε
:= (∂〚SGpol

ϑ̂k,ε
〛) {θ ∈ (0, π)}+ 〚Gpol

ϑ̂k,ε

({
ϑ̂k,ε∈{0,π}

}
∩S(4)

k,ε

)〛,
G(4)

−ϑ̂k,ε
:= (∂〚UGpol

−ϑ̂k,ε
〛) {θ ∈ (−π, 0)}+ 〚Gpol

−ϑ̂k,ε
({

ϑ̂k,ε∈{0,π}
}
∩S(4)

k,ε

)〛. (9.8)

In other words, the support of G(4)

ϑ̂k,ε
coincides with the generalized polar graph of ϑ̂k,ε restricted to

S
(4)
k,ε×[0, π]. Notice that also in this case 〚Gpol

−ϑ̂k,ε
({

ϑ̂k,ε∈{0,π}
}
∩S(4)

k,ε

)〛+〚Gpol

ϑ̂k,ε

({
ϑ̂k,ε∈{0,π}

}
∩S(4)

k,ε

)〛 =
0, and

G(4)

ϑ̂k,ε
+ G(4)

−ϑ̂k,ε
= 〚∂∗Ok,ε〛 in (0, l)× R2. (9.9)

Moreover, by (9.8) and (7.9),

|G(4)

ϑ̂k,ε
|+ |G(4)

−ϑ̂k,ε
| = |G(4)

ϑ̂k,ε
+ G(4)

−ϑ̂k,ε
|+ 2H2

({
ϑ̂k,ε ∈ {0, π}

}
∩ S(4)

k,ε

)
. (9.10)

Finally

G(4)

ϑ̂k,ε
=G(3)

ϑk,ε
+ 〚(ε, l)× [1− λ′k, 1]× {0}〛 + 〚Σk,ε ∩ {0 ≤ θ ≤ π}〛 + Vk,ε {0 ≤ θ ≤ π}

+ ak,ε {0 ≤ θ ≤ π}+ 〚((0, ε)× ∂B1) ∩ {0 ≤ θ ≤ π}〛, (9.11)

and

G(4)

−ϑ̂k,ε
=G(3)

−ϑk,ε − 〚(ε, l)× [1− λ′k, 1]× {0}〛 + 〚Σk,ε ∩ {−π ≤ θ ≤ 0}〛 + Vk,ε {−π ≤ θ ≤ 0}

+ ak,ε {−π ≤ θ ≤ 0}+ 〚((0, ε)× ∂B1) ∩ {−π ≤ θ ≤ 0}〛,
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so that
G(4)

ϑ̂k,ε
+ G(4)

−ϑ̂k,ε
= G(3)

ϑk,ε
+ G(3)

−ϑk,ε + 〚Σk,ε〛 + Vk,ε + ak,ε + 〚(0, ε)× ∂B1〛.

Remark 9.5. The function ϑ̂k,ε is defined on the whole domain (0, l) × [0, 1] × {0}, but it might

take values in (0, π) only in S
(2)
k,ε , see Remark 7.5(v). Moreover, referring also to Remark 7.8, we

see that the currents G(4)

ϑ̂k,ε
and G(4)

−ϑ̂k,ε
neglect the generalized polar graph of ϑ̂k,ε (defined in (2.8))

on ((0, l)× [0, 1]× {0}) \ S(4)
k,ε , with the only exception of the “vertical” part 〚(0, ε)× ∂B1〛.

An important step in the proof of Theorem 1.1 is given by the next inequality.

Proposition 9.6 (Area estimate from below in terms of |G(4)

ϑ̂k,ε
|+ |G(4)

−ϑ̂k,ε
|). Let ε ∈ (0, 1) be

fixed as in (4.5), (4.6), and let n ∈ N. Then

|〚Guk〛|Dk×R2 ≥ |G(4)

ϑ̂k,ε
|+ |G(4)

−ϑ̂k,ε
| − πε− C

εn
− ok(1), (9.12)

for an absolute constant C > 0, where the sequence ok(1) ≥ 0 depends on ε and n, and is infinites-
imal as k → +∞.

Proof. By (9.11) we get

|G(4)

ϑ̂k,ε
| ≤|G(3)

ϑk,ε
|+ λ′kl + |〚Σk,ε ∩ {0 < θ < π}〛|+ |Vk,ε {0 < θ < π}|

+ |ak,ε {0 ≤ θ ≤ π}|+ |〚((0, ε)× ∂B1) ∩ {0 ≤ θ ≤ π}〛|.

