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Abstract

We compute an upper bound for the value of the L1-relaxed area of the graph of the vortex
map u : Bl(0) ⊂ R2 → R2, u(x) := x/|x|, x ̸= 0, for all values of l > 0. Together with a
previously proven lower bound, this upper bound turns out to be optimal. Interestingly, for
the radius l in a certain range, in particular l not too large, a Plateau-type problem, having as
solution a sort of catenoid constrained to contain a segment, has to be solved.
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1 Introduction

Determining the domain and the expression of the relaxed area functional of graphs of nonsmooth
maps in codimension greater than 1 is a challenging problem whose solution is far from being
reached. Let Ω ⊂ Rn be a bounded open set and let v : Ω → RN be a map of class C1; the graph
area of v over Ω is given by

A(v,Ω) =

∫
Ω
|M(∇v)| dx, (1.1)

where M(∇v) is the vector whose entries are the determinants of the minors of the gradient ∇v of
v of all orders1 k, 0 ≤ k ≤ min{n,N}. In order to extend this functional out of C1(Ω,RN ), one is
led to define, for any v ∈ L1(Ω,RN ),

A(v,Ω) := inf
{
lim inf
k→+∞

A(vk,Ω)
}
, (1.2)

which is called the (sequential) relaxed area functional. The infimum appearing in 1.2 is computed
among all possible sequences of maps vk ∈ C1(Ω,RN ) tending to v in L1(Ω,RN ). The results
of Acerbi and Dal Maso [1] show that A(·,Ω) extends A(·,Ω) and is L1-lower semicontinuous.
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1By convention, the determinant of order 0 is 1.
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This procedure of relaxation, besides extending the notion of graph’s area to non-smooth maps, is
needed also because A(·,Ω) is not L1-lower semicontinuous2, in contrast with similar polyconvex
functionals that enjoy a growth condition of the form F (u) ≥ C|M(∇u)|p for some C > 0, and
suitable p > 1 (see, e.g., [21, 28,37]).

When N = 1 it is possible to characterize the domain of A(·,Ω) and its expression [22]: A(v,Ω)
is finite if and only if v ∈ BV (Ω), in which case

A(v,Ω) =

∫
Ω

√
1 + |∇v|2dx+ |Dsv|(Ω), (1.3)

∇v and Dsv representing the absolutely continuous and singular parts of the distributional gradient
Dv of v. Formula (1.3) gives a classical example of non-parametric variational integral. This turns
out to be a measure when considered as a function of Ω (and the map u being fixed [31]), and has
several applications, as for instance in capillarity problems [27] and in the analysis of the Cartesian
Plateau problem [30]. The higher codimension case, namelyN > 1, is much more involved and, once
again, has as main motivation the study of the Cartesian Plateau problem in higher codimension;
from a theoretical point of view, it is of indipendent interest in Calculus of Variations questions
involving nonconvex integrands with nonstandard growth (see, e.g., [3, 21,29]).

In this paper we restrict our attention to the first non-standard case, namely n = N = 2. For
a map v ∈ C1(Ω,R2) and Ω ⊂⊂ R2, the quantity A(v,Ω) coincides with the area of the graph
Gv := {(x, y) ∈ Ω × R2 : y = v(x)} of v seen as a Cartesian surface of codimension 2 in Ω × R2,
and is given by

A(v,Ω) =

∫
Ω

√
1 + |∇v(x1, x2)|2 + |Jv(x1, x2)|2 dx1dx2.

Here ∇v is the gradient of v, a 2× 2 matrix, |∇v|2 is the sum of the squares of all elements of ∇v,
and Jv is the Jacobian determinant of v, i.e., the determinant of ∇v. It is worth to point out once
more a couple of relevant difficulties arising when the codimension is greater than 1: the functional
A(·,Ω) is no longer convex, but just polyconvex; in addition it has a sort of unilateral linear growth,
in the sense that it is bounded below, but not necessarily above, by the total variation of v. A
characterization of the domain of A(·,Ω) and of its expression is, at the moment, not available.
Specifically, it is only known that the domain of A(·,Ω) is a proper subset of BV (Ω,R2), and that
integral representation formulas such as (1.3) (on the domain of A(·,Ω)) are not possible. This is
due to the additional difficulty that in general, for a fixed map v, the set function A ⊆ Ω 7→ A(v,A)
may be not subadditive and,in such a case, it cannot be a measure (as opposite to what happens
in codimension 1 for a large class of non-parametric variational integrals [31]). This interesting
phenomenon was conjectured by De Giorgi [23] for the triple junction map uT : Ω = Bl(0) → R2,
and proved in [1], where the authors exhibited three subsets Ω1,Ω2,Ω3 of the open disk Bl(0) of
radius l centered at 0, such that

Ω1 ⊂ Ω2 ∪ Ω3 and A(uT ,Ω1) > A(uT ,Ω2) +A(uT ,Ω3). (1.4)

The triple junction map uT ∈ BV (Ω,R2) takes only three values α, β, γ ∈ R2, the vertices of an
equilateral triangle, in three circular 120o-degree sectors of Ω meeting at 0. The same authors
show that the non-locality property (1.4) holds also for the Sobolev map u(x) = x

|x| , called here the

vortex map, where Ω is the open ball Bl(0) of radius l centered at the origin, the singular point,

2When n = N = 2, there are sequences (vk) ⊂ W 1,p(Ω,R2), with p ∈ [1, 2), weakly converging in W 1,p(Ω,R2) to a
smooth map v for which A(v,Ω) > lim supk→+∞ A(vk,Ω), where A(vk,Ω) is defined in the same form as for C1-maps
in (1.1), with the determinant of ∇vk intended in the almost everywhere pointwise sense; see [4, Counterexample 7.4]
and [1]. This counterexample must be slightly modified, considering uk(x) = kx+λ(x/∥x∥∞−x) for x ∈ [−1/k, 1/k],
with λ > 0 satisfying (1 + λ2)/2 >

√
1 + λ2, in order to get the strict inequality above.
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and n = N ≥ 3. For these two maps uT and u much effort has been done to understand the exact
value of the area functional; the corresponding geometric problem stands in finding the optimal
way, in terms of area, to “fill the holes” of the graph of uT and u (two non-smooth 2-dimensional
sets of codimension two) with limits of sequences of smooth two-dimensional graphs. In [1] it is
proved that both uT and u have finite relaxed area, but only lower and upper bounds were available
for uT , whereas the sharp estimate for u is provided only for l large enough. For the triple junction
map uT an improvement is obtained in [11], where it is exhibited a sequence (uk) of Lipschitz maps
uk : Bl(0) → R2 converging to u in L1(Ω,R2), such that

lim
k→+∞

A(uk,Bl(0)) = |GuT |+ 3ml,

where |GuT | is the area of the graph of uT out of the jump set, and ml is the area of an area-
minimizing surface, solution of a Plateau-type problem in R3. Roughly speaking, three entangled
area-minimizing surfaces with area ml (each sitting in a copy of R3 ⊂ R4, the three R3’s being
mutually nonparallel) are needed in Bl(0) × R2 to “fill the holes” left by the graph GuT of uT ,
which is not boundaryless (i.e., the boundary as a current is nonzero). The optimality of (uk) was
also conjectured in [11], and proven subsequently in [40], where a crucial tool is a symmetrization
technique for boudaryless integral currents.

In the present paper we instead focus on the vortex map u in n = 2 dimensions, and provide the
optimal upper bound for A(u,Bl(0)), for all l > 0. The vortex map, that is

u(x) :=
x

|x|
, x ∈ Ω \ {0}, Ω = Bl(0) ⊂ R2, (1.5)

belongs to W 1,p(Ω,R2) for all p ∈ [1, 2), but not to W 1,2(Ω,R2)), and its image is the one-
dimensional unit circle S1 ⊂ R2, so that Ju(x) = det(∇u(x)) = 0 for all x ∈ Ω \ {0}. In [1, Lemma
5.2], the authors show3 that, for l large enough,

A(u,Bl(0)) = |Gu|+ π =

∫
Bl(0)

√
1 + |∇u|2dx+ π. (1.6)

With the aid of an example, they also show that A(u,Bl(0)) must be strictly smaller than the right-
hand side of (1.6), since there is a sequence of C1-maps approximating u and having, asymptotically,
a lower value of A(·,Ω). We anticipate here that, when l is small, the above mentioned sequence
is not optimal, and the construction of a recovery sequence for A(u,Bl) is much more involved
and requires to solve a sort of Plateau-type problem in R3 with singular boundary, with a part of
multiplicity 2. This has been studied in [9], where with a reflection argument with respect to a
plane, it can be seen as a non-parametric Plateau-type problem with a partial free boundary; in the
special setting of [9] it is possible to show that, excluding a singular configuration (corresponding
to l large), the solution is non-parametric and attains the zero boundary condition on the free part
(we refer to [10] for a more general setting where similar results are obtained).

