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Abstract

We provide the first counter-example showing
that the ground state energy of electrons in
an external Coulomb potential is not always
a convex function of the number of electrons.
This property had been conjectured to hold for
decades and it plays an important role in quan-
tum chemistry. Our counter-example involves
an external potential generated by six nuclei of
small fractional charges, placed far away from
each other. The ground state energy of 3 elec-
trons is proved to be higher than the average
of the energies for 2 and 4 electrons. In ad-
dition, we show that the nuclei can bind 2 or
4 electrons, but not 3. Although the conjec-
ture remains open for real nuclei (of integer
charges), our work sets some doubt on the va-
lidity of the energy convexity for general atoms
and molecules.

© 2024 the authors.

1 Introduction

It seems to be an experimental fact that, in
an atom or a molecule, the core electrons are
more tightly bound to the nuclei than the va-
lence electrons. This property is measured by
looking at the ionization energy. Namely, if we
remove the electrons of an atom one after an-
other, the corresponding energy cost is seen to
grow monotonically, which is a manifestation of

an increasing difficulty of pulling out the elec-
trons. In this paper we will provide the very
first example of a Coulomb system where the
latter property fails. In our example the third
electron is more loosely bound to the nuclei
than the fourth electron. This certainly goes
against our intuition and, in fact, contradicts
one of the most famous mathematical conjec-
tures in quantum chemistry.

Let us first set up the stage. We consider N
electrons submitted to an external potential V .
Their ground state energy is defined by

E[V,N ] := inf
Ψ
〈Ψ|HV

N |Ψ〉 (1)

with Ψ the N -electron wavefunction and with
the Hamiltonian operator

HV
N =

N∑
j=1

−1

2
∇2

rj
+

N∑
j=1

V (rj)+
∑

16j<k6N

1

|rj − rk|
,

(2)
in atomic units. We allow for a rather general
Coulomb external potential V of the form

V (r) = −
∑
m

zm
|r−Rm|

, (3)

where the zm > 0 are not necessarily assumed
to be integers, as they should be for real nuclei
in atomic units. Since V is given and only the
number N of electrons will vary, we do not take
the nuclear repulsion into account in the energy.

A famous open problem is to rigorously prove
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that the map N 7→ E[V,N ] is convex, which
means

E[V,N ]−E[V,N − 1] 6 E[V,N + 1]−E[V,N ],
(4)

for every N > 1, with the convention that
E[V, 0] = 0 when there are no electrons. The
two terms in (4) are non-positive since adding
an electron can only decrease the ground state
energy. In the worse case the additional elec-
tron escapes to infinity and the energy does not
change. The absolute value |E[V,N ]−E[V,N−
1]| is the ionization energy mentioned above,
that is, the energy cost to remove one electron
from a system of N electrons in their ground
state. The inequality (4) thus means that the
ionization energy is non-increasing in N and
the interpretation is that the core electrons are
more tightly bound than the valence electrons.
The property (4) can equivalently be rephrased
as

E[V,N ] 6
E[V,N − 1] + E[V,N + 1]

2
. (5)

In chemistry, the difference

E[V,N − 1] + E[V,N + 1]

2
− E[V,N ]

is often called the absolute hardness 1 and the
convexity property (5) just means the latter is
non-negative.

The property (4) is of fundamental impor-
tance in several situations of practical interest,
including chemical reactivity theory,1,2 molec-
ular partitioning,3 degenerate ground states,4

molecular dissociation5 and the formation of
gaps in molecules and solids.6,7 It has thus been
assumed for a long time that (4) should hold
quite generally.

The importance of (4) was mentioned for the
first time in the context of Density Functional
Theory (DFT) by Perdew, Parr, Levy and Bal-
duz8 in 1982. In Chaper 4 of Ref. 9, Parr
and Yang stated the conjecture explicitly for
atoms and molecules and provided numerical
evidence for Carbon and Oxygen atoms (Fig-
ure 1). More recent data largely confirm these
findings.10 The conjecture (4) is also explicitly

2 4 6 8

-2000

-1500

-1000

-500

Figure 1: Ground state energy (eV) of Oxygen
as a function of the number N of electrons, ac-
cording to Parr and Yang.9

stated in the mathematical physics literature.
It is Question 7 in the famous 1983 article by
Lieb11 on the foundations of DFT and it is also
mentioned on page 229 of Ref. 12, in Conjec-
ture 3 of Ref. 13 and in Eq. (3.18) of Ref. 14.

