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These notes were born from gathering ideas for a seminar on nonlocal minimal surfaces that I
held at Stanford University during the Winter and Spring Quarters of 2024. They intentionally
focus on comparing fractional objects with their local counterparts (perimeter, surfaces, mean
curvature). For this reason, I think they will be helpful, particularly for readers already familiar
with the theory of classical minimal surfaces.

Further material on this topic that I have found useful preparing this notes can be found
in [CRS10,BV16,Gar19,Sav22,CS07,CDSV23,CFS23,CCS20].
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1. The fractional Laplacian and the Hs(Rn) spaces.

For s ∈ (0, 1) define

Hs(Rn) :=

{
u ∈ L2(Rn) : [u]2Hs(Rn) :=

∫∫
Rn×Rn

|u(x)− u(y)|2

|x− y|n+2s
dxdy < +∞

}
.
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This is a Hilbert space with its natural norm

∥u∥2Hs(Rn) = ∥u∥2L2(R2) + [u]2Hs(Rn).

One can also give a completely analogous definition on every open Ω ⊂ Rn, which is denoted
by Hs(Ω) and we will define in (3). These are called fractional Sobolev spaces, and they appear
naturally in many places in mathematics. For example

• They are the real interpolation spaces Hs(Ω) = (L2(Ω), H1(Ω))s,2 in the sense of
harmonic analysis.

• They are the trace spaces of classical Sobolev spaces. In particular, H1/2(∂Ω) is the trace

space of H1(Ω), and in general Hs−1/2(∂Ω) is the trace space of Hs(Ω) for s ∈ (0, 1).

• They are the Hilbert spaces associated with the fractional Laplacian

(−∆)su(x) =

∫
Rn

u(x)− u(y)

|x− y|n+2s
dy, (1)

which is a fractional power of the Laplacian −∆ in a strong and functional-analytic
sense.

By the symmetry in x, y one can rewrite

[u]2Hs(Rn) =

∫∫
Rn×Rn

|u(x)− u(y)|2

|x− y|n+2s
dxdy = 2

∫
Rn

u(−∆)su dx .

For Ω ⊂ Rn, we call localized energy the following quantity

ESob
s,Ω (u) :=

1

2

∫∫
Rn×Rn\Ωc×Ωc

|u(x)− u(y)|2

|x− y|n+2s
dxdy . (2)

Even though we call this the localized energy in Ω, this requires u to be defined in the whole Rn

to be computed. Thus, for example, in order to minimize this energy, we need to prescribe u in
Ωc and not only on ∂Ω.

Lemma 1.1. Let Ω ⊂ Rn open and fix u◦ ∈ Hs(Rn). Let

Hs
g(Ω) :=

{
u ∈ Hs(Ω) : u = g in Ωc

}
.

If u is a smooth critical point of u 7→ ESob
s,Ω on the space Hs

g(Ω), then (−∆)su = 0 in Ω. That is,

(−∆)su = 0 (in Ω) is the Euler-Lagrange equation of ESob
s,Ω .

Proof. For every φ ∈ C∞
c (Ω) we have

0 =
d

dε

∣∣∣∣
ε=0

ESob
s,Ω (u+ εφ) =

∫∫
Rn×Rn\Ωc×Ωc

(u(x)− u(y))(φ(x)− φ(y))

|x− y|n+2s
dxdy

=

∫∫
Rn×Rn

(u(x)− u(y))(φ(x)− φ(y))

|x− y|n+2s
dxdy

= 2

∫
Rn

φ(−∆)su dx = 2

∫
Ω
φ(−∆)su dx .

Since this holds for all φ ∈ C∞
c (Ω), this clearly implies that (−∆)su in Ω. □

Remark 1.2. If we had defined the localized energy by the (arguably more natural) formula

1

2

∫∫
Ω×Ω

|u(x)− u(y)|2

|x− y|n+2s
dxdy,
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the Euler-Lagrange equation would turn out to being∫
Ω

u(x)− u(y)

|x− y|n+2s
dy = 0,

for every x ∈ Ω. But the left-hand side is not the fractional Laplacian in the standard sense. For
example, with Dirichlet boundary conditions, this operator does not have the same eigenfunctions
of the Dirichlet Laplacian, but (1) does. Indeed, (2) is the correct localization of the fractional
Laplacian, which is a nonlocal operator.

Exercise 1.3. Prove that

[u]2Hs(Rn) = Cn,s

∫
Rn

|ξ|2s|û(ξ)|2 dξ.

In particular, the exercise above implies that

Hs(Rn) =

{
u ∈ L2(Rn) :

∫
Rn

(1 + |ξ|2s)|û|2 dξ < +∞
}
.

We will use this characterization a few times. One important feature of the Hs(Ω) spaces (this
will imply the existence of sets minimizing the s-perimeter and more) is the fractional version
of the Rellich–Kondrachov theorem.

For Ω ⊂ Rn set

Hs(Ω) =
{
u ∈ L2(Ω) : ESob

s,Ω (u) < +∞
}
, (3)

endowed with the norm ∥u∥2Hs(Ω) = ∥u∥L2(Ω) + ESob
s,Ω (u).

Theorem 1.4. Let s ∈ (0, 1). Then, Hs(B1) ↪→ L2(B1) is compact.

Proof. Let E : Hs(B1) → Hs(Rn) be an extension operator with Ev = v in B and

[Ev]2Hs(Rn) ≤ C∥v∥2Hs(B1)
, ∥Ev∥2L2(Rn) ≤ C∥v∥2L2(B1)

, supp(Ev) ⊂ B2.

Let {uk}k be a sequence in Hs(B1) with ∥uk∥Hs(B1) ≤ C. Up to subsequences that we do

not relabel, there exists u ∈ L2(B1) such that uk ⇀ u in L2(B1) and Euk ⇀ Eu in L2(B2). We
show that the convergence of this subsequence holds strongly in L2(B1).

Then, for R > 0 we have

∥uk − uℓ∥2L2(B1)
≤ C∥Euk − Euℓ∥2L2(Rn)

=

∫
Rn

|Êuk(ξ)− Êuℓ(ξ)|2 dξ

=

∫
BR

|Êuk(ξ)− Êuℓ(ξ)|2 dξ +
∫
Bc

R

|Êuk(ξ)− Êuℓ(ξ)|2 dξ .

For the second term∫
Bc

R

|Êuk(ξ)− Êuℓ(ξ)|2 dξ ≤ C

∫
Bc

R

|Êuk(ξ)|2 dξ

≤ C

R2s

∫
Rn

|Êuk(ξ)|2|ξ|2s dξ

=
C

R2s
[Euk]

2
Hs(Rn) ≤

C

R2s
∥uk∥2Hs(B) ≤

C

R2s
.
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On the other hand, for every ξ ∈ BR by the weak convergence Euk ⇀ Eu in L2(B2) we have

Êuk(ξ) =

∫
B2

e−ix·ξEuk dx →
∫
B2

e−ix·ξEudx ,

as k → ∞, since e−ix·ξ ∈ L2(B2). Moreover

|Êuk(ξ)| ≤
∫
B2

|uk| dx ≤ ∥uk∥L2(B)|B2|1/2 ≤ C ∈ L2(BR).

Hence, by dominated convergence for the first integral, we have∫
BR

|Êuk(ξ)− Êuℓ(ξ)|2 dξ → 0,

as k, ℓ → ∞. Then

lim sup
k≥ℓ→∞

∥uk − uℓ∥2L2(B1)
≤ C

R2s
.

Since this holds for all R > 0, this implies that uk → u strongly in L2(B1), and we are done. □

Moreover, the same proof gives the following stronger result.

Theorem 1.5. Let s, σ ∈ (0, 1) with s < σ. Then Hσ(B1) ↪→ Hs(B1) is compact.

Fractional (sub)harmonic functions satisfy a maximum principle similar to the one for classical
harmonic functions.

Theorem 1.6. If (−∆)su ≥ 0 in Ω and u ≥ 0 in Ωc, then u ≥ 0 in Ω.

Proof. The proof is almost trivial. Suppose that x◦ ∈ Ω realizing minΩ u satisfies u(x◦) < 0.
Then x◦ is a global minimum of u (since u ≥ 0 outside Ω) and hence u(x◦) ≤ u(z) for every
z ∈ Rn. Then

0 ≤ (−∆)su(x◦) = P.V.

∫
Rn

u(x◦)− u(y)

|x− y|n+2s
dy ≤ 0 ,

and hence u ≡ u(x◦) < 0, which contradicts that u is nonnegative outside Ω. □

Even though a global maximum principle holds, due to the nonlocality of the operator, any
form of local maximum principle does not hold.

Lemma 1.7 (Theorem 2.3.1 in [BV16]). There exists a nonconstant, bounded function u : Rn →
R with (−∆)su = 0 in B1 and u ≥ 0 in B1 such that infB1 u = 0.

1.1. Riesz potentials. There is another point of view to look at the fractional Sobolev spaces
Hs(Rn), which is valuable for gathering some intuition, that is the one of Riesz’ potentials. We
refer to [Gar19] and the references therein for a detailed discussion of Riesz’s potential.

Definition 1.8. (Riesz’ potential) Let 0 < α < n and u ∈ C∞
c (Rn). Then we call the operator

Iαu(x) := Cn,α

∫
Rn

u(y)

|x− y|n−α
dy = u ∗ Φα(x)

the Riesz potential of order α, where

Φα(x) :=
Cn,α

|x|n−α
.

Here Cn,α > 0 is a positive constant depending only on n and α, whose value is unimportant to
us. The only important property of Cn,α is that it is chosen so that (4) holds.
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The only property we will care about of the Riesz potentials is that Iαu inverts the fractional
α/2-Laplacian, as stated in the next proposition.

Proposition 1.9 ([Gar19]). Let u ∈ C∞
c (Rn). Then for every 0 < α < n there holds

Iα((−∆)α/2u) = (−∆)α/2(Iαu) = u . (4)

Equivalently, Φα is the fundamental solution of the fractional α/2-Laplacian.

Remark 1.10. Note that the constants are set so that, at least formally, for α = 2, I2 inverts
the standard Laplacian, and Φ2 is the Green’s function of Rn.

Now, we are in the position to rewrite the Hs-seminorm in a useful form.

Lemma 1.11. For s ∈ (0, 1) and u ∈ Hs(Rn) there holds

(1− s)[u]2Hs(Rn) = (1− s)

∫∫
Rn×Rn

|u(x)− u(y)|2

|x− y|n+2s
dxdy = cs

∫
Rn

|∇I1−su|2dx ,

where ∇ on the right-hand side denotes the classical weak gradient, and lims→1− cs = π/2.

For a proof of a more general fact, we refer to [Š20]. Nevertheless, we first give formal proof
and then an actual proof using the Fourier transform.

Formal proof. For u ∈ C∞
c (Rn) one can easily see that I1−su ∈ H1

0 (Rn), thus∫
Rn

|∇I1−su|2dx =
〈
∇I1−su,∇I1−su

〉
L2(Rn)

=
〈
I1−su,−∆(I1−su)

〉
L2(Rn)

= cs(1− s)
〈
I1−su, (−∆)1−

1−s
2 u
〉
L2(Rn)

= cs(1− s)
〈
(−∆)

1−s
2 (I1−su), (−∆)1−(1−s)u

〉
L2(Rn)

= cs(1− s)
〈
u, (−∆)su

〉
L2(Rn)

= (1− s)[u]2Hs(Rn),

where cs is a constant of s that remains bounded as s → 1−. □

Proof. We have ∫
Rn

|∇I1−su|2dx =

∫
Rn

|ξ|2|Î1−su|2 dξ

=

∫
Rn

|ξ|2| ̂u ∗ Φ1−s|2 dξ

=

∫
Rn

|ξ|2|û|2|Φ̂1−s|2 dξ .

But we can compute

Φ̂1−s(ξ) =

∫
Rn

e−ix·ξΦ1−s(x) dx = cn,s

∫
Rn

e−ix·ξ

|x|n−1+s
dx =

cn,s
|ξ|1−s

,

where the last equality can be easily seen by scaling and rotational invariance.
Thus ∫

Rn

|∇I1−su|2 = cn,s

∫
Rn

|ξ|2s|Fu|2 dξ = cn,s[u]
2
Hs(Rn) .