To state our main result we need to fix some notation. For l > 0 we denote R2l := (0, 2l)×(−1, 1)
and let ∂DR2l := ({0, 2l} × [−1, 1]) ∪ ((0, 2l) × {−1}) be what we call the Dirichlet boundary of
R2l. Define φ : ∂DR2l → [0, 1] as φ(t, s) :=

√
1− s2 if (t, s) ∈ {0, 2l} × [−1, 1] and φ(t, s) := 0 if

(t, s) ∈ (0, 2l)× {−1}. Let

H̃2l := {h : [0, 2l] → [−1, 1], h continuous, h(0) = h(2l) = 1},
XD,φ := {ψ ∈W 1,1(R2l) : ψ = φ on ∂DR2l},

and for any h ∈ H̃2l set Gh := {(t, s) ∈ R2l : s = h(t)} and SGh := {(t, s) ∈ R2l : s ≤ h(t)}. The
main result of the present paper (see Theorem 3.4) reads as follows:

3In [1] the proof of (1.6) is given also for N = n ≥ 2, where now π in (1.6) is replaced by ωn.
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Theorem 1.1. Let N = n = 2, l > 0 and u : Bl(0) → R2 be the vortex map defined in (1.5). Then

A(u,Bl(0)) ≤
∫
Bl(0)

√
1 + |∇u|2dx+ inf{A(ψ, SGh) : (h, ψ) ∈ H̃2l ×XD,φ, ψ = 0 on Gh}. (1.7)

We emphasize that, for l large, the infimum on the right-hand side is π. Further, thanks to the
opposite inequality proved in [8], equality holds in Theorem 1.1, for each value of l > 0.

For l small, the fact that the sequence leading to the value in (1.6) is not optimal is strongly
related with the choice of the L1-convergence in the definition (1.2) of A(·,Ω). Even if this seems the
most natural notion of convergence for the approximating maps vk of u, one can also opts to choose
stronger topologies. Some results are known when one chooses, instead of the L1-convergence, the
strict convergence in BV (Ω;R2) (see [5, 6, 16, 17, 38]). With this convergence, it has been shown
in [5] that the relaxed area of the vortex map u always equals the right-hand side of (1.6).

In order to give an idea of how the value π in (1.6) pops up (and then how it appears in (1.7)
for l large), it is convenient to introduce the tool of Cartesian currents. One can regard the graphs
Gv = {(x, y) ∈ Ω× R2 : y = v(x)} of a C1 map v : Ω → R2 as an integer multiplicity 2-current in
Ω × R2. It is seen that a sequence (Guk) with uk approaching u and with supkA(uk,Ω) < +∞,
converges4, up to subsequences, to a Cartesian current T which splits as T = Gu + S, with S a
vertical integral current such that ∂S = −∂Gu. A direct computation shows that

∂Gu = −δ0 × ∂〚B1〛

(see [29, Section 3.2.2]), so that the problem of determining the value of A(u,Ω) is somehow related
to the computation of the mass of a mass-minimizing vertical current Smin ∈ D2(Ω×R2) satisfying

∂Smin = δ0 × ∂〚B1〛 in D1(Ω× R2). (1.8)

In some cases, and in particular for l large, these two problems are related, and it turns out that
Smin = δ0 × 〚B1〛, whose mass is π. However Smin ̸= δ0 × 〚B1〛 for l small. Moreover, the two
problems of determining Smin and the value of the relaxed area functional are, unfortunately, not
related in general. This is mainly due to the following two obstructions:

• we have to guarantee that the current Gu + Smin is obtained as a limit of smooth graphs,
that is not easy to establish, since not all Cartesian currents can be obtained as such limits
(see [29, Section 4.2.2]);

• even if Gu+Smin is limit of graphs Guk of smooth maps uk, nothing ensures that A(uk,Ω) →
A(u,Ω), due to possible cancellations of the currents Guk that, in the limit, might overlap
with opposite orientation.

Actually, in many cases, as in the one considered in this paper, for an optimal sequence (uk)
realizing the value of A(u,Ω), it holds

Guk ⇀ Gu + Sopt ̸= Gu + Smin, (1.9)

and the limit vertical part Sopt satisfies |Sopt| > |Smin|. For instance, if l is small, it is possible to
construct a sequence (ûk) approaching u which is not a recovery sequence for A(u,Ω), but whose
limit vertical part Smin has mass strictly smaller than the mass of Sopt (see Section 4.2). In this
case, a suitable projection of Smin in R3 is half of a classical area-minimizing catenoid between two
unit circles at distance 2l from each other.

4This is a consequence of Federer-Fleming closure theorem.
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An additional source of difficulties in the computation of A(u,Ω) is due to an example [40] valid
for the triple junction map uT , and showing that the equality

A(uT ,Ω) = |GuT |+ 3ml (1.10)

holds only under some additional requirements; for instance if the triple junction point is exactly
located at the origin 0 and the domain is a disc Ω = Bl(0) around it. In particular, for different
domains, (1.10) is no longer valid, and Sopt is a vertical current whose support projection on Ω is a
set connecting the triple point with ∂Ω, and which does not coincide with (neither is a subset of)
the jump set of uT (see [40, Example in Section 6] and also [7] for other non-symmetric settings).

A similar behaviour of the vertical part Sopt holds for u: when l is small, the projection of Sopt
on Bl(0) concentrates over a radius connecting 0 to ∂Bl(0). However, if the domain Ω loses its
symmetry, almost nothing is known about Sopt.

This kind of phenomena have been observed also in other cases, as in [12, 13] where BV -maps
u : Ω → R2 with a prescribed discontinuity on a curve (jump set) are considered. The creation of
such “phantom bridges” between the singularities of the map u and the boundary of the domain
is very specific of the choice of the L1-convergence in the computation of A(·,Ω). As already said,
other choices are possible, giving rise to different relaxed functionals5 [12, 13].

The nonlocality and the uncontrollability of Sopt are more and more evident if we try to generalize
(1.10) dropping the assumption that the range of uT consists of the vertices of an equilateral triangle.
If we assume that uT takes values in {α, β, γ}, three generic (not aligned) points in R2 then, also
if the domain of uT is symmetric, there is no sharp computation of A(uT ,Ω). In this case, the
analysis is related to an entangled Plateau problem, where three area-minimizing discs have as
partial free boundary three curves connecting the couples of points in {α, β, γ}, respectively, and
where these three curves are forced to overlap. Some partial results had been obtained in [7],
where the authors find an upper bound for A(uT ,Ω). However the question of finding the value
of A(·,Ω) for this piecewise constant maps seems to be difficult. In the case that u is piecewise
costant and takes three values vertices of an equilateral triangle, as for the triple junction map but
in general domains, some upper bounds have been provided [41]. The singular contribution of the
area is related with the flat norm of the distributional Jacobian of such maps [24]. Similarly, when
u ∈ W 1,1(Ω;S1) is circle-valued, it is possible to show that the singular contribution of the area is
bounded above by (a suitable multiple) of the flat norm of det(∇u) (see [14]).

Let us go back to the minimum problem

inf{A(ψ, SGh) : (h, ψ) ∈ H̃2l ×XD,φ, ψ = 0 on Gh}. (1.11)

Following [9], this problem has many formulations and it is proved that the infimum in (1.11)
coincides with

min
{
F2l(h, ψ) : (h, ψ) ∈ Xconv

2l

}
. (1.12)

Here we refer to Section 3 for the notation and definition of F2l. Also, a solution to this minimum
problem has been proven to exist and satisfies suitable regularity property if l ≤ l0, for some
threshold l0 > 0 (see Theorem 3.2). If instead l > l0, the unique solution to (1.12) is given by the
two constants maps h ≡ 1 and ψ ≡ 0, corresponding to the case where F2l measures the area of
two half-discs of radius 1, namely providing the value π appearing in (1.6).

5Relaxing A(·,Ω) in stronger topologies τ is possible (see, e.g., [5,38]); however, this would make more difficult to
prove, eventually, τ -coercivity of A(·,Ω). In addition, it could destroy the interesting nonlocal phenomena related to
the appearence of certain nonstandard Plateau problems, which are the focus of this paper.
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We do not know the explicit value of the threshold l0. However, it is clear that l0 >
1
2 (see [9]).

Furthermore, let the surface Σ+ be the graph of a regular solution ψ when l < l0. Doubling the
surface Σ+ by considering its symmetric with respect to the plane containing R2l, and then taking
the union Σ of these two area-minimizing surfaces, it turns out that Σ solves a non-standard Plateau
problem, spanning a nonsimple curve which shows self-intersections (this is the union of Γ with
its symmetric with respect to R2l, the obtained curve is the union of two circles connected by a
segment [9]). Again, the obtained area-minimizing surface is a sort of catenoid forced to contain a
segment for l small, and two distinct discs spanning the two circles for l large. The restriction of
Σ to the set B1 × [0, l] is a suitable projection in R3 of the aforementioned vertical current Sopt.

In order to prove our main result, the analysis consists in a careful definition of a recovery
sequence (uk) converging to the vortex map, and thus such that A(uk,Bl(0)) approaches the value
on the right-hand side of (1.7) as k → +∞. To explicitely construct uk, we need first to relate the
minimum problem stated in (1.12) with the non-parametric Plateau-type problem in (1.11); this
is obtained in [9], where we exploit the convexity of the domain together with some well-known
regularity results for the solution of the Plateau problem in this setting. This analysis leads us to
Theorem 3.2, which characterizes the solution of (1.12), and which is based on a regularity result
for the minimizing pair (h⋆, ψ⋆) ∈ H̃2l×XD,φ. Finally, thanks to the regularity results that we have
obtained (especially, boundary regularity), in Section 5 we define explicitely the maps uk, making
a crucial use of rescaled versions of the area-minimizing surface Σ in a vertical copy of R3 inside
R4, and prove the upper bound in Theorem 3.4.