There are only two situations where (4) is
rigorously known to hold. The first is for
N = 1, since after removing the Coulomb repul-
sion between two electrons we obtain E[V, 2] >
2E[V, 1]. The second case is for non-interacting
systems.8

It has been known for some time that if Con-
jecture (4) is valid, this must be due to the
particular nature of the Coulomb repulsion be-
tween the electrons. In fact, Lieb11 provided a
counter-example for N = 2, with classical hard
spheres hopping on 4 sites in space. Lieb’s con-
struction was recently generalized by Ayers15 to
the Riesz interaction potential |rj − rk|−s with
s > 2 log 2/ log 3 ≈ 1.26. Hard spheres are re-
covered in the limit s → ∞. Although 1.26 is
quite close to 1, no counter-example is known
at the present for Coulomb. Other negative re-
sults concern particles interacting with a repul-
sive harmonic interaction in a harmonic trap
V ,16,17 the 1D Hubbard model18 or a system in
nuclear physics.19

In this article we provide the very first
counter-example to Conjecture (4) for the
Coulomb interaction. Similarly as for Lieb’s
counter-example,11 we first consider classical
electrons hopping on finitely many sites. Then
we extend the counter-example to the quantum
case by a perturbation argument.
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Our counter-example relies on a recent
work,20 where we studied the formalism of
grand-canonical DFT8 for classical electrons.
We found there a situation where the grand-
canonical universal density functional does not
coincide with its canonical counterpart. In the
next section we explain that this is equivalent
to the failure of the convexity property (4).

2 Convexity and grand-

canonical DFT

Let us introduce the grand-canonical version of
the ground state energy (1).21 We fix the aver-
age number of electrons λ, but do not assume
that we have a canonical state. In particular, λ
need not be an integer. We obtain the grand-
canonical energy

EGC[V, λ] = inf
(Ψn)n>0∑
n>0 pn=1∑
n>1 npn=λ

{∑
n>1

pn
〈
Ψn|HV

n |Ψn

〉}

(6)
The coefficients pn’s are the probabilities to
have n electrons. For each n, the lowest en-
ergy is reached by taking for Ψn an n-electron
ground state, leading to the simpler formula

EGC[V, λ] = inf∑
n>0 pn=1∑
n>1 npn=λ

{∑
n>1

pnE[V, n]

}
. (7)

The latter means that the grand-canonical en-
ergy is the convex hull of the canonical energy
n 7→ E[V, n] (extended into straight line be-
tween the integers).8,14,22 In other words, it is
the largest convex function below it. Of course,
the convex hull will do nothing when the func-
tion is already convex and therefore we obtain
the following result.

Theorem 1 Let us fix an arbitrary external po-
tential V of the form (3). The convexity prop-
erty (4) holds for this V and all N ∈ N, if
and only if the grand-canonical and canonical
ground state energies coincide for any number

of electrons:

EGC[V,N ] = E[V,N ], ∀N ∈ N. (8)

If this is the case, we obtain for a fractional
average number of electrons N+t with 0 < t < 1

EGC[V,N + t] = (1− t)E[V,N ] + tE[V,N + 1].

Our next step will be to reformulate the
equality (8) by looking at the Legendre trans-
form of the two functions V 7→ E[V,N ] and
V 7→ EGC[V,N ]. This is known as Lieb’s
convex formulation of Density Functional The-
ory.11,14,23 We recall that Lieb’s universal func-
tional11 is defined by

F [ρ] := inf
Γ7→ρ

Tr (H0
NΓ). (9)

It provides the lowest kinetic plus interaction
energy of a system of electrons in a mixed
state Γ, under the constraint that the density is
exactly equal to the given ρ(r) everywhere. The
method of constrained search for mixed states
implies11,24

E[V,N ] = inf
ρ∫

R3 ρ=N

{
F [ρ] +

∫
R3

ρ(r)V (r) dr

}
.

(10)
On the other hand, the Legendre-Fenchel dual-
ity theorem states that11

F [ρ] = sup
V

{
E[V,N ]−

∫
R3

ρ(r)V (r) dr

}
,

(11)
with N =

∫
R3 ρ(r) dr. In other words, the two

functionals V 7→ E[V,N ] and ρ 7→ F [ρ] are
Legendre-dual. This implies that all the infor-
mation about one functional is contained in the
other, and vice versa.

We have the exact same situation in
the grand-canonical case.8,14,22 The grand-
canonical universal functional is defined by

FGC[ρ] := inf
(Γ)n>0∑
n>0 pn=1∑

n>1 pnρΓn=ρ

{∑
n>1

pnTr (H0
nΓn)

}
.

(12)
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It satisfies the constrained search

EGC[V,N ] = inf
ρ∫

R3 ρ=N

{
FGC[ρ] +

∫
R3

ρ(r)V (r) dr

}
(13)

and the duality principle

FGC[ρ] = sup
V

{
EGC[V,N ]−

∫
R3

ρ(r)V (r) dr

}
.

(14)
As a side remark we mention that F and FGC

are well-defined only for representable densi-
ties, that is, those having a finite von Weizäcker
energy

∫
R3 |∇

√
ρ(r)|2 dr < ∞.11,25 If this is

not the case, the convention is to take F [ρ] =
FGC[ρ] = +∞.

From the above duality formulas, it is clear
that the equality E[V,N ] = EGC[V,N ] for all
N and all V is equivalent to the equality F [ρ] =
FGC[ρ] for all ρ. Using Theorem 1, we obtain
the following statement.