□
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Let us take a moment to comment on this formula. Assume for simplicity that that
supp(u) ⊂ BR, then for every x ∈ B2R one can rewrite (up to a constant that tends to 1
as s → 1)

I1−su(x) =
1− s

|∂B1|

∫
Rn

u(y − x)

|y|n−1+s
dy =

1− s

|∂B1|

∫
B3R

u(y)

|y|n−1+s
dy = u ∗ µs ,

where

µs(x) =
1− s

|∂B1|
χB3R

|x|n−1+s

is a sequence of kernels such that, as s → 1−

µs(Rn) = (1− s)

∫ 3R

0
ρ−s dρ = (3R)1−s → 1 ,

and for every δ > 0

µs(Rn \Bδ) = (1− s)

∫ 3R

δ
ρ−s dρ = (3R)1−s − δ1−s → 0 .

Remark 1.12. Be careful of the following: since we are convolving against a kernel that is not
compactly supported in Rn, it is not true that I1−su has compact support even if u does. This is
one point where one can see the non-locality of the seminorms, as the convolution instantly sees
u everywhere from every point in Rn. Nevertheless, even if the kernel has tails in the whole Rn,
since

1− s

|∂B1|

∫
B

(1−s)θ

1

|x|n−(1−s)
= (1− s)θ(1−s) → 1 , as s → 1− ,

the ”effective support” of the kernel we are convolving with is any power of (1− s). This means
that, as s → 1−, all the mass of the kernel is concentrating near zero at velocity polynomial in
(1− s), and all the effects that happen at a scale smaller than this will be neglected.

Hence (say, in B2R) I1−su is a convolution of u against an approximation of the identity, and
thus I1−su → u suitably. Now, looking again at (neglecting constants)

[u]2Hs(Rn) = ∥∇(I1−su)∥2L2(Rn) .

This formula allows us to write the Hs-seminorm of a fixed function as an H1-seminorm of a
(nonlocal, that is, against a kernel without compact support) approximation of u. From this
formula, you can probably gather intuition from what you already know about standard Sobolev
spaces.

2. The fractional perimeter.

We start with a motivating example to see why the Hs(Rn) spaces naturally induce a notion
of perimeter. Let E ⊂ Rn be smooth and bounded and {ρε}ε>0 fe a family of standard mollifiers.
For every p ∈ [1,∞) It is not hard to show that

εp−1[χE ∗ ρε]pW 1,p = εp−1

∫
Rn

|∇(χE ∗ ρε)|pdx → Hn−1(∂E) ,

as ε → 0. Indeed, at least formally, as ε → 0 all the mass concentrates around an ε-neighborhood
Σε of ∂E and |∇(χE ∗ ρε)| ∼ 1/ε there. Moreover |Σε| ∼ εHn−1(∂E), hence

εp−1

∫
Rn

|∇(χE ∗ ρε)|pdx ∼ εp−1|Σε|ε−p ∼ Hn−1(∂E) . (5)
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Surprisingly, the same works with the fractional Sobolev seminorms of Hs(Rn), but the
situation is very different for s ∈ (0, 1/2) or s ∈ (1/2, 1).

Case s ∈ (1/2, 1). Since Hs(Rn) is associated with an operator (the fractional Laplacian) of
order 2s, for the same reason in (5) the power of ε to expect in front of the seminorm is ε2s−1.
Indeed, it turns out that for s ∈ (1/2, 1) there holds (up to dimensional constants)

ε2s−1[χE ∗ ρε]2Hs → Hn−1(∂E) .

Hence, in this range, this recipe converges to the classical perimeter of E again.

Case s ∈ (0, 1/2). In this case, the situation is very different. First, one can see that
χE ∈ Hs(Rn) and we no longer need the mollifier! We will prove in Lemma 2.3 that characteristic
functions of regular sets are in Hs(Rn) for s ∈ (0, 1/2). Thus, for s ∈ (0, 1) one defines the s-
perimeter Pers(E) just as

Pers(E) := [χE ]
2
Hs/2(Rn)

,

without any regularization of the characteristic function.

Definition 2.1. For s ∈ (0, 1), the fractional perimeter (or s-perimeter) of a measurable
set E ⊂ Rn is defined as

Pers(E) =
1

2
[χE ]

2
Hs/2(Rn)

=

∫∫
E×Ec

1

|x− y|n+s
dxdy .

This object is not the classical perimeter and, indeed, is structurally different. For example,
it scales as

Pers(λE) = λn−sPers(E) ∀λ > 0 ,

instead of scaling as λn−1 as the classical perimeter does.

One can even define a localized version of the nonlocal perimeter in a bounded open set
Ω ⊂ Rn, in the same spirit of the localized fractional Sobolev spaces Hs(Ω). This will be useful
because, for example, we would like to say that a hyperplane in Rn is an s-minimal surface even
though a half-space has infinite s-perimeter for the definition above.

Definition 2.2. For s ∈ (0, 1), the fractional perimeter (or s-perimeter) of a measurable
set E ⊂ Rn in a bounded, open set Ω is defined as

Pers(E,Ω) := ESob
s/2,Ω(χE) =

1

2

∫∫
Rn×Rn\Ωc×Ωc

|χE(x)− χE(y)|2

|x− y|n+s
dxdy .

Letting

Js(A,B) =

∫∫
A×B

1

|x− y|n+s
dxdy

be the interaction between the sets A and B, one can write

Pers(E)

= Js(E ∩ Ω, Ec ∩ Ω) + Js(E ∩ Ω, Ec ∩ Ωc) + Js(E ∩ Ωc, Ec ∩ Ω) + Js(E ∩ Ωc, Ec ∩ Ωc) . (6)

Among the four terms on the right-hand side, the first three terms consider interactions
in which at least one contribution comes from Ω, but the last term is different since it only
considers contributions coming from outside Ω. It would, therefore, be natural to define the
localized version of the fractional perimeter as the sum of the first three terms.
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Indeed, this is what we have done in Definition 2.2 since, with our definition

Pers(E,Ω) =
1

2
ESob
s/2,Ω(χE)

= Js(E ∩ Ω, Ec ∩ Ω) + Js(E ∩ Ω, Ec ∩ Ωc) + Js(E ∩ Ωc, Ec ∩ Ω)

is exactly the sum of the first three terms in (6).

It is important to notice that if E ⊂ Ω or Ec ⊂ Ω then Pers(E,Ω) = Pers(E).

Let us start by proving that smooth sets have finite s-perimeter for every s ∈ (0, 1).

Lemma 2.3. Let E ⊂ Rn be bounded and smooth and s ∈ (0, 1). Then

(i) χE ∈ Hs/2(Rn). That is, E has finite s-perimeter.

(ii) There holds

lim sup
s→1−

(1− s)Pers(E) ≤ ωn−1Per(E) ,

for some dimensional C > 0.

Proof. We have

1

2
[χE ]

2
Hs/2(Rn)

=

∫∫
E×Ec

1

|x− y|n+s
dxdy =

∫
E
dx

∫
Ec

1

|x− y|n+s
dy

≤
∫
E
dx

∫
BR(x)c

1

|x− y|n+s
dy ,

where R := dist(x, ∂E) and this is well defined since ∂E is a compact set. But∫
BR(x)c

1

|x− y|n+s
dy = ωn−1

∫ ∞

R

1

ρn+s
ρn−1 dρ = ωn−1

∫ ∞

R

dρ

ρ1+s
=

ωn−1R
−s

s
.

For t ∈ (0, diam(E)) set Et := {x ∈ E : dist(x, ∂E) < t}, this is an open set with Lipschitz
boundary. Fix δ > 0, then there is t∗ (depending on E and δ) such that |∂Et| ≤ (1 + δ)|∂E| for
t ∈ (0, t∗). Then, by the coarea formula

[χE ]
2
Hs/2(Rn)

≤ ωn−1

s

∫
E

1

dist(x, ∂E)s
dx

=
ωn−1

s

∫
Et∗

1

dist(x, ∂E)s
dx+

ωn−1

s

∫
E\Et∗

1

dist(x, ∂E)s
dx

≤ ωn−1

s

∫ t∗

0
t−s|∂Et| dt+

ωn−1

s
t−s
∗ |E|

≤ ωn−1

s(1− s)
(1 + δ)|∂E|t1−s

∗ +
ωn−1

s
t−s
∗ |E| < +∞.

This proves (i). Moreover, multiplying by (1− s) and taking s → 1− gives

lim sup
s↗1

(1− s)Pers(E) ≤ (1 + δ)ωn−1Per(E) ,

and letting δ → 0+ gives (ii). □

With more effort, one can strengthen part (ii) into the convergence of the s-perimeter to the
classical one as s → 1−. This result is originally due to Dávila in [D0́2].
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Theorem 2.4. Let E ⊂ Rn be a set of finite perimeter and Ω be a bounded open set with
regular boundary. Then, there exists a dimensional constant cn > 0 such that

lim
s→1−

(1− s)Pers(E,Ω) = cnPer(E,Ω) .

Sketch of the proof in [D0́2]. The proof is elementary but in full details not ”easy”. To simplify
the argument, let us assume Ω ≡ Rn and E is bounded, say E ⊂ BR. Actually, we will show
in Step 1 in the proof given after this sketch that this is not restrictive and actually implies the
general result. Then

(1− s)Pers(E) =
1− s

2

∫∫
|χE(x)− χE(y)|2

|x− y|n+s
dxdy

=
1− s

4

∫∫
|χE(x)− χE(y)|

|x− y|n+s
dxdy

=
ωn−1

4

∫∫
|χE(x)− χE(y)|

|x− y|
· 1− s

ωn−1|x− y|n+s−1
dxdy

=
ωn−1

4

∫ (∫
B10R

|χE(y + z)− χE(y)|
|z|

· 1− s

ωn−1|z|n+s−1
dz

)
dy .

Note that the sequence of measures

µs :=
(1− s)χB10R

ωn−1|z|n+s−1
dz

satisfies, as s → 1−, that

µs(Rn) = (1− s)

∫ 10R

0
ρ−s dρ = (10R)1−s → 1, (7)

and for every δ > 0

µs(Rn \Bδ) = (1− s)

∫ 10R

δ
ρ−s dρ = (10R)1−s − δ1−s → 0. (8)

Then, the result follows from proving an even more general fact on BV functions: for every
u ∈ BV(Rn) and {µs}s>0 sequence of radial kernels satisfying (7) and (8) there holds(∫

Rn

|u(x)− u(y)|
|x− y|

µs(x− y) dx

)
dy ⇀ cn|Du| ,

weakly in the sense of Radon measures. □

To carry out the proof in full generality, we will need the following approximation result. See
Proposition 15 in [ADPM11] for a proof.

Lemma 2.5. Let E ⊂ Rn be a set with finite perimeter in Ω, and let s ∈ (0, 1). Then, for every
ε > 0 there exists a polyhedral set Π ⊂ Rn (whose choice is independent of s) such that

|(E△Π) ∩ Ω| < ε, |Per(E,Ω)− Per(Π,Ω)| < ε, dimH(∂Π ∩ ∂Ω) = n− 2 , (9)

and

(1− s)|Pers(E,Ω)− Pers(Π,Ω)| < ε . (10)

Proof. All the estimates in (9) are Proposition 15 in [ADPM11]; then (10) follows by
interpolation using (9). □
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Proof of Theorem 2.4. We divide the proof into four steps.

Step 1. We can assume Ω ≡ Rn and E bounded.

Assuming we have proved the result for Ω ≡ Rn and E bounded, we show how it implies the
real one. Fix ε > 0, and let Π be the polyhedral approximation of E given by Lemma 2.5.

Write

Pers(Π,Ω) =
1

2

(
Pers(Π∩Ω)+Pers(Π

c∩Ω)−Pers(Ω)
)
+Js(Π∩Ω,Πc∩Ωc)+Js(Π∩Ωc,Πc∩Ω) .

Since all the sets Π ∩ Ω,Πc ∩ Ω and Ω are bounded, we have

lim
s→1−

1− s

2

(
Pers(Π ∩ Ω) + Pers(Π

c ∩ Ω)− Pers(Ω)
)

=
1

2

(
Per(Π ∩ Ω) + Per(Πc ∩ Ω)− Per(Ω)

)
= cnPer(Π,Ω),

where we have used the transversality condition of the boundaries to infer Hn−1(∂Π, ∂Ω) = 0.
Moreover, again, by the transversality, one can check that

lim
s→1−

(1− s)Js(Π ∩ Ω,Πc ∩ Ωc) = lim
s→1−

(1− s)Js(Π ∩ Ωc,Πc ∩ Ω) = 0.