A similar estimate holds for |G(4)

−ϑ̂k,ε
|, so that

|G(4)

ϑ̂k,ε
|+ |G(4)

−ϑ̂k,ε
| ≤ |G(3)

ϑk,ε
|+ |G(3)

−ϑk,ε |+ |〚Σk,ε〛|+ |Vk,ε|+ |ak,ε|+ |〚(0, ε)× ∂B1〛|+ 2λ′kl.

Coupling the above inequality with (7.22) and (7.23) gives

|G(4)

ϑ̂k,ε
|+ |G(4)

−ϑ̂k,ε
|

≤|G+
k,ε|+ |G−

k,ε|+ |〚Σk,ε〛|+ |Vk,ε|+ |ak,ε|+ |〚(0, ε)× ∂B1〛|+ 2λ′kl +
1

πεn

≤
∫
Dk∩(Ω\Bε)

|J(πλk ◦Ψk)|dx+ |〚Σk,ε〛|+ |Vk,ε|+ |ak,ε|+ |〚(0, ε)× ∂B1〛|

+ 2λ′kl +
1

πεn
+

1

n

≤
∫
Dk∩(Ω\Bε)

|J(πλk ◦Ψk)|dx+ |〚Guk〛|(Dk∩Bε)×R2 + πε+
C

εn
+ ok(1),

where the second inequality follows from (7.12), the last inequality follows from (7.27), (9.1) and
(8.13), and C > 0 is an absolute constant. Here ok(1) is a nonnegative quantity, infinitesimal as
k → +∞, and depending on ε and n. In conclusion

|G(4)

ϑ̂k,ε
|+ |G(4)

−ϑ̂k,ε
| − πε− C

εn
− ok(1)

≤|〚Guk〛|(Dk∩(Ω\Bε))×R2 + |〚Guk〛|(Dk∩Bε)×R2 = |〚Guk〛|Dk×R2 .
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10 Estimate of |G(4)

±ϑ̂k,ε
| and a minimum problem with partial free

boundary

In this section we reduce the analysis of G(4)

±ϑ̂k,ε
in Definition 9.4 to a non-parametric Plateau-type

problem with a sort of free boundary. Precisely, after suitable projections, we will arrive to a
Plateau-type problem on the closed rectangle Rl, where

Rl := (0, l)× (−1, 1)× {0}

in Cartesian coordinates, equivalently Rl = {t ∈ (0, l), ρ ∈ [0, 1), θ = 0}∪{t ∈ (0, l), ρ ∈ [0, 1), θ =
π} in cylindrical coordinates. The rectangle Rl will be often identified with (0, l) × (−1, 1), thus
neglecting the third coordinate. We will impose a Dirichlet boundary condition φ on a part

∂DRl := ({0} × [−1, 1]) ∪ ([0, l]× {−1}) (10.1)

of ∂Rl, while no conditions will be imposed on {l} × (−1, 1); more involved conditions will be
assigned on (0, l)× {1}, see the mutual relations between ψ and h in (10.23) (see also the problem
on the right-hand side of (10.25)).

Then the strategy to estimate from below the relaxed area of the graph of the vortex map u will
be the following (see Section 11): We split

A(uk,Ω) =

∫
Ω\Dk

|M(∇uk)| dx+

∫
Dk

|M(∇uk)| dx.

In order to estimate the lim inf
k→+∞

∫
Ω\Dk

|M(∇uk)| dx we will employ (4.38), whereas, to evaluate

lim inf
k→+∞

∫
Dk

|M(∇uk)| dx we will use (9.12), so that we first want to render the right-hand side

of this latter inequality independent of k. This will be done with the aid of the non-parametric
Plateau-type problem (see also [9]).

Definition 10.1 (The projection p). We let p : Cl ∩ {t ≥ 0} → Rl be the othogonal projection.