Theorem 2 The convexity property (4) holds
for all N ∈ N and all V of the form (3), if and
only if we have FGC[ρ] = F [ρ] for all ρ such
that

∫
R3 ρ(r)dr ∈ N.

Since the validity of the convexity conjec-
ture (4) is equivalent to the equality of two uni-
versal functionals in DFT, we can focus on find-
ing a density ρ for which F [ρ] > FGC[ρ]. In the
low density regime (or equivalently for strong
interactions) the two functionals converge to
their classical counterparts. It would thus be
sufficient to find a counter-example for classi-
cal electrons. This is what was accomplished in
our recent work.20 But let us first quickly men-
tion a positive result, showing that the space
dimension plays a crucial role here.

3 Convexity for classical

electrons on a line

In Section 5 of Ref. 20 we studied the equiva-
lent of the grand-canonical functional FGC for
classical electrons evolving on a line. The lat-
ter can be taken to be the x axis without any
loss of generality. This is a situation that can

be completely solved.26 The proof is however
involved and we will not attempt to describe
it here. It relies both on the positivity and
on the convexity of the Coulomb interaction.
The final result is that for

∫
R ρ(x) dx = N ∈ N

there must be exactly N electrons in the sys-
tem (hence the equality of the canonical and
grand-canonical functionals) and that these N
electrons are “strictly correlated”, in the sense
that the position of all of them is entirely fixed
by that of one of them only.27–30

By Theorem 2, the coincidence of the canon-
ical and grand-canonical classical density func-
tionals implies immediately the following.

Theorem 3 The convexity property (4) holds
for any potential V and all N ∈ N, for classical
electrons constrained to stay on a line.

To our knowledge, this is the first positive re-
sult on the convexity property (4), for a non-
trivial interacting system. We will see another
example below.

4 Classical electrons hop-

ping on finitely many

sites

Let us now turn to the main result of the paper,
that is, the construction of a counter-example
to the convexity property (4).

We consider N classical electrons that are
only allowed to hop on K distinct sites
R1, ...,RK ∈ R3. We will start by explaining
how to formulate the problem for an arbitrary
number of sites K. Then we will quickly discuss
the case of K = 4 points that was considered
by Lieb11 and Ayers,15 before we provide the
sought-after counter-example for K = 6.

4.1 Formulation of the problem

For a subset of indices I ⊂ {1, ..., K}, we call

cI =
∑

16j<k6K
j,k∈I

1

|Rj −Rk|
(15)
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the total Coulomb potential when there is one
electron placed at each Ri with i ∈ I. The
convention is that cI = 0 if I is the empty
set or contains only one index. For instance
c{1,2} = 1/|R1 −R2|. There is no need to con-
sider the case where two electrons are at the
same place, which yields an infinite Coulomb
energy. A classical state is simply a probabil-
ity distribution on the electronic configurations,
that is, a collection 0 6 pI 6 1 with

∑
I pI = 1.

The corresponding average Coulomb energy is∑
I⊂{1,...,K}

pIcI . (16)

In the canonical case we assume that the pI ’s
are non-zero only for the I’s of cardinality #I =
N . In the grand-canonical case all the I’s are
allowed. The electronic density equals

ρ =
K∑
k=1

ρk δRk
, ρk =

∑
k∈I

pI . (17)

We denote by F cl[ρ] and F cl
GC[ρ] the canonical

and grand-canonical classical Coulomb energies
at fixed density ρ. Those are obtained by min-
imizing (16) at fixed density (17), either over
canonical or grand-canonical probabilities pI ’s.

The dual external potential problem requires
working with V ’s of the particular form

V (r) =

{
vk if r = Rk

+∞ if r /∈ {R1, ...,RK},
(18)

in order to force the electrons to hop on the
sites Rk. Let us call Ecl[V,N ] and Ecl

GC[V,N ]
the canonical and grand-canonical energies in
an external potential V of the form (18), for
instance

Ecl[V,N ] = min
I⊂{1,...,6}

#I=N

{
cI +

∑
i∈I

vi

}
. (19)

We have the same duality properties as we
had in (10)–(11) and (13)–(14) in the quantum

case, e.g.,

F cl
GC[ρ] = sup

v1,...,vK

{
Ecl

GC[V,N ]−
K∑
k=1

vkρk

}
.

(20)
From these formulas, we conclude that a state-
ment similar to Theorem 2 holds for our classi-
cal electrons hopping on the sites R1, ...,RK .
Our goal will thus be to find a density ρ =∑K

k=1 ρk δRk
such that F cl

GC[ρ] < F cl[ρ].

4.2 Convexity for K = 4 sites

Lieb11 found a counter-example to the con-
vexity property for hard-spheres hopping on
K = 4 sites. Ayers15 recently extended this
result to the Riesz potential |rj − rk|−s for
s > 2 log 2/ log 3 ≈ 1.26. A natural question
is whether one can push s down to 1 and get a
counter-example for Coulomb. We can answer
the question negatively. The energy is always
convex when the electrons are constrained to
hop on K 6 4 sites!