Indeed, in both integrals, the singularity of the kernel happens only on points in ∂Π × ∂Ω,
which is (n − 2)-dimensional. Then, an argument with the coarea formula similar to the proof
of Lemma 2.3 shows that both limits tend to zero.

Then, we have proved that for Π there holds

lim
s→1−

(1− s)Pers(Π,Ω) = cnPer(Π,Ω) .

But since

(1− s)|Pers(E,Ω)− Pers(Π,Ω)| < ε .

holds for every s ∈ (0, 1), we get by the triangle inequality

lim sup
s→1−

∣∣(1− s)Pers(E,Ω)− cnPer(E,Ω)
∣∣ ≤ ε+ cnε .

As this holds for every ε > 0, this proved the result.

Step 2. Proof for n = 1.
We have to show: for F ∈ BV(R) (i.e. a finite union of intervals) there holds

lim
s→1−

(1− s)Pers(F ) = #{points in ∂F}.

Indeed, for just one interval I = [a, b] ⊂ R a direct computation shows

(1− s)

∫
I

∫
Ic

1

|x− y|1+s
dxdy =

2(b− a)1−s

s
→ 2,
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as s → 1−. Moreover, if F ∈ BV(R) then F is a finite union of disjoint intervals F =
⋃N

k=1 Ik.
Then

Pers(F ) = Js(F, F
c) = Js

(
N⋃
k=1

Ik,

(
N⋃
k=1

Ik

)c)

=
N∑
k=1

Js(Ik, I
c
k \
⋃
k ̸=ℓ

Iℓ) =
N∑
k=1

Js(Ik, I
c
k)− 2

∑
k ̸=ℓ

Js(Ik, Iℓ)

=

N∑
k=1

Pers(Ik)− 2
∑
k ̸=ℓ

Js(Ik, Iℓ) .

Multiplying by (1 − s) and sending s → 1−, all the cross interactions with k ̸= ℓ tend to zero
since the intervals are at a positive distance, and we get

lim
s→1−

(1− s)Pers(F ) = 2N,

which is the number of points in ∂F as desired.

Step 3. Slice the fractional perimeter along lines.

Since χE ∈ BV(Rn) then χE ∈ Hs/2(Rn), hence

Pers(E) = Cn,s

∫
Gn
1

dL

∫
L⊥

PerL+h
s (E) dHn−1(h), (11)

where Gn
1 is the linear Grassmanian of lines, Cn,s > 0 is a constant that stays bounded as s → 1−

and PerL+h
s (E) is the 1-dimensional s-perimeter of E restricted to L + h. This follows from a

more general formula allowing to slice fractional seminorms with k-dimensional subspaces, see
for example, [CFP24, Theorem 2.12].

In the specific case of lines (k = 1), it can also be proved using just polar coordinates that∫∫
Rn×Rn

f(x, y) dxdy = Cn

∫
Gn
1

dL

∫
L⊥

dh

∫∫
(L+h)×(L+h)

f(x, y)|x− y|n−1 dH1(x)dH1(y)

for every f ≥ 0. When f(x, y) = χE(x)χEc(y), this formula also gives (11).

Step 4. Reconstruct the perimeter of E with a Crofton formula.

For example (Theorem 3.2.26 in [Fed87]): if M is an (n− 1)-dimensional rectifiable set, then

Hn−1(M) = βn

∫
Gn
1

dL

∫
L⊥

#{M ∩ (L+ y)} dHn−1(y) .

Combining these three steps, we can conclude the proof. By Step 1, we can assume that E is
bounded and Ω ≡ Rn. Since E is bounded, by translating and scaling, we can, with no loss of
generality, assume that E ⊂ B1.

Let dL be the standard measure on the linear Grassmanian Gn
1 . Since E has finite s-perimeter,

it follows from (11) that almost every restriction E|(L+h), with respect to the tensor product

measure dP := dL⊗Hn−1(L⊥), has finite (1-dimensional) s-perimeter in L+ h.
Hence, for almost every L + h, the set E|(L+h) is a finite union of intervals. For every such

L + h in this set of full measure, since E is bounded, by the interpolation inequality between
W s,1(R) and BV(R) (or, essentially by the proof of Lemma 2.3 for n = 1) we have, for some
constant C > 0 independent of s that

(1− s)PerL+h
s (E|(L+h)) ≤ C Per(E|(L+h), L+ h) = C#{∂E ∩ (L+ h)} ∈ L1(dP ) ,
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since by the definition of dP and Crofton’s formula∫
Gn
1

dL

∫
L⊥

#{∂E ∩ (L+ y)} dHn−1(y) = CnPer(E) < +∞ .

Moreover, for every L+ h in this set of full measure, by Step 1

lim
s→1−

(1− s)PerL+h
s (E|(L+h)) = #{∂E ∩ (L+ h)} .

Thus, by dominated convergence

lim
s→1−

(1− s)Pers(E) = lim
s→1−

Cn,s

∫
Gn
1

dL

∫
L⊥

(1− s)PerL+h
s (E) dHn−1(h)

= Cn,1

∫
Gn
1

dL

∫
L⊥

#{∂E ∩ P} dHn−1(h)

= cnPer(E) ,

as desired. □

Remark 2.6. It was proved by Ambrosio, De Philippis, and Martinazzi in [ADPM11] that the
s-perimeter even Γ-converges to the classical perimeter as s → 1−, that is

Γ− lim
s→1−

(1− s)Pers(E,Ω) = cnPer(E,Ω) .

2.1. Perimeter minimizers. This subsection is entirely devoted to the properties of perimeter
minimizers, that is, sets that locally minimize the fractional perimeter.

It will be useful in a few places that the fractional perimeter satisfies an isoperimetric
inequality analogous to the classical one. To prove it, it is convenient to name the local part of
the fractional perimeter. Let

Pers|Ω(E) :=

∫∫
Ω×Ω

|χE(x)− χE(y)|2

|x− y|n+s
dxdy .

We stress that Pers|Ω(E) ̸= Pers(E,Ω), and actually Pers|Ω(E) ≤ Pers(E,Ω), with equality
iff E ∩ Ω = ∅ or Ec ∩ Ω = ∅.

Theorem 2.7 (Fractional isoperimetric inequality). There is a constant C = C(n, s) > 0
such that, for every E set of finite s-perimeter there holds

min{|E|, |Ec|}
n−s
n ≤ C Pers(E) .

Proof. The proof adapts to the fractional case of the classical isoperimetric inequality. See, for
example, [AFP00, Theorem 3.46].

By the fractional Poincaré inequality (which, for example, can be proved by compactness as
the classical Poincaré inequality using Theorem 1.4), for every QR = QR(x) hypercube of side
R we have that ∫

QR

|u− uQR
|2 dx ≤ CRs

∫∫
QR×QR

|u(x)− u(y)|2

|x− y|n+s
dxdy ,

where uQR
= 1

|QR|
∫
QR

u dx.

Plugging u = χE gives∫
QR

∣∣∣∣χE − |E ∩QR|
|QR|

∣∣∣∣2 dx ≤ CRsPers|QR
(E) .
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Denoting mx(R) := |E∩QR(x)|
|QR| , the left hand side equals to

|E ∩QR(x)|(1−mx(R))2 + (|QR| − |E ∩QR(x)|)mx(R)2

= |QR|
(
mx(R)(1−mx(R)2) + (1−mx(R))mx(R)2

)
= |QR|mx(R)(1−mx(R)),

thus

mx(R)(1−mx(R)) ≤ C◦
Rn−s

Pers|QR
(E),

for some C◦ > 0 dimensional constant.
Now choose R∗ > 0, depending on E and C◦, such that

C◦

Rn−s
∗

Pers(E) =
1

100
. (12)

With this choice, m∗
x := mx(R∗) satisfies m

∗
x(1−m∗

x) ∈ [0, 1/10)∪ (9/10, 1]. Moreover, since the
map x 7→ m∗

x(R∗) is continuous, either m∗
x ∈ [0, 1/10) for all x ∈ Rn or m∗

x ∈ (9/10, 1] for all
x ∈ Rn. Up to changing E with Ec, we can assume m∗

x ∈ [0, 1/10). Covering almost all of Rn

with disjoint open cubes {QR∗(xi)}i of side R∗, we get

|E| =
∑
i

|E ∩QR∗(xi)| = Rn
∗
∑
i

mxi(R∗)

≤ CRs
∗
∑
i

Pers|QR∗ (xi)(E) ≤ CRs
∗Pers(E) = CPers(E)

n
n−s ,

where in the last equality, we have used the definition of R∗ from (12). □

Definition 2.8. Let Ω ⊂ Rn be a bounded open set, we say that E ⊂ Rn is a minimizer
of the s-perimeter (or an s-minimizer) in Ω if

Pers(E,Ω) ≤ Pers(F,Ω) ,

for every measurable F such that E = F outside Ω.

Now, we list here some classical properties of fractional perimeter minimizers for the reader
to compare with the classical ones. We omit the proof of most; we only include few proofs to
serve as a comparison with the proofs in the classical case. Most of the proofs can be found
in [Sav22], [CF17], and [CRS10].

• (Lower semicontinuity) Let Ek → E in L1
loc(B1), then

Pers(E,B1) ≤ lim inf
k→∞

Pers(Ek, B1) .

• (Compactness, see also Theorem 1.4) If Pers(Ek, B1) ≤ C uniformly in k, then there is
a subsequence of the Ek that converges in L1(B1).

• (Existence) Let E◦ ⊂ Rn be a set with locally finite s-perimeter in B1. Then, there exists
a set E minimizing the s-perimeter Pers(·, B1) among all sets E with E \B1 = E◦ \B1.

• (Density estimate) Let E ⊂ B1 be a minimizer of the s-perimeter in B1 and1 0 ∈ ∂E.
Then there is c = c(n, s) > 0 such that

|E ∩BR(0)| ≥ c|BR| and |BR(0) \ E| ≥ c|BR| .
1Here we understand ∂E as the complement of points of density 1 and 0.
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Proof. The proof is taken from [Sav22]. By scaling invariance, we prove the statement
just for R = 1. Moreover, since being an s-minimal surface is invariant under
complementation, we just show the first inequality. Let

V (r) := |E ∩Br| and A(r) := Hn−1(E ∩ ∂Br) = V ′(r) .

By the fractional isoperimetric inequality of Theorem 2.7

|E ∩Br|
n−s
n = V (r)

n−s
n ≤ CPers(E ∩Br) .

Testing the minimality of E with the competitor E \Br gives

J (E ∩Br, E
c) ≤ J (E ∩Br, E \Br) ,

hence

Pers(E ∩Br) = J (E ∩Br, (E ∩Br)
c) = J (E ∩Br, E

c) + J (E ∩Br, E \Br)

≤ 2J (E ∩Br, E \Br)

≤ 2J (E ∩Br, B
c
r) .

Now for x ∈ E ∩Br note that Br−|x|(x) ⊂ Br, thus we have

V (r)
n−s
n ≤ CJ (E ∩Br, B

c
r) =

∫
E∩Br

∫
Bc

r

1

|x− y|n+s
dydx

≤ C

∫
E∩Br

∫
Br−|x|(x)c

1

|x− y|n+s
dxdy

= C

∫
E∩Br

∫ ∞

r−|x|

1

ρn+s
ρn−1dxdy = C

∫
E∩Br

1

(r − |x|)s
dy ,

and by polar coordinates again

V (r)
n−s
n ≤ C

∫ r

0

A(ρ)

(r − ρ)s
dρ . (13)

(Here see Remark 2.9). Integrating on [0, R] gives∫ R

0
V (r)

n−s
n dr ≤ C

∫ R

0
A(r)(R− r)1−sdr ≤ CR1−sV (R) . (14)

Now set Rk := 1
2 + 2−k and apply (14) to R = Rk to get∫ Rk

0
V (r)

n−s
n dr ≤ CV (Rk) ,

but since V (R) ≥ V (Rk+1) on [Rk+1, Rk]

2−(k+1)V (Rk+1)
n−s
n = (Rk −Rk+1)V (Rk+1)

n−s
n ≤

∫ Rk

Rk+1

V (r)
n−s
n dr ≤ CV (Rk) ,

or

V (Rk+1) ≤ C(2kV (Rk))
1+ 1

n−s = C2θkV (Rk)
θ ,

for some θ > 1 depending on n and s. Iterating this inequality, one can get

V (Rk) ≤ C(C◦V (R0))
θk = C(C◦V (1))θ

k
,

for some C◦ = C◦(n, s). This implies that if V (1) = |E∩B1| ≤ 1/(2C◦) then V (Rk) → 0
as k → ∞, and since R∞ = 1/2 we would get

V (1/2) = |E ∩B1/2| = 0 ,
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and this implies 0 /∈ ∂E. This concludes the proof with c = 1/(2C◦).
□

Remark 2.9. Note that (13) is the nonlocal version of the differential inequality

V (r)
n−1
n ≤ CnA(r) ,

which is used in the proof of the density estimate for classical minimal sets and is obtained
by testing minimality against ∂BR(0) ∩ E.

