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Abstract. We study the least gradient problem in bounded regions with Lipschitz boundary
in the plane. We provide a set of conditions for the existence of solutions in non-convex simply
connected regions. We assume the boundary data is continuous and in the space of functions
of bounded variation, and we are interested in solutions that satisfy the boundary conditions
in the trace sense. Our method relies on the equivalence of the least gradient problem and the
Beckman problem which allows us to use the tools of the optimal transportation theory.

1. Introduction

In this paper, we study the following least gradient problem in bounded Lipschitz planar domains

(1.1) min

{ ˆ
Ω

|Du| : u ∈ BV (Ω), u|∂Ω = g

}
,

where g is assumed to be continuous on ∂Ω and the restriction u|∂Ω represents the trace of u on
∂Ω. The interest in (1.1) stems from pure mathematics, e.g. as a limiting case of the p-harmonic
functions when p→ 1, as well as from science and engineering. It is known that (1.1) is equivalent
to the following Beckman problem also called Free Material Design problem, where one has to
distribute the conductive material in an optimal way (see [2])

(1.2) min

{ˆ
Ω̄

|v| : ∇ · v = 0, v · ν = ∂τg on ∂Ω

}
,

where ν is the unit normal and τ is the unit tangent to ∂Ω such that the system (ν, τ) is positively
oriented. This equivalence valid for two-dimensional problems was noted in [10] for convex domains
and later in [5] for simply connected ones. The main idea of the equivalence proof is that u is
a solution to the least gradient problem if and only if the rotation of measure Du by −π/2, is a
solution to the Beckman problem. There, the assumption that Ω is simply connected is needed to
write every closed form ω = v2 dx − v1 dy with v = (v1, v2) ∈ L1(Ω,R2) satisfying ∇ · v = 0 as a
potential of a function u ∈W 1,1(Ω).

In the seminal paper [17] the authors showed the existence of minimizes to (1.1) in case the
boundary datum g is continuous and the mean curvature of ∂Ω is non-negative, no part of ∂Ω
is a minimal surface. In the case when Ω is contained in the plane, these conditions reduce to
strict convexity of Ω. This strict convexity assumption was later relaxed in [13] and [14] where
the domain is assumed to be a convex polygon. In that case, the polygon Ω was approximated
by a sequence of strictly convex domains Ωn with boundary data gn to ensure the convergence
of solutions to (1.1) with data (Ωn, gn) to a solution of (1.1) with data (Ω, g). Using such an
argument, sufficient conditions on Ω and g were obtained to show the existence of solutions to
(1.1).

In the present paper, we exploit the equivalence of (1.1) and (1.2) which permits us to state
the sufficient, cf. Theorem 3.18, and necessary conditions, see Theorem 3.22, for the existence of
solutions to (1.1) when Ω is a convex domain not necessarily a polygon. We also provide a number
of conditions sufficient for existence for classes of non-convex domains, cf. Theorems 4.5, 4.10,
4.15. We also show the continuity of solutions we constructed, see Theorem 4.17.

Switching to (1.2) changes the perspective. From this point, we are interested in the construction
of an optimal transport map from the data (Ω, ∂τg). In this process, we pay special attention to
open arcs, where g is strictly monotone, see Condition (H1). Furthermore, we must ensure that
all transport rays lie inside Ω, this is Condition (H2). The optimal transportation theory also
provides a geometric condition on g, which is related to the cyclic monotonicity of the optimal
transportation plan, see Condition (H3).
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The first of our major results are about necessary and sufficient conditions for the existence of
solutions to (1.1), see Theorems 3.18 and 3.22. Since the structure of the set where g is monotone
matters, we assume that g is not only continuous but is also in BV (∂Ω). We first make a regularity
assumption on Ω, namely, we assume that the set of singular points of ∂Ω understood as points
without a tangent line to Ω is negligible with respect to the measure |f | where f = ∂τg. This allows
us to use the projection map in our approximation. Later in the paper, such a condition is relaxed.
The final assumption on the continuous datum g is that it is piecewise monotone, see Definition
3.21, i.e. there is a family of open arcs such that g restricted to each of them is strictly monotone
and their complement is a null set with respect to the measure |f |. In this way, we excluded from
the data continuous functions g, which grow on a Cantor set. We prove in Theorem 3.18 that
under these assumptions there exists a unique solution. However, as Example 3.20 attests, the
piecewise monotonicity is not necessary for existence.

We also show that the existence of solutions for piecewise monotone g (for which Cantor functions
as data is excluded) implies that our geometric conditions are satisfied, see Theorem 3.22. In
conclusion, at the expense of loss of generality of continuous data, we were able to provide a
characterization of solvability of (1.1) in convex, not necessarily strictly convex regions Ω.

Once we establish our existence results in the convex case, we show sufficient conditions for
the solvability of (1.1) in non-convex domains Ω. This is done in multiple stages. Initially, we
assume that we can partition Ω into convex sets Ci, on which the set of admissibility conditions
(H1-H3) established for convex Ω holds. Then, we can show an existence result for (1.1), this is the
content of Theorem 4.5. A drawback of this result is that even if Ω is not convex, then nonetheless
the curves ∂Ci ∩ ∂Ω are convex. The main thrust of the proof of existence is to show that the
optimal transportation plan does not move any mass across the boundaries of ∂Ci, that is, no
mass is transported between two distinct Ci’s. Our most general existence result permits curves
with negative curvature. Note that, in the non-convex case, we provide only a set of sufficient
conditions, see Theorems 4.10 and 4.15.

Let us present our results in a broader context. As we stated earlier, the authors of [17]
established in 1992 the basic existence for convex regions satisfying additional conditions in case
of continuous data g. The main point is that the boundary data is attained in the trace sense.
Their construction is geometric in nature. The authors of [17] also showed that violation of their
sufficient conditions may lead to the non-existence of solutions. In 2014 Mazon et al [11] showed
the existence of a solution to a relaxed version of (1.1) for arbitrary domains and arbitrary data
g ∈ L1(∂Ω). Their construction is based on the approximation by the p-harmonic variational
problems. However, the boundary condition is attained in a very weak sense. The paper [11] stirred
renewed research on (1.1). For example, some authors were interested in the characterization of
the trace space, i.e. the subset of L1(∂Ω) consisting of traces of solutions to (1.1). It turns out
that this set is strictly smaller than L1(∂Ω), see [16] and the discussion in [9, Chapter 5]. It is
interesting to note that the conditions of [17] sufficient for existence were relaxed or adjusted in
various ways. For example, the case of unbounded Ω was studied in [8]. Another line of research
was related to weakening the convexity assumptions. The authors of [10] addressed (1.1) on a
rectangular region, but Dirichlet data are specified only on a non-trivial subset. In [13], (1.1) in
polygonal regions for continuous data was studied. The data (Ω, g) are assumed to satisfy a set of
admissible assumptions which are stronger than the current set (H1-H3). This result was extended
in [14], where discontinuous data were studied. A different approach was presented in [5], where
the authors studied (1.1) in an annulus using the equivalence of (1.1) and (1.2) and the tools of
the optimal transportation theory. We also mention that the least gradient problem was studied
in its anisotropic form or non-homogeneous. We refer the reader interested in the state of the art
to a recent book by Górny and Mazón, see [9].

Here is the organization of the paper. Section 2 is devoted to introducing the Beckmann problem
and the tools of the optimal transportation for the associated Monge-Kantorovich problem. In
Section 3, we show that the condition (H1-H3) permits to construct an optimal transportation plan
for the Monge-Kantorovich problem associated with (1.2). In particular, we show that conditions
(H1-H3) are necessary and sufficient for the existence of solutions to (1.1). Section 4 is devoted to
establishing sufficient conditions for the existence of solutions in two types of non-convex regions
Ω.
Notation. We consider Ω having Lipschitz continuous boundary with the natural, i.e. positive
orientation of its boundary. If β ⊊ ∂Ω is an arc, then we may compare its points: for x1, x2 ∈ β
means that x1 precedes x2 in the natural orientation and we write x1 < x2. We will write
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throughout the paper about the monotonicity of g defined on an arc β ⊊ ∂Ω. In the present
context, we mean monotonicity with respect to the natural orientation of ∂Ω. When we pick
points x1, x2 ∈ ∂Ω to form an arc

⌢
x1 x2 we take care to state which of the two possibilities we

have in mind unless such a choice does not matter. By default, we mean open arcs unless stated
otherwise.

For points x, y ∈ R2 we write ]x, y[ to denote the open line segment with endpoints x and y, by
[x, y] we will denote the closed segment.

We denote by M(Ω,R2) the vector space of Borel vector measures with values in R2 defined on
Ω and M+(Ω× Ω) the set of nonnegative Borel measures on Ω× Ω.

Πx and Πy are the projection maps from Ω×Ω into the first and second component, respectively.
For a measurable map S : X 7→ Y and a nonnegative Borel measure µ, we write the pushforward
measure S#µ(A) = µ(S−1(A)) for every Borel set A ⊆ Y .

Lip1(Ω) denotes the space of Lipschitz continuous functions on Ω with Lipschitz constant equal
to 1.

For a measure µ, spt(µ) will denote the support of µ.

2. Preliminaries on the Beckmann problem and the Optimal Transportation
Theory

The present paper benefits from the method developed in [5], where the equivalence between the
least gradient problem and the Beckmann problem was shown to hold in simply connected regions.
Before entering into the details, we introduce some definitions. First of all, we assume that Ω is
an open, bounded, simply connected, and Lipschitz domain of R2. Let g be a given continuous
function on ∂Ω. Since the boundary of our domain Ω may not be smooth, then we need to define
the tangential derivative of g. For this purpose, we will denote by α any arc length parametrization
of ∂Ω with positive orientation (i.e., α : [0, L) 7→ ∂Ω with |α′| = 1 a.e.).

Definition 2.1. Let h : ∂Ω 7→ R be a Lipschitz function. For almost every s0 ∈ [0, L), we set

∂τh(α(s0)) =
d

ds
[h(α(s))]|s=s0 .

In particular, ∂τh is well-defined H1-a.e. on ∂Ω, provided that h is Lipschitz. Now, we will
extend this definition to less regular functions on ∂Ω. More precisely, we define the distributional
tangential derivative in an obvious way as a functional over Lipschitz continuous functions.

Definition 2.2. We say that g : ∂Ω 7→ R belongs to BV (∂Ω) provided that g ∈ L1(∂Ω) and the
distributional tangential derivative of g is a measure with a finite total variation, i.e. there exists
a measure denoted by ∂τg with finite total variation (|∂τg|(∂Ω) < ∞) such that for all functions
h ∈ Lip(∂Ω), we have

(2.1)
ˆ
∂Ω

hd[∂τg] = −
ˆ
∂Ω

g · ∂τhdH1.

From now on, we always assume that g ∈ BV (∂Ω) ∩ C(∂Ω). So, we may introduce more
carefully the so-called Beckmann problem, see (1.2):

(2.2) min

{ ˆ
Ω

|v| : v ∈ M(Ω,R2), ∇ · v = f in Ω

}
.

Here, f := ∂τg is understood in accordance with Definition 2.2 and the divergence is taken in the
distributional sense in R2, i.e. −

´
Ω
∇φ · dv =

´
∂Ω
φdf , for all φ ∈ C1(Ω). We note that the

definition of f implies that this measure on ∂Ω is such that

(2.3) f(∂Ω) = 0.

The equivalence we announced at the beginning of this section reads as follows, see [5, Theorem
3.4] for the proof.

Proposition 2.3. Suppose that Ω ⊂ R2 is simply connected with Lipschitz boundary. If g ∈
C(∂Ω) ∩ BV (∂Ω) and f = ∂τg, then Problems (1.1) and (2.2) are equivalent in the following
sense:
(1) The values of the infima are equal, i.e. (1.1) = (2.2).
(2) Given a solution u ∈ BV (Ω) of (1.1), we can construct v ∈ M(Ω,R2) a solution of (2.2) by
v = Rπ

2
Du, where Rπ

2
is the rotation of the plane by π

2 .
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(3) Given a solution v ∈ M(Ω,R2) of (2.2) with |v|(∂Ω) = 0, we can construct u ∈ BV (Ω) a
solution of (1.1) with v = Rπ

2
Du.

Hence, in order to prove the existence of a solution to Problem (1.1), we just need to show the
existence of a solution v to the Beckmann problem (2.2), which gives zero mass to the boundary.

Let us comment on the solvability of (2.2). It is well known, see e.g. [15, Chapter 4], that for
convex domains Ω the Beckmann problem (2.2) is equivalent to the following Monge-Kantorovich
problem:

(2.4) min

{ ˆ
Ω×Ω

|x− y|dγ : γ ∈ M+(Ω× Ω), (Πx)#γ = f+ and (Πy)#γ = f−
}
,

where f+ and f− are the positive and negative parts of f . Moreover, it is known, see [15], that for
any bounded domain Ω, not necessarily convex, the optimal transport problem (2.4) has a dual
formulation:

(2.5) sup

{ˆ
Ω

ϕd(f+ − f−) : ϕ ∈ Lip1(Ω)

}
.

Due to the duality (2.4) = (2.5), we get that if γ is an optimal transport plan in Problem (2.4)
and ϕ is a Kantorovich potential, i.e. a maximizer for Problem (2.5), then from [15, Chapter 3] we
have the following equality:

(2.6) ϕ(x)− ϕ(y) = |x− y|, for all (x, y) ∈ spt(γ).

Any maximal line segment [x, y] that satisfies the equality (2.6) will be called a transport ray. In
other words, any optimal transport plan γ has to move the mass f+ to the destination f− along
these transportation rays. Due to (2.6), one can show that if ϕ is a Kantorovich potential then
ϕ is differentiable in the interior of any transport ray ]x, y[ with ∇ϕ(z) = x−y

|x−y| , for all z ∈]x, y[,
see [15]. In particular, two different transport rays cannot intersect at an interior point of one of
them.

Coming back to Problem (2.2), we see that we always have the following inequality (2.5) ≤ (2.2)
even if the domain Ω is not convex. Indeed, if v is admissible in Problem (2.2) and ϕ is a 1-Lip
smooth function on Ω, then we must haveˆ

Ω

ϕ d(f+ − f−) = −
ˆ
Ω

∇ϕ · dv ≤
ˆ
Ω

|v|.

Now, let us assume that the domain Ω is convex. Then, one can show that (2.2) = (2.4), see
for instance, [15, Chapter 4]. In fact, from an optimal transport plan γ of Problem (2.4), one
can construct a minimal vector field for Problem (2.2) by considering the vector field vγ which is
defined as follows:

(2.7) ⟨vγ , ξ⟩ :=
ˆ
Ω×Ω

ˆ 1

0

ξ((1− t)x+ ty) · (y − x) dtdγ(x, y), for all ξ ∈ C(Ω,R2).

Moreover, we associate a scalar measure σγ , called transport density, with vector measure vγ .
Measure σγ represents the amount of transport taking place in each region of Ω. This measure is
defined as follows:

(2.8) ⟨σγ , φ⟩ :=
ˆ
Ω×Ω

ˆ 1

0

φ((1− t)x+ ty)|x− y|dtdγ(x, y), for all φ ∈ C(Ω).

It is clear that the convexity of the domain Ω suffices for the transport density σγ (or the vector
measure vγ) to be well-defined. In fact, one can see easily that this vector field vγ is admissible
in Problem (2.2). In addition, if ϕ is a Kantorovich potential between f+ and f− then we have
vγ = −σγ∇ϕ. In particular, we get that

´
Ω
|vγ | =

´
Ω×Ω

|x−y|dγ(x, y) = (2.4) and so, vγ minimizes
Problem (2.2). Moreover, one can show that any optimal vector field v of Problem (2.2) is of the
form v = vγ , for some optimal transport plan γ, see [15, Theorem 4.13].

Hence, the question of the existence of a solution u for Problem (1.1) becomes equivalent to
whether the transport density σγ gives zero mass to the boundary ∂Ω or not. If Ω is strictly
convex, then we can easily deduce from (2.8) that,

σγ(∂Ω) =

ˆ
∂Ω×∂Ω

H1([x, y] ∩ ∂Ω) dγ(x, y) = 0.

Consequently, Problem (1.1) has a solution u as soon as Ω is strictly convex. However, when Ω
is only assumed to be convex but not necessarily strictly convex, it is not true in general that
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σγ(∂Ω) = 0. As a result, a solution u for Problem (1.1) may not exist, for example this happens
when Ω := [0, 1]2, f+ := χ[0, 12 ]×{0}⌞H1 and f− := χ[ 12 ,1]×{0}⌞H1.

At this point, we state an observation, which we will frequently use in the sequel.

Lemma 2.4. Let us suppose that {f+n }n≥1 and {f−n }n≥1 are two sequences of data for the
Monge-Kantorovich problem (2.4) and, {γn}n≥1 (resp. {ϕn}n≥1) is a sequence of corresponding
optimal transportation plans (resp. Kantorovich potentials such that ϕn(x0) = 0 for a fixed point
x0 ∈ Ω). Then, we have the following:
(1) If f+n ⇀ f+ and f−n ⇀ f−, then there exists a subsequence such that γnk

⇀ γ weakly and
ϕnk

→ ϕ uniformly. Moreover, γ is an optimal transportation plan for f+, f− and ϕ is the
corresponding Kantorovich potential.
(2) If [xn, yn] is a transportation ray between f+n and f−n such that xn → x and yn → y, then
[x, y] is a transportation ray between f+, f−.

Proof. Since measures γn are uniformly bounded, we can select a subsequence (not relabeled)
converging weakly to γ ∈ M+(Ω× Ω). Moreover, the marginals are preserved,

⟨f+, φ⟩ = lim
n→∞

⟨f+n , φ⟩ = lim
n→∞

ˆ
Ω×Ω

φ(x) dγn(x, y) =

ˆ
Ω×Ω

φ(x) dγ(x, y)

and the same argument is also valid for f−. Namely, we integrate the map (x, y) 7→ φ(y) with
respect to γ.