Recall that G(4)

±ϑ̂k,ε
are defined in (9.8), that G(4)

ϑ̂k,ε
is the generalized polar graph of ϑ̂k,ε on its

domain of definition (see (9.5)), and that ϑ̂k,ε takes values in [0, π]. We first prove the following
preliminary result:

Lemma 10.2. Let ε ∈ (0, 1) be as in (4.5), (4.6), and k ∈ N. Then there is a negligible set
Ck,ε ⊂ (0, l) such that, for all t ∈ (0, l) \ Ck,ε,

p
(
spt (G(4)

ϑ̂k,ε
)
)
∩ ({t} × R2) (10.2)

is a subinterval of the segment Rl ∩ ({t} × R2) = {t} × [−1, 1] × {0} with one endpoint (t, 1, 0).

Moreover p( spt (G(4)

ϑ̂k,ε
)) = p( spt (G(4)

−ϑ̂k,ε
)).

Proof. The latter assertion follows by symmetry. To prove the former, we argue by slicing. For

a.e. t ∈ (0, l) the set spt (G(4)

ϑ̂k,ε
) ∩ ({t} × R2) coincides with the support of the current (G(4)

ϑ̂k,ε
)t,

see [33, Def. 7.6.2]. First notice that for all t ∈ (0, ε) the conclusion follows by construction40.

40In this set we have ϑk,ε = π and the current (G(4)

ϑ̂k,ε
)t is the integration over the half-circle {t} × ((∂B1) ∩

{θ ∈ (0, π)}), whose projection through p is the whole interval with endpoints (t, 1, 0) and (t, 1, 0) (in cylindrical
coordinates).
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It remains to consider the case t ∈ (ε, l). Recall that the set S
(4)
k,ε in (9.4) has the form

{t ∈ (ε, l), ρ ∈ [|uk|−(t) ∧ (1− λk), 1], θ = 0}.

Therefore, for a.e. t ∈ (ε, l) the slice (G(4)

ϑ̂k,ε
)t is the integration over spt (G(4)

ϑ̂k,ε
) restricted to the

plane {t} ×R2, which in turn is the integration over the generalized polar graph (see (2.8)) of ϑ̂k,ε
restricted to the closed set

{t} × [|uk|−(t) ∧ (1− λk), 1]× [0, π].

Namely

(G(4)

ϑ̂k,ε
)t = 〚 spt (G(4)

ϑ̂k,ε
) ∩

(
{t} × [|uk|−(t) ∧ (1− λk), 1]× [0, π]

)
〛,

so that the support σt of (G(4)

ϑ̂k,ε
)t can also be obtained as

σt =

+∞⋂
h=1

σht , (10.3)

where

σht := spt (G(4)

ϑ̂k,ε
) ∩

(
{t} × [

(
|uk|−(t) ∧ (1− λk)

)
− 1

h
, 1]× [0, π]

)
.

For h ∈ N large enough, let

Uh := {t} ×
(
(|uk|−(t) ∧ (1− λk))−

1

h
, 1
)
× (−1

h
, π +

1

h
),

which is a relatively open set in {t}×B1, and let (G(4)

ϑ̂k,ε
)t be the slice of G(4)

ϑ̂k,ε
on {t}×B1. We have

spt ((G(4)

ϑ̂k,ε
)t Uh) ⊂ σht ⊂ {t} × [

(
|uk|−(t) ∧ (1− λk)

)
− 1

h
, 1]× [0, π]. (10.4)

On the other hand since G(4)

ϑ̂k,ε
({t} × B1) is the boundary of the subgraph of ϑ̂k,ε in {t} × B1, it

is a closed 1-integral current in Uh and in ({t} × (B1 \ B(|uk|−(t)∧(1−λk))− 1
h
), so that the boundary

∂((G(4)

ϑ̂k,ε
)t Uh) in D1({t} × B1) is supported on (∂Uh) ∩ ((∂B1) ∪ ∂B(|uk|−(t)∧(1−λk))− 1

h
). From

(10.4), the fact that ϑ̂k,ε = 0 at (t, 1) and that ϑ̂k,ε is constant on the segment
(
(|uk|−(t) ∧ (1 −

λk))− 1
h , |uk|

−(t) ∧ (1− λk)
)
with value either 0 or π, we deduce that

spt (∂((G(4)

ϑ̂k,ε
)t Uh))

⊂
(
{t} × {(|uk|−(t) ∧ (1− λk))−

1

h
} × {0, π}

)⋃(
{t} × {1} × {0}

)
. (10.5)

Moreover, if we set

P1 := (t, 1, 0) and P h2 :=
(
t, (|uk|−(t) ∧ (1− λk))−

1

h
, ϑ̂k,ε((|uk|−(t) ∧ (1− λk))−

1

h
)
)
,

from (10.5) it follows that

∂((G(4)