• (Compactness of minimizers, [CRS10]) Let Ek be a sequence of s-perimeter minimizers
in B1, and assume that

Ek → E in L1
loc(Rn) .

Then E in s-minimizer in B1.

Proof. Fix F any competitor for E, that is a set F ⊂ Rn such that F \ B1 = E \ B1.
Define

Fk :=

{
F in B1,

Ek in Bc
1.

This is a competitor for Ek, and by the minimality of Ek we know Pers(Ek, B1) ≤
Pers(Fk, B1). We claim that

Pers(Fk, B1) → Pers(F,B1) . (15)

Indeed, using the definition of Fk and the fact that F = E outside B1 we get∣∣∣Pers(Fk, B1)− Pers(F,B1)
∣∣∣ ≤ Js((Ek△E) ∩Bc

1, B1)

=

∫∫
B1×Bc

1

χEk△E(y)

|x− y|n+s
dxdy .

Since Ek → E in L1
loc(Rn), up to subsequences, we have that χEk△E → 0 almost

everywhere. Moreover, the convergence is dominated since

χEk△E(y)

|x− y|n+s
≤ 1

|x− y|n+s
∈ L1(B1 ×Bc

1) .

Thus, by dominated convergence, we get (15). Then, by the lower semicontinuity of the
s-perimeter (along the chosen subsequence)

Pers(E,B1) ≤ lim inf
k→∞

Pers(Ek, B1) ≤ lim inf
k→∞

Pers(Fk, B1) = Pers(F,B1) .

That is, E is an s-minimizer in B1. □

• (Maximum principle, [DSV23]) Let E,F ⊂ Rn be s-minimal sets in B1 with E ⊆ F . If
there is x such that x ∈ ∂E ∩ ∂F , then E ≡ F .

Remark 2.10. This maximum principle is the nonlocal version of the classical result
by Leon Simon for classical perimeter minimizers. If both E and F were known to be
smooth near the touching point x, then the proof of this would be elementary using the
first variation formula. Nevertheless, the result in [DSV23] is nontrivial since it allows
the surfaces to touch at an irregular boundary point.

Moreover, there is also a complete analog of the monotonicity formula and tangent cones to
minimal sets. All this was developed in [CRS10]. We refer to Section 2.5 for a precise statement
of the monotonicity formula and definition of the Caffarelli-Silvestre extension.
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• (Monotonicity formula) Let UE be the Caffarelli-Silvestre extension of χE − χEc as in
Theorem 2.22. If E is a local minimizer of the s-perimeter and is smooth, then for every
x ∈ ∂E the function

ΦE(r) :=
1

rn−s

∫
B+

r (x,0)
z1−s|∇UE |2 dxdz is nondecreasing in r ,

and is constant if and only if E is a cone.

• (Tangent cones, see Corollary 3.3 in [Sav22]) If E minimizes the s-perimeter in B1 and
x ∈ ∂E ∩B1, then a subsequence of the blow-ups E−x

r as r → 0+ converges in L1
loc(Rn)

to a minimal cone.

• (Regularity of flat minimizers) Let E be an s-perimeter minimizer and x ∈ ∂E be such
that the blow-up cone at x is a half-space. Then E is smooth in a neighborhood of x.

Proof. As the blow-up cone is a half-space, the fact that then E is C1,α graph (in a
neighborhood of x) for some α is proved in [CRS10]. Then, a combination of the two
works [FV17] (E Lipschitz =⇒ E is C1,α for every α < s) and [BFV14] (E is C1,α for
some α > s/2 =⇒ E is C∞) shows that it is actually smooth. □

• (Classification of minimal cones) There is δ = δ(n) > 0 such that, for s ∈ (1− δ, 1) and
2 ≤ n ≤ 7 the only s-minimizing cones are the half-spaces. Moreover, this is sharp as
the Simons cone is minimizing the s-perimeter in dimension n = 8.

Proof. For n = 2 and every s ∈ (0, 1) this was shown by Savin and Valdinoci in [SV13a].
Then, it was proved for 2 ≤ n ≤ 7 and s close to 1 by Caffarelli and Valdinoci
in [CV13]. □

• (Full regularity of minimizers) Let n ≥ 2 and E ⊂ Rn be an s-minimal surface. There is
δ = δ(n) > 0 such that for s ∈ (1− δ, 1), then:
(1) if n ≤ 7 then ∂E is smooth.

(2) if n ≥ 8 then Σ := ∂E is smooth outside a closed set sing(Σ) ⊂ ∂E with
Hα(sing(Σ)) = 0 for every α > n− 8.

2.1.1. Minimal cones vs stable cones. As pointed out above, for s close to 1 and 2 ≤ n ≤ 7, the
classification of s-minimizing cones in Rn is well understood. Nevertheless, the classification of
stable s-minimal cones in Rn in this dimension range is (expected, but) a much more complex
issue. Indeed, the classification of stable cones in low dimensions turns out to be more challenging
for s ∈ (0, 1) than in the classical case s = 1.

At present, the fact that every stable s-minimal cone in Rn is flat is known for n = 2 and every
s ∈ (0, 1) by a result of Savin and Valdinoci in [SV13b], for n = 3 and s close to 1 by Cabré,
Cinti and Serra in [CCS20], and for n = 4 and s close to 1 by a recent preprint [CDSV23] by
Chan, Dipierro, Serra and Valdinoci. Moreover, these three results use very different techniques
for the proof.

Evidence that classifying stable s-minimal cones is a very hard problem can be taken from
the following result. It is proved by Dávila, del Pino, and Wei in [DdPW18] that there exist
nonflat stable, s-minimal Lawson cones in R7 for small s. This suggests that unlike the classical
theory (or the case s close to 1), the flatness of s-minimizing cones may not hold in dimension 7
for s small. Hence, all the proofs of the classification of stable cones must be sharp to take into
account that s small and s close to 1 could (and, in many cases, will) have different behavior
regarding this classification. For this reason, the proofs presented above of the classification of
stable s-minimal cones require technical and sharp estimates with respect to the dependence on
s.
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2.2. First variation and nonlocal mean curvature. Now we are in the position to define
the nonlocal mean curvature.

Definition 2.11 (Nonlocal mean curvature). Let x ∈ ∂E, we call

Hs,E(x) := P.V.

∫
Rn

χEc(y)− χE(y)

|x− y|n+s
dy

the s-mean curvature of E at x.

We will sometimes denote Hs,E just by Hs when the dependence on the set E is clear from
the context.

Note that, since the kernel |x − y|−(n+s) is singular near the diagonal, the principal value is
needed even for smooth sets, since for x ∈ ∂E∫

E

1

|x− y|n+s
dy =

∫
Ec

1

|x− y|n+s
dy = +∞ .

2.2.1. Nonlocal mean curvature and excess. Let E ⊂ Rn and denote by Σ := ∂E its boundary.
This subsection describes how the nonlocal mean curvature Hs(x) at a boundary point x ∈ Σ
relates to the classical mean curvature HΣ(x).

Definition 2.12 (Excess). For a boundary point x ∈ Σ = ∂E we call

exE(x, r) :=
1

|∂B1|rn−1

∫
∂Br(x)

(χEc − χE) dσ

the excess of E at x.

One can easily see that |ex(x, r)| ≤ 1 and actually it expands as

exE(x, r) = HΣ(x)r + o(r2) , (16)

where HΣ is (classical) the mean curvature of Σ with respect ot the inner normal. In particular,
this implies that

HΣ(x) = lim
r→0+

exE(x, r)

r
.

Exercise 2.13. Prove the expansion formula (16) for the excess arguing as follows. Since this
is a local statement, up to translation and rotation, assume that in a neighborhood of x, ∂E is a
graph of a function u : Rn−1 → R with u(0) = 0 and ∇u(0) = 0. Then, write the desired integral
in terms of u, use a Taylor expansion in r and that Hgraph(u)(0) = ∆u(0) to conclude.

By the very definition of Hs,E , one can observe that

Hs,E(x) = P.V.

∫
Rn

χEc(y)− χE(y)

|x− y|n+s
dy

=

∫ ∞

0

∫
∂Br(x)

χEc − χE

rn+s
dσdr = |∂B1|

∫ ∞

0

exE(x, r)

r1+s
dr ,

provided that the limit in the principal value exists.

So, the nonlocal mean curvature is just a weighted average of the excess with arbitrarily
big radii. As the following proposition shows, this formula makes it easy to conclude that the
nonlocal mean curvature converges (at least pointwise) to the classical mean curvature.
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Proposition 2.14. There is a dimensional constant cn > 0 such that, for every x ∈ ∂E

lim
s↗1

(1− s)Hs,E(x) = cnH∂E(x).

Proof. We have (we neglect dimensional constants in front of the integrals)

(1− s)Hs,E(x) =

∫ ∞

0

exE(x, r)

r

(1− s)

rs
dr

=

∫ 1

0

exE(x, r)

r

(1− s)

rs
dr + (1− s)

∫ ∞

1

exE(x, r)

r1+s
dr.

The second integral tends to zero as s → 1− since, just by using |ex(x, r)| ≤ 1 we get∣∣∣∣(1− s)

∫ ∞

1

exE(x, r)

r1+s
dr

∣∣∣∣ ≤ (1− s)

∫ ∞

1
r−1−sdr = 1− s → 0.

For the first integral note that fs(r) := (1 − s)r−s is a sequence of functions on (0, 1] with
mass equals 1 for every s, and that converges to zero everywhere on (0, 1]. Then, by a standard
argument of weak compactness of sequence of measures with bounded mass, we have fs ⇀ δ{0}
as s → 1− in duality against C0([0, 1]), thus

lim
s→1−

(1− s)Hs,E(x) = lim
s→1−

∫ 1

0

exE(x, r)

r
fs(r) dr = lim

r→0+

exE(x, r)

r
= H∂E(x) ,

where in the last line, we have used formula (16) for the expansion of the excess. □

Actually, more than Proposition 2.14 is true. Indeed, if ∂E is the graph of some C2,α function
u in B1 in some direction, then the convergence in Proposition 2.14 holds uniformly in x as

sup
B1/2

∣∣cnH∂E(x)− (1− s)Hs,E(x)
∣∣ ≤ C(1− s)[u]C2,α(B1) ,

for some C = C(α, n) > 0. See [CV13, Lemma 9] for a proof of this fact.

2.2.2. First variation formula. Recall the definition of the s-perimeter

Pers(E) = [χE ]
2
Hs/2 =

∫∫
E×Ec

1

|x− y|n+s
dxdy

:=

∫∫
E×Ec

Ks(x, y) dxdy ,

where we have let Ks(x, y) :=
1

|x−y|n+s .

To prove that Hs,E is actually the first variation of the s-perimeter, we will need to
approximate the kernel Ks with a sequence Kε

s of non-singular ones and then send ε → 0+

just at the end. Let, for example

Kε
s(x, y) =

χ{|x−y|≥ε}

|x− y|n+s
.
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Proposition 2.15 (First variation). Let E ⊂ Rn be a set with finite s-perimeter and
ϕX
t : Rn → Rn be a smooth one-parameter family of diffeomorphisms such that ϕX

0 (x) = x.

Let X := ∂
∂t

∣∣
t=0

ϕX
t be its velocity field, and assume X has compact support. Then

d

dt

∣∣∣∣
t=0

Pers(ϕ
X
t (E)) =

∫
∂E

Hs,E(N ·X) dσ,

where N is the outer unit normal from E on ∂E.

Proof. Let Kε
s be a non-singular approximation of Ks as above, and let

Perεs(E) :=

∫∫
E×Ec

Kε
s(x, y) dxdy .