Since ϕn(x0) = 0, then ϕn, up to a subsequence, converges uniformly to a function ϕ ∈ Lip1(Ω).
Due to the duality (2.4) = (2.5), we haveˆ

Ω×Ω

|x− y|dγn =

ˆ
Ω

ϕn d(f
+
n − f−n ).

Letting n → ∞, we get that γ is an optimal transport plan between f+ and f−. Moreover, ϕ is
the corresponding Kantorovich potential, because

(2.4) ≤
ˆ
Ω×Ω

|x− y|dγ =

ˆ
Ω

ϕ d(f+ − f−) ≤ (2.5).

This concludes the proof of Part (1). Part (2) follows immediately from Part (1) and (2.6), because
of the following

ϕ(x)− ϕ(y) = lim
n→∞

ϕn(xn)− ϕn(yn) = lim
n→∞

|xn − yn| = |x− y|. □

Finally, we conclude this section with a few remarks about the endpoints of transportation rays.
Of course, they all belong to the support of f = ∂τg, which is contained in ∂Ω. It may happen
that x ∈ ∂Ω is an endpoint of more than one transportation ray. We shall call such points the
multiple points. So, we have the following:

Lemma 2.5. Let us suppose that Ω is convex, then the set of multiple points N is at most
countable. In particular, this set N is f+−negligible (i.e. f+(N ) = 0) as soon as f+ is nonatomic.

Proof. Suppose that x0 is a multiple point, then there are two distinct points x1 and x2 in ∂Ω

such that [x0, x1] and [x0, x2] are transportation rays. In particular, the arc
⌢
x1x2 has positive H1

measure (here, we assume that x0 /∈ ⌢
x1x2). Moreover, if x0 ̸= x̃0 are multiple points, then their

corresponding arcs
⌢
x1x2 and

⌢
x̃1x̃2 must be disjoint. But on ∂Ω, we can fit at most a countable

number of such disjoint open arcs corresponding to multiple points. Hence, the set of multiple
points N is at most countable. □

Throughout the paper, we will assume that f+ is nonatomic, in fact, this follows immediately
from the continuity of g.

Definition 2.6. Let γ be an optimal transport plan in Problem (2.4), we associate to γ the
multivalued map RN : spt f+ 7→ P(∂Ω) as follows

RN (x) := {y ∈ ∂Ω : [x, y] is a transportation ray}.
In virtue of Lemma 2.4 the graph of RN is closed, and so from [1, Chapter 18], RN admits a Borel
selector which we will denote by R and call it a transportation map.

We make the following observation about R.
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Lemma 2.7. Suppose that an open arc G ⊂ spt f+ does not intersect N . Then, R is continuous
on G and R(G) is an arc. Moreover, R(G) ∩N = ∅.

Proof. Let us suppose that x1, x2 ∈ G with x1 < x2, then R(x1) > R(x2), otherwise the
transportation rays [x1, R(x1)] and [x2, R(x2)] would intersect, thanks to the convexity of Ω. Since
R is monotone, then it is continuous except at a countable set of jump points. Suppose that
x0 ∈ G is a point, where R has a jump. In this case, Lemma 2.4 implies that x0 is a multiple point,
contrary to our assumption. Hence, continuity follows and R(G) is an arc.

Suppose now that y ∈ R(G) ∩ N , then there exist w1, w2 such that [w1, y], [w2, y] are
transportation rays and w1 ∈ G. This means that [w2, y] must intersect some transportation
rays with endpoints near y. Thus, we reached a contradiction, again we use the convexity of Ω. □

We end this section with the following Lemma.

Lemma 2.8. Let us suppose that Ω is strictly convex, f± are as defined above, and γ is an optimal
transportation plan, then γ is concentrated on the graph of R. Moreover, γ is unique.

Proof. Thanks to Lemma 2.5, we see that for γ−almost every couple (x, y) ∈ (∂Ω)2, the point x
does not belong to N . As a result, there is a unique transport ray starting at x and going to the
support of f−. Since Ω ⊂ R2 is strictly convex, then this ray must intersect spt(f−) at exactly
one point R(x). This yields that γ is concentrated on the graph of the map R. In particular, we
have

(2.9) R#f
+ = f−

because for all φ ∈ C(Ω), one hasˆ
Ω

φ(y) df−(y) =

ˆ
Ω×Ω

φ(y) dγ(x, y) =

ˆ
spt γ

φ(R(x)) dγ(x, y) =

ˆ
Ω

φ(R(x)) df+(x).

At the same time, we infer that the optimal transport plan γ is unique because it is determined
by the map R which depends only on the Kantorovich potential ϕ and it is a Borel selector of RN
which is unique up to the negligible set of multiple points, N . □

3. Necessary and sufficient conditions for existence and uniqueness in the convex
case

In this section, we assume that Ω is an open bounded and convex (but not necessarily strictly
convex) domain in R2 and the trace g is in C(∂Ω) ∩ BV (∂Ω). Under these conditions, we aim
to find necessary and sufficient conditions for the existence of a solution u to the least gradient
problem (1.1). We also show that this solution u is unique.

Our construction of solutions to (1.1) is based on the equivalence of the least gradient problem
(1.1) and the Beckmann problem (2.2), which in turn is equivalent in convex domains with the
Monge-Kantorovich optimal transportation problem (2.4). Thus, our effort is concentrated on the
construction of optimal transportation plans. We first construct them for strictly convex domains
for relatively simple data. The general convex domains and general data are dealt with in a series
of approximations. Once we characterize the optimal transportation plans we present quite general
sufficient conditions for the existence of solutions to (1.1), see Theorem 3.18. It turns out that to
obtain the necessary conditions we have to restrict our attention to a class of absolutely continuous
g, see Theorem 3.22. We achieve these goals by proper approximation of Ω by strictly convex sets
and g by more regular data. Our first task, however, is to state the admissibility conditions.

3.1. Admissibility conditions. First of all, we introduce our admissibility conditions (H1), (H2),
and (H3) on the boundary datum g. Let us start with the first condition:

• Condition (H1). Suppose that there are three (possibly infinite) index sets IΓ, Iχ, IF ⊆ N
such that the boundary ∂Ω can be decomposed, up to a |f |−negligible set, into disjoint open arcs

Γ±
i =

⌢
a±i b

±
i (i ∈ IΓ), χ±

i =
⌢
cic

±
i (i ∈ Iχ) and Fi (i ∈ IF ) such that:

(1) For every i ∈ IΓ, we have dist (Γ+
i ,Γ

−
i ):= inf{|x− y| : x ∈ Γ+

i , y ∈ Γ−
i } > 0, g is strictly

increasing on Γ+
i and strictly decreasing on Γ−

i with

TV (g|Γ+
i
) = TV (g|Γ−

i
).
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For the sake of convenience, we assume that g(a+i ) = g(a−i ) < g(b+i ) = g(b−i ).

(2) For every i ∈ Iχ, we have χ+
i ∩ χ−

i = {ci}, g is strictly increasing on χ+
i and strictly

decreasing on χ−
i with

TV (g|χ+
i
) = TV (g|χ−

i
).

(3) For every i ∈ IF , the boundary datum g is constant on Fi. Moreover, each Fi is maximal
with this property, i.e. if an open arc α ⊃ Fi is such that g|α is constant, then α = Fi. We
shall say that Fi is a flat part.

(4) For every i ∈ IΓ ∪ Iχ, we denote by Ti the convex hull of Γ+
i and Γ−

i and Di the convex
hull of χ+

i and χ−
i . Then, we assume that the sets {Ti, Di : i ∈ IΓ ∪ Iχ} are mutually

disjoint.

Keeping (H1) in mind, we introduce the following notation: Γi = Γ+
i ∪ Γ−

i (i ∈ IΓ), χi =
χ+
i ∪ {ci} ∪ χ−

i (i ∈ Iχ), Γ± =
⋃
i∈IΓ Γ

±
i , χ± =

⋃
i∈Iχ χ

±
i , Γ = Γ+ ∪ Γ− and χ = χ+ ∪ χ−.

In order to introduce the other assumptions (H2) and (H3) on the boundary datum g, we need
to define a transport map T : Γ+∪χ+ 7→ Γ−∪χ− which will be a good candidate to be the optimal
transport map between f+ and f−. So, we proceed as follows:

(3.1) T(x+) =


x− ∈ χ−

i if x+ ∈ χ+
i and TV (g| ⌢

ci x+
) = TV (g| ⌢

ci x−
), i ∈ Iχ,

x− ∈ Γ−
i if x+ ∈ Γ+

i and TV (g| ⌢
a+i x

+

) = TV (g| ⌢
a−i x−

), i ∈ IΓ.

Here, we take the arcs
⌢
ci x

±⊂ χ±
i and

⌢
a±i x

±⊂ Γ±
i . Due to the fact that g is strictly increasing

on χ+
i (resp. Γ+

i ) and strictly decreasing on χ−
i (resp. Γ−

i ) and TV (g|χ+
i
) = TV (g|χ−

i
) (resp.

TV (g|Γ+
i
) = TV (g|Γ−

i
)), one can see that the map T is well defined and it is also one-to-one (see

Lemma 3.1 below). Hence, the inverse map of T is well defined and we will denote it by T[−1].
On the other hand, it is clear that by construction, T is a transport map from f+ to f−, i.e.
T#f

+ = f−.

Lemma 3.1. For every i ∈ Iχ (resp. i ∈ IΓ), the restriction of the transportation map T to each
arc χ+

i (resp. Γ+
i ) is a homeomorphism onto χ−

i (resp. Γ−
i ).

Proof. The restriction of T to χ+
i is strictly monotone. In fact, if x1, x2 ∈ χ+

i and x1 < x2 with
respect to the positive orientation of ∂Ω, then T(x1) > T(x2) (if T(x1) = T(x2) then this would
mean that g is constant on

⌢
x1x2, which is impossible). Hence, T is continuous except for at most

countably many points. However, if T has a jump at x0 ∈ χ+
i , then g would be constant on the arc

⌢
T(x+0 )T(x−0 )⊂ χ−

i , where T(x+0 ) := limx→x0, x>x0 T(x) and T(x−0 ) := limx→x0, x<x0 T(x). But,
this is impossible due to the strict monotonicity of g on χ−

i .
Since T is continuous and strictly monotone, then we deduce that the inverse is also continuous

and strictly monotone as desired.
The same argument applies to Γ+

i . □

Now, we continue stating our assumptions. Since the domain Ω is not necessarily strictly
convex, we want to prohibit any transport ray from gliding along the boundary ∂Ω. So, we impose
the following condition:

• Condition (H2). For every x+ ∈ Γ+ ∪ χ+, the open segment ]x+,T(x+)[ is contained in Ω.

Finally, since we need T to be an optimal transport map between f+ and f−, where f = ∂τg,
so we make the following assumption that will be crucial in the course of proving this fact:

• Condition (H3). Let us consider any finite sequence of points {e+i }1≤i≤m (where m ∈ N) in
Γ+ ∪ χ+, then we assume the following inequality:

(3.2)
m∑
i=1

|e+i −T(e+i )| <
m−1∑
i=1

|e+i −T(e+i+1)|+ |e+m −T(e+1 )|.
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We note that this condition is related to the cyclical monotonicity property which is satisfied by
any optimal transport plan γ of Problem (2.4) (here, γ = (Id,T)#f

+), see [15, Theorem 1.38].
We also remark that this condition is weaker than [13, Condition (C2)] and so, this allows us to
extend the class of boundary data for which we can deduce the existence of solutions to (1.1), see
Example 3.19 below.

Before starting, we note that existence of a unique solution to Problem (1.1) for strictly convex
domains Ω and continuous data g is well-know, see [17]. However, our idea here is to characterize
this solution in order to be able to pass to the limit in the convex case.

3.2. The case of strictly convex domain. In this section, we will show that thanks to conditions
(H1) and (H3), ((H2) is trivial here), we can construct solutions to Problem (2.4). Since we know
that the transport rays are the boundaries of the level sets of the solutions to Problem (1.1), we
would like to identify these rays or equivalently, to characterize the optimal transport map R.
More precisely, our bet is that if x ∈ Γ+ ∪ χ+, then the segment [x,T(x)] is a transport ray and
so, R(x) = T(x) for f+−a.e. x. Establishing this fact is the main result of this section.

Proposition 3.2. Assume that Ω is bounded strictly convex and g ∈ BV (∂Ω) ∩ C(∂Ω) satisfies
conditions (H1) & (H3), where the sets Iχ & IΓ are finite. We set f = ∂τg. Let γ be the optimal
transport plan for Problem (2.4) between f+ and f−. For γ−a.e. (x+, x−) ∈ ∂Ω× ∂Ω, we either
have x+ ∈ χ+

i and x− = T(x+) ∈ χ−
i ( i ∈ Iχ) or x+ ∈ Γ+

i and x− = T(x+) ∈ Γ−
i ( i ∈ IΓ). In

other words, we have γ = (Id,T)#f
+.

Before we embark on proving this proposition, we lay out our tools. An important part of our
argument is monitoring how the boundary ∂Ω is divided by a transportation ray. Namely, we
notice that any point e+ and its image R(e+) defined in Lemma 2.8) separate ∂Ω into two parts
of zero measure f . More precisely, we have the following.

Lemma 3.3. If e+ ∈ χ+
i , i ∈ Iχ (resp. e+ ∈ Γ+

i , i ∈ IΓ), then f(
⌢

e+R(e+)) = 0.

Proof. Let us note that the definition of the arc
⌢

e+R(e+) is ambiguous, however, the result holds
independently of the chosen orientation.

We consider the transportation ray [e+, R(e+)]. Its endpoints separate ∂Ω into two open sets
E1, E2 ⊂ ∂Ω. We claim that R(Ei) ⊂ Ei, for i = 1, 2. Indeed, if there is a point x ∈ E1 such that
R(x) ∈ E2 then, thanks to the convexity of Ω, the transportation rays [e+, R(e+)] and [x,R(x)]
must intersect, but this is impossible.

Since R−1(Ei) ⊂ Ei (i = 1, 2) and due to Lemma 2.8 we have f− = R#f
+, then we see

f−(Ei) = f+(R−1(Ei)) ≤ f+(Ei), i = 1, 2. In particular, we get that f−(∂Ω) = f−(E1) +
f−(E2) ≤ f+(E1) + f+(E2) = f+(∂Ω). But, we know that f+(∂Ω) = f−(∂Ω). Hence, f+(Ei) =
f−(Ei), i = 1, 2. □

Keeping in mind the setting of Proposition 3.2 we also make the following observation.

Lemma 3.4. Under the conditions of Proposition 3.2, the set of multiple points N is finite.

Proof. In Lemma 2.5, we already showed that N is at most countable. Let x0 ∈ N and x1, x2 ∈
RN (x0). We claim that x1 and x2 do not belong to the closure of the same arc from Γ∪χ. Indeed,
if the claim is not true, then

⌢
x1x2⊂ Γ−

i or
⌢
x1x2⊂ χ−

i and this arc must be contained in RN (x0).
As a result,

0 < f−(
⌢
x1x2) = R#f

+(
⌢
x1x2) = f+(R−1(

⌢
x1x2)) = f+({x0}) = 0,

which is a contradiction.
Let us suppose now that x′0 ̸= x0 is another multiple point and x′1 ̸= x′2 are in RN (x′0). Since

transport rays cannot intersect we see that at least one of the x′1, x′2 belongs to the closure of an
arc not containing neither x1 nor x2. We can iterate this process to infer that the number of
elements in N must be finite. □

Now, we can state another important tool.

Lemma 3.5. If e+ ∈ χ+
i , i ∈ Iχ (resp. e+ ∈ Γ+

i , i ∈ IΓ) and T[−1](R(e+)) ∈ χ+
i (resp.

T[−1](R(e+)) ∈ Γ+
i ), then e+ = T[−1](R(e+)).
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Proof. By the definition of T, we note that if T[−1](R(e+)) ∈ χ+
i (resp. T[−1](R(e+)) ∈ Γ+

i ), then

we have R(e+) ∈ χ−
i (resp. R(e+) ∈ Γ−

i ). Thanks to Lemma 3.3, we know that f(
⌢

e+R(e+)) = 0.
Moreover, for every x+ ∈ χ+

i , i ∈ Iχ (resp. x+ ∈ Γ+
i , i ∈ IΓ), we show that

(3.3) f(
⌢
x+ T (x+)) = 0.

In fact, if x+ ∈ χ+
i then (3.3) immediately follows from the definition of T (one can assume that

the arc is so chosen that ci ∈
⌢

x+T(x+)).

If x+ ∈ Γ+
i then, again due to the definition of T, we have f+(

⌢
x+ b+i ) = f−(

⌢
T(x+) b−i ) and the

arcs are chosen so that
⌢
x+b+i ⊂ Γ+

i and T
⌢

(x+) b−i = T(
⌢
x+b+i ) ⊂ Γ−

i . We also see that ∂Ω \ (
⌢
x+b+i

∪
⌢

T(x+) b−i ) has exactly two connected components E1 and E2. For the sake of definitness, we
assume that b+i , b

−
i ∈ E1. Notice that if there is j ∈ IΓ (i ̸= j) and such that E1 ∩ Γ±

j ̸= ∅, then
Γ±
j ⊂ E1. Indeed, if Γ±

j \ E1 ̸= ∅, then Γ±
j must intersect Γ+

i ∪ Γ−
i , but this is impossible. The

same conclusion, i.e. χ±
j ⊂ E1 holds when E1 ∩ χ±

j ̸= ∅ (j ∈ Iχ).
Let us suppose now that Γ+

j ⊂ E1, j ∈ IΓ. Then, we also have Γ−
j ⊂ E1. Indeed, if Γ−

j ⊂ E2

then the geometry would imply that Ti ∩ Tj ̸= ∅ which contradicts (H1). By the same argument,
if χ+

j ⊂ E1 (j ∈ Iχ), then χ−
j ⊂ E1. The observations we made imply that

E1 =
⋃
α∈A

χα ∪
⋃
β∈B

Γβ ∪
⋃
γ∈C

Fγ ∪N,

for appropriate sets of indices A, B, C, where |f |(N) = 0. Hence, we have f(E1) = 0. As a result,
from the definition of T we get that

f(
⌢

x+T(x+)) = f(
⌢
x+b+i ) + f(E1) + f(

⌢
T(x+) b−i ) = f+(

⌢
x+b+i )− f−(

⌢
T(x+) b−i ) = 0.