The paper is organized as follows: in Sections 2 and 3 we introduce some notation and the
setting of the problem. In Section 4 we provide some examples of potential recovery sequences, one
of which is optimal in the case l large. Finally, in Section 5 we construct a recovery sequence in
the more involved case l ≤ l0.

2 Preliminaries

The symbol A(v,Ω) denotes the classical area of the graph of a smooth map v : Ω ⊂ Rn → RN ,
given by the right hand side of (1.1). We will deal with the case n = 2 and mostly with the cases
(n,N) = (2, 1) and (n,N) = (2, 2). The L1-relaxed area functional is denoted by A(v,Ω) and is
defined in (1.2).

We first remark that the infimum in (1.2) can be equivalently considered as taken over the class
of sequences (vk) ⊂ Lip(Ω;R2). This does not change the value of A(·,Ω), as observed in [11].

Recall that in formula (1.1) the symbol M(∇v) denotes the vector whose entries are all de-
terminants of the minors of ∇v. Precisely, let α and β be subsets of {1, 2}, let ᾱ denote the
complementary set of α, namely ᾱ = {1, 2} \ α, let | · | denote the cardinality, and let A ∈ R2×2

be a matrix. Then, if |α| + |β| = 2, we denote by Mβ
ᾱ (A) the determinant of the submatrix of A

whose lines are those with index in β, and columns with index in ᾱ. By convention MØ
Ø (A) = 1

and moreover
M i
j = aij , i, j ∈ {1, 2}, M

{1,2}
{1,2} (A) = detA,

and the vector M(A) takes the form

M(A) = (Mβ
ᾱ )(A) = (1, a11, a12, a21, a22, detA),

where α and β run over all the subsets of {1, 2} with the constraint |α| + |β| = 2. We identify α
and β as multi-indices in {1, 2}.
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2.0.1 Area in cylindrical coordinates

Polar coordinates in the source space R2
source are denoted by (r, α). Polar coordinates in the target

space R2
target are denoted by (ρ, θ).

Assume that B = {(r, α) ∈ R2 : r ∈ (r0, r1), α ∈ (α0, α1)}; then the area of the graph of the
smooth map v = (v1, v2) in polar coordinates over B is given by

A(v,B) =

∫ r1

r0

∫ α1

α0

|M(∇v)|(r, α) rdrdα.

Recall that, for i ∈ {1, 2}, we have

∂x1vi = cosα∂rvi −
1

r
sinα∂αvi, ∂x2vi = sinα∂rvi +

1

r
cosα∂αvi.

Hence

|∇vi|2 = (∂rvi)
2 +

1

r2
(∂αvi)

2, i ∈ {1, 2}, (2.1)

∂x1v1∂x2v2 − ∂x2v1∂x1v2 =
1

r

(
∂rv1∂αv2 − ∂αv1∂rv2

)
.

Thus the area of the graph of v over B is given by

A(v,B)

=

∫ r1

r0

∫ α1

α0

√
1 + (∂rv1)2 + (∂rv2)2 +

1

r2

{
(∂αv1)2 + (∂αv2)2 +

(
∂rv1∂αv2 − ∂αv1∂rv2

)2}
rdrdα.

(2.2)
We denote by Br = Br(0) ⊂ R2 = R2

source the open disc centered at 0 with radius r > 0 in the
source space. Our reference domain is Ω = Bl ⊂ R2

source = R2
(x1,x2)

where l > 0 is fixed once for all.

2.1 Graphs in codimension 1

Let Ω be an open bounded set and let v ∈ L1(Ω). If v ∈ C1(Ω) the classical area of its graph is
given by

A(v,Ω) :=

∫
Ω

√
1 + |∇v|2dx.

This notion is extended to every function v ∈ L1(Ω) by relaxation as in (1.2), and A(v,Ω) coincides
with (1.3). For all v ∈ L1(Ω) we denote by Rv ⊆ Ω the set of regular points of v, i.e., the set
consisting of points x which are Lebesgue points for v, v(x) coincides with the Lebesgue value of v
at x, and v is approximately differentiable at x. We also set

GRv := {(x, v(x)) ∈ Rv × R},
SGRv := {(x, y) ∈ Rv × R : y < v(x)}.

We often will identify SGRv with the integral 3-current 〚SGv〛 ∈ D3(Ω × R). If v is a function of
bounded variation, Ω \ Rv has zero Lebesgue measure, so that the current 〚SGv〛 coincides with
the integration over the subgraph

SGv := {(x, y) ∈ Ω× R : y < v(x)}.

For this reason we often identify SGv = SGRv . It is well-known that the perimeter of SGv in Ω×R
coincides with A(v,Ω).
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The support of the boundary of 〚SGv〛 includes the graph GRv , but in general consists also of
additional parts, called vertical. We denote by

Gv := ∂〚SGv〛 (Ω× R),

the generalized graph of v, which is a 2-integral current supported on ∂∗SGv, the reduced boundary
of SGv in Ω× R.

Let Ω̂ ⊂ R2 be a bounded open set such that Ω ⊆ Ω̂, and suppose that L := Ω̂∩∂Ω is a rectifiable
curve. Given ψ ∈ BV (Ω) and a W 1,1 function φ : Ω̂ → R, we can consider

ψ :=

{
f on Ω,

φ on Ω̂ \ Ω.

Then (see [30], [2])

A(ψ, Ω̂) = A(ψ,Ω) +

∫
L
|ψ − φ|dH1 +A(φ, Ω̂ \ Ω).

3 Setting of the problem

Let us focus on the minimum problem on the right hand side of (1.7), i.e.,

inf{A(ψ, SGh) : (h, ψ) ∈ H̃2l ×XD,φ, ψ = 0 on Gh}. (3.1)

Definition 3.1 (The functional F2l). We define

Xconv
2l := {(h, ψ) : h ∈ H2l, ψ ∈ BV (R2l, [0, 1]), ψ = 0 on R2l \ SGh} , (3.2)

H2l =
{
h : [0, 2l] → [−1, 1], h convex, h(w1) = h(2l − w1) ∀w1 ∈ [0, 2l]

}
. (3.3)

and for any (h, ψ) ∈ Xconv
2l ,

F2l(h, ψ) := A(ψ;R2l)−H2(R2l \ SGh) +
∫
∂DR2l

|ψ − φ|dH1 +

∫
∂R2l\∂DR2l

|ψ| dH1. (3.4)

In [9, Theorem 1.2] it is shown that

inf{A(ψ, SGh) : (h, ψ) ∈ H̃2l ×XD,φ, ψ = 0 on Gh} = inf
{
F2l(h, ψ) : (h, ψ) ∈ Xconv

2l

}
, (3.5)

and for this reason it is necessary to investigate existence and regularity of minimizers of F2l. To
this aim it is first convenient to extend φ in the doubled rectangle R2l by defining the extension φ̂
as:

φ̂(w1, w2) = φ̂(0, w2) :=
√

1− w2
2 ∀(w1, w2) ∈ R2l. (3.6)

From [9, Theorem 1.1] the following result follows:

Theorem 3.2 (Minimizing pairs). There exists (h⋆, ψ⋆) ∈ Xconv
2l such that

F2l(h
⋆, ψ⋆) = min

{
F2l(h, ψ) : (h, ψ) ∈ Xconv

2l

}
, (3.7)

and ψ⋆ is symmetric with respect to {w1 = l} ∩ R2l. Moreover there exists a threshold l0 > 0
such that, for l > l0 the above minimizer is (h⋆, ψ⋆) = (1, 0), two constant functions, whereas for
0 < l ≤ l0 the above minimizer satisfies the following features: h⋆ is not identically −1 and
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(i) h⋆(0) = 1 = h⋆(2l), and h⋆ > −1 in (0, 2l);

(ii) ψ⋆ is locally Lipschitz, analytic, and strictly positive in SGh⋆;

(iii) ψ⋆ is continuous up to the boundary of SGh⋆, and attains the boundary conditions, i.e., for
(w1, w2) ∈ ∂SGh∗,

ψ⋆(w1, w2) =

{
0 if w2 = −1 or w2 = h⋆(w1),√
1− w2

2 if w1 = 0 or w1 = 2l,
(3.8)

hence
F2l(h

⋆, ψ⋆) = A(ψ⋆, SGh⋆); (3.9)

(iv) we have
ψ⋆ < φ̂ in R2l. (3.10)

A minimizer (h⋆, ψ⋆) of (3.7) is needed for constructing a recovery sequence (uk) ⊂ Lip(Ω,R2),
see formulas (5.21) and (5.23): we know that ψ⋆ is locally Lipschitz, but not Lipschitz, in R2l,
therefore we need first a regularization procedure. This is made in Lemma 3.3 below, that will be
used in the proof of step 2 of Theorem 3.4.