Write Et := ϕX
t (E). Then, by Lemma 4.1 we get

d

dt

∣∣∣∣
t=0

Perεs(Et) =
d

dt

∣∣∣∣
t=0

∫
Et

(∫
Ec

t

Kε
s(x, y) dx

)
dy

=

∫
E

d

dt

∣∣∣∣
t=0

(∫
Ec

t

Kε
s(x, y) dx

)
dy +

∫
∂E

(∫
Ec

Kε
s(x, y) dx

)
N ·X dσy

=

∫
E

(∫
∂E

Kε
s(x, y) dσx

)
(−N) ·X dy +

∫
∂E

(∫
Ec

Kε
s(x, y) dx

)
N ·X dσy

=

∫
∂E

(∫
Rn

Kε
s(x, y)

(
χEc(y)− χE(y)

)
dy

)
(N ·X) dσx,

where in the last line, we have used in an essential way that the kernel Kε
s is symmetric.

Now, we would like to take ε → 0+ inside the derivative to get

d

dt

∣∣∣∣
t=0

Pers(Et) =

∫
∂E

(
P.V.

∫
Rn

Ks(x, y)
(
χEc(y)− χE(y)

)
dy

)
(N ·X) dσx

=

∫
∂E

Hs,E(x)(N ·X) dσx.

but this requires a bit of care since we are exchanging the limit in ε and the derivative in t.

Set
φε(t) := Perεs(Et) , and φ(t) := Pers(Et),

so that φε ↑ φ monotonically, since the approximated kernels Kε
s monotonically converge to Ks

from below. Moreover, for a smooth set F and x ∈ ∂F let also

Hε
s,F (x) :=

∫
Rn

Kε
s(x, y)

(
χF c(y)− χF (y)

)
dy.

Here, there is no need for the principal value since Kε
s is nonsingular.

We know by the first part of this proof, applied at time t instead of only t = 0, that

φ′
ε(t) =

∫
∂Et

Hε
s,Et

(Nt ·X) dσ, (17)

where Nt is the outer unit normal to Et. If we can show that the derivatives φ′
ε converge

uniformly in a neighborhood of zero, that is

lim
ε→0+

sup
|t|≤δ

∣∣∣∣φ′
ε(t)−

∫
∂Et

Hs,Et(Nt ·X) dσ

∣∣∣∣ = 0. (18)
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Then, we can conclude by using standard arguments from real analysis.
By (17) we have

φ′
ε(t)−

∫
∂Et

Hs,Et(Nt ·X) dσ =

∫
∂Et

(
Hε

s,Et
−Hs,Et

)
(Nt ·X) dσ .

Moreover, analogously to the proof of Proposition 2.14

Hε
s,Et

(x)−Hs,Et(x) = P.V.

∫
Bε(x)

χEc
t
(y)− χEt(y)

|x− y|n+s
dy = |∂B1|

∫ ε

0

exEt(x, r)

r1+s
dr .

Note that, by the proof of (16) (that is, following Exercise 2.13 and using Taylor with the
exact remainder at second order), if ∂F is graphical around z ∈ ∂F in BR(z), then for r ≤ R/2

sup
x∈BR/2(z)∩∂F

exF (x, r)

r
≤ C(∂F,R, z) ,

where C(∂F,R, z) depends only on the C2 norm of ∂F in BR(z).

Let K be a compact set such that supp(X) ⊂⊂ K. Then, taking δ = δ(X) > 0 sufficiently
small so that all the C2 norms of ∂Et are bounded by (a constant times) the C2 norm of E for
|t| ≤ δ, we get

sup
|t|≤δ

sup
x∈∂Et∩K

∣∣Hε
s,Et

(x)−Hs,Et(x)
∣∣ ≤ C

∫ ε

0
r−s dr = Cε1−s , (19)

where C depends on s and the C2 norm of ∂E in K.
Hence, letting ε → 0+, we get the desired uniform convergence (18). Thus, we can exchange

limit and derivative to get

d

dt

∣∣∣∣
t=0

Pers(Et) =
d

dt

∣∣∣∣
t=0

lim
ε→0+

φε(t) = lim
ε→0+

φ′
ε(0)

= lim
ε→0+

∫
∂E

Hε
s,E(N ·X) dσ

=

∫
∂E

Hs,E(N ·X) dσ ,

where in the last line, we have used again (19) for the uniform convergence of the approximate
nonlocal mean curvature to the nonlocal mean curvature of E. This concludes the proof. □

Definition 2.16 (s-minimal surface). Let Ω be a bounded open set and E ⊂ Rn be a set
with locally finite s-perimeter in Ω. Then, E is said to be an s-minimal surface in Ω if,
for every vector field X with compact support in Ω there holds

d

dt

∣∣∣∣
t=0

Pers(ϕ
X
t (E),Ω) = 0 .

By the first variation formula of Proposition 2.15 we see that, if E is a smooth s-minimal
surface in Ω then

Hs,E(x) = P.V.

∫
Rn

χEc(y)− χE(y)

|x− y|n+s
dy = 0 ,

for every x ∈ ∂E ∩ Ω. Heuristically, this is saying that∫
E

dy

|x− y|n+s
=

∫
Ec

dy

|x− y|n+s
,
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that is E and Ec have equal average interaction with x ∈ ∂E. However, this formula cannot be
interpreted since, even for smooth sets, these two integrals always do not converge.

Exercise 2.17. For n = 1 and λ > 0, check that the nonlocal mean curvature of a segment
[0, λ] at 0 equals 2

sλs .

Exercise 2.18. Using the first variation formula, prove the strict maximum principle for smooth
s-minimal surfaces, that is, the following.

Let R > 0 and E,F ⊂ Rn be smooth s-minimal surfaces in BR(x) where x ∈ ∂E ∩∂F . Then,
if E ⊆ F we have E ≡ F .

2.3. Second variation and stability. Next, we state the second variation formula for the
nonlocal perimeter without proof (see Theorem 6.1 in [FFM+15] for detailed proof).

Proposition 2.19. Let E be a smooth s-minimal surface and ϕX
t : Rn → Rn be a family of

diffeomorphisms as in Proposition 2.15. Then

d2

dt2

∣∣∣∣
t=0

Pers(ϕ
X
t (E))

=

∫∫
∂E×∂E

|(X ·N)(x)− (X ·N)(y)|2

|x− y|n+s
dσxdσy −

∫∫
∂E×∂E

|N(x)−N(y)|2

|x− y|n+s
(X ·N)2(x) dσxdσy

=

∫∫
∂E×∂E

|f(x)− f(y)|2

|x− y|n+s
dσxdσy −

∫∫
∂E×∂E

|N(x)−N(y)|2

|x− y|n+s
f2(x) dσxdσy ,

where N is the outer unit normal from E on ∂E, and f := N ·X is the tangent part of X to N .

Observe that, by symmetry∫∫
∂E×∂E

|f(x)− f(y)|2

|x− y|n+s
dσxdσy = 2

∫
∂E

f(x)

(∫
∂E

f(x)− f(y)

|x− y|n+s
dσy

)
dσx

and∫∫
∂E×∂E

|N(x)−N(y)|2

|x− y|n+s
f2(x) dσxdσy = 2

∫
∂E

f2(x)

(∫
∂E

(N(x)−N(y)) ·N(x)

|x− y|n+s
dσy

)
dσx.

Hence, the second variation can be rewritten as

d2

dt2

∣∣∣∣
t=0

Pers(ϕ
X
t (E)) = 2

∫
∂E

Js,∂E [f ]f dσ,

where

Js,∂E [f ](x) := P.V.

∫
∂E

f(x)− f(y)

|x− y|n+s
dσy − f(x)

∫
∂E

(N(x)−N(y)) ·N(x)

|x− y|n+s
dσy

is called the fractional Jacobi operator.

Note that this is very reminiscent of the second variation formula for classical minimal surfaces,
which, with our notations, would be

d2

dt2

∣∣∣∣
t=0

Per(ϕX
t (E)) =

∫
∂E

|∇f |2 − |AΣ|2f2 dσ,

where AΣ = ∇N is the second fundamental form of Σ = ∂E.
Nevertheless, the principal term

P.V.

∫
Σ

f(x)− f(y)

|x− y|n+s
dσy
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in the fractional Jacobi operator is not the fractional s-Laplacian of Σ, but since Σ is (n − 1)-

dimensional it has the same singularity type of the 1+s
2 -Laplacian (−∆Σ)

1+s
2 of Σ.

Indeed, it can be shown that

(1− s)

[
P.V.

∫
Σ

f(x)− f(y)

|x− y|n+s
dσy

]
→ −∆Σf(x),

as s → 1−. See [DdPW18] for a proof of this fact.

2.4. An instructive example on nonlocal stability. We now discuss a simple but instructive
example to understand what nonlocal stability and instability mean. Consider the set E ⊂ Rn

defined by

E :=
⋃
k∈Z

{
2kC◦

√
1− s ≤ xn ≤ (2k + 1)C◦

√
1− s

}
, (20)

whose boundary consists of parallel hyperplanes at distance d := C◦
√
1− s.

Clearly, by symmetry
Hs,E(x) = 0

for every x ∈ ∂E, and hence E is an s-minimal surface. The crucial property regarding this set
is that, depending on the value of C◦, E can be stable or unstable.

Proposition 2.20. Let E be as in (20) and Q = [−1, 1]n. Then, for every s ∈ (9/10, 1)

(i) E is stable in Q provided C◦ ≫ 1 is large (depending only on n).

(ii) E is unstable in Q if C◦ ≪ 1 is small (depending only on n).

Proof. In what follows, C, c > 0 denote dimensional constants where, in general, C is big and c
is small.

Set Σ := ∂E = ∪i∈ZΣi, where each Σi has the induced orientation from E, and we denote
by Ni the outer unit normal to Σi from E. Moreover, we call Σ1, . . . ,Σm the hyperplanes that
intersect Q, that is

m⋃
i=1

Σi ∩Q = Σ ∩Q.

We want to show that E is stable provided we take C◦ large, that is (recall Proposition 2.19)
for every f ∈ C∞

c (Σ ∩Q)∫∫
Σ×Σ

|N(x)−N(y)|2

|x− y|n+s
f2(x) dσxdσy ≤

∫∫
Σ×Σ

|f(x)− f(y)|2

|x− y|n+s
dσxdσy. (Stab)

Hence, we estimate the left-hand side from above to show (i).

For i = 1, 2, . . .m let J(i) = { j : j ≥ 1 , j − i odd}. We have∫∫
Σ×Σ

|N(x)−N(y)|2

|x− y|n+s
f2(x) dσxdσy =

∑
i,j

∫∫
Σi×Σj

|Ni(x)−Nj(y)|2

|x− y|n+s
f2(x) dσxdσy

=

m∑
i=1

∑
j∈J(i)

∫∫
Σi×Σj

4

|x− y|n+s
f(x)2 dσxdσy

= 4
m∑
i=1

∑
j∈J(i)

∫
Σi∩Q

f(x)2

(∫
Σj

dσy
|x− y|n+s

)
dσx,
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where we have used that supp(f) ⊂⊂ Q.
Write the coordinates in Rn as x = (x̃, xn), and for x ∈ Σi set dij := dist(Σi,Σj) = d|i − j|.

We get, for every j ∈ J(i), that∫
Σj

dσy
|x− y|n+s

=

∫
Rn−1

dỹ

(|x̃− ỹ|2 + |xn − yn|2)
n+s
2

=

∫
Rn−1

dỹ

(|x̃− ỹ|2 + d2ij)
n+s
2

=
1

d1+s
ij

∫
Rn−1

dz̃

(|z̃|2 + 1)
n+s
2

=
C

d1+s
ij

, (21)

where we have made the substitution x̃− ỹ = dij z̃. Thus∫∫
Σ×Σ

|N(x)−N(y)|2

|x− y|n+s
f2(x) dσxdσy = 4

m∑
i=1

∑
j∈J(i)

∫
Σi

f(x)2

(∫
Σj

dσy
|x− y|n+s

)
dσx

= C
m∑
i=1

∑
j∈J(i)

1

d1+s
ij

∫
Σi

f(x)2 dσx

=
C

d1+s

m∑
i=1

∑
j∈J(i)

1

|i− j|1+s

∫
Σi

f2 dσ.