ϑ̂k,ε
)t Uh) = δPh

2
− δP1 .
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By decomposition of the integral 1-current (G(4)

ϑ̂k,ε
)t Uh (see [25, Section 4.2.25]), there are at most

countable Lipschitz curves {αhi } such that αh0 connects P h2 to P1, and αhi is closed for i > 0.
We claim that there cannot be closed curves αhi , namely {αhi }i∈N = {αh0}. Indeed, since αh0
connects P1 and P h2 , we see that ({t} × ∂Bρ) ∩ αh0 consists of at least one point for H1-a.e. ρ ∈(
(|uk|−(t)∧ (1− λk))− 1

h , 1
)
. On the other hand, ({t} × ∂Bρ)∩ σht consists of only one point41 for

H1-a.e. ρ ∈
(
(|uk|−(t) ∧ (1 − λk)) − 1

h , 1
)
. So there cannot be other curves αhi otherwise the last

condition will be violated.
From the claim we deduce that the current (G(4)

ϑ̂k,ε
)t Uh is the integration over a simple curve αh0

connecting P h2 and P1, and its support coincides with σht . Now, from (10.3) and the fact that σt is
a segment on {t} ×

(
(|uk|−(t) ∧ (1 − λk)) − 1

h , |uk|
−(t) ∧ (1 − λk)

)
, we conclude that also σt must

be a unique curve, say α0, connecting P1 to P2 := limh→∞ P h2 . By continuity of the projection by
p, α0 is an interval with one endpoint in p(P1) = (t, 1, 0), for a.e. t ∈ (ε, l).

The new coordinates (w1, w2, w3). In what follows, it is convenient to revert the rectangle with
respect to its second coordinate: if (t, ρ, θ) ∈ [0, l]× [0, 1]×(−π, π] are the cylindrical coordinates in
the cylinder Cl exploited so far, we introduce Cartesian coordinates (w1, w2, w3) ∈ [0, l]× [−1, 1]×
[−1, 1] defined as

w1 := t, w2 := −ρ cos θ, w3 := −ρ sin θ, (10.6)

in such a way that the segment {0 ≤ t ≤ l, ρ = 1, θ = 0} coincides with the bottom edge [0, l] ×
{−1} × {0} of the rectangle Rl.

10.1 The two functions hk,ε and ψk,ε

Thanks to Lemma 10.2 we are allowed to give the following

Definition 10.3 (The function hk,ε). Let ε ∈ (0, 1) be as in (4.5), (4.6), and k ∈ N. We define
hk,ε : [0, l] → [−1, 1] as

hk,ε(w1) := H1
(
p
(
spt (G(4)

ϑ̂k,ε
)
)
∩ ({w1} × R2)

)
− 1.

For all w1 ∈ (0, l) for which Lemma 10.2 is valid, we have that 1 + hk,ε(w1) equals the length of

the interval in (10.2). Now the content of Lemma 10.2 is that the p-projection of spt (G(4)

ϑ̂k,ε
) on Rl

is of the form

p
(
spt (G(4)

ϑ̂k,ε
)
)
= SGhk,ε := {(w1, w2) ∈ Rl : w1 ∈ (0, l), w2 ∈ (−1, hk,ε(w1))}, (10.7)

up to a set of zero H2-measure. The function hk,ε is built in such a way that (w1,−1) and

(w1, hk,ε(w1)) are the endopoints of the interval p( spt (G(4)

ϑ̂k,ε
)) ∩ ({w1} × R2) for almost every

w1 ∈ (0, l). Observe that
hk,ε ≥ −1 + λ′k in (ε, l),

and
hk,ε = 1 in (0, ε).

41Because σh
t is the support of a polar graph; the points where this intersection is not a singleton coincide with

the values of ρ where ϑ̂k,ε has a jump.
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Indeed, from Definition 9.2, equation (9.4) and Definition 9.4, we see that the set
(
(0, l) × [1 −

λ′k, 1]× {0}
)
∪
(
(0, ε)× [−1, 1]× {0}

)
is contained in p( spt (G(4)

ϑ̂k,ε
)).

We have built Ok,ε in (9.3) as the set enclosed between G(4)

−ϑ̂k,ε
and G(4)

ϑ̂k,ε
, see formula (9.9).