Theorem 4 (Convexity for K 6 4) We
have F cl

GC[ρ] = F cl[ρ] for all ρ of the form
ρ =

∑4
k=1 ρk δRk

. This implies

Ecl[V,N ] 6
Ecl[V,N − 1] + Ecl[V,N + 1]

2
,

(21)
for all N ∈ N and all V of the form (18) with
K 6 4.

Note that Ecl[V,N ] = +∞ for N > K + 1,
since then two electrons have to be at the same
site. The inequality (21) is thus obvious for
N > K.

We quickly describe the proof of Theorem 4
in Appendix A below, using results from Ref.
20. We emphasize that our argument seems to
break down if K = 5 or if the interaction is
replaced by |rj − rk|−s for s > 1.

4.3 Counter-example for K = 6
sites

We finally turn to the counter-example. From
Theorems 3 and 4, we know that we have to
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Figure 2: Allowed locations of our classical elec-
trons in the (x, y) plane following Ref. 20.

take five points or more in two space dimen-
sions. We will simply place K = 6 points in a
plane, that can be chosen to be the (x, y)–plane
without loss of generality. We do not consider
K = 5 since we want to work at half-filling and
thus need an even number of sites. A counter-
example might well exist for K = 5 too. Fol-
lowing Ref. 20, we take

R∗1 = (−0.7, 0, 0), R∗2 = (0.7, 0, 0),

R∗3 = (1.7, 0, 0), R∗4 = (−1.7, 0, 0),

R∗5 = (0,
√

0.51, 0), R∗6 = (0,−
√

0.51, 0),
(22)

as displayed in Figure 2. In Ref. 20 we searched
for counter-examples using a numerical opti-
mization procedure at half-filling, with ran-
dom positions for the 6 points. Several of the
counter-examples we found were looking a bit
like the diamond of Figure 2. To simplify com-
putations, we then restricted the search to this
particular shape and this is how we arrived at
the mentioned values of R∗1, ...,R

∗
6. We do not

think that there is anything special with this
example and many other counter-examples can
be found. In fact, the points can be moved a
little to suppress the symmetries, but not too
much.20

Half-filling means that the density is con-
strained to be uniform, equal to 1/2 at each
site:

ρh-f :=
1

2

6∑
k=1

δR∗
k

(23)

so that the average number of electrons is 3. In
this case the model is particle-hole symmetric,
in addition to being invariant under reflections

along the two axis. This simplifies the argu-
ments quite a bit. After simple numerical com-
putations, we found in Ref. 20 that the grand-
canonical energy was strictly smaller than the
canonical energy at half-filling:

3.8778 ≈ F cl
GC [ρh-f] < F cl [ρh-f] ≈ 3.9157.

To be more precise, the grand-canonical op-
timizer corresponds to placing 2 electrons at
R∗1,R

∗
2 with probability 1/2 and 4 electrons at

R∗3, ...,R
∗
6 with probability 1/2. The canonical

problem is optimized by taking 3 electrons at
R∗1,R

∗
2,R

∗
3 or at R∗4,R

∗
5,R

∗
6, with probability

1/2. Although the grand-canonical problem is
lower, the energy gain is barely of 1 %.

Now, by the equivalent of Theorem 2 in the
classical case, we conclude that there must exist
one external potential V of the form (18), for
which the canonical energy is not convex in N .
It remains to explain how to find the external
potential V in question.

The first potential we should try is the grand-
canonical potential V GC solving the dual prob-
lem (20). Indeed, duality theory tells us that
one of the grand-canonical ground states for
V GC must have the exact density ρh-f and the
Coulomb energy F cl

GC[ρh-f]. Since we know that
the corresponding state is an average of a two-
electron and a four-electron state, this is an in-
dication that particle number is broken, as de-
sired. We thus computed V GC numerically, by
solving Equation (20) and found

vGC
1 = vGC

2 ≈ −2.1731,

vGC
3 = vGC

4 ≈ −1.3977,

vGC
5 = vGC

6 ≈ −2.

(24)

The equalities are due to the space symmetry of
the problem. We expected a lack of convexity
for the potential V GC but the energies turn out
to be all equal to each other:

Ecl[V GC, 2] = Ecl[V GC, 3]

= Ecl[V GC, 4] ≈ −3.6319. (25)

In other words we obtain an exact equality in
the bound (4) we were trying to disprove!

We think that the equalities in (25) are an
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Figure 3: Level lines of the hardness η[V ]
in (26) as a function of |v1| = |v2| (horizon-
tal axis) and |v3| = |v4| (vertical axis), with
v5 = v6 = −2 fixed. The red dot represents
the grand-canonical dual potential V GC in (24)
at which we have η[V GC] = 0. The yellow star
represents the projection on the (v1, v3) plane
of the local minimum V ∗ in (27), at which
η[V ∗] < 0 and convexity is broken. The lev-
els sets are exactly straight since the energy is
linear in the vj’s.

artefact of the particle-hole symmetry. To find
a counter-example, we need to slightly go away
from half-filling. We thus decided to numeri-
cally minimize the “hardness”

V 7→ η[V ] :=
Ecl[V, 2] + Ecl[V, 4]

2
− Ecl[V, 3]

(26)
in a neighborhood of the solution V GC in (24).
We found that η was actually going down, as we
had expected, in an appropriate direction. In
Figure 3 we display its level lines in the (v1, v3)
plane, confirming that the grand-canonical po-
tential V GC of (24) is exactly at the edge of a
small valley where the hardness η[V ] becomes
slightly negative.