This observation completes the proof of (3.3).

Finally, take x+ = T[−1](R(e+)), then we get that f(
⌢

T[−1](R(e+))R(e+)) = 0. After combining

this with f(
⌢

e+R(e+)) = 0, we have

0 = f(∂Ω) = f(
⌢

e+ T[−1](R(e+))) + f(
⌢

e+R(e+)) + f(
⌢

T[−1](R(e+))R(e+))

= f(
⌢

e+ T[−1](R(e+))).

Since f(
⌢

e+ T[−1](R(e+))) = f+(
⌢

e+ T[−1](R(e+))), we reach e+ = T[−1](R(e+)). □

Now, we are ready to carry out the proof of Proposition 3.2. We are going to show that for
f+−a.e. x ∈ χ+

i , i ∈ Iχ (resp. x ∈ Γ+
i , i ∈ IΓ), we have R(x) = T(x). Assume that our claim does

not hold. Hence, due to piecewise continuity of R implied by Lemma 2.7, there is an arc E+
1 ⊂ χ+

i1

(resp. E+
1 ⊂ Γ+

i1
) that is transported outside χ−

i1
(resp. Γ−

i1
) to an arc E−

2 := R(E+
1 ) such that

E−
2 ⊂ χ−

i2
or E−

2 ⊂ Γ−
i2

. Without loss of generality, we may assume that E+
1 ⊂ χ+

i1
and E−

2 ⊂ χ−
i2

.
The argument when E−

2 ⊂ Γ−
i2

is the same and it will be omitted. Set E+
2 := T[−1](E−

2 ) ⊂ χ+
i2

. Due
to Lemma 3.4, we may make the arcs E+

2 and E−
2 disjoint from N . We claim that R(E+

2 )∩χ−
i2

= ∅.
Let us suppose the contrary, i.e. there is an arc E+ of E+

2 such that R(E+) ⊂ χ−
i2

. Then, Lemma
3.5 implies that R(E+) = T(E+) ⊂ E−

2 . However, this is impossible due to the strict convexity
of Ω and the fact that two different transport rays cannot intersect at an interior point and that
E−

2 = R(E+
1 ). Our claim follows.

We presented above a general procedure: given an arc E+
1 such that E+

1 ∩N = ∅ we constructed
two arcs E−

2 and E+
2 by setting R(E+

1 ) = E−
2 and T(E+

2 ) = E−
2 . Let us suppose that arcs E+

1 ,
E−

2 , E+
2 , . . . , E

+
n (where n ≥ 1) have been already constructed by the above algorithm, where

R(E+
n ) ∩ E−

n = ∅. Then, we define E−
n+1 as follows: if we have R(E+

n ) ⊂ χ−
i1

, then we set
E−
n+1 := R(E+

n ) and the construction terminates. If R(E+
n ) ∩ χ−

i1
= ∅, then we set

E−
n+1 := R(E+

n ) and E+
n+1 := T[−1](E−

n+1)
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and due to Lemma 3.4 we may guarantee, after possible restriction of the initial set E+
1 , that

E−
n+1 ∩ N = ∅. Hence, we know that R(E+

n+1) ∩ E−
n+1 = ∅. We note that this sequence of arcs

{E±
k } may be either: (1) finite with elements

(3.4) E+
1 , E

−
2 , E

+
2 , . . . , E

−
m, E

+
m, E

−
m+1.

(2) or infinite

(3.5) E+
1 , E

−
2 , E

+
2 , . . . , E

+
n , E

−
n , . . .

In addition, thanks to Lemma 3.4 we choose these arcs E±
k such that they do not contain any

multiple point.
Assume that the case (3.4) holds. Let e−m+1 be any point in E−

m+1 and set e+m = R−1(e−m+1) ∈
E+
m. Then, we define e−m = T(e+m) and e+m−1 = R−1(e−m) ∈ E+

m−1. In this way, we get a sequence
of points {e±k : 1 ≤ k ≤ m+ 1} such that e±k ∈ E±

k ,

(3.6) R(e+k ) = e−k+1 and T(e+k ) = e−k .

Therefore, Lemma 3.6 below tells us that not only e−m+1 ∈ χ−
i1

but also e−m+1 = e−1 . The final
observation is made in Lemma 3.7, where we claim that in fact the sequence (3.4) consists of two
elements E+

1 , E−
m+1 = E−

1 .
At last, we address the case of seemingly infinite sequence (3.5). We notice that since the number

of arcs Γi and χi is finite, then some of these arcs must be visited by the sequence more than once.
In other words, a loop forms. As a result we are back to (3.4), hence the seemingly infinite
sequence consists only of E+

1 and E−
1 . This is the content of Lemma 3.8 below. Consequently, our

proposition follows. □

Here are the Lemmas we referred to.

Lemma 3.6. Assume that (3.4) holds. Let us consider the finite sequence of points e+1 , e
−
2 , e

+
2 , ...,

e−m, e
+
m, e

−
m+1 described above. Then, we have

e−m+1 = e−1 := T(e+1 ).

Proof. First, we claim that f(
⌢
e+1 e

−
k ) = 0 for all k ≥ 2 (we note that this property holds even if

the sequence (3.5) is infinite). We will prove this by induction. Thanks to Lemma 3.3, we see that

f(
⌢
e+1 e

−
2 ) = 0, because by definition e−2 = R(e+1 ). We also recall from (3.3) that f(

⌢
e+k e

−
k ) = 0, for all

2 ≤ k ≤ m. Recursively, assume that f(
⌢
e+1 e

−
k ) = 0, for some k. We shall prove that we also have

f(
⌢

e+1 e
−
k+1) = 0. For this aim, we have to consider the following three possible configurations, while

taking the arc
⌢

e+1 e
−
k+1 containing e−k (the other cases when e−k /∈

⌢
e+1 e

−
k+1 can be treated similarly):

(i) e+k ∈
⌢

e−k e
−
k+1 ⊂

⌢
e+1 e

−
k+1, (ii) e+k ∈

⌢
e+1 e

−
k ⊂

⌢
e+1 e

−
k+1, (iii) e+k ∈ ∂Ω\

⌢
e+1 e

−
k+1.

Let us start by considering case (i). Then, we see that the arcs
⌢
e+1 e

−
k ,

⌢
e+k e

−
k ,

⌢
e+k e

−
k+1 are disjoint.

Hence,

f(
⌢

e+1 e
−
k+1) = f(

⌢
e+1 e

−
k ∪

⌢
e+k e

−
k ∪

⌢
e+k e

−
k+1) = f(

⌢
e+1 e

−
k ) + f(

⌢
e+k e

−
k ) + f(

⌢
e+k e

−
k+1) = 0.

Indeed, here we used the inductive assumption f(
⌢
e+1 e

−
k ) = 0, property (3.3) as well as Lemma 3.3,

f(
⌢

e+k e
−
k+1) = f(

⌢
e+k R(e

+
k )) = 0. Now, we take care of case (ii). We have

f(
⌢

e+1 e
−
k+1) = f(

⌢
e+1 e

−
k ∪

⌢
e+k e

−
k+1).

However, the arcs
⌢

e+k e
−
k+1 and

⌢
e+1 e

−
k have a nontrivial intersection which is the arc

⌢
e+k e

−
k . Thus,

one has

f(
⌢

e+1 e
−
k+1) = f(

⌢
e+1 e

−
k )− f(

⌢
e+k e

−
k ) + f(

⌢
e+k e

−
k+1) = 0,



THE NON-CONVEX PLANAR LEAST GRADIENT PROBLEM 11

because each term in the sum above is zero. Finally, we consider the case (iii). We apply the same
argument we used in (ii) and obtain

f(
⌢

e+1 e
−
k+1) = f(

⌢
e+1 e

−
k ) + f(

⌢
e+k e

−
k )− f(

⌢
e+k e

−
k+1) = 0.

In particular, induction yields f(
⌢

e+1 e
−
m+1) = 0. We also know that e−m+1 ∈ χ−

i1
and f(

⌢
e+1 e

−
1 ) = 0.

Hence, we infer that f−(
⌢

e−1 e
−
m+1) = 0 and so, e−m+1 = e−1 . □

In addition, we have the following:

Lemma 3.7. The sequence {e±k : 1 ≤ k ≤ m+ 1} consists of the couple {e+1 , e
−
1 }.

Proof. Let us suppose the contrary and m > 1. Thanks to Lemma 3.6, we have that (e+m, e
−
1 ) ∈

spt(γ). Yet, (e+k , e
−
k+1) ∈ spt(γ), for all 1 ≤ k ≤ m − 1. Let ϕ be a Kantorovich potential for

measures f+ and f−. Hence, by the equality (2.6), we must have the following inequality:
m−1∑
k=1

|e+k − e−k+1|+ |e+m − e−1 | =
m−1∑
k=1

[ϕ(e+k )− ϕ(e−k+1)] + [ϕ(e+m)− ϕ(e−1 )] =

m∑
k=1

[ϕ(e+k )− ϕ(e−k )]

≤
m∑
k=1

|e+k − e−k |,

where the last inequality follows from the fact that ϕ is 1−Lipschitz. Considering the sequence’s
definition in (3.6), it follows that the above inequality contradicts our condition (H3). □

Finally, it remains to show that the sequence (3.5) cannot be infinite.

Lemma 3.8. The apparently infinite sequence (3.5) is in fact finite and it consists of the arcs
E+

1 , E
−
1 .

Proof. Let us consider the infinite sequence (3.5). Since the number of arcs Γi and χi is by
assumption finite, then there exist l ≥ 1 and k ≥ 2 such that E−

l , E
−
l+k ⊂ χ−

il
(or E−

l , E
−
l+k ⊂ Γ−

il
).

Let us denote again by {e±i }i the sequence of points on these arcs E±
i defined above in the course

of proof of Proposition 3.2. Thanks to Lemma 3.6, one can show similarly that e−l+k = e−l . Now,
we have a finite sequence starting at e+l ∈ χ+

il
(or e+l ∈ Γ+

il
) (this point will take the role of a new

e+1 ) and terminating at e−l+k = e−l ∈ χ−
il

(or e−l+k = e−l ∈ Γ−
il

). Hence, we are in a situation, when
we deal with a finite sequence, we invoke Lemma 3.7 to deduce that the loop consists of a pair
{e+l , e

−
l }. But, this is a contradiction. □

In this way, we have provided all the details for the proof of Proposition 3.2, which will play
an important role in the next section to show that even if Ω is convex and not necessarily strictly
convex, the transportation map T will be also the optimal transport map R between f+ and f−.
We conclude this section with the following observation.

Remark 3.9. The scrutiny of the proof of Lemma 3.7 shows that in the case when Ω is strictly
convex, one can relax the condition (H3) by assuming that inequality (3.2) holds only for every
sequence of points {e+i }1≤i≤m that belong to different arcs Γ+

i (i ∈ IΓ) or χ+
i (i ∈ Iχ). This remark

will be used in Step 3 of Proposition 3.12.

3.3. The case of convex, but not strictly convex domain. In this section, we will extend
the result of Proposition 3.2 to the case of convex domain Ω, without assuming its strict convexity.
We will proceed in a natural manner by finding a sequence of strictly convex domains Ωn whose
closures converge to Ω in the Hausdorff metric. At the same time, we have to come up with a good
choice of the boundary data gn defined on ∂Ωn and approximating g, to keep the assumptions (H1)
and (H3) in force. Since our approximation is based on the orthogonal projection onto Ω, then the
singular points of the support of f will play a role. We recall their definition

S :=

{
x ∈ Γ ∪ χ : there is no tangent line to ∂Ω at x

}
.

We give our first observation about the projection map onto a convex set.
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Lemma 3.10. Suppose that Ω ⊂ R2 is an open bounded convex set and Ω ⊂ Ω′, where Ω′ is
open bounded and strictly convex. We assume that P̃ : R2 7→ Ω is the orthogonal projection, its
restriction to ∂Ω′ will be denoted by P . For every x0 ∈ ∂Ω, we have the following:
(1) if x0 /∈ S, then the preimage P−1(x0) is a singleton,
(2) if x0 ∈ S, then P−1(x0) ⊂ ∂Ω′ is an arc of positive Hausdorff measure.

Proof. (1) In this case, the normal cone N(x0) reduces to a ray, which has a unique intersection
with ∂Ω′.

(2) If x0 is a singular point, then the normal cone has a positive opening. Its intersection with
∂Ω′ has a positive Hausdorff measure. □

The conclusion from this lemma is as follows. If we approximate Ω by a sequence of strictly
convex sets Ωn and we try to partition the boundaries of these sets into arcs of types χ±

i,n and Γ±
i,n,

then we will meet some difficulty since Lemma 3.10 tells us that (P|∂Ωn
)−1 will not preserve the

structure of arcs χ±
i and Γ±

i due to possible presence of singular points on these arcs. As a result,
we are forced to rearrange our partition into arcs χ±

i and Γ±
i in such a way that the new partition

avoids singular points. We will then make the following assumption about the set of singular points

(S) |f |(S) = 0.

We note that the assumption (S) is satisfied as soon as the closure of S is countable; in
particular, this will cover the case of polygonal Ω.

Lemma 3.11. Let us suppose that Ω is convex and conditions (H1), (H2), (H3) and (S) are
satisfied. Then, there exists another partition of ∂Ω into smooth arcs χ̃±

i (i ∈ Iχ̃ ≡ Iχ), Γ̃±
i

(i ∈ IΓ̃ where IΓ ⊂ IΓ̃) and F̃i (i ∈ IF̃ where IF ⊂ IF̃ ), satisfying the same conditions (H1), (H2)
and (H3).

Proof. Since ∂Ω \ S is open, then there are open arcs Uk (k ∈ I ⊂ N) such that

∂Ω \ S =
⋃
k∈I

Uk.

Consider the following families of open arcs

Γ̃+
k,i,j := Γ+

k ∩ Ui ∩T[−1](Uj) and Γ̃−
k,i,j := Γ−

k ∩T(Ui) ∩ Uj ,

with k ∈ IΓ and i, j ∈ I. In fact, these arcs Γ̃±
k,i,j are in a one to one correspondence, because we

have
T(Γ̃+

k,i,j) = T(Γ+
k ∩ Ui ∩T[−1](Uj)) = Γ−

k ∩T(Ui) ∩ Uj = Γ̃−
k,i,j .

Moreover, it is clear that Γ̃+
k,i,j and Γ̃−

k,i,j inherit the properties of Γ+
k , Γ−

k .
When we subdivide arcs χ±

k we proceed slightly differently. We first construct similar families

χ+
k ∩ Ui ∩T[−1](Uj) and χ−

k ∩T(Ui) ∩ Uj , k ∈ Iχ, i, j ∈ I.

We consider two cases: ck ∈ S and ck /∈ S. In the first case, we set

Γ̂+
k,i,j := χ+

k ∩ Ui ∩T[−1](Uj) and Γ̂−
k,i,j := χ−

k ∩T(Ui) ∩ Uj , k ∈ IΓ, i, j ∈ I.

Since T(Γ̂+
k,i,j) = Γ̂−

k,i,j , we can see that these arcs satisfy the conditions required for arcs of type
Γ.

In the case when ck /∈ S, there exist i0, j0 ∈ I such that if we set

χ̂+
k,i0,j0

:= χ+
k ∩ Ui0 ∩T[−1](Uj0), χ̂−

k,i0,j0
:= χ−

k ∩T(Ui0) ∩ Uj0 ,

then χ+
k,i0,j0

∩χ−
k,i0,j0

= {ck} and χ+
k,i0,j0

, χ−
k,i0,j0

inherit the properties of χ+
k , χ−

k . This concludes
the proof. □

Thanks to Lemma 3.11, one can assume that the decomposition of ∂Ω is such that all arcs χ±
i

(i ∈ Iχ) and Γ±
i (i ∈ IΓ) are smooth. However, it is possible that the point ci = χ+

i ∩ χ−
i is a

singular point. Moreover, we note that we do not care about singular points on the flat parts Fi
(i ∈ IF ).

Now, we are ready to show existence of a solution to Problem (1.1) in the convex case. For this
purpose, we divide our task into several parts. First, we assume that IΓ and Iχ are finite, and we
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approximate Ω by a sequence of strictly convex domains. Finally, by approximating the boundary
data, we complete the analysis considering the case when the number of arcs is infinite.

Let us assume that the set of singular points S is finite. In addition, we strengthen our condition
(H3) by assuming that for every m ∈ N, there is a δm > 0 such that for any sequence of points
{e+k }1≤k≤m described in (H3), the following inequality holds:

(H3)′
m∑
k=1

|e+k −T(e+k )| ≤
m−1∑
k=1

|e+k −T(e+k+1)|+ |e+m −T(e+1 )| − δm.

Proposition 3.12. Let us assume that Ω is convex, conditions (H1), (H2) & (H3) ′ are satisfied,
the set S is finite and the number of arcs χ±

i (i ∈ Iχ) as well as Γ±
i (i ∈ IΓ) is finite. Then, T is

an optimal transport map from f+ to f−.