We now perform a (classical) Steiner symmetrization42 of the set Ok,ε with respect to the plane
{w3 = 0}. We denote by Scl(Ok,ε) the symmetrized set.

Remark 10.4. We emphasize that the set Ok,ε in (0, ε)×R2 is exactly (0, ε)×B1, and is already
symmetric with respect to the plane containing Rl. For this reason Ok,ε does not change (in that
region) after Steiner symmetrization,

Ok,ε ∩ {w1 ∈ (0, ε)} = Scl(Ok,ε) ∩ {w1 ∈ (0, ε)}. (10.8)

Since the perimeter does not increase when symmetrizing, from (9.9) we conclude

|G(4)

ϑ̂k,ε
+ G(4)

−ϑ̂k,ε
| ≥ H2(∂∗Scl(Ok,ε) ∩ ((0, l)× R2)). (10.9)

Now, using the sets Ok,ε, we can define the functions ψk,ε which, together with the functions hk,ε
given in Definition 10.3, will allow to express the singular part of the relaxed area using a Cartesian
Plateau-type problem with partial free boundary (see Remark 10.10).

Definition 10.5 (The function ψk,ε). We introduce the function ψk,ε : Rl → [0,+∞) as

ψk,ε(w1, w2) :=
1

2
H1({w3 : (w1, w2, w3) ∈ Ok,ε}), (w1, w2) ∈ Rl. (10.10)

We stress that the set where ψk,ε > 0 is contained, up to H2-negligible sets, in the region
SGhk,ε defined in (10.7). Notice also that ψk,ε may take the value 0 in SGhk,ε on a set of positive
H2-measure.

Remark 10.6. (i) By definition of classical Steiner symmetrization,

Scl(Ok,ε) = {w = (w1, w2, w3) ∈ Rl × R : w3 ∈ (−ψk,ε(w1, w2), ψk,ε(w1, w2))}
= {w = (w1, w2, w3) ∈ SGhk,ε × R : w3 ∈ (−ψk,ε(w1, w2), ψk,ε(w1, w2))},

up to Lebesgue-negligible sets, the second equality following from the fact that ψk,ε = 0
almost everywhere in Rl \ SGhk,ε ;

(ii) since Ok,ε has finite perimeter, it follows that ψk,ε ∈ BV (Rl);

(iii) since Ok,ε ([0, ε) × R2) = Cl ([0, ε) × R2) and Ok,ε ([ε, l) × R2) is contained in Cl(1 −
λ′k) ([ε, l)×R2) (as a consequence of (9.5)), it follows that ψk,ε has null trace on the segments
(0, l)× {−1} and (0, l)× {1}.

We can split ∂∗Scl(Ok,ε) as

∂∗Scl(Ok,ε) = ((∂∗Scl(Ok,ε))∩{w3 > 0})
⋃

((∂∗Scl(Ok,ε))∩{w3 < 0}) =: (∂∗Scl(Ok,ε))+∪(∂∗Scl(Ok,ε))−

(10.11)

42Despite Ok,ε is obtained by cylindrical symmetrization, it still can have “holes” (see Fig. 8 for a slice), that
disappear when further performing the Steiner symmetrization.
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up to a set of H2-measure zero, in such a way that

(∂∗Scl(Ok,ε))+ = (∂∗SGψk,ε
)∩

(
Rl× (0,+∞)

)
, (∂∗Scl(Ok,ε))− = (∂∗UG−ψk,ε

)∩
(
Rl× (−∞, 0)

)
,

(10.12)
where SGψk,ε

and UG−ψk,ε
are, respectively, the (standard) generalized subgraph and epigraph of

±ψk,ε in Rl × R. Notice that, since ψk,ε ≥ 0,

(∂∗SGψk,ε
) ∩ (Rl × [0,+∞))

= (∂∗Scl(Ok,ε))+ ∪ {(w1, w2, 0) ∈ SGhk,ε : ψk,ε = 0} ∪ (Rl \ SGhk,ε),
(∂∗UG−ψk,ε

) ∩ (Rl × (−∞, 0])

= (∂∗Scl(Ok,ε))− ∪ {(w1, w2, 0) ∈ SGhk,ε : ψk,ε = 0} ∪ (Rl \ SGhk,ε),

(10.13)

up to H2-negligible sets.
We are ready to prove the following:

Lemma 10.7 (Lower bound for |G(4)