Clearly, for every i = 1, 2, . . . ,m and s ∈ (9/10, 1) there holds

c ≤
∑

j∈J(i)

1

|i− j|1+s
≤ C, (22)

for C, c > 0 absolute constants. This gives, for s ∈ (9/10, 1) and C◦ ≥ 1 that∫∫
Σ×Σ

|N(x)−N(y)|2

|x− y|n+s
f2(x) dσxdσy ≤ C

d1+s

m∑
i=1

∫
Σi

f2 dσ

=
C

C1+s
◦ (1− s)

1+s
2

m∑
i=1

∫
Σi

f2 dσ .

By the fractional Poincaré inequality for the H
1+s
2 ([−1, 1]n−1)-seminorm, applied to each

restriction f |Σi ∈ C∞
c (Σi ∩Q), we have∫

Σi

f2 dσ ≤ C(1− s)

∫∫
Σi×Σi

|f(x)− f(y)|2

|x− y|n+s
dσxdσy. (23)

Then∫∫
Σ×Σ

|N(x)−N(y)|2

|x− y|n+s
f2(x) dσxdσy ≤ C(1− s)

1−s
2

C◦

m∑
i=1

∫∫
Σi×Σi

|f(x)− f(y)|2

|x− y|n+s
dσxdσy

≤ C(1− s)
1−s
2

C◦

∫∫
Σ×Σ

|f(x)− f(y)|2

|x− y|n+s
dσxdσy ,

which, since (1− s)
1−s
2 → 0 as s → 1−, implies stability (Stab) if C◦ ≥ Cn for some dimensional

Cn > 0. This concludes the proof of (i).

Now, we show (ii). We want to choose C◦ small to make (Stab) fail. With no loss of generality,
assume C◦ ≤ 1/100.

On the one hand, following the same lines above using the lower bound in (22) and choosing
each f |Σi = φ ∈ C∞

c (Σi ∩ Q) equal to the minimizer of the fractional Poincaré inequality
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(23) (this is the first eigenfunction of the fractional 1+s
2 -Laplacian in Rn−1, with zero Dirichlet

boundary condition outside [−1, 1]n−1) one gets for the left-hand side of the stability inequality
(Stab) that ∫∫

Σ×Σ

|N(x)−N(y)|2

|x− y|n+s
φ2(x) dσxdσy

≥ c(1− s)
1−s
2

C1+s
◦

m∑
i=1

∫∫
Σi×Σi

|φ(x)− φ(y)|2

|x− y|n+s
dσxdσy ≥ cm

C1+s
◦

E(φ), (24)

where we have set E(φ) := [φ]2
H

1+s
2 (Rn−1)

.

On the other hand, for the right-hand side of the stability inequality∫∫
Σ×Σ

|φ(x)− φ(y)|2

|x− y|n+s
dσxdσy

=

m∑
i=1

∫∫
Σi×Σi

|φ(x)− φ(y)|2

|x− y|n+s
dσxdσy +

∑
i ̸=j

∫∫
Σi×Σj

|φ(x)− φ(y)|2

|x− y|n+s
dσxdσy

= mE(φ) +
∑
i ̸=j

∫∫
Σi×Σj

|φ(x)− φ(y)|2

|x− y|n+s
dσxdσy. (25)

Moreover ∫∫
Σi×Σj

|φ(x)− φ(y)|2

|x− y|n+s
dσxdσy ≤ 2

∫
Σi∩Q

(∫
Σj

|φ(x)− φ(y)|2

|x− y|n+s
dσy

)
dσx

and, similarly to (21), for fixed i and j ̸= i we have∫
Σj

|φ(x)− φ(y)|2

|x− y|n+s
dσy =

∫
Rn−1

|φ(x̃, xn)− φ(ỹ, yn)|2

(|x̃− ỹ|2 + d2ij)
n+s
2

dỹ

≤
∫
Rn−1

min{C, |x̃− ỹ|2}
(|x̃− ỹ|2 + d2|i− j|2)

n+s
2

dỹ

=
C

d1+s

∫
Rn−1

min{1, d2|z̃|2}
(|z̃|2 + |i− j|2)

n+s
2

dz̃.

Claim 1. There holds∫
Rn−1

min{1, d2|z̃|2}
(|z̃|2 + |i− j|2)

n+s
2

dz̃ ≤ Cmin

{
d1+s

1− s
,

1

|i− j|1+s

}
. (26)

Proof of Claim 1. We have∫
Rn−1

min{1, d2|z̃|2}
(|z̃|2 + |i− j|2)

n+s
2

dz̃ ≤ d2
∫
B1/d

|z̃|2

(|z̃|2 + 1)
n+s
2

dz̃ +

∫
Bc

1/d

1

(|z̃|2 + 1)
n+s
2

dz̃

= Cd2
∫ 1/d

1

1

ρn+s−2
ρn−2 dρ+ C

∫ ∞

1/d

1

ρn+s
ρn−2 dρ

≤ d2
C

d1−s(1− s)
+ Cd1+s

≤ Cd1+s

1− s
.
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On the other hand, bounding trivially min{1, d2|z̃|2} ≤ 1 we get arguing exactly as in (21)∫
Rn−1

min{1, d2|z̃|2}
(|z̃|2 + |i− j|2)

n+s
2

dz̃ ≤
∫
Rn−1

1

(|z̃|2 + |i− j|2)
n+s
2

dz̃ =
C

|i− j|1+s
.

These two last inequalities prove (26).
□

Lastly, by the very definition of d and since s ∈ (9/10, 1) note that

d1+s

1− s
=

C1+s
◦

(1− s)
1−s
2

≤ 2C◦ .

Hence, putting together the estimates above

m∑
i=1

∑
j ̸=i

∫∫
Σi×Σj

|φ(x)− φ(y)|2

|x− y|n+s
dσxdσy ≤ 2

m∑
i=1

∑
j ̸=i

∫
Σi∩Q

(∫
Σj

|φ(x)− φ(y)|2

|x− y|n+s
dσy

)
dσx

≤ C

d1+s

m∑
i=1

∑
j ̸=i

min

{
C◦,

1

|i− j|1+s

}

≤ Cm

d1+s

∞∑
j=1

min

{
C◦,

1

j1+3/2

}
.

Claim 2. As C◦ → 0+ we have
∞∑
j=1

min

{
C◦,

1

j1+3/2

}
→ 0 .

Proof of Claim 2. We have

∞∑
j=1

min

{
C◦,

1

j1+3/2

}
=

∑
1≤j≤C

−2/3
◦

min

{
C◦,

1

j3/2

}
+

∑
j≥C

−2/3
◦

min

{
C◦,

1

j3/2

}

= C
1/3
◦ +

∑
j≥C

−2/3
◦

1

j3/2
→ 0 .

□

Let us denote by o(1) anything that tends to zero as C◦ → 0+ uniformly in s ∈ (9/10, 1).
With this notation, we have shown

m∑
i=1

∑
j ̸=i

∫∫
Σi×Σj

|φ(x)− φ(y)|2

|x− y|n+s
dσxdσy ≤ Cm

d1+s
o(1) . (27)

Now, suppose by contradiction that E was stable for C◦ arbitrarily small. Then stability
(Stab) would hold for f = φ. Putting together the estimates (24), (25) and (27) it would imply

cm

C1+s
◦

E(φ) ≤ mE(φ) + Cm

d1+s
o(1) ,

or, multiplying by C1+s
◦ (1− s) and recalling d = C◦

√
1− s, equivalently

c(1− s)E(φ) ≤ C1+s
◦ (1− s)E(φ) + C(1− s)

1−s
2 o(1) .
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But since c ≤ (1 − s)E(φ) ≤ C for every s ∈ (9/10, 1) (as φ is the minimizer in the fractional
Poincaré inequality (23)), sending C◦ → 0 gives 0 < c ≤ 0, contradiction.

Hence, φ is an unstable direction for E for C◦ small depending only on n, which concludes
the proof of (ii). □

2.5. The Caffarelli-Silvestre extension and the monotonicity formula.

Definition 2.21. We define the weighted Sobolev space

H̃1(Rn × (0,∞)) = H1(Rn × (0,∞), z1−sdxdz)

as the completion of C∞
c (Rn × [0,∞)) with the norm

∥U∥2
H̃1 := ∥U∥2L2(Rn×(0,∞),z1−sdxdz) + ∥∇U∥2L2(Rn×(0,∞),z1−sdxdz) ,

where ∇U =
(
∂U
∂x1 , . . . ,

∂U
∂xn ,

∂U
∂z

)
denotes the Euclidean gradient in Rn+1. This is a Hilbert

space with the natural inner product that induces the norm above. It is a known fact that any

U ∈ H̃1(Rn × (0,∞)) has a well defined trace in L2(Rn) that we denote by U(x, ·).
The following essential result by Caffarelli and Silvestre shows that fractional powers of the

Laplacian on Rn can be realized as a Dirichlet-to-Neumann map via an extension problem.
See [CFS23] for a proof of this fact that also holds on Riemannian manifolds.

Theorem 2.22 ([CS07]). Let s ∈ (0, 2) and u ∈ Hs/2(Rn). Then, there is a unique

solution U = U(x, z) : Rn × [0,+∞) → R among functions in H̃1(Rn × (0,∞)) to the
problem {

div(z1−s∇U) = 0 , on Rn × (0,∞)

U(x, 0) = u(x) for x ∈ Rn ,

and it satisfies

lim
z→0+

z1−s∂U

∂z
(x, z) = −c−1

s (−∆)s/2u(x) , (28)

where cs is a positive constant that depends only on s.

Remark 2.23. There is a quite easy heuristic on why this produces a fractional power of the
Laplacian for s = 1/2. In this case, the extension is just the harmonic extension ∆U = 0 in
Rn × (0,∞) and the left-hand side of (28) is just the normal derivative. Call T := limz→0+ Uz

the operator that takes the extension and then the normal derivative. Since the extension of
Uz(·, 0) is Uz itself there holds

T 2 = T ◦ T = T (Uz(·, 0)) = lim
z→0+

Uzz ,

but since U is harmonic
lim
z→0+

Uzz = lim
z→0+

(−∆xU) = −∆u .

Thus, T is a first-order operator whose square is the Laplacian.

With this result, it follows immediately that the fractional Sobolev seminorm can be expressed
as the infimum of the energy of the extensions with fixed trace. Here and onwards we denote
Rn+1
+ := Rn × (0,∞).

Proposition 2.24. The fractional Sobolev seminorm is equal to

[u]2
Hs/2(Rn)

= cs inf
V ∈H̃1(Rn+1

+ )

{∫
Rn+1
+

|∇V |2z1−s dxdz : V (x, 0) = u(x)

}
.
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Moreover, this infimum is attained by the unique U ∈ H̃1(Rn+1
+ ) given by Theorem 2.22, and

hence also

[u]2
Hs/2(Rn)

= cs

∫
Rn+1
+

|∇U |2z1−s dxdz ,

where cs is the constant in (28).

We are ready to state the monotonicity formula for nonlocal minimal surfaces. This
monotonicity formula was proved for minimizers in the original work [CRS10] by Caffarelli,
Roquejeoffre, and Savin. Still, the proof only uses infinitesimal perturbations, so it’s essentially
a proof for stable critical points.

Then, for general critical points, the monotonicity formula was shown in [MSW19] on Rn and
in [CFS23] on general Riemannian manifolds.

Let

B+
r (x, 0) := Bn+1

r (x, 0) ∩ {z ≥ 0} .

Theorem 2.25 (Monotonicity formula, [CRS10,MSW19,CFS23]). Let E be an s-minimal
surface in Rn (meaning a critical point of the s-perimeter under inner variations), and
let UE : Rn+1

+ → (−1, 1) be the Caffarelli-Silvestre extension of χE − χEc in the sense of
Theorem 2.22. Then, for every x ∈ ∂E the function

ΦE(r) :=
1

rn−s

∫
B+

r (x,0)
z1−s|∇UE |2 dxdz (29)

in nondecreasing in r, and is constant if and only if E is a cone.

Note that the quantity in (29) is scale-invariant as

ΦλE(λr) = ΦE(r) .

3. Uniform estimates for the fractional Allen-Cahn equation

3.1. The BV-estimate for stable solutions. In this subsection, we want to sketch the proof
of the BV-estimate for stable solutions of the fractional Allen-Cahn equation

(−∆)s/2u+W ′(u) = 0 . (ACs)

First, we point out that (ACs) is the Euler-Lagrange equation of the localized Allen-Cahn
functional

EΩ(u) := ESob
Ω (u) + EPot

Ω (u),

where

ESob
Ω (u) =

1

2

∫∫
Rn×Rn\Ωc×Ωc

|u(x)− u(y)|2

|x− y|n+2s
dxdy,

and

EPot
Ω (u) =

∫
Ω
W (u) dx.