Let (h⋆, ψ⋆) be a minimizer provided by Theorem 3.2, and assume that h⋆ is not identically −1
(namely, we are in the case l ≤ l0). We fix an integer m > 0 and, recalling the definition of φ̂ in
(3.6), define

φm :=
(
φ̂− 2

m

)
∨ 0 in R2l. (3.11)

We observe that φm is Lipschitz continuous in R2l. We then set

ψ⋆m :=
((
ψ⋆ − 1

m
) ∨ 0

))
∧ φm in R2l. (3.12)

Since ψ⋆ is locally Lipschitz in R2l, an easy check shows that ψ⋆m is Lipschitz continuous in R2l for
any m (with an unbounded Lipschitz constant as m→ +∞). This follows from the fact that ψ⋆ is
continuous up to the boundary of R2l (see Theorem 3.2 (iii)) and hence ψ⋆m coincides with either
0 or φm in a neighborhood of (∂DR2l)∪Gh⋆ in R2l. Furthermore, still ψ⋆m = 0 on the upper graph
R2l \ SGh⋆ = {(w1, w2) ∈ R2l : w2 ≥ h⋆(w1)} of h⋆.

Lemma 3.3 (Properties of ψ⋆m). Let (h⋆, ψ⋆) be a minimizer of F2l as in Theorem 3.2 and
assume h⋆ is not identically −1. For all m > 0 let ψ⋆m be defined as in (3.12). Then:

(i) ψ⋆m is Lipschitz continuous in SGh⋆, ψ
⋆
m = 0 on ([0, 2l]×{−1})∪(R2l \SGh⋆), and ψ⋆m(0, ·) =

φm(0, ·), so that |∂w2ψ
⋆
m(0, ·)| ≤ |∂w2φ(0, ·)| = |∂w2ψ

⋆(0, ·)| a.e. in [−1, 1];

(ii) (ψ⋆m) converges to ψ⋆ uniformly on {0, 2l} × [−1, 1] as m→ +∞;

(iii) we have

lim
m→+∞

A(ψ⋆m, SGh⋆) = A(ψ⋆, SGh⋆). (3.13)

As a consequence F2l(h
⋆, ψ⋆m) → F2l(h

⋆, ψ⋆) as m→ +∞.

9



Proof. (i) and (ii) are direct consequences of the definitions. To show (iii) we start to observe
that ψ⋆m → ψ⋆ pointwise in R2l: indeed, this follows from the definitions of φ⋆m and ψ⋆m up to
noticing that φm → φ̂ pointwise in R2l as m → +∞, and ψ⋆ ≤ φ̂ on R2l. From Theorem 3.2
(iv) it follows that, at any point (w1, w2) ∈ R2l, for m large enough φm(w1, w2) > ψ⋆(w1, w2)
(since φ̂(w1, w2) > ψ⋆(w1, w2)), so that ψ⋆m(w1, w2) = ψ⋆(w1, w2) − 1

m . As a consequence the set
Am := {0 < ψ⋆ − 1

m < φm} satisfies

lim
m→+∞

H2(SGh⋆ \Am) = 0,

and on Am it holds ψ⋆m = ψ⋆ − 1
m and ∇ψ⋆m = ∇ψ⋆. Moreover, on SGh⋆ \Am, either ψ⋆m = 0 (and

hence ∇ψ⋆m = 0) or ψ⋆m = φm (and hence ∇ψ⋆m = ∇φm). Therefore∫
SGh⋆\Am

√
1 + |∇ψ⋆m|2 dx ≤

∫
SGh⋆\Am

√
1 + |∇φm|2 dx

and

lim
m→+∞

∫
SGh⋆\Am

√
1 + |∇ψ⋆m|2 dx ≤ lim

m→+∞

∫
SGh⋆\Am

√
1 + |∇φm|2 dx = 0,

because |∇φm| are uniformly bounded in L1(R2l). Also

A(ψ⋆m, SGh⋆) =

∫
Am

√
1 + |∇ψ⋆|2 dx+

∫
SGh⋆\Am

√
1 + |∇ψ⋆m|2 dx,

and (3.13) follows.

The main result of this paper reads as follows.

Theorem 3.4 (Upper bound for the area of the vortex map). The relaxed area of the graph
of the vortex map u satisfies

A(u,Ω) ≤
∫
Ω
|M(∇u)| dx+ inf

{
F2l(h, ψ) : (h, ψ) ∈ Xconv

2l

}
. (3.14)

Notice that by (3.5) this result is equivalent to Theorem 1.1.

4 Some examples

Before going into the details of Theorem 3.4, it is worth making some nontrivial examples, which
are also useful for the understanding of the proof of the theorem.

4.1 An approximating sequence of maps with degree zero: cylinder

In [1] the authors describe a sequence (uk) of Lipschitz maps converging to u and taking values in
S1; in our context, uk is defined in polar coordinates as follows:

uk(r, α) :=



u(r, α) = (cosα, sinα) in Ω1 := Ω \ (Brk ∪ {α ∈ (−αk, αk)}),
(cos( rrk (α− π) + π), sin( rrk (α− π) + π)) in Brk \ {α ∈ (−αk, αk)},
(cos(αk−π

αk
α+ π), sin(αk−π

αk
α+ π)) in {α ∈ [0, αk)} \ Brk ,

(cos(−αk+π
−αk

α+ π), sin(−αk+π
−αk

α+ π)) in {α ∈ (−αk, 0)} \ Brk ,
(cos( rrk (

αk−π
αk

α) + π), sin( rrk (
αk−π
αk

α) + π)) in Brk ∩ {α ∈ [0, αk)},
(cos( rrk (

−αk+π
−αk

α) + π), sin( rrk (
−αk+π
−αk

α) + π)) in Brk ∩ {α ∈ (−αk, αk)},
(4.1)

10



Figure 1: The map uk in (4.1). We set P̂ := P/|P | = αk, Q̂ := Q/|Q|, Ẑ := Z/|Z|, Ŵ := W/|W |.
All points in Ω1 ∪ Ω2 are retracted on S1 and suitably interpolated. The image of Ω3 through uk
is as follows: uk sends the generic dotted segment onto the (long) dotted arc on S1. Finally, the
image of Ω4 through uk is as follows: uk sends the generic dotted segment onto the (short) dotted
arc on S1: Thus a short arc centered at E/|E| remains uncovered.

where (rk) and (αk) are two infinitesimal sequences of positive numbers; see Fig. 1. Notice that
uk(0, 0) = (−1, 0) = uk(r, 0) for r ∈ (0, l). Moreover for t ∈ (0, l) we have uk(∂Bt) = ∂B1 \ {α ∈
(−αk, αk)}, and the degree of uk is zero.

Remark 4.1. (uk) is not a recovery sequence, due to Theorem 3.4. It is proven in [1] that

lim
k→+∞

A(uk,Ω) =

∫
Ω
|M(∇u)| dx+ 2πl,

and 2πl has the meaning of the lateral area of the cylinder of height l and basis the unit disc. This
surface is not a minimizer of the problem on the right-hand side of (3.5) (where it corresponds to
h ≡ 1).

4.2 A non-optimal approximating sequence of maps: catenoid union a flap

In this section we discuss another example of a sequence (uk) converging to u. We replace the
cylinder lateral surface6 [0, l]×{1}×(−π, π], which contains the image of (rk, l)×(−αk, αk) through
the map Ψk(x) = (|x|, uk(x)) in the example of Section 4.1, with half7 of a catenoid union a flap
(see Fig. 3): calling this union CF (0, l)× R2, we have

CF =: {(t, ρ(t), θ) : t ∈ [0, 2l], θ ∈ (−π, π]} ∪ {(t, r, 0) : t ∈ (0, 2l), r ∈ [ρ(t), 1]},

where ρ(t) := a cosh( t−la ), and a > 0 is such that ρ(0) = 1 (and ρ(2l) = 1).

6In polar coordinates.
7For convenience, we consider the doubled segment [0, 2l], in order to define the catenoid; then we restrict the

construction to (0, l).
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Figure 2: Source and target of the map uk in the example of Section 4.2. The small interior circle
in the right figure is a t-slice of a catenoid, whereas the horizontal segment is the t-section of the
flap. The radius of the small circle is ρ(l).

Notice that CF “spans”
(
{0, 2l} × {1} × (−π, π]

)
∪
(
[0, 2l]× {1} × {0}

)
, which is the union of

two unit circles joined by a segment.
Let rk > 0, θk > 0, θk > θk be such that rk, θk, (θk − θk) → 0+ as k → +∞. Set

ρ(t) := ρ

(
t− rk
l − rk

l

)
, t ∈ (rk, l).

We define uk := u in Ω \
(
Brk ∪ {α ∈ (−θk, θk)}

)
, in particular

uk(∂Bt \ {α ∈ (−θk, θk)}) = ∂B1 \ {θ ∈ (−θk, θk)}, t ∈ (rk, l).

On {α ∈ (−θk, θk)} \ Brk we define uk in such a way that, for each t ∈ (rk, l), one has

uk
(
∂Bt ∩ {±α ∈ (θk, θk)}

)
= ∂B1 ∩ {±θ ∈ (0, θk)},

uk (∂Bt ∩ {±α ∈ (0, θk)}) = {(r, 0) ∈ B1 : r ∈ [ρ(t), 1]} ∪
(
∂Bρ(t) ∩ {θ ̸= 0}

)
.