Proof. Our task will be to find a sequence of decreasing strictly convex regions Ωn such that Ωn
converges to Ω in the Hausdorff distance. At the same time, we need to approximate the boundary
datum g by a sequence of functions gn defined on ∂Ωn. Our choice of (Ωn, gn) must be such that
for every n ∈ N, the boundary ∂Ωn can be decomposed into arcs χi,n, Γi,n and Fi,n for appropriate
sets of indices.

We divide the proof into several steps:
Step 1. Since Ω is convex, then due to [12, Theorem 20.4] one can always find a sequence

of decreasing closed polygons ∆n containing Ω and converging to Ω in the Hausdorff distance.
After that, we use the argument in [13] to construct a strictly convex region Ω̃n containing ∆n

such that the Hausdorff distance between them does not exceed 1
n . Thus, we obtain a decreasing

sequence of strictly convex domains Ωn such that Ωn → Ω in the Hausdorff metric. Indeed, if we
set Ωn =

⋂n
i=1 Ω̃i, then

Ω ⊂ Ωn+1 = Ω̃n+1 ∩ Ωn ⊂ Ωn.

Step 2. Due to Lemma 3.11 we may assume that all arcs χ±
i and Γ±

j are smooth because S is
finite.

We recall that P̃ , the orthogonal projection onto Ω, is Lipschitz continuous on R2. Let us
fix n ∈ N and set P̃n := P̃ |∂Ωn , C±

i,n := P̃−1
n (χ±

i ) for i ∈ Iχ, and C′±
i,n := P̃−1

n (Γ±
i ) for i ∈ IΓ,

Cn :=
⋃
i∈Iχ∪IΓ(C

±
i,n ∪ C′±

i,n). Let Pn : Cn 7→ Γ ∪ χ be a further restriction of P̃n to Cn. Thanks to
Lemma 3.10, we see that Pn is one-to-one, hence by the open mapping theorem the inverse of Pn
is continuous too. In the sequel, we denote by P−1

n : Γ ∪ χ 7→ Cn the inverse map of Pn. Then, we
define a measure f̃n on Cn as follows:

f̃n := (P−1
n )#f.

Since f is concentrated on Γ ∪ χ and P−1
n is continuous on Γ ∪ χ, then the measure f̃n is well

defined. Now, we extend it to a Borel measure on ∂Ωn by setting

fn(B) := f̃n(B ∩ Cn),
for any Borel set B ⊂ ∂Ωn. By the definition of fn we have that |fn|(∂Ωn\Cn) = 0. It is also clear
that fn(∂Ωn) = f(∂Ω) = 0 and |fn|(P−1(S) ∩ ∂Ωn) = 0.

Moreover, if x1, x2 ∈ Cn then we have

fn(
⌢
x1x2) = f(

⌢
Pn(x1)Pn(x2))

because
⌢

Pn(x1)Pn(x2)= Pn(
⌢
x1x2).

After these preparations, we define the trace function gn on ∂Ωn. Since it has to satisfy ∂τgn =
fn, then we proceed as follows. For a fixed x0 ∈ ∂Ω\S, we define xn := P−1

n (x0) ∈ ∂Ωn. Then, we
set

gn(x) := fn(
⌢
xnx), for every x ∈ ∂Ωn.

Since f is atomless, so is fn. Hence, gn ∈ C(∂Ωn).

Let us discuss the forms of the sets C±
i,n and C′±

i,n. We notice that C′±
i,n = P−1

n (Γ±
i ) are two arcs

of the form Γ±
i,n, because we have C′ +

i,n ∩ C′ −
i,n = ∅ and

fn(C′ +
i,n) = f+(Γ+

i ) and fn(C′ −
i,n) = f−(Γ−

i ).
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Moreover, gn is strictly increasing on C′ +
i,n (resp. decreasing on C′ −

i,n), because if x1, x2 ∈ C′ ±
i,n are

such that x1 < x2, then Pn(x1), Pn(x2) ∈ Γ±
i with Pn(x1) < Pn(x2) and, we have

gn(x2)− gn(x1) = fn(
⌢
x1x2) = f(

⌢
Pn(x1)Pn(x2)),

where
⌢
x1x2⊂ C′±

i,n and
⌢

Pn(x1)Pn(x2)= Pn(
⌢
x1x2) ⊂ Γ±

i .
The above argument applies too when the point ci (the common endpoint of χ±

i ) is a singular
point. Hence, C±

i,n = P−1
n (χ±

i ) are two arcs of the form Γ±
i,n, because by Lemma 3.10, P−1

n (ci) is
an arc of positive H1 measure (see Figure 1).

χ+
1

χ−
1

Γ−
1

Γ+
1

Ω

Γ+
1,n = P−1

n (χ+
1 )

Γ−
1,n = P−1

n (χ−
1 )

Γ−
2,n = P−1

n (Γ−
1 )

Γ+
2,n = P−1

n (Γ+
1 )

Ωn

Figure 1

Finally, when ci ̸∈ S, then by Lemma 3.10, P−1
n (ci) is a singleton and C+

i,n ∩ C−
i,n = {P−1

n (ci)}.
Hence, C±

i,n = P−1
n (χ±

i ) are two arcs of the form χ±
i,n. Indeed, we have

fn(C+
i,n ∪ C−

i,n) = f(χi) = 0.

We also see that gn is strictly increasing on C+
i,n (resp. decreasing on C−

i,n), because if x1, x2 ∈ C±
i,n

are such that x1 < x2, then Pn(x1), Pn(x2) ∈ χ±
i with Pn(x1) < Pn(x2). Moreover,

gn(x2)− gn(x1) = fn(
⌢
x1x2) = f(

⌢
Pn(x1)Pn(x2)),

where
⌢
x1x2⊂ C±

i,n and
⌢

Pn(x1)Pn(x2)= Pn(
⌢
x1x2) ⊂ χ±

i .

Step 3. Now, let us check that the assumption (H3) is also satisfied by gn. Let Tn be the
transportation map defined on Γ+

n ∪ χ+
n (see (3.1)). First, we see that if e+ ∈ Γ+

n ∪ χ+
n , then we

have

(3.7) e− := Tn(e
+) = P−1

n (T(Pn(e
+))).

Indeed, if e+ ∈ Γ+
i,n, i ∈ IΓn , (the argument when e+ ∈ χ+

i,n, i ∈ Iχn , is the same and it will be
omitted), then Pn(e

+) ∈ Γ+
j for some j ∈ IΓ or Pn(e+) ∈ χ+

j for some j ∈ Iχ, in case cj is a
singular point. As a result, T(Pn(e

+)) ∈ Γ−
j or T(Pn(e

+)) ∈ χ−
j , hence P−1

n (T(Pn(e
+))) ∈ Γ−

i,n.
Due to (3.3) we also notice that

fn(
⌢

e+P−1
n (T(Pn(e

+)))) = f(
⌢

Pn(e
+)T(Pn(e

+))) = 0.
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We can use (3.7) again to deduce that for all x ∈ ∂Ωn we have

(3.8) |Tn(x)−T(Pn(x))| = |P−1(T(Pn(x)))−T(Pn(x))| ≤ dH(Ωn,Ω) → 0, when n→ ∞.

Let {e+i }1≤i≤m be any finite sequence of points such that e+i ∈ χ+
i,n ∪ Γ+

i,n. We recall that since
Ωn is strictly convex, then by Remark 3.9, it is sufficient to consider points belonging to different
arcs Γ+

i,n or χ+
i,n. In this way, the index m appearing in (H3) will be at most the number of arcs

χ±
i and Γ±

i , which is finite and does not depend on n. Now, applying (3.8) we see that
m∑
i=1

|e+i −Tn(e
+
i )| ≤

m∑
i=1

|e+i − Pn(e
+
i )|+ |Pn(e+i )−T(Pn(e

+
i ))|+ |T(Pn(e

+
i ))−Tn(e

+
i )|

≤
m∑
i=1

|Pn(e+i )−T(Pn(e
+
i ))|+ 2mεn,

where εn := dH(Ωn,Ω). Moreover, we have the following inequality:
m−1∑
i=1

|Pn(e+i )−T(Pn(e
+
i+1))|+ |Pn(e+m)−T(Pn(e

+
1 ))|

≤
m−1∑
i=1

(
|Pn(e+i )− e+i |+ |e+i −Tn(e

+
i+1)|+ |Tn(e

+
i+1)−T(Pn(e

+
i+1))|

)
+ |Pn(e+m)− e+m|+ |e+m −Tn(e

+
1 )|+ |Tn(e

+
1 )−T(Pn(e

+
1 ))|

≤
m−1∑
i=1

|e+i −Tn(e
+
i+1)|+ |e+m −Tn(e

+
1 )|+ 2mεn.

Since by assumption g satisfies (H3) ′, there exists a δm > 0 (independent of n) such that
m∑
i=1

|Pn(e+i )−T(Pn(e
+
i ))| ≤

m−1∑
i=1

|Pn(e+i )−T(Pn(e
+
i+1))|+ |Pn(e+m)−T(Pn(e

+
1 ))| − δm.

These inequalities imply that gn satisfies the assumption (H3) because for n large enough, we get
the following inequality:

m∑
i=1

|e+i −Tn(e
+
i )| ≤

m−1∑
i=1

|e+i −Tn(e
+
i+1)|+ |e+m −Tn(e

+
1 )| − (δm − 4mεn)

<

m−1∑
i=1

|e+i −Tn(e
+
i+1)|+ |e+m −Tn(e

+
1 )|.

Step 4. For the sake of studying the convergence of the sequence of measures fn ∈ M(∂Ωn),
we need first to extend them all to a common domain. For this purpose, we fix any n0 ∈ N. For
n ≥ n0, we define a Borel measure f̃n on Ωn0 by setting f̃n(A) := fn(A∩ ∂Ωn), for every Borel set
A. For the sake of a convenient notation, we will drop the tildes. Let f+n and f−n be the positive
and negative parts of fn. Hence, we claim that f±n ⇀ f±. Indeed, for any continuous function φ
on Ωn0 , one has

⟨f±n , φ⟩ = ⟨(P−1
n )#f

±, φ⟩ =
ˆ
∂Ω

φ(P−1
n (x)) df±(x) →

ˆ
∂Ω

φ(x) df±(x) = ⟨f±, φ⟩

because due to (3.8), P−1
n (x) converges to x, for all x ∈ Γ ∪ χ.

Let γn be an optimal transport plan in Problem (2.4) between f+n and f−n , where Ωn0
plays now

the role of Ω. By Lemma 2.4, we infer that up to a subsequence, γn weakly converges to a measure
γ in M+(Ωn0

×Ωn0
) with (Πx)#γ = f+, (Πy)#γ = f−. Moreover, γ is an optimal transportation

plan between f+ and f−.
Yet, due to Proposition 3.2, we have that γn = (Id,Tn)#f

+
n . We will show that γ = (Id,T)#f

+.
Take ξ ∈ C(Ω× Ω), then we haveˆ

Ω×Ω

ξ(x, y) dγn(x, y) =

ˆ
Ω

ξ(x,Tn(x)) df
+
n (x) =

ˆ
Ω

ξ(x,Tn(P
−1
n (x))) df+(x)

→
ˆ
Ω

ξ(x,T(x)) df+(x)
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where the convergence of Tn(P
−1
n (x)) to T(x) follows from (3.8). This implies that γ = (Id,T)#f

+.
□

We will see in the next proposition that one can relax (H3)′ in Proposition 3.12 by showing that
(H3) is in fact sufficient to get that T is an optimal transport map.

Proposition 3.13. Assume Ω is convex, (H1), (H2) & (H3) hold, S is finite and the number of
arcs χ±

i (i ∈ Iχ) and Γ±
i (i ∈ IΓ) is finite. Then, T is an optimal transport map from f+ to f−.

Proof. We will construct a sequence gn ∈ C(∂Ω) ∩ BV (∂Ω) satisfying (H3)′ and converging
uniformly to g.

We set
t⋆ := min

i∈IΓ∪Iχ
{TV (g χ±

i ), TV (g Γ±
i )} > 0.

We fix n ∈ N⋆ large enough so that 1
n < t⋆. For every i ∈ Iχ, there exists c±i,n ∈ χ±

i such that
|g(c±i,n)− g(c±i )| = 1

n . For every i ∈ IΓ, there are a±i,n, b
±
i,n ∈ Γ±

i such that g(a±i,n) = g(a±i )+
1
n and

g(b±i,n) = g(b±i )− 1
n . Set Inχ = Iχ, InΓ = IΓ and InF = IF ∪ Iχ ∪ IΓ. So, we define the arcs

χ±
i,n =

⌢
ci c

±
i,n (i ∈ Inχ ), Γ±

i,n =
⌢

a±i,nb
±
i,n (i ∈ InΓ ),

and

Fi,n =


Fi if i ∈ IF

Γ±
i \ Γ±

i,n if i ∈ InΓ
χ±
i \ χ±

i,n if i ∈ Inχ

.

We define measure fn on ∂Ω as follows:

fn :=
∑
i∈Inχ

f⌞χi,n +
∑
i∈InΓ

f⌞Γi,n.

Then, we have fn ⇀ f . Now, set

gn(x) = g(x0) + fn(
⌢
x0x).

We construct the corresponding Tn as in (3.1). Since g satisfies (H3) and the arcs χi,n (resp. Γi,n)
are compactly contained in the open arcs χi (resp. Γi) and Tn is continuous on the compact set
Γ+
n ∪ χ+

n ⊂ Γ+ ∪ χ+ (see Lemma 3.1), then we deduce that (H3)′ is satisfied with this choice of
boundary datum gn. Thus, by Proposition 3.12, we get that Tn is an optimal transport map, i.e.
γn = (Id,Tn)#f

+
n solves (2.4) between f+n and f−n . We notice that the construction of new arcs

yields that for every x ∈ Γ+
n ∪ χ+

n , we have

(3.9) Tn(x) = T(x).

Thus, one can show again that γn ⇀ γ = (Id,T)#f
+ and γ is an optimal transport plan between

f+ and f−. □

Now, we take another approximation in order to cover the case of convex domain with infinite
number of arcs χ±

i (i ∈ Iχ) and Γ±
i (i ∈ IΓ) and, possibly an infinite number of singular points.

More precisely, we have the following:

Proposition 3.14. Assume that Ω is convex and conditions (H1), (H2), (H3) and (S) hold. Then,
T is an optimal transport map from f+ to f−.

Proof. In the present case, we have a priori an infinite number of arcs χ±
i and Γ±

i with an infinite
number of singular points. However, due to Lemma 3.11, we may assume after a repartition of ∂Ω,
that all the arcs χ±

i and Γ±
i are smooth. We then proceed again by approximation, but this time

we approximate the trace functions g by gn defined on ∂Ω and such that gn has a finite number of
smooth arcs χ±

i,n and Γ±
i,n. Namely, for a fixed n ∈ N⋆, we set

Inχ =

{
i ∈ Iχ : H1(χi) ≥

1

n

}
, InΓ =

{
i ∈ IΓ : H1(Γ+

i ∪ Γ−
i ) ≥

1

n

}
and

χi,n = χi (for all i ∈ Inχ ), Γ±
i,n = Γ±

i (for all i ∈ InΓ ),
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Fi,n = χj (for some j ∈ Iχ\Inχ ), Fi,n = Γj (for some j ∈ IΓ\InΓ ) or Fi,n = Fj (for some j ∈ IF ).

Now, we define measure fn on ∂Ω as follows:

fn :=
∑
i∈Inχ

f⌞χi +
∑
i∈InΓ

f⌞Γi.

We shall see that fn ⇀ f . Indeed, for any continuous function φ on ∂Ω, we have that

⟨fn, φ⟩ =
∑
i∈Inχ

⟨f⌞χi, φ⟩+
∑
i∈InΓ

⟨f⌞Γi, φ⟩ −→
∑
i∈Iχ

⟨f⌞χi, φ⟩+
∑
i∈IΓ

⟨f⌞Γi, φ⟩ = ⟨f, φ⟩.

We note that fn(∂Ω) = 0, for all n ∈ N⋆. Fix x0 ∈ ∂Ω, so we define the trace function gn on ∂Ω
as follows:

gn(x) := fn(
⌢
x0 x)

where
⌢
x0 x is the arc from x0 to x going in the positive orientation. So, we clearly have gn ∈

C(∂Ω) ∩ BV (∂Ω) with ∂τgn = fn. Let Tn be the transport map from f+n to f−n defined as in
(3.1). It is convenient to extend it to Γ+ ∪χ+ by setting Tn(x) = x, for every x ∈ (

⋃
i∈Iχ\Inχ

χ+
i )∪

(
⋃
i∈IΓ\InΓ

Γ+
i ). It is obvious that Tn(x) = T(x), for every x ∈ Γ+

n ∪ χ+
n . It is also easy to see that

the assumption (H3) is satisfied by gn, because for every i ∈ Inχ (resp. i ∈ InΓ ), we have χi,n = χi
(resp. Γi,n = Γi). In particular, Proposition 3.13 yields that Tn is an optimal transport map from
f+n to f−n .

Let γn = (Id,Tn)#f
+
n be the optimal transport plan between f+n and f−n . Now, we invoke

Lemma 2.4 to deduce that up to a subsequence, γn ⇀ γ, where γ ∈ M+(Ω × Ω) is an optimal
transportation plan between f+ and f−. We notice that for any ξ ∈ C(Ω× Ω), we haveˆ

Ω×Ω

ξ(x, y) dγn(x, y) =

ˆ
Ω

ξ(x,Tn(x)) df
+
n (x) =

ˆ
Ω

ξ(x,T(x)) df+n (x) →
ˆ
Ω

ξ(x,T(x)) df+(x).