Usually, in the setting of the (classical and) fractional Allen-Cahn equation, one takes W to
be the double-well potential W (u) = (1− u2)/4. Nevertheless, this choice is not crucial for the
estimates that follow since these hold for general nonnegative potentials.
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Definition 3.1 (Stability). Let Ω ⊂ Rn open and u : Rn → (−1, 1) be a solution of (ACs) in
Ω. We say that u is stable in Ω if

E ′′
Ω(u)[η, η] =

1

2

∫∫
Rn×Rn

|η(x)− η(y)|2

|x− y|n+s
dxdy +

∫
Ω
W ′′(u)η2 dx ≥ 0 , ∀ η ∈ C∞

c (Ω) .

Theorem 3.2 (Stable BV, [CCS21]). Let s ∈ (0, 1) and u : Rn → (−1, 1) be a solution
of (ACs) in B1 that is stable in B1. Then, there exists C = C(n, s) > 0, such that∫

B1/4

|∇u| dx ≤ C.

A similar result can be obtained working only in the setting of fractional minimal surfaces,
in contrast to solutions to the fractional Allen-Cahn equation. This holds even for a perimeter
estimate in the case of finite-index fractional minimal surfaces, as it was shown in [FS24].
Nevertheless, we believe that the setting of smooth functions that are solutions to the fractional
Allen-Cahn equation is easier to follow, so we present here the results in this case.

Remark 3.3. We emphasize that in the BV-estimate above (and the same will hold for the
BV-estimate for finite index solutions), the constant C on the right-hand side is independent of
the potential W . This implies that if one replaces W by ε−sW (that is, one takes a solution to
the fractional Allen-Cahn equation with ε and not ε = 1), the same bound holds with a uniform
constant as ε → 0+.

Before diving into the proof of the BV-estimate, let us state and prove an abstract (but very
useful) result due to Leon Simon that we will need at the end of the proof.

We will apply this to the subadditive function defined on balls B 7→ ∥∇u∥L1(B).

Lemma 3.4. Let β ∈ R, M◦ > 0 and S : B → [0,+∞) be a nonnegative function defined on
the family B of open balls contained in the Euclidean ball B1(0) ⊂ Rn that is subadditive for
finite unions, meaning that whenever B ⊂

⋃
iBi a finite union then S(B) ≤

∑
i S(Bi). Then,

there exists a constant δ◦ = δ◦(n, β) > 0 such that, if

rβS(Br/4(x0)) ≤ δ◦r
βS(Br(x0)) +M◦ whenever Br(x0) ⊂ B1(0),

then

S(B1/4(0)) ≤ CM◦ ,

for some constant C = C(n, β) > 0.

Proof. Let

Q := sup
Br(z)⊂B1

(r
2

)β
S(Br/2(z)) ,

and let me assume Q < +∞. This will indeed be true in our case with S(B) = ∥∇u∥L1(B) for
u is smooth. By assumption for every Br(z) ⊂ B1 we have(r

2

)β
S(Br/8(z)) ≤ δ

(r
2

)β
S(Br/2(z)) +M◦ ≤ δQ+M◦ ,

and taking the supremum over all Br(z) ⊂ B1 gives

Q̃ := sup
Br(z)⊂B1

(r
2

)β
S(Br/8(z)) ≤ δQ+M◦ .
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From here, if we knew that

Q ≤ CQ̃ , (30)

we would get

Q ≤ CQ̃ ≤ CδQ+ CM◦ =⇒ Q ≤ CM◦ ,

having taken δ = 1/(10C), and this would conclude the proof taking B1/2(0) as a competitor in
the definition of Q.

Hence, we are left to prove (30). Fix a covering of B1/2 ⊂
⋃
B1/40(xi) of B1/2(0) of balls with

radius 1/40, with the centers xi ∈ B1/2(0). Let N be the number of balls in this covering (this
is a dimensional constant). For every Br(z) ⊂ B1, scaling and translating this covering we get

Br/2(z) ⊂
⋃
i≤N

Br/40(zi) , zi ∈ Br/2(z) for all i ≤ N .

In particular Br/5(zi) ⊂ B1 for all i, thus by the very definition of Q̃ we get( r

10

)β
S(Br/40(zi)) ≤ Q̃ .

By the subadditivity of S, we obtain(r
2

)β
S(Br/2(z)) ≤

(r
2

)β ∑
i≤N

S(Br/40(zi)) ≤ 5βNQ̃ ,

and taking the supremum over all Br(z) ⊂ B1 we get (30).
□

Remark 3.5. As we will see shortly, the standard situation where this lemma is of use is when
one can obtain, for some θ ∈ (0, 1) and C > 0, an inequality like

∥∇u∥Lq(B1) ≤ C + C∥∇u∥θLq(B4)
.

Indeed, if this holds, then Young’s inequality gives, for every δ > 0, that

∥∇u∥Lq(B1) ≤ C + δ∥∇u∥Lq(B4) + C(δ, θ)

= δ∥∇u∥Lq(B4) + C1(δ, θ) .

Then, just by scaling and translating for every Br(x) ⊂ Rn we get

rq−n∥∇u∥Lq(Br(x)) ≤ δrq−n∥∇u∥Lq(B4r(x)) + C1(δ, θ) .

From here, choosing δ = δ◦(n, q − n) the one of Lemma 3.4 one concludes a uniform bound

∥∇u∥Lq(B1/2) ≤ CC1(δ◦, θ).

We can now prove the BV estimate for stable solutions Proposition 3.2. The proof presented
here is a slight modification of the one given in [CCS21].

Proof of Theorem 3.2. Let ν ∈ Sn−1. The idea is essentially to compare the energy of u with
one of the translations u(·+ tν). To do so, let φ be a smooth, radial cut-off function with φ = 1
in B1/2 and with φ = 0 outside B := B1.

Moreover, we also take φ to be linear as a function of |x| in B1 \ B1/2. Let also ϕt(x) :=

x+ tφ(x)ν and vt := u ◦ ϕ−1
t . Taking φ linear in |x| for 1/2 < |x| < 1 is not strictly necessary,

but it will make the computations a bit cleaner since it will avoid higher order terms in t in the
Jacobians Jϕ±t. Indeed, by the very definition of ϕ±t we have

∇ϕ±t = id + tν ⊗∇φ.
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Hence (this is somewhere called the ”matrix determinant lemma”)

Jϕ±t = det(∇ϕ±t) = 1± t
∂φ

∂ν
. (31)

Claim 1. For every function v and t ≤ 1/100 there holds

EB(vt) + EB(v−t)− 2EB(v) ≤ Ct2ESob
B (v) ,

for some C = C(n) > 0.

Proof of Claim 1. The full proof can be found in [CCS21, Lemma 3.1]. We sketch the main
steps of the argument.

The idea is just to change variables inside the integrals in EB(v±t) and estimate the Jacobians.
For the Potential part, since ϕ±t sends B to B, we have

EPot
B (v±t) =

∫
B
W (v±t) dx =

∫
B
W (v) Jϕ±t dy .

Hence, using (31) for the Jacobians

EPot
B (vt) + EPot

B (v−t) =

∫
B
W (v)

(
Jϕt + Jϕ−t

)
dy = 2EPot

B (v) ,

or equivalently

EPot
B (vt) + EPot

B (v−t)− 2EPot
B (v) = 0 . (32)

Regarding the Sobolev part of the energy, we have (again since ϕ±t sends B and Bc to
themselves)

ESob
B (v±t) =

1

2

∫∫
Rn×Rn\Bc×Bc

|v±t(x)− v±t(y)|2

|x− y|n+s
dxdy

=
1

2

∫∫
Rn×Rn\Bc×Bc

|v(x)− v(y)|2

|ϕ±t(x)− ϕ±t(y)|n+s
Jϕ±t(x)Jϕ±t(y) dxdy .

Expanding at the second order with Taylor’s formula gives

g(t) :=
1

|ϕ±t(x)− ϕ±t(y)|n+s
=

1

|x− y|n+s
± tF (x, y) + t2R(x, y) ,

where R(x, y) = 1
2g

′′(ξ) for some ξ ∈ [0, t]. In particular, R satisfies

|R(x, y)| ≤ C
|x− y|2

|ϕ±ξ(x)− ϕ±ξ(y)|n+s+2
≤ C

|x− y|n+s
,

if we choose t ≤ 1/100. Here we have used that |∇φ| ≤ 2.

Hence (note that the first order terms cancel)

Jϕt(x)Jϕt(y)

|ϕt(x)− ϕt(y)|n+s
+

Jϕ−t(x)Jϕ−t(y)

|ϕ−t(x)− ϕ−t(y)|n+s

=
(1 + t∂νφ(x))(1 + t∂νφ(y))

|ϕt(x)− ϕt(y)|n+s
+

(1− t∂νφ(x))(1− t∂νφ(y))

|ϕ−t(x)− ϕ−t(y)|n+s

=
2

|x− y|n+s
+ Ct2R(x, y)

≤ 2

|x− y|n+s
+ Ct2

1

|x− y|n+s
.
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Thus, regarding the Sobolev part of the energy

ESob
B (vt) + ESob

B (v−t)− 2ESob
B (v) ≤ Ct2ESob

B (v) . (33)

Putting together (32) and (33) finishes the proof of Claim 1. □

Observe that dividing by t2 in what we have shown in Claim 1 and sending t → 0+ gives

E ′′
B(u)[∇Xu,∇Xu] ≤ CESob

B (u) , (34)

where X is the vector field X := νφ.

Moreover, since u is stable in B testing the stability inequality with |∇Xu| gives

E ′′
B(u)[|∇Xu|, |∇Xu|] ≥ 0 .

On the other hand, it follows writing ∇Xu = (∇Xu)+ − (∇Xu)− that

0 ≤ E ′′
B(u)[|∇Xu|, |∇Xu|]

= E ′′
B(u)[∇Xu,∇Xu]− 4

∫∫
B×B

(∇Xu)+(x)(∇Xu)−(y)

|x− y|n+s
dxdy .

Together with (34), we have proved∫∫
B×B

(∇Xu)+(x)(∇Xu)−(y)

|x− y|n+s
dxdy ≤ CESob

B (u) ,

and since 1
|x−y|n+s ≥ c on B ×B we get

∥(∇Xu)+∥L1(B)∥(∇Xu)−∥L1(B) ≤ CESob
B (u) . (35)

Moreover, by the divergence theorem∫
B
∇Xu =

∫
B
∇u ·X =

∫
∂B

u(X · z) dσz −
∫
B
udiv(X) dz.

Hence, using that (∇Xu)+ − (∇Xu)− = ∇Xu and that |u| ≤ 1 we can estimate∣∣∣∥(∇Xu)+∥L1(B) − ∥(∇Xu)−∥L1(B)

∣∣∣ = ∣∣∣∣∫
B
∇Xu

∣∣∣∣ ≤ C. (36)

Thus, putting together (35) and (36)

∥∇Xu∥2L1(B) =
(
∥(∇Xu)+∥L1(B) + ∥(∇Xu)−∥L1(B)

)2
=
(
∥(∇Xu)+∥L1(B) − ∥(∇Xu)−∥L1(B)

)2
+ 4∥(∇Xu)+∥L1(B)∥(∇Xu)−∥L1(B)

≤ CESob
B (u) + C.

Moreover, by interpolation (see, for example, [CFS23, Proposition 2.22]) and Young’s
inequality

ESob
B (u) ≤ C∥∇u∥sL1(B)∥u∥

1−s
L1(B)

≤ C∥∇u∥L1(B) + C ,

hence

∥∇Xu∥2L1(B) ≤ C + ∥∇u∥L1(B) .

Since X = ν in B1/2, taking ν = e1, e2, . . . , en and adding up all these inequalities gives

∥∇u∥2L1(B1/2)
≤ C + ∥∇u∥L1(B1) .
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Note that we are controlling ∥∇u∥2L1(B1/2)
with ∥∇u∥L1(B1/2)

, but in a bigger ball. Nevertheless,

one can conclude by Young’s inequality and Lemma 3.4 as explained in Remark 3.5 to conclude
a uniform bound on ∥∇u∥L1(B1/2)

. This concludes the proof.