See Fig. 2 for a representation of the map uk. The several parts of the image are run so that the
winding number around the origin is always null. To define uk on Brk we adopt a construction
similar to the one in (4.1). First of all, uk(0, 0) := (−1, 0). Then, in Brk ∩{α ∈ (−π, π) \ (−θk, θk)}
we impose uk as in (4.1) with θk replacing αk. In Brk ∩ {α ∈ (−θk, θk)} we require

uk([0, rk], α) := ∂B1 ∩ {±θ ∈ ((uk)2(rk, α), π)}, ±α ∈ (0, π],

where (uk)2 is the second (angular) coordinate of uk. Hence

uk(∂Bt)

{
⊊ ∂B1 if t ∈ (0, rk],

= (∂B1) ∪ {(r, 0) ∈ B1 : r ∈ [ρ(t), 1]} ∪ (∂Bρ(t)) if t ∈ (rk, l).

12



Figure 3: Catenoid union a flap, namely the set CF (Section 4.2).

Remark 4.2. Also in this case (uk) is not a recovery sequence, due to Theorem 3.4, and the results
in [8, 9]. For this particular sequence we have

lim
k→+∞

A(uk,Ω) =

∫
Ω
|M(∇u)| dx+H2(catenoid) + 2H2(flap).

This surface is not a minimizer of problem on the right-hand side of (3.5). However it is worth
noticing that, by minimality property of the catenoid, it can be proved that the set CF , treated as
an integral current, is Smin, the minimal vertical current closing the graph Gu of the vortex map in
Ω (see the discussion in the Introduction).

4.3 The case of two discs

In [1], the authors describe a sequence (uk) of maps converging to the vortex map u, simply defined
as follows:

uk(r, α) := ϕk(r)u(r, α), (4.2)

where ϕk : [0, l] → [0, 1] is a smooth function such that ϕk = 0 in [0, 1
k2
], ϕk = 1 in [ 1k , l], and

0 ≤ ϕ′k ≤ 2k. In this case (uk) is a recovery sequence for l sufficiently large, due to [1, Lemma 4.2].
We have

lim
k→+∞

A(uk,Ω) =

∫
Ω
|M(∇u)| dx+ π,

and π has the meaning of the area of the unit disc. This surface, for l sufficiently large, is a
minimizer of problem on the right-hand side of (3.5) (where it corresponds to h ≡ −1).
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5 Proof of Theorem 3.4

In this section we prove Theorem 3.4. To this aim, we need to construct a sequence (uk) ⊂
Lip(Ω,R2) converging to u in L1(Ω,R2) such that

lim
k→+∞

A(uk,Ω) ≤
∫
Ω
|M(∇u)|dx+ F2l(h

⋆, ψ⋆),

where (h⋆, ψ⋆) is a pair minimizing F2l as in Theorem 3.2. We may assume that h⋆ is not identically
−1, otherwise the result follows from [1] (and a recovery sequence is provided as in (4.2)).

We will specify various subsets of Ω and define the sequence (uk) on each of these sets (see Fig.
4). More precisely, we will define uk as a map taking values in S1 in the largest sector (step 1).
This construction is similar to the one in [1] (see also Remark 5.1 below). The contribution of
the area in this sector will equal, as k → +∞, the first term in (3.14). The second term will be
instead provided by the contribution of uk in region Ck \Brk (step 2), where we will need the aid
of the functions (h⋆, ψ⋆) (suitably regularized, in order to render uk Lipschitz continuous). The
other regions surrounding Ck \Brk are needed to glue uk between the aforementioned regions. This
is done in steps 3, 4 and 5, where it is also proven that the corresponding area contribution is
negligible. Finally, in steps 6 and 7 we show the crucial estimates to prove (3.14). In Fig. 4 this
subdivion of the domain Ω is drawn.

Remark 5.1. Our construction differs from the one in [1], even when in place of (h⋆, ψ⋆) we use
(1,

√
1− s2) (i.e., the one in Section 4.1) in the following sense. We use the full graph of ±ψ⋆ to

construct uk and therefore, in the case when (h⋆, ψ⋆) is replaced by (1,
√
1− s2), the image of uk

covers the whole cylinder and not only a part of it. Since h⋆ may be not identically 1 (and actually
is not explicit in general), the presence of a new set Tk is now needed, as an intermediate region to
glue the trace of uk along the two segments {α = ±θk}. The image set uk(Tk) covers a small part
of the unit circle. See Fig. 4, where Tk is represented as the union of the two thin sectors in Ω. To
glue all the piecese in order that uk is Lipschitz, it will be useful to have two transition regions,
one in a ball Brk/2 and one in the annulus Brk \Brk/2. It is worth noticing that the curve uk ∂Bt
has null winding number around the origin, for all t ∈ (0, l).

Let k ∈ N and let (rk), (θk), (θk) be infinitesimal sequences of positive numbers such that θk−θk =:
δk > 0. We suppose8

lim
k→+∞

(θkk) = 0. (5.1)

Let Brk be the open disc centered at the origin with radius rk, and

Ck := {(r, α) ∈ [0, l)× [0, 2π) : α ∈ [0, θk] ∪ [2π − θk, 2π)}, (5.2)

be the half-cone in Ω, with vertex at the origin and aperture equal to 2θk, see Fig. 4. We set

C+
k := Ck ∩ {α ∈ [0, θk]}, C−

k := Ck ∩ {α ∈ [2π − θk, 2π]},

and we divide Ck ∩ (Ω \ Brk) into two sets

Ck \ Brk :=
(
C+
k \ Brk

)
∪
(
C−
k \ Brk

)
. (5.3)

Finally, let
Tk := {(r, α) ∈ [0, l)× [0, 2π) : α ∈ [θk, θk] ∪ [2π − θk, 2π − θk]}. (5.4)

8This assumption is used only in step 7.
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Figure 4: On the left the subdivision of Bl in sectors. Specifically, the sectors C+
k \Brk and C−

k \Brk
are emphasized in light grey. The map Tk defined in (5.18) sends C+

k \Brk in the (reflected) subgraph
of h⋆k in Rl, depicted on the right; it maps the segment joining (rk, 0) to (1, 0) onto the graph of h⋆k,
and the radius corresponding to α = θk onto the basis of Rl, following the orientation emphasized
by the dashed arrow. The graph of h⋆k starts linearly from the point (0, 1) in the interval [0, 1/k)
with negative derivative, then joins (and next coincides) with the graph of h⋆. The definition of
uk in C+

k \ Brk makes use of this parametrization of SGh⋆k ∩Rl (see (5.21)). This parametrization
needs a reflection, in order to glue uk on the horizontal segment {α = 0} with the definition of uk
in C−

k \ Brk .

Step 1. Definition of uk on Ω \ (Ck ∪ Tk).
In this step our construction is similar to the one in [1, Lem. 5.3], see also (4.1); in order to

define uk, in the source we use polar coordinates (r, α) and Cartesian coordinates in the target.
Define

uk(r, α) :=

{
u(r, α) = (cosα, sinα), r ∈ (rk/2, l), α ∈ [θk, 2π − θk],(
cos(2rrk (α− π) + π), sin(2rrk (α− π) + π)

)
, r ∈ [0, rk/2], α ∈ [θk, 2π − θk].

(5.5)

Obviously

uk(0, 0) = (−1, 0) = uk(r, π), r ∈ [0, l),

uk(r, θk) = (cos θk, sin θk), uk(r, 2π − θk) = (cos θk, sin(−θk)), r ∈ (rk/2, l),

uk(r, θk) =
(
cos(

2r

rk
(θk − π) + π) , sin(

2r

rk
(θk − π) + π)

)
, r ∈ [0, rk/2],

uk(r, 2π − θk) =
(
cos(

2r

rk
(π − θk) + π) , sin(

2r

rk
(π − θk) + π)

)
, r ∈ [0, rk/2]. (5.6)

The relevant contribution to the area of the graph of uk is the one in region Ck, and more
specifically in Ck \Brk ; it is in this region that we need to use a minimizing pair of F2l.

Step 2. Definition of uk on Ck \ Brk .
We first need a regularization of h⋆: assuming without loss of generality 1/k < l, we define

h⋆k(w1) :=

{
h⋆(w1) for w1 ∈ [ 1k , l],

k
(
h⋆( 1k )− h⋆(0)

)
w1 + h⋆(0) for w1 ∈ [0, 1k ),

(5.7)
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where we recall that h⋆(0) = 1 (see Theorem 3.2), and we set h⋆k(w1) := h⋆k(2l−w1) for w1 ∈ [l, 2l]
(see Fig. 4, right). Notice that h⋆k(0) = 1, h⋆k ∈ Lip([0, 2l]) and the convexity of h⋆ implies that
also h⋆k is convex, h⋆k ≥ h⋆, and therefore by Lemma 3.3 (i) we see that (h⋆k, ψ

⋆
k) ∈ Xconv

2l , where ψ⋆k
is the approximation of ψ⋆ considered in Lemma 3.3 (with k = m), see formula (3.12). Again by

Lemma 3.3, F2l(h
⋆
k, ψ

⋆
k) = F2l(h

⋆, ψ⋆k) +
∫ 2l
0 (h⋆k(w1)− h⋆(w1)) dw1 → F2l(h

⋆, ψ⋆) as k → +∞.
We start with the construction of uk on C+

k \ Brk . Set

τk : [rk, l] → [0, l], τk(r) :=
l

l − rk
(r − rk), (5.8)

sk : [rk, l]× [0, θk] → [−1, 1], sk(r, α) :=
1 + h⋆k(τk(r))

θk
α− h⋆k(τk(r)). (5.9)