Hence, γ = (Id,T)#f
+. □

Remark 3.15. We have seen that the projection map P is easy to visualize geometrically, but
the set S leads to technical difficulties when we deal with P . However, we could introduce a more
complicated map that does not take into account the presence of singular points on ∂Ω and, we
will do so later in the proof of Proposition 4.12.

From Proposition 3.14, we know that γ = (Id,T)#f
+ is an optimal transport plan between f+

and f−. In fact, one can show that this is a unique optimal transport plan in (2.4). More precisely,
we have the following:

Proposition 3.16. Under the assumptions that Ω is convex and (H1), (H2), (H3) and (S) hold,
Problem (2.4) has a unique optimal transport plan γ = (Id,T)#f

+.

Proof. Let γ be an optimal transport plan in Problem (2.4) and let us assume that γ ̸= (Id,T)#f
+,

i.e. the set

A =

{
x ∈ ∂Ω : ∃ y ∈ ∂Ω, y ̸= T(x), (x, y) ∈ spt(γ)

}
has a positive measure, i.e., f+(A) > 0. At the same time, by Proposition 3.14, ]x,T(x)[⊂ Ω is
a transport ray for f+−a.e. x. We know that two transport rays cannot intersect at an interior
point of one of them. As a result, we get that A ⊂ N . Yet, thanks to the convexity of Ω (see
Lemma 2.5), N is at most countable. Hence, this yields that f+(A) = 0, which is a contradiction.
We conclude that γ = (Id,T)#f

+ is the unique optimal transport plan in Problem (2.4). □

In the sequel, we set γ := (Id,T)#f
+. Thanks to the convexity of Ω, the vector measure vγ

given by (2.7) (resp. the transport density σγ (2.8)) is well defined. Moreover, due to condition
(H2), one has

(3.10) |vγ |(∂Ω) = σγ(∂Ω) =

ˆ
∂Ω

H1([x,T(x)] ∩ ∂Ω) df+(x) = 0.

Hence, we get the following:

Proposition 3.17. Assume that Ω is convex and (H1), (H2), (H3) & (S) hold. Then, vγ is the
unique solution for Problem (2.2).
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Proof. Thanks to [15, Chapter 4] and the fact that Ω is assumed to be convex, we have that
(2.2) = (2.4) and, vγ is a minimizer for Problem (2.2). Moreover, we recall that if v is another
minimizer in (2.2), then there will be an optimal transport plan γ′ in (2.4) such that v = vγ′ (we
refer the reader to [15, Theorem 4.13] for more details). Yet, by Proposition 3.16, we know that
the optimal transport plan γ is unique. Hence, Problem (2.2) has a unique solution as well. □

Finally, we are ready to state the first of our main theorems in this section:

Theorem 3.18. Assume that Ω is convex, g ∈ BV (∂Ω)∩C(∂Ω) and conditions (H1), (H2), (H3),
and (S) are satisfied. Then, the least gradient problem (1.1) has a unique solution.

Proof. Due to Proposition 2.3, Problems (1.1) and (2.2) are equivalent. As a result, our claim
follows immediately from Proposition 3.17 and the fact that |vγ |(∂Ω) = 0, see (3.10). □

Now, we present an example showing that violation of (H3) might lead to the non-existence of
solutions to Problem (1.1).

Example 3.19. Let Ω := (0, 1)2 be the unit square and define a function g ∈ BV (∂Ω) ∩ C(∂Ω)
as follows

g(x1, x2) :=

{
min{x1, δ, 1− x1} if x1 ∈ [0, 1], x2 = 0 or x2 = 1,

min{x2, δ, 1− x2} if x2 ∈ [0, 1], x1 = 0 or x1 = 1,

where

δ ∈
]

1

2 +
√
2
,
1

2

[
.

δ 1− δχ+
1 χ−

2

χ−
3

χ+
2

χ−
4 χ+

3

χ+
4

χ−
1

Figure 2

We notice that in this case, the boundary of Ω can be divided into arcs χ±
i with i = 1, ..., 4 (as

shown in Figure 1):

χ+
1 := {(x1, 0) : 0 ≤ x1 ≤ δ}, χ−

1 := {(0, x2) : 0 ≤ x2 ≤ δ},
χ+
2 := {(1, x2) : 0 ≤ x2 ≤ δ}, χ−

2 := {(x1, 0) : 1− δ ≤ x1 ≤ 1},
χ+
3 := {(x1, 1) : 1− δ ≤ x1 ≤ 1}, χ−

3 := {(1, x2) : 1− δ ≤ x2 ≤ 1},
χ+
4 := {(0, x2) : 1− δ ≤ x2 ≤ 1}, χ−

4 := {(x1, 1) : 0 ≤ x1 ≤ δ}.

Due to the definition of g, the measures f+, f− are given by f+ = H1⌞(χ+
1 ∪ χ+

2 ∪ χ+
3 ∪ χ+

4 ) and
f− = H1⌞(χ−

1 ∪ χ−
2 ∪ χ−

3 ∪ χ−
4 ).

Now, we claim that there are transport rays between f+ and f− which are contained in the
boundary of Ω. Indeed, if this was not the case then it would not be difficult to see that the
line segments [(δ, 0), (0, δ)], [(1 − δ, 0), (1, δ)], [(1, 1 − δ), (1 − δ, 1)] and [(δ, 1), (0, 1 − δ)] must be
transport rays. Hence, we should have the following inequality:

|(δ, 0)− (0, δ)|+ |(1− δ, 0)− (1, δ)|+ |(1, 1− δ)− (1− δ, 1)|+ |(δ, 1)− (0, 1− δ)|
≤ |(δ, 0)− (1− δ, 0)|+ |(1, δ)− (1, 1− δ)|+ |(1− δ, 1)− (δ, 1)|+ |(0, 1− δ)− (0, δ)|,
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which is not possible since δ > 1
2+

√
2
. In particular, the assumption (H3) is not satisfied and, a

solution u does not exist. On the other hand, we see that (H3) is satisfied as soon as δ ≤ 1
2+

√
2
.

Thus, we infer that Problem (1.1) has a unique solution, provided that this inequality holds.

From Theorem 3.18, we have already seen that if (H1), (H2), (H3) and (S) are satisfied, then
Problem (1.1) attains a minimum. In other words, these conditions are sufficient to get existence
of a solution to Problem (1.1).

In the following example the data violates condition (H1) but (1.1) has a solution, hence (H1)
is not necessary for existence.

Example 3.20. Let Ω = [0, 1]2 and C : [0, 1] 7→ [0, 1] be the Cantor function. Then, we define the
boundary datum g on ∂Ω as follows:

g(x1, x2) =


C(x1) if 0 ≤ x1 ≤ 1 and x2 = 0 or x2 = 1,

0 if 0 ≤ x2 ≤ 1 and x1 = 0,

1 if 0 ≤ x2 ≤ 1 and x1 = 1.

With this choice of g, it is clear that the least gradient problem (1.1) admits a solution u(x1, x2) =
C(x1). Indeed, let us define the transport map

T (x1, 0) = (x1, 1).

The Kantorovitch potential is given by ϕ(x1, x2) = −x2, because

1 =

ˆ
Ω

ϕd(f+ − f−) ≤ sup
Lip(ψ)≤1

ˆ
Ω

ψ d(f+ − f−) =

ˆ 1

0

(ψ(x1, 0)− ψ(x1, 1)) df
+ ≤ 1.

Moreover, ˆ
Ω

ϕ d(f+ − f−) =

ˆ
Ω

|x− T (x)|df+.

Notice that for such a function g, (H1) is not satisfied.

In the example above, sets Iχ and IΓ are empty; but g is monotone on each side of the square and
∂τg is a singular measure with

´
∂Ω

|∂τg| = 2. These observations suggest the following definition.

Definition 3.21. We say that a function g ∈ W 1,1(∂Ω) is piecewise monotone provided that ∂Ω
may be decomposed into disjoint sets such that ∂Ω = U+ ∪ U− ∪ U0, where U± are open and
∂τg > 0 a.e. on U+, ∂τg < 0 a.e. on U− and

´
U0

|∂τg| ds = 0.

If we keep this definition in mind, then one can show that (H1), (H2), and (H3) are all at
the same time necessary conditions for the solvability of the least gradient problem for piecewise
monotone data. This is the content of the second of our main theorems:

Theorem 3.22. Let Ω be a convex domain and g in W 1,1(∂Ω) be piecewise monotone. Assume
that Problem (1.1) has a solution u. Then, the boundary datum g must satisfy conditions (H1),
(H2) and (H3).

Proof. Step 1. First, we define v := Rπ
2
Du. Due to Proposition 2.3 the vector field v turns out to

be a solution for problem (2.2). At the same time, by [15, Theorem 4.13], there will be an optimal
transport plan γ for Problem (2.4) such that v = vγ . Since u is a solution to Problem (1.1), then
no level set ∂{u ≥ t} of u is contained in the boundary ∂Ω. In optimal transport terms, this means
that there are no transport rays between f+ and f− which are contained in ∂Ω (we recall that f+
and f− are the positive and negative parts of f , the tangential derivative of g).

Let ∆ be the interior of the set where u is locally constant or equivalently, where the transport
density σ = |v| vanishes. This set has at most a countable number of disjoint connected components
denoted by ∆i, i ∈ I∆, with positive Lebesgue measures. We shall introduce IF = {i ∈ I∆ :
H1(∂∆i ∩ ∂Ω) > 0}. Then, we define the flat parts as follows:

Fi = ∂∆i ∩ ∂Ω, i ∈ IF .

We shall see that for any i, the set Ω ∩ ∂∆i is composed of transport rays. Indeed, if z ∈ Ω ∩ ∂∆i

then there will be a sequence zn ∈ Ω \ ∆ such that zn → z. Since zn /∈ ∆ then there will
be a transport ray Rn = [xn, yn] such that zn ∈ Rn. Yet, after extracting a subsequence (not
relabeled), these transport rays Rn converge to a line segment R = [x, y], where xn → x and
yn → y. Moreover, z ∈ R and due to Lemma 2.4 (2) applied to constant sequences f±n = f±, we
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infer that R is a transport ray. In particular, ∂∆i intersects ∂Ω. At the same time, we see that
the set ∂Ω\

⋃
i∈I∆ ∆i is a sum of open arcs, let us call it

⋃
j∈J αj , where αj ⊂ ∂Ω and J is at most

countable index set.
Step 2. Let us suppose that g has at least one strict local minimum or maximum. If this is

not the case we will proceed to Step 3. We take ck a strict local minimum or maximum of g.
Since ck ∈ ∂Ω \

⋃
i∈I∆ ∆i, then there is j ∈ J so that ck ∈ αj . Moreover, there will be an open

arc χ̃k :=
⌢
c+k c

−
k around ck, where g is strictly increasing on χ+

k :=
⌢
ck c

+
k and strictly decreasing on

χ−
k :=

⌢
ck c

−
k . We notice that [c+k , c

−
k ] is a transport ray. This follows from the fact that any level

set of a solution to (1.1) is a transportation ray. Let us denote by Dk ⊂ Ω the convex hull of χk,
we notice that ∂Dk ∩ Ω = [c+k , c

−
k ].

Step 3. We define an open set T := Ω \
(⋃

i∈Iχ Di ∪
⋃
i∈I∆ ∆i

)
. We claim that any open

connected component of T is of the form Ti (see condition (H1)), i.e. it is the convex hull of
two open arcs Γ+

i and Γ−
i , where g is strictly increasing on Γ+

i and strictly decreasing on Γ−
i with

TV (g|Γ+
i
) = TV (g|Γ−

i
) and dist (Γ+

i ,Γ
−
i ) > 0.

Let C be an open connected component of T . We claim that ∂C ∩ ∂Ω consists of a sum of two
disjoint closed arcs. First, it is easy to see that ∂C ∩Ω consists of transportation rays, hence C is
convex.

Since C ∩∆ = ∅, then the interior relative to ∂Ω of any arc of ∂C ∩ ∂Ω does not contain any
multiple point, otherwise there will be an i ∈ I∆ such that ∆i divides C into two parts but this
is a contradiction because C is connected. By the same argument, one can see that the interior
of any arc of ∂C ∩ ∂Ω does not also intersect the flat part F of g. Moreover, it is clear that g
does not attain a strict local minimum/maximum in the interior of ∂C ∩ ∂Ω. Hence, on any arc
of ∂C ∩ ∂Ω, the boundary datum g is either strictly increasing or strictly decreasing. Hence, any
point x+ ∈ ∂C ∩ ∂Ω is an endpoint of a transportation ray [x+, x−], where x− ∈ ∂C ∩ ∂Ω.

Since the set U = ∂Ω \
(⋃

i∈Iχ Di ∪
⋃
i∈I∆ ∆i

)
is open it is a sum of open disjoint arcs. We set

AC = {α ⊂ U : α is an open connected component and α ∩ ∂C ̸= ∅}.

It is clear that if α ∈ AC then α ⊂ ∂C. Now, we claim that if α ̸= β are both in AC , then α∩β = ∅.
Let us suppose otherwise, i.e. α ∩ β = {p}. Hence, g is strictly monotone on θ := α ∪ {p} ∪ β,
for otherwise we have an arc of type χ. Then, we have two possibilities: (i) either p is a multiple
point, or (ii) p is not a multiple point.

In the first case, we see that there will be two transportation rays R1 = [p, q1] and R2 = [p, q2],
where q1, q2 ∈ ∂C ∩ ∂Ω and q1 ̸= q2. Yet, these rays R1 and R2 separate two components of C,
which was assumed to be connected, a contradiction.

If (ii) holds, then there will be a unique transportation ray R = [p, q] starting at p such that
q belongs to ∂C ∩ ∂Ω. Since g is strictly monotone on θ, this ray ]p, q[ must be contained in C.
Suppose that pαn ∈ α (resp. pβn ∈ β) is a sequence of points converging to p. We take the rays
emanating from these points, [pαn, qαn ], [pβn, qβn]. Moreover, by strict monotonicity of g, these rays
are contained in C and we have

lim
n→∞

qαn = q = lim
n→∞

qβn,

since otherwise we would reach a contradiction with the fact that p is not a multiple point. Thus,
there is a ball B(p, r), which does not contain any point from

⋃
i∈Iχ Di ∪

⋃
i∈I∆ ∆i, but this yields

again a contradiction with the definition of p. Hence, we conclude that α ∩ β = ∅.
Now, take any arc α1 ⊂ ∂C ∩ ∂Ω and any point x+ in the interior of α1. Assume that [x+, x−]

is a transport ray. As we noted above g is strictly monotone on α1 so that x− cannot belong to α1.
Thus, x− ∈ α2 ⊂ ∂C ∩∂Ω, where α1∩α2 = ∅. Then, all the other points in the interior of α1 must
be transported to the same arc α2 because otherwise there would be a multiple point inside α1,
which is a contradiction as we already showed that there are no multiple points inside any arc of
∂C ∩ ∂Ω. Consequently, ∂C ∩ ∂Ω can be decomposed into two arcs Γ+ and Γ−, where g is strictly
increasing on Γ+ and strictly decreasing on Γ− with TV (g|Γ+) = TV (g|Γ−) and dist (Γ+,Γ−) > 0.

Step 4. Set
IΓ = {i ∈ I∆ : Ti is a connected component of T}.

Since sets Ti, i ∈ IΓ, are disjoint and open, then set IΓ is at most countable. It is also clear that
the sets Ti (i ∈ IΓ) and Dj (j ∈ Iχ) are mutually disjoint. Hence, the condition (H1) is satisfied.
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Moreover, we obviously have that for every x+ ∈ χ+
i , i ∈ Iχ (resp. x+ ∈ Γ+

i , i ∈ IΓ), the line
segment [x+,T(x+)] is a transport ray (see Lemma 3.5), which is contained in Ω. Hence, (H2)
holds as well.

Finally, (H3) is also satisfied. Consider any finite sequence of points {e+k }1≤k≤m (where m ∈ N)
such that e+k ∈ χ+

ik
∪ Γ+

ik
, for some ik ∈ Iχ ∪ IΓ. Then, we have (e+k ,T(e+k )) ∈ spt(γ), for every

1 ≤ k ≤ m and so, thanks to the equality (2.6) which is satisfied by the Kantorovich potential ϕ,
we get the following identity:

m∑
k=1

|e+k −T(e+k )| =
m∑
k=1

ϕ(e+k )− ϕ(T(e+k )) =

m−1∑
k=1

[ϕ(e+k )− ϕ(T(e+k+1))] + ϕ(e+m)− ϕ(T(e+1 )).

Recalling the proof of Proposition 3.16, we see that [e+k ,T(e+k+1)] is not a transport ray and then,
we have ϕ(e+k )− ϕ(T(e+k+1)) < |e+k −T(e+k+1)|. Consequently, we get

m∑
k=1

|e+k −T(e+k )| <
m−1∑
k=1

|e+k −T(e+k+1)|+ |e+m −T(e+1 )|.

This concludes the proof. □

4. Sufficient conditions for existence and uniqueness in the non-convex case

In this section, we will extend the equivalence between Problems (2.2) and (2.4) to the general
case of a bounded, simply connected, not necessarily convex domain, Ω ⊂ R2, however, some
admissibility conditions on the Dirichlet datum g are imposed. We stress that the assumption of
the piecewise monotonicity of g ∈ C(∂Ω) is a standing assumption. Then, we will be able to show,
under these conditions, the existence and uniqueness of a solution to the least gradient problem
(1.1). We stress that the condition (S), which is a regularity assumption on ∂Ω is in force (but,
we will see in Proposition 4.12 that one can relax this condition).