□

3.2. The BV-estimate for finite Morse index. The entire discussion in this section is
essentially copy-paste from [CFS23]. The goal is to show how to extend the ideas in the proof
of the BV-estimate for stable solutions to finite Morse index, ultimately proving:

Theorem 3.6 (Finite index BV). Let s ∈ (0, 1) and u : Rn → (−1, 1) be a solution of
(ACs) with Morse index ≤ m. Then, there exists C = C(n,m, s) > 0, such that∫

B1/4

|∇u| dx ≤ C.

3.2.1. Finite Morse index and almost stability. For critical points of local functionals, it is well
known that having Morse index bounded by m implies stability in one out of every m+1 disjoint
open sets. In the nonlocal case, this is not the case anymore, but in one of the sets, it is possible
to obtain a weaker, quantitative lower bound on the second variation, which we will refer to as
almost stability.

Definition 3.7 (Almost stability). Let Ω ⊂ Rn open, Λ ≥ 0, and u : Rn → (−1, 1) be a solution
of (ACs) in Ω. We say that u is Λ-almost stable in Ω if

E ′′
Ω(u)[η, η] ≥ −Λ∥η∥2L1(Ω) , ∀ η ∈ C∞

c (Ω) .

Compare the above definition with the one of stability (i.e. Λ = 0) of Definition 3.1.

Lemma 3.8 (Finite Morse index ⇒ almost stability). Let u : Rn → (−1, 1) be a solution
of (ACs) with Morse index ≤ m. Consider a collection U1, . . . ,Un+1 of (n + 1) disjoint
open sets, and set

Λm := m ·max
i ̸=j

sup
Ui×Uj

1

|x− y|n+s
.

Then, there is (at least) one set Uk among U1, . . . ,Un+1 such that u is Λm-almost stable
in Uk, in the sense of Definition 3.7.

Proof. We prove the Lemma just for m = 1 for the sake of clarity; the proof goes on exactly the
same for general m. Let η1 ∈ C∞

c (U1) and η2 ∈ C∞
c (U2). Testing the second variation of the

Allen-Cahn energy with linear combinations of η1 and η2 gives

E ′′(u)[aη1 + bη2] = a2E ′′(u)[η1, η1] + b2E ′′(u)[η2, η2]− 2ab

∫∫
U1×U2

η1(x)η2(y)

|x− y|n+s
dxdy .

Since 1
|x−y|n+s ≤ Λ for all (x, y) ∈ U1×U2 (this holds by the very definition of Λ), the interaction

term can be bounded as

−2ab

∫∫
U1×U2

η1(x)η2(y)

|x− y|n+s
dxdy ≤ 2Λ|ab|∥η1∥L1(U1)∥η2∥L1(U2)

≤ a2Λ∥η1∥2L1(U1)
+ b2Λ∥η2∥2L1(U2)

.



GEOMETRIC FEATURES OF NONLOCAL MINIMAL SURFACES 33

Hence

E ′′(u)[aη1 + bη2] ≤ a2
(
E ′′(u)[η1, η1] + Λ∥η1∥2L1(U1)︸ ︷︷ ︸

=:F1(η1)

)
+ b2

(
E ′′(u)[η2, η2] + Λ∥η2∥2L1(U2)︸ ︷︷ ︸

=:F2(η2)

)
. (37)

We want to show that either F1(η1) ≥ 0 for all η1 ∈ C∞
c (U1) or F2(η2) ≥ 0 for all η2 ∈ C∞

c (U2).
Suppose neither of these two held, then there would exist η1 ∈ C∞

c (U1), η2 ∈ C∞
c (U2) such that

F1(η1) < 0 and F2(η2) < 0. This would imply, however, that (37) is negative for all (a, b) ̸= (0, 0),
thus contradicting that the Morse index of u is at most one. □

The proof of the BV-estimate for finite index is made of two essential results.

The first one says that Λ-almost stability actually implies the BV-estimate, in a smaller ball, if
Λ is small. Since the case Λ = 0 is the one of stable solutions, this result is a slight improvement
of Theorem 3.2.

Proposition 3.9 (Almost stability ⇒ BV, [CFS23]). Let s ∈ (0, 1) and u : Rn → (−1, 1)
be a solution of (ACs) which is Λ-almost stable in B1(x), in the sense of Definition 3.7.
Then, there exist constants Λ◦, C > 0 (depending only on n and s) such that: if Λ ≤ Λ◦
then ∫

B1/4(x)
|∇u| dx ≤ C.

Proof. The proof is extremely similar to the one of the BV estimate for stable solutions
Proposition 3.2. The point is just to realize that for Λ small, the bad term (coming from
the almost stability instead of stability) absorbs to the left, and one can conclude in the same
way. See [CFS23] for all the details. □

The second result is a covering theorem tailored for this kind of situation. Note that, by
Lemma 3.8 we know that given a solution u with Morse index at most m, then u is Λ-almost
stable in one out of (m+1) sets with Λ decreasing as the distance between the sets gets bigger.

On the other hand, Proposition 3.9 above says that if Λ is small, i.e., if the distance between
the sets is big, then almost stability implies the BV-estimate. Hence, combining these two
results, we know the BV-estimate in one out of (m+1) sets if they are sufficiently far from each
other. It remains to prove that this is sufficient to conclude a uniform estimate in a smaller ball.
This is what Lemma 3.10 is all about.

In the following, we denote by Qr(x) ⊂ Rn the (hyper)cube of center x and side r.

Lemma 3.10 ([CFS23]). Let n ≥ 1, m ≥ 0, θ ∈ (0, 1), D0 > 0 and β > 0. Let S : B → [0,+∞)
be a subadditive2 function defined on the family B of the (hyper)cubes contained in Q1(0) ⊂ Rn,
such that

(i) sup
{x | Qr(x)∈B}

S(Qr(x)) → 0 as r → 0.

(ii) Whenever Qr(x0),Qr(x1), . . . ,Qr(xm) ⊂ Q1(0) are (m + 1) disjoint cubes of the same
side at pairwise distance at least D0r, then

∃ i ∈ {0, 1, . . . ,m} such that S(Qθr(xi)) ≤ rβM0 .

Then
S(Q1/2(0)) ≤ CmM0 ,

2Meaning subadditive for finite unions of (hyper)cubes.
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for some C = C(n, θ, β,D0) > 0.

Proof. Let ρ = 2−k, for a fixed integer k > 1, and consider the regular partition of Qθ(0) into
2kn cubes of sidelength θϱ. Let us call F1 := {Q1

i } the family of cubes in this partition. In this
way, clearly #F1 ≤ ρ−n. Let x1i denote the center of the cube Q1

i and, for every λ > 0 and cube
Q of side r, let λQ be the cube with the same center and side λr.

Now, we split the family F1 as F1 = G1∪B1 into the families of good and bad cubes as follows.
Start by considering Q1

1, if there holds

S(Q1
1) ≤ M0ρ

β (38)

then it is considered a good cube, we assign it to G1, and we remove it from F1. On the other
hand, if Q1

1 does not satisfy (38), then we assign it to the bad cubes B1 and remove it from F1.
Moreover, if this happens, also all the cubes Q ∈ F1 such that the distance of 1

θQ from 1
θQ

1
1 is

less than D0ρ are considered bad as well, so they are assigned to B1 and removed from F1. By
a simple count, there are at most (2 + 2D0 + 4

√
n/θ)n such cubes. We continue this procedure

of splitting F1 into good cubes and bad cubes until there are no cubes left.

By property (ii), we may have assigned cubes to the bad set B1 at most at m steps.
Since at each of these steps we removed at most (2 + 2D0 + 4

√
n/θ)n cubes, this means that

#B1 ≤ m(2 + 2D0 + 4
√
n/θ)n =: N0.

Regarding the good set G1, we know it contains at most #F1 ≤ ρ−n cubes since this is just
the total number of cubes in the cover. Moreover, by construction in every Q ∈ G1 we have

S(Q) ≤ M0ρ
β .

Hence

S(Qθ(0)) ≤
∑
Q∈G1

S(Q) +
∑

Q∈B1

S(Q) ≤ M0ρ
β−n +

∑
Q∈B1

S(Q) .

The argument continues iteratively under the same scheme, on the union of the at most N0

bad cubes that are in B1. Consider the partition F2 := {Q2
i } of the cubes in B1 obtained

splitting each cube into 2kn smaller cubes of side θρ2. Notice that #F2 ≤ N0ρ
−n. Now assign

cubes in F2 to the good cubes G2 or bad cubes B2 as before: starting from Q2
1, assign it to G2

if

S(Q2
1) ≤ M0ρ

2β ,

and then remove it from F2. Else, if this is not the case we assign Q2
1 to the bad cubes B2 and

remove it, together with all the cubes Q ∈ F2 such that 1
θQ is at distance less than D0ρ

2 from
1
θQ

2
1. Continue the procedure until there are no cubes left in F2. By property (ii) again, exactly

the same argument as in the first part shows that F2 contains at most N0 = m(2+2D0+4
√
n/θ)n

cubes assigned to the bad set, that is #B2 ≤ N0. This produces a partition F2 = G2 ∪B2, and
we get ∑

Q∈B1

S(Q) ≤
∑
Q∈G2

S(Q) +
∑

Q∈B2

S(Q) ≤ N0M0ρ
2β−n +

∑
Q∈B2

S(Q) .

Iterating this argument, after k steps we have always #Bk ≤ N0, and in particular by (i) and
subadditivity

S(Bk) ≤
∑

Q∈Bk

S(Q) → 0 ,
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since each Q ∈ Bk has side θρk → 0. Thus, the set of the points belonging to infinitely many
bad families is S-negligible. Hence

S(Qθ(0)) ≤ M0ρ
β−n +N0M0ρ

2β−n +N0M0ρ
3β−n + . . .

≤ N0M0ρ
β−n

∑
j≥0

ρjβ =
N0

ρn(ρ−β − 1)
M0 .

Now notice that Q1/2(0) can be covered, for some ξ = ξn dimensional constant, by ξnθ
−n

many cubes of side θ/10 such that the cube with the same center and side 1/10 still is contained
in Q1(0). Since property (ii) is translation invariant, covering Q1/2(0) in such a way gives

S(Q1/2(0)) ≤
ξnθ

−nN0

ρn(ρ−β − 1)
M0 =

ξnθ
−nm(2D0 + 3

√
n/θ)n

ρn(ρ−β − 1)
M0 ,

and as this holds for every ρ = 2−k, just choosing any fixed k gives the desired estimate.
□

Proof of Theorem 3.6. Consider the subadditive function on cubes

S(Qr(x)) :=

∫
Qr(x)

|∇u| dx.

By Lemma 3.8 and Proposition 3.9 rescaled, there exists a constant D0 = D0(n, s) > 0 such
that (ii) of Lemma 3.10 is satisfied with β = n−1 and θ = 1/4. Clearly also S satisfies (i) since
u is smooth. Then, Lemma 3.10 concludes the proof. □

4. Appendix

In the proof of the first variation formula, we need the following simple result for the derivatives
of integrals over moving sets.

Lemma 4.1. Let E ⊂ Rn be smooth and ϕt : Rn → Rn be a smooth one-parameter family of
diffeomorphisms such that ϕ0(x) = x and with X := ∂

∂t

∣∣
t=0

ϕt with compact support. Then

d

dt

∣∣∣∣
t=0

∫
ϕt(E)

f(t, x) dx =

∫
E

∂f

∂t
(0, x) dx+

∫
∂E

f(0, x)(N ·X) dσx ,

where N is the outer-unit normal to ∂E from E.

Proof. The fact that X has compact support in Rn implies that all the integrals and derivatives
below are finite. We have∫

ϕt(E)
f(t, x) dx =

∫
E
f(t, ϕt(y))|det(dϕt(y))| dy .

Thus

d

dt

∣∣∣∣
t=0

∫
ϕt(E)

f(t, x) dx =

∫
E

∂f

∂t
(0, y) +∇xf(0, y) ·X + f(0, y) div(X) dy , (39)

where we have used that

d

dt

∣∣∣∣
t=0

| det(dϕt)| = tr(dϕt

∣∣
t=0

) = tr(∇X) = div(X).

Finally, by the divergence theorem, the right-hand side of (39) equals to∫
E

∂f

∂t
(0, y) dy +

∫
E
div(f(0, ·)X) dy =

∫
E

∂f

∂t
(0, y) dy +

∫
∂E

f(0, ·)(N ·X) dσ ,

and this finishes the proof. □
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