Note that sk(r, ·) : [0, θk] → [−h⋆k(τk(r)), 1] is a bijective increasing function, for any r ∈ [rk, l], and

sk(r, 0) = −h⋆k(τk(r)) for any r ∈ [rk, l], in particular sk(rk, 0) = −1, (5.10)

sk(r, θk) = 1, r ∈ [rk, l], (5.11)

sk(rk, α) =
2α

θk
− 1, α ∈ [0, θk]. (5.12)

We have, for all r ∈ [rk, l] and α ∈ [0, θk],

τ ′k(r) =
l

l − rk
, (5.13)

∂αsk(r, α) =
1 + h⋆k(τk(r))

θk
, (5.14)

and, for almost every r ∈ [rk, l] and all α ∈ [0, θk],

∂rsk(r, α) =

(
α

θk
− 1

)
τ ′k(r)h

⋆
k
′(τk(r)) =

l

l − rk

(
α

θk
− 1

)
h⋆k

′(τk(r)). (5.15)

Moreover we define

Hk : [0, l] → [rk, l], Hk(w1) :=
l − rk
l

w1 + rk (5.16)

to be the inverse of τk and, recalling that Rl = [0, l]× [−1, 1],

Θk : SGh⋆k ∩Rl → [0, θk], Θk(w1, w2) :=
θk

1 + h⋆k(w1)
(h⋆k(w1)− w2). (5.17)

Notice that Θk(w1, ·) : [−1, h⋆k(w1)] → [0, θk] is a linearly decreasing bijective function9

The map
Tk : C+

k \ Brk → SGh⋆k ∩Rl, Tk(r, α) := (τk(r),−sk(r, α)), (5.18)

is invertible, and its inverse is the map

T −1
k : SGh⋆k ∩Rl → C+

k \ Brk , T −1
k (w1, w2) := (Hk(w1),Θk(w1, w2)). (5.19)

The modulus of the determinant of the Jacobian of T −1
k is given by

|JT −1
k

| =
(
l − rk
l

)
θk

1 + h⋆k(w1)
. (5.20)

9We recall that in our hypothesis h∗
k > −1 by Theorem 3.2 (i).
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We set

uk(r, α) :=
(
sk(r, α), ψ

⋆
k

(
Tk(r, α)

))
=
(
uk1(r, α), uk2(r, α)

)
, r ∈ [rk, l], α ∈ [0, θk]. (5.21)

Observe that, using the definition of ψ⋆k,

uk ∈ Lip(C+
k \ Brk ,R

2),

uk(r, θk) = (sk(r, θk), ψ
⋆
k(Tk(r, θk))) = (1, 0),

uk(r, 0) = (−h⋆k(τk(r)), ψ⋆k(τk(r), h⋆k(τk(r)))) = (−h⋆k(τk(r)), 0),
uk(rk, α) = (sk(rk, α), ψ

⋆
k(0,−sk(rk, α))) = (sk(rk, α), φk(0,−sk(rk, α))),

(5.22)

for r ∈ [rk, l] and α ∈ [0, θk], as it follows from (5.8), (5.10), (5.11), and (3.8), where φk is defined
in (3.11) (with k = m).

Eventually we define uk on C−
k \ Brk as

uk(r, α) := (uk1(r, 2π − α),−uk2(r, 2π − α)), r ∈ [rk, l], α ∈ [2π − θk, 2π). (5.23)

It turns out

uk ∈ Lip(C−
k \ Brk ,R

2),

uk(r, 2π − θk) = (1, 0),

uk(r, 2π) = (−h⋆k(τk(r)),−ψ⋆k(τk(r), h⋆k(τk(r)))) = (−h⋆k(τk(r)), 0),
uk(rk, α) = (sk(rk, 2π − α),−ψ⋆k(0,−sk(rk, 2π − α))),

for r ∈ [rk, l], α ∈ [2π − θk, 2π).
The area of the graph of uk on Ck \Brk will be computed in step 7.

Step 3. Definition of uk on Ck ∩ (Brk \ Brk/2) and its area contribution.
Let Gψ⋆

k(0,·) ⊂ R2 (resp. Gψ⋆(0,·) ⊂ R2) denote the graph of ψ⋆k(0, ·) (resp. of ψ⋆(0, ·)) on [−1, 1].

We introduce the retraction map Υ : (R × [0,+∞)) \ O ⊂ R2
target → Gψ⋆(0,·) ⊂ R2

target, O = (0, 0),
defined by

Υ(p) = q := Gψ⋆(0,·) ∩ ℓOp ∀p ∈ (R× [0,+∞)) \O,

where ℓOp is the line passing through O and p. Then Υ is well-defined and it is Lipschitz continuous
in a neighbourhood of Gψ⋆(0,·) in R× [0,+∞). We also define

Υk : Gψ⋆
k(0,·) → Gψ⋆(0,·)

as the restriction of Υ to Gψ⋆
k(0,·); see Fig. 5. As a consequence, since for k ∈ N large enough

Gψ⋆
k(0,·) is contained in a neighbourhood of Gψ⋆(0,·), we have that Υk is Lipschitz continuous with

Lipschitz constant independent of k. Notice also that Υk((−1, 0)) = (−1, 0) and Υk((1, 0)) = (1, 0).
We define uk on C+

k ∩ (Brk \ Brk/2) setting, for r ∈ [ rk2 , rk] and α ∈ [0, θk],

uk(r, α) :=
(
2− 2r

rk

)
Υk

(
sk(rk, α), ψ

⋆
k(0,−sk(rk, α))

)
+
(2r
rk

− 1
)(
sk(rk, α), ψ

⋆
k(0,−sk(rk, α))

)
.

We have
uk(rk, α) = (sk(rk, α), ψ

⋆
k(0,−sk(rk, α))),

so that uk glues, on C+
k ∩ ∂Brk , with the values obtained in step 2 (last formula in (5.22)), and

uk(r, θk) = (1, 0), uk(r, 0) = (−1, 0).

17



This formula shows that uk also glues, on C+
k ∩ {(r, α) : r ∈ [rk/2, rk], α ∈ {0, θk}}, with the values

obtained in step 2 (second and third formula in (5.22)). Moreover

uk(rk/2, α) = Υk

(
sk(rk, α), ψ

⋆
k(0,−sk(rk, α))

)
, α ∈ [0, θk]. (5.24)

In addition, using (5.12), the derivatives of uk satisfy, for r ∈ ( rk2 , rk) and α ∈ (0, θk),

∂ruk(r, α) = − 2

rk
Υk

(
sk(rk, α), ψ

⋆
k(0,−sk(rk, α))

)
+

2

rk

(
sk(rk, α), ψ

⋆
k(0,−sk(rk, α))

)
,

∂αuk(r, α) =
(
2− 2r

rk

)
∇Υk

(
sk(rk, α), ψ

⋆
k(0,−sk(rk, α))

)
·
( 2

θk
,− 2

θk
∂w2ψ

⋆
k(0,−sk(rk, α))

)
+
(2r
rk

− 1
)( 2

θk
,− 2

θk
∂w2ψ

⋆
k(0,−sk(rk, α))

)
,

so that

|∂ruk(r, α)| ≤
4

rk
,

|∂αuk(r, α)| ≤
2(Ĉ + 1)

θk
(|∂w2ψ

⋆
k(0,−sk(rk, α))|+ 1),

where Ĉ is a positive constant independent of k, which bounds the gradient of Υk. Since ψ⋆k is
Lipschitz, we deduce that uk is Lipschitz continuous10 on C+

k ∩ (Brk \ Brk/2).
Furthermore the image of ( rk2 , rk) × (0, θk) through the map (r, α) 7→ uk(r, α) is the region

enclosed by Gψ⋆
k
and Gψ⋆ (with multiplicity 1). The area of this region is infinitesimal as k → +∞,

so that, by the area formula,∫ rk

rk/2

∫ θk

0
r|Juk(r, α)|dαdr = o(1) as k → +∞.

Hence, using the fact that the gradient in polar coordinates is (∂r,
1
r∂α), we eventually estimate∫ rk

rk/2

∫ θk

0
r|M(∇uk)|dαdr ≤

∫ rk

rk/2

∫ θk

0

(
r +

4r

rk
+
C

θk
|∂w2ψ

⋆
k(0, 1−

2α

θk
)|+ C

θk

)
dαdr + o(1),

= o(1) + C
rk
2θk

∫ θk

0
|∂w2ψ

⋆
k(0, 1−

2α

θk
)|dα = o(1) (5.25)

as k → +∞. In the last equality we use that |∂w2ψ
⋆
k(0, ·)| ≤ |∂w2ψ

⋆(0, ·)|, which is integrable via
the change of variables w2 = 1− 2α

θk
(it also makes θk disappear at the denominator in front of the

integral in (5.25)).
This proves that the contribution of area of the graph of uk over C

+
k ∩(Brk \Brk/2) is infinitesimal

as k → +∞.
Eventually, for r ∈ [rk/2, rk], α ∈ [2π − θk, 2π), we set

uk(r, α) := (uk1(r, 2π − α),−uk2(r, 2π − α)). (5.26)

Observe that, thanks to (5.23), uk is continuous on ∂Brk , and similar estimates as in (5.25) hold
on (Brk \ Brk/2) ∩ C

−
k .