ϑ̂k,ε
|+ |G(4)

−ϑ̂k,ε
|). We have

|G(4)

ϑ̂k,ε
|+ |G(4)

−ϑ̂k,ε
| ≥H2

(
(∂∗SGψk,ε

) ∩ (Rl × [0,+∞)
)
+H2

(
(∂∗UG−ψk,ε

) ∩ (Rl × (−∞, 0])
)

− 2H2(Rl \ SGhk,ε).
(10.14)

Moreover, H2
(
(∂∗SGψk,ε

) ∩ (Rl × [0,+∞))
)
= H2

(
(∂∗UG−ψk,ε

) ∩ (Rl × (−∞, 0])
)
.

Proof. The last assertion follows by symmetry. Let us prove the former: By (10.13) we have

H2(∂∗SGψk,ε
∩ (Rl × [0,+∞))) =H2

(
(∂∗Scl(Ok,ε))+

)
+H2({(w1, w2) ∈ SGhk,ε : ψk,ε = 0})

+H2(Rl \ SGhk,ε),
H2(∂∗UG−ψk,ε

∩ (Rl × (−∞, 0])) =H2
(
(∂∗Scl(Ok,ε))−

)
+H2({(w1, w2) ∈ SGhk,ε : ψk,ε = 0})

+H2(Rl \ SGhk,ε).

Taking the sum of these two expressions and using (10.9), (10.11), we obtain

H2(∂∗SGψk,ε
∩ (Rl × [0,+∞))) +H2(∂∗UG−ψk,ε

∩ (Rl × (−∞, 0]))

≤ |G(4)

ϑ̂k,ε
+ G(4)

−ϑ̂k,ε
|+ 2H2({(w1, w2) ∈ SGhk,ε : ψk,ε = 0}) + 2H2(Rl \ SGhk,ε).

Recalling (9.4), we now claim that, up to H2-negligible sets,

{(w1, w2) ∈ SGhk,ε : ψk,ε(w1, w2) = 0} ⊂
{
ϑ̂k,ε = 0

}
∩ S(4)

k,ε , (10.15)

see Fig. 8. From the claim it follows that

H2({(w1, w2) ∈ SGhk,ε : ψk,ε = 0}) ≤ H2
({
ϑ̂k,ε ∈ {0, π}

}
∩ S(4)

k,ε

)
,

and hence by (9.10) we conclude

H2(∂∗SGψk,ε
∩ (Rl × [0,+∞))) +H2(∂∗UG−ψk,ε

∩ (Rl × (−∞, 0]))

≤ |G(4)

ϑ̂k,ε
|+ |G(4)

−ϑ̂k,ε
|+ 2H2(Rl \ SGhk,ε),
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that is (10.14). It remains to show (10.15). As usual, we argue by slicing; hence for almost all
w1 ∈ (0, l) we will show that (10.15) holds (up to H1-negligible sets). Notice that both the left
and right-hand sides of (10.15) are empty for w1 < ε, so we assume w1 > ε. Therefore, fix
(w̃1, w̃2) ∈ SGhk,ε (with w̃1 > ε) such that ψk,ε(w̃1, w̃2) = 0 and assume, by contradiction, that

ϑ̂k,ε(w̃1, w̃2) > 0. In a first step we will suppose w̃2 < 0. We might further assume that w̃2 is a

Lebesgue point for the function ϑ̂k,ε(w̃1, ·). Hence in any left-neighbourhood of this point ϑ̂k,ε is
strictly positive on a set of positive meausure, i.e., we can find positive numbers δ1, δ2 such that
for all δ ∈ (0, δ1), there exists a set B ⊂ (w̃2 − δ, w̃2), of positive measure such that

ϑ̂k,ε(w̃1, w) > δ2 > 0 ∀w ∈ B. (10.16)

If πpol0 is the projection in Definition (7.5), since w̃2 < 0 for δ3 > 0 small enough the segment
I := {(w̃1, w̃2, w3) : w3 ∈ (0, δ3)} satisfies

I0 := πpol0 (I) ⊂ {(w̃1, w2, 0) : w2 ∈ (w̃2 − δ2, w̃2)}.