Numerical minimization of the hardness η[V ]
in (26) provided the new potential V ∗

v∗1 = v∗2 = −2.1665,

v∗3 = v∗4 = −1.4109,

v∗5 = v∗6 = −1.9934.

(27)

Table 1: Ground state energies and op-
timal configurations of the electrons for
the external potential V ∗ in (27).

N Ecl[V ∗, N ] ≈ minimizer
1 -2.1665 R∗1
2 -3.6187 R∗1,R

∗
2

3 -3.6129 R∗4,R
∗
5,R

∗
6

4 -3.6450 R∗3, ...,R
∗
6

5 -2.3949 R∗2, ...,R
∗
6

6 -0.4304 R∗1, ...,R
∗
6

Here we have truncated all the values at the
fourth decimal. In the following we use these
truncated values everywhere, and not the more
precise approximation of the minimizer of (26)
that we could compute numerically. It is
enough to go to the fourth decimal to obtain
a counter-example.

Let us summarize the situation. We have N
electrons that are only allowed to be at the
points R1, ...,R6 in Figure 2, where they feel
the potential given by (27). Looking at all the
possibilities of placing the electrons as in (19),
we obtain the ground state energies Ecl[V ∗, N ]
given in Table 1. We also mention in the same
table the optimal configurations for the elec-
trons. Although we only display the first 4 dig-
its, the energies can be computed up to machine
precision. In particular, we find the claimed
lack of convexity

− 3.6319 ≈ Ecl[V ∗, 2] + Ecl[V ∗, 4]

2
< Ecl[V ∗, 3] ≈ −3.6129. (28)

Note that the energy is even slightly going up
at N = 3, which is possible in such a confined
system. The energies are plotted in Figure 4.

To our knowledge, the potential V ∗ defined
in (18) and (27) provides the very first ex-
ample of a Coulomb system for which
convexity-in-N does not hold.

We also tried to minimize the hardness (26)
with respect to the positions R∗1, ...,R

∗
6. We

found a slightly asymmetric configuration of
points where the hardness was a bit more nega-
tive. However, since the improvement was tiny,
we did not pursue in this direction.
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-3.65

-3.60

-3.55

-3.50

-3.45

-3.40

Figure 4: Classical energies Ecl[V ∗, N ] for N ∈
{2, ..., 4}, with V ∗ as in (27). The function is
not convex at N = 3.

5 Counter-example for

quantum electrons

To construct a counter-example with quantum
electrons, we need first to force them to live
close to the points R∗j ’s in (22) by creating very
deep and narrow attractive wells. But then each
well has a very negative energy, which we have
to compensate by multiplying the Coulomb re-
pulsion by a large constant. After rescaling ev-
erything, we see that this amounts to placing
the nuclei very far apart.15 We thus consider
the following potential

V ∗` (r) = −
6∑
j=1

z∗j
|r− `R∗j |

, z∗j =

√
2|v∗j |
`

.

(29)
We recall once again that the R∗j ’s are given
in (22) and the v∗j ’s in (27). The potential (29)
corresponds to putting 6 nuclei of very small
fractional charges proportional to 1/

√
`, far

away from each other at a distance propor-
tional to ` � 1. From a result of Lieb31 we
know that each of the 6 nuclei cannot bind more
than 1 electron. The picture is, as we wanted,
that we have to distribute our N 6 6 electrons
among the 6 nuclei, with at most one per nu-
cleus. The ground state energy of each well
equals −(z∗j )

2/2 = v∗j/` and it is comparable to
the interaction energy between the electrons, so
that we recover the classical picture to leading
order in the limit `→∞.

Unlike the confined system studied in the pre-
vious section, the electrons can now choose to

2.5 3.0 3.5 4.0 4.5 5.0

-3.65

-3.64

-3.63

-3.62

-3.61

Figure 5: Quantum energies `E[V ∗` , N ] in the
limit ` → ∞, for N ∈ {2, ..., 5} and V ∗` as
in (29). The function is not convex at N = 3.

escape to infinity. A consequence is that the
quantum energy N 7→ E[V ∗` , N ] must be non-
increasing. It cannot go up as it did in the
previous classical example. The result is the
following.

Theorem 5 (Quantum counter-example)
The quantum energies in the potential V ∗`
of (29) satisfy, in the limit `→∞,

E[V ∗` , 1] =
Ecl[V ∗, 1]

`
+ o

(
1

`

)
E[V ∗` , 2] = E[V ∗` , 3] =

Ecl[V ∗, 2]

`
+ o

(
1

`

)
E[V ∗` , N ] = E[V ∗` , 4] =

Ecl[V ∗, 4]

`
+ o

(
1

`

)
for all N > 5. The corresponding Hamiltonian

H
V ∗
`

N in (2) admits a ground state for N = 1,
N = 2 or N = 4 electrons, but not for N = 3
or N > 5 electrons.