To begin with, we introduce the following assumptions:

• Condition (L1). The domain Ω can be decomposed into convex disjoint sets C̃i (i ∈ IC)
and disjoint open sets Xi (i ∈ IX) such that g is constant on ∂Xi ∩ ∂Ω. In order to use the setting
of Section 3 we need data (Ci, gi), i ∈ IC , where Ci is open and convex, gi ∈ C(∂Ci). Namely, we
set Ci := C̃i

◦
and gi(x) = g(xi) + (f⌞(∂Ci ∩ ∂Ω))(

⌢
xix) and xi ∈ ∂Ci ∩ ∂Ω is fixed. Of course, sets

Ci are disjoint. Moreover, we have the following:
(1) For every i ∈ IC , we assume that gi ∈ C(∂Ci) satisfies the condition (H1), i.e. ∂Ci ∩ ∂Ω

can be decomposed into open arcs Γij
± (j ∈ IiΓ), χij

± (j ∈ Iiχ) and F ij (j ∈ IiF ), satisfying all the
points of (H1) (see Section 3). We note that gi is constant on each component of ∂Ci ∩ Ω.

In the sequel, we also use the following notations: Γij = Γij
+ ∪ Γij

− (i ∈ IC , j ∈ IiΓ), χij =

χij
+ ∪ χij

− (i ∈ IC , j ∈ Iiχ), Γi± =
⋃
j∈IΓ Γ

i
j
±, χi± =

⋃
j∈Iχ χ

i
j
±, Γi = Γi

+ ∪ Γi
−, χi = χi

+ ∪ χi−

(i ∈ IC), Γ± =
⋃
i∈IC Γi

±, χ± =
⋃
i∈IC χ

i±, Γ = Γ+ ∪ Γ− and, χ = χ+ ∪ χ−. This will help us
express the next conditions.

We will note further simple consequences of the assumption (L1).

Lemma 4.1. Let us suppose that Ci, i ∈ IC , is one of the sets defined above, then f(∂Ci) = 0.

Proof. First, we note that f(∂Ci) = f(∂Ci ∩ ∂Ω). By definition of Ci, the set ∂Ci ∩ ∂Ω has the
following structure:

∂Ci ∩ ∂Ω =
⋃
j∈Iiχ

(χij
+ ∪ χij

−
) ∪

⋃
j∈IiΓ

(Γij
+ ∪ Γij

−
) ∪

⋃
j∈IiF

F ij ∪N i,

where N i = (∂Ci∩∂Ω)\(Γi∪χi∪
⋃
j∈IiF

F ij ). But, by the assumption that g is piecewise monotone,
we see that this set N i is a null set with respect to the measure |f |. Hence, by (L1), we get that

f(∂Ci ∩ ∂Ω) =
∑
j∈Iiχ

f(χij
+ ∪ χij

−
) +

∑
j∈IiΓ

f(Γij
+ ∪ Γij

−
) = 0. □

We follow the same strategy of construction of solutions as in the previous section. Namely, we
begin by introducing a transport map T : Γ+∪χ+ 7→ Γ−∪χ−. In the first step of the construction,
we define Ti on ∂Ci with the help of the formula (3.1). We can do this due to Lemma 4.1. This
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definition of Ti implies in particular that Ti has all the properties proved for the map T in Section
3, (as usual, Ti[−1] denotes the inverse of Ti).

After this preparation, we set

(4.1) T(x+) = Ti(x+), whenever x+ ∈ (Γ+ ∪ χ+) ∩ Ci.

Since the sets Ci are disjoint, then we see that this map T is well-defined. Here, come our next
requirements on the boundary datum g:

(2) For every i ∈ IC , the restriction of g to ∂Ci ∩ ∂Ω satisfies the condition (H2), i.e. for all
x+ ∈ Γ+ ∪ χ+, we have ]x+,T(x+)[⊂ Ω.

(3) For every i ∈ IC , g satisfies the condition (H3) on ∂Ci ∩∂Ω, i.e. for any sequence of points
{e+k }1≤k≤m (where m ∈ N) such that e+k ∈ χijk

+ ∪ Γijk
+ (for some jk ∈ Iiχ ∪ IiΓ), we have the

following inequality
m∑
k=1

|e+k −Ti(e+k )| <
m−1∑
k=1

|e+k −Ti(e+k+1)|+ |e+m −Ti(e+1 )|.

Remark 4.2. We note that these conditions encompassed in (L1) impose important restrictions
on the geometry of ∂Ω. Namely, even if the domain Ω is not convex, (L1) implies that the arcs of
∂Ci ∩ ∂Ω must have non-negative curvature for all i ∈ IC . As a result the D = {(x1, x2) ∈ R2 :

x1 ∈ (−1, 1), x2 ∈ (
√

1− x21,
√
1− x21 + 1)} does not satisfy (L1) as soon as g ∈ C(∂D) is not

constant on the graph of x1 ∈ (−1, 1) 7→
√
1− x21. However, we will also cover in Proposition 4.8

the case when some arcs of spt(f) have negative curvature.

Since Ω is not convex, then we will also need an additional condition that guarantees that the
boundary of each set Ci (i ∈ IC) is transported to itself. Namely, we assume the following:

• Condition (L2). Let {ek±}1≤k≤m (where m ∈ N) be two finite sequences of points such
that ek± ∈ χik

± ∪ Γik
±, with ik ̸= ik′ for all k ̸= k′. Then, we assume the following additional

inequality:
m∑
k=1

|ek+ − ek
−| <

m−1∑
k=1

|ek+ − ek+1
−|+ |em+ − e1

−|.

We stress that here e+k and e−k are two arbitrary points on ∂Cik . In particular, e−k needs not to be
the image of e+k under the map T.

Proposition 4.3. Assume that conditions (L1) and (L2) hold. Let γ be an optimal transport plan
for Problem (2.4), then for γ−a.e. (x+, x−) ∈ spt(γ), there exists i ∈ IC such that x− = Ti(x+).
In particular, the optimal transport plan γ is unique and, we have γ = (Id,T)#f

+.

Proof. We claim that γ(C̄i × C̄j) = 0 for all i ̸= j. The proof is similar to the argument of
Proposition 3.2 and it is performed in Steps 1.1 till 1.3.

Step 1.1. Let us assume that there is a couple (e+1 , e
−
2 ) ∈ spt(γ) with e+1 ∈ Γi1

+ ∪ χi1+ but
e−2 ∈ Γi2

− ∪ χi2
−, where i1 ̸= i2. Then, we are going to construct two sequences of points in

Γ± ∪ χ±,
e+1 , e

+
2 , . . . and e−2 , e

−
3 , . . .

such that (e+k , e
−
k+1) ∈ spt(γ), e+k ∈ Γik

+ ∪ χik+ and e−k+1 ∈ Γik+1
− ∪ χik+1

−, where ik ̸= ik+1.
Let us suppose that we have e−k ∈ Γik

− ∪ χik− and e+k−1 ∈ Γik−1
+ ∪ χik−1

+. We will construct
(e+k , e

−
k+1). Since f is atomless, then there is a Borel set G−

k ⊂ Γik
− ∪ χik− containing e−k with

f−(G−
k ) > 0, which was transported from a set G+

k−1 ⊂ Γik−1
+ ∪ χik−1

+ containing e+k−1. Yet,
thanks to Lemma 4.1, we know that f(∂Cik) = 0. Hence, the mass imported into Cik must be
balanced with an equal outflow of the mass. Then, there will be a Borel set G+

k ⊂ Γik
+ ∪ χik+

with 0 < f+(G+
k ) ≤ f−(G−

k ), which is transported to a set G−
k+1 ⊂ Γik+1

− ∪ χik+1
−. So, let us

just pick any couple (e+k , e
−
k+1) ∈ (G+

k × G−
k+1) ∩ spt(γ). In this way, we get sequences with the

desired properties.
Step 1.2. Let us assume that the index set IC is finite. Now, we claim that ik ̸= ik′ , for all

k ̸= k′. Let us suppose that there exist l, m ≥ 1 such that e±l , e
±
l+m+1 ∈ Γil

± ∪χil± (i.e., one has
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il = il+m+1). Let ϕ be again a Kantorovich potential between f+ and f−. Then, thanks to the
equality (2.6), we get that

l+m−1∑
k=l

|e+k − e−k+1|+ |e+l+m − e−l+m+1| =
l+m−1∑
k=l

[ϕ(e+k )− ϕ(e−k+1)] + [ϕ(e+l+m)− ϕ(e−l+m+1)]

= [ϕ(e+l )− ϕ(e−l+m+1)] +

l+m∑
k=l+1

[ϕ(e+k )− ϕ(e−k )]

≤ |e+l − e−l+m+1|+
l+m∑
k=l+1

|e+k − e−k |.

However, this contradicts the inequality in the assumption (L2).
Step 1.3. Finally, it remains to consider the case when IC = N⋆. From now on, for the sake of

simplicity of notation we assume that ik = k.
Since we assumed that our claim does not hold, there is an arc E+

1 ⊂ ∂C1 and another one
E−

2 ⊂ ∂C2 with γ(E+
1 × E−

2 ) = c > 0. Set γ1 = γ (E+
1 × E−

2 )c, f+1 = (Πx)#γ1 and f−1 =
(Πy)#γ1. Then, we have

f±1 (∂Ω) = f±(∂Ω)− c.

Since ∂C1 ⊂ ∂Ω \ E−
2 , then we also have

f−1 (∂Ω) ≥ f−(∂C1) = f+(∂C1) ≥ f+(E+
1 ) ≥ c.

Yet, f(∂C2) = 0. Then, there will be a set E+
2 ⊂ ∂C2 with another set E−

3 ⊂ ∪k∈I3∂Ck such that
γ(E+

2 × E−
3 ) = c. Again, we define γ2 = γ1 (E+

2 × E−
3 )c, f+2 = (Πx)#γ2 and f−2 = (Πy)#γ2.

Thanks to ∂C1 ⊂ ∂Ω \ (E−
2 ∪ E−

3 ), we have

f±2 (∂Ω) = f±1 (∂Ω)− c = f±(∂Ω)− 2c and f−2 (∂Ω) ≥ f−(∂C1) ≥ c.

Fix n ≥ 3. By induction: since f(∂Ck) = 0 for all k ∈ In then there will be a set E+
n ⊂

∪k∈In∂Ck and another set E−
n+1 ⊂ ∪k∈In+1

∂Ck such that γ(E+
n ×E−

n+1) = c. We also define γn =

γn−1 (E+
n × E−

n+1)
c, f+n = (Πx)#γn and f−n = (Πy)#γn. Using that ∂C1 ⊂ ∂Ω \ ∪i∈In+1

E−
i , we

have
f±n (∂Ω) = f±n−1(∂Ω)− c = f±(∂Ω)− nc and f−n (∂Ω) ≥ f−(∂C1) ≥ c.

But, this yields obviously to a contradiction as soon as n is large enough. As a consequence, the
claim that γ(C̄i × C̄j) = 0, for all i ̸= j, is proved.

Step 2. We claim that the restriction of γ to Ci × Ci is the unique optimal transport plan
between its corresponding marginals. For i ∈ IC , we introduce

γi := γ⌞(C̄i × C̄i), f±i := f±⌞C̄i.

Thanks to our assumption on γ, we see that (Πx)#γi = f+i and (Πy)#γi = f−i . Let us suppose
that ηi is a solution to the Monge-Kantorovich problem on Ci with data f+i , f−i , i ∈ IC . We notice
that since by assumption Ci is convex and gi := g ∂Ci satisfies condition (H1)-(H3), then due to
Proposition 3.16, ηi is the unique optimal transportation plan and it is induced by a map Ti, i.e.
ηi = (Id, Ti)#f

+
i . The optimality of ηi on C̄i × C̄i implies that

(4.2)
ˆ
C̄i×C̄i

|x− y| dηi ≤
ˆ
C̄i×C̄i

|x− y| dγi.

Now, we set η =
∑
i∈IC ηi. The optimality of γ between f+ and f− as well as the admissibility of

η lead to ˆ
Ω̄×Ω̄

|x− y| dγ ≤
ˆ
Ω̄×Ω̄

|x− y| dη.

Yet, from (4.2), we also have ˆ
Ω̄×Ω̄

|x− y| dη ≤
ˆ
Ω̄×Ω̄

|x− y| dγ.

Hence, we get that the inequality in (4.2) is in fact an equality for every i ∈ IC , i.e. we haveˆ
C̄i×C̄i

|x− y| dηi =
ˆ
C̄i∩C̄i

|x− y| dγi.
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This means that γi = ηi = (Id,Ti)#f
+
i is the unique optimal transport plan between f+i and f−i .

Our claim follows. Yet, we have

(4.3) γ =
∑
i∈IC

γi.

Thus, we deduce that

(4.4) γ =
∑
i∈IC

(Id,Ti)#f
+
i = (Id,T)#f.

Hence, we have proved that if γ is an optimal transport plan between f+ and f−, then we have
γ = (Id,T)#f

+. Yet, the map T does not depend on γ as a result, the optimal transport plan γ
is unique. This concludes the proof. □

Proposition 4.4. Assume that (L1) and (L2) hold. Then, we have (2.2) = (2.4). Moreover, vγ
is a unique solution of Problem (2.2), provided that γ = (Id,T)#f

+.

Proof. We recall that we always have (2.5) ≤ (2.2). In addition, we see that vγ is well defined
thanks to the fact that ]x,T(x)[⊂ Ω (see (L1)), for f+−a.e. x. Moreover, vγ is clearly admissible
in Problem (2.2) and we haveˆ

Ω

|vγ | =
ˆ
Ω×Ω

|x− y|d γ = (2.4) = (2.5) ≤ (2.2).

Hence, vγ solves Problem (2.2) and, we have (2.2) = (2.4). It is worth noting that although Ω is
not convex, we have proved that the values of the infima of Problems (2.2) and (2.4) are exactly
the same. Thanks to this fact, following the argument in [7, Proposition 2.6 (3)] for non-convex
domains, we can adapt the result in [15, Theorem 4.13] to deduce that if v is an optimal vector
field for Problem (2.2), then there will be an optimal transport plan γ′ for Problem (2.4) such that
v = vγ′ Yet, by Proposition 4.3, the optimal transport plan γ is unique and so, the solution vγ of
Problem (2.2) is unique as well. □

After these preparations we present our first existence result in case of non-convex domains. It
is similar in the spirit to the main result of [4].

Theorem 4.5. Under the assumptions (L1) and (L2), there exists a unique solution u to Problem
(1.1) provided that g ∈W 1,1(∂Ω) is piecewise monotone.

Proof. By Proposition 4.4, vγ (where γ = (Id,T)#f
+) is the unique optimal flow in Problem (2.2).

Yet, thanks to (L1), it is clear that |vγ |(∂Ω) = 0. Then, Proposition 2.3 concludes the proof. □

In the example below we illustrate how the above theorem works. We stress that the partitioning
Ω need not be obvious.

Example 4.6. Set Ω = Ω+ \ Ω− with Ω+ = [−1, 1] × [0, 1] and Ω− = [−a, a] × [0, b], with
0 < a, b < 1. We define the boundary data g on ∂Ω as follows:

g(x1, x2) =



0 ([a, 1]× {0}) ∪ ({1} × [0, b]) ∪ ({−1} × [0, b]) ∪ ([−1,−a]× {0}),
b− x2
1− b

({1} × [b, 1]) ∪ ({−1} × [b, 1]),

−1 ([−1, 1]× {1}) ∪ ([−a, a]× {b}),
−x2
b

({−a} × [0, b]) ∪ ({a} × [0, b]).

In this case, f+ = f+1 + f+2 and f− = f−1 + f−2 , where

f+1 =
1

b
H1⌞({a} × [0, b]), f−1 =

1

1− b
H1⌞({1} × [b, 1]),

f+2 =
1

1− b
H1⌞({−1} × [b, 1]), f−2 =

1

b
H1⌞({−a} × [0, b]).

In order to prove existence of a solution to Problem (1.1), we subdivide our region Ω into sets
satisfying conditions (L1) and (L2). As shown in Figure 3, we set X1 to be the trapezoid with
vertices (−a, b), (a, b), (−1, 1), (1, 1), X2 the triangle with vertices (−a, 0), (−1, b), (−1, 0), and X3

the triangle with vertices (a, 0), (1, b) and (1, 0). We want to subdivide C := Ω \ (X̄1 ∪ X̄2 ∪ X̄3)
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1 b
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Figure 3. Rectilinear C-shape example

into convex sets Ci’s (in red in Figure 3) satisfying condition (L2) and such that each Ci satisfies
(H1)-(H3). Notice that for s ∈ [0, 1], we have

g(a, sb) = g(−a, sb) = g(1, b+ (1− b)s) = g(−1, b+ (1− b)s) = −s.
After taking any partition of [0, 1], 0 = s0 < s1 < · · · < sn = 1 and ∆si = si − si−1, such that
maxi∈{1,...,n} ∆i → 0 as n → ∞, we construct convex domains Ci,l/r as follows: Ci,l (resp. Ci,r)
is an open quadrilateral in red with vertices (−a, si−1b), (−1, b+ (1− b)si−1), (−1, b+ (1− b)si),
(−a, sib) (respectively, the quadrilateral in red with vertices (a, si−1b), (1, b+ (1− b)si−1), (1, b+

(1− b)si), (a, sib)). As a result C =
(
(∪ni=1C̄i,l) ∪ (∪ni=1C̄i,r)

)◦.
Notice that ∂Ci,r ∩ ∂Ω can be decomposed into two arcs:

Γ+
i,r = (a, si−1b

⌢
) ( a, sib), Γ−

i,r = (1, b+ (1− b)si−1

⌢
) ( 1, b+ (1− b)si).

By symmetry, we decompose Ci,l in similar way. Then, it follows that all convex domains Ci,l/r
satisfy condition (H1), we conclude that (L1) holds.