We have that πpol0 : I → I0 is a homeomorphism. Now, if ψk,ε(w̃1, w̃2) = 0 the segment I cannot

intersect the subgraph of ϑ̂k,ε (on a set of positive H1-measure), and thus

ϑ̂k,ε(w̃1, w2) ≤ θ
(
(πpol0 |I0)

−1(w̃1, w2, 0)
)

for H1-a.e. (w̃1, w2, 0) ∈ I0, (10.17)

where θ represents the usual angular coordinate. Since θ
(
(πpol0 |I0)

−1(w̃1, w2, 0)
)
is infinitesimal as

w2 → w̃−
2 , condition (10.17) contradicts (10.16).

Let us now treat the case w̃2 > 0. This is much simpler to deal with, up to noticing that ϑ̂k,ε

is defined on S
(4)
k,ε ⊂ {(w1, w2, w3) : w2 ∈ [−1, 0]}. The fact that ψk,ε(w̃1, w̃2) = 0 means that the

line (w̃1, w̃2) × R does not intersect Ok,ε on a set of positive H1-measure but this contradicts the
fact that (w̃1, w̃2) ∈ SGhk,ε . Indeed since (w̃1, w̃2) ∈ SGhk,ε hence there exists w2 > w̃2 such that
ψk,ε(w̃1, w2) > 0. Let A := Ok,ε ∩ (w̃1, w2) × R) then a suitable rotation of A around the axis of

the cylinder shall meet (w̃1, w̃2)×R on a set Ã of positive H1-measure (note that Ã ⊂ Ok,ε), which
contradicts ψk,ε(w̃1, w̃2) = 0.

Remark 10.8. By (10.8), (10.10) and (9.3), we deduce

the trace of ψk,ε on Rl ∩ {w1 = 0} is
√
1− w2

2, for w2 ∈ [−1, 1]. (10.18)

Moreover, by construction and by Remark 10.6 (iii),

ψk,ε(w1,−1) = 0 and ψk,ε(w1, 1) = 0, w1 ∈ (0, l). (10.19)

Remark 10.9. We can write (see [29])

H2
(
(∂∗SGψk,ε

) ∩ (Rl × [0,∞))
)
= A(ψk,ε, Rl), (10.20)

where

A(ψk,ε, Rl) =

∫
Rl

√
1 + |∇ψk,ε|2 dx+ |Dsψk,ε|(Rl)

is the area of the graph of the scalar BV -function ψk,ε in Rl. Moreover, by (10.19), it follows
|Dsψk,ε|(Rl) = |Dsψk,ε|

(
Rl \ ({w1 = 0} ∪ {w1 = l})

)
and hence

A(ψk,ε, Rl) = A
(
ψk,ε, Rl \ ({w1 = 0} ∪ {w1 = l})

)
.

Recalling the expression (10.1) of ∂DRl, define φ : ∂DRl → [0, 1] as

φ(w1, w2) :=

{√
1− w2

2 if (w1, w2) ∈ {0} × [−1, 1],

0 if (w1, w2) ∈ (0, l)× {−1}.
(10.21)
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10.2 A minimum problem with partial free boundary

For convenience, we recall the following definitions, introduced in (10.22), (10.23): for h ∈ L∞([0, l], [−1, 1])
and ψ ∈ BV(Rl; [0, 1]) we define

Fl(h, ψ) := A(ψ,Rl)−H2(Rl \ SGh) +
∫
∂DRl

|ψ − φ| dH1 +

∫
(0,l)×{1}

|ψ| dH1. (10.22)

and

Xl := {(h, ψ) : h ∈ L∞([0, l], [−1, 1]), ψ ∈ BV(Rl, [0, 1]), ψ = 0 in Rl \ SGh}. (10.23)

Remark 10.10. (i) The Borel function hk,ε : [0, l] → [−1, 1] satisfies hk,ε = 1 in [0, ε), and
ψk,ε ∈ BV ([0, l]× [−1, 1]) is such that:

(i1) ψk,ε = 0 almost everywhere in Rl \ SGhk,ε ;
(i2) ψk,ε(w1, w2) =

√
1− w2

2 for (w1, w2) ∈ (0, ε)× [−1, 1];

(i3) ψk,ε(·,−1) = 0 in [0, l].

In particular
(hk,ε, ψk,ε) ∈ Xl.

(ii) if (h, ψ) ∈ Xl, and if h is smaller than 1 almost everywhere on (0, l) then the last addendum
on the right-hand side of (10.22) vanishes.