We recall that the classical energies
Ecl[V ∗, N ] are given in Table 1. Although
E[V ∗` , 3] is lower than in the classical case since
the third electron prefers to escape to infinity,
we still get the sought-after counter-example

E[V ∗` , 2] + E[V ∗` , 4]

2
< E[V ∗` , 3] = E[V ∗` , 2]

for ` large enough, see Figure 5. We also have
the rather strange situation of a nuclear system
that can bind 2 and 4 electrons but not 3.

Although Theorem 5 is very intuitive in view
of the results from the previous section, its rig-
orous proof is not so easy. The argument uses

8



geometric localization techniques32–36 and it is
outlined in Appendix B, for the convenience of
the reader. Note that the result does not de-
pend on the electrons between spin-1/2 parti-
cles. Since they end up being very far away
from each other, the Pauli principle is not so
important to leading order and the exact same
theorem holds for bosons. The same result is
also valid in Hartree-Fock theory.

We conclude this section with a remark. In
our counter-example the grand-canonical prob-
lem for N = 3 electrons ends up being a strict
average of the 2 and 4 electron cases. It is not
always the case that the grand-canonical N -
electron problem only involves the N − 1 and
N + 1 canonical energies. In Theorem 3.16 of
Ref. 20 we gave the example of 6k points (a kind
of multiscale copy of the 6 points in (22) at k
different scales), for which the grand-canonical
classical problem for N = 6k/2 is an average of
the N− = (6k − 2k)/2 and N+ = (6k + 2k)/2
canonical problems. Hence the grand-canonical
ground state has a number of electrons that

varies a lot around the mean N , by N
log 2
log 6 � 1.

6 Conclusion

Based on results from our previous work on
classical grand-canonical DFT20 and a dual-
ity principle, we have provided the very first
example of a system of classical electrons for
which the ground state energy is not convex in
the number of electrons. A perturbation argu-
ment then allowed us to construct a quantum
counter-example, with 6 nuclei of very small
fractional charges placed far apart. It is a very
interesting open problem to find a system of real
nuclei (that is, of integer charges) for which the
convexity property (4) fails. We hope that this
paper will stimulate more work in this direction.
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A Proof of Theorem 4

We describe here the proof of Theorem 4, us-
ing results from Ref. 20. Recall that we wish
to prove the equality F cl

GC[ρ] = F cl[ρ] for all
densities ρ =

∑K
k=1 ρkδRk

with K 6 4 and

N :=
∑K

k=1 ρk ∈ N.
First, if ρk > 1 for one k (as must be the case

if there are more electrons than sites, N > K)
we obtain immediately F cl

GC[ρ] = F cl[ρ] = +∞.
Another easy situation is when ρk ∈ {0, 1} for
all k, which means that we have to put one elec-
tron at each of the sites where ρk = 1, and thus
get a canonical state. This covers the situation
that N = K, for instance. Finally, if N = 1, we
have F cl

GC[ρ] = F cl[ρ] = 0. The corresponding
ground state amounts to putting one electron
at the Rk’s with probability ρk. We thus only
have to look at N = 2 and N = 3.

The most complicated case is N = 2, but
it was handled in our recent work.20 It is in-
deed proved in Thm. 3.15 of Ref. 20 that
F cl

GC[ρ] = F cl[ρ] for all densities ρ such that∫
R3 ρ(r) dr = 2. It is not necessary that ρ is

a finite combination of Dirac deltas. Note that
this result really uses the Coulomb interaction.
We do not have such a strong information if for
instance the interaction is replaced by |rj−rk|−s
for some s > 1 (see Thm 3.9 in Ref. 20).

It remains to treat the case N = 3 and K = 4.
We can assume ρk > 0 for all k (if one ρk van-
ishes we must put the three electrons at the
three other sites). The same Thm. 3.15 of Ref.
20 specifies that any grand-canonical ground
state must involve only n = 2, 3, 4 electrons. In
other words, we have pI = 0 if I is empty or con-
tains one index. Let us now argue by contradic-
tion and assume that, for instance, p{1,2} > 0.
Then we must have p{1,2,3,4} > 0 as well and, of
course, pI < 1 for every configuration I. Next

9



we modify the ground state by replacing

p{1,2}  p{1,2} − t
p{1,2,3,4}  p{1,2,3,4} − t
p{1,2,3}  p{1,2,3} + t

p{1,2,4}  p{1,2,4} + t

for t > 0 small enough. The indices were cho-
sen so that the density is not affected by these
modifications. Hence the energy must go up
and we find

0 6 t
(
c{1,2,3} + c{1,2,4} − c{1,2} − c{1,2,3,4}

)
= − t

|R3 −R4|
.