Next, we check (L2). Once w set e+1 = (a, sb), e−1 = (1, b + (1 − b)s), e−2 = (−a, sb), e+2 =
(−1, b+ (1− b)s) as in Figure 3, Condition (L2) implies that

2|(1− a, b+ s(1− 2b))| = |e+1 − e−1 |+ |e+2 − e−2 | < |e+1 − e−2 |+ |e+2 − e−1 | = 2 + 2a.

For this inequality to hold we require that

|s(2b− 1)− b| < 2
√
a,

for every s ∈ [0, 1]. Notice that the maximum of the left-hand side is max(b, 1−b). Then, assuming
that

(4.5) max(b, 1− b) < 2
√
a,

(L2) follows for e±i corresponding to transport rays. Since the inequality in (4.5) is strict, then we
choose ∆si small enough so that the convex sets Ci,l/r satisfy inequality (L2) for every sequence of
points {e±k } from ∂Cik,l/r. Hence, under the assumption (4.5) and thanks to Theorem 4.5, Problem
(1.1) has a unique solution.

Here comes the most general instance of data we consider in this paper. Namely, we will extend
the result of Proposition 4.3 to the case, when the boundary datum g is monotone on some arcs
with negative curvature. On the way, we need to introduce the following assumptions.

• Condition (A1). The domain Ω can be decomposed into disjoint sets Ci (i ∈ IC), Ei (i ∈ IE)
and, Xi (i ∈ IX) such that g is constant on ∂Xi ∩ ∂Ω and, we have the following:

(1) For every i ∈ IC , Ci is convex. In addition, the family of open sets {C◦
i : i ∈ IC} satisfies

the assumption (L1).

(2) For every i ∈ IE , ∂Ei ∩ ∂Ω is the sum of two closed arcs E+
i and E−

i such that at least
one of them is not convex and, g is strictly increasing on Ei+ and it is strictly decreasing on Ei−

with TV (g|Ei
+) = TV (g|Ei

−).
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Remark 4.7. Now, it is clear that the domain D defined in Remark 4.2 may satisfy (A1) for a
proper choice of g, even if it is not constant on the arc {(x1, x2) : x1 ∈ (−1, 1), x2 =

√
1− x21}.

In order to construct a solution to (1.1), we apply our usual strategy, namely, we introduce a
transport map T. First, we define T̄ : Γ+ ∪ χ+ 7→ Γ− ∪ χ−. Since condition (A1) implies that
f(
⋃
i∈IE E

±
i ) = 0, the conclusion of Lemma 4.1 is valid. Hence, for any x+ ∈ Γ+ ∪ χ+, we may

define T̄(x+) by formula (4.1). A new situation arises when we want to define the transportation
map on E+

i , i ∈ IE . We proceed as follows:

If x+ ∈ E+
i , then we set T̃i(x+) := x−, where x− ∈ E−

i is such that f(
⌢

x+ x−) = 0.

This map is well defined, thanks to the fact that g is strictly monotone on E−
i . Finally, we define

T : Γ+ ∪ χ+ ∪ (∪i∈IEE+
i ) 7→ Γ− ∪ χ− ∪ (∪i∈IEE−

i ) as follows:

(4.6) T(x+) =

{
T̄(x+) for x+ ∈ Γ+ ∪ χ+,

T̃i(x+) for x+ ∈ E+
i , i ∈ IE .

Subsequently, we will denote by T[−1] the inverse map of T.

Now, we continue stating further conditions on the data.

• Condition (A2). For all points x+ ∈ Ei
+ and x− ∈ Ei

−, we have ]x+, x−[⊂ Ω. We
note that x− here is an arbitrary point on E−

i , so it is not necessarily the image of x+ by T̃i (see
the difference with (H2)).

• Condition (A3). For any two finite sequences of points {e±k }1≤k≤m such that e±k ∈ χik
±∪Γik

±

(for some ik ∈ IC) or e±k ∈ E±
ik

(for some ik ∈ IE), with ik ̸= ik′ for all k ̸= k′ such that
{ik, ik′} ⊂ IC or {ik, ik′} ⊂ IE , we have the following inequality:

m∑
k=1

|ek+ − ek
−| <

m−1∑
k=1

|e+k − e−k+1|+ |e+m − e−1 |.

Notice that condition (A3) is just a generalization of the assumption (L2), since now we need also
to guarantee that every set E+

i is transported to E−
i , for all i ∈ IE .

Proposition 4.8. Suppose that conditions (A1), (A2) and (A3) are satisfied. Let γ be an optimal
transport plan between f+ and f−. Then, for γ−a.e. (x+, x−) ∈ spt(γ), we have x− = T(x+). In
other words, γ = (Id,T)#f

+ is the unique optimal transport plan.

Proof. Notice that by definition, we have f(∂Ei) = 0, for all i ∈ IE . As a result, the argument of
Lemma 4.1 yields that f(∂Ci) = 0, for all i ∈ IC .

The assumption (A3) here corresponds to condition (L2), which played the key role in the proof
of Proposition 4.3. Hence, the argument used there shows that γ(Ci ×Ej) = 0, i ∈ IC and j ∈ IE
(resp. γ(Ci × Cj) = γ(Ei × Ej) = 0, for all i ̸= j ∈ IC or i ̸= j ∈ IE). Similarly to Proposition
4.3, one can see that γ [Ci × Ci] (resp. γ [Ei × Ei]) is an optimal transport plan between its
own marginals f̄+i := f+ ∂Ci and f̄−i := f− ∂Ci (resp. f̃+i := f+ ∂Ei and f̃−i := f− ∂Ei),
for all i ∈ IC (resp. i ∈ IE). From Proposition 3.14, we infer that

(4.7) γ [Ci × Ci] = (Id, T̄ )#f̄
+
i , for every i ∈ IC .

Now, we claim that for all (x+, x−) ∈ spt(γ)∩ (E+
i ×E−

i ) we have x− = T̃ (x+). Assume that this
is not the case. Then, there must be a couple (x+1 , x

−
1 ) ∈ spt(γ) ∩ (E+

i × E−
i ) such that x+ < x+1

and x−1 > x−, since otherwise we get a contradiction with the mass balance. Thanks to assumption
(A2), we see that the transport rays ]x+, x−[ and ]x+1 , x

−
1 [ intersect, which is a contradiction. Then,

we also have the following:

(4.8) γ [Ei × Ei] = (Id, T̃)#f̃
+
i , for every i ∈ IE .

Combining (4.7) and (4.8), we get that γ = (Id,T)#f
+. Hence, γ is unique because it is supported

on uniquely defined graph of T and its first marginal equals f+. This concludes the proof. □

Proposition 4.9. Assume that (A1), (A2) & (A3) hold. Then, Problems (2.2) and (2.4) have the
same minimal value. Moreover, vγ (where γ = (Id,T)#f

+) is the unique optimal flow in Problem
(2.2).
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Proof. The proof is exactly the same as the one for Proposition (4.4). □

Finally, we get the following result:

Theorem 4.10. Assume that (A1), (A2) & (A3) hold and that g ∈ W 1,1(∂Ω) is piecewise
monotone. Then, Problem (1.1) has a unique solution.

Proof. This will immediately follow from Propositions 4.9 & 2.3 once we show that |vγ |(∂Ω) = 0.
Indeed, this is implied by the fact that γ = (Id,T)#f

+and by the assumptions (H2), (A2). □

Now, we show how the set of assumptions (A1)-(A3) works.

Example 4.11. Here, we present an example of data (Ω, g), where a piece of ∂Ω has a negative
curvature, nonetheless, conditions (A1)-(A3) hold. Set Ω := {(x1, x2) : 1 ≤ x21+x

2
2 ≤ R2, x2 ≥ 0}.

For a fixed α ∈ (0, π/2), we define the boundary data g in polar coordinates as follows:

g(r, θ) =



θ

α
r ∈ {1, R}, θ ∈]0, α],

1 r ∈ {1, R}, θ ∈]α, π − α],
π − θ

α
r ∈ {1, R}, θ ∈]π − α, π[,

0 1 ≤ r ≤ R, θ ∈ {0, π}.

As a result, f+ = f+1 + f+2 and f− = f−1 + f−2 , where

f+1 =
1

α
H1⌞{(1, θ) : θ ∈ [0, α]}, f−1 =

1

Rα
H1⌞{(R, θ) : θ ∈ [0, α]},

f+2 =
1

Rα
H1⌞{(R, θ) : θ ∈ [π − α, π]}, f−2 =

1

α
H1⌞{(1, θ) : θ ∈ [π − α, π]}.

In this case, a part of ∂Ω has negative curvature, so in order to prove the existence of a solution

α
(1, 0) (R, 0)

e+1

e−1

e−2

e+2

f+
1 = 1/αf−

2 = 1/α

f−
1 = 1/Rαf+

2 = 1/Rα

X1

Figure 4. Example with negative curvature

to (1.1), we decompose Ω into subsets verifying conditions (A1), (A2), (A3). We refer to Figure 4
for illustration. We let X1 = {(x, y) = (r cos θ, r sin θ) : (r, θ) ∈ (1, R) × (α, π − α)}. Notice that
for all s ∈ [0, 1], we have

g(1, sα) = g(R, sα) = g(1, π − sα) = g(R, π − sα) = s.

Let 0 = s0 < s1 < s2 < · · · < sn−1 < sn = 1 be a partition of [0, 1]. We set ∆si = si − si−1.
We define Ei,r in polar coordinatinates by formula

Ei,r = {(r, θ) : r ∈ (1, R), θ ∈ (si−1α, siα)}, i = 1, . . . , n.

By definition, Ei,l is the symmetric image of Ei,r with respect to the vertical coordinate axis. The
regions Ei,l/r are shaded in red in Figure 4, so Ω\[(∪ni=1Ei,r) ∪ (∪ni=1Ei,l)] = X1. Notice that
∂Ei,r ∩ ∂Ω can be decomposed into two arcs (in polar coordinates):

E+
i,r = (1, si−1α)

⌢
( 1, siα), E−

i,r = (R, si−1α
⌢
) ( R, siα).
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By symmetry, we decompose ∂Ei,l ∩ ∂Ω. We choose δn := max{∆si : i = 1, . . . , n} small enough
so that any line segments from E+

i,l/r to E−
i,l/r lies in Ω. We then get that ∂Ei,l/r satisfy conditions

(A1)-(A2).
Now, we check (A3). We begin with e+1 = (1, sα), e−1 = (R, sα), e−2 = (1, π − sα), e+2 =

(R, π − sα). Condition (A3) requires that for every s ∈ [0, 1], one has

2(R− 1) = |e+1 − e−1 |+ |e+2 − e−2 | < |e+1 − e−2 |+ |e+2 − e−1 | = 2 cos(sα) + 2R cos(sα).

This leads to the following relationship

(4.9) cosα >
R− 1

R+ 1
.

For such values of α, (A3) follows for e±k corresponding to transport rays. We can then further
restrict δn so that the sets Ei,l/r satisfy condition (A3) for every sequence of arbitrary points {e±k }
on ∂Eik,l/r.

We conclude that if (4.9) is satisfied, then we may use Theorem 4.10 to deduce that Problem
(1.1) has a unique solution.

Finally, we will also cover the case when the inequality in the assumption (A3) becomes the
equality. To be more precise, we introduce the following relaxation of (A3):

• Condition (Ã3). Let {e±k }1≤k≤m (where m ∈ N) be two finite sequences of points such that
e±k ∈ χik

± ∪ Γik
± (for some ik ∈ IC) or e±k ∈ E±

ik
(for some ik ∈ IE), with ik ̸= ik′ for all k ̸= k′

such that {ik, ik′} ⊂ IC or {ik, ik′} ⊂ IE . Then, we assume that we have the following inequality:
m∑
k=1

|e+k − e−k | ≤
m−1∑
k=1

|e+k − e−k+1|+ |e+m − e−1 |.

We claim that under this weaker assumption (Ã3), we can establish a version of Proposition
4.8.

Proposition 4.12. Assume that (A1), (A2) & (Ã3) hold and g is piecewise monotone. Then, there
exists an optimal transport plan γ⋆ such that γ⋆(Ci×Cj) = γ⋆(Ei×Ej) = γ⋆(Ci×Ej) = 0, for all
i, j (with i ̸= j if {i, j} ⊂ IC or {i, j} ⊂ IE). Moreover, if (S) is satisfied then γ⋆ := (Id,T)#f

+

is an optimal transport plan between f+ and f−.

Proof. We apply the argument used in the proofs of Propositions 3.12 and 3.14. For this purpose we
will construct an increasing sequence of domains Ωn whose closures converge to Ω in the Hausdorff
distance as well as a sequence of functions gn defined on ∂Ωn such that for every n, the boundary
∂Ωn can be decomposed into sets C̃i,n and Ei,n satisfying condition (A3) and so that we have
∂C̃i,n → ∂Ci and ∂Ei,n → ∂Ei in the Hausdorff sense. Here, C̃i,n need not be convex.

Step 1. Fix n ∈ N⋆. Let us suppose that α is any of the arcs χij (j ∈ Iiχ, i ∈ IC), Γi±j (j ∈ IiΓ,
i ∈ IC) or E±

i (i ∈ IE). After an appropriate choice of the coordinate system we may assume
that α is the graph of a Lipschitz continuous function hα : [−rα, rα] 7→ R, i.e. α = G(hα), where
hα(−rα) = 0 = hα(rα) and G(hα) denotes the graph of hα. We adopt a convention requiring
hα ≥ 0 when α is convex (i.e. convα ⊂ Ω), this implies that hα is concave. Moreover, hα ≤ 0
when α is concave, so hα is a convex function. In particular, for convex α there is a r > 0 such
that {(x, y) : x ∈ [−rα, rα], y ∈ [hα(x), hα(x) + r]} ∩ Ω = ∅. When α is concave there is a r > 0
such that {(x, y) : x ∈ [−rα, rα], y ∈ [hα(x)− r, hα(x)]} ∩ Ω = ∅.

Our construction depends on the curvature of α. First, we consider α which is not a line segment.
Then, for any natural n ≥ 1, we define αn := G((1 − κ

n )hα), where κ = 1 when α is convex and
κ = −1 when α is concave. When α is convex, then this construction implies that αn is convex
and αn ⊂ conv (ᾱ) ⊂ Ω̄. In case α = E+

i (resp. α = E−
i ) is concave, since the distance between

E+
i and E−

i is positive we conclude that E+
i,n := αn (resp. E−

i,n := αn) is concave and αn ⊂ Ei for
sufficiently large n.

When α happens to be a line segment we proceed differently. We take a strictly convex function
ηα : [−rα, rα] 7→ (−∞, 0] such that ηα(±rα) = 0 and G(ηα) ⊂ Ω, then we set αn := G(ηαn ), n ≥ 1.
Hence, we conclude that αn ⊂ Ω for large n ∈ N.

After this preparation we will define the domain Ωn. More precisely, the boundary ∂Ωn is formed
by replacing every arc α = χij (resp. α = Γij

± or α = E±
i ) in ∂Ω by the arc αn. We note that

αn and α have same endpoints and so ∂Ωn is a closed curve (i.e. topologically a circle). In the
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same way, we define ∂C̃i,n as ∂Ci but any arc α = χij (resp. α = Γij
±) in ∂Ci is replaced by αn.

Moreover, Ei,n is the region bounded by E±
i,n and ∂Ei ∩Ω. The sets Γij,n and χj,n are defined in a

natural way. It is clear that ∂Ωn → ∂Ω, ∂C̃i,n → ∂Ci and ∂Ei,n → ∂Ei in the Hausdorff distance
as n→ ∞.

Step 2. Now, we define maps Sn : ∂Ω 7→ ∂Ωn as follows. Since g is piecewise monotone, we
first consider points belonging to U+ ∪ U− (see Definition 3.21). For such points, Sn(x) is set to
be the point of intersection of the line segment [x,T(x)] (resp. [x,T−1(x)]) with the boundary
∂Ωn, which is the closest to x. We note that Sn is well defined since the line segment [x,T(x)]
(resp. [x,T−1(x)]) intersects Ω transversally and αn is either strictly convex or strictly concave.
Moreover, we see that for each n ∈ N⋆ the inverse map S−1

n exists.
We extend Sn to ∂Ω by setting Sn = Id on U0, (U0 is from the Definition 3.21). Hence, if

x ∈ α = χij (resp. x ∈ α = Γij
± or x ∈ α = E±

i ), then it is obvious that Sn(x) ∈ αn for sufficiently
large n ∈ N. In particular, we have Sn(∂Ci,n) = ∂C̃i,n and Sn(E±

i ) = E±
i,n.

Moreover, due to continuity of T and T−1 it is not difficult to check that the mapping Sn is
continuous as well on ∂Ω.

Once we fix any x0 ∈ U0 we define the boundary data gn on ∂Ωn by gn(x) = fn(
⌢
x0 x), where

fn is defined as follows:
fn = Sn#f.

It is clear that fn(∂C̃i,n) = f(S−1
n (∂C̃i,n)) = f(∂Ci) = 0 and fn(∂Ei,n) = f(S−1

n (∂Ei,n)) =
f(∂Ei) = 0.

Step 3. Since fn is defined only on ∂Ωn, we extend it on Ω\∂Ωn, by formula f̄n(B) = fn(B∩∂Ωn)
for any Borel set B and for all n. Let f̄+n and f̄−n be the positive and negative parts of f̄n. Let γn
be any optimal transport plan between f̄+n and f̄−n on Ω×Ω. Up to a subsequence, we know that
γn ⇀ γ for some γ ∈ M+(Ω × Ω). Yet, we see that f̄n ⇀ f̄ , where f̄⌞∂Ω = f and spt f̄ ⊂ ∂Ω.
Indeed, for any φ ∈ C(Ω), we have

⟨f̄n, φ⟩ = ⟨fn, φ⟩ = ⟨Sn#f, φ⟩ =
ˆ
∂Ω

φ(Sn(x)) df(x) →
ˆ
∂Ω

φ(x) df(x) = ⟨f, φ⟩,

because Sn(x) converges to x, for all x ∈ ∂Ω. This follows immediately from the definition of Ωn
which assures us that

(4.10) lim
n→∞

max

{
|x− Sn(x)| : x ∈ spt(f)

}
= 0.