(iii) Thanks to (10.18) and (10.19), it follows from Remark 10.9 that

H2
(
(∂∗SGψk,ε

) ∩ (Rl × [0,+∞)
)
−H2(Rl \ SGhk,ε)

=A(ψk,ε, Rl \
(
{w1 = 0} ∪ {w1 = l}

)
)−H2(Rl \ SGhk,ε) = Fl(hk,ε, ψk,ε).

As a consequence, from Lemma 10.7 we have

|G(4)

ϑ̂k,ε
|+ |G(4)

−ϑ̂k,ε
| ≥ 2Fl(hk,ε, ψk,ε). (10.24)

Notice that in minimizing Fl we have a free boundary condition on the edge {l} × [−1, 1]. By
Remark 10.10 (i) and inequality (10.24) we have

|G(4)

ϑ̂k,ε
|+ |G(4)

−ϑ̂k,ε
| ≥ 2 inf

(h,ψ)∈Xl

Fl(h, ψ), (10.25)

which leads to the investigation of the minimum problem on the right-hand side performed in [9].
Let us rewrite the functional Fl in a convenient way. Let (h, ψ) ∈ Xl, and let Gh = {(w1, h(w1)) :

w1 ∈ (0, l)} ⊂ Rl be the graph of h. We have, using (10.22),

Fl(h, ψ) = A(ψ, SGh) +

∫
Gh\{h=−1}

|ψ| dH1 +

∫
∂DRl

|ψ − φ| dH1, (10.26)

where, in the integral over Gh, we consider the trace of ψ SGh on Gh. Combining (10.25) with
(9.12), we readily infer:

Corollary 10.11. Let ε ∈ (0, 1) and n ∈ N. Then for any k ∈ N we have

|〚Guk〛|Dk×R2 ≥ 2 inf
(h,ψ)∈Xl

Fl(h, ψ)− πε− C

εn
− ok(1), (10.27)

for an absolute constant C > 0, and where the sequence ok(1) depends on ε and n and is infinitesimal
as k → +∞.
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11 Conclusion of the proof of Theorem 1.1

We are finally in the position to conclude the proof of Theorem 1.1. We write

A(uk,Ω) = A(uk,Ω \Dk) +A(uk, Dk) =

∫
Ω\Dk

|M(∇uk)| dx+

∫
Dk

|M(∇uk)| dx.

Therefore

A(u,Ω) ≥ lim inf
k→+∞

∫
Ω\Dk

|M(∇uk)| dx+ lim inf
k→+∞

∫
Dk

|M(∇uk)| dx. (11.1)

Given ε ∈ (0, l) satisfying (4.5) and (4.6), and given n ∈ N, from (4.38) it follows

lim inf
k→+∞

∫
Ω\Dk

|M(∇uk)| dx ≥
∫
Ω\Bε

|M(∇u)| dx− 1

n
− 2

εn
. (11.2)

Furthermore, from (10.27) we have∫
Dk

|M(∇uk)| dx = |〚Guk〛|Dk×R2 ≥ 2 inf
(h,ψ)∈Xl

Fl(h, ψ)− πε− C

εn
− ok(1). (11.3)

We can pass to the liminf as k → +∞ in the above expression, to obtain

lim inf
k→+∞

∫
Dk

|M(∇uk)| dx ≥ 2 inf
(h,ψ)∈Xl

Fl(h, ψ)− πε− C

εn
. (11.4)

From (11.1), (11.2) and (11.4) we obtain

A(u,Ω) ≥
∫
Ω\Bε

|M(∇u)| dx+ 2 inf
(ψ,h)∈Xl

Fl(ψ, h)− πε− C + 2

εn
− 1

n
, (11.5)

for all n ∈ N and ε ∈ (0, l). Letting n → +∞ and then ε → 0+ (keeping the validity of (4.5) and
(4.6)), by the dominated convergence theorem (since Ω \ Bε → Ω as ε→ 0+) we get

A(u,Ω) ≥ lim inf
ε→0+

(∫
Ω\Bε

|M(∇u)| dx+ 2 inf
(h,ψ)∈Xl

Fl(h, ψ)− πε
)

=

∫
Ω
|M(∇u)| dx+ 2 inf

(h,ψ)∈Xl

Fl(h, ψ).

This concludes the proof.
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[33] G. Krantz and R. Parks, “Geometric Integration Theory”, Cornerstones, Birkhäuser Boston,
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