Step 4. Definition of uk on Ck ∩ Brk/2 and its area contribution.

10The Lipschitz constant of uk on this set turns out to be unbounded with respect to k.
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Figure 5: the graphs of the functions ψ⋆k(0, ·) and ψ⋆(0, ·); these contain arcs of circle centered at
(0, 0) and (0,− 2

k ) respectively. The map Υk is emphasized, and turns out to be the restriction of
x 7→ x

|x| on ψ
⋆
k(0, ·).

We start with the construction of uk on C+
k ∩ Brk/2. For r ∈ [0, rk/2] and α ∈ [0, θk] we set

uk(r, α) := Υk

( 4rα

rkθk
− 1, ψ⋆k

(
0, 1− 4rα

rkθk

))
. (5.27)

First we observe that

uk

(rk
2
, α
)
= Υk

(2α
θk

− 1, ψ⋆k
(
0, 1− 2α

θk

))
, α ∈ (0, θk),

so that uk is continuous on C+
k ∩ ∂Brk/2 (see (5.24) and (5.12)), and

uk(r, θk) = Υk

(4r
rk

− 1, ψ⋆k(0, 1−
4r

rk
)
)
, (5.28)

uk(r, 0) = (−1, ψ⋆k(0, 1)) = (−1, 0). (5.29)

Direct computations lead to the following estimates:

|∂ruk(r, α)| ≤ Ĉ
4α

rkθk

(
1 + |∂w2ψ

⋆
k(0, 1−

4αr

rkθk
)|
)
, (5.30)

|∂αuk(r, α)| ≤ Ĉ
4r

rkθk

(
1 + |∂w2ψ

⋆
k(0, 1−

4αr

rkθk
)|
)
, (5.31)

where Ĉ is the constant bounding the gradient of Υk as in step 3. Finally, since by (5.27) uk takes
values in S1 ⊂ R2, we have Juk(r, α) = 0 for all r ∈ (0, rk/2), α ∈ [0, θk]. Hence, the area of the
graph of uk on C+

k ∩ Brk/2 is∫ rk/2

0

∫ θk

0
r|M(∇uk)(r, α)| dαdr ≤

∫ rk/2

0

∫ θk

0
(r + C) +

C

θk
+
Cr

rk
(1 +

1

θk
)|∂w2ψ

⋆
k(0, 1−

4αr

rkθk
)|dαdr,

where C is a positive constant independent of k. Exploiting that |∂w2ψ
⋆
k(0, ·)| ≤ |∂w2ψ

⋆(0, ·)|, we
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can estimate the right-hand side of the previous formula as follows:

C

∫ rk/2

0

∫ θk

0

r

rk

(
1 +

1

θk

)
|∂w2ψ

⋆(0, 1− 4αr

rkθk
)|dαdr + o(1)

≤C
∫ rk/2

0

∫ 1

−1
θk

(
1 +

1

θk

)
|∂w2ψ

⋆(0, w2)|dw2dr + o(1)

≤C
∫ rk/2

0
(θk + 1)dr + o(1) = o(1),

(5.32)

where o(1) → 0 as k → +∞, and C is a positive constant independent of k which might change
from line to line.

In C−
k ∩ Brk/2 we set, for r ∈ [0, rk/2), α ∈ [2π − θk, 2π),

uk(r, α) := (uk1(r, 2π − α),−uk2(r, 2π − α)).

Similar estimates as in (5.32) for the area of the graph of uk hold on C−
k ∩ Brk/2.

Step 5. Definition of uk on Tk and its area contribution.
We first construct uk on Tk ∩ {(r, α) : r ∈ [0, rk/2], α ∈ [θk, θk]}. We define βk : [0, rk/2] ×

[θk, θk] → [0, π] as

βk(r, α) :=
θk − α

θk − θk
αk(r) + (1− θk − α

θk − θk
)
(2r
rk

(θk − π) + π
)
,

where

αk(r) := arccos
(
Υk1(

4r

rk
− 1, ψ⋆k(0, 1−

4r

rk
))
)
, r ∈ [0, rk/2].

Notice that αk is decreasing and takes values in [0, π]. Therefore we set

uk(r, α) :=
(
cos(βk(r, α)), sin(βk(r, α))

)
, (r, α) ∈ [0, rk/2]× [θk, θk]. (5.33)

One checks that βk(r, θk) = αk(r), βk(r, θk) =
2r
rk
(θk − π) + π (see also (5.5)), and

αk(rk/2) = 0,

uk(rk/2, α) =
(
cos((1− θk − α

θk − θk
)θk), sin((1−

θk − α

θk − θk
)θk)

)
,

uk(r, θk) =
(
cos(αk(r)), sin(αk(r))

)
= Υk(

4r

rk
− 1, ψ⋆k(0, 1−

4r

rk
)),

uk(r, θk) =
(
cos(

2r

rk
(θk − π) + π), sin(

2r

rk
(θk − π) + π)

)
,

so that uk is continuous on {α ∈ {θk, θk}, r ∈ [0, rk/2]} ∩ Ω, see (5.6) and (5.28).
Notice also that uk is continuous at (0, 0) ∈ R2 and uk(0, 0) = (−1, 0). Finally, since uk in (5.33)

takes values in S1, the determinant of its Jacobian vanishes, so that in order to estimate the area
contribution of the graph of uk in Tk ∩{(r, α) : r ∈ [0, rk/2], α ∈ [θk, θk]} it is sufficient to estimate
the gradient of uk. We have

|∂ruk(r, α)| = |∂rβk(r, α)| ≤ |∂rαk(r)|+
2π

rk
,

|∂αuk(r, α)| = |∂αβk(r, α)| ≤
|αk(r)|
θk − θk

+
π

θk − θk
≤ 2π

θk − θk
.
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Therefore∫ rk/2

0

∫ θk

θk

r|M(∇uk)(r, α)|dαdr ≤
∫ rk/2

0

∫ θk

θk

[rk
2
(1 + |∂rβk(r, α)|) + |∂αβk(r, α)|

]
dαdr

≤ o(1) +

∫ rk/2

0

∫ θk

θk

(
rk
2
|∂rαk(r)|+ π +

2π

θk − θk

)
dαdr = o(1), (5.34)

with o(1) → 0 as k → +∞. Notice that the integral of |∂rαk(r)| with respect to r can be computed
via the fundamental integration theorem, since αk is monotone.

In Tk ∩ {(r, α) : r ∈ [0, rk/2], α ∈ [2π − θk, 2π − θk]} we set

uk(r, α) := (uk1(r, 2π − α),−uk2(r, 2π − α)).

We now define uk on Tk ∩ {(r, α) : r ∈ (rk/2, l), α ∈ [θk, θk]}. We set

uk(r, α) :=
(
cos((1− θk − α

θk − θk
)θk), sin((1−

θk − α

θk − θk
)θk)

)
.

Then uk ∈ Lip(Tk, S1), and

uk(r, θk) = (1, 0), uk(r, θk) = (cos θk, sin θk) for r ∈ (rk/2, l),

∂ruk(r, α) = 0,

∂αuk(r, α) =
θk

θk − θk

(
− sin((1− θk − α

θk − θk
)θk), cos((1−

θk − α

θk − θk
)θk)

)
.

Hence ∫ l

rk/2

∫ θk

θk

r|M(∇uk)(r, α)|dαdr ≤
∫ l

rk/2

∫ θk

θk

(
r +

θk

θk − θk

)
dαdr = o(1) (5.35)

as k → +∞.
Finally in Tk ∩ {(r, α) : r ∈ (rk/2, l), α ∈ [2π − θk, 2π − θk]} we set

uk(r, α) := (uk1(r, 2π − α),−uk2(r, 2π − α)).

Similar estimates as in (5.34), (5.35) for the area of the graph of uk hold on Tk ∩ {(r, α) : r ∈
(0, rk/2), α ∈ [2π − θk, 2π − θk]}, Tk ∩ {(r, α) : r ∈ (rk/2, l), α ∈ [2π − θk, 2π − θk]}, respectively.

Step 6. We claim that∫
Ω\(Ck∪Tk)

|M(∇uk)|dx −→
∫
Ω
|M(∇u)| dx as k → +∞, (5.36)

where we recall that Ck ∪ Tk = {(r, α) ∈ Ω : r ∈ [0, l), α ∈ [0, θk] ∪ [2π − θk, 2π)}.
Indeed, on Ω \ (Ck ∪ Tk) the maps uk and u take values in the circle S1, hence

det(∇uk) = 0, det(∇u) = 0, in Ω \ (Ck ∪ Tk).

Thus ∫
Ω\(Ck∪Tk)

|M(∇uk)−M(∇u)| dx ≤
∑
i=1,2

∫
Ω\(Ck∪Tk)

|∇(uki − ui)| dx.
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From (5.5) we have
|∂r(uk − u)| = 0 in Ω \ (Brk ∪ Ck ∪ Tk),

|∂r(uk − u)| ≤ π

rk
in Brk \ (Ck ∪ Tk),

|∂α(uk − u)| = 0 in Ω \ (Brk ∪ Ck ∪ Tk),
|∂α(uk − u)| ≤ 2 in Brk \ (Ck ∪ Tk).

(5.37)

Our previous remarks and the fact that rk, θk, (θk − θk) → 0+ as k → +∞, imply (5.36).