Hence, (Πx)#γ = f+ and (Πy)#γ = f−. Similarly, as in the proof of Proposition 3.12, we infer
that γ is an optimal transport plan between f+ and f−.

Step 4. Now, we show that gn satisfies (A3). Let {e±k }1≤k≤m be two finite sequences of points
such that ek± ∈ ∂C̃ik,n ∩

(⋃
j∈Iik,n

Γ

Γik,nj ∪
⋃
j∈Iik,n

χ
χik,nj

)
(for some ik ∈ IC) or ek

± ∈ E±
ik,n

(for
some ik ∈ IE) with ik ̸= ik′ for all k ̸= k′ such that {ik, ik′} ⊂ IC or {ik, ik′} ⊂ IE .

For every 1 ≤ k ≤ m, let e′k
± ∈ spt(f±) be such that [e′k

+
, e′k

−
] ∩ ∂Ωn = {e+k , e

−
k }. Thus,

m∑
k=1

|e+k − e−k | =
m∑
k=1

(|e′k
+ − e′k

−| − |e+k − e′k
+| − |e−k − e′k

−|).

At the same time, due to the triangle inequality, we have

m−1∑
k=1

|e′k
+ − e′−k+1|+ |e′+m − e′1

−| ≤
m−1∑
k=1

|e′k
+ − e+k |+ |e+k − e−k+1|+ |e−k+1 − e′−k+1|(4.11)

+ |e′+m − e+m|+ |e+m − e−1 |+ |e−1 − e′1
−|.

The inequality in (4.11) is strict as soon as there is at least one integer k0 such that the points
e′+k0 , e

+
k0
, e−k0+1, e

′−
k0+1 are not co-linear. We proceed while assuming that this is the case. Since

e′±k ∈ ∂Ω, then (Ã3) implies that we also have

m∑
k=1

|e′k
+ − e′k

−| ≤
m−1∑
k=1

|e′k
+ − e′−k+1|+ |e′+m − e′1

−|.
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Consequently, we infer that

(4.12)
m∑
k=1

|e+k − e−k | <
m−1∑
k=1

|e+k − e−k+1|+ |e+m − e−1 |.

It remains to consider the case when for all k = 1, . . . ,m the points e′+k , e
+
k , e

−
k+1, e

′−
k+1 are

co-linear, (we use the convention that e−m+1 ≡ e−1 and e′−m+1 ≡ e′
−
1 ). By definition e′+k , e

+
k , e

−
k , e

′
k
−

are co-linear, too. Consequently, all points {e±k , e′k
±} are co-linear. We claim that this observation

combined with the fact that the sets Ci, i ∈ IC , Ej , j ∈ IE are mutually disjoint, implies then the
line segments [e+k , e

−
k ], 1 ≤ k ≤ m, must be disjoint. Indeed, let us assume that there is a common

point e′+k1 = e′+k2 =: p ∈ ∂Cik1
∩ ∂Cik2

with ik1 ̸= ik2 . We notice that e′+k1 = e′−k2 is impossible.
We know that ]e′+k1 , e

′−
k1
[⊂ Cik1

and ]e′+k2 , e
′−
k2
[⊂ Cik2

while Cik1
and Cik2

are disjoint. Since point
p is by definition in the (relative) interior of both arcs ∂Cik1

and ∂Cik2
, then due to the Lipschitz

continuity of Ω we see that ∂Cik1
and ∂Cik2

must coincide in a neighborhood of the common point
p. As a result, there will be always a triple bifurcation point a ∈ ∂Cik1

∩ ∂Cik2
, which contradicts

again the Lipschitz regularity of ∂Ω.
Let us take m−, m+ among points e±k , k = 1, . . . ,m, such that

|m+ −m−| = diam {e+k , e
−
k : 1 ≤ k ≤ m}.

Since the intervals [e+k , e
−
k ], 1 ≤ k ≤ m, are disjoint, then we see that we have the following

inequality:
m∑
k=1

|e+k − e−k | < |m+ −m−|.

At the same time every x ∈]m+,m−[ belongs to at least one interval [e+k , e
−
k+1]. Hence, we get that

|m+ −m−| ≤
m−1∑
k=1

|e+k − e−k+1|+ |e+m − e−1 |.

As a result (4.12) follows.
Step 5. Thanks to (4.12), one can show exactly as in Step 1 of the proof of Proposition 4.3 that

γn transports all the mass on ∂C̃i,n (resp. ∂Ei,n) to itself. We note that here we are not interested
in characterizing the restriction of γn to ∂C̃i,n × ∂C̃i,n, since we recall that C̃i,n is now no more
convex and thus, (H1) is a priori not satisfied in C̃i,n. From Step 3, we know that γn ⇀ γ and
γ is an optimal transport plan between f+ and f−. Hence, we infer that γ also transports the
mass from ∂Ci (resp. ∂Ei) to itself. To see this, take two continuous functions φ(x) and ψ(y) over
Ω such that spt(φ) ⊂ Ci and spt(ψ) ⊂ Ej . Yet, we have C̃i,n ⊂ Ci and Ej,n ⊂ Ej , for n large
enough. Hence, we getˆ

Ω×Ω

φ(x)ψ(y) dγn(x, y) =

ˆ
Ci×Ej

φ(x)ψ(y) dγn(x, y) =

ˆ
C̃i,n×Ej,n

φ(x)ψ(y) dγn(x, y) = 0

Consequently, letting n→ ∞ we obtainˆ
Ω×Ω

φ(x)ψ(y) dγ(x, y) = 0.

But, φ and ψ are two arbitrary functions supported in Ci and Ej , respectively. Then, we infer
that γ(∂Ci × ∂Ej) = 0. In the same way, we show that γ(∂Ci × ∂Cj) = 0 and γ(∂Ei × ∂Ej) = 0,
for all i ̸= j. Recalling Proposition 4.8, we conclude the proof. □

Now, we show that the assumption (S) in Proposition 4.12 can be removed. We recall that we
needed this condition in Section 3 because our approach was based on the approximation by strictly
convex domains Ωn, where we used the projection map Pn to the boundary ∂Ω. However, one
can use a more suitable map in our approximation, which does not take into account the presence
of singular points on ∂Ω – this is the map Sn that we have just constructed in Proposition 4.12.
More precisely, we have:

Proposition 4.13. Assume that (A1), (A2) and (Ã3) hold and g ∈ W 1,1(∂Ω) is piecewise
monotone. Then, T is an optimal transport map from f+ to f−.
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Proof. From Proposition 4.12, we just need to show that γ⋆ [Ci × Ci] = (Id,T)#(f
+ ∂Ci), for

all i ∈ IC . For simplicity of exposition and without loss of generality, let us assume that Ω is
convex or equivalently, that IC is a singleton and IE = ∅; so we have Ω = C1.

Now, we set
IS := {i ∈ Iχ ∪ IΓ : |f |(χi ∩ S) > 0 or |f |(Γ±

i ∩ S) > 0}.
For any fixed n ∈ N and every i ∈ IS , we take n points on χi (resp. Γ±

i ), including the endpoints,
which are equidistanced in the sense of the arclength. We take the boundary of their convex hull
and after removing the open interval connecting endpoints of χi (resp. Γ±

i ) we call the resulting
polygonal curve χi,n (resp. Γ±

i,n). Now, we define the regions Ωn, n ∈ N, as the open sets bounded
by curves

∂Ωn := [∂Ω\
⋃
i∈IS

(χi ∪ Γ±
i )] ∪

⋃
i∈IS

(χi,n ∪ Γ±
i,n).

It is clear that Ωn is convex. The map Sn has been already constructed; however, we recall its
definition for the sake of clarity of exposition. For points x ∈ U+ ∪ U−, we define Sn(x) to be
the point of intersection of the line segment [x,T(x)] (resp. [x,T−1(x)]) with the boundary ∂Ωn,
which is the closest to x. On U0, we set Sn = Id. We recall also that the inverse map S−1

n is well
defined on ∂Ωn and that the map Sn is continuous. Now, we define the Borel measure fn on ∂Ωn
as follows:

fn = Sn#f.

Let us fix any x0 ∈ U0, we note that x0 ∈ ∂Ωn, for all n. Then, we set the boundary data gn on
∂Ωn by gn(x) = fn(

⌢
x0 x).

We shall prove that ∂Ωn can be decomposed into arcs χi,n (i ∈ Iχ) and Γ±
i,n (i ∈ IΓ) satisfying

conditions (H1), (H2) and (H3). For every i ∈ Iχ\IS (resp. i ∈ IΓ\IS), we have χi,n = χi (resp.
Γ±
i,n = Γ±

i ). Since fn(χi,n) = 0 for i ∈ IS , one can see that χi,n can be decomposed into two open
arcs χ+

i,n, χ
−
i,n and a singleton {ci,n} such that gn is strictly increasing on χ+

i,n and strictly decreasing
on χ−

i,n with TV (g|χ+
i,n

) = TV (g|χ−
i,n

). In the same way, we can check that gn is strictly increasing on

Γ+
i,n (resp. strictly decreasing on Γ−

i,n) with TV (g|Γ+
i,n

) = TV (g|Γ+
i
) (resp. TV (g|Γ−

i,n
) = TV (g|Γ−

i
)).

Indeed, if x1, x2 ∈ ∂Ωn and x1 < x2, then we see that S−1
n (x1), S

−1
n (x2) ∈ ∂Ω satisfy S−1

n (x1) <
S−1
n (x2) and we have

fn(
⌢
x1x2) = f(

⌢
S−1
n (x1)S

−1
n (x2)).

Hence,
gn(x2)− gn(x1) = g(S−1

n (x2))− g(S−1
n (x1)).

Let Ti,n be the convex hull of Γ+
i,n and Γ−

i,n and Di,n be the convex hull of χi,n. Then, we have
Di,n ⊂ Di and Ti,n ⊂ Ti, as a result the sets Tj,n, j ∈ IΓ, Di,n, i ∈ Iχ are mutually disjoint. In
addition, we have |fn|(∂Ω\(

⋃
i∈IΓ(Γ

+
i,n∪Γ−

i,n)∪
⋃
i∈Iχ χi,n)) = 0. Hence, condition (H1) is satisfied.

Let Tn be the transport map defined by (4.6) corresponding to fn and ∂Ωn. We recall that if
e+ is in the domain of Tn then one has

Tn(e
+) = Sn(T(S−1

n (e+))).

Thanks to the fact that ]S−1
n (x),T(S−1

n (x))[⊂ Ω for all x ∈ spt(f+n ), it is clear that ]x,Tn(x)[⊂ Ωn
and so, (H2) is also satisfied.

Now, we need to check that assumption (H3) holds on ∂Ωn. Take a finite sequence {e+k }1≤k≤m
(m ∈ N⋆) such that e+k ∈ χ+

ik,n
∪Γ+

ik,n
for some ik ∈ Iχ ∪ IΓ. Since g satisfies (H3) on ∂Ω, we know

that
m∑
k=1

|S−1
n (e+k )−T(S−1

n (e+k ))|

<

m−1∑
k=1

|S−1
n (e+k )−T(S−1

n (e+k+1))|+ |S−1
n (e+m)−T(S−1

n (e+1 ))|(4.13)

≤
m−1∑
k=1

|S−1
n (e+k )− e+k |+ |e+k −Tn(e

+
k+1)|+ |Tn(e

+
k+1)−T(S−1

n (e+k+1))|+ |S−1
n (e+m)− e+m|

+ |e+m −Tn(e
+
1 )|+ |Tn(e

+
1 )−T(S−1

n (e+1 ))|.
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Due to the definition of Sn, we have the following equality:

(4.14) |e+k −Tn(e
+
k )| = |S−1

n (e+k )−T(S−1
n (e+k ))| − |e+k − S−1

n (e+k )| − |T(S−1
n (e+k ))−Tn(e

+
k )|.

After summing over k in (4.14) and taking into account (4.13), we infer that gn satisfies (H3) on
∂Ωn, i.e.

m∑
k=1

|e+k −Tn(e
+
k )| <

m−1∑
k=1

|e+k −Tn(e
+
k+1)|+ |e+m −Tn(e

+
1 )|.

Condition (S) is satisfied on ∂Ωn because it is a polygon with finitely many sides. Hence, thanks
to Propositions 3.14 and 3.16, γn := (Id,Tn)#f

+
n is the unique optimal transport plan between

f+n and f−n . We know that γn ⇀ γ for some γ ∈ M+(Ω×Ω), up to a subsequence. Due to (4.10),
we deduce that fn ⇀ f . Thus, we also have (Πx)#γ = f+ and (Πy)#γ = f−. By Lemma 2.4, we
infer that γ is an optimal transport plan between f+ and f−. In addition, for any x ∈ U+ ∪ U−,
we have Sn(x) → x and Tn(Sn(x)) → T(x), because Tn(Sn(x)) = Sn(T(x)). Thus, this yields
that γ = (Id,T)#f

+ is an optimal transport plan between f+ and f−. Since C1 is convex, then
recalling the proof of Proposition 3.16, we infer that γ⋆ [C1 × C1] = (Id,T)#f

+. □

Finally, we show the existence of a minimal vector field v for Problem (2.2). We note that the
optimal transport plan γ in Problem (2.4) is not necessarily unique if condition (Ã3) holds instead
of (A3) (see Example 4.16 below). Despite that, we will be able to prove uniqueness of the minimal
vector field v in Problem (2.2) anyway.

Proposition 4.14. Under the assumptions (A1), (A2) & (Ã3), Problem (2.2) has a unique
minimizer provided that g is piecewise monotone.

Proof. Due to Proposition 4.13, we know that γ⋆ := (Id,T)#f
+ is an optimal transport plan

between f+ and f−. Since ]x,T(x)[⊂ Ω, for all x ∈ spt(f+), then the vector measure vγ⋆ is well
defined and it turns out to be a solution for Problem (2.2). In particular, we have (2.4) = (2.2)
and so, we recall, see for instance [15, Chapter 4], that in this case any minimizer v of Problem
(2.2) will be of the form v = vγ for some optimal transport plan γ and for all (x, y) ∈ spt(γ), we
must have [x, y] ⊂ Ω. Let v = vγ be such a minimizer. Then, we claim that γ = (Id,T)#f

+.
Indeed, let us set

A =

{
x ∈ ∂Ω : ∃ y ̸= T(x), (x, y) ∈ spt(γ)

}
and assume that f+(A) > 0. Then, one can see exactly as in the proof of Proposition 3.16 that for
f+−a.e. x ∈ A, there are two different transport rays starting at x, [x,T(x)] and [x, y] which are
contained in Ω, thus A must be contained in the set of endpoints of arcs of type Γ±

i , χi, or E±
i .

Hence, A is at most countable and f+(A) = 0. □

Consequently, we get the following extension of Theorem 4.10:

Theorem 4.15. Under the assumptions (A1), (A2) & (Ã3), Problem (1.1) has a unique solution
provided that g is piecewise monotone.

Proof. The argument is similar to the proof of Theorem 4.10 and it is left to the interested reader.
□

Finally, we present an example where (A3) is violated but (Ã3) is satisfied and a solution to
Problem (1.1) exists.

Example 4.16. Fix 0 < a < b. Then, the domain Ω as shown in Figure 5 is formed from the
vertices of the squares [−a, a]2 and [−b, b]2. We define the boundary data as follows:

g(x1, x2) =


x1 x2 = ±x1, a ≤ x1 ≤ b,

−x1 x2 = ±x1, −b ≤ x1 ≤ −a,
a x2 = ±a, −a ≤ x1 ≤ a,

b x1 = ±b, −b ≤ x2 ≤ b.

Notice that (A3) is violated in this case and the blue segments and the red ones correspond to
all possible transportation rays between f+ and f−. In particular, we can construct two optimal
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(a, a)

(b, b)

Figure 5. Example of non uniquenss

transport plans γb and γr, where γb is supported on the blue segments while γr is supported on the
red ones. This means that the optimal transport plan is not unique. However, only γb corresponds
to a solution to the least gradient problems since its transport rays are included in Ω.

We close the paper with an observation on the continuity of the solution u in Problem 1.1.

Theorem 4.17. Assume that (A1), (A2) & (Ã3) hold and g ∈ C(∂Ω) is piecewise monotone.
Then, the unique solution u of Problem (1.1) is continuous in Ω.

Proof. Assume that there is a point x0 ∈ Ω such that u is discontinuous at x0. Then, there exist
two numbers t1 and t2 such that

lim
n→∞

ess infB(x0,
1
n ) u < t1 < t2 < lim

n→∞
ess supB(x0,

1
n ) u.

Now, consider the super-level sets Et1 := {u ≥ t1} and Et2 := {u ≥ t2}. Then, we see that
x0 ∈ Et2 ∩ R2 \ Et1 . However, we have Et2 ⊂ Et1 . Hence, we infer that x0 ∈ ∂Et1 ∩ ∂Et2 . So, the
only possibility is to have x0 ∈ ∂Ω. Let E be the set bounded by ∂Et1 , ∂Et2 and ∂Ω. It is clear
that for ε > 0 small enough, the transport density σ = 0 on E ∩ B(x0, ε). Then, u is constant
on E and since t1 < t2 then this means that u has a jump on ∂Et1 or ∂Et2 . But, this yields a
contradiction thanks to the fact that f is atomless and so, σ gives zero mass to any transport
ray. □
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