This is definitely a contradiction and hence we
have shown p{1,2} = 0. There was of course
nothing special with {1, 2} and by permuting
the labels we conclude that p{i,j} = 0 for every
i < j. Since we have 3 electrons in average
this implies p{1,2,3,4} = 0 and therefore our state
must be canonical, as was claimed.

B Proof of Theorem 5

B.1 Asymptotic expansion

In this subsection we discuss the proof of the
asymptotic expansion

E[V ∗` , N ] =
minn=1,...,N E

cl[V ∗, n]

`
+O(`−

5
4 )

(30)
for all N > 1. The error is a little bit more
precise than that stated in the theorem, but it
is probably not optimal.

First we show an upper bound, that is, we
prove (30) with a 6. Let N 6 6 and consider
the optimal Rj1 , ...,RjN for Ecl[V ∗, N ] given
in Table 1. We place one electron at each of
these nuclei, in the hydrogenic ground state
φk,`(r, σ) = 1√

π
e−z

∗
jk
|r−`R∗

jk
|δσ↑. More precisely,

we first orthonormalize the φk,`’s by Gram-
Schmidt with an exponentially small error in
` and we can then take as trial state the asso-
ciated (spin-polarized) Slater determinant. We

find

E[V ∗` , N ] 6
Ecl[V ∗, N ]

`
+O(`−

3
2 )

where the error in `−3/2 comes from the interac-
tion between each electron and the other nuclei.
For N = 3 we can first send one electron to in-
finity and we obtain the better upper bound

E[V ∗` , 3] 6 E[V ∗` , 2] 6
Ecl[V ∗, 2]

`
+O(`−

3
2 ).

We argue similarly for N ∈ {5, 6}. Finally, a
theorem of Lieb31 states that a system of M
nuclei of total (possibly fractional) charge Z
can never bind more than 2Z + M electrons.
In our case the total nuclear charge goes to
zero in the limit ` → ∞, hence our system
can never bind more than 6 electrons. We thus
have E[V ∗` , N ] = E[V ∗` , 6] all N > 7, without
any ground state. We have thus proved the up-
per bound in (30), with the (probably optimal)
error O(`−3/2).

Let us now turn to the proof of the lower
bound, using standard localization tech-
niques.32,36 We pick a smooth radial function
χ which equals 1 in the ball of radius 1 and
vanishes outside of the ball of radius 2. We
then define the localization function about the
j-th nucleus by

χj,`(r) = χ

(
r− `R∗j
`3/4

)
.

Since we know that the hydrogenic ground
states live at the scale

√
` we need to local-

ize at a larger scale. On the other hand, we
do not want to reach the distance ∼ ` between
the nuclei. Hence `3/4 sounds like a good com-
promise. We define the complementary local-
ization χ7,` so as to obtain a partition of unity,∑7

j=1 χ
2
j,` = 1. Plugging this partition in each

variable rj and expanding, we obtain a partition
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of unity in the N -electron space. This leads to〈
Ψ
∣∣HV ∗

`
N

∣∣Ψ〉
=

7∑
j1,...jN=1

〈
χj1,...,jN ,`Ψ

∣∣∣HV ∗
`

N

∣∣∣χj1,...,jN ,`Ψ〉
+O(`−

3
2 ) (31)

for any N -particle wavefunction Ψ, where

χj1,...jN ,`(r1, ..., rN) := χj1,`(r1) · · ·χjN ,`(rN)

localizes in the region where the k-th electron
is on the support of χjk,`. The O(`−3/2) comes
from the gradient of the localization, due to the
IMS formula.37

We then look at all the possibilities for the in-
dices j1, ..., j7, corresponding to all the ways of
placing the N electrons in the 7 regions. In each
case we bound the energy from below, applying
the following rules:

• The interaction between an electron close to
a nucleus and another nucleus is of order `−3/2;

• The interaction between an electron in the 7-
th region and all the nuclei is at most of order
`−5/4;

• For a lower bound we can discard the kinetic
energy of an electron in the 7-th region, as well
as its repulsion with the other electrons;

• If we have two electrons or more close to
one nucleus, the corresponding repulsion is
bounded-below by 1

4`3/4 , a positive term that
dominates all the other terms and is also much
larger than the desired minn=1,...,N E

cl[V ∗, n]/`;

• The repulsion between two electrons located
close to `Rj and `Rk with k 6= j can be
bounded from below by

1

`|R∗j −R∗k|+ 4`3/4
=

1

`|R∗j −R∗k|
+O(`−

5
4 );

• For the interaction between an electron and
its nucleus we use the hydrogenic ground state
energy in the operator form

−1

2
∇2

r −
z∗j
r
> −

(z∗j )
2

2
=
v∗j
`
.

Applying all the above rules we obtain the op-

erator bound

χj1,...,jN ,`H
V ∗
`

N χj1,...,jN ,`

>

(
minn=1,...,N E

cl[V ∗, n]

`
+O(`−

5
4 )

)
χ2
j1,...,jN

.

Summing over j1, ..., jN leads to the desired
lower bound, hence to the stated asymptotic
expansion (30).