Step 7. We know from (5.25), (5.32), (5.34), and (5.35), that the integral of |M(∇uk)| is
infinitesimal as k → +∞, on the region (Brk ∩Ck) ∪ Tk. Therefore it remains to compute the area
of the graphs of uk in the region Ck \ Brk . We claim that this contribution gives

lim
k→+∞

∫
Ck\Brk

|M(∇uk)| dx ≤ 2Fl(h⋆, ψ⋆) = A(ψ⋆, SGh⋆). (5.38)

To prove this, we start to compute the area of the graph of uk restricted to C+
k \Brk . From (5.21),

(5.13), (5.15) and (5.14), we have

∂ruk1 =
( α
θk

− 1
)
τ ′kh

⋆
k
′ =

l

l − rk

( α
θk

− 1
)
h⋆k

′,

∂αuk1 =
1 + h⋆k
θk

,

∂ruk2 = τ ′k

[(
1− α

θk

)
h⋆k

′∂w2ψ
⋆
k + ∂w1ψ

⋆
k

]
=

l

l − rk

[(
1− α

θk

)
h⋆k

′∂w2ψ
⋆
k + ∂w1ψ

⋆
k

]
,

∂αuk2 = −
[1 + h⋆k

θk

]
∂w2ψ

⋆
k,

∂ruk1∂αuk2 − ∂αuk1∂ruk2 = −
(
1 + h⋆k
θk

)
l

l − rk
∂w1ψ

⋆
k,

(5.39)

where h⋆k
′ denotes the derivative of h⋆k with respect to w1, h

⋆
k, h

⋆
k
′ are evaluated at τk(r), and the two

partial derivatives ∂w2ψ
⋆
k, ∂w1ψ

⋆
k of ψ⋆k with respect to w2, w1 are evaluated at (τk(r),−sk(r, α)).

Note carefully that, in the computation of the Jacobian, the terms containing ∂w2ψ
⋆
k cancel each

other.
Since h⋆k is convex, its derivative is nonincreasing, and therefore

∫ l
rk
|h⋆k

′| dr < +∞. As a
consequence of (5.39), from (2.2), we have

A(uk, C
+
k \ Brk)

=

∫ l

rk

∫ θk

0
r

{
1 +

(
l

l − rk

)2( α
θk

− 1

)2

(h⋆k
′)2

+

(
l

l − rk

)2 [( α
θk

− 1
)2
(h⋆k

′)2(∂w2ψ
⋆
k)

2 + 2
(
1− α

θk

)
h⋆k

′∂w2ψ
⋆
k∂w1ψ

⋆
k + (∂w1ψ

⋆
k)

2

]

+
1

r2

(
1 + h⋆k
θk

)2
(
1 + (∂w2ψ

⋆
k)

2 +

(
l

l − rk

)2

(∂w1ψ
⋆
k)

2

)} 1
2

drdα,

where ∂w2ψ
⋆
k, ∂w1ψ

⋆
k are evaluated at (τk(r),−sk(r, α)), and h⋆k, h⋆k

′ are evaluated at τk(r). Now we
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use the change of variable (5.18): from (5.20), we have

A(uk, C
+
k \ Brk)

=

∫ l

0

∫ h⋆k(w1)

−1

(
l − rk
l

)(
θk

1 + h⋆k

)
Hk(w1)

{
1 +

( l

l − rk

)2(Θk(w1, w2)

θk
− 1

)2

(h⋆k
′)2

+

(
l

l − rk

)2 [(
1− Θk(w1, w2)

θk

)2
(h⋆k

′)2(∂w2ψ
⋆
k)

2 + 2
(
1− Θk(w1, w2)

θk

)
h⋆k

′∂w2ψ
⋆
k∂w1ψ

⋆
k + (∂w1ψ

⋆
k)

2
]

+
1

(Hk(w1))2
(1 + h⋆k

θk

)2(
1 + (∂w2ψ

⋆
k)

2 +
( l

l − rk

)2
(∂w1ψ

⋆
k)

2
)} 1

2

dw2dw1,

where Hk(w1), Θk(w1, w2) are defined in (5.16), (5.17), h⋆k
′ is evaluated at w1, and ∂w1ψ

⋆
k and

∂w2ψ
⋆
k are evaluated at (w1, w2). Therefore

A(uk, C
+
k \ Brk) =

∫ l

0

∫ h⋆k(w1)

−1

{
Ik + IIk + IIIk + IVk +Vk +VIk

} 1
2
dw2dw1, (5.40)

where 

Ik =
(
l−rk
l

)2 (
θk

1+h⋆k

)2
(Hk(w1))

2,

IIk =
(

θk
1+h⋆k

)2 (
1− Θk(w1,w2)

θk

)2
(Hk(w1))

2(h⋆k
′)2,

IIIk =
(

θk
1+h⋆k

)2
(Hk(w1))

2
[(
1− Θk(w1,w2)

θk

)2
(h⋆k

′)2(∂w2ψ
⋆
k)

2

+2
(
1− Θk(w1,w2)

θk

)
h⋆k

′∂w2ψ
⋆
k∂w1ψ

⋆
k + (∂w1ψ

⋆
k)

2
]
,

IVk =
(
l−rk
l

)2
,

Vk =
(
l−rk
l

)2
(∂w2ψ

⋆
k)

2,

VIk = (∂w1ψ
⋆
k)

2.

Since limk→∞
l−rk
l = 1 and limk→+∞ θk = 0, we deduce from (5.16), (5.17),

lim
k→+∞

Hk(w1) = w1, lim
k→+∞

Θk(w1, w2)

θk
=
h⋆(w1)− w2

1 + h⋆(w1)
.

Therefore we see that ∫ l

0

∫ h⋆k(w1)

−1
(Ik)

1
2 + (IIk)

1
2dw2dw1 = o(1),

as k → +∞. Moreover ∫ l

0

∫ h⋆k(w1)

−1
(IIIk)

1
2dw2dw1 = o(1) (5.41)
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as k → +∞. Indeed we may estimate∫ l

0

∫ h⋆k(w1)

−1
(IIIk)

1
2dw2dw1 ≤ Cθk

∫ l

0

∫ h⋆k(w1)

−1
|h⋆k

′(w1)||∂w2ψ
⋆
k(w1, w2)|+ |∂w2ψ

⋆
k(w1, w2)|dw2dw1,

and using that |h⋆k
′(w1)| ≤ 2k (see (5.7)), if we assume (5.1), i.e., θkk → 0, then (5.41) follows,

since the BV -norm of ψ⋆k is bounded uniformly with respect to k.
Hence, from (5.40),

A(uk, C
+
k \ Brk) ≤

∫ l

0

∫ h⋆k(w1)

−1

{
IVk +Vk +VIk

} 1
2
dw2dw1 + o(1)

≤
∫ l

0

∫ h⋆k(w1)

−1

√
1 + (∂w1ψ

⋆
k)

2 + (∂w2ψ
⋆
k)

2 dw2dw1 + o(1)

= A(ψ⋆k, SGh⋆ ∩Rl) + o(1) =
1

2
A(ψ⋆k, SGh⋆) + o(1) (5.42)

as k → +∞. Then taking the limit as k → +∞ in (5.42), and using Lemma 3.3 (iii), we get

lim
k→+∞

A(uk, C
+
k \ Brk) ≤ A(ψ⋆, SGh⋆) = F2l(h

⋆, ψ⋆), (5.43)

where the last equality follows from (3.9).

Step 8. Conclusion. Notice that uk ∈ Lip(Ω,R2), and uk → u in L1(Ω,R2). Inequality (3.14)
follows from (5.36) (which gives the term

∫
Ω |M(∇u)|dx), from (5.38) (which gives the second

term in (3.14)), and from estimates (5.25), (5.32), (5.34), and (5.35), showing that all the other
contributions are negligible.
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Inc., Boston, MA, 2008.

[35] F. Maggi, “Sets of Finite Perimeter and Geometric Variational Problems. An Introduction to
Geometric Measure Theory”, Cambridge Univ. Press, Cambridge, 2012.

[36] W. H. Meeks and S. T. Yau, The classical Plateau problem and the topology of three-dimensional
manifolds, Topology 21 (1982), 409-440.

[37] C.B. Morrey, “Multiple Integrals in the Calculus of Variations”, Grundlehren der mathema-
tischen Wissenschaften, Vol. 130, Springer-Verlag, New York, 1966.

[38] D. Mucci, Strict convergence with equibounded area and minimal completely vertical liftings,
Nonlinear Anal. 221 (2022), art. n. 112943.

[39] J. C. C. Nitsche, “Lectures on Minimal Surfaces”, Vol. I, Cambridge University Press, Cam-
bridge, 1989.

[40] R. Scala, Optimal estimates for the triple junction function and other surprising aspects of the
area functional, Ann. Sc. Norm. Super. Pisa Cl. Sci. XX (2020), 491-564.

[41] R. Scala, G. Scianna, On the L1-relaxed area of graphs of BV piecewise constant maps taking
three values, Adv. Calc. Var, to appear.

26


	Introduction
	Preliminaries
	Area in cylindrical coordinates
	Graphs in codimension 1

	Setting of the problem
	Some examples
	An approximating sequence of maps with degree zero: cylinder
	A non-optimal approximating sequence of maps: catenoid union a flap
	The case of two discs

	Proof of Theorem 3.4
	References