B.2 No binding for N = 3, 5, 6

Although we know that E[V ∗` , 3] and E[V ∗` , 2]
have the same asymptotic expansion to leading
order in the limit ` → ∞, this does not yet
prove that E[V ∗` , 3] = E[V ∗` , 2]. We need to be
more precise to obtain the exact equality. The
difficulty is to prove that one of the three elec-
trons feels a repulsive potential everywhere in
space, that pushes it to infinity. The proof re-
lies on a different localization technique.33–35,37

Its goal is to find which electron is the furthest
away and at what distance. Once we know this
distance we can use the electronic repulsion to
control the localization errors. We only outline
this proof for N = 3, the argument is very sim-
ilar for N = 5, 6.

Let η : [0,∞) → [0, 1] be a smooth non-
decreasing function such that η ≡ 0 on [0, 1]
and η ≡ 1 on [2,∞). Denote by D(r1, r2, r3) :=
max{|r1|, |r2|, |r3|} the distance to the origin of
the furthest away electron. For a large enough
constant K (to be determined below), we intro-
duce for j = 1, 2, 3

Fj(r1, r2, r3) := η

(
D

K`

)
η

(
2|rj|
D

)
.

The first factor imposes that D is large enough
whereas the second requires that the j-th elec-
tron is located at a distance comparable to
D. We have

∑3
j=1 F

2
j > η( D

K`
)2 since in the

sum there exists one j for which |rj| = D and
η(2) = 1. We then let F0 := 1 − η( D

K`
) and

obtain 1
2
6
∑3

j=0 F
2
j 6 3. This allows us to

introduce the new partition of unity

Ξj :=
Fj(∑3

k=0 F
2
k

)1/2
.
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Outside of the set of zero measure where two
electrons are the furthest away, it can be seen
that the function Fj is differentiable, with

|∇Fj| 6
√
C
1(D > K`)

D

for some explicit constant C that is not impor-
tant for our argument. We have a similar bound
on |∇Ξj|. The IMS formula provides〈

Ψ, H
V ∗
`

3 Ψ
〉

>
3∑
j=0

〈
ΞjΨ

∣∣∣∣HV ∗
`

3 −
C1(D > K`)

D2

∣∣∣∣ΞjΨ

〉
.

(32)

The localization function Ξ1 corresponds to the
first electron being far away at a distance at
least D/2 > K`/2. By definition of D we have
|r1 − rm| 6 2D for m = 2, 3, hence we can
bound the repulsion between the first electron
and the other two by

1

|r1 − r2|
+

1

|r1 − r3|
>

1

D
.

On the other hand, we can estimate the nuclear
attraction using

|r1 − `R∗m| > |r1| − 2` > D/4 + (K/4− 2)`,

since |R∗m| 6 2 by definition. We thus pick
K = 8 to obtain |r1 − `R∗m| > D/4. Using∑6

m=1(2|v∗m|)1/2 6 12 we arrive at

Ξ1

(
H
V ∗
`

3 −
C

D2

)
Ξ1

> Ξ1

(
(H

V ∗
`

2 )r2,r3 +
1

D
− 48

D
√
`
− C

D2

)
Ξ1

>

(
E[V ∗` , 2] +

1

2D

)
Ξ2

1

for ` large enough, since D > K` = 8`. Here

(H
V ∗
`

2 )r2,r3 denotes the 2-electron Hamiltonian
acting on the second and third electrons. The
bound is exactly the same for j = 2, 3, by sym-
metry.

Next we look at the support of Ξ0 where
D 6 2K` = 16`, that is, all the electrons are at

distance ` to the nucleus. On that set we just
localize further, using the same χj,` as we did in
Section B.1. What we have gained here is that
the repulsion between an electron in the 7-th
region and an electron close to a nucleus can
now be bounded from below by 1/(32`), a term
that can be used to control the localization er-
rors and the interaction with the other nuclei.
In the case that we have no electron in the 7-th
region, we instead use Ecl[V ∗, 3] > Ecl[V ∗, 2] to
also gain a positive term of order 1/`. We end
up with an estimate of the form

Ξ0

(
H
V ∗
`

3 −
C1(D > K`)

D2

)
Ξ0

>

(
Ecl[V ∗, 2]

`
+
α

`
+O(`−

6
5 )

)
Ξ2

0

>
(
E[V ∗` , 2] +

α

2`

)
Ξ2

0

for α = min(1/32, Ecl[V ∗, 3] − Ecl[V ∗, 2]) ≈
0.0058 and all ` � 1. In the last line we used
the asymptotic expansion (30).

The two bounds prove that for any wavefunc-
tion Ψ〈

Ψ
∣∣∣HV ∗

`
3

∣∣∣Ψ〉 > E[V ∗` , 2] +

∫
R9

|Ψ|2

2 max(D, `α−1)
.

Hence E[V ∗` , 3] > E[V ∗` , 2], which implies equal-
ity due to the monotonicity. Also, there can-
not exist a ground state Ψ since the last term
would have to vanish. This concludes the proof
of Theorem 5